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Algebraic methods have become a powerful tool for analyzing the complexity of various computational

models, including low-depth circuits, algebraic proofs, and quantum query algorithms. In particular,

the complexity of computing a function in these models is related to whether or not the function admits

a low-degree polynomial approximation. In this thesis, we present two novel applications of algebraic

methods in computational complexity theory.

In the first part of the thesis, we study unitary property testing, where a quantum algorithm is given

query access to a black-box unitary and has to decide whether or not it satisfies some property. In

addition to containing the classical query complexity model as a special case, this model also contains

“inherently quantum” problems that have no classical analogue. Our main contribution is a generalized

polynomial method for analyzing the complexity of unitary property testing problems. By leveraging

connections with invariant theory, we apply this method to obtain lower bounds on problems such as

determining recurrence times of unitaries, approximating the dimension of a subspace, and approximating

the entanglement entropy of a state. We also present a candidate problem towards an oracle separation

of QMA and QMA(2), a long standing open question in quantum complexity theory.

In the second part of the thesis, we study the tensor isomorphism problem (TI), which has recently

emerged as having connections to multiple areas of research, including quantum information theory, post-

quantum cryptography, and computational algebra. However, the current best upper bound is essentially

the brute force algorithm. Being an algebraic problem, the study of tensor isomorphism naturally lends

itself to algebraic and semi-algebraic proof systems such as the polynomial calculus (PC) and sum-of-

squares (SoS). We show a Ω(n) lower bound on PC degree or SoS degree for tensor isomorphism and

a non-trivial upper bound for testing isomorphism of tensors of bounded rank. Along the way, we also

show that PC cannot perform basic linear algebra in sublinear degree, such as comparing the rank of two

matrices. We introduce a strictly stronger proof system, called PC + Inv, which enables linear algebra

to be done in low degree. We conjecture that even PC + Inv cannot solve TI in polynomial time either,

and highlight many other open questions about proof complexity approaches to TI.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 What is Computational Complexity?

Computational complexity theory aims to classify the relative power of computational resources, such

as time or space, for solving mathematical problems. Complexity theory classifies problems into various

complexity classes. We give an informal overview of complexity theory in this section. For details,

consult a complexity theory textbook such as [AB09].

Some examples of complexity classes include:

� P: The class of problems that can be solved in polynomial time by deterministic algorithms.

� BPP: The class of problems that can be solved in polynomial time by randomized algorithms.

� BQP: The class of problems that can be solved in polynomial time by quantum algorithms.

� NP: The class of problems whose solutions can be verified in polynomial time by a deterministic

verifier.

� PSPACE: The class of problems that can be solved assuming that a computer has access to a

polynomial amount of memory.

The central questions of computational complexity theory aim to resolve whether or not efficient

algorithms always exist for certain classes of problems, and to discover the trade-offs between various

types of computational resources. Some examples of comparisons that can be asked include:

� P versus NP : Does every problem whose solution can be verified efficiently, also have an efficient

algorithm? This seminal problem was introduced by Cook in [Coo71].

� P versus BPP: Is every problem solvable by a polynomial time randomized algorithm also solvable

by a polynomial time deterministic algorithm?

� BPP versus BQP: Is every problem solvable by a polynomial time quantum algorithm also solvable

by a polynomial time randomized algorithm?

6
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Resolving these questions would contribute significantly to our understanding of computation. On

one hand, showing that a problem can be solved by an efficient algorithm in some model could lead

to practical applications. However, showing a problem is computationally hard also has interesting

consequences.

Firstly, it would give a more complete understanding of various algorithms, including when an al-

gorithm is an optimal algorithm for solving a particular problem. Next, complexity theory provides

some of the foundations of cryptography. Hardness assumptions are used to show the security of various

cryptographic systems [AB09, Chapter 10]. Finally, the quest to prove computational lower bounds

has stimulated connections between computational complexity theory and other areas of mathematics.

These include combinatorics [Lov17], Fourier analysis [O’D14], and algebra [AB09, Chapter 13, 14]. Es-

tablishing computational lower bounds remains a interesting and fundamental challenge in mathematics,

and has often lead to surprising and deep results.

The study of computational complexity theory is particularly relevant for the nascent field of quantum

computing. There appears some evidence that quantum effects can be powerful computational resource

(i.e. it is plausible that BPP ̸= BQP). The discovery of Shor’s algorithm [Sho99] for factoring integers

provided evidence that there could be problems that could be efficiently solved on a quantum computer,

but not any classical device. This is because much of modern cryptography relies on the assumption that

factoring integers is hard for deterministic or randomized algorithms. With recent experimental progress

in building larger quantum devices and various groups claiming that they have achieved “quantum

supremacy” [AAB+19, ZDQ+21], there is a tantalizing possibility that quantum computers could provide

speed-ups for practically relevant problems compared to classical devices. Understanding which problems

are mostly likely amenable to a quantum speed-ups remains an fascinating open problem.

However, despite decades of progress in computational complexity theory, it remains difficult to

prove non-trivial computational lower bounds in general computational models such Turing machines or

circuits. This motivates the study of restricted computational models, which is a necessary step towards

establishing general computational lower bounds. In particular, there appears to be a strong connection

between algebraic methods and techniques to prove lower bounds in restricted computational models.

We overview this connection in the next section.

1.1.2 Algebraic Methods in Computational Complexity Theory

Algebraic techniques involve converting a problem about computing a Boolean function f : {0, 1}n →
{0, 1} in some model into one about algebraic objects, such as polynomials p ∈ F[x1, . . . , xn] for some field

F. These techniques have been particularly fruitful for studying restricted models of computation, such

as low-depth circuits, algebraic proofs, and quantum query algorithms. We focus on techniques involving

the notion of approximate degree, which captures the minimum degree necessary for a polynomial p to

approximate a function f in some sense. This notion now has many avatars throughout computational

complexity theory [BT+22] and depends on the underlying field F.

Approximation over a finite field. Firstly, we can consider the setting where p is a polynomial

with coefficients in a finite field with a prime number of elements Fp. In this setting, we say that a

polynomial p approximates function f with error ϵ if

Pr
x∈{0,1}n

[p(x) ̸= f(x)] ≤ ϵ
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where the probability is over a uniformly random chosen input in {0, 1}n.
This notion of approximation is particularly relevant in circuit complexity, for the study of constant-

depth circuits. Recall that the depth of a circuit is the maximum length of input to output path in the

circuit. A family of circuits {Cn} has constant-depth if there exists an integer d such that every circuit

Cn in the family has depth at most d.We say that a constant-depth circuit family is in AC0[2] if the gate

set used includes unbounded fan-in AND, OR, NOT, and PARITY gates, where PARITY is the function

defined by

PARITY(x1, . . . , xn) =
n∑
i=1

xi mod 2.

Razborov-Smolensky [Smo87] observed that function f that are computable by small-depth AC0[2]

circuits have low-degree polynomial approximations over F2 in the sense described above. This is now

known as the Razborov-Smolensky method of approximations. In particular, there are relatively simple

functions that do not have polynomially-sized AC0[2] circuits, such as the MOD3 function, defined by

MOD3(x1, . . . , xn) =

1
∑n
i=1 xi mod 3 = 1

0 otherwise
.

This is shown by establishing that no low-degree polynomial over F2 can approximate MOD3 in the

sense described above [AB09, Chapter 13.2]. This was one of the first lower bounds to be shown for the

AC0[2] circuit class, and remains one of the strongest circuit lower bounds proven to this day.

While some techniques from circuit complexity can sometimes be “lifted” to prove lower bounds in

the setting of proof complexity, it is still open to prove lower bounds for AC0[2]-Frege proofs. As an

attempt to generalize the Razborov-Smolensky bounds to the proof complexity setting, proof systems

that manipulate polynomials were introduced. These are known as algebraic proof systems. This

observation was first used by Beame et al. [BIK+96], which used degree lower bounds in Hilbert’s

Nullstellensatz to deduce lower bounds for a subsystem of AC0[2]−Frege. Other algebraic proof systems

such as polynomial calculus [CEI96a] were subsequently introduced, and degree lower bounds for these

systems have also been studied [Raz98a].

Approximation over the reals. Secondly, we can also consider approximation of Boolean functions

by polynomials with real coefficients. In this setting, we say that a polynomial p approximates a function

f with error ϵ if pointwise for each x ∈ {0, 1}n we have

|p(x)− f(x)| ≤ ϵ.

Again, we say that the ϵ-approximate degree degϵ(f) of a function is the minimum degree of a

polynomial p for which a pointwise approximation to error ϵ is possible.

This notion of approximation is also relevant in computational complexity theory, particularly in the

query model. The basic example of a query model is the model of deterministic decision trees. A decision

tree computes a function f(x1, . . . , xn) by querying variables xi, branching based on the value of xi, and

outputing a value when a leaf of the tree is reached. The depth of a decision tree is the maximum length

of a root-to-leaf path, and is an important measure for the complexity of a decision tree.

Approximation by real polynomials, in the context of classical complexity theory, was introduced
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by Nisan and Szegedy as [NS94]. There, they showed that the approximate degree of a function f is

polynomially related to its decision tree depth. Furthermore, they show that approximate degree is lower

bounded by other complexity measures of f such as its block-sensitivity. In [BDW02], it is also observed

that the same holds true when considering randomized decision trees, in addition to deterministic decision

trees.

The observation that polynomial degree is a lower bound for query complexity was then adapted

for quantum algorithms by Beals, et al. [BBC+01]. Afterwards, it was recognized that the polynomial

method is a powerful technique to lower bound the quantum query complexity of a variety of problems

(see, e.g., [AS04, BKT18], and the references therein). These lower bound techniques have been used to

give insights on the optimality of quantum algorithms and the maximum possible quantum speed-ups

achievable in the query model.

1.2 Contributions and Organization of the Results

The contributions of this thesis are to investigate two domains, namely query complexity and proof

complexity, where algebraic techniques can be applied to investigate lower bounds. We introduce and

develop new algebraic techniques for proving novel computational lower bounds in these domains.

1.2.1 Unitary Property Testing

In the first part of the thesis, based on [SY22], we investigate the quantum query model. The query

model of quantum algorithms plays a central role in the theory of quantum computing. In this model,

the algorithm queries (in superposition) bits of an unknown input string X, and after some number of

queries decides whether X satisfies a property P or not. We now have an extensive understanding of the

query complexity of many problems; we refer the reader to Ambainis’s survey [Amb18] for an extensive

list of examples.

Although this query model involves quantum algorithms, the task being solved is classical property

testing, that is, deciding properties of classical strings. This has been very useful for comparing the

performance of classical versus quantum algorithms for the same task. In contrast, quantum property

testing – deciding properties of quantum objects such as states and unitaries – has been been studied

much less but has been receiving more attention in recent years [MdW13]. These are examples of

“inherently quantum” problems which can be solved on a quantum computer. There has been a recent

series of work [Ros23, Kre23] in trying to develop complexity theory for inherently quantum problems,

since techniques of classical complexity theory do not immediate generalize to this setting.

In this thesis, we focus on unitary property testing, where the goal is to decide whether a unitary

U satisfies a property P by making as few queries to U as possible. This is an inherently quantum

problem, and the systematic study of this topic was initiated by Wang [Wan11]. Various aspects have

been studied further in [MdW13, CNY22, ACQ22]. Some examples of unitary property testing problems

include:

� Approximate dimension: promised that U applies a phase to all states |ψ⟩ in a subspace S of

dimension either at w or 2w, determine the dimension of the subspace. This is analogous to

the classical problem of approximating the Hamming weight of an input X. This was studied

in [AKKT20].
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� Unitary recurrence times: Determining whether U t = I or ∥U t − I∥ ≥ ϵ (promised that one is the

case) where t is a fixed integer.

� Hamiltonian properties: Promised that U = e−iH for some Hamiltonian H with bounded spectral

norm, determine properties of H, such as whether it is a sum of k-local terms, or the ground space

is topologically ordered.

� Unitary subgroup testing: decide whether U belongs to some fixed subgroup of the unitary group

(such as the Clifford subgroup). This was studied in [BSW21].

� Entanglement entropy problem: Given access to a unitary U = I − 2 |ψ⟩ ⟨ψ| for some state |ψ⟩ ∈
Cd ⊗ Cd, decide if the entanglement entropy of the state |ψ⟩ is low or high, promised one is the

case.

These examples illustrate the rich variety of unitary property testing problems: some are motivated

by well-studied classical problems in computer science (such as junta testing and approximate counting),

whereas others are inspired by questions in quantum physics (e.g., identifying quantum chaos, topological

order, or entanglement).

We continue explorations of this topic by developing a new lower bound technique based on the poly-

nomial method, in particular approximation by real polynomials. In Chapter 2, we provide background

material that is helpful context towards understanding the main results of this work.

� In Section 2.1, we provide background on quantum circuits and the quantum query model.

� In Section 2.2, we provide background on the polynomial method for classical property testing.

� In Section 2.3, we provide background on the quantum complexity classes studied in our work,

including the quantum complexity class QMA.

This is followed by Chapter 3 that contains our main results on unitary property testing. Section 3.1

states some lemmas and preliminaries we will need towards proving our main results.

The Generalized Polynomial Method and Applications

In Section 3.2, we prove our main results on the generalized polynomial method for unitary property

testing and its applications. We note that we allow queries to both U and U∗ as we are interested in

lower bounds for the strongest possible query model.

Proposition 1.2.1 (Generalized polynomial method). The acceptance probability of a quantum algo-

rithm making T queries to a d × d unitary U and its inverse U∗ can be computed by a degree at most

2T self-adjoint1 polynomial p : C2(d×d) → C evaluated at the matrix entries of U and U∗. Thus, degree

lower bounds on such polynomials yields a query lower bound on the algorithm.

Furthermore, we say that a unitary property P = (Pyes,Pno) is closed under inversion if U ∈ Pyes
iff U∗ ∈ Pyes, and U ∈ Pno iff U∗ ∈ Pno. All properties we will study in this paper will be closed under

inversion, and hence the polynomial p satisfies a symmetry under this condition.

1A self-adjoint polynomial is unchanged after complex conjugating every variable and every coefficient.



Chapter 1. Introduction 11

Proposition 1.2.2. Let P be an property closed under inversion and suppose there is a T -query quantum

algorithm for testing property P. Let p be the polynomial from Proposition 1.2.1 that computes the

acceptance probability of the algorithm. Then, we may assume that p(U,U∗) = p(U∗, U).

Hence, while establishing the existence of p is straightforward, proving lower bounds on its degree is

another matter. The standard approach in quantum query complexity is to symmetrize p to obtain a

related polynomial q whose degree is not too much larger than p, and acts on a much smaller number

of variables (ideally a single variable). However, for unitary properties, a symmetrization technique for

other properties is less clear. In this direction, we develop symmetrization techniques based on invariant

theory. This provides an intriguing connection between unitary property testing and invariant theory,

which is a classical area of mathematics.

To connect invariant theory with our Proposition 1.2.1, we prove the following result for testing

G-invariant unitary properties. Since we are studying properties of general unitaries, not just boolean

strings, we consider symmetries coming from subgroups of the unitary group U(d). Let G ⊆ U(d) be

a compact subgroup equipped with a Haar measure µ (i.e., a measure over G that is invariant under

left-multiplication by elements of G).

Definition 1.2.1 (G-invariant property). Let G ⊆ U(d) be a compact group. A d-dimensional unitary

property P = (Pyes,Pno) is G-invariant if for every g ∈ G we have gPyesg−1 ⊆ Pyes and gPnog−1 ⊆ Pno.

For G-invariant properties, we show that an approximating polynomial can always be chosen in the

invariant ring C[X,X∗]Gd , where G acts on polynomials of degree d in the natural way.

Proposition 1.2.3 (Symmeterization for G-invariant properties). Suppose P = (Pyes,Pno) is a G-

invariant d-dimensional unitary property. If there is a T -query tester for P that accepts yes instances

with probability at least a and no instances with probability at most b, then there exists a self-adjoint

degree-2T polynomial q in the invariant ring C[X,X∗]Gd satisfying

� If U ∈ Pyes, then q(U,U∗) ≥ a.

� If U ∈ Pno, then q(U,U∗) ≤ b.

While Proposition 1.2.3 at first may seem difficult to apply, the invariant ring has been characterized

in numerous cases. Depending on the group, the associated invariant ring may have a much simpler

description than the full polynomial ring, making it easier to prove degree lower bounds.

We demonstrate the utility of generalized polynomial method by providing applications to several

unitary property testing problems. Furthermore, we study lower bounds in both the BQP and QMA

settings. A formal definition of the models is provided in Section 2.3. We show query lower bounds

in both the QMA and BQP settings, thereby showing that quantum proofs cannot reduce the query

complexity significantly for the problems we study.

We note that in the BQP setting, our lower bounds can also be obtained by other methods, such

as the “hybrid method” of [BBBV97]. However, it is unclear how to apply this method in the QMA

setting, and hence the polynomial method appears necessary to prove non-trivial QMA lower bounds.

Furthermore, even in the BQP setting, we believe that the polynomial method provides a clean and

simple method to prove lower bounds compared to other methods.
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Unitarily Invariant Subspace Properties. As a warmup, consider subspace properties, which con-

sist of reflections about a subspace, i.e., U = I − 2Π where Π is the projector onto some subspace

S ⊆ Cd. We say that U encodes the subspace S. An example of a unitarily invariant subspace property

is the Approximate Dimension problem, which we parametrize by an integer w ∈ {1, 2, . . . , d}. The yes

instances consist of (unitaries encoding) subspaces of dimension at least 2w, and the no instances consist

of subspaces of dimension at most w. This is a quantum generalization of the Approximate Counting

problem, which is to determine whether the Hamming weight of an input string is at least 2w or at most

w.

We observe that there is a one-to-one correspondence between symmetric classical properties S (prop-

erties that only depend on the Hamming weight of the input) and unitarily invariant subspace properties

P. We make this correspondence precise in the following theorem, which comes from Theorem 3.2.2, a

special case of Proposition 1.2.3 for unitarily invariant properties.

Proposition 1.2.4. Let P be a unitarily invariant subspace property and let S be the associated sym-

metric classical property. The query complexity of distinguishing between yes and no instances of P is

at least the minimum degree of any polynomial that distinguishes between the yes and no instances of S.

Therefore, degree lower bounds on polynomials that decide a classical symmetric property S, auto-
matically yield query complexity lower bounds for the quantum property P. For instance, we obtain

the following lower bounds for the Approximate Dimension problem from the corresponding classical

results, including the QMA lower bound of Aaronson et al in [AKKT20].

Theorem 1.2.5 (BQP lower bound for Approximate Dimension). Any tester that decides between

whether a unitary encodes a subspace of dimension at least 2w or at most w requires Ω(
√

d
w ) queries.

Theorem 1.2.6 (QMA lower bound for Approximate Dimension). Suppose there is a T -query algorithm

that solves the Approximate Dimension problem (i.e. deciding whether a d-dimensional unitary encodes a

subspace of dimension at least 2w or at most w) with the help of a m-qubit proof. Then either m = Ω(w),

or T ≥ Ω(
√

d
w ).

Recurrence Time of Unitaries. Not all unitarily invariant properties reduce to classical lower

bounds. For instance, we analyze a problem related to the recurrence times of unitaries.

Definition 1.2.2 (Recurrence Time Problem). The (t, ϵ)-Recurrence Time problem is to decide, given

oracle access to a unitary U , whether U t = I (yes case) or ∥U t − I∥ ≥ ϵ in the spectral norm (no case),

promised that one is the case.

Note that the instances of this problem are generally not self-adjoint; their eigenvalues can be any

complex number on the unit circle. There is no obvious classical analogue of the unitary Recurrence

Time problem, and thus it does not seem to naturally reduce to a classical lower bound. We instead

employ Theorem 3.2.2 to prove the following lower bound on the Recurrence Time problem in the BQP

setting:

Theorem 1.2.7. Let ϵ ≤ 1
2π . Any quantum query algorithm solving the (t, ϵ)-Recurrence Time problem

for d-dimensional unitaries with error ϵ must use Ω(max( tϵ ,
√
d)) queries.

We also establish the following upper bound in the BQP setting:
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Theorem 1.2.8. The (t, ϵ)-Recurrence Time problem can be solved using O(t
√
d/ϵ) queries.

Using a similar technique as the BQP lower bound, we also obtain a QMA lower bound for the same

problem.

Theorem 1.2.9 (QMA lower bound for the Recurrence Time problem). Let ϵ ≤ 1
2π . Suppose there is a

T -query algorithm that solves the Recurrence Time problem for d-dimensional unitaries with the help of

an m-qubit proof. Then either m ≥ Ω(d), or T ≥ Ω(max(
√

d
m ,

t
m ,

1
ϵ )).

We leave finding a matching upper bound in the QMA setting as an open problem.

Entanglement Entropy Problem We illustrate further illustrate the connection between quantum

query complexity and invariant theory by considering property testing questions related to entanglement

of quantum states, which is a central concept in quantum information theory. Recall that a state

|ψ⟩ ∈ Cd ⊗ Cd is entangled if it cannot be written as a tensor product of two states |ψ1⟩ ⊗ |ψ2⟩ where
|ψ1⟩ , |ψ2⟩ ∈ Cd. The entanglement entropy of a state |ψ⟩ ∈ Cd ⊗ Cd can be used as a measurement of

how entangled the state is.

We now define the Entanglement Entropy problem as the task of distinguishing between high and

low entropy states. We let H2(|ψ⟩) denote the Rényi two-entropy of state |ψ⟩, defined by H2(|ψ⟩) =

− log Tr(ρ2) where ρ is the reduced density matrix of the a state |ψ⟩.

Definition 1.2.3 (Entanglement Entropy Problem). Let 0 < a < b ≤ log d. Given oracle access to a

reflection oracle U = I − 2|ψ⟩⟨ψ| where |ψ⟩ ∈ Cd ⊗Cd, decide whether or not the state |ψ⟩ satisfies one
of the following two conditions, promised one of the following is the case:

� Low entropy case: H2(|ψ⟩) ≤ a

� High entropy case: H2(|ψ⟩) ≥ b

Since entanglement entropy of a state is an invariant quantity under the local unitary group, we can

use our generalized polynomial method and Proposition 1.2.3 to prove a lower bound.

Theorem 1.2.10. Assume a ≥ 5. Given parameters a < b ≤ log d, any tester must make Ω(exp(a/4))

queries to distinguish between the low and high entropy cases in the Entanglement Entropy problem.

We observe that in the limit where a = O(log d), which is testing if a state is close to maximally

entangled or not, this yields a Ω(d1/4) lower bound in terms of the dimension d of the underlying quantum

state.

Finally, we also adapt the technique for the BQP lower bound for the Entanglement Entropy problem,

to prove a QMA lower bound for the same problem.

Theorem 1.2.11 (QMA lower bound for the Entanglement Entropy problem). Assume a ≥ 5 and

a < b ≤ log d Suppose there is a T -query algorithm that solves the entanglement entropy problem with

the help of an m-qubit witness, then mT ≥ Ω(exp(a/4)).

We hope that our connection between invariant theory and quantum query complexity can be used

as a general framework to prove new lower bounds.
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QMA versus QMA(2)

Section 3.3 illustrates the connections between unitary property testing and the complexity class QMA(2).

We define the QMA(2) complexity class formally in Section 2.3. Our main contribution in this section is

to introduce a problem called the Entangled Subspace problem,. It is a unitary property testing problem

solvable by the QMA(2) property testing model but we conjecture that it is not solvable by the QMA

property testing model. While we do not obtain a lower bound, we present some observations that may

be helpful towards eventually obtaining the desired separation.

In order to define the problem, we first have to define the notion of an ϵ-completely entangled subspace.

This is a subspace S ⊆ Cd ⊗Cd such that all states |θ⟩ ∈ S are ϵ-far in trace distance from any product

state |ψ⟩ ⊗ |ϕ⟩. It is known, via the probabilistic method, that there exist subspaces of dimension Ω(d2)

that are Ω(1)-completely entangled [HLW06]. We now introduce the Entangled Subspace problem:

Definition 1.2.4 (Entangled Subspace problem). Let 0 ≤ a < b < 1 be constants. The (a, b)-Entangled

Subspace problem is to decide, given oracle access to a unitary U = I − 2Π where Π is the projector

onto a subspace S ⊆ Cd ⊗ Cd, whether

� (yes case) S contains a state |θ⟩ that is a-close in trace distance to a product state |ψ⟩ ⊗ |ϕ⟩.

� (no case) S is b-completely entangled

promised that one is the case.

We observe that there is in fact a QMA(2) upper bound for the Entangled Subspace problem, which

is almost immediate from the definition of QMA(2):

Proposition 1.2.12 (QMA(2) upper bound for the Entangled Subspace problem). The Entangled Sub-

space problem can be solved by a QMA(2) tester, meaning that the tester receives a proof state in the

form |ψ⟩ ⊗ |φ⟩ of poly log(d) qubits, makes one query to the unitary U , and can distinguish between yes

and no cases with constant bias.

We conjecture the following QMA lower bound on the Entangled Subspace problem.

Conjecture 1. Any QMA tester for the Entangled Subspace problem that makes T queries to the oracle

and receives an m-qubit witness must have either m or T be superpolynomial in log d.

We observe that the Entangled Subspace property is invariant under the local unitary group: applying

local unitaries g⊗h to a subspace S preserves whether it is a yes instance or a no instance of the problem.

Thus one can hope to prove query lower bounds for the Entangled Subspace problem in both the BQP

and QMA setting using our generalized polynomial method and tools from invariant theory. If this

conjecture is true, then this would imply the existence of a quantum oracle that separates QMA from

QMA(2): the oracle would encode, for each QMA tester, an instance of the Entangled Subspace problem

that the tester decides incorrectly.

Average Case Problems. We also propose two average case variants of the Entangled Subspace

problem, in which the task is to distinguish between two distributions over unitaries U . Let U be a

Haar-random matrix on Cd ⊗ Cd. A Haar-random subspace of dimension s is the image of UPS , where

PS is a projector onto any fixed subspace S ⊆ Cd ⊗ Cd of dimension s.
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Definition 1.2.5 (Planted Product State Problem). Let 0 < s < d2 denote an integer parameter.

Consider the following two distributions over subspaces S of Cd ⊗ Cd:

� No planted state: S is a Haar-random subspace of dimension s.

� Has planted state: S is an (s + 1)-dimensional subspace chosen by taking the span of a Haar-

random s-dimensional subspace with a product state |ψ⟩ ⊗ |ϕ⟩ for Haar-random |ψ⟩ , |ϕ⟩.

The Planted Product State problem is to distinguish, given oracle access to a unitary U = I − 2Π

encoding a subspace S, whether S was sampled from the No planted state distribution (no case) or

the Has planted state distribution (yes case), promised that one is the case.

Definition 1.2.6 (Restricted Dimension Counting Problem). Let 0 < t ≤ d and 0 < r ≤ t2 denote

integer parameters. Consider the following distribution, parameterized by (t, r), over subspaces S ⊆
Cd ⊗ Cd:

� Sample Haar-random t-dimensional subspaces R,Q ⊆ Cd.

� Sample a Haar-random r-dimensional subspace of S ⊆ R⊗Q.

Let 0 < C1 < C2 < 1 denote constants. The Restricted Dimension Counting problem is to decide, given

query access to a unitary U = I − 2Π encoding a subspace S, whether S was sampled from either the

(t, C1t
2) distribution or (t, C2t

2) distribution, promised that one is the case.

The relationship between these two average case problems and the Entangled Subspace problem is

captured by the following propositions.

Proposition 1.2.13. If S is sampled from the Has planted state distribution of the Planted Product

State problem, then it is a yes instance of the Entangled Subspace problem. If S is sampled from the

No planted state distribution with s = Cd2 for some sufficiently small constant C > 0, then it is a no

instance with overwhelming probability.

Proposition 1.2.14. There exist constants 0 < C1 < C2 < 1 such that if S is sampled from the (t, C1t
2)

distribution from the Restricted Dimension Counting problem, it is a no instance of the Entangled Sub-

space problem with overwhelming probability. If it is sampled from the (t, C2t
2) distribution, then it is a

yes instance with overwhelming probability.

These two propositions are proved using methods from random matrix theory. Proposition 1.2.12 in

turn implies that the Planted Product State and Restricted Dimension Counting problems can be solved

by a QMA(2) tester with overwhelming probability.

Our strongest evidence towards showing that the Entangled Subspace problem or one of its average

case variants is hard for QMA is a lower bound against QCMA testers. This is the subclass of QMA

where the quantum verifier only has access a to a classical proof.

Theorem 1.2.15 (Informal version of Theorem 3.3.13). Any T -query quantum algorithm solving the

Planted Product State problem with the help of an m-bit classical witness must have m or T superpoly-

nomial in log d.

Finally, Section 3.4 states some open problems about unitary property testing that are potentially

interesting for future work.
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1.2.2 The Proof Complexity of Tensor Isomorphism

In the second part of the thesis, we investigate the power of algebraic proof systems for the tensor

isomorphism problem. This section of the thesis is based on [GGPS23].

Tensors are fundamental data structures in linear algebra and throughout various areas of science.

The fundamental notion of equivalence between tensors is that of isomorphism: two tensors are iso-

morphic if one can be transformed into the other by an invertible linear change of basis in each of the

corresponding vector spaces. For example, two 2-tensors (=matrices) M,M ′ are equivalent under this

notion if there are invertible matrices X,Y such that XMY =M ′; similarly, two 3-tensors, represented

by 3-way arrays Tijk, T
′
ijk are isomorphic if there are three invertible matrices X,Y, Z such that∑

ijk

Xii′Yjj′Zkk′Tijk = T ′
i′j′k′ (1.1)

for all i′, j′, k′. The problem of (3-)Tensor Isomorphism (TI) is: given two such 3-way arrays, to

decide if they are isomorphic.

Tensor isomorphism is a fundamental algebraic question in quantum information theory, post-quantum

cryptography, and computational algebra.

In quantum information theory, multipartite quantum states can be represented by tensors. The

tensor isomorphism question is then related to entanglement of quantum states. In particular, imagine

that a tripartite quantum state |ψ⟩ ∈ (Cd)⊗3 is shared among three parties. The parties are able to

perform unitary operations on their own part of the state, and communicate classical information among

themselves. The goal of the parties is to produce some state |ψ⟩′ with some non-zero probability by

means of these operations. We call states |ψ⟩ , |ψ⟩′ SLOCC-equivalent if such a transformation is possible,

where SLOCC stands for stochastic local operations and classical communication. In [DVC00], it was

observed that SLOCC-equivalence is equivalent to the condition that the states |ψ⟩ , |ψ⟩′ are isomorphic

as tensors. As such, the tensor isomorphism question is closely related to classification of the types of

quantum entanglement a quantum state may possess.

In post-quantum cryptography, hardness assumptions related to tensor isomorphism and related

problems have been used to develop digital signature schemes among other cryptographic primitives

[JQSY19, TDJ+22]. This is because as observed in [JQSY19], tensor isomorphism can be viewed as a

type of hidden subgroup problem over the general linear group. Known quantum algorithmic techniques,

such as quantum Fourier sampling, cannot solve hidden subgroup problems over the general linear group,

in general [DMR10].

In computational algebra, there has been a rich theory being developed around the tensor isomor-

phism problem. In particular, it was observed that tensor isomorphism has a completeness property in

[GQ21b], who showed numerous reduction betweens tensor isomorphism and other problems in compu-

tational algebra. In particular, it was shown that tensor isomorphism is equivalent to group isomorphism

for p-groups, matrix space isometry and conjugacy, and isomorphism of algebras. This shows that the im-

provements in developing algorithms for tensor isomorphism could lead to improvements for algorithms

in other algebraic domains.

The leading methods to solve tensor isomorphism problems are largely based on Gröbner bases

techniques [TDJ+22, FP06]. This is because tensor isomorphism is equivalent to solving a system of

polynomial equations, for which Gröbner bases can be used to decide if a solution exists. It is then

natural to ask if these algorithms are always efficient for tensor isomorphism problems, or whether
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or not there are hard instances. Algebraic proof complexity provides a systematic way to answering

these problems. In particular, the polynomial calculus proof systems introduced in [CEI96a] provides a

method for understanding Gröbner bases algorithms. We initiate the study of algebraic proof complexity

approaches to tensor isomorphism in this section of the thesis.

This line is work is also motivated by the more famous Graph Isomorphism (GI) problem, where

proof complexity plays an important role. Indeed, [GQ21b] observe that the Graph Isomorphism problem

reduces to the Tensor Isomorphism problem. Although the Wieslefer-Lehman (WL) algorithm does not,

on its own, solve GI in polynomial time [CFI92], it is a key subroutine in many of the best algorithms

for GI, both in theory [Bab16] and in practice (see [McK81, MP14]). And the picture that has emerged

is that some proof systems for GI are known to be equivalent in power to WL [AM13, BG15], and some

lower bounds on proof systems are closely related to lower bounds for WL [SSC14, OWWZ14, BG15].

Versions of WL for groups, and in particular finite p-groups—and hence, by the connection above, tensors

over finite fields—have only recently begun to be explored [BGL+19, BS20, BS22, CL22].

In Chapter 4 we provide background on algebraic proof systems that we discuss in this section of the

thesis, including Nullstellensatz, polynomial calculus, and sum-of-squares. This is followed by Chapter 5

containing the main results from our study of the tensor isomorphism problem. Section 5.1 discusses

preliminaries, including a formal definition of the tensor isomorphism problem and polynomial encodings

of various tautologies.

PC for Linear Algebra As a warm up, we discuss PC lower bounds for various linear algebraic

principle in Section 5.2. This serves as a warm-up for establishing lower bounds for tensor problems,

since isomorphism of 2-tensors is equivalent to deciding whether or not two matrices have the same rank.

Some basic derivations in linear algebra are to relate the ranks of two matrices and to derive BA = I

from AB = I (the Inversion Principle, one of the so-called “hard matrix identities” [SC04], only recently

shown to have short NC2-Frege proofs [HT15]). Soltys [Sol01] and Soltys & Cook [SC04] discuss the

relationship between these and other standard implications in linear algebra. We show that PC is not

strong enough to prove these in low-degree:

Theorem 1.2.16. The unsatisfiable system of equations XY = Idn where X is n × r and Y is r × n
with 1 ≤ r < n, requires degree ≥ r/2 + 1 to refute in PC, over any field.

We refer to this system of equations as the Rank Principle, as refuting them amounts to showing

that rk Idn > r.

Theorem 1.2.17. Any PC derivation of BA = I from AB = I, where A,B are n × n matrices with

{0, 1} entries, requires degree ≥ n/2 + 1, over any field.

We also observe that the Rank Principle can be derived in low degree from the Inversion Principle.

Upper Bounds for Tensor Isomorphism This is followed by Section 5.3, where we discuss an

upper bound for tensor isomorphism of bounded-rank tensors. In particular, we show that isomorphism

of bounded-rank tensors can be decided in polynomial time. This uses the degree upper bounds from

the Effective Nullstellensatz.

Theorem 1.2.18. Over any field, the Nullstellensatz degree of refuting isomorphism of two n × n × n
tensors of tensor rank ≤ r is at most 2O(r2). If working over a finite field Fq and including the equations

xq − x, the PC degree is at most O(qr2).



Chapter 1. Introduction 18

Random 3XOR
=
{±1}-diagonal equivalence of cubic forms

{±1}-monomial equivalence of cubic forms

Monomial equivalence of cubic forms

Invertible equivalence of cubic forms

Tensor Isomorphism

Figure 1.1: Reductions in Section 5.5

In particular, isomorphism of constant-rank tensors can be decided in polynomial time.

We note that the naive degree upper bound from an application of the Effective Nullstellensatz is

exponential in the number of variables. For n × n × n tensors, this gives an upper bound of 2O(n2)

[Som99], and thus, Theorem 1.2.18 gives nontrivial upper bounds all the way up to r ≤ n.

Lower Bounds for Tensor Isomorphism Finally, in the remaining sections, we present degree lower

bounds in polynomial calculus for a large class of instances of tensor isomorphism. Therefore, this gives

evidence that Gröbner bases alone cannot solve tensor isomorphism efficienly. This is important for

cryptographic applications where evidence of computational hardness can be used to establish security

of the a given cryptographic system.

Theorem 1.2.19. Over any field, there are instances of n× n× n Tensor Isomorphism that require

PC degree Ω(n) to refute. Over R, they also require Sum-of-Squares degree Ω(n) to refute.

In Section 5.4, we present a reduction from graph isomorphism to the tensor isomorphism equations.

The preceding goes by reduction from known lower bounds on PC for Graph Isomorphism [BG15,

BG17], but has the disadvantage (from the tensor point of view) that the resulting tensors are quite

sparse: in one direction, one of the slices is supported on an Ω(n) × n matrix and all the others slices

have support size 1.

In a second proof (Section 5.5), we get a polynomially worse lower bound Ω( 4
√
n), but with a reduction

fromRandom 3XOR that is more direct. Indeed, we show that 3XOR itself can be viewed as a particular

instance of a tensor problem without gadgets; gadgets are only then needed to reduce from that tensor

problem to Tensor Isomorphism itself. To obtain these results, we show our results a series of low-

degree reductions, carried out within the PC proof system. This sequence is illustrated in Figure 1.1.

Our technical contributions in the above theorem are thus three-fold:

1. We show that the known reductions from GI to TI can be carried out in low-degree PC;

2. We realize 3XOR very naturally as a tensor problem; and

3. We give new reductions from 3XOR, through a series of tensor-related problems, to TI, that work

as many-one reductions of the decision problems that can be carried out in low-degree PC.

Finally, we discuss open problems in Section 5.6, including a tantalizing conjecture about the power

of linear algebra for solving tensor problems.
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Chapter 2

Quantum Query Complexity

In this section we provide some background on quantum query complexity and quantum complexity

theory that will be helpful towards understanding the main results of the thesis.

2.1 Quantum Query Algorithms

We first briefly describe the model of quantum circuits, which is the standard model used to describe

quantum computations.

A d-dimensional quantum state |ψ⟩ is a unit vector in Cd. If a system contains n qubits, then d = 2n.

A quantum circuit manipulates quantum states by applying unitary operators U , which are operators

satisfying the condition that UU∗ = I where I is the identity matrix. The unitary operators in a quantum

circuit are composed from unitary gates acting only on one or two qubits only.

Recall that in classical computation, a discrete set of logic gates (eg. the AND, OR, and NOT gates)

is sufficient to perform any classical computation. Similarly, in quantum computation, a universal gate

set enables any quantum computation to be performed. In particular, a universal gate set S guarantees

that any unitary operator U can be approximated to arbitrary precision, by applying a some finite

sequence of operations from the set S. A common choice of universal gate set of S = {H,CNOT, S, T}
where the gates are defined in the following way:

H =

[
1√
2

1√
2

1√
2
− 1√

2

]
CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 S =

[
1 0

0 i

]
T =

[
1 0

0 exp(iπ4 )

]
.

For the proof that the gate set S is universal, consult [NC10, Chapter 4.5] and [NC10, Appendix 3].

Classical information can be extracted from a quantum circuit by means of a quantum measurement.

The probability that a measurement will produce a given outcome is given by Born’s rule. For example,

suppose the final state of the circuit was

|ψ⟩ = α |0⟩ |ψ0⟩+ β |1⟩ |ψ1⟩ ,

for some quantum states |ψ0⟩ and |ψ1⟩. If the first qubit was measured in the standard computational

20
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|0n⟩

A0

U
A1

. . .
U

AT. . .

. . .

Figure 2.1: A Generic Quantum Query Algorithm

basis, then the circuit would output 0 with probability |α|2 and 1 with probability |β|2.
Unfortunately, as in classical circuit complexity, there is no known technique that yields general

lower bounds on the gate complexity of computing a given unitary operation. However, there are other

complexity measures where lower bounds become more tractable. We now turn to a particular model of

quantum algorithms, known as quantum query algorithms.

The Quantum Query Model. In the quantum query model, the quantum circuit consists of two

quantum registers, namely a d-dimensional query register and an ancilla register of arbitrary size. We

further assume that an algorithm has access to a d-dimensional unitary U can be performed in one

computational step, known as the query unitary. We may also allow controlled access to the unitary U

depending on the state of the algorithm’s ancilla qubits. For example, if there is only one control qubit

in state |b⟩, then the controlled unitary can be defined by

cU |ψ⟩ |b⟩ =

|ψ⟩ |0⟩ b = 0

U |ψ⟩ |1⟩ b = 1
.

A quantum query algorithm starts off in some fixed initial state, say the all zeros state |0n⟩ in its

registers. The query algorithm then proceeds by applying in succession unitary operators Ai followed

by an applications of the query unitary U to the query register. Finally, the resulting quantum state is

measured to produce some Boolean output. A generic query algorithm is illustrated in Figure 2.1. The

query complexity of the algorithm is the number of times the query unitary U is applied.

The query setting is a natural setting for studying quantum algorithms. Indeed, some of the most

commonly applied quantum algorithms are examples of quantum query algorithms. These examples

include:

� Quantum Phase Estimation [NC10, Chapter 5.2]: In phase estimation, one is given query

access to a unitary U and the input is a quantum state |ψ⟩ promised to be an eigenvector of U.

The goal of the quantum phase estimation algorithm is to output an estimate θ̃ for the eigenvalue

θ corresponding to |ψ⟩ (i.e. U |ψ⟩ = e2πiθ |ψ⟩), with error |θ̃ − θ| ≤ ϵ.

The quantum phase estimation algorithm accomplishes this with O( 1ϵ ) queries to U , with constant

success probability. It is one of the key routines used in Shor’s algorithm for factoring integers

[NC10, Chapter 5.4], and estimation of the ground state energy for chemical systems [BBMC20].

� Grover’s Search [NC10, Chapter 6]: Grover’s search algorithm accomplishes the task of black-

box search, which is to find an index i of a Boolean string x with xi = 1 if one exists. Query access

to the string is given by the unitary Ux, defined by setting Ux |i⟩ = (−1)xi |i⟩ , where |i⟩ is the ith

computational basis state. Grover’s algorithm uses O(
√
n) queries to Ux to accomplish the search
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task, compared to the Ω(n) queries to the hidden string needed for a deterministic or randomized

algorithm.

As the example of Grover’s search illustrates, the quantum query model enables comparison between

classical and quantum algorithms. This enables a rigorous study of which problems are mostly likely to

benefit from quantum speedups. In particular, a classical query problem can be thought of as computing

a Boolean function f(x1, . . . , xn) given only query access to the underlying bits x1, . . . xn. In the quantum

query model, one enables query access to the bits in superposition through applying the unitary Ux. For

classical query tasks, the quantum query model can simulate the deterministic and randomized decision

tree models. For a proof sketch, consult [BDW02, Section 3.3].

In the case of total functions, where f is defined for all strings in {0, 1}n, we now have precise under-

standing of when quantum speed-ups are possible. In particular, there is at most polynomial speedup

between the deterministic and quantum model in this case. The precise exponent was characterized in

[ABDK+21].

Theorem 2.1.1 ([ABDK+21]). Let f be a total Boolean function. Suppose D(f) is the number of

queries needed for a deterministic decision tree to compute f and Q(f) is the quantum query complexity

of f . Then

D(f) ≤ O(Q(f)4).

Furthermore, a quartic separation is the best possible due to a construction of [ABB+17].

However, for partial functions, there are now several examples of problems where there is an exponen-

tial separation between randomized decision trees and the quantum query model. The first exponential

separation between randomized and quantum algorithms in the query model was due to Simon [Sim97].

Simon’s problem asks: given query access to a function f : {0, 1}n → {0, 1}n with the property that

there exists a string s such that f(x) = f(y) iff x = y or x = y⊕s, compute the string s. This is possible

with O(n) queries to f in the quantum model, but Ω(
√
2n) queries are required with a deterministic or

randomized algorithm. Similarly, an exponential lower bound for the black-box order-finding problem

in the randomized setting was proven by Cleve [Cle04], although this problem can be efficiently solved

in the quantum query model.

2.2 The Polynomial Method

We now turn to lower bound techniques for quantum algorithms using the polynomial method, which is

one of the main paradigms for proving lower bounds in quantum query complexity.

The polynomial method is based on the fact that a quantum algorithm making T queries to a boolean

input X = (x1, . . . , xn) yields a real polynomial p : Rn → R of degree at most 2T such that p(x1, . . . , xn)

is equal to the acceptance probability of the algorithm on inputX. If the algorithm distinguishes between

yes and no instances with some bias, so does the polynomial p. Thus, lower bounds on the degree of any

such distinguishing polynomial directly translates into a lower bound on the bounded-error quantum

query complexity for the same task. We now state and prove these observations formally. Recall from

the previous section that the unitary defined by Ux |i⟩ = (−1)xi |i⟩ “hides” the string X.

Theorem 2.2.1. Suppose p(x1, . . . , xn) is the acceptance probability of a T -query quantum algorithm

on input (x1, . . . xn). Then p is a polynomial of degree at most 2T .
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Furthermore, if the algorithm correctly computes a function f , then

|p(x1, . . . , xn)− f(x1, . . . , xn)| ≤
1

3

on all inputs X = (x1, . . . , xn) in the domain of f.

Proof. We show that if |ψt⟩ is the state of the circuit before the tth query, then we can claim that we

can decompose |ψt⟩ as

|ψt⟩ =
1∑
b=0

d∑
i=1

r∑
k=1

ptb,i,k(x1, . . . , xn) |b, i, k⟩ ,

where b denotes the control qubit, i denotes the query register, k denotes the ancilla register, and

ptb,i,k(x1, . . . , xn) is a polynomial in the bits x1, . . . , xn of degree at most t− 1

We show this by induction on the number of queries t. This is true for t = 1 since no queries have

been made, so |ψ1⟩ is a fixed state independent of X. This implies that each ptb,i,k(x1, . . . xn) is a constant

as claimed.

Now, assuming the claim is true for |ψt⟩ , then applying the controlled oracle cU means that

cU |ψt⟩ =
d∑
i=1

r∑
k=1

ptb,i,k(x1, . . . , xn) |0, i, k⟩+
d∑
i=1

r∑
k=1

ptb,i,k(x1, . . . , xn)(−1)xi |1, i, k⟩

=

d∑
i=1

r∑
k=1

ptb,i,k(x1, . . . , xn) |0, i, k⟩+
d∑
i=1

r∑
k=1

ptb,i,k(x1, . . . , xn)(1− 2xi) |1, i, k⟩

(2.1)

Hence, since |ψt+1⟩ = At+1cU |ψt⟩ for some linear map At+1, then the amplitudes pt+1
b,i,k(x1, . . . , xn)

are linear combinations of the polynomials ptb,i,k(x1, . . . , xn) and p
t
b,i,k(x1, . . . , xn)(1− 2xi). This implies

that since each ptb,i,k(X) is a polynomial of degree at most t, then each pt+1
b,i,k(X) is a polynomial of

degree at most t+ 1.

Thus, the proposition follows, since the acceptance probability of the circuit is given by a sum∑
(b,i,k)∈S |ptb,i,k(X)|2 over some subset of measurement outcomes at the end of the circuit. This is

a real-valued polynomial of degree at most 2t, and must approximate f if the algorithm computes f

correctly on its domain.

Hence the polynomial method reduces a problem about quantum query complexity, to one about

polynomial approximation. This observation has been useful in numerous settings in the quantum

query complexity literature. We give a brief example to illustrate the main ideas behind applying the

polynomial method.

Example: Black-Box Search To give a simple illustration of the polynomial method, we consider

the lower bound for black-box search and show the optimality of Grover’s algorithm in the query model.

Recall the task of black-box search is to determine whether or not a string x1 . . . xn contains an index

i with xi = 1. Hence the function being computed by a black-box search algorithm is an OR of n bits,

defined by
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OR(x1, . . . , xn) =

0 x = 0n

1 x ̸= 0n
.

We claim the following polynomial approximation bound for the OR function.

Theorem 2.2.2. If p(x1, . . . , xn) is a polynomial that approximates the ORn function pointwise, then

the degree of p is at least Ω(
√
n).

Hence, combining this bound with the main observation from Theorem 2.2.1, shows that any quantum

query algorithm for black-box search must make Ω(
√
n) queries.

Before proceeding to the proof of theorem, we must discuss a few preliminaries from approximation

theory.

In general, it is difficult to study the properties of multivariable polynomials. However, we use the

observation that the OR function is a symmetric function, which means that its value depends only on

the Hamming weight |x| of the input. Therefore, it would be natural to expect that any approximation

to the OR function can be made symmetric in the variables as well, without loss of generality. This

symmetry makes the polynomial approximation much easier to analyze, as it reduces a problem about

multivariable polynomials to one about univariate polynomials. This is known in the literature as

Minsky-Papert symmeterization [MP17].

Lemma 2.2.3. Let p(x1, . . . , xn) be a symmetric polynomial. Then there exists a univariate polynomial

q with the property that q(|x|) = p(x1, . . . , xn) for all Boolean inputs xi ∈ {0, 1}n. and deg q ≤ deg psym.

Another ingredient that we need is the Markov brother’s inequality that relates the degree of a

polynomial to the maximum possible magnitude of its derivative.

Lemma 2.2.4 (Markov brother’s inequality [Mar89]). Let p(x) be a degree-n real-valued polynomial. If

|p(x)| ≤ H on the interval [a, b], then for all x ∈ [a, b],

|p′(x)| ≤ 2Hn2

b− a
.

Combining these two lemmas together, we can obtain the proof of Theorem 2.2.2.

Proof of Theorem 2.2.2. Suppose p(x1, . . . , xn) is a polynomial that approximates the OR function.

Then so does the symmetric polynomial

psym(x1, . . . , xn) =
1

n!

∑
σ∈Sn

p(xσ(1), . . . , xσ(n))

where the sum of the right hand side is over all permutations of n variables. Clearly psym is a

symmetric polynomial, and hence by Lemma 2.2.3 there exists a univariate polynomial q such that

q(|x|) = psym(x1, . . . , xn) on Boolean inputs.

Since p approximates the OR function, so does psym. Therefore, we deduce that q(0) ≤ 1
3 and

q(i) ≥ 2
3 for all integers i = 1, . . . , n. Furthermore, deg q ≤ deg p.

We now proceed in two cases:
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Case 1: Suppose |q(x)| ≤ 2 for all x ∈ [0, n]. Observe that since q(0) ≤ 1
3 and q(1) ≥ 2

3 , the mean

value theorem guarantees that there is a point x0 ∈ [0, 1] with q′(x0) ≥ 1
3 . Therefore, at the point x0,

Markov’s inequality and the assumption in this case implies that

1

3
≤ 4(deg q)2

n

which means deg q ≥ Ω(
√
n),

Case 2: Otherwise, suppose the maximum of q over [0, n] is h > 2. Since |q(i)| ≤ 1 at all integer

points, then the mean value theorem guarantees that there is a point x0 ∈ [0, n] with q′(x0) ≥ h−1
1 ≥ h

2

since h > 2. Therefore, Markov’s inequality and the assumption in this case imply

h

2
≤ 4h(deg q)2

n

which means that deg q ≥ Ω(
√
n).

In either case we have deg q ≥ Ω(
√
n), so deg p ≥ deg q ≥ Ω(

√
n). Therefore, the claim follows.

Hence, as Grover’s algorithm matches this O(
√
n) query bound for computing the OR function, we

conclude that it is in-fact optimal, up to constant factors, in the black-box setting. Observe the impor-

tance of the symmetrization step in reducing the query lower bound from a multivariable approximation

problem to a univariate problem, which will also be used later in the more general unitary property

testing setting.

Other Methods for Proving Query Lower Bounds We briefly overview some other methods for

proving lower bounds on query quantum complexity. In quantum query complexity, there have been

two main paradigms for proving lower bounds for query complexity, namely the polynomial method

[BBC+01] and the adversary method [ŠS05]. The methods are generally incomparable, as there are

problems where one method is able to prove a tight lower bound but the other cannot. For instance,

the collison problem [Kut03] is a case where the polynomial method proves a tight lower bound but the

adversary method provably fails to do so. On the other hand, Ambanis [Amb06] constructed an example

where the adversary method is provably better than the polynomial method. Furthermore, for evaluation

of Boolean functions, the general adversary method characterizes the quantum query complexity up to

constant factors [Rei11].

2.3 Quantum Complexity Classes

Another motivation to consider query complexity is that it is a setting where separations between

complexity classes can be proven. It is difficult to unconditionally separate complexity classes. Indeed, for

the BPP versus BQP problem, showing that BPP ̸= BQP unconditionally would imply that P ̸= PSPACE,

which is beyond what the known techniques of complexity theory can establish. However, in the query

setting, the classical query lower bound for Simon’s problem in [Sim97] implies that there is an oracle

O relative to which BPPO ̸= BQPO. This result gives formal evidence of a setting where quantum

computation is more powerful than classical computation.

Similarly, the Grover’s search lower bound presented in Section 2.2 shows that there is an oracle

O relative where NPO ⊈ BQPO. This separation was originally presented in [BBBV97]. This gives
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evidence that a quantum device cannot give exponential speedups for solving NP-complete problems in

the black-box setting. However, polynomial speedups may still be possible.

The quantum complexity classes whose relationship we are most interested in this thesis are com-

plexity classes related to quantum proofs. The power of proofs has been an important question of study

in complexity theory. In the classical world, this leads to the definition of the complexity class NP, which

has been a central object of study throughout complexity theory. However, the question of defining a

“quantum” version of NP is more subtle, and there are several variations. For a full survey of seven

possible definitions of “quantum NP”, consult the recent survey [Gha23]. However, we describe three

variations of complexity classes related to quantum proofs, namely, QMA, QCMA and QMA(2).

QMA The class QMA (Quantum Merlin-Arthur) is the class of problems verifiable on a polynomially-

sized quantum circuit given access to a proof state |ψ⟩ with polynomially many qubits. We take the

formal definition of QMA from [Wat08, Section V].

Definition 2.3.1 (QMA). A promise problem (Ayes, Ano) is in QMA if there exists a polynomial-time

generated family of quantum circuits {Cn} where Cn has n+p(n) input qubits for some polynomial p(n)

and one output qubit, such that:

� For all yes instances x ∈ Ayes of length n, there exists a quantum state |ψ⟩ on at most p(n) qubits

such that the circuit Cn accepts the pair (x, |ψ⟩) with probability at least 2
3 .

� For all no instances x ∈ Ano of length n and all quantum states |ψ⟩ of at most p(n) qubits, the

circuit Cn accepts the pair (x, |ψ⟩) with probability at most 1
3 .

As usual in complexity theory, the constants 2
3 and 1

3 can be replaced by arbitrary functions a(n), b(n)

with a(n)− b(n) ≥ 1
q(n) for some polynomial q, without changing the definition of the complexity class.

See [Wat08, Section V.5] for a proof.

QMA-Complete Problems Like the class NP, the class QMA captures a number of complete problems

that are relevant in applications. The canonical complete problem for QMA is the local Hamiltonian

problem [KKR06]. Let M be a Hermitian 2n × 2n matrix. We think of M as an observable acting on a

system of n qubits. We say that M is k-local if there exists a subset S ⊆ [n] of k qubits where M can

be decomposed as M = AS ⊗ I, for some 2k × 2k matrix AS acting on the qubits labelled in S and I is

the identity acting on the rest of the qubits.

We can now formally define the k-local Hamiltonian problem. The input to the problem is a set of k-

local matrices H1, . . . ,Hm, each with operator norm ||Hi|| ≤ 1 and parameters a, b satisfying b−a ≥ 1
p(n)

for some polynomial p(n). Let H =
∑m
i=1Hi. Let λ(H) denote the smallest eigenvalue of H. The goal

is to distinguish between the case where λ(H) ≤ a or λ(H) ≥ b.
The local Hamiltonian problem is significant for several reasons. Firstly, it was the first prob-

lem that was proven to be QMA-complete. Kitaev’s circuit-to-Hamiltonian construction used to prove

QMA-completeness [KSV02] can be thought of as a quantum analogue of the Cook-Levin construction

for showing that Boolean satisfiability is NP-complete. Secondly, the local Hamiltonian problem is a

generalization of classical constraint satisfaction problems (CSPs) such as Boolean satisfiability. This

motivates trying to generalize existing tools for studying CSPs such as PCP theorems to the more

general quantum setting [GHL+15, Section 4.1]. Finally, the local Hamiltonian problem captures the
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Figure 2.2: QMA versus QMA(2)

complexity of many problems studied in physics. For instance, finding the ground state energy of chem-

ical systems [WLAG13], the Bose-Hubbard model [GHL+15, Section 5.4], and the quantum Heisenberg

model [GHL+15, Section 6.1] are all QMA-complete. This suggests that QMA-completeness is useful at

classifying the complexity of computational tasks throughout chemistry and physics, and also motivates

the study of approximation algorithms for solving these problems.

QCMA By varying the type of proof allowed in quantum algorithm, variants of QMA can be consid-

ered.

One such variant is the class QCMA (Quantum-Classical Merlin-Arthur) is the restriction of QMA

where the verifier is still a quantum circuit, but the proof state provided is a classical bit string. Aharanov

and Naveh [AN02] proposed the QMA versus QCMA problem and conjectured that QCMA = QMA.

For example, there are numerous examples of classical descriptions for quantum states, such as tensor

networks [GHL+15, Section 4.2], and they seem to be good heuristics for describing the ground states

of some local Hamiltonians. Therefore, solving the QMA versus QCMA problem would give insight on

whether or not we expect quantum states occurring in nature (i.e. ground states of local Hamiltonian)

admit an efficient classical description (eg. if they can be generated by a polynomial-sized quantum

circuit).

While the QMA versus QCMA question remains unresolved in generality, we will see later in this

section that there are some results separating the two classes in the black-box setting.

QMA(2) Finally, we discuss QMA(2), introduced in [KMY03]. The complexity class QMA(k) is defined

as the class of problems verifiable by a polynomial time quantum circuit with access to k ≥ 2 unentangled

proofs. That is, for yes instances x, there exists a quantum state |Ψ⟩ of the form |ψ1⟩ ⊗ · · · ⊗ |ψk⟩
where each |ψi⟩ is on poly(n) qubits such that the verifier accepts the pair (x, |Ψ⟩). Otherwise, for no

instances, the verifier must reject the input x under the promise that the witness is of tensor product form

|ψ1⟩ ⊗ · · · ⊗ |ψk⟩. This models the situation where a verifier is allowed to interact with two unentangled

and separated provers. See Figure 2.2 for an illustration of the difference between QMA and QMA(2)
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It was shown in [HM13] that for any constant k > 2, we have QMA(k) = QMA(2), as any QMA(k)

verifier can be simulated by a QMA(2) verifier. Furthermore, they showed that error-reduction is possible

for QMA(2).

We note that QMA ⊆ QMA(2) since a QMA(2) verifier could simulate a QMA verifier by using only

one of the proofs provided. However, there is evidence that QMA(2) could be more powerful than QMA,

for several reasons:

� There are QMA(2) protocols to verify NP-complete problems (eg. graph 3-colouring) using a

logarithmic number of qubits, as outlined in [BT09]. If there were a QMA protocol for these

problems using a logarithmic number of qubits, then NP ⊆ QMAlog = BQP, which is considered

unlikely [MW05].

Otherwise, if there exists a QMA protocol with a sublinear number of qubits for 3-SAT or 3-

colouring, then the (classical) Exponential Time Hypothesis is false [ABD+08, CD10].

� There are certain problems in quantum chemistry, specifically the pure state N -representability

problem, known to have QMA(2) protocols but not QMA protocols [LCV07].

� There is no test using only local quantum operations and classical communication (LOCC) that

can distinguish between product state inputs and entangled inputs, as proven in [HM13]. If such

a test existed, then QMA(2) = QMA.

On the other hand, despite many years of study, the only complexity inclusions about QMA(2) known

are QMA ⊆ QMA(2) ⊆ NEXP, a vast gap in the complexity-theoretic landscape. A first step towards

showing that QMA(2) is indeed more powerful than QMA would be to identify an oracle relative to which

QMA(2) is different than QMA. As discussed in Aaronson’s survey paper on quantum query complexity in

[Aar21], an oracle separation between QMA and QMA(2) has been a notorious open problem in quantum

complexity theory. This would already have very interesting consequences in quantum information

theory, such as ruling out the existence of disentanglers [ABD+08]. This motivates studying quantum

proofs in the black-box, or query model.

Quantum Proofs in the Query Model Quantum proofs can be extended to the query model in a

natural way. In addition to a query register and ancilla register, now the quantum query algorithm has

access to an additional proof register containing a quantum proof state |ψ⟩. For all oracles U that are

“yes” instances, there should be a proof state |ψ⟩ that the algorithm accepts when provided as input.

Otherwise, for all “no” instances, the algorithm should reject regardless of what proof state was provided.

This provides a query analogue for the complexity class QMA, and the query analogues of QCMA and

QMA(2) can be defined similarily by changing the allowed set of proof states.

The polynomial method introduced in Section 2.2 can be generalized to prove lower bounds in the

QMA setting. This was applied by Raz to study the QMA query complexity of total Boolean functions

[RS04], and Aaronson et al. to study the QMA query complexity of the permutation testing [Aar11]

and approximate counting [AKKT20] problems. Aaronson et al.’s lower bounds use the “Guessing

Lemma”, which is an application of Marriott-Watrous amplification for QMA [MW05]. This lemma will

be introduced in Section 3.1.

Finally, we comment on separating QMA and QCMA in the black-box setting, which requires different

techniques. In this setting, Aaronson and Kuperberg [AK07] studied a search problem for quantum
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states, that is distinguishing between the case where the oracle is the identity matrix U = I versus

U = I − 2 |ψ⟩ ⟨ψ| for some quantum state |ψ⟩ ∈ Cd. This problem has a one-query algorithm in the

QMA setting. However, the main result of [AK07] was to show that Ω(
√

d
m ) queries are necessary

when the query algorithm is only provided an m-bit classical witness. This bound is also tight, up

to constant factors. The techniques are based on results in random matrix techniques, particularly

properties of Haar-random quantum states, and a hybrid argument. Furthermore, this query result

implies that there exists a quantum oracle relative to which QMA and QCMA are different. We also use

Aaronson-Kuperberg’s techniques in Section 3.3.

However, Aaronson-Kuperberg’s techniques are inherently quantum since they use properties of Haar-

random quantum states. It remains open to see if there is a classical oracle separation between QCMA

and QMA (i.e. a separation in the setting where the oracle encodes a Boolean string). We note that

the work done in [FK15] and [NN22] has made progress on whether or not there exists a classical oracle

separation between QCMA and QMA.
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Unitary Property Testing

3.1 Preliminaries

3.1.1 Testers for Unitary Properties

We recall the formal definition for a unitary property tester.

Let P = (Pyes,Pno) be a d-dimensional unitary property. A quantum algorithm is a tester for P if

the following holds:

1. If U ∈ Pyes, then the algorithm makes queries to U and accepts with probability 2/3.

2. If U ∈ Pno, the algorithm makes queries to U and accepts with probability at most 1/3.

A quantum algorithm is a QMA tester for P if the following holds:

1. If U ∈ Pyes, then there exists a quantum proof state |ψ⟩ such that the algorithm on input |ψ⟩,
makes queries to U , and accepts with probability at least 2/3.

2. If U ∈ Pno, then the algorithm given any proof state as input, making queries to U , accepts with

probability at most 1/3.

As usual in complexity theory, the probabilities 2/3 and 1/3 can be set to any constants a and b as long

as a > b without changing any of the arguments that follow.

3.1.2 The Guessing Lemma

A simple but useful way to prove query lower bounds on QMA testers is to remove the proof state via

the “Guessing Lemma”, used in [Aar11, Lemma 5] and [AKKT20, Lemma 17]:

Lemma 3.1.1. Suppose there is a QMA tester for a property P that makes T queries and receives an

m-qubit proof. Then there is a (standard) tester for the P that makes O(mT ) queries, receives no proof

state, and satisfies

� For all U ∈ Pyes the tester accepts with probability at least 2−m.

� For all U ∈ Pno, the tester accepts with probability at most 2−10m.

30
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3.1.3 Approximation Theory and Laurent Polynomials

When we say that a polynomial is degree-T , we mean that it has degree at most T . We say that a

polynomial p(z1, . . . , zd, z
∗
1 , . . . , z

∗
d) with complex coefficients is self-adjoint if p(z1, . . . , zd, z

∗
1 , . . . , z

∗
d) =

p(z1, . . . , zd, z
∗
1 , . . . , z

∗
d)

∗. We say that p is symmetric if applying a permutation π : [d] → [d] to the

variables zi and z
∗
i leaves p unchanged.

We record here some useful facts about polynomials, univariate polynomial approximation, and

Laurent polynomials.

Lemma 3.1.2 (Fundamental Theorem of Algebra). A real-valued degree-T univariate polynomial has

at most T zeros.

Lemma 3.1.3 (Markov brother’s inequality [Mar89]). Let p(x) be a degree-n real-valued polynomial. If

|p(x)| ≤ H on the interval [a, b], then for all x ∈ [a, b],

|p′(x)| ≤ 2Hn2

b− a
.

Lemma 3.1.4 (Paturi’s bound [Pat92]). If p is a degree-d real polynomial satisfying |p(x)| ≤ 1 for all

|x| ≤ 1, then for all |x| ≤ 1 + µ we have

|p(x)| ≤ exp(2d
√
2µ+ µ2).

A Laurent polynomial p in variables x1, . . . , xk is a polynomial in the variables x1, . . . , xk and

x−1
1 , . . . , x−1

k . We say that a univariate Laurent polynomial p(z) is symmetric if p(z) = p(z−1). The

following fact about Laurent polynomials was stated as [AKKT20, Lemma 14].

Lemma 3.1.5. Suppose p(z) is a symmetric Laurent polynomial. Then there exists a univariate poly-

nomial q such that p(z) = q(z + 1
z ).

We require a slight modification of Lemma 3.1.5.

Lemma 3.1.6. If p(x, x∗) is a self-adjoint degree-d polynomial satisfying p(x, x∗) = p(x∗, x), there exists

a real-valued univariate polynomial q of degree d with the property that q(x + x∗) = p(x, x∗) when x is

restricted to the unit circle.

Proof. If x is restricted to the unit circle, then xx∗ = 1. Let q(x) = p(x, 1x ). We claim that q is a

symmetric Laurent polynomial. Since p is self-adjoint and p(x, x∗) = p(x∗, x),

q(x) = p

(
x,

1

x

)
= p(x, x∗) = p(x∗, x) = p

(
1

x
, x

)
= q

(
1

x

)
,

and q has real coefficients. Hence, by Lemma 3.1.5, there exists a polynomial r such that p(x, x∗) =

q(x) = r(x+ 1
x ) = r(x+ x∗).

We will also use the following bounds on the cosine function, which follow from elementary calculus.

Lemma 3.1.7. For all |x| ≤ 2, x
2

3 ≤ 1− cosx ≤ x2

2 .
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Proof. By the Taylor series expansion, 1− x2

2 ≤ cosx ≤ 1− x2

2 + x4

24 . Therefore, 1− cosx ≤ x2

2 .

For the lower bound, observe that if |x| ≤ 2, then x4 ≤ 4x2. Therefore, cosx ≤ 1− x2

2 + x2

6 = 1− x2

3 .

Hence, x
2

3 ≤ 1− cosx in this range.

3.1.4 Invariant Theory

We will use some notions of invariant theory in our work.Invariant theory studies the action of a group G

on a polynomial ring C[x1, . . . , xn]. We denote the action of g ∈ G on f ∈ C[x1, . . . , xn] by g ·f. The ring
of invariant polynomials C[x1, . . . , xn]G is then the subring of C[x1, . . . , xn] consisting of polynomials

satisfying g · f = f for all g ∈ G, that is f ∈ C[x1, . . . , xn]G is left unchanged by the action of g for all

group elements.

There are many natural questions about the invariant ring C[x1, . . . , xn]G one can ask, such as

construction of a generating set for the invariant ring. For example, one classical example is the action

of a permutation σ ∈ Sn acting on a polynomial p(x1, . . . , xn) by permuting the variables by σ · p =

p(xσ(1), . . . , xσ(n)). The invariant ring is known as the ring of symmetric polynomials, for which there

are many well-known generating sets. One example of a generating set is the power sum symmetric

polynomials given by pi =
∑n
j=1 x

i
j , which generate the symmetric polynomial ring as an algebra. In

other words, for any symmetric polynomial f , there exists a polynomial g for which f = g(p1, . . . , pn).

There are similar characterizations of the invariant ring for numerous other group actions.

The group action G we will consider in this work is defined as follows.

Definition 3.1.1 (Invariant rings). Let G ⊆ U(d) be a subgroup of the d× d unitary group.

Let C[X,Y ]d be the ring of complex polynomials in matrix variables X = (xi,j)1≤i,j≤d and Y =

(yi,j)1≤i,j≤d. Observe that there is an action of G on any f(X,Y ) ∈ C[X,Y ] by simultaneous conjugation

g · f(X,Y ) = f(gXg−1, gY g−1).

The invariant ring C[X,Y ]Gd is the subring of polynomials in C[X,Y ]d satisfying g · f = f for all

g ∈ G.

The general theory of invariant theory guarantees the existence and finiteness of a generating set for

the invariant ring C[X,Y ]G for all compact groups, which includes all finite groups, the unitary group,

and the local unitary group.

Definition 3.1.2 (Local Unitary Group). Let d1, d2 ≥ 2. The local unitary group LU(d1, d2) is the

subgroup U(d1)×U(d2) of U(d1d2) consisting of all unitaries of the form g⊗h where g ∈ U(d1), h ∈ U(d2).

3.1.5 Distance between Quantum States

Let ρ and σ be d× d density matrices.

Definition 3.1.3. The trace distance between ρ and σ is defined as T (σ, ρ) = 1
2 ||ρ − σ||1. The trace

norm for a d × d Hermitian matrix M is defined as ||M ||1 =
∑d
i=1 |λi| where λi are the eigenvalues of

M .

For pure states, which is when ρ = |ψ1⟩ ⟨ψ1| and σ = |ψ2⟩ ⟨ψ2| are rank one matrices, the trace

distance and fidelity satisfy a well-known relation.

Lemma 3.1.8. Given two pure states ρ = |ψ1⟩ ⟨ψ1| and σ = |ψ2⟩ ⟨ψ2|, the trace distance satisfies

T (ρ, σ) =
√
1− | ⟨ψ1|ψ2⟩ |2. The quantity | ⟨ψ1|ψ2⟩ |2 is also known as the fidelity between the states |ψ1⟩

and |ψ2⟩ .
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3.1.6 Entropy of Quantum States

In Section 3.2.3 we discuss the entanglement entropy problem. We will use the Rényi 2-entropy as our

measure of entropy in this problem.

Definition 3.1.4 (Rényi 2-entropy). Given a state |ψ⟩ ∈ Cd ⊗ Cd with reduced density matrix on the

first register ρ, the Rényi 2-entropy of |ψ⟩ is defined as H2(|ψ⟩) = − log Tr(ρ2).

We note that since |ψ⟩ ∈ Cd ⊗ Cd is a pure state, it does not matter whether or not the reduced

density matrix is taken with respect to the first or second register, since both matrices will have the

same set of eigenvalues.

3.2 The Generalized Polynomial Method and Applications

The following Proposition, restated from the introduction, is the foundation for our generalized polyno-

mial method:

Proposition 1.2.1 (Generalized polynomial method). The acceptance probability of a quantum algo-

rithm making T queries to a d × d unitary U and its inverse U∗ can be computed by a degree at most

2T self-adjoint polynomial p : C2(d×d) → C evaluated at the matrix entries of U and U∗. Thus, degree

lower bounds on such polynomials yields a query lower bound on the algorithm.

Proof. A testerA that queries an oracle U can be written as a product of fixed unitary mapsA0, A1, . . . , AT

that don’t depend on the oracle U , interleaved with controlled applications of U and its inverse U∗ (de-

noted by cU and cU∗ respectively). Let |ψt⟩ denote the state of the circuit before the tth query, so that

either |ψt+1⟩ = At+1cU |ψt⟩ or |ψt+1⟩ = At+1cU
∗ |ψt⟩. Write

|ψt⟩ =
1∑
b=0

d∑
i=1

r∑
k=1

ptb,i,k(U,U
∗) |b, i, k⟩

where b denotes the control qubit, i denotes the query register, k denotes the ancilla register, and

ptb,i,k(U,U
∗) is some function of the matrix entries of U and U∗.

We claim that the amplitudes ptb,i,k(U,U
∗) are polynomials in the matrix entries of U and U∗ of

degree at most t− 1. To show this, we proceed by induction on the number of queries t. This is clearly

true for t = 1 since |ψ1⟩ is some fixed state independent of U , so p1b,i,k(U) are constants for all b, i, k.

Now assume the claim to be true for |ψt⟩ .
Suppose the tth oracle call is to cU . Then

cU |ψt⟩ =
d∑
i=1

r∑
k=1

pt0,i,k(U,U
∗) |0⟩ ⊗ |i⟩ ⊗ |k⟩+

d∑
i=1

r∑
k=1

pt1,i,k(U,U
∗) |1⟩ ⊗ U |i⟩ ⊗ |k⟩

=

d∑
j=1

r∑
k=1

pt0,j,k(U,U
∗) |0, j, k⟩+

d∑
j=1

r∑
k=1

(
d∑
i=1

Uj,i p
t
1,i,k(U,U

∗)

)
|1, j, k⟩

Hence, since |ψt+1⟩ = At+1cU |ψt⟩ for some linear map At+1, then p
t+1
i,k (U,U∗) are linear combinations

of the polynomials pt0,i,k(U,U
∗) and

∑d
i=1 Uj,i p

t
1,i,k(U,U

∗). Hence if ptb,i,k(U,U
∗) have degree at most

t− 1, pt+1
b,i,k(X) have degree at most t. The same argument holds if the oracle call was to cU∗.
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Thus the amplitudes of the final state of the algorithm can be expressed as polynomials of degree at

most T . The proposition follows since the acceptance probability of the circuit is given by a measurement

of the ancilla qubits and seeing if the string given lies in some set S, which is a sum p(U,U∗) =∑
(b,i,k)∈S |p

T+1
b,i,k(U,U

∗)|2. This is a degree-2T self-adjoint polynomial since each pT+1
i,k (U,U∗) has degree

at most T .

We also now show the following, restated from the introduction.

Proposition 1.2.2. Let P be an property closed under inversion and suppose there is a T -query quantum

algorithm for testing property P. Let p be the polynomial from Proposition 1.2.1 that computes the

acceptance probability of the algorithm. Then, we may assume that p(U,U∗) = p(U∗, U).

Proof. Let p be the polynomial from Proposition 1.2.1 for the property P. Define

q(U,U∗) =
p(U,U∗) + p(U∗, U)

2
.

Clearly, q(U,U∗) = q(U∗, U) and the degree of q is no more than the degree of p. Furthermore, since the

property P is closed under inversion, q(U,U∗) ≥ a if p(U,U∗) ≥ a and q(U,U∗) ≤ b if p(U,U∗) ≤ b.

Then, when applying Proposition 1.2.1 to a T -query tester for a property P = (Pyes,Pno), we have

that there exists a degree-2T polynomial p such that if U ∈ Pyes, then p(U,U∗) ≥ 2/3, and if U ∈ Pno,
then p(U,U∗) ≤ 1/3. Furthermore, by Proposition 1.2.2, we can further assume that p(U,U∗) = p(U∗, U)

for properties that are closed under inversion. However, proving degree lower bounds on p directly

is difficult for general properties P. As mentioned in the introduction, we focus on properties that

obey certain symmetries in order to further simplify the polynomial p. For example, the acceptance

probability p corresponding to symmetric classical properties of boolean strings can be averaged to a

univariate polynomial q using Minsky-Papert symmetrization [BBC+01].

Recall the definition of G-invariant properties and the invariant ring as stated in Definition 1.2.1

and Definition 3.1.1 in the introduction. The following observation states that testers for G-invariant

properties give rise to low-degree polynomials in the invariant ring C[X,X∗] that decide the property:

Proposition 1.2.3 (Symmeterization for G-invariant properties). Suppose P = (Pyes,Pno) is a G-

invariant d-dimensional unitary property. If there is a T -query tester for P that accepts yes instances

with probability at least a and no instances with probability at most b, then there exists a self-adjoint

degree-2T polynomial q in the invariant ring C[X,X∗]Gd satisfying

� If U ∈ Pyes, then q(U,U∗) ≥ a.

� If U ∈ Pno, then q(U,U∗) ≤ b.

Proof. Let p(U,U∗) be the polynomial from Proposition 1.2.1 corresponding to the tester. Define the

function

q(U,U∗) = Eg∼µ p(gUg−1, gU∗g−1) .

It is clear that q(U,U∗) is a self-adjoint polynomial with degree at most 2T . Furthermore by construction

it belongs to the invariant ring C[X,X∗]Gd because for all h ∈ G,

q(hUh−1, hU∗h−1) = Eg∼µ p(hgUg−1h−1, hgU∗g−1h−1) = Eg∼µ p(gUg−1, gU∗g−1) = q(U,U∗)
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where the second equality follows from the fact that the Haar measure µ is invariant under left multi-

plication.

Finally, the stated bounds on the values of q(U,U∗) hold because for all U ∈ Pyes, the unitary gUg−1

is also in Pyes, and similarly for the no instances.

3.2.1 Unitarily Invariant Properties

In this paper we focus on two subgroups of the unitary group U(d). The first is the full unitary group

itself. The invariant ring in this case has an extremely simple description. The following result is a

special case of a more general theorem due to Procesi [Pro76], who computed the invariant rings of

n-tuples of matrices under simultaneous conjugation by the classical groups. As we only need the case

of 2 matrices (the unitary U and its adjoint U∗) in this work, we specialize the original result. Firstly,

given a permutation σ ∈ Sn, define Trσ(A1, . . . , An) =
∏
C∈C(σ) Tr(

∏
j∈C Aj) where C(σ) is the set of

disjoint cycles of σ.

Theorem 3.2.1 ([Pro76, Section 11], [KP96, Chapter 4]). Let C[X,X∗]Gd be the invariant ring cor-

responding to the group G = U(d). Then all homogenous degree-r polynomials f ∈ C[X,X∗]Gd can be

written as a linear combination of invariants of the form Trσ(A1, . . . , Ar), where each Ai = X or X∗ and

σ is a permutation in Sr. All invariants of degree ≤ r are linear combinations of homogenous invariants

of degree ≤ r.

We therefore get the following result from combining Proposition 1.2.3 and Theorem 3.2.1 for testing

a unitarily invariant property.

Theorem 3.2.2 (Symmetrization for unitarily invariant properties). Let P = (Pyes,Pno) denote a d-

dimensional unitarily invariant property. Suppose there is a T -query quantum algorithm that accepts

yes instances with probability at least a and no instances with probability at most b. Then there exists a

degree at most 2T symmetric1 self-adjoint polynomial q(z1, . . . , zd, z
∗
1 , . . . , z

∗
d) satisfying

� If U ∈ Pyes then q(z1, . . . , zd, z
∗
1 , . . . , z

∗
d) ≥ a

� If U ∈ Pno then q(z1, . . . , zd, z
∗
1 , . . . , z

∗
d) ≤ b

where (z1, . . . , zd) and (z∗1 , . . . , z
∗
d) are the eigenvalues of U and their complex conjugates, respectively.

Proof. By Proposition 1.2.3, there exists a polynomial p of degree at most ≤ 2T in the invariant ring

C[U,U∗]G with the property that p distinguishes between yes and no instances. Furthermore, by Theo-

rem 3.2.1, p is a linear combination of polynomials of the form Trσ(A1, . . . , Ar) where σ is a permutation

on r ≤ 2T elements and each Ai is U or U∗. Since UU∗ = I, then each Trσ(A1, . . . , Ar) is a product of

terms of the form Tr(Up) or Tr((U∗)q) for p, q ≤ r. Observe that each generator Tr(Up) =
∑d
i=1 z

p
i is a

power sum symmetric polynomial in the eigenvalues zi of U . Hence, since each term Trσ is a polynomial

in the eigenvalues (z1, . . . , zd) of U and their conjugates of degree ≤ 2T , that is symmetric under per-

mutations of (z1, . . . , zn) or (z1,
∗ , . . . , z∗n), p satisfies the same property since p is a linear combination

of the polynomials Trσ .

1Here, symmetric means that for all permutations π : [d] → [d], permuting the variables zi → zπ(i) and z∗i → z∗
π(i)

leaves the polynomial q unchanged.
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We now illustrate some applications of the general theory developed in the previous section. The

applications will make crucial use of Theorem 3.2.2 for testing unitarily invariant properties.

3.2.2 Testing Unitarily Invariant Subspace Properties

We first start with the class of unitarily invariant subspace properties. Recall that a subspace property

P is one where all instances are reflections about some subspace, i.e., U = I − 2Π where Π is the

orthogonal projector onto a subspace S ⊆ Cd (we say that U encodes the subspace S). Such unitaries

have eigenvalues 1 or −1.
We will show that lower bounds for testing P follow immediately from lower bounds for testing

symmetric properties S of classical strings, which means that the instances of S are d-bit strings, and the

yes instances are invariant under permutation of the coordinates (and similarly with the no instances).

There is a one-to-one correspondence between unitarily invariant subspace properties and symmetric

classical properties:

� Given a unitarily invariant subspace property P, we define Syes/no = {spec(U) : U ∈ Pyes/no},
where spec(U) denotes the multiset of eigenvalues of U , interpreted as a d-bit string (with +1

mapped to 0 and −1 mapped to 1). The resulting classical property S is symmetric.

� Given a classical symmetric property S, we define Pyes/no = {V ∗DxV : x ∈ Syes/no, V ∈ U(d)}
where Dx is a diagonal matrix with (−1)xi on the i’th diagonal entry. The resulting unitary

property P is a subspace property and is unitarily invariant.

It is straightforward to see that this correspondence is a bijection.

We now establish the following simple relation between the query complexity of the classical property

S to that of the quantum proprety P:

Proposition 1.2.4. Let P be a unitarily invariant subspace property and let S be the associated sym-

metric classical property. The query complexity of distinguishing between yes and no instances of P is

at least the minimum degree of any polynomial that distinguishes between the yes and no instances of S.

Proof. The oracles corresponding to subspace properties satisfy U = U∗ and U2 = I. Since for all integer

j, the traces Tr(U j) and Tr((U∗)j) are either equal to Tr(I) = d or Tr(U) = Tr(I − 2Π) = d− 2 dim(Π),

Theorem 3.2.1 implies that the acceptance probability can be expressed as a degree-2T polynomial in

d and d − 2 dim(Π); since d is constant, we can perform a change of variables to obtain a degree-

2T univariate polynomial in dim(Π) only. Thus the polynomial q also decides the associated classical

symmetric property S, by considering k as the Hamming weight of the associated string spec(U).

We note that one can also prove Proposition 1.2.4 by observing that a T -query tester for a unitarily

invariant subspace property P is also a T -query tester for the associated classical symmetric property

S. We now mention some easy applications of Proposition 1.2.4.

Theorem 3.2.3 (Unstructured Search Lower Bound). Any tester that decides whether an oracle U is

a reflection about some quantum state |ψ⟩, i.e., U = I − 2|ψ⟩⟨ψ|, or is the identity U = I, must make

Ω(
√
d) queries to U .
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Proof. Define Pyes = {I − 2|ψ⟩⟨ψ| : |ψ⟩ ∈ Cd} and Pno = {I}. Clearly P = (Pyes,Pno) is a unitarily

invariant subspace property. The associated classical property S consists of yes instances that are binary

strings of Hamming weight 1 (because the yes instances of P have exactly one −1 eigenvalue) and the no

instances is the all zeroes string. This is essentially the Grover search problem, it is well-known via the

standard polynomial method [BBC+01] that any polynomial deciding S requires Ω(
√
d) queries, which

implies Ω(
√
d) query lower bound for property P by Proposition 1.2.4.

We also consider the Approximate Dimension problem, which for some integer parameter 0 ≤ w ≤ d,
distinguish between whether the subspace encoded by the oracle U has dimension at least 2w (yes

instances) or at most w. This is a unitarily invariant subspace property testing problem, as conjugating

a reflection U = I−2Π by any unitary V leaves the dimension of the encoded subspace unchanged. This

generalizes the classical Approximate Counting problem, which is to determine whether the Hamming

weight of an input string is at most w or at least 2w. Again leveraging the standard polynomial method

we obtain the following lower bound:

Theorem 1.2.5 (BQP lower bound for Approximate Dimension). Any tester that decides between

whether a unitary encodes a subspace of dimension at least 2w or at most w requires Ω(
√

d
w ) queries.

Proof. The associated classical property, Approximate Counting, is where the yes instances correspond

to strings with Hamming weight at least 2w and the no instances have Hamming weight at most w.

By reduction to the Grover search problem, we get that the degree of any polynomial that decides

Approximate Counting is at least Ω(
√
d/w), which by Proposition 1.2.4 is also a lower bound on the

number of queries needed to decide the Approximate Dimension problem.

We note that by using an appropriate modification of the quantum counting algorithm of Brassard

et al. [BHT98], we obtain a matching upper bound.

Proposition 3.2.4. There exists a tester that using O(
√

d
w ) queries and certifies whether or not a

unitary U = I − 2P encodes a subspace S of dimension at least 2w or at most w.

Proof. Prepare the maximally entangled state |Φ⟩ in Cd ⊗ Cd and observe that |Φ⟩ can be written as

|Φ⟩ = 1√
n

∑n
i=1 |vi⟩ |vi⟩ for any basis B = {|vi⟩} of Cd. Hence, we can assume that B = B1 ∪ B2 where

B1 is a basis for S and B2 is a basis for the orthogonal complement S⊥.

Let s = dimS, and |ΦS⟩ = 1√
s

∑
|vi⟩∈B1

|vi⟩ |vi⟩ be maximally entangled over S and |ΦS⊥⟩ =
1√
d−s

∑
|vi⟩∈B2

|vi⟩ |vi⟩ be maximally entangled over S⊥. Let R = 2 |Φ⟩ ⟨Φ| − 1 be the reflection around

the maximally entangled state. Observe that |Φ⟩ ∈ span{|ΦS⟩ , |ΦS⊥⟩} and furthermore (U ⊗ I) |ΦS⟩ =
− |ΦS⟩ , and (U⊗I) |ΦS⊥⟩ = |ΦS⊥⟩ . Hence, by the analysis of Grover search, the operator G = R(U⊗I)
is a rotation in the plane spanned by |ΦS⟩ and |ΦS⊥⟩ by an angle of 2θ, where sin2 θ = s

d . Hence applying

phase estimation with the operator G and the state |Φ⟩ as input, produces an estimate of the angle θ

and hence the dimension s since the eigenvalues of G are e±2iθ. By the analysis of phase estimation, at

most O(
√

d
w ) oracle calls to G can be used to get an estimate s̃ of s satisfying 0.9s ≤ s̃ ≤ 1.1s, and

hence we can distinguish whether or not s ≥ 2w or s ≤ w with access to this estimate s̃.

Aaronson, et al. [AKKT20] showed that having access to a quantum proof does not help reduce the

query complexity of the classical Approximate Counting problem, unless the proof state is very large (at
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least w qubits). Since a QMA tester for Approximate Dimension is automatically a QMA tester for the

Approximate Counting problem, the lower bound proved by [AKKT20] directly gives the following:

Theorem 1.2.6 (QMA lower bound for Approximate Dimension). Suppose there is a T -query algorithm

that solves the Approximate Dimension problem (i.e. deciding whether a d-dimensional unitary encodes a

subspace of dimension at least 2w or at most w) with the help of a m-qubit proof. Then either m = Ω(w),

or T ≥ Ω(
√

d
w ).

We note that Proposition 3.2.4 shows that Theorem 1.2.6 is tight in the regime where the quantum

proof satisfies m = o(w). Otherwise, we conjecture that providing O(w) copies of the mixed state ρ,

where ρ is maximally mixed over the the hidden subspace S and performing swap tests to estimate the

purity of ρ, suffices to solve the approximate dimension problem. However, this algorithm seems to

require an unentanglement guarantee on the witness, which does not immediately show that it is a QMA

tester. We leave this investigation to further work.

3.2.3 Recurrence Times of Unitaries

We now turn to analyzing the problem of testing recurrence times of unitaries. This corresponds to ana-

lyzing unitarily invariant properties that are not subspace properties. As mentioned in the introduction,

one cannot directly use lower bounds on a related classical property testing problem; instead we have to

make full use of the generalized polynomial method.

Recall the Recurrence Time problem defined in the introduction:

Definition 1.2.2 (Recurrence Time Problem). The (t, ϵ)-Recurrence Time problem is to decide, given

oracle access to a unitary U , whether U t = I (yes case) or ∥U t − I∥ ≥ ϵ in the spectral norm (no case),

promised that one is the case.

Upper Bound. We first present an upper bound on the query complexity of the Recurrence Time

Problem.

Theorem 1.2.8. The (t, ϵ)-Recurrence Time problem can be solved using O(t
√
d/ϵ) queries.

Proof. Fix an integer t. The goal is to determine whether there is an eigenvector |ψ⟩ of U t such that the

phase e2πiφ associated with |ψ⟩ is more than ϵ far from 1, or, equivalently, whether the phase e2πiθ of

|ψ⟩ with respect to U satisfies 2πiθt being more than ϵ away from an integer multiple of 2πi. If there is

no such eigenvector, then t is an ϵ-recurrence time for U . To find such an eigenvector, we first prepare

the d-dimensional maximally entangled state |Φ⟩ = 1√
d

∑
j |j⟩ |j⟩. Let {|ψj⟩}j denote an eigenbasis for

U with associated eigenvalues {e2πiθj}j ; then we have that |Φ⟩ can be equivalently expressed as

|Φ⟩ = 1√
d

∑
j

|ψj⟩ |ψj⟩

where |ψj⟩ denotes the complex conjugate of |ψj⟩ with respect to the standard basis. We perform phase

estimation on the first register of |Φ⟩ with respect to U to estimate the phases θj up to ±ϵ/8t additive
error, with success probability at least, say, 99%. The analysis of [NC10, Section 5.2.1] shows that this

requires O(t/ϵ) calls to the unitary U .
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The state then has the form

|Φ′⟩ = 1√
d

∑
j,k

αj,k |θ̃(k)j ⟩ |ψj⟩ |ψj⟩

where θ̃
(k)
j are the estimates of |θj⟩ from phase estimation, and αj,k are the amplitudes of each of the

estimates. As mentioned, the sum of squares of amplitudes αj,k such that the estimate θ̃
(k)
j differs from

θj by more than ϵ/8t (we call such an estimate θ̃
(k)
j bad, otherwise it is good) is at most 1%.

We now perform amplitude amplification in order to identify whether there is an estimate |θ̃(k)j ⟩ such
that ∣∣∣e2πitθ̃(k)

j − 1
∣∣∣ ≥ ϵ/2 . (3.1)

The amplitude amplification procedure will alternate between applying a phase on the |θ̃(k)j ⟩ states
satisfying (3.1), and reflecting about the state |Φ′⟩. Let P be the projector onto estimates satisfying

(3.1) in the first register.

In the no case, either phase estimation fails, which occurs with occurs at most 1% probability, or

there is an estimate for a phase |θkj ⟩ that is ϵ-far away from 1. We claim that amplitude amplification

finds a phase satisfying the condition (3.1) with constant probability. If there is a phase θj such that

|e2πitθj − 1| ≥ ϵ, then the good estimates θ̃
(k)
j of θj satisfy∣∣∣e2πitθ̃(k)

j − 1
∣∣∣ ≥ ∣∣∣e2πitθj − 1

∣∣∣− ∣∣∣e2πitθ̃(k)
j − e2πitθj

∣∣∣ (triangle inequality)

≥ ϵ− 4t
∣∣∣θj − θ̃(k)j

∣∣∣ (calculus)

≥ ϵ− ϵ/2 = ϵ/2.

Thus when phase estimation succeeds, the initial state satisfies |P |Φ′⟩ | ≥ 1√
d
and hence when the

marked phase is unique, O(
√
d) iterations suffice to boost the probability on the marked phase to constant

probability. In the case where there are multiple phases satisfying the condition (3.1), then we run the

amplitude amplification algorithm for
√
d,
√

d
2 ,
√

d
4 , . . . , iterations and so on. Since a marked item can

be found with O(
√

d
k ) iterations if there are k marked items, the binary search procedure terminates in

O(
√
d) iterations and finds a phase that is ϵ-far from 1 with constant probability.

Otherwise, in the yes case where U t = I, the analysis of [NC10, Section 5.2.1] shows that the

phase estimation algorithm produces exact values for the phase register |θkj ⟩ since the phases are integer
multiples of 2π. Hence, the initial state in the amplitude amplification algorithm has no overlap with

the subspace satisfying (3.1) and hence the final state after amplification remains the same as the initial

state up to a global phase. Thus, the algorithm never finds a phase ϵ far from 1.

Hence in O( t
√
d
ϵ ) iterations we are able to distinguish between the yes and no cases with constant

bias.

Lower Bound. Using the generalized polynomial method for unitarily invariant properties, we prove

the following query lower bound for the Recurrence Time problem.

Theorem 1.2.7. Let ϵ ≤ 1
2π . Any quantum query algorithm solving the (t, ϵ)-Recurrence Time problem

for d-dimensional unitaries with error ϵ must use Ω(max( tϵ ,
√
d)) queries.
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Before doing this, we introduce a useful symmetrization lemma we use to reduce the number of

variables of the polynomial.

Lemma 3.2.5. Let q(z1, . . . , zd) be the polynomial obtained from Theorem 3.2.2 for the acceptance

probability of a T -query algorithm on the Recurrence Time problem.

Let D(p, z) be a distribution on d-dimensional diagonal unitaries where each diagonal entry is chosen

to be equal to z = eiθ with probability p and otherwise equal to 1 with probability 1−p. Then the expected

value

r(p, z) = E(z1,...,zd)∼D(p,z)[q(z1, . . . , zd)]

is a self-adjoint polynomial of degree at most 2 deg q.

Proof. Recurrence Time is a unitarily invariant property as U t = I iff (V UV ∗)t = I and also ∥U t−I∥ ≥ ϵ
iff ∥(V UV ∗)t − I∥ ≥ ϵ for any unitaries U and V . Therefore, Theorem 3.2.2 guarantees that the

acceptance probability of a T -query algorithm for the problem can be written as a degree ≤ 2T self-

adjoint polynomial in the eigenvalues of U .

Since q is a self-adjoint polynomial defined on the unit circle, p can be expanded in a basis of binomials

zIz
∗
J + zJz

∗
I where I ⊆ [n], J ⊆ [n], I ∩ J = ∅, zI =

∏
i∈I zi and zJ =

∏
j∈J z

∗
j . The expected value of

each binomial under when the eigenvalues are chosen according to D(p, z) is then

|I|∑
k1=0

|J|∑
k2=0

(
|I|
k1

)(
|J |
k2

)
pk1+k2(1− p)|I|+|J|−k1−k2 [zk1−k2 + (z∗)k1−k2 ].

Hence the expected value r(p, z) = E(z1,...,zd)∼D(p,z)[q(z1, . . . , zd)] is a polynomial of degree at most

2 deg q with the property that r(p, z) = r(p, z∗).

We are now ready to prove Theorem 1.2.7.

Proof. By Lemma 3.2.5, if there was a T -query algorithm for the Recurrence Time problem, r(p, z) is

a polynomial of degree at most 4T that represents the expected probability the algorithm accepts on

the distribution D(p, z). We now lower bound the degree of q by lower bounding the degrees of p and z

separately.

Firstly we lower bound the degree of p by fixing z′ = exp( 4πiϵt ). For this value of z′, r1(p) = r(p, z′)

is a real-valued univariate polynomial with the property that r1(0) ≥ 2
3 (since if p = 0 we are given the

identity unitary as input).

Otherwise if p = 2
d , the number of eigenvalues equal to z′ is a binomial random variable with d

trials and success probability p = 2
d , which for sufficiently large d is approximately Poisson distributed

with mean equal to 2. Hence, for sufficiently large d, the probability that the input is the identity is

at most e−2. If not, the input is a no instance, since in this case U t would have an eigenvalue equal to

(z′)t = exp(4πiϵ), and therefore

∥U t − I∥ =
√

2− 2 cos(4πϵ) ≥
√

2

3
(4πϵ)2 ≥ 10ϵ,

by assumption that |4πϵ| ≤ 2 and Lemma 3.1.7.

Hence we have that

r1

(2
d

)
≤ e−2 +

1

3
(1− e−2) ≤ 1

2
.
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Therefore, r1 satisfies the properties that 0 ≤ r1(p) ≤ 1 for all 0 ≤ p ≤ 1, r1(0) ≥ 2
3 , and r1(

2
d ) ≤

1
2 .

By Markov’s inequality (Lemma 3.1.3), the inequality

d

12
≤ 2(deg r1)

2,

must be satisfied, so deg r1 ≥ Ω(
√
d).

Now we lower bound by degree of z by fixing p = 2
d and consider the polynomial r2(z) = r(p, z).

Observe that r2 has the property that r2(z
∗) = r2(z). Hence Lemma 3.1.6 applies and we can assume

r2(z) = s2(z+z
∗) for some real-valued polynomial s2 of the same degree. Observe that the s2 is bounded

by one and defined on the interval [−2, 2]. Furthermore, for z1 = 1, we have s2(z1 + z∗1) = r(p, z1) ≥ 2
3 ,

and otherwise for z2 = exp( 4πiϵt ), we have from the previous calculation that s2(z2 + z∗2) = r(p, z2) ≤ 1
2 .

Since by Lemma 3.1.7 and the assumption that ϵ ≤ 1
2π ,

|(z1 + z∗1)− (z2 + z∗2)| = |2− 2 cos(
4πϵ

t
)| ≤ 16π2ϵ2

t2
,

we conclude that the derivative of s2 must satisfy |s′2(x)| ≥ t2

96π2ϵ2 . for some point x ∈ [2− 2 cos( 4πϵt ), 2].

Hence, by Markov’s inequality, we have that the degree of s2 must satisfy:

t2

96π2ϵ2
≤ 2(deg s2)

2

4
,

Hence, deg r2 = deg s2 ≥ Ω( tϵ ).

Therefore, combining the two lower bounds implies that there must be monomials in r(p, z) with

p-degree at least Ω(
√
d) and z-degree at least Ω( tϵ ). Hence, since deg r ≤ 2 deg q ≤ 4T where T is the

query complexity of the algorithm, we obtain T ≥ Ω(max( tϵ ,
√
d)).

We note that a similar lower bound can also be obtained using hybrid method of [BBBV97]. However,

it is unclear whether the hybrid method can be used to obtain lower bounds in the QMA setting. We

now modify the previous arguments to show that the Recurrence Time problem remains hard even when

the tester receives a quantum proof that is not too large.

Theorem 1.2.9 (QMA lower bound for the Recurrence Time problem). Let ϵ ≤ 1
2π . Suppose there is a

T -query algorithm that solves the Recurrence Time problem for d-dimensional unitaries with the help of

an m-qubit proof. Then either m ≥ Ω(d), or T ≥ Ω(max(
√

d
m ,

t
m ,

1
ϵ )).

Proof. If m ≥ Ω(d) we are done, so we assume that m ≤ o(d).
Let r(p, z) be obtained from Lemma 3.2.5 and Lemma 3.1.1. Again we will lower bound the degree

of q by considering the degree of p and z separately.

We first lower bound the degree of p by fixing z′ = exp( 4πiϵt ). For this value of z′, r1(p) = r(p, z′) is

a real-valued univariate polynomial with the property that r(0) ≥ 2−m. Otherwise for all p ≥ 10m
d , we

have the probability that there is there is no non-trivial eigenvalue is bounded by (1−p)d ≤ exp(−dp) ≤
exp(−10m), and hence for all 10m

d ≤ p ≤ 1, we have

r1(p) ≤ exp(−10m) + 2−10m(1− exp(−10m)) ≤ 2−9m

since this value of z′ corresponds to a no instance.

Therefore, if y0 = 10m
d , y1 = 1 the polynomial
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s1(x) = 29mr1

(
y0 − y1

2
(x− 1) + y0

)
,

implies that the polynomial s1 satisfies deg s1 ≤ deg r1, |s1(x)| ≤ 1 for all |x| ≤ 1, and s(1+ 2y0
y1−y0 ) ≥

28m. Observe that 2y0
y1−y0 = 20m

d−10m ≤
40m
d by our assumption on m. Hence, applying Paturi’s Lemma

(Lemma 3.1.4) with these conditions and µ = 40m
d , we obtain the inequality:

28m ≤ exp(2(deg s1)
√
µ2 + 2µ) ≤ exp(4(deg s1)

√
µ)

since by assumption µ ≤ 2. Therefore, solving for deg s1 implies that deg r1 ≥ deg s1 ≥ Ω(
√
md).

Now we lower bound the degree of z by fixing p = 10m
d and consider the polynomial r2(z) = r(p, z).

Observe that r2 has the property that r2(z
∗) = r2(z). Hence Lemma 3.1.6 applies and we can assume

r2(z) = s2(z + z∗) for some real-valued polynomial s2 of the same degree. Observe that since for any

integer j, since any unitary whose only eigenvalue is z = exp( 2πijt ) is a yes instance, we have

r2

(
exp(

2πij

t
)

)
= s2

(
2 cos

2πj

t

)
≥ 2−m.

Otherwise, there is at least one point in the interval x ∈ (2 cos 2π(j+1)
t , 2 cos 2πj

t ), where s2(x) ≤ 2−9m,

since all unitaries whose only eigenvalue is equal to z = exp( 2πi(j+1/2)
t ) corresponds to a no instance,

which corresponds to the point z + z∗ = x = 2 cos 2π(j+1/2)
t . .

Hence, s2(x)− ( 2
−m+2−9m

2 ) has at least t
2 roots in the interval [−2, 2] since s2− ( 2

−m+2−9m

2 ) changes

sign at least t
2 times, which implies that the degree of s2 at least t

2 by the Fundamental Theorem of

Algebra (Lemma 3.1.2). Therefore, since deg r2 = deg s2, the degree of r2(z) is at least Ω(t).

Finally, we consider the dependence on the error ϵ. Furthermore, since s2(2) ≥ 2−m and s2(x) ≤
2−10m for all y0 = 2 cos 2π(1−ϵ)

t ≤ x ≤ y1 = 2 cos 4πϵ
t , we have that

s3(x) = 210ms2

(
y1 − y0

2
(x− 1) + y1

)
,

satisfies |s3(x)| ≤ 1 for all |x| ≤ 1, and that when x = 1 + 2(2−y1)
y1−y0 we have s3(x) ≥ 29m. By

Lemma 3.1.7, y1 − y0 ≥ 8π2

3t2 + O(ϵ) and 2 − y1 ≤ 16π2ϵ2

t2 . Hence, we may take µ ≤ O(ϵ2) in Paturi’s

Lemma to conclude that deg s3 satisfies

29m ≤ exp(4(deg s3)
√
µ) = exp(2(deg s3)O(ϵ)),

and hence deg r2 = deg s2 ≥ deg s3 ≥ Ω(mϵ ).

Putting these bounds together, we conclude that either m ≥ Ω(d), or otherwise, since deg r1 ≤ deg r

and deg r2 ≤ deg r, we have

max(Ω(
√
md),Ω(t),Ω(

m

ϵ
)) ≤ deg r ≤ 2 deg q ≤ O(mT ),

which was the claimed bound.

Observe that there is a weaker dependence on ϵ in our QMA lower bound, compared to the BQP

lower bound for the Recurrence Time problem. We leave improving this dependence to further work.
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We end with some brief observations about the coQMA query complexity of the problem where

we provide a certificate for non-recurrence. We note that the query complexity of the problem changes

significantly in the coQMA setting compared to the QMA setting. Here, a valid certificate is an eigenvector

|ψ⟩ of U t with eigenvalue not equal to eiθ where θ ∈ [−ϵ, ϵ], and a quantum phase estimation can be used

with O( tϵ ) queries to compute the the corresponding eigenvalue of |ψ⟩ to O(ϵ) precision. In particular,

there is no dependence on the dimension d. Therefore, in the setting where the recurrence time t is

constant, the unitary recurrence problem provides an exponential query complexity separation between

QMA and coQMA.

3.2.4 Local Unitary Invariants

Recall from the introduction the definition of the local unitary group.

Definition 3.1.2 (Local Unitary Group). Let d1, d2 ≥ 2. The local unitary group LU(d1, d2) is the

subgroup U(d1)×U(d2) of U(d1d2) consisting of all unitaries of the form g⊗h where g ∈ U(d1), h ∈ U(d2).

As discussed in the introduction, LU-invariance naturally captures the symmetry associated with

entanglement properties of states and operators. Proposition 1.2.3 implies that a T -query tester for

an LU-invariant property P gives rise to a degree-2T polynomial q belonging to the invariant ring

C[X,X∗]LU(d1,d2) that decides P, where X,X∗ represent the variables and their conjugates of matrices

acting on Cd1 ⊗ Cd2 .
As with the full unitary group case, it is possible to characterize the polynomial functions on matrices

that are invariant under the local unitary group. The next theorem, due to Procesi [Pro76] and Brauer

[Bra37], presents such a characterization.

Theorem 3.2.6 (Generators for LU-invariant polynomials). Let σ, τ be permutations on k elements and

let Rσ, Rτ be the corresponding permutation operators on (Cd)⊗k. Then the homogenous degree k part

of the invariant ring C[X]LU(d,d), where X represents the variables of a matrix acting on Cd ⊗Cd, is in

the linear span of the polynomials Tr((Rσ ⊗Rτ )X⊗k),2 ranging over all permutations σ, τ ∈ Sk.

As an aside, we note that [BBL13] has provided an interpretation of these invariants in terms of

tensor networks, which are a visual tool for representing high dimensional tensors. We also note that

these invariants have been studied extensively in the pure mathematics and physics literature [QSY20,

GRB98, TM+17].

Ultimately, we would like to use Theorem 3.2.6 to prove query complexity lower bounds on LU-

invariant properties. However, this characterization of the LU-invariant ring, while explicit, appears

less simple to use than Theorem 3.2.1. In the full unitarily invariant case, the generators Tr(RσX
⊗k)

are symmetric polynomials depending only on the cycle structure of σ and the eigenvalues of X. This

information is sufficient for us to leverage tools from approximation theory to lower bound the degree

the invariant polynomial.

In contrast, it is not so clear how to make use of the quantities Tr((Rσ⊗Rτ )U⊗k) for general unitaries

U ; for example we do not know if the traces can be expressed as a polynomial of some natural quantities

(like how the eigenvalues of U are natural linear-algebraic quantities) that capture some entanglement

properties of U . However, there is a special case for which we can give a good characterization of the

invariant polynomials, which is when X is a projector onto a one-dimensional subspace:

2The way the operators should be multiplied is as follows: if the i’th copy of X acts on registers AiBi, then Rσ permutes
the Ai registers and Rτ permutes the Bi registers.
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Theorem 3.2.7 ([BBL13, Theorem 22]). Let Π = |ψ⟩⟨ψ| be the projector onto a bipartite state |ψ⟩ ∈
Cd⊗Cd. Let ρ =

∑
i λi|vi⟩⟨vi| denote the reduced density matrix of ρ on the first subsystem. Let σ, τ ∈ Sk.

Then Tr((Rσ ⊗Rτ )Π⊗k) is a symmetric degree-k polynomial in the eigenvalues λi of ρ.

The tuple of eigenvalues (λ1, . . . , λd) is called the entanglement spectrum of |ψ⟩. This has the following

consequence for LU-invariant one-dimensional subspace properties:

Lemma 3.2.8. Let P = (Pyes,Pno) denote a LU-invariant subspace property where the instances consist

of reflections U = I − 2|ψ⟩⟨ψ| for some pure state |ψ⟩ ∈ Cd ⊗ Cd. Suppose there is a T -query tester for

P that accepts yes instances with probability at least a and no instances with probability at most b. Then

there exists a degree-2T symmetric polynomial p(λ1, . . . , λd) such that

� If U ∈ Pyes, then p(λ1, . . . , λd) ≥ a.

� If U ∈ Pno, then p(λ1, . . . , λd) ≤ b.

Here, p is evaluated at the entanglement spectrum (λ1, . . . , λd) of the pure state |ψ⟩ corresponding to U .

Proof. By Proposition 1.2.3 there exists a degree-2T polynomial q(U,U∗) belonging to the invariant

ring C[X,X∗]LU(d,d) that decides P with the acceptance probabilities at least a and at most b for yes

and no instances respectively. However since U is self-adjoint this means that q in fact belongs to the

invariant ring C[X]LU(d,d). Since U = I − 2|ψ⟩⟨ψ|, the polynomial q can be equivalently expressed as a

degree-2T function of the projector |ψ⟩⟨ψ|. By Theorem 3.2.6, the polynomial q can be expressed as a

linear combination of Tr((Rσ ⊗Rτ )|ψ⟩⟨ψ|⊗k) over all permutations σ, τ of k elements with 1 ≤ k ≤ 2T .

By Theorem 3.2.7, these traces are degree-k symmetric polynomials in the entanglement spectrum of

|ψ⟩. Put together, this yields the desired polynomial p.

3.2.5 The Entanglement Entropy Problem

We use Lemma 3.2.8 to prove lower bounds on an entanglement testing problem. Recall the Entanglement

Entropy problem as defined in the introduction:

Definition 3.1.4 (Rényi 2-entropy). Given a state |ψ⟩ ∈ Cd ⊗ Cd with reduced density matrix on the

first register ρ, the Rényi 2-entropy of |ψ⟩ is defined as H2(|ψ⟩) = − log Tr(ρ2).

Definition 1.2.3 (Entanglement Entropy Problem). Let 0 < a < b ≤ log d. Given oracle access to a

reflection oracle U = I − 2|ψ⟩⟨ψ| where |ψ⟩ ∈ Cd ⊗Cd, decide whether or not the state |ψ⟩ satisfies one
of the following two conditions, promised one of the following is the case:

� Low entropy case: H2(|ψ⟩) ≤ a

� High entropy case: H2(|ψ⟩) ≥ b

Recall that the entanglement entropy is invariant under local unitaries, and that the entanglement

entropy can be computed by the formula H2(|ψ⟩) = − log(
∑d
i=1 λ

2
i ) where λi are the eigenvalues of the

reduced density ρ. In particular, if the reduced density ρ of |ψ⟩ was maximally mixed on a subspace of

dimension r, then H2(|ψ⟩) = log r. With a fairly straightforward application of the polynomial, we can

prove the following query lower bound for the entanglement entropy problem.
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Theorem 1.2.10. Assume a ≥ 5. Given parameters a < b ≤ log d, any tester must make Ω(exp(a/4))

queries to distinguish between the low and high entropy cases in the Entanglement Entropy problem.

Proof. By properties of the entanglement entropy, we observe that if oracle O = I − 2 |ψ⟩ ⟨ψ| satisfies
the low or high entropy condition, so does the oracle (U ⊗ V )O(U∗ ⊗ V ∗) for any unitaries U and V .

Hence applying Lemma 3.2.8 implies that if there was a T query algorithm to solve the problem, there

exists a degree ≤ 2T symmetric polynomial p(λ1, . . . , λn) which represents the success probability of the

algorithm where (λ1, . . . , λn) are the eigenvalues of the reduced density ρ of |ψ⟩ .
Let r ≥ 1 be an integer and consider the success probability of the algorithm on instances where ρ

has r eigenvalues equal to 1
r (i.e. ρ is maximally mixed on a subspace of dimension r). For this set of

eigenvalues Λr we have λi1 + · · ·+ λin = 1
ri−1 . Hence, the substitution q1(r) = p(Λr) produces a Laurent

polynomial with non-positive exponents only. This means that q2(r) = q1(
1
r ) is a polynomial satisfying

the properties that:

� q2(exp(−a))) ≤ 1
3 to satisfy the low entropy case.

� q2(exp(−b)) ≥ 2
3 to satisfy the high entropy case

� 0 ≤ q2(i) ≤ 1 at all points i = 1
n .

Now we bound the degree of q2. First assume that that q2(x) is bounded by 2 for all x in the range

x ∈ [ 1d , exp(−a/2)]. Then there is a point y where the derivative of q2 satisfies

|q′2(y)| ≥
2
3 −

1
3

exp(−a)− exp(−b)
=

exp(a)

3(1− exp(a− b))
.

Since exp(−a/2)− 1
d ≥ exp(−a/2)−exp(−a) ≥ 1

2 exp(−a/2) by assumption that a ≥ 5, then Markov’s

inequality implies that

exp(a)

3(1− exp(a− b))
≤ 2(deg q2)

2

exp(−a/2)− 1
d

≤ 4 exp(a/2)(deg q2)
2.

Hence, in this case, deg q2 ≥ Ω( exp(a/4)√
1−exp(a−b)

) ≥ Ω(exp(a/4)).

Otherwise, there exists a point x ∈ [ 1d , exp(−a/2)] where q2(x) = k ≥ 2. In this case, there is a point
1
r1
< y < 1

r1+1 where the derivative satisfies:

|q′2(y)| ≥
k − 1

1
r1
− 1

r1+1

=
k − 1

1
r1(r1+1)

≥ k

2
r21 ≥

k

2
exp(a).

Hence in this case, Markov’s inequality implies that

k

2
exp(a) ≤ 2k(deg q2)

2

exp(−a/2)− 1
d

≤ 4k exp(a/2)(deg q2)
2,

which implies that, deg q2 ≥ Ω(exp(a/4)). Combining the two cases yields the claimed lower bound.

Observe the previous bound applies to any local unitarily invariant measure of entanglement entropy

with the property that if the reduced density ρ of |ψ⟩ is maximally mixed on a r-dimensional subspace,

then H2(|ψ⟩) = log r. Hence, the query lower bound applies to the von Neumann entropy as well as
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the Renyi α-entropy for any α ̸= 1, as these properties are satisfied by these measures of entanglement

entropy as well.

Furthermore, the lower bound also extends to the QMA setting much like for the recurrence problem

by using Aaronson’s guessing lemma.

Theorem 1.2.11 (QMA lower bound for the Entanglement Entropy problem). Assume a ≥ 5 and

a < b ≤ log d Suppose there is a T -query algorithm that solves the entanglement entropy problem with

the help of an m-qubit witness, then mT ≥ Ω(exp(a/4)).

Proof. By the proof of Theorem 1.2.10 and the guessing lemma (Lemma 3.1.1), if there was a T -query

algorithm using an m-qubit witness that solves the entanglement entropy problem, there exists a poly-

nomial q of degree O(mT ) with the property that:

� q(i) ≤ 2−10m for all i = 1
n and integers n ≤ exp(a).

� q(i) ≥ 2−m for all i = 1
n and integers exp(b) ≤ n ≤ d.

In the first case, assume that the maximum of q in the range [exp(−a), exp(−a/2)] satisfies q(x) =
k ≥ 2−9m so that 2−10m ≤ k

2−m ≤ k
2 . Then, since for that point satisfies 1

r+1 ≤ k ≤ 1
r for some

r ≥ exp(a/2), the derivative of q in that interval satisfies

|q′(y)| ≥ k − 2−10m

1
r+1 −

1
r

≥ k

2
r2 ≥ k

2
exp(a),

for some point y in that interval. Hence, by Markov’s inequality the degree of q satisfies

k

2
exp(a) ≤ 2k(deg q)2

exp(−a/2)− exp(−a)
≤ 4k exp(a/2)(deg q)2,

since exp(−a/2) − exp(−a) ≥ 1
2 exp(−a/2) by assumption. Therefore, deg q ≥ Ω(exp(a/4)) in this

case.

Otherwise, we have that q is bounded by 2−9m in the range [exp(−a), exp(−a/2)]. Let y0 = exp(−a/2)
and y1 = exp(−a), by rescaling q, using

r(x) = 29mq

(
y1 − y0

2
(x− 1) + y1

)
,

r satisfies |r(x)| ≤ 1 for all |x| ≤ 1 from the low entropy case. If y2 = exp(−b), when x = 1+ 2(y2−y1)
y1−y0 =

1+ 2(exp(−a)−exp(−b))
exp(−a/2)−exp(−a) we have reached the high entropy case, we have r(x) ≥ 28m. Therefore, by Paturi’s

inequality with µ = 2(exp(−a)−exp(−b))
exp(−a/2)−exp(−a) ≤ 4 exp(−a/2), we obtain

28m ≤ exp(4(deg r)
√

4 exp(−a/2)),

and hence deg q satisfies deg q ≥ deg r ≥ Ω(m exp(a/4)).

Hence recalling by the guessing lemma that deg q = O(mT ) where m is the witness size and T is the

query complexity, we have mT ≥ Ω(exp(a/4)) as claimed.

We now briefly sketch an upper bound in the setting where our property tester has access to proof

states and our entanglement entropy measure is the Renyi 2-entropy and in the regime where a ≥ 5,

and b ≥ 2a. Given two copies of the state |ψ⟩ with reduced density matrix ρ, a swap test can be used to
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produce a Bernoulli random variable X with mean µ equal to 1
2 −

1
2 Tr(ρ

2). Furthermore, by using the

quantum amplitude estimation algorithm [BHMT02, Ham21, KO22], one can produce an estimation of

the mean µ of X to additive error ϵ by an efficient quantum algorithm given O( 1ϵ ) samples from X. In

particular, O( 1
β−α ) samples can be used to distinguish between a Bernoulli random variable with mean

at least β or at most α.

Applying these results to our setting, we can solve the entanglement entropy problem if we can

distinguish between states |ψ⟩ whose purity satisfies Tr(ρ2) ≥ exp(−b) or Tr(ρ2) ≤ exp(−a). Hence with

O(exp(a)) copies of the state |ψ⟩ , a series of swap tests produces O(exp(a)) samples from a Bernoulli

random variable with mean equal to 1
2 −

1
2 Tr(ρ

2). As the gap between the means in the yes and no cases

satisfies β − α = exp(−a)− exp(−b) ≥ 1
2 exp(−a) by assumption, this sample complexity is sufficient to

distinguish between the yes and no cases. Overall, this yields an algorithm using O(exp(a)) queries and

a proof state with O(exp(a)) qubits.

3.3 The Entangled Subspace Problem and QMA versus QMA(2)

We now turn towards studying an LU-invariant unitary property testing problem that corresponds to a

candidate oracle separation between QMA and QMA(2). Recall the definition of completely entangled

subspaces and the Entangled Subspace problem from the introduction: an ϵ-completely entangled sub-

space S ⊆ Cd ⊗ Cd is such that all states |θ⟩ ∈ S are ϵ-far in trace distance from any product state

|ψ⟩ ⊗ |ϕ⟩.

Definition 1.2.4 (Entangled Subspace problem). Let 0 ≤ a < b < 1 be constants. The (a, b)-Entangled

Subspace problem is to decide, given oracle access to a unitary U = I − 2Π where Π is the projector

onto a subspace S ⊆ Cd ⊗ Cd, whether

� (yes case) S contains a state |θ⟩ that is a-close in trace distance to a product state |ψ⟩ ⊗ |ϕ⟩.

� (no case) S is b-completely entangled

promised that one is the case.

As mentioned earlier, the Entangled Subspace property is LU-invariant: applying local unitaries g⊗h
to a subspace S preserves whether it is a yes instance or a no instance of the problem.

3.3.1 QMA(2) Upper Bound

We first give a QMA(2) upper bound to the Entangled Subspace problem:

Proposition 1.2.12 (QMA(2) upper bound for the Entangled Subspace problem). The Entangled Sub-

space problem can be solved by a QMA(2) tester, meaning that the tester receives a proof state in the

form |ψ⟩ ⊗ |φ⟩ of poly log(d) qubits, makes one query to the unitary U , and can distinguish between yes

and no cases with constant bias.

Proof. Consider the verifier illustrated in Figure 3.1 where the provided proof state is the product state

|ψ⟩ ⊗ |ϕ⟩ . The controlled-U operation is essentially performing a subspace membership test. The state

after the controlled-U operation and the Hadamard on the ancilla qubit can be written as

I + U

2

(
|ψ⟩ ⊗ |ϕ⟩

)
⊗ |0⟩+ I − U

2

(
|ψ⟩ ⊗ |ϕ⟩

)
⊗ |1⟩ .
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|ψ⟩
U

|ϕ⟩

|+⟩ • H

Figure 3.1: The verifier V ′ in the proof of Lemma 3.3.6.

Since (I − U)/2 = Π, the acceptance probability of the subspace membership test is∥∥∥Π( |ψ⟩ ⊗ |ϕ⟩)∥∥∥2 = | ⟨ξ|ψ ⊗ ϕ⟩ |2 = 1− d(|ξ⟩ , |ψ⟩ ⊗ |ϕ⟩)2

where |ξ⟩ is the projection of |ψ⟩ ⊗ |ϕ⟩ on S and d is the trace distance.

In the yes case, there exists a product state that is a-close to a state in S, and hence providing that

state as a certificate makes the verifier accept with probability at least 1− a2. Otherwise in the no case,

all states |ξ⟩ ∈ S are b-far from product, and hence the verifier accepts with probability no more than

1− b2.

We note that the verifier analyzed in the proof of Proposition 1.2.12 has the property that in the yes

case, proof state may not be a symmetric product state (i.e. a state of the form |ψ⟩⊗2
). We now present

a QMA(2) verifier, which we call the product test verifier, for the Entangled Subspace Problem, with the

additional property that in the yes case there exists a valid proof state that is symmetric. The verifier

relies on a procedure known as the product test, which was analyzed by Harrow and Montanaro [HM13]

and also later in [SW22]. We state the main results about the product test here, specialized to the case

of bipartite states.

Definition 3.3.1 (Product test). Let |ψ⟩ be a state in Cd⊗Cd. Consider two copies of the |ψ⟩⊗2
, where

the first copy is on registers A1B1 and the second copy is on registers A2B2. The product test applies

the swap test on registers A1A2, and another swap test on B1B2. The product test accepts iff both swap

tests accept.

Observe that if |ψ⟩ = |φ⟩⊗ |ξ⟩, then the product test accepts with probability 1. On the other hand,

we have the following bound for the probability an entangled |ψ⟩ will pass the product test.

Theorem 3.3.1 ([SW22, Theorem 8]). Given a state |ψ⟩ ∈ Cd ⊗ Cd, let

ω|ψ⟩ = max{| ⟨ψ|ϕ1 ⊗ ϕ2⟩ |2, |ϕ1⟩ ∈ Cd, |ϕ2⟩ ∈ Cd}

denote the overlap of |ψ⟩ with the closest product state. Then the probability α that the product test

passes satisfies
1

2
(1 + ω2

|ψ⟩) ≤ α ≤
1

3
ω2
|ψ⟩ +

2

3
.

While Theorem 3.3.1 assumes that the input to the product test is symmetric, we note that the

product test is also sound against non-symmetric witnesses.

Proposition 3.3.2 ([HM13, Appendix E]). Let P (|Φ⟩) be the probability that the product test passes

when given a state |Φ⟩ as input. Then, for any |ψ1⟩ ∈ Cd ⊗ Cd and |ψ2⟩ ∈ Cd ⊗ Cd, we have
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P (|ψ1⟩ ⊗ |ψ2⟩) ≤
P (|ψ1⟩⊗2

) + P (|ψ2⟩⊗2
)

2
.

By combining Theorem 3.3.1 and Proposition 3.3.2 we obtain the following result.

Proposition 3.3.3. Suppose 0 ≤ a < b ≤ 1 are constants satisfying satisfy

1

2
(1 + (1− a2)2) > 1

3
(1− b2)2 + 2

3
.

Then there exists a QMA(2) verifier for the (a, b)-Entangled Subspace problem with the property that on

yes instances with oracle O = I − 2PS where PS is a projector onto subspace S, a valid proof state is

|ψ⟩⊗2
where |ψ⟩ is any state in S that is a-close to product.

|ψ1⟩A1B1 U
SwapA1A2

SwapB1B2

|ψ2⟩A2B2 U

|+⟩1 • H

|+⟩2 • H

|+⟩3 • H

|+⟩4 • H

Figure 3.2: QMA(2) product test verifier

Proof. Suppose |ψ1⟩ ⊗ |ψ2⟩ is given as input to the verifier. From the proof of Proposition 1.2.12, the

probability that the first two ancillas accept is ∥PS |ψ1⟩ ∥∥PS |ψ2⟩ ∥. Conditioned on the first two ancillas

accepting, the probability the third and fourth ancillas accept is the probability that the product test

passes when provided the state PS |ψ1⟩
∥PS |ψ1⟩∥ ⊗

PS |ψ2⟩
∥PS |ψ2⟩∥ as input. Hence, the verifier maximizes its success

probability when |ψ1⟩ ∈ S and |ψ2⟩ ∈ S. Furthermore, by Proposition 3.3.2, we can assume that

|ψ1⟩ = |ψ2⟩ to maximize the verifier’s success probability.

By Theorem 3.3.1, in the yes case, there exists a state in |ψ⟩ ∈ S that is a-close to product, and

hence the product test passes with probability at least 1
2 (1 + (1 − a2)2) when given |ψ⟩⊗2

as input.

Otherwise, in the no case, all states in S are b-far from product, and hence the product test passes with

probability at most 1
3 (1 − b

2)2 + 2
3 in this case on any input |ψ⟩⊗2

for |ψ⟩ ∈ S. Therefore, as long as
1
2 (1 + (1 − a2)2) > 1

3 (1 − b
2)2 + 2

3 , there is a bounded gap in the success probability between the two

cases.

To extend the result to an arbitrary gap between a and b, we note that the product test can be

further generalized to the situation when input consists of k ≥ 2 copies of a given state |ψ⟩ .

Definition 3.3.2 (k-copy product test). Let |ψ⟩ be a state in Cd ⊗ Cd. Consider k ≥ 2 copies of

the |ψ⟩⊗2
where copy i is on registers AiBi. The product test is a circuit that performs a projective
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measurement {P = ΠA ⊗ΠB , I − P} where ΠA is the projector on the symmetric subspace on registers

A1, . . . , Ak and ΠB is the projector on the symmetric subspace on registers B1, . . . , Bk. The success

probability of the product test is ∥P |ψ⟩⊗k ∥2.

By the results of [HM13] and [BBD+97], there is an efficient quantum circuit which implements the

product test for all constant k. Similarly, we can bound the success probability of the k-copy product test

in terms of the overlap with the closest product state, using the proof techniques presented in [SW22].

Theorem 3.3.4. Let ω|ψ⟩ be the overlap of |ψ⟩ with the closest product state, as defined in Theorem 3.3.1.

For all constant k ≥ 2, the probability α that the product test passes when given |ψ⟩⊗k as input satisfies

α ≤ k − 1

k + 1
ωk|ψ⟩ +

2

k + 1
.

We defer the proof of Theorem 3.3.4 to Appendix A.1. We apply Theorem 3.3.4 to obtain the

following result, whose proof is deferred to Appendix A.2.

Theorem 3.3.5. Let 0 ≤ a < b < 1 be constants. Then there exists a constant k ≥ 2 sufficiently large

such that there is a SymQMA(k+ 1) verifier for the (a, b)-Entangled Subspace problem.

We recall that SymQMA(k) is the variant of QMA(k) where the witness is promised to be a symmetric

product state |ψ⟩⊗k. Since for any constant k ≥ 2, SymQMA(k) = QMA(k) = QMA(2) result of [ABD+08,

Lemma 38], this construction provides another proof that the Entangled Subspace Problem is in QMA(2).

3.3.2 QMA versus QMA(2) for State Property Testing

Next, we turn to constraints on using the Entangled Subspace problem to obtain an oracle separation

between QMA and QMA(2). One might hope that, given the characterization of LU-invariant polynomials

for unitaries that encode a one-dimensional subspace (Lemma 3.2.8), we may be able to obtain a QMA

versus QMA(2) separation by proving a lower bound on the Entangled Subspace problem by focusing on

one-dimensional subspaces only.

However we show that generally property testing questions concerning states (equivalently, one-

dimensional subspaces) are not sufficient to resolve the QMA versus QMA(2) problem. Therefore prov-

ing Conjecture 1 necessarily requires studying problems about the entanglement of higher dimensional

subspaces.

Lemma 3.3.6. Let P denote a property where the instances are unitaries encoding a one-dimensional

subspace (i.e. a pure state): U = I−2|ψ⟩⟨ψ| for some state |ψ⟩. Suppose that there is a T -query QMA(2)

tester that decides P, with the condition that a valid proof state for yes instances is |ψ⟩⊗2
. Then there

exists a O(T )-query QMA tester that also decides P.

Proof. Let V denote the QMA(2) verifier that decides P. We construct a QMA verifier V ′ (depicted in

Figure 3.3) that can receive an entangled proof state |Φ⟩. Label the registers of |Φ⟩ by A1B1A2B2. The

verifier V ′ performs the subspace membership test on registers A1B1 and A2B2 separately by calling U

controlled on two ancilla qubits initialized in the |+⟩ state.
The verifier V ′ then applies Hadamard gates to the ancilla and measures. It takes the post-

measurement state of registers A1B1A2B2 and runs the original verifier V on them. The new verifier V ′

accepts if and only if the two ancilla bits accepted and the original verifier V accepted.
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|Φ⟩ U

VU

|0⟩

|+⟩ • H

|+⟩ • H

Figure 3.3: The verifier V ′ in the proof of Lemma 3.3.6.

If U encodes a pure state |ψ⟩ and is a yes instance, then by assumption on the original verifier V ,

we can run V ′ with proof state |Φ⟩ = |ψ⟩⊗2
and it will accept with the same probability as V .

On the other hand, assume that U is a no instance, and let |Φ⟩ be the (possibly entangled) proof state

provided to verifier V ′. Decompose |Φ⟩ = c0 |ψ⟩⊗2
+ c1 |ξ⟩ for some state |ξ⟩ orthogonal to |ψ⟩⊗2

. Since

V ′ accepts |Φ⟩ only when the subspace membership tests accept, then V ′ accepts |Φ⟩ with probability

|c0|2s, where s is the probability that V accepts |ψ⟩⊗2
. Since |c0|2 ≤ 1, then the acceptance probability

of V at most s.

Therefore, V ′ has the same soundness and completeness as V , even allowing for entangled states as

input.

Hence, combining Lemma 3.3.6 and Proposition 3.3.3, we obtain that there exists a parameter range

(a, b) for which there exists a QMA verifier for solving the one-dimensional (a, b)-Entangled Subspace

problem. Hence, this theorem is saying that property testing questions related to quantum states are

insufficient to give an oracle separation between QMA and QMA(2). On the other hand, we obtain a

different result in the setting where the hidden subspace is higher-dimensional.

3.3.3 The QMA (Un)soundness of the Product Test Verifier

We now show that when there is no unentanglement guarantee for the proof state, the product test

verifier fails to be sound. What this means is that there is a no instance U of the Entangled Subspace

problem (with different parameters) but also a proof state |θ⟩ that may be completely entangled across

the four registers A1B1A2B2, such that the product test verifier will accept with probability 1 when

making queries to U . In other words, the product test verifier can be fooled by an entangled proof in

the QMA setting.

Proposition 3.3.7. Let d ≥ 4. Let u, v, w, x ∈ [d] be distinct. Let S ⊆ Cd ⊗ Cd denote the six-

dimensional subspace spanned by |uv⟩+|vu⟩√
2

, |uw⟩+|wu⟩√
2

, |ux⟩+|xu⟩√
2

, |vw⟩+|wv⟩√
2

, |vx⟩+|xv⟩√
2

, |wx⟩+|xw⟩√
2

. Let Π be

the projector onto S and let |ψuvwx⟩ be the state

|ψuvwx⟩ =
1√
24

[
(|uv⟩+ |vu⟩)⊗ (|wx⟩+ |xw⟩) + (|wx⟩+ |xw⟩)⊗ (|uv⟩+ |vu⟩)

+ (|uw⟩+ |wu⟩)⊗ (|vx⟩+ |xv⟩) + (|vx⟩+ |xv⟩)⊗ (|uw⟩+ |wu⟩)

+ (|ux⟩+ |xu⟩)⊗ (|vw⟩+ |wv⟩) + (|vw⟩+ |wv⟩)⊗ (|ux⟩+ |xu⟩)
]
.
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Then:

1. S is a 1/4-completely entangled subspace, with every state |φ⟩ ∈ S having overlap at most 3
4 with

a product state.

2. The product test verifier making queries to U = I − 2Π, accepts the entangled proof state |ψuvwx⟩
with probability 1 for any |ϕ⟩ ∈ S.

Proof. Assume without loss of generality that d = 4. Otherwise apply an isometry W ⊗W to S where

W : Span(|u⟩ , |v⟩ , |w⟩ , |x⟩) → Cd is an isometry, which does not change the magnitude of the closest

product state by construction.

Let |φ⟩ ∈ S. Observe that S is contained in the symmetric subspace of Cd ⊗ Cd, so by [HMM+08,

Lemma 1], the closest product state to |φ⟩ can be chosen to be a symmetric state |ϕ⟩⊗2
. Write

|ϕ⟩ =
∑4
i=1 βi |i⟩ . Write |ψij⟩ = |ij⟩+|ji⟩√

2
and |ψ⟩ =

∑
1≤i<j≤4 αij |ψij⟩ . Then by the Cauchy-Schwartz

inequality and normalization:

| ⟨ϕ⊗2|ψ⟩ |2 =

∣∣∣∣∣∣
∑

1≤i<j≤4

αij
βiβj + βjβi√

2

∣∣∣∣∣∣
2

≤ 2
∑

1≤i<j≤4

|αij |2
∑

1≤i<j≤4

|βi|2|βj |2 = 2
∑

1≤i<j≤4

|βi|2|βj |2

Since 2
∑
i<j |βi|2|βj |2 +

∑4
i=1 |βi|4 = 1 and

∑4
i=1 |βi|2 = 1 since |ϕ⟩ and |ϕ⟩⊗2

are normalized, we

can conclude that
4∑
i=1

|βi|4 =

4∑
i=1

|βi|2|βi|2 ≥
1

4

4∑
i=1

|βi|2 =
1

4
.

Therefore, 2
∑
i<j |βi|2|βj |2 ≤

3
4 is an upper bound for the overlap with a product state for any state

|φ⟩ ∈ S. This establishes the first item of the proposition statement.

For the second item, let |ψuvwx⟩ be the proof state given to the product test verifier in Figure A.1.

By construction, the membership queries pass with probability one. Furthermore, observe that |ψuvwx⟩
is symmetric under all permutations of the registers, so |ψuvwx⟩ passes the 2-copy product test with

probability 1. Hence the verifier accepts the state |ψuvwx⟩ and oracle U with probability one. Hence

the verifier is not sound against entangled proofs since |ψuvwx⟩ was entangled, and S is a 1
4 -completely

entangled subspace.

3.3.4 Average Case Versions of the Entangled Subspace Problem

In this section, we discuss the average case variants of the Entangled Subspace problem, restated from

the introduction.

Definition 1.2.5 (Planted Product State Problem). Let 0 < s < d2 denote an integer parameter.

Consider the following two distributions over subspaces S of Cd ⊗ Cd:

� No planted state: S is a Haar-random subspace of dimension s.

� Has planted state: S is an (s + 1)-dimensional subspace chosen by taking the span of a Haar-

random s-dimensional subspace with a product state |ψ⟩ ⊗ |ϕ⟩ for Haar-random |ψ⟩ , |ϕ⟩.
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The Planted Product State problem is to distinguish, given oracle access to a unitary U = I − 2Π

encoding a subspace S, whether S was sampled from the No planted state distribution (no case) or

the Has planted state distribution (yes case), promised that one is the case.

Definition 1.2.6 (Restricted Dimension Counting Problem). Let 0 < t ≤ d and 0 < r ≤ t2 denote

integer parameters. Consider the following distribution, parameterized by (t, r), over subspaces S ⊆
Cd ⊗ Cd:

� Sample Haar-random t-dimensional subspaces R,Q ⊆ Cd.

� Sample a Haar-random r-dimensional subspace of S ⊆ R⊗Q.

Let 0 < C1 < C2 < 1 denote constants. The Restricted Dimension Counting problem is to decide, given

query access to a unitary U = I − 2Π encoding a subspace S, whether S was sampled from either the

(t, C1t
2) distribution or (t, C2t

2) distribution, promised that one is the case.

Combined with the following result about Haar-random subspaces, we obtain our two property testing

problems are in fact average case versions of the Entangled Subspace problem as claimed. Informally,

the lemma asserts that if S ⊆ Cd ⊗ Cd was a Haar-random subspace of small dimension s compared to

d2, then every state in S is entangled with high probability. Otherwise, for sufficiently large s, there

exists a state in S that is close to a product state. The proof is based on the techniques of [HLW06]

that use Lévy lemma for the Haar measure and some additional observations about the closest product

state.

Lemma 3.3.8 (Levy’s Lemma [MS86, Led01]). Let f : Sk → R be a function with Lipschitz constant

η (with respect to the Euclidean norm) and let |ψ⟩ ∈ Sk be chosen uniformly at random from the Haar

measure. Then

Pr
(∣∣∣f(|ψ⟩)− E f

∣∣∣ > α
)
≤ 2 exp

(
− C(k + 1)α2/η2

)
where C = (9π3 ln 2)−1 and E f denotes the average of f over Sk.

Lemma 3.3.9. Let ω be the overlap of |ψ⟩ with the closest product state as defined in Theorem 3.3.1.

If ρ = Tr1(|ψ⟩ ⟨ψ|) was the reduced density matrix of |ψ⟩, then

ω2 ≤ Tr(ρ2) ≤ ω.

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λd be the eigenvalues of ρ. Then [HM13, Lemma 2] shows that ω = λ1.

Therefore, since
∑d
i=1 λi = 1 and each λi is non-negative, we have

λ21 ≤ Tr(ρ2) =

d∑
i=1

λ2i ≤
d∑
i=1

λ1λi = λ1.

Theorem 3.3.10. Let S ⊆ Cd⊗Cd be a Haar-random subspace of dimension s, and let |ψ⟩ ∈ S and let

C be the constant from Levy’s Lemma. Then
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1. For all constant δ > 0, if d ≥ 4
δ and s ≤ Cδ2

1024 log( 40
δ )
d2, then all states in S have purity at most δ

with high probability. In particular,

Pr
|ψ⟩∈S

[ω|ψ⟩ ≥
√
δ] ≤ exp(−O(d2)).

2. For all constant δ > 0, if s ≥ 2
√
δd2, then S contains a state with overlap with the closest product

state δ with high probability. In particular,

Pr
|ψ⟩∈S

[ sup
|ψ⟩∈S

ω|ψ⟩ ≤ δ] ≤ exp(−O(d2)).

Proof. To show the first part, let f(|ψ⟩) = Tr(ρ2) denote the purity of the reduced density matrix of |ψ⟩
on the first Cd factor. The Lipschitz constant of f is 4 by [HLW06, Lemma III.8].

Let P be a fixed projector onto the first s basis states (according to some canonical ordering) of

Cd ⊗ Cd, and U is a Haar-random unitary on Cd ⊗ Cd. Let N denote an ϵ-net for the image of the

projector P of size (5/ϵ)2s, which exists by [HLW06, Lemma III.6]. Note that UN is an ϵ-net for the

image of the projector PS = UPU∗, which is a uniformly random subspace of dimension s when U is

choosen to be Haar-random.

We want to bound the probability that there exists a state |ψ⟩ ∈ S whose purity is large.

Pr
(
∃ |ψ⟩ ∈ S such that f(|ψ⟩) ≥ δ

)
≤ Pr

(
∃ |φ⟩ ∈ UN such that f(|φ⟩) ≥ δ − 4ϵ

)
≤
∑

|ϕ⟩∈N

Pr
(
f(U |ϕ⟩) ≥ δ − 4ϵ

)
=
(5
ϵ

)2s
· Pr
|ϕ⟩∼Haar(d2)

(
f(|ϕ⟩) ≥ δ − 4ϵ

)
.

On average, the purity of a Haar-random state in Cd⊗Cd is β := 2d/(d2 +1) by [CN16, Proposition

4.14].

Thus by Levy’s Lemma we have that

Pr
|ϕ⟩∼Haar(d2)

(
f(|ϕ⟩) ≥ δ − 4ϵ

)
≤ 2 exp

(
− C

16
(d2 + 1)(δ − 4ϵ− β)2

)
where C was the constant from Lemma 3.3.8. Now choosing ϵ = δ

8 and d sufficiently large so that
1
d ≤

2d
d2+1 ≤

δ
4 , we have

Pr
(
∃ |ψ⟩ ∈ S such that f(|ψ⟩) ≥ δ

)
≤ 2
(40
δ

)2s
exp

(
− C

16
(d2 + 1)(

δ

4
)2
)

= 2 exp
(
− C

256
(d2 + 1)δ2 + 2s log(

40

δ
)
)

by combining the above bounds. Hence the claimed choice of s makes this probability exponentially

small in d2. Furthermore, by Lemma 3.3.9, we have Pr[Tr(ρ2) ≥ δ] ≥ Pr[ω|ψ⟩ ≥
√
δ], and hence the

probability that the overlap with a product state is at least
√
δ is exponentially small.

To show the second part, fix a product state |v⟩ = |a⟩ ⊗ |b⟩ ∈ Cd ⊗Cd. The overlap between |v⟩ and
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the subspace S is captured by the quantity

f(U) = ⟨v|PS |v⟩ = ⟨v|UPU∗ |v⟩ .

Equivalently, the overlap is

f(|ψ⟩) = ⟨ψ|P |ψ⟩

where |ψ⟩ is a Haar-random state since |v⟩ was a fixed vector. The average of f(|ψ⟩) can be computed

as ∫
f(|ψ⟩ d |ψ⟩ = Tr

(
P

∫
|ψ⟩ ⟨ψ| d |ψ⟩

)
=

1

d2
Tr(P ) =

s

d2
.

We compute the Lipschitz constant of f since P is a projector:

sup
|ψ⟩,|φ⟩

|f(|ψ⟩)− f(|φ⟩)|
∥ |ψ⟩ − |φ⟩ ∥

= sup
|ψ⟩,|φ⟩

∣∣∣∥P |ψ⟩ ∥2 − ∥P |φ⟩ ∥2∣∣∣
∥ |ψ⟩ − |φ⟩ ∥

= sup
|ψ⟩,|φ⟩

∣∣∣∥P |ψ⟩ ∥+ ∥P |φ⟩ ∥∣∣∣ · ∣∣∣∥P |ψ⟩ ∥ − ∥P |φ⟩ ∥∣∣∣
∥ |ψ⟩ − |φ⟩ ∥

≤ sup
|ψ⟩,|φ⟩

2
∣∣∣∥P |ψ⟩ ∥ − ∥P |φ⟩ ∥∣∣∣
∥ |ψ⟩ − |φ⟩ ∥

≤ sup
|ψ⟩,|φ⟩

2∥P (|ψ⟩ − |φ⟩)∥
∥ |ψ⟩ − |φ⟩ ∥

≤ 2 .

We now apply Levy’s Lemma to conclude that

Pr
(
f(|ψ⟩) < s

d2
− δ
)
≤ 2 exp

(
− C

4
(d2 + 1)δ2

)
Hence as long as s ≥ 2

√
δd2, we have for |w⟩ = PS |v⟩ ,

Pr[|⟨v|w⟩|2 ≥ δ] = Pr[|⟨v|w⟩| ≥
√
δ] = 1− Pr[|⟨v|w⟩| ≤

√
δ]

≥ 1− Pr[|⟨v|w⟩| ≤ s

d2
−
√
δ]

≥ 1− 2 exp
(
− Cδ

4
(d2 + 1)

)
and therefore S contains a state with overlap at least δ with probability 1 - exp(−O(d2)).

We note that the above bounds in Theorem 3.3.10 are likely not tight, and finding tight bounds

would be an interesting open problem. However, we are also now able to show Proposition 1.2.13 and

Proposition 1.2.14 using this result.

Proposition 1.2.13. If S is sampled from the Has planted state distribution of the Planted Product

State problem, then it is a yes instance of the Entangled Subspace problem. If S is sampled from the

No planted state distribution with s = Cd2 for some sufficiently small constant C > 0, then it is a no

instance with overwhelming probability.
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Proof. Clearly in the yes case, the subspace S contains a product state. Otherwise, given ϵ > 0, choosing

δ = (1 − ϵ2)2 in Theorem 3.3.10 (1) implies that there is some constant C such that a Haar-random

subspace of dimension s ≤ Cd2 is ϵ-completely entangled. Hence setting choosing any s in this range

gives a no instance with probability at least 1− exp(−O(d2)).

Proposition 1.2.14. There exist constants 0 < C1 < C2 < 1 such that if S is sampled from the (t, C1t
2)

distribution from the Restricted Dimension Counting problem, it is a no instance of the Entangled Sub-

space problem with overwhelming probability. If it is sampled from the (t, C2t
2) distribution, then it is a

yes instance with overwhelming probability.

Proof. Let a < b be the two parameters in the Entangled Subspace problem where yes instances have

a state that is a-close to product and otherwise no instances are b-completely entangled. Choose C1

using δ = (1 − b2)2 from Theorem 3.3.10 (1), and C2 using δ = 1 − a2 from Theorem 3.3.10 (2). Then

with probability at least 1− exp(−O(d2)), a Haar-random subspace of dimension ≤ C1t
2 is b-completely

entangled, and a subspace of dimension ≥ C2t
2 contains a state that is a-close to a product state.

Hence, having observed that our average-case problems can be reduced to the Entangled Subspace

problem with overwhelming probability, we use our results from Section 3.3.1 to show that they can be

solved by a QMA(2) tester with high probability. Furthermore, we conjecture that a lower bound for a

QMA tester for the Entangled Subspace problem extends to this average case setting.

3.3.5 Connections to Invariant Theory

Observe that all of our candidate problems, being special cases of the Entangled Subspace problem,

have local unitary symmetries. This follows from product states being preserved under local unitary

transformations, and the unitary invariance of the trace distance.

This opens up the possibly of using the generalized polynomial method to prove a QMA lower

bound for our candidate problems. While these problems are similar in spirit to the entanglement

entropy problem that also has a local unitary symmetry introduced in Section 3.2.3, the main barrier to

applying the polynomial method in this case is that we do not appear to have a good characterization of

the invariant polynomials in Theorem 3.2.6 in the case where P is a projector onto a high-dimensional

subspace. While Theorem 3.2.7 characterizes these polynomials in the case where P is a one-dimensional

projector, we have seen in the previous section that one-dimensional properties cannot be used to separate

QMA and QMA(2).We are not aware of a good characterization of these invariants even in the case where

P is a projector onto a two-dimensional subspace. A deeper understanding of these invariants appears

necessary to make further progress on these questions.

3.3.6 QCMA Lower Bound for the Entangled Subspace Problem

As described in the previous section, we are not currently able to prove a strong QMA lower bound on

the query complexity of the entangled subspace problem. However, using a similar proof strategy as

Aaronson and Kuperberg in [AK07], we show a lower bound against QCMA, which is the subclass of

QMA of problems verifiable by a polynomial time quantum verifier with a classical proof string.

To present this lower bound, we first recall the definition of a p-uniform measure over quantum states

from [AK07].
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Definition 3.3.3. Let µ be the Haar measure over n-dimensional sphere Sn. A measure σ is p-uniform

if it can be obtained from µ by conditioning on an event A with measure µ(A) ≥ p.

Using Lévy’s lemma, we can observe the following property of p-uniform measures.

Lemma 3.3.11. Let f(|ψ⟩) : Sd → R be a non-negative, Lipschitz function on the sphere bounded by 1.

Let Eµ[f ] be its expectation over the Haar measure. Then if σ is a p-uniform measure, then

Eσ[f ] ≤ Eµ[f ] +O

√ log 1
p + log d

d

 .

Proof. Let f̄ = Eµ[f ], X = f(|ψ⟩), and a > 0. By the definition of p-uniform measure, we have

Pr
σ
[|X − f̄ | ≥ a] ≤ 1

p
Pr
µ
[|X − f̄ | ≥ a],

and by Lévy’s lemma there exists a constant C such that,

Pr
µ
[|X − f̄ | ≥ a] ≤ 2 exp(−Cda2).

Hence, for every a > 0, we get

Eσ[f ] ≤ (f̄ + a) Pr
σ
[|X − f̄ | ≤ a] + Pr

σ
[|X − f̄ | ≥ a] ≤ f̄ + a+

2

p
exp(−Cda2).

To minimize the expectation, we choose a =

√
log 2

p+log d

Cd = O

(√
log 1

p+log d

d

)
. This choice of a

ensures that 2
p exp(−Cda

2) = 2
d ≤

√
log d
d ≤ a for sufficiently large d. Hence,

Eσ[f ] ≤ f̄ +O(a) = Eµ[f ] +O

√ log 1
p + log d

d

 .

We also require the following observation about the Haar measure.

Lemma 3.3.12. Let |θ⟩ be a Haar random state in Cd. For every density matrix ρ on Cd⊗Cd, we have

E|θ⟩[Tr(|θ⟩⟨θ|⊗2ρ)] ≤ 2

d(d+ 1)
.

.

Proof. Since E[|θ⟩⟨θ|⊗2] = 2Π
d(d+1) where Π is the projector onto the symmetric subspace of Cd⊗Cd, then

for any density matrix ρ :

E|θ⟩[Tr(|θ⟩⟨θ|⊗2ρ)] =
2

d(d+ 1)
Tr(Πρ) ≤ 2

d(d+ 1)
.



Chapter 3. Unitary Property Testing 58

We are now ready to prove the lower bound. In fact, we will prove the lower bound on the average case

version of the Entangled Subspace problem, which is the Planted Product State problem, introduced in

the previous sections. In this section, we modify the definition of the problem to ensure that the planted

product state is always a symmetric state |θ⟩⊗2
. However, the modified problem is clearly also a special

case of the Entangled Subspace problem.

Theorem 3.3.13. Any quantum algorithm solving the Planted Product State problem using T queries

and an m-bit classical witness must use

T ≥ Ω

(
4

√
d

m+ log d

)

queries to the oracle.

Proof. We apply the hybrid method variant introduced in [AK07]. Let O1 be the entangled oracle and

O2 = O1 − 2|θ⟩⟨θ|⊗2 be the oracle with a hidden product state |θ⟩⊗2
, given |θ⟩ ∈ Cd.

Suppose we have a quantum algorithm A that solves the Planted Product State problem with T

queries with the help of an m-bit classical witness. For each |θ⟩ , fix the string w that maximizes the

probability that algorithm accepts O2. Let S(w) ⊆ Sd be the set of states associated with witness string

w. Since S(w) form a partition, then there must be one set S(w∗) with measure at least 1
2m .

Let σ be the uniform measure over S(w∗). Hence, fix w∗ as the witness in the algorithm, and choose

O2 where |θ⟩ is selected from σ. We claim that the algorithm still requires a large number of queries

T to distinguish between oracles O1 and O2 in this case. To establish the lower bound, let |ψt⟩ be the

result of the algorithm A with oracle O2 applied t times followed by oracle O1 applied T − t times. By

[AK07], We can bound the difference in Euclidean norm between successive hybrids by:

∥ |ψt+1⟩ − |ψt⟩ ∥2 ≤
√

Tr((O1 −O2)∗(O1 −O2)ρt) = 2
√
Tr(|θ⟩⟨θ|⊗2ρt),

where ρt is the marginal state of the query register before the tth query since O1 − O2 = 2|θ⟩⟨θ|⊗2.

Hence, the Cauchy-Schwartz inequality implies that over a randomly selected |θ⟩ from σ:

Eσ[∥ |ψt+1⟩ − |ψt⟩ ∥2] ≤ 2
√

Eσ[Tr(|θ⟩⟨θ|⊗2ρt)].

Since σ is 2−m-uniform, and the function f(|ψ⟩) = Tr(|ψ⟩⟨ψ|⊗2ρ) is a non-negative, bounded, Lips-

chitz function, then we can bound by Lemma 3.3.11 and Lemma 3.3.12 that:

Eσ[Tr(|θ⟩⟨θ|⊗2ρt)] ≤ Eµ[Tr(|θ⟩⟨θ|⊗2ρt)] +O

(√
m+ log d

d

)

≤ 2

d(d+ 1)
+O

(√
m+ log d

d

)

≤ O

(√
m+ log d

d

)
,

since 2
d2 ≤

√
log d
d for sufficiently large d. Hence,
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Eσ[∥ |ψt+1⟩ − |ψt⟩ ∥2] ≤ 2
√
Eσ[Tr(|θ⟩⟨θ|⊗2ρt)] ≤ O

(
4

√
m+ log d

d

)
.

Hence, if |ψ0⟩ was the final state where all oracle calls were to O1, and |ψT ⟩ was the final state where
all oracle calls were to O2, then the triangle inequality implies that

Eσ[∥ |ψT ⟩ − |ψ0⟩ ∥2] ≤ O

(
T

4

√
m+ log d

d

)
.

If the algorithm A correctly distinguishes between the two cases, then Eσ[∥ |ψT ⟩ − |ψ0⟩ ∥2] = Ω(1).

Hence the number of queries T satisfies

T ≥ Ω

(
4

√
d

m+ log d

)

.

In particular, this bound shows that a polynomial sized classical witness is not sufficient to help

a quantum verifier solve the Entangled Subspace Problem efficiently, since any quantum verifier that

solves the Entangled Subspace problem can also be used to solve the Planted Product State problem.

3.4 Open Problems

We end by describing some open problems and future directions.

Strong QMA Lower Bounds for the Entangled Subspace Problem. Can one show that any

QMA tester for the Entangled Subspace problem requires either a superpolynomial number of queries,

or a superpolynomial sized witness? This would yield a (quantum) oracle separation between QMA and

QMA(2), and in particular would rule out the existence of so-called “disentanglers” [ABD+08].

Better Query Upper Bounds. Are the bounds proven using the generalized polynomial method

tight? In particular, the following gaps remain:

� We have shown that there is a O( t
√
d
ϵ ) upper bound and a Ω(max( tϵ ,

√
d)) lower bound in the BQP

setting for the recurrence problem and used this bound to prove a similar lower bound in the QMA

setting. Is there a better lower or upper bound in either the BQP or QMA settings? However, a

more sophisticated symmetrization technique may be required to improve the lower bound.

� We expect the BQP lower bound in Theorem 1.2.10 for the entanglement entropy can be improved

by using a more creative application of the polynomial method.

We note that [MdW23] proved a tight bound for the recurrence time problem in the BQP setting,

and [WZ23] provided an improved lower bound for the entanglement entropy problem in a certain range

for the gap. However, both proofs use the adversary method and only consider the BQP setting. It

would be interesting to see if there can be any further improvements in the BQP or QMA setting using

polynomial method techniques.
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Improving Proposition 3.3.7. Is the counterexample of Proposition 3.3.7 tight, in the sense that

there are no examples that fool the verifier in dimensions 2, 3, 4, or 5? Otherwise, if there was an

example that fools the verifier in dimension 2, this would give additional evidence that the Entangled

Subspace problem in low dimensions is already hard for QMA.

Other Applications of the Generalized Polynomial Method. What are other applications of

the generalized polynomial method? For instance, Procesi [Pro76] has characterized the invariants of

matrix tuples under conjugation by the general linear, unitary, orthogonal, and symplectic groups. Are

there natural problems in quantum query complexity that display other, non-unitary symmetries?

A Generalized Dual Polynomial Method? A line of works established tight quantum query lower

bounds on classical problems by employing a method of dual polynomials [She13, Spa08, BKT18]. The

goal of this method is to prove degree lower bounds of acceptance probability polynomials, but instead

of symmetrizing the polynomials to obtain a polynomial of one or two variables, one instead takes

advantage of linear programming duality to prove the degree lower bounds; this involves constructing

objects known as dual polynomials. A natural question would be to investigate whether the method of

dual polynomials can be extended to prove query lower bounds for unitary property testing.

Communication Complexity Separations. Separations in the query model often imply separations

in communication complexity, using “lifting theorems” [GPW17]. Can any of the query separations for

unitary property testing be lifted to the communication setting? As observed in [NN22], a separa-

tion between QMA and QCMA in the communication complexity setting remains open, although query

separations already exist.
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Chapter 4

Proof Complexity

In this chapter, we provide background on proof complexity and the various proof systems studied in

this section of thesis. Proof complexity studies the minimum length of proofs for a given theorem, which

is a fundamental question in logic, computer science, and mathematics.

4.1 Propositional Proof Systems

Proof Systems. We firstly state some basic definitions related to proof systems.

Definition 4.1.1. A proof system for a language L is a polynomial-time algorithm V (x, p) with the

property that x ∈ L if and only if there exists a string p such that V accepts (x, p).

In other words, we think of p as a proof that x ∈ L, and V should be a verification algorithm for the

pair (x, p).

Definition 4.1.2. A proof system is p-bounded if for all x ∈ L of length n, there exists a string p of

length |p| ≤ q(n) for some polynomial q(n), such that V accepts (x, p).

Recall that UNSAT is the set of unsatisfiable Boolean formulas. A proof system is called a proposi-

tional proof system if it is a proof system for UNSAT. We have the following fundamental observation,

due to Cook-Reckhow [CR79].

Theorem 4.1.1. NP = coNP if and only if there is a p-bounded propositional proof system.

Proof. Recall that since SAT is NP-Complete, then UNSAT is coNP-Complete.

A p-bounded propositional proof system is equivalent to a polynomial-time verification algorithm.

Hence, there exists a p-bounded propositional proof system iff UNSAT ∈ NP. If UNSAT ∈ NP then since

UNSAT is coNP−Complete, this implies that coNP = NP.

Therefore, proof complexity was proposed as a possible program towards resolving the P versus NP

problem. If we can show that there is no p-bounded proof system for UNSAT, then NP ̸= coNP (which

implies P ̸= NP). Showing lower bounds against increasingly powerful proof systems can then be viewed

as progress towards resulting the P versus NP problem.

We furthermore define p-simulation of proof systems as a way compare proof systems. This is

analogous to the notion of polynomial time reductions between languages.

62
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Definition 4.1.3. Given two proof systems P,Q, we say thatQ p-simulates P if there exists a polynomial

time function f such that P accepts (x, p) if and only if Q accepts (x, f(p)).

In other words, if P has a proof of x of length s, then Q has a proof of x of size poly(s), for some

polynomial. This is a useful notion to compare the relative power of two proof systems.

Resolution. A canonical example of a propositional proof system is resolution. Resolution aims to

certify that a Boolean formula written in conjunctive normal form C = C1 ∧C2 · · · ∧Cm is unsatisfiable.

The resolution rule takes in as input two clauses A∨x,B ∨ x̄ and derives the clause A∨B. This rule
is sound since any assignment of variables satisfying the inputs must also satisfy the output.

Definition 4.1.4 (Resolution). A resolution refutation of an unsatisfiable CNF C is a sequence of

clauses D1, . . . , Dl, where:

� For 1 ≤ i ≤ m, Di = Ci is an input clause.

� For i ≥ m+ 1, Di is equal to the resolution rule applied to Dj and Dk for some j, k < i.

� The last clause Dl is the empty clause.

We say that l is the length of the resolution refutation.

Since the resolution rule is sound, if a refutation exists for C, then this is a proof that the original

CNF C was unsatisfiable.

Resolution lower bounds have been of great interest since resolution is the basis of numerous SAT-

solving algorithms, including the DPLL and CDCL algorithms [BKS03]. As such, resolution lower

bounds indicate which instances of SAT will likely be intractable for modern SAT solvers.

The first exponential lower bound for general Resolution is due to Haken [Hak85], which later simpli-

fied by Beame and Pitassi [BP96]. These lower bounds are for resolution refutation the pigeonhole princi-

ple, which is the unsatisfiable formula encoding the statement that there is no bijection f : [n+1]→ [n],

for any natural number n.

Definition 4.1.5 (Pigeonhole Principle). The pigeonhole principle PHPn+1
n is a Boolean formula de-

fined on propositional variables xij for 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n. The clauses of PHPn+1
n are:

� Every pigeon belong to a hole:
∨n
j=1 xij for each i = 1, . . . , n+ 1

� No two pigeons occupy the same hole: xij ∨ xi′j for each 1 ≤ i < i′ ≤ n+ 1 and 1 ≤ j ≤ n.

Theorem 4.1.2 ([Hak85, BP96]). For sufficiently large n, any Resolution proof of PHPn+1
n requires

length at least 2n/20.

Frege Systems. Stronger propositional proof systems compared to Resolution have also been studied.

In particular, they are able to use general propositional formulas rather than clauses only. These are

known as Frege systems. While we do not introduce Frege systems formally, we note that proving lower

bounds on general Frege systems remains one of the frontier open problems of proof complexity.

Lower bounds are known for the restriction of Frege systems where each formula appearing in the

formula has bounded depth. These are known as AC0-Frege systems in analogy to the AC0 circuit class.

Exponential lower bounds for the pigeonhole principle are known for AC0-Frege [PBI93]. However, it

still opens an open problem to prove lower bounds for AC0[2]-Frege systems, although exponential lower

bounds for the power of AC0[2] circuits are known [Smo87].
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4.2 Algebraic Proof Systems

Algebraic proof systems were introduced to make progress on the general problem of proving Frege

lower bounds. As observed in [Pit96], the AC0[2]-Frege system can simulate low-degree algebraic proof

systems. Therefore, lower bounds on algebraic proof systems are necessary towards solving the more

general problem of proving Frege lower bounds. However, algebraic proof complexity has grown into a

field of study in its own right.

Rather than working with propositional formulas, algebraic proof systems aim to prove that a system

of polynomial equations has no solution. This is a generalization of the problem of determining whether

or a formula is unsatisfiable or not, since the satisfiability of a given propositional formula can be reduced

to determining if a system of polynomial equations has a common root.

For instance, the clause C1 = x1 ∧ x̄2 ∧ x3 is satisfied if and only if (1 − x1)x2(1 − x3) = 0 has a

solution where each variable takes on a value in {0, 1}. Therefore, satisfiability of a Boolean formula is

equivalent to solving a system of polynomial equations, by converting a CNF formula into a system of

polynomials in this manner. However, algebraic proof complexity is a more general setting since there

are systems of polynomial equations that do not come from such translations of propositional formulas.

We now give several examples of algebraic proof systems that will be discussed in this thesis. For

the rest of this section, we assume that our polynomials are defined over some field F.

Nullstellensatz. The simplest algebraic proof system is based on Hilbert’s Nullstellensatz. The use

of the Nullstellensatz in proof complexity was introduced in [BIK+96], who studied the complexity of

Nullstellensatz refutations for a modular counting principle. They observed that the Nullstellensatz

lower bound implies a lower bound in a certain bounded-depth Frege system.

Definition 4.2.1 (Nullstellensatz). Given an unsatisfiable system of polynomial equations f1 = 0, . . . , fk =

0, where each fi ∈ F[x1, . . . , xn] a Nullstellensatz certificate is a set of polynomials gi ∈ F[x1, . . . , xn]
such that

k∑
i=1

figi = 1.

The complexity of a Nullstellensatz proof can be measured by its degree, which is the maximum

degree of a polynomial gi appearing in the proof.

It is clear that if a Nullstellensatz certificate exists, then the original system of polynomial equations

cannot satisfied. Thus, the Nullstellensatz proof system is sound.

Nullstellensatz is also complete for systems of polynomial equations coming from translations of

unsatisfiable Boolean formulas. A proof of completeness is given in [Pit96]. Therefore, each unsatis-

fiable Boolean formula on n variables has a Nullstellensatz refutation, where each polynomial gi is of

degree O(n). This is in contrast to the general situation where exponential degree lower bounds for

Nullstellensatz refutations are possible [Kol88].

For Boolean systems of equations, several Nullstellensatz lower bounds have been proven. The

main technique used is the technique of constructing designs, introduced in [Bus96]. There a sharp

correspondence between Nullstellensatz degree and designs in the sense that a degree d design exists for

a given system of equations iff a degree d Nullstellensatz refutation does not exist for that system. The

design method was applied in the following works to prove Nullstellensatz lower bounds:
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� In [BCE+95], an Ω(
√
n) degree lower bound was proven for the pigeonhole principle. This is

applied to provide a separation between TFNP classes in the black-box setting.

� In [BP98], a Ω(log n) degree lower bound was proven for the (weak) induction principle. A matching

O(log n) degree upper bound was also proven.

� In [Bus96], an Ω(n) degree lower bound was proven for the housesitting principle, which is a version

of the strong induction principle.

We finally note that Nullstellensatz and Resolution are incomparable as propositional proof systems,

in the sense that neither system p-simulates the other.

In one direction, if the field F is a finite field, then the modular counting principles have O(1)-

degree Nullstellensatz proofs, but require exponential sized Resolution proofs. In the other direction,

the Pebbling formulas, defined in [BOCIP02], are examples of formulas that have polynomial sized

Resolution proofs, but require almost maximal degree proofs in Nullstellensatz.

Polynomial Calculus. After Nullstellensatz, the next algebraic proof system to have been studied

was the Polynomial Calculus, also known as Gröbner proofs. Polynomial Calculus (PC) can be thought

of a “dynamic” version of the Nullstellensatz. It still aims to prove that 1 is in the ideal generated by

the original equations, but in an iterative fashion.

Definition 4.2.2 (Polynomial Calculus Rules). There are two rules in polynomial calculus.

� Linear combinations: Given polynomials f = 0 and g = 0, one can derive that any linear

combination satisfies αf + βg = 0 for any α, β ∈ F.

� Multiplication rule: Given a polynomial f = 0, one can derive that xif = 0 for any variable xi.

Definition 4.2.3 (Polynomial Calculus). Given an unsatisfiable system of polynomial equations f1 =

0, . . . , fk = 0, where each fi ∈ F[x1, . . . , xn]. a polynomial calculation refutation is a sequence of

polynomials p1, . . . , pl where:

� For i = 1, . . . k, pi = fi.

� For all i > k, each pi is derived from previous polynomials appearing in the proof by either the

linear combination or multiplication rule.

� The last polynomial appearing is pl = 1.

The degree of a PC proof is the maximum degree of any polynomial pi appearing in the proof. The

size of a PC proof is the total number of monomials appearing in the proof.

We note that since the polynomial calculus rules are sound, then a PC refutation of a system of

equations shows that that the system was unsatisfiable. Since PC can simulate Nullstellensatz, this also

shows that every unsatisfiable system of polynomial equations having a Nullstellensatz refutation also

has a PC proof.
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Example 4.2.1. As an example of a PC proof, we consider the (weak) induction principle on n variables,

which is encoded by the equations

x1 = 1 (4.1)

xi(1− xi+1) = 0, 1 ≤ i ≤ n− 1 (4.2)

xn = 0 (4.3)

A PC refutation of these equations iteratively derives xi = 1 for 1 ≤ i ≤ n in the following manner,

which leads to a contradiction with the final equation xn = 0.

If xi = 1 is given, then using the multiplication rule gives xixi+1 − xi+1 = 0.

Adding xixi+1 − xi+1 = 0 to the axiom xi(1− xi+1) = xi − xixi+1 = 0 yields xi − xi+1 = 0.

Adding xi − xi+1 = 0 to xi − 1 = 0 gives xi+1 − 1 = 0.

Overall, this PC proof can be performed in constant degree (degree 2), which is independent of the

number of variables.

We note the following results which compare PC to other proof systems:

� Buss-Pitassi [BP98] showed that Nullstellensatz proofs of the induction principle require degree

Ω(log n). This yields super-constant degree separation between Nullstellensatz and PC proofs, due

to the previous example.

� As a generalization of the previous result, there is actually a linear degree separation between

Nullstellensatz proofs and PC proofs, as observed in [CEI96a, Bus96]. They showed that the

house-sitting principle formulas have O(1) degree PC proofs but require degree Ω(n) Nullstellensatz

proofs.

� [CEI96a] showed that PC proofs can simulate Resolution proofs in the following sense. These results

are asymptotically optimal, even for propositional formulas admitting polynomial size resolution

proofs, due to the work of Galesi and Lauria [GL10].

– If there is a tree-like Resolution proof of a CNF with s lines, then there is a PC proof of its

polynomial translation of degree O(log s).

– For general resolution, if there a Resolution proof of a CNF with s lines, then there is a PC

proof for its polynomial translation of degree O(
√
n log s).

We also note that in PC, there is a size-degree tradeoff. In particular, proofs with small size can also

be made to have small degree. This is formalized in the following result due to Impagliazzo, Pudlak,

and Sgall [IPS99].

Theorem 4.2.2. [IPS99, Theorem 6.2] Suppose P is a set of polynomials in n variables of degree at

most d. Then if P has a polynomial calculus refutation with m monomials, then it also has a refutation

of maximum degree max(d,O(
√
n logm)).

In particular, if a PC refutation of a set of polynomials of constant degree requires degree d, then

then the monomial size of the proof is at least 2Ω(d2/n). Therefore, any degree bound d >
√
n implies

that the the PC refutation requires super-polynomial size.
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Gröbner Bases These results about PC are particularly relevant when discussing the relationship

between PC and Gröbner bases, which has been a fundamental idea in computational algebraic geometry.

This connection was observed in [CEI96a] in their seminal work that introduced the PC proof system.

We first recall some generalities on Gröbner bases. For details, refer to [CLO13, Chapter 2].

In general, given a set of polynomials f1, . . . , fn ∈ F[x1, . . . , xn], it is difficult to determine if a

polynomial f lies in the ideal I = (f1, . . . , fn) generated by those polynomials. However, finding a

Gröbner basis of I makes the ideal membership problem easier.

Before defining Gröbner bases, we first need to introduce monomial orderings.

Definition 4.2.4. Let Zn≥0 be the set of n-tuples of non-negative integers. A monomial ordering is a

relation ≥ on Zn≥0 with the properties that:

� ≥ is a total order.

� If α ≥ β and γ ∈ Zn≥0, then α+ γ ≥ β + γ.

� ≥ is a well-ordering (i.e. every non-empty subset S ⊆ Zn≥0 has a minimal element.)

A canonical example of a monomial ordering is the lexicographic order. Given a = (a1, . . . , an) and

b = (b1, . . . , bn), we define a <lex b iff ai ≤ bi for each index i.

Definition 4.2.5 (Leading Terms). Let f ∈ F[x1, . . . , xn] be a polynomial and write f =
∑
α∈Zn

≥0
aαx

α

coefficientwise. Let > be a monomial ordering.

� The multi-degree md(f) of f is the maximum of α appearing in the polynomial f with aα ̸= 0,

with respect to the ordering >.

� The leading monomial LM(f) of f is xmd(f).

� The leading term LT (f) of f is then monomial amd(f)x
md(f).

For instance, with respect to the lexicographic ordering with x > y, LT (x5y − xy5) = x5y.

Definition 4.2.6 (Leading Term Ideal). Given an ideal I ⊆ F[x1, . . . , xn], we define

LT (I) = {LT (f) : f ∈ I}

and ⟨LT (I)⟩ to be the ideal generated by LT (I).

We can now define Gröbner bases.

Definition 4.2.7. Let I be an ideal. A set {g1, . . . , gt} ⊆ I is a Gröbner bases of I if

⟨LT (I)⟩ = ⟨LT (g1), . . . , LT (gt)⟩.

Gröbner bases turn out to have very nice properties particularly for computational algebra. For

instance, given arbitrary generators f1, . . . , fn of an ideal I, it may not be possible to determine if f ∈ I
by division of f by f1, . . . , fn. We do not present the multivariable polynomial divison algorithm in

detail here, but for details an interested reader can refer to [CLO13, Chapter 2.3].
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Example 4.2.3. [CLO13, Chapter 2.5] We use the lexiographic order with x > y. For example, given

polynomials f1 = x3 − 2xy and f2 = x2y − 2y2 + x, we have that x2 ∈ (f1, f2), since

x2 = x(x2y − 2y2 + x)− y(x3 − 2xy)

.

Since LT (f1) = x3 and LT (f2) = x2y, the polynomial x2 does not divide into f1 or f2.

However, since a Gröbner basis for I = (f1, f2) is given byG = {x3−2xy, x2y−2y2+x,−x2,−2xy,−2y2+
x}, it is immediately evident from examining the basis that x2 ∈ I.

Given a Gröbner basis g1, . . . , gt of I, the Gröbner property guarantees that if f ∈ I, then LT (f)

can be divided by at least one of the terms of LT (gi) in the basis. Therefore, division can be carried out

to solve the ideal membership problem. This observation is summarized in the following theorem.

Theorem 4.2.4. Let G = {g1, . . . , gt} be a Gröbner basis for I. Then f ∈ I if and only if the remainder

on division of f by G is zero.

In particular, if 1 ∈ I, then 1 must appear as an element in a Gröbner basis G of I.

We now turn to existence of Gröbner bases. The algorithm commonly used to compute Gröbner

bases was developed by Buchenberger in his PhD thesis. The proof of correctness of Buchenberger’s

algorithm is based on the following observation.

Definition 4.2.8. Given polynomials f, g, the S polynomial is defined as

S(f, g) =
LCM(LM(f), LM(g))

LT (f)
f − LCM(LM(f), LM(g))

LT (g)
g

where LCM denotes the least common multiple.

Given a set G and a polynomial f , we also write f̄G for the remainder of f upon division by G.

Buchenberger’s criterion then gives a characterization of Gröbner bases in terms of S-polynomials.

Theorem 4.2.5 (Buchenberger’s criterion). Given a set G = {g1, . . . , gt} where each gi ∈ I, G is a

Gröbner basis for an ideal I if and only if

S(gi, gj)
G
= 0

for each pair gi, gj ∈ G, i ̸= j.

Buchenberger’s criterion than leads to an idea for computing Gröbner bases, which is to repeatedly

add polynomials to a given set S of generators defining I, until S is closed under Buchenberger’s criterion.

Theorem 4.2.6 (Buchenberger’s algorithm). Given I with generators F = {f1, . . . , fs}, the Buchen-

berger’s algorithm terminates and computes a Gröbner basis of I.

A proof of correctness of the algorithm is given in [CLO13, Chapter 2.7].

Polynomial calculus and Gröbner bases We can now discuss the relationship between Gröbner

bases and PC proofs. We first need to introduce the notion of a pseudo-ideal, which was a notion

introduced in [CEI96a] and also [BGIP99].
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Algorithm 1 Buchenberger’s Algorithm

G = F ▷ Input: A set F = {f1, . . . , fs} generating an ideal I
repeat

G′ = G
for all pairs (p, q), p ̸= q in G do

Compute r = S(p, q)
G

if r ̸= 0 then
G← G ∪ {r}

end if
end for

until G′ = G
return G ▷ Ouput: A Gröbner basis G of I

Definition 4.2.9. A degree d pseudo-ideal V is a subspace of F[x1, . . . , xn] satisfying the following

conditions:

� Every polynomial p ∈ V has degree at most d.

� If p ∈ V has degree ≤ d− 1, then xp ∈ V for any variable x.

The following observation is due to [CEI96a].

Theorem 4.2.7. Let Id(p1, . . . , pk) be the set of polynomials having a degree d polynomial calculus

proof, starting from p1, . . . , pk as axioms. Then Id is a degree d pseudo-ideal, and for any pseudo-ideal

I containing p1, . . . , pk, we have Id ⊆ I.

We now need a slight variation on the original definition of Gröbner bases.

Definition 4.2.10. Let G = {g1, . . . , gt} be a set of polynomials.

A polynomial f has a degree-d representation with respect to G if there are polynomials hi with

f =
∑t
i=1 gihi, and deg gihi ≤ d for each i.

A polynomial f is reducible if the remainder of f upon division by G is zero.

A set G is a degree-d Gröbner basis if all polynomials f with a degree d representation with respect

to G are reducible.

Suppose I = (f1, . . . , fk) and G is a degree d Gröbner basis containing f1, . . . , fk. Unfortunately, the

set of polynomials in an ideal I with a degree d representation is in general not equal to the degree d

part of I. However, we note that this is true if the original polynomials f1, . . . , fk are assumed to be

homogenous polynomials. This motivated the study of homogenization as a heuristic for PC proofs in

[BOCIP02].

However, a degree d Gröbner basis still has some useful computational properties. [CEI96a] observed

that a degree-d Gröbner basis can be found using a slight modification of Buchenberger’s algorithm,

where all S polynomials computed in the algorithm with degree greater than d are ignored. The modified

Buchenberger’s algorithm is presented here.

Furthermore, [CEI96a] observed that the modified algorithm runs in nO(d) time under the assumption

that the input is a set of multilinear polynomials with n variables.

Now suppose that G is a degree-d Gröbner basis containing polynomials f1, . . . , fk. If BG is the set

of reducible polynomials with respect to G, then BG is a degree-d pseudo-ideal. This can be seen since
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Algorithm 2 Modified Buchenberger’s Algorithm

G = F ▷ Input: A set F = {f1, . . . , fs} generating an ideal I
repeat

G′ = G
for all pairs (p, q), p ̸= q in G do

if degS(p, q) ≤ d then

Compute r = S(p, q)
G

if r ̸= 0 then
G← G ∪ {r}

end if
end if

end for
until G′ = G
return G ▷ Ouput: A degree-d Gröbner basis G of I

BG is exactly the set of polynomials with a degree-d representation with respect to G. Combining this

observation with Theorem 4.2.7 leads to the following observation.

Theorem 4.2.8. [CEI96a] Let Id(p1, . . . , pk) be the set of polynomials with degree d PC proofs starting

from initial polynomials p1, . . . , pk. Let G be a degree d Gröbner basis containing p1, . . . , pk. Then

Id ⊆ BG.

This implies that if there is a PC proof of degree d for a given set of multilinear polynomials, then

the PC proof can be found by computing a degree-d Gröbner basis in time nO(d).

In the converse direction, the time complexity of Buchenberger’s algorithm can also be bounded by

the size of a smallest PC proof. If polynomials are represented as lists of coefficients, the operations of

Buchenberger’s algorithm such as S-remainders and polynomial division can be simulated in PC, using

the multiplication and linear combination rules. Therefore, this leads to the following observation.

Theorem 4.2.9. [IPS99] If Buchenberger’s algorithm is implemented by storing polynomials as lists

of coefficients, then the total runtime of Buchenberger’s algorithm for refuting a system of polynomial

equations f1 = 0, . . . , fk = 0 is at least the size of a PC refutation for the system of equations.

Such size lower bounds can be obtained using the size-degree tradeoff of Theorem 4.2.2, given suffi-

ciently strong degree lower bounds for a system of polynomial equations.

However, PC lower bounds may not in general give lower bounds on the runtime of other algorithms

for computing Gröbner bases, such as the F4 algorithm [CLO13] that employs linear algebraic techniques

for computing a Gröbner basis. Stronger algebraic proof systems would necessary to study the runtime

of these algorithms.

Lower Bounds in PC We finally note some important lower bounds for various families of formulas

in PC.

� [Raz98a], followed by [IPS99], proved Ω(n) degree lower bounds for the pigeonhole principle

PHPmn , for any m > n.

� Suppose F has odd characteristic. [BGIP99] showed Ω(n) degree lower bounds for the Tseitin

principles on a graph on n nodes for PC proofs over F. Informally, the Tseitin principles encode



Chapter 4. Proof Complexity 71

the principle that a graph must have an even number of vertices of odd degree. They also used

a low-degree PC reduction to show that the mod p counting principles cannot be refuted in low

degree, assuming the field has characteristic different from p.

� A random k-CNF is generated by picking m clauses uniformly at random out of all 2k
(
n
k

)
possible

clauses on n variables. At sufficiently high clause densities ∆ = m
n , a random k-CNF is almost

surely unsatisfiable. [BSI10] showed that there exists at clause density ∆, degree Ω( n∆2 ) degree

PC proofs are needed to show a random k-CNF at density ∆ is unsatisfiable.

Sum of Squares. We now restrict attention to F being the real numbers. A semialgebraic proof system

is a proof system that can manipulate both polynomial equalities and inequalities. Sum of squares is

such an example of a semialgebraic proof system.

We say that a polynomial p is a sum of squares polynomial if there exists polynomials qi for which

p(x) =
∑m
i=1 qi(x)

2. Observe that sum-of-squares polynomials are always non-negative. This motivates

the definition of sum-of-squares proofs.

Definition 4.2.11. Given a set of polynomial equations f1 = 0, . . . , fm = 0 and inequalities h1 ≥
0, . . . , hs ≥ 0, a sum of squares proof that f ≥ 0 is a polynomial identity:

m∑
i=1

gifi + p0 +

s∑
l=1

plhl = f

where gi are arbitrary polynomials and pi are sum-of-squares polynomials.

If f = −1, we call this a sum-of-squares refutation, since in this case the original system of polynomial

equations and inequalities cannot be satisfied.

As usual, the complexity of a proof can be measured by its degree. The degree of a sum-of-squares

proof is the maximum degree of a polynomial gifi, p0 or plhl appearing in the proof.

SoS proofs can be a powerful algebraic proof system. [Ber18] studied the relationship between Sum-

of-Squares and Polynomial Calculus, and showed that PC proof can be simulated in Sum-of-Squares

whenever the set of polynomials contains the Boolean axioms. Furthermore, SoS admits polynomial-

sized proofs of the pigeonhole principle [FKP+19, Section 3.2], which has been shown to be a hard

example for many other proof systems. Finally, sum-of-squares proofs can be found using semidefinite

programming [FKP+19], just as polynomial calculus proofs can be found using the Buchenberger’s

algorithm.

Lower Bounds for SoS However, SoS also has limitations as a proof system. we review some notable

lower bounds for SoS.

� Grigoriev [Gri01] showed Ω(n) lower bounds for the Tseitin formulas and the parity principle in

sum-of-squares.

� Schoenbeck [Sch08] showed Ω(n) lower bounds for refuting random XOR and CNF formulas in

sum-of-squares. This was applied to show tight integrality gaps for various optimization problems

for algorithms using the sum-of-squares hierarchy, unless the degree is linear in the number of

variables.



Chapter 5

The Proof Complexity of Tensor

Isomorphism

5.1 Preliminaries

5.1.1 PC Reductions

We define the notion of a PC reduction between two systems of polynomials.

Definition 5.1.1 (PC reduction between systems of polynomials, cf. [BGIP01, Sec. 3]). Let P (x1, . . . , xn)

and Q(y1, . . . , ym) be two sets of polynomials over a field F. P is (d1, d2)-reducible to Q if:

1. For each i ∈ [m] there is a polynomial ri(x) of degree at most d1 (which we think of as defining yi

in terms of the x variables);

2. There exists a degree d2 PC derivation of Q(r1(x), . . . , rm(x)) from polynomials P (x).

Lemma 5.1.1 ([BGIP01, Lem. 1]). If P (x) is (d1, d2)-reducible to Q(y) and there is a degree d PC

refutation of Q(y), then there is a degree max(d2, d1d) refutation of P (x).

In their paper, they typically only applied this to systems of equations which were known to be

unsatisfiable (such as PHP and Tseitin tautologies), whereas in our paper we have several situations we

want to combine the above notion together with the usual notion of many-one reduction. We encapsulate

this in the following definition. We say a decision problem Π is a polynomial solvability problem over a

field F if all valid instances of the problem are systems of polynomial equations over F, and the problem

is to decide whether such a system of equations has solutions over the algebraic closure F. Thus, the

difference between multiple polynomial solvability problems is just which systems of equations are valid

inputs.

Definition 5.1.2 (PC many-one reduction). Let Π1,Π2 be two polynomial solvability problems over

a field F. We say that Π1 (d1, d2)-many-one reduces to Π2 if there is a polynomial-time many-one

reduction ρ from Π1 to Π2, such that for all unsatisfiable instances F of Π1, F (d1, d2)-reduces to ρ(F).
When this occurs with d1, d2 = O(1), we write

Π1 ≤PCm Π2.

72
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5.1.2 Linear algebra and tensors

Given three vector spaces U, V,W over a field F, a 3-tensor is an element of the vector space U ⊗V ⊗W ,

whose dimension is (dimU)(dimV )(dimW ). If ei is the i-th standard basis vector, then a basis for

U ⊗V ⊗W is given by the vectors {ei⊗ ej ⊗ ek}. One may also interpret the symbol ⊗ more concretely

as the Kronecker product, in which ei ⊗ ej ⊗ ek represents a 3-way array whose only nonzero entry is in

the (i, j, k) position. The vector space of such 3-way arrays (with coordinate-wise addition) is isomorphic

to U ⊗ V ⊗W .

The rank of a tensor T ∈ U ⊗ V ⊗W is the minimum r such that T =
∑r
i=1 ui ⊗ vi ⊗ wi for some

vectors ui, vi, wi.

Two n×m× p 3-tensors T, T ′ ∈ U ⊗ V ⊗W are isomorphic if there exist matrices X ∈ GL(U), Y ∈
GL(V ), Z ∈ GL(W ) such that (X,Y, Z) · T = T ′, where the latter is shorthand for the equations

∑
ijk

Xii′Yjj′Zkk′Tijk = T ′
i′j′k′ (5.1)

for each index (i′, j′, k′) of the tensor T ′.

If we treat T, T ′ as given non-isomorphic tensors, then these equations as a system of equations in

the n2 + m2 + p2 variables Xii′ , Yjj′ , Zkk′ . To enforce that these variable matrices are invertible, we

furthermore introduce three additional sets of variables X ′, Y ′, Z ′ meant to be the inverse matrices, and

include also the equations

XX ′ = X ′X = In Y Y ′ = Y ′Y = Im ZZ ′ = Z ′Z = Ip,

where In denotes the n×n identity matrix, which is IdU in any basis. (We could have instead introduced

new variables such as δ and the equation det(X)δ = 1, however, the latter equation is degree n, whereas

the above equations all have degree O(1), which is more desirable from the point of view of algebraic

proof complexity.)

5.1.3 Polynomial encodings and the inversion principle

Some principles of linear algebra can be formulated as tautologies in propositional logic and therefore

also as a set of polynomial equations. In this paper we preliminarily consider two such principles.

Rank Principle. As a first example we consider a set of unsatisfiable polynomials encoding the principle

that the product of a n×r matrix X by a r×n matrix Y cannot be the identity matrix whenever r < n.

We consider variables xi,k, yj,k for i, j ∈ [n] and k ∈ [r], where r < n to encode X and Y . Then the

polynomial encoding is:

I(r, n) :=
∑
k∈[r]

xi,kyj,k − δi,j i, j ∈ [n]

where δi,j = 1 if i = j and 0 otherwise. This set of polynomials is clearly unsatisfiable as long as r < n.

Inversion Principle. The second principle encodes the invertibility of a square n × n matrix A,

expressing the tautology that AB = I → BA = I where A,B are n × n matrices and I is the identity

matrix. Stephen A. Cook suggested this principle as a tautology that may be hard to prove in several

proof systems.
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Let ai,j , bi,j be formal variables encoding respectively the (i, j)-th entries of A and B. We represent

the fact that AB = I as the set of degree 2 polynomials

∑
k∈[n]

ai,kbk,j − δi,j i, j ∈ [n],

where δi,j = 1 if i = j and 0 otherwise. We denote this set of polynomials by AB = I. In Section 5.2, we

study the degree complexity of AB = I ⊢ BA = I, that is of PC derivations of the polynomials BA = I

from the polynomials AB = I.

In view of the results we obtain in Section 5.2, we consider a polynomial rule schema of the form

AB = I

BA = I

which we call the Inversion Rule (INV) meant to be added to PC as an extra rule. We make this slightly

more precise here.

A polynomial instantiation τ of the polynomials AB = I is a substitution of polynomials pi,j , qi,j to

variables ai,j and bi,j . In PC+INV a polynomial p is derivable from a set of polynomials P if

1. p is an axiom, or p ∈ P;

2. p is obtained by multiplication or linear combination from previous polynomials in the proof;

3. p is a polynomial among a polynomial instantiation τ of BA = I, given that among the polynomials

previously derived in the proof there are all the polynomials forming the instantiation τ of AB = I.

Pigeonhole Principle. An important role in proving the results in Section 5.2 is played by the well-

known Pigeonhole principle stating that any function f from [n] to [r] with r < n has a collision, that

is there are i ̸= i′ ∈ [n] and a j ∈ [r] such that f(i) = f(i′) = j. PHPnr is the set of polynomials:

∑
k∈[r]

pi,k − 1, for i ∈ [n], pi,kpj,k, for i ̸= j ∈ [n], k ∈ [r] p2ij − pij , for i ∈ [n], j ∈ [r]

Razborov [Raz98b] additionally included the “functional equations” (encoding that each pigeon can-

not be matched to more than one hole):

pi,kpi,k′ , for i ∈ [n], k ̸= k′ ∈ [r].

5.2 Linear algebra warm-up: PC for matrices

Two matrices M,M ′ ∈ U ⊗ V are isomorphic as tensors if they are equivalent as matrices, meaning

under left- and right-multiplication by invertible matrices X ∈ GL(U), Y ∈ GL(V ), that is,

XMY =M ′.
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Since we want X,Y to be invertible, we also introduce variable matrices X ′, Y ′ as before, together

with the equations

XX ′ = X ′X = IdU Y Y ′ = Y ′Y = IdV .

Then by left multiplying our initial matrix equation by Y ′, we may replace it with the new matrix

equation

XM =M ′Y ′.

The latter has the advantage of being linear inX and Y ′, but the quadratic equationsXX ′ = IdU , Y Y
′ =

IdV still make even this case not totally obvious.

5.2.1 A trick for PC degree

If our focus is on PC degree, we note that the degree of the equations is unchanged if we first left- or

right-multiply M,M ′ by invertible scalar matrices. For example, if we replace M by M = AMB with

A,B ∈ GL(U), then we may replace X by X := XA−1, Y by Y := B−1Y . Then we have M ∼= M , so

M ∼= M ′ iff M ∼= M ′. Furthermore, since the transformation X 7→ XA−1, Y 7→ B−1Y is linear and

invertible, any PC proof that M ̸∼= M ′ can be transformed by the inverse linear transformation into a

PC proof that M ̸∼=M ′ of the same degree.

Now, for matrices under this equivalence relation, we have a normal form, namely every matrix M

is equivalent to a diagonal matrix with rk(M) 1s on the diagonal and all the remaining entries 0, that

is,
∑rk(M)
i=1 ei ⊗ ei = Ir ⊕ 0, where the latter 0 denotes a 0 matrix of appropriate size (n− r)× (m− r).

So by using the preceding trick, we may put both M and M ′ in this form. The two are isomorphic iff

rk(M) = rk(M ′), so for PC degree we have now reduced to the case of showing that Ir ⊕ 0 and Ir′ ⊕ 0

are not isomorphic when r ̸= r′.

Note that, aside from the equations saying X and Y are invertible, this is almost identical to the

Rank Principle (see Section 5.1.3). In the rest of this section we will prove PC lower bounds on both

the Rank Principle and the Inversion Principle. Here, we show that the addition of these invertibility

axioms in fact makes 2TI much easier in PC than the Rank Principle or 3TI.

Proposition 5.2.1. Let M,M ′ be two n × m matrices of ranks r, r′ respectively, with r′ > r. Then,

over any field whose characteristic does not divide r′ − r, the following equations have a degree 3 PC

refutation and a degree 4 NS refutation:

XMY T =M ′ XX ′ = X ′X = Idn Y Y ′ = Y ′Y = Idm .

For those familiar with the low-degree PC proof of the functional onto-PHP, the following proof is

similar.

Proof idea. By the observations in Section 5.2.1, we may assume without loss of generality (from the

point of view of PC degree) that M = Idr ⊕0n−r×m−r and M ′ = Idr′ ⊕0n−r′×m−r′ .

Write X =

[
X11 X12

X21 X22

]
where the top-left block X11 has size r′ × r, and similarly write Y =[

Y11 Y12

Y21 Y22

]
where Y11 has size r′ × r. In this notation, the matrix equation XMY T =M ′ becomes the
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equations

XMY T =

[
X11 X12

X21 X22

][
Idr

0(n−r)×(m−r)

][
Y T11 Y T21

Y T12 Y T22

]

=

[
X11 0

X21 0

][
Y T11 Y T21

0 0

]

=M ′ =

[
Idr′

0(n−r′)×(m−r′)

]

which becomes the four matrix equations

X11Y
T
11 = Idr′ X11Y

T
21 = 0 X21Y

T
11 = 0 X21Y

T
21 = 0. (5.2)

Note that so far our PC proof hasn’t actually done anything—it is all just notation, and all in the same

degree we started with (degree 2).

Then, using the equations XX ′ = Idn and Y Y ′ = Idm, we will derive that Y T11X11 = Idr. Then we

derive 1 as
1

r − r′
(
Tr(X11Y

T
11 − Idr′)− Tr(Y T11X11 − Idr)

)
.

The point here is that trace is additive and cyclically invariant, so Tr(X11Y
T
11) ≡ Tr(Y T11X11), identically

as polynomials, so there is no further derivation needed.

Proof. The proof starts using the first part of the proof idea above, so we continue from (Equation (5.2))

with the notation introduced above. In the remainder of the proof, we will derive Y T11X11 = Idr. Then

the last paragraph of the proof idea will complete the proof.

To derive Y T11X11 = Idr, we will use the invertibility equations (those involving X ′ and Y ′). Write

X ′ =

[
X ′

11 X ′
12

X ′
21 X ′

22

]
, where X ′

11 has size r × r′ (NB: the size is the “transpose” of the size of X11) and

similarly for Y ′.

From considering the upper-left r × r block of the matrix equation X ′X = Idn, we get

X ′
11X11 +X ′

12X21 = Idr .

Right multiplying by Y T11, we get

X ′
11X11Y

T
11 +X ′

12X21Y
T
11 = Y T11.

But now we can subtract from this X ′
11 times the equation X11Y

T
11 = Idr′ , and also X ′

12 times the

equation X21Y
T
11 = 0 to get

X ′
11 = Y T11. (5.3)

Similarly, considering the upper-left r× r block of the matrix equation Y ′Y = Idm, we get Y ′
11Y11 +

Y ′
12Y21 = Idr. For consistency with the notation above, we take the transpose of this entire equation (in

PC, this is essentially a null-op—we are just re-arranging how we are viewing a set of (r′)2 equations on

the page), to get:

Y T11(Y
′
11)

T + Y T21(Y
′
12)

T = Idr .
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Left multiplying by X11, we get

X11Y
T
11(Y

′
11)

T +X11Y
T
21(Y

′
12)

T = X11.

Now, right-multiplying the equationX11Y
T
11 = Id by (Y ′

11)
T , and right-multiplying the equationX11Y

T
21 =

0 by (Y ′
12)

T and subtracting both of these from the above, we get

(Y ′
11)

T = X11. (5.4)

Next, we derive M −X ′M ′(Y ′)T = 0, as follows: left-multiplying XMY T −M ′ by X ′, and subtract

from it (X ′X − I) times MY T , to get −X ′M ′ +MY T . Now right-multiply the latter by (Y ′)T and

subtract from it M times (Y T (Y ′)T − I), yielding −X ′M ′(Y ′)T +M . Now multiply by −1.
Now, from X ′M ′(Y ′)T =M , as at the beginning of the proof, we derive that X ′

11(Y
′
11)

T = Idr. But

above we have derived that X ′
11 = Y T11 and (Y ′

11)
T = X11, so from the preceding three equations we get

Y T11X11 = Idr, as claimed. This completes the PC proof.

Let us unroll the PC proof to derive a Nullstellensatz proof (here we underline the use of original

equations):

r − r′ = Tr(X11Y
T
11 − Idr′)− Tr(Y T11X11 − Idr)

Now we focus on the NS derivation of Y T11X11 − Idr. Since the trace is linear, and we are focusing on

degree, this is without loss of generality. We have:

Y T11X11 − Idr =
(
X ′

11(Y
′
11)

T − Idr
)
− (X ′

11 − Y T11)(Y ′
11)

T − Y T11
(
(Y ′

11)
T −X11

)
=
(
−X ′(XMY T −M ′)Y ′T + (X ′X − I)MY T (Y ′)T +M(Y T (Y ′)T − I)

)
11

+
(
(X ′

11X11 +X ′
12X21 − Idr)Y

T
11 −X ′

11(X11Y
T
11 − Idr′)−X ′

12(X21Y
T
11)
)
(Y ′

11)
T

− Y T11
(
X11(Y

T
11(Y

′
11)

T + Y T21(Y
′
12)

T − Idr)− (X11Y
T
11 − Id)(Y ′

11)
T − (X11Y

T
21)(Y

′
12)

T
)
.

This is visibly degree 4.

5.2.2 Inversion Principle implies the Rank Principle

Lemma 5.2.2. If the r × r Inversion Principle has a degree d PC derivation, then there is a degree

max{d, 3} PC refutation of the Rank Principle stating that a rank r matrix is not equivalent (isomorphic)

to a rank n matrix, for any n > r.

If the Inversion Principle has a degree d NS derivation, then the Rank Principle has a degree d + 2

NS refutation.

Proof. Suppose the r × r Inversion Principle has a degree-d derivation. Consider the Rank Principle

XY = In where X is n× r and Y is r × n, with n > r. Write

X =

[
X0

X1

]
and Y =

[
Y0 Y1

]
,
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where X0, Y0 are r × r. Then, examining the upper-left r × r corner of the original equations, we find

X0Y0 = Ir. As these are square matrices, by assumption in degree d we may then derive that Y0X0 = Ir

as well.

Now, multiply both sides of XY = In on the left by the matrix

[
Y0 0

0 In−r

]
. The result is then the

set of degree-3 equations [
Y0X0

X1

] [
Y0 Y1

]
=

[
Y0 0

0 In−r

]
.

Considering the upper-right r × (n− r) block of these equations, we find the equations Y0X0Y1 = 0.

But now, from the equation Y0X0 = Ir, we may right-multiply by Y1 to get Y0X0Y1 = Y1. Combining

with the equation at the end of the last paragraph, we then conclude Y1 = 0.

Finally, consider the lower-right (n − r) × (n − r) part of the original equation XY = In, namely,

X1Y1 = In−r. We had already derived Y1 = 0, which we can then left-multiply by X1 to get X1Y1 = 0.

Considering any diagonal entry of these two equations, we then derive the contradiction 1 = 0.

To see the NS certificate, we unwrap the above proof. First write Y0X0 − Ir as a linear combination

of the equations X0Y0− Ir with polynomial coefficients, in total degree d. Among our starting equations

in the Rank Principle, we have X0Y1 and X1Y1−In−r. Then the following linear combination has degree

2 more than Y0X0 − Ir, and derives 1 in any of its diagonal entries:

−X1Y0X0Y1 +X1(Y0X0 − Ir)Y1 + (X1Y1 − In−r).

Observation 3. The n× n Inversion Principle has a proof of degree 2n+ 2.

Proof. The idea is to use Laplace expansion. We spell out the details.

We start with XY = In, where X and Y are n × n matrices of variables. Left-multiply by Y to

get Y XY = Y , and then right multiply by Adj(Y ) (whose entries are the (n − 1) × (n − 1) cofactors

of Y , hence have degree n − 1) to get Y XY Adj(Y ) = Y Adj(Y ). Now, by Laplace expansion, we have

Y Adj(Y ) ≡ det(Y )In, so we get Y X det(Y ) = det(Y )In.

Next, starting fromXY = In and expanding out the determinant term-by-term, we derive det(XY ) =

1. (Note that here, we are not simply applying the determinant to the matrix XY − I, as that would

give us the value of the characteristic polynomial evaluated at 1. Instead, we repeatedly use that

from a− b = 0 and c− d = 0 we can derive ac− bd = 0 as (a− b)c+ b(c− d). Similarly, we can derive

(a+c)−(b+d) = 0 as (a−b)+(c−d).) Now, since det(XY ) ≡ det(X) det(Y ) identically as polynomials,

we have derived det(X) det(Y ) = 1 in degree n.

Now, from Y X det(Y ) − det(Y )In in the first paragraph, we multiply by det(X) to get (Y X −
In)(det(X) det(Y )). From det(X) det(Y )− 1 in the second paragraph, we multiply by −(Y X − In) and
add to the preceding to get Y X − In, all in degree at most 2n+ 2.

5.2.3 Lower bound on the Rank Principle (and Inversion Principle) via re-

duction from PHP

Here we show that the Rank Principle (see Section 5.1.3) requires large PC degree, via a reduction to

the Pigeonhole Principle. For the Pigeonhole principle, a tight PC degree lower bound is known:
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Theorem 5.2.4 (Razborov [Raz98b]). Any PC refutation of the Functional PHPnr requires degree

r/2+1 over any field.

We use this to show:

Theorem 5.2.5. Let n ∈ N, n ≥ 2 and 1 ≤ r < n. I(r, n) (with or without the Boolean axioms) requires

degree r/2 + 1 in PC over any field.

Proof. We prove that PHPnr is (1, 2)-reducible to I(r, n). First we consider the following degree 1

polynomials defining x and y variables of I(r, n) in terms of the p variables of PHPnr . variables

xi,k = yi,k = pi,k for i ∈ [n], k ∈ [n− 1].

Second we show a degree 2 PC proof of I(r, n) from the polynomials defining the PHPnr . From PHP

axioms pi,kpk,j for i, j ∈ [n], i ̸= j, and summing over all k ∈ [r], we get∑
k∈[r]

pi,kpk,j ,

which are exactly the axioms of I(r, n) for i ̸= j, i, j ∈ [n], after the substitution of variables.

For a i ∈ [n], take the boolean axioms written in the form pi,kpi,k − pi,k and sum them over k ∈ [r]:∑
k∈[r]

pi,kpi,k −
∑
k∈[r]

pi,k

Summing this last polynomial with the PHP axiom
∑
k∈[r] pi,k − 1 we get the polynomial

∑
k∈[r]

pi,kpi,k − 1,

which is the axiom of I(r, n) for i = j after the substitution of the variables. The proof has degree 2.

The result follows immediately from Lemma 5.1.1 and Theorem 5.2.4.

Corollary 6. Any PC proof of AB = I ⊢ BA = I, where A,B are square n×n {0, 1} matrices requires

degree n/2 + 1.

Proof. Follows immediately from Theorem 5.2.5 and Lemma 5.2.2.

5.3 Upper bound for non-isomorphism of bounded-rank tensors

Theorem 5.3.1. Over any algebraically closed field, there is a function f(r) ≤ 2O(r2), depending only

on r, such that, given two non-isomorphic tensors M,M ′ of tensor rank ≤ r, the Nullstellensatz degree

of refuting isomorphism is at most f(r).

If working over a finite field GF (q) and including the equations xq − x = 0 for all variables x, then

the PC degree is at most 12qr2.

Proof. The proof is based mainly on the so-called inheritance property of tensor rank.
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Let M =
∑r
i=1 ui⊗vi⊗wi and let M ′ =

∑r
i=1 u

′
i⊗v′i⊗w′

i be our two tensors of format n1×n2×n3.
Let d1 = dimSpan{u1, u2, . . . , ur, u′1, u′2, . . . , u′r}, d2 similarly for the v’s and d3 for the w’s. Choose a

basis e1, e2, . . . , en1 for Fn1 such that Span{e1, . . . , ed1} = Span{u1, . . . , ur, u′1, . . . , u′r}. Let f1, . . . , fn2

be a similar basis for Fn2 (with the first d2 vectors a basis for Span{v1, . . . , vr, v′1, . . . , v′r}), and similarly

g1, . . . , gn3 . Changing everything in sight into the e•⊗f•⊗g• basis, we find thatM,M ′ are both supported

in the upper-left d1×d2×d3 sub-tensors, with all zeros outside of this. Call the corresponding d1×d2×d3
tensors M,M

′
. Because all the entries outside this box are zero, it is not difficult to show that M ∼=M ′

iff M ∼= M
′
(the so-called “Inheritance Theorem,”, see, e. g., [Lan12, §3.7.1]); note that isomorphism

of M with M
′
is via the much smaller group GLd1 ×GLd2 ×GLd3 , rather than GLn×GLn×GLn (the

latter of which is used to determine isomorphism of M with M ′).

In this basis, isomorphism of M,M
′
is solely determined by the upper-left d1 × d1 sub-matrix of

X,X ′, the upper-left d2 × d2 submatrix of Y, Y ′, and the upper-left d3 × d3 sub-matrix of Z,Z ′. So we

now only need to deal with equations in d21 + d22 + d23 variables. Since each di ≤ 2r, this is at most 12r2

variables.

Since we have ≤ 12r2 variables, d1d2d3 cubic equations, and 6n2 quadratic equations (XX ′ = I =

X ′X = Y Y ′ = · · · ), over an algebraically closed field Sombra’s Effective Nullstellensatz [Som99] implies

that the Nullstellensatz degree of refuting our equations is then at most 4 · 3Θ(r2).

Over a finite field with the extra equations xq = x, we may reduce degrees so that the degree of each

variable is never more than q, the size of the field. In this case, the PC degree is at most q times the

number of variables, i. e., at most 12qr2.

Remark 2. For fixed r, testing if an n × n × n tensor has rank ≤ r can be done in polynomial time,

as follows. This will show that the algorithm of Theorem 5.3.1 genuinely solves the decision prob-

lem, and not just a promise problem. Given an n × n × n tensor T , consider its three n × n2 flat-

tenings. Use Gaussian elimination to put each such flattening, separately, into reduced row echelon

form. If any of these flattenings has rank > r, reject. Otherwise, we get from this a list of 3r vectors

u1, . . . , ur, v1, . . . , vr, w1, . . . , wr, such that T lives in the r× r× r-dimensional space Span{u1, . . . , ur}⊗
Span{v1, . . . , vr}⊗ Span{w1, . . . , wr}. Now in this space we can write down the Brent equations [Bre70]

for T to have rank ≤ r, which will be r3 cubic equations in 3r2 variables (Brent’s equations [Bre70,

(5.06)] were specifically for the matrix multiplication tensor, but analogous equations are easily con-

structed for arbitrary tensors using the same idea). Since r is constant, these equations may be solved in

polynomial time (here we assume that we are either working over a finite field, a finite-degree extension

of the rationals—see, for example, Grigoriev [Gri13]—or in the BSS model over an arbitrary field).

5.4 Lower bound on PC degree for Tensor Isomorphism from

Graph Isomorphism

Definition 5.4.1. Given two graphs G,H with adjacency matrices A,B (resp.), the equations for

Graph Isomorphism (the same as those used by Berkholz & Grohe [BG15, BG17]) are as follows. Let

Z be an n×n matrix of variables zij (where the intended interpretation is that zij = 1 iff an isomorphism

maps vertex i ∈ V (G) to vertex j ∈ V (H)). We say that a partial map, which sends (i, i′) 7→ (j, j′) is a

local isomorphism if (1) i = i′ iff j = j′ (it’s a well-defined map) and (2) (i, i′) ∈ E(G)⇔ (j, j′) ∈ E(H).

(One may also do Colored Graph Isomorphism and require that the colors match, c(i) = c(j), c(i′) =
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c(j′).) Then the equations are:

z2ij − zij ∀i, j All variables {0, 1}-valued
1−

∑
i zij ∀j each j ∈ V (H) is mapped to from exactly one vertex

1−
∑
j zij ∀i each i ∈ V (G) maps to exactly one vertex

zijzi′j′ Whenever (i, i′) 7→ (j, j′) is not a local isomorphism.

In this section, we prove a lower bound on PC (and SoS) for TI, by reducing from GI and using the

known lower bounds on GI [BG15, BG17]. Specifically, we show

Theorem 5.4.1. Over any field, there are instances of Tensor Isomorphism of size O(n)× O(n)×
O(n) that require PC degree Ω(n) to refute. The same holds over the reals for SoS degree.

Proof. Berkholz and Grohe [BG15, BG17] show the same statement for n-vertex graphs of bounded

vertex degrees, with the same PC/SoS degree bound. In Proposition 5.4.2 we show that GI reduces

to Monomial Code Equivalence by a (2,4)-many-one reduction that turns n-vertex, m-edge graphs

into m× (3m+n) matrices. in Proposition 5.4.3 we show that Monomial Code Equivalence reduces

to TI by a (2,4)-many-one reduction that turns k ×N matrices into (k + 2N)×N × (1 + 2N) tensors.

By Lemma 5.1.1, this completes the proof.

To reduce from GI to TI we use the following intermediate problem. A matrix is monomial if it has

exactly one nonzero entry in each row and column; equivalently, a monomial matrix is the product of a

permutation matrix and an invertible diagonal matrix.

Definition 5.4.2. Monomial Code Equivalence is the problem: given two k×n matrices C,C ′, do

there exist matrices X,Y such that XCY T = C ′ where X is invertible and Y is invertible and monomial?

Given two such matrices C,C ′, the equations for Monomial Code Equivalence are as follows. There

are 2(k2 + n2) variables arranged into matrices X,X ′ (of size k × k) and Y, Y ′ (of size n × n). The

equations are

XCY T = C ′ XX ′ = X ′X = Id Y Y ′ = Y ′Y = Id

and

yijyij′(∀i∀j ̸= j′) yijyi′j(∀i ̸= i′,∀j)

y′ijy
′
ij′(∀i∀j ̸= j′) y′ijy

′
i′j(∀i ̸= i′,∀j)

(Note: there are no equations forcing the variables to take on values in {0, 1}.)

Proposition 5.4.2. The reduction of Petrank & Roth [PR97] from Graph Isomorphism to Linear

Code Equivalence over F2 in fact gives a (2,4)-many-one reduction from Graph Isomorphism to

Monomial Code Equivalence (sic!) over any field.

Proof. The reduction of Petrank & Roth is as follows: given a simple undirected graph G with n vertices

and m edges, let D(G) be its m × n incidence matrix: De,v = 1 iff v ∈ e and is 0 otherwise, and let

M(G) be the m× (3m+ n) matrix

M(G) =
[
Im Im Im D(G)

]
.
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Many-one reduction. It was previously shown (over F2 in [PR97] and over arbitrary fields in

[Gro12, Lem. II.4]) that this gives a many-one reduction to Permutational Code Equivalence.

Here we observe that the same reduction also gives a reduction to Monomial Code Equivalence.

Thus, all that remains to show is that if M(G) and M(H) are monomially equivalent, then G must be

isomorphic to H.

In fact, what was shown in [PR97] (over arbitrary fields in [Gro12]) is that, up to permutation and

scaling of the rows, M(G) is the unique generator matrix of its code satisfying the following properties:

(1) M(G) is m × (3m + n), (2) each row has Hamming weight ≤ 5, (3) any linear combination that

includes two or more rows with nonzero coefficients has Hamming weight ≥ 6.

Now, suppose (X,Y ) is a monomial equivalence of the codes M(G),M(H). Then the rowspans

of M(G)Y T and M(H) are the same. Since Y is monomial, if we consider just the supports of the

rows of M(G)Y T , up to re-ordering the rows, by the preceding paragraph, those supports must be

the same as the supports of the rows of M(H). Thus X must also be monomial. Say X = DP

and Y = EQ where D,E are diagonal and P,Q are permutation matrices. Then PM(G)QT has the

same support as XM(G)Y T = M(H), and since P and Q are permutation matrices and M(G) and

M(H) have all entries in {0, 1}, we must have PM(G)QT = M(H). Thus M(G) and M(H) are in

fact equivalent by a permutation matrix (in place of the monomial matrix Y ). Thus, by the fact that

(G,H) 7→ (M(G),M(H)) was a reduction to Permutational Code Equivalence, we conclude that

G ∼= H.

Low-degree PC reduction. Let X,X ′, Y, Y ′ be the variable matrices in the equations for Mono-

mial Code Equivalence ofM(G),M(H), and let Z be the variable matrix in the equations for Graph

Isomorphism of G,H. Let n = |V (G)|,m = |E(G)|; so, X,X ′ are of size m, Y, Y ′ are of size 3m + n,

and Z is of size n.

Let Z(2) denote the
(
n
2

)
×
(
n
2

)
matrix whose ({i, i′}, {j, j′}) entry is zijzi′j′ + zij′zi′j . The idea is that

if Z is a map on the vertices, then Z(2) is the corresponding map on the edges; the two terms come

from the fact that the edge {i, i′} can be mapped to the edge {j, j′} either by (i, i′) 7→ (j, j′) or by

(i, i′) 7→ (j′, j). Note that, since Z is a permutation matrix, at most one of these terms is nonzero, and

thus Z(2) is also a {0, 1}-matrix (in fact, a permutation matrix). Let Z
(2)
E denote the |E|×|E| submatrix

of Z(2) all of whose row indices are {i, i′} ∈ E(G) and all of whose column indices are {j, j′} ∈ E(H).

Note also that (Z
(2)
E )T = (ZT )

(2)
E , so we use these notations interchangeably for convenience.

Now consider the following substitution:

X 7→ (Z
(2)
E )T Y 7→ (ZT )

(2)
E ⊕ (ZT )

(2)
E ⊕ (ZT )

(2)
E ⊕ (ZT )

X ′ 7→ Z
(2)
E Y ′ 7→ Z

(2)
E ⊕ Z

(2)
E ⊕ Z

(2)
E ⊕ Z

After making these substitutions in the equations for Monomial Code Equivalence ofM(G),M(H),

we get the equations

(Z
(2)
E )TZ

(2)
E = Z

(2)
E (Z

(2)
E )T = Idm (Z

(2)
E )TD(G)Z = D(H) ZZT = ZTZ = Idn (5.5)

along with equations saying that Z and Z
(2)
E are monomial.

We now show how to derive these equations in low-degree PC from the GI equations.

The monomial equations for Z are part of the GI equations, so there is nothing to do for those.

The monomial equations for Z
(2)
E are of the form (zijzi′j′ + zij′zi′j)(zkℓzk′ℓ′ + zkℓ′zk′ℓ) where either
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(1) {i, i′} = {k, k′} and {j, j′} ≠ {ℓ, ℓ′} or (2) vice versa. We expand out to get

zijzi′j′zkℓzk′ℓ′ + zijzi′j′zkℓ′zk′ℓ + zij′zi′jzkℓzk′ℓ′ + zij′zi′jzkℓ′zk′ℓ

We show how to get this equation in case (1); case (2) follows similarly, mutatis mutandis. In case (1),

without loss of generality suppose that i = k, i′ = k′, and j /∈ {ℓ, ℓ′}. The first two terms are divisible

by the GI equations zijziℓ (since i = k and j ̸= ℓ), the third term is divisible by zi′jzi′ℓ′ (since i
′ = k′

and j ̸= ℓ′), and the last term is divisible by zi′jzi′ℓ similarly.

Next, the equations ZZT = Idn are, expanded out,∑
j

zijzij − 1(∀i)
∑
j

zijzkj(∀i ̸= k).

The first is gotten by linear combination from 1−
∑
j zij and the Boolean axioms z2ij−zij . The second is a

linear combination of the monomial axioms zijzkj (part of the local non-isomorphism axioms). Similarly

for ZTZ = Id, using 1−
∑
i zij instead.

Next, we expand out the equations Z
(2)
E (ZT )

(2)
E = Idm, to get1∑

{j,j′}∈E(H)

(zijzi′j′ + zij′zi′j)(zkjzk′j′ + zk′jzkj′)− δ{i,i′},{k,k′}(∀{i, i′}, {k, k′} ∈ E(G))

Thus, for {i, i′} ≠ {k, k′}, we need to derive∑
{j,j′}∈E(H)

(zijzi′j′zkjzk′j′ + zij′zi′jzkjzk′j′ + zijzi′j′zk′jzkj′ + zij′zi′jzk′jzkj′) .

Without loss of generality, suppose that i /∈ {k, k′}. Then the first two terms of each summand are

divisible by the GI equation zijzkj , the third term is divisible by zijzk′j , and the last term is divisible

by zij′zkj′ . On the other hand, when {i, i′} = {k, k′}, we need to derive

−1 +
∑

{j,j′}∈E(H)

(
z2ijz

2
i′j′ + 2zij′zi′jzijzi′j′ + z2ij′z

2
i′j

)
.

The middle terms of each summand are divisible by the GI equations zij′zij . For the first and third

terms, we can use the Boolean axioms to remove the squares, and thus we are left to derive

−1 +
∑

{j,j′}∈E(H)

(zijzi′j′ + zij′zi′j) (5.6)

We derive this from the GI equations as follows. Consider (
∑
j zij − 1)(

∑
j′ zi′j′ − 1) + (

∑
j zij −

1) + (
∑
j′ zi′j′ − 1) and break up the resulting sum according to whether j = j′, {j, j′} ∈ E(H) or

{j, j′} /∈ E(H). Then we get∑
j

zijzi′j +
∑

j,j′:{j,j′}∈E(H)

zijzi′j′ +
∑

j ̸=j′{j,j′}/∈E(H)

zijzi′j′ − 1

1We use the notation
∑

{j,j′}∈E(H) to denote a sum in the index of summation takes on the value e ∈ E(H) for each

edge of H exactly once. Because our edges are undirected, we only use such sums when the summand expression is itself
invariant under swapping the roles of j, j′. If so desired, one could equivalently say

∑
j<j′,{j,j′}∈E(H).
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Every summand in the first sum is a monomial axiom since i ̸= i′. Every summand in the third sum

is a local non-isomorphism axiom, since {i, i′} ∈ E(G) but {j, j′} /∈ E(H). Note that every edge {j, j′}
of E(H) is represented twice in the middle sum: once as (j, j′) and once as (j′, j). Thus, the above

simplifies to ∑
{j,j′}∈E(H)

(zijzi′j′ + zij′zi′j)− 1,

which is what we sought to derive. The derivation of (Z
(2)
E )TZ

(2)
E = Id is similar.

Finally, we show how to derive the equation (Z
(2)
E )TD(G)Z = D(H) from the equations ZA(G) =

A(H)Z, where A(G) denotes the adjacency matrix of G, with A(G)ii′ = 1 iff {i, i′} ∈ E(G). Writing

out the equations in indices, we need to derive∑
{i,i′}∈E(G),k∈V (G)

(
Z

(2)
E

)
{i,i′},{j,j′}

D(G){i,i′},kzkℓ = D(H){j,j′},ℓ(∀ℓ ∈ V (H),∀{j, j′} ∈ E(H))

Using the fact that D(G){i,i′},k = δik + δi′k and the definition of Z(2), this is the same as∑
{i,i′}∈E(G),k∈V (G)

(zijzi′j′ + zij′zi′j) (δik + δi′k)zkℓ = δjℓ + δj′ℓ(∀ℓ ∈ V (H),∀{j, j′} ∈ E(H))

Thus we need to derive:

∑
{i,i′}∈E(G)

(zijzi′j′ + zij′zi′j) (ziℓ + zi′ℓ) =

1 ℓ ∈ {j, j′}

0 otherwise.

Expanding out the summand, we find the four terms

zijzi′j′ziℓ + zijzi′j′zi′ℓ + zij′zi′jziℓ + zij′zi′jzi′ℓ.

When ℓ /∈ {j, j′}, each of these terms is divisible by one of the monomial (local non-isomorphism) axioms,

respectively: zijziℓ, zi′j′zi′ℓ, zij′ziℓ, and zi′jzi′ℓ.

Finally, when ℓ ∈ {j, j′}, without loss of generality suppose that ℓ = j. Then the only terms that

are not divisible by the monomial axioms as above are z2ijzi′j′ + zij′z
2
i′j . Using the Boolean axioms we

can easily convert each such summand to zijzi′j′ + zij′zi′j . The derivation of the sum of these over

all {i, i′} ∈ E(G) is analogous, mutatis mutandis, to the derivation of (Equation (5.6)) above. This

completes the proof.

Proposition 5.4.3. The many-one reduction from Monomial Code Equivalence to Tensor Iso-

morphism from Grochow & Qiao [GQ21a] is in fact a (2, 4)-many-one reduction.

Proof. We recall the reduction, then prove that it is a low-degree PC reduction. Let M be a k × n

matrix. We build a 3-tensor of size (k+2n)× n× (1 + 2n) as follows. The first frontal slice is

[
M

02n×n

]
.

The remaining 2n slices all have just a single nonzero entry, which serve to place a 2× 2 identity matrix

“behind and perpendicular” to M , one 2× 2 matrix in each column. Let us index these slices by [n]× 2.

Then the (i, b) slice has a 1 in entry (2(i− 1) + b, i), for all i ∈ [n], b ∈ [2]. Let us call this tensor r(M).

Then the reduction maps M,M ′ to r(M), r(M ′).
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LetX,X ′, Y, Y ′, Z, Z ′ be the variable matrices for theTI equations for r(M), r(M ′), and letA,B,A′, B′

be the variable matrices for Monomial Code Equivalence of M,M ′ (that is, AMBT = M ′, A is

invertible, B is monomial and invertible). Consider the substitution:

X 7→ A⊕ (B ⊗ I2) Y 7→ B Z 7→ 1⊕ (B′ ◦B′)⊗ I2

X ′ 7→ A′ ⊕ (B′ ⊗ I2) Y ′ 7→ B′ Z ′ 7→ 1⊕ (B ◦B)⊗ I2.

As before, B ◦B denotes the Hadamard or entry-wise product. Let us see what the TI equations become

under this substitution. We get

AMBT =M ′ AA′ = A′A = Id BB′ = B′B = Id (B′ ◦B′)(B ◦B) = (B ◦B)(B′ ◦B′) = Id

Indeed, notice that the effect of the B ⊗ I2 in X and the B in Y is that the row and column locations

of the 2× 2 matrix gadgets get permuted in the same way, and the gadget get multiplied by the square

of the nonzero entries of B. These are then multiplied by the B′ ◦B′ in Z.

Now, we derive these equations from the equations for Monomial Code Equivalence. The first

three are already present in the equations for Monomial Code Equivalence. The last one we expand

out, to see that we need to derive: ∑
j

b2ij(b
′
jk)

2 = δik(∀i, k)

Now, for i ̸= k, we may take the equation
∑
j bijb

′
jk and square it, to derive∑

j ̸=j′
bijb

′
jk + bij′b

′
j′k +

∑
j

b2ijb
2
j′k.

Each term in the first sum is divisible by one of the monomial axioms bijbij′ since j ̸= j′, and the second

sum is what we wanted to derive.

Finally, for i = k, we square the equation
∑
j bijb

′
ji − 1 and add to it 2

(∑
j bijb

′
ji − 1

)
. We then

proceed to cancel terms with the monomial axioms as above, and end up with
∑
j b

2
ij(b

′
ji)

2 − 1, as

desired.

5.5 Lower bound on PC degree for Tensor Isomorphism from

Random 3XOR

We get a lower bound on PC refutations for Tensor Isomorphism through the following series of

low-degree PC many-one reductions (Definition 5.1.2):

Random 3-XOR ≤PCm {±1}-Monomial Equivalence of (5.7)

{±1}-Multilinear Noncommutative Cubic Forms (5.8)

≤PCm Monomial Equivalence of {±1} Noncommutative Cubic Forms (5.9)

≤PCm Equivalence of {±1} Noncommutative Cubic Forms (5.10)

≤PCm Tensor Isomorphism (5.11)
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We then appeal to the following PC lower bound on Random 3-XOR:

Theorem 5.5.1 (Ben-Sasson & Impagliazzo [BI99, Thm. 3.3 & Lem. 4.7]). Let F be any field of char-

acteristic ̸= 2. A random 3-XOR instance with clause density ∆ = m/n requires PC degree Ω(n/∆2) to

refute, with probability 1− o(1).

This allows us to prove:

Theorem 5.5.2. Over any field of characteristic ̸= 2, there is a random distribution of instances of

n × n × n Tensor Isomorphism—which assigns nonzero probability to at least 2Ω( 4
√
n) logn different

instances—whose associated equations require PC degree Ω( 4
√
n) to refute, with probability 1− o(1).

Note that such instances have N = 6n2 variables, so this is really only an Ω( 8
√
N) lower bound

relative to the number of variables.

In the following subsections we recall the definitions of the above problems and their associated

systems of polynomial equations, and we give the reductions in the order listed above.

The first two reductions are gadget constructions of linear size; the proof of correctness for the first

uses the fact that random hypergraphs have no automorphisms, while the second is fairly straightforward.

(Equation (5.10)) uses a gadget from Grochow & Qiao [GQ21b], albeit for a new application, and shows

that the reduction using this gadget also yields a low-degree PC reduction. (Equation (5.11)) is based

on two lemmas, which show that the many-one reduction for this problem in fact also gives a low-degree

PC reduction.

Remark 3. Both of the latter two reductions have a quadratic size increase, so while we get a nearly-

linear lower bound on PC degree for refutations of Monomial Equivalence of Noncommutative

Cubic Forms, we only get a Ω(
√
n) degree lower bound Equivalence of Noncommutative Cubic

Forms and a Ω( 4
√
n) degree lower bound on Tensor Isomorphism. If the gadget sizes of these latter

two reductions could be improved to linear, we would get a similarly near-linear lower bound (linear in the

side length, still
√
N relative to the number of variables) on PC refutations for Tensor Isomorphism

as well. As many of the reductions in [FGS19, GQ21b] are of a similar flavor to the ones we consider

here, we believe that they can all be proven in low-degree PC, so we expect the main obstacle to such an

improvement is the size of the constructions themselves.

5.5.1 From Random 3-XOR to {±1}-multilinear noncommutative cubic forms

Definition 5.5.1. A random 3-XOR instance with n variables and m clauses is obtained by sampling

m clauses independently and uniformly from the set of all 2
(
n
3

)
parity constraints on 3 variables. Each

parity constraint is encoded by an equation of the form xixjxk = ±1, and the Boolean constraints are

encoded by x2i = 1.

By a {±1}-monomial matrix, we mean a monomial matrix in which all nonzero entries are one of ±1.
{±1}-Monomial Equivalence of Noncommutative Cubic Forms is the problem of deciding, given

two noncommutative cubic forms f, f ′ in n variables x1, . . . , xn with all nonzero coefficients ±1, whether
there is a permutation π ∈ Sn and signs ei ∈ {±1} such that f(e1xπ(1), . . . , e2xπ(2), . . . , enxπ(n)) =

f ′(x⃗). Equivalently, if we represent a noncommutative cubic form f by the 3-way array Tijk such that

f(y⃗) =
∑
i,j,k∈[n] Tijkyiyjyk, the problem here asks whether there is a {±1}-monomial matrix A such

that (A,A,A) · T = T ′, that is, whether T ′
i′j′k′ =

∑
ijk aii′ajj′akk′Tijk for all i′, j′, k′ ∈ [n].
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Definition 5.5.2. We define the systems of equations associated to several variations of Equivalence

of Noncommutative Cubic Forms.

1. Given two n× n× n 3-way arrays T, T ′, the system of equations for Equivalence of Noncom-

mutative Cubic Forms is the following system of equations in 2n2 variables. Let A,A′ be n×n
matrices of independent variables aij , a

′
ij , respectively.

(A,A,A) · T = T ′ (A is an equivalence)

AA′ = A′A = Id (A is invertible with A−1 = A′)

2. The system of equations for Monomial Equivalence of Noncommutative Cubic Forms

includes the preceding equations, as well as:

aijaij′ = 0 ∀i∀j ̸= j′ (at most one nonzero per row)

aijai′j = 0 ∀j∀i ̸= i′ (at most one nonzero per column)

3. The system of equations for {±1}-Monomial Equivalence of Noncommutative Cubic Forms

includes all the preceding equations, as well as

aij(aij + 1)(aij − 1) = 0 ∀i, j ∈ [n] (all entries in {0,±1})

4. A noncommutative cubic form
∑
ijk Tijkxixjxk is multilinear if all nonzero terms Tijk have i, j, k

distinct (that is, |{i, j, k}| = 3). The system of equations for {±1}-Monomial Equivalence of

Adjective Noncommutative Cubic Forms is the same as the above, with the restriction that

T and T ′ both satisfy Adjective (e. g., multilinear, nonzero entries in {±1}, etc.).

Theorem 5.5.4. There is a linear-size (1,3)-reduction from Random 3-XOR instances on n variables

with m clauses, where 104n ≤ m ≤
(
n
3

)
/1012, to {±1}-Monomial Equivalence of {±1} Multilin-

ear Noncommutative Cubic Forms, over any ring R of characteristic ̸= 2.

The reduction is always a (1,3)-reduction, but we only show the resulting system of equations for

{±1}-Monomial Equivalence of Noncommutative Cubic Forms is unsatisfiable with probability

1 − o(1) when the 3-XOR instance is chosen randomly with the parameters specified in the theorem.

(It is possible that it is always unsatisfiable when the input 3-XOR instance is, but our proof does not

answer this question.)

Proof idea. We build multilinear noncommutative cubic forms from the 3-XOR instance such that they

are equivalent by a {±1} diagonal matrix iff the 3-XOR instance is satisfiable: an equation xixjxk = ±1
corresponds to setting Tijk = 1, T ′

ijk = ±1 in this construction. The noncommutative cubic forms

are multilinear because the construction of the random 3XOR instance ensures that each XOR clause

contains 3 distinct variables. In fact, the equations for {±1}-diagonal equivalence of the correspondence
noncommutative cubic forms will turn out to be identically the same as the equations for the 3-XOR

instance.

Next, for random instances chosen with the stated parameters, the 3-way arrays T, T ′ are the adja-

cency hyper-matrices of a 3-uniform hypergraph that has no nontrivial automorphisms by [OWWZ14,
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Lemma 6.9]; this is why we needed to restrict the parameter range for m as we did. Because the hyper-

graphs have no nontrivial automorphisms, any monomial equivalence of the corresponding cubic forms

must in fact be diagonal, thus letting us further reduce to {±1}-monomial equivalence.

Proof. We are given a system of 3-XOR equations, which we’ll denote xiℓxjℓxkℓ = sℓ for ℓ = 1, . . . ,m,

where iℓ ≤ jℓ ≤ kℓ ∈ [n] are indices of variables and sℓ ∈ {±1} for all ℓ. It also includes the equations

x2i = 1 for all i = 1, . . . , n.

Step 1: Reduce from random 3-XOR to {±1}-diagonal equivalence of noncommutative

cubic forms. From the above system of equations, we now construct two n×n×n 3-way arrays T, T ′.

For the original equations xiℓxjℓxkℓ = sℓ (ℓ = 1, . . . ,m), and for any aℓ ∈ {±1} of our choice (we may

set all aℓ = 1 if we wish, but this additional flexibility may be useful in other settings) we set

Tiℓ,jℓ,kℓ = aℓ and T
′
iℓ,jℓ,kℓ

= sℓaℓ.

All other entries of T and T ′ are set to zero.

We start with a warmup lemma, to see that this part of the construction already has a desirable

property. By a “{±1} diagonal isomorphism” of two non-commutative cubic forms, we mean a diagonal

matrix X whose diagonal entries are all one of ±1 such that X gives an equivalence between T, T ′.

Lemma 5.5.5. Notation as in the paragraph above. There is a bijection between the solutions to the

3-XOR instance and the {±1} diagonal isomorphisms of the noncommutative cubic forms defined by

T, T ′.

Proof. Suppose x is a solution to the 3-XOR instance. Let X = diag(x1, . . . , xn) be the diagonal matrix

with x on the diagonal. We claim that X is an equivalence between the noncommutative cubic forms

represented by T, T ′, or the same, that (X,X,X) is an isomorphism of the tensors T, T ′. Note that

for any diagonal matrices X,Y, Z, we have ((X,Y, Z) · T )ijk = xiyjzkTijk. In particular, the action of

diagonal matrices does not change which entries of T are zero or nonzero, it merely scales the nonzero

entries. Since T, T ′ have the same support by construction, it is necessary and sufficient to handle the

nonzero entries. By the construction above, there are precisely m such nonzero entries, one for each

cubic equation in the 3-XOR instance. For each ℓ = 1, . . . ,m, we have

((X,X,X) · T )iℓjℓkℓ = xiℓxjℓxkℓTiℓjℓkℓ

= sℓTiℓjℓkℓ

= T ′
iℓjℓkℓ

.

In the other direction, if X = diag(x) is a diagonal matrix whose diagonal entries are in {±1} giving
an isomorphism of the noncommutative cubic forms, then we have

xiℓxjℓxkℓ = TiℓjℓkℓT
′
iℓjℓkℓ

= sℓ

for ℓ = 1, . . . ,m. (Here we have pulled Tiℓ,jℓ,kℓ across the equals sign because every term in the above

equation is ±1.) This concludes the proof of the lemma.

We thus consider the equations corresponding to {±1}-diagonal equivalence of T, T ′: there are n

variables xi (i = 1, . . . , n). Let X denote the diagonal matrix with x on the diagonal. Then the
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equations are

X2 = Id (X,X,X) · T = T ′. (5.12)

By Lemma 5.5.5, we have that the original 3XOR instance is satisfiable iff (Equation (5.12)) is satisfiable.

We claim furthermore that there is (1,3)-reduction from the 3XOR equations to this system of equations.

In fact, as the proof of the preceding lemma shows, they are actually the same set of equations! So there

is nothing more to show.

Step 2: Reduce from {±1}-diagonal equivalence to {±1}-monomial equivalence. We claim

that there is a (1, 3)-reduction from (Equation (5.12)) to the the equations for {±1}-monomial equiva-

lence, see (Definition 5.5.2). The variable substitution is given by

aij = a′ij 7→

0 i ̸= j

xi i = j.

Under this substitution:

� The equivalence condition (A,A,A) · T = T ′ becomes exactly the original equivalence condition

(X,X,X) · T = T ′.

� The invertibility equations AA′ = A′A = Id become XX = Id

� The row and column equations both become 0 = 0, since at least one of the two aij variables

occurring will not be on the diagonal, hence will become 0 after substitution.

� The equation aij(aij + 1)(aij − 1) = 0 becomes x(x2 − 1) for the appropriate variable x ∈ x. This

is derivable from the original equation x2 − 1 by multiplication by x.

Lastly, we show that the system of equations in Definition 5.5.2(3) for {±1}-monomial equivalence

is satisfiable iff the original 3-XOR instance was. Since we showed above that that {±1}-diagonal
equivalence equations are satisfiable iff the original 3-XOR instance was, we show the equisolvability of

(Equation (5.12)) and the equations of Definition 5.5.2(3).

Since diagonal matrices are monomial, any solution to (Equation (5.12)) is a solution to the equations

of Definition 5.5.2(3).

Conversely, suppose the equations of Definition 5.5.2(3) are solvable. Then there is a {±1}-monomial

matrix X given an equivalence between T and T ′; we may write X = DP where D is diagonal and P is a

permutation matrix. Now, as the original 3-XOR instance was chosen uniformly at random, the support

of T (the positions of its nonzero entries) is precisely a uniformly random 3-uniform hypergraph G. As

T, T ′ have the same support by construction, we find that P must be an automorphism of G. But by

[OWWZ14, Lemma 6.9], uniformly random such hypergraphs have no nontrivial automorphisms with

probability 1− o(1). Thus P = I and X must in fact be diagonal, hence a solution to (Equation (5.12)).

Remark 6. We may avoid the heavy hammer of [OWWZ14, Lemma 6.9] by “rigidifying” (in the sense

of removing automorphisms) the system of 3-XOR equations before constructing the 3-way arrays as

follows. The construction corresponds to a standard graph-theoretic gadget for removing automorphisms.

Add new variables z and yij for i = 1, . . . , n and j = 1, . . . , n+ i, as well as the equations xiyijz = 1 for

all i, j, as well as y2ij = 1 and z2 = 1. The downside of this construction is that it quadratically increases
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the number of variables, which would result in a further quadratic loss in our lower bounds on Tensor

Isomorphism.

5.5.2 From {±1}-monomial equivalence to (unrestricted) monomial equiva-

lence

Theorem 5.5.7. There is a linear-size (2, 6)-many-one reduction from

{±1}-Monomial Equivalence of {±1} Multilinear Noncommutative Cubic Forms

to

Monomial Equivalence of {±1} Noncommutative Cubic Forms,

over any ring R of characteristic ̸= 2 such that {±1} are the only square roots of 1.

Furthermore, the reduction r has the property that, given any two {±1} multilinear noncommutative

cubic forms f, f ′, any monomial equivalence between r(f) and r(f ′) must have all its nonzero entries

sixth roots of unity, and this can be derived by a degree-6 PC proof.

Remark 8. We note the difference between a reduction to 6
√
1-Monomial Equivalence and a re-

duction to Monomial Equivalence with the property stated in the theorem. In the former case, the

problem being reduced to only accepts 6
√
1-monomial matrices as solutions (and then the goal of the re-

duction is to introduce gadgets to get this down to {±1}). In the latter case, the problem being reduced to

allows arbitrary monomial matrices as solutions, but the gadgets enforce that, on the reduced instances,

any such monomial matrix must in fact have its nonzero entries being sixth roots of unity.

Proof. Let T be an n × n × n 3-way array representing a multilinear noncommutative cubic form with

all nonzero entries in ±1. We extend T to r(T ) of size 2n× 2n× 2n, by setting

r(T )ijk = Tijk i, j, k ∈ [n]

r(T )i,i,n+i = 1 i ∈ [n]

r(T )n+i,n+i,n+i = 1 i ∈ [n]

and all other entries of r(T ) set to zero.

Many-one reduction. We first show that the map (T, T ′) 7→ (r(T ), r(T ′)) is a many-one reduction.

Suppose T, T ′ are {±1}-monomially equivalent by a matrixX, whereX = DP withD = diag(x1, . . . , xn)

a diagonal matrix with xi ∈ {±1} for all i, and P is a permutation matrix. Let π denote the permutation

corresponding to P ; that is, Pi,π(i) = 1 for all i ∈ [n]. Then we claim the 2n×2nmatrixX⊕P =

[
X 0

0 P

]
is a monomial equivalence of r(T ) with r(T ′). Since X ⊕P is block-diagonal, the upper-left X certainly

sends the upper-left n× n× n sub-array of r(T ) (which is just T ) to that of r(T ′) (which is just T ′). So

the only thing to check is what happens to the positions at indices greater than n.

Let X ′ = X ⊕ P . We have

((X ′, X ′, X ′) · r(T ))i,i,n+i = r(T )π(i),π(i),n+π(i)(X
′
i,π(i))

2X ′
n+i,n+π(i)

= r(T )π(i),π(i),n+π(i)(Xi,π(i))
2Pi,π(i)

= 1 = r(T ′)i,i,n+i.
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Similarly, we have:

((X ′, X ′, X ′) · r(T ))n+i,n+i,n+i = r(T )n+π(i),n+π(i),n+π(i)P
3
i,π(i) = 1 = r(T ′)n+i,n+i,n+i

Because X ′ is monomial, it is easy to see that the zeros of r(T ) are sent to zeros of r(T ′). Thus X ′ is a

monomial equivalence of r(T ) with r(T ′).

Conversely, suppose r(T ) and r(T ′) are equivalent by a monomial matrix Y = DP , with D diagonal

and P a permutation matrix corresponding to permutation π ∈ S2n. We will show that this implies that T

and T ′ are equivalent by a {±1} monomial matrix. Since T is multilinear, we have Ti,i,i = r(T )i,i,i = 0.

Since r(T )n+j,n+j,n+j = 1 for all j ∈ [n], the permutation π cannot send any element > n to any

element ≤ n. Thus P is block-diagonal, say P =

[
P1 0n

0n P2

]
. Let π1 (resp., π2) be the permutation of [n]

corresponding to P1 (resp., P2).

Next, we claim P1 = P2. By considering the positions at indices (i, i, n+ i), we have:

((P, P, P ) · r(T ))i,i,n+i = r(T )π1(i),π1(i),n+π2(i)

But the latter is equal to the corresponding position in r(T ′), which is 1 iff π1(i) = π2(i). Since this

holds for all i, we have π1 = π2, and thus P1 = P2.

Finally, we do not claim that the diagonal entries yi themselves must be in ±1. Rather, we will show
that they are all sixth roots of unity. Then cubing them will yield a new n × n matrix D′ all of whose

diagonal entries are ±1 such that D′P1 is a ±1-monomial equivalence of T with T ′.

From the positions (n+ i, n+ i, n+ i), we have

1 = r(T ′)n+π1(i),n+π1(i),n+π1(i)

= ((Y, Y, Y ) · r(T ))n+i,n+i,n+i
= y3n+i.

But then, considering the positions (i, i, n + i), we similarly get that y2i yn+i = 1. Cubing the latter

equation, we get y6i y
3
n+i = 1. But as we already have y3n+i = 1, this gives us y6i = 1 by a degree-6 PC

proof, as claimed in the “furthermore.”

Now we use the fact that T, T ′ have all entries in {0,±1}. Thus, each nonzero entry of r(T ) in the

front-upper-left block (corresponding to T ) gives us an equation of the form yiyjykTijk = T ′
π1(i),π1(j),π1(k)

.

Since the nonzero entries of T, T ′ are ±1, this is thus an equation of the form yiyjyk = ±1. If we cube

both sides of this equation, we get y3i y
3
j y

3
k = ±1. But since we established above that y6i = 1 for all i,

we have that y3i ∈ {±1} for all i. Thus, defining xi := y3i for i = 1, . . . , n, we have xi ∈ {±1} and letting

D′ = diag(x1, . . . , xn), we have D′P1 is a {±1}-monomial equivalence from T to T ′.

Low-degree PC reduction. We claim that the system of equations for {±1} monomial equivalence

of T and T ′ is (2,6)-reducible to the system of equations for monomial equivalence of r(T ) and r(T ′). Let

X,X ′ be the n×n variable matrices for the equations for for {±1}-monomial equivalence of the original

tensors T and T ′, and let Y, Y ′ be the 2n × 2n matrices for the equations for monomial equivalence of
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r(T ), r(T ′). The PC reduction is defined by the following substitution:

yij 7→ xij i, j ∈ [n]

yn+i,n+j 7→ x2ij i, j ∈ [n]

yi,n+j , yn+i,j 7→ 0 i, j ∈ [n],

and similarly for the y′ variables being substituted by the x′ variables. That is, we have

Y 7→

[
X 0n

0n X ◦X

]
Y ′ 7→

[
X ′ 0n

0n X ′ ◦X ′

]
,

where X ◦X denotes the entrywise (aka Hadamard) product with itself, that is (X ◦X)ij = x2ij . The

reason to use X ◦ X here is that if X is {±1}-valued and monomial, then X ◦ X is the permutation

matrix with the same support as X; that is, this substitution is essentially the same as the one used in

the proof above for the many-one reduction.

Now, taking advantage of the block structure in the substitution above and the block structure in

r(T ), r(T ′), let us see what our equations become after substitution, and how to derive them from the

equations for T, T ′. This will complete the proof.

1. The set of equations (Y, Y, Y ) · r(T ) = r(T ′) becomes the set of equations (X,X,X) · T = T ′ (by

examining the front-upper-left corner), as well as the equations

∑
i,j,k∈[2n]

yii′yjj′yk,k′r(T )ijk =

1 i′ = j′ = k′ − n or i′ = j′ = k′ > n

0 otherwise.

We deal with the three cases (i′ = j′ = k′ − n, i′ = j′ = k′ > n, or neither of these) separately.

(a) Suppose i′ = j′ = k′ − n. In this case, yii′ is only nonzero for i ∈ [n], and similarly for yjj′ ,

while ykk′ is only nonzero for k > n. Thus the substituted equation becomes∑
i,j,k∈[n]

yii′yji′yn+k,n+i′r(T )i,j,n+k =
∑

i,j,k∈[n]

xii′xji′x
2
k,i′r(T )i,j,n+k = 1

Now, the only positions in r(T ) of the form (i, j, n+ k) with i, j, k ∈ [n] that are nonzero are

those of the form (i, i, n+ i), so the preceding equation simplifies further to∑
i∈[n]

xii′xii′x
2
ii′ = 1

i.e., ∑
i∈[n]

x4ii′ = 1. (5.13)

We will now show how to derive (Equation (5.13)) from the equations for {±1}-monomial

equivalence of for T, T ′ (Crefdef:equations for equivalence). From the {0,±1} equation in

Definition 5.5.2(3), if we multiply by xii′ , we get

x2ii′(x
2
ii′ − 1), (5.14)
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i.e., the usual Boolean equation but for x2ii′ rather than xii′ itself. Next, from xii′xi′′i′ with

i ̸= i′′, we may square this to get

x2ii′x
2
i′′i′ . (5.15)

and we similarly get (x′i′i)
2(x′i′i′′)

2 when i ̸= i′′.

Lastly, from the equation XX ′ = Id and multiplying by
∑
i∈[n] xii′x

′
i′i + 1, we obtain

(
∑
i∈[n]

xii′x
′
i′i+1)(

∑
i∈[n]

xii′x
′
i′i−1) =

∑
i∈[n]

x2ii′x
2
i′i+

∑
i,j∈[n]i̸=j

xii′x
′
i′ixji′x

′
i′j−1 =

∑
i∈[n]

x2ii′x
2
i′i−1,

(5.16)

where we observed that from the axioms that xii′xji′ = 0 for i ̸= j we may derive in degree

4 that the middle term
∑
i,j∈[n]i ̸=j xii′xji′x

′
i′ix

′
i′j = 0.

Now, (Equation (5.14))–(Equation (5.16)) are a degree-2 substitution instance of the equations

in Lemma 5.5.9 with c = 2, d = 1. Thus, by Lemma 5.5.9, we can derive (Equation (5.13))

from these in degree 6.

(b) Suppose i′ = j′ = k′ > n. In this case, the substitution makes all of yii′ , yjj′ , ykk′ equal to

zero unless i, j, k > n. Thus we may write the equation, after substitution, as∑
i,j,k∈[n]

yn+i,i′yn+j,iyn+k,ir(T )n+i,n+j,n+k =
∑

i,j,k∈[n]

x2i,i′−nx
2
j,i′−nx

2
k,i′−nr(T )n+i,n+j,n+k

= r(T ′)i′,i′,i′ = 1.

However, because the only entries r(T )n+i,n+j,n+k that are nonzero are those in which i =

j = k, this simplifies further to: ∑
i∈[n]

x6i,i′−n = 1.

This is a degree-2 substitution instance of Lemma 5.5.9 with c = 3, d = 1, so it can be derived

in degree 6 from the equations derived in part (a).

(c) Suppose neither of the previous two cases hold. The derivation will depend on which of

i′, j′, k′ lie in [n] versus {n+ 1, . . . , 2n}.

i. When all are in [n], we are in the front-upper-left corner of the tensor, and we exactly

get the equations (X,X,X) · T = T ′.

ii. When all three of i′, j′, k′ are > n, the only nonzero entries of r(T ) are of the form

r(T )n+i,n+i,n+i, so the equation becomes∑
i∈[n]

x2i,i′−nx
2
i,j′−nx

2
i,k′−n = 0.

Since we have assumed |{i′, j′, k′}| > 1, there are at least two distinct indices among

them, and thus each term in this sum is a multiple of one of our xijxij′ axioms with

j ̸= j′.

iii. Next, suppose instead that i′, j′ ∈ [n], k′ > n. In this case, the only nonzero entries of Y
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after substitution are those with i, j ∈ [n], k > n. Thus the equation becomes∑
i,j,k∈[n]

xii′xjj′x
2
k,k′−nr(T )i,j,n+k = 0

However, the only nonzero entries of r(T ) in which the first two coordinates are ≤ n and

the third is n+ k are those of the form i = j = k, so the preceding becomes∑
i∈[n]

xii′xij′x
2
ik′−n = 0.

Since we do not have i′ = j′ = k′ − n (as that was covered in a previous case), at least

two of the column indices differ, and thus each term of this sum is divisible by one of the

axioms of the form xijxij′ with j ̸= j′.

iv. In all other cases, the corresponding entries of r(T ) are all zero, so the equation reduces

to 0 = 0.

2. The equations Y Y ′ = Y ′Y = Id become XX ′ = X ′X = Id and (X ◦X)(X ′ ◦X ′) = (X ′ ◦X ′)(X ◦
X) = Id. The first of these is one of our original equations, so it remains to derive the second.

We show how to derive (X ◦X)(X ′ ◦X ′) = Id; the other is similar. For clarity, let us write it out

using indices:

∑
j

x2ij(x
′
jk)

2 − δik = 0 ∀i, k ∈ [n] (5.17)

Starting from the equation
∑
j xijx

′
jk − δik = 0, we multiply by

∑
j xijx

′
jk, to get∑

j

x2ij(x
′
jk)

2 +
∑
j ̸=j′

xijx
′
jkxij′xj′k − δik

∑
j

xijx
′
jk.

Note that every term in the middle summation here is divisible by some xijxij′ with j ̸= j′, which

is one of our equations, so we may cancel off those terms using those equations in degree 4. If

i ̸= k, then we are done. If i = k, then we add in our equation
∑
j xijx

′
jk − 1 to get Item 2.

3. The equations yijyij′ = 0 for j ̸= j′ become 0 after substitution unless i, j, j′ are either all in [n] or

all in {n+ 1, . . . , 2n}. In the former case, the substituted equation is xijxij′ = 0, which is already

one of the original equations. In the latter case, the equation becomes x2ijx
2
ij′ = 0; but this is easily

derivable from xijxij′ by multiplying it by itself (degree 4). The equations saying there is at most

one entry per column of Y are derived from those for X similarly.

This covers all the equations for monomial equivalence of r(T ), r(T ′), and thus we are done.

Lemma 5.5.9. For any integers d ≥ 1, c ≥ 1, from the equations

xi(x
d
i − 1)(∀i) xixj(∀i ̸= j)

n∑
i=1

xiyi − 1
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there is a degree-max{d+ 2, cd} PC derivation (over any ring R) of∑
i∈[n]

xcdi − 1

Although in the proof above we only used the d = 1 and c = 2, 3, we will later have occasion to use

this lemma with larger values of d and c, which is why we phrase it in this level of generality.

Proof. First we show it for c = 1, then derive the general case from that.

Let S =
∑
i∈[n] x

d
i , D =

∑
i∈[n] xiyi. Our first goal is to derive S − 1. For each i = 1, . . . , n, we can

derive xiyi(S − 1) in degree d+ 2 as follows:

xiyi(S − 1) = xd+1
i yi + yi

∑
j ̸=i

xix
d
j − xiyi

= yi(x
d+1
i − xi) + yi

∑
j ̸=i

xix
d
j = xi(x

d
i − 1)yi + yi

∑
j ̸=i

xixjx
d−1
j ,

where we have underlined the use of the axioms.

Summing up the preceding for all i, we derive DS − D in degree d + 2. Finally, we multiply the

starting equation D − 1 by S to get SD − S, also in degree d+ 2. Then we have

(DS −D)− (SD − S) + (D − 1) = S − 1 =
∑
i

xdi − 1,

as desired.

For c > 1, we then sum the preceding with
∑
i∈[n](x

(c−1)d−1
i + x

(c−2)d−1
i + · · ·+ xd−1

i )(xd+1
i − xi) =∑

i∈[n] x
cd
i − xdi , which has degree cd.

5.5.3 From monomial equivalence to general equivalence of noncommutative

cubic forms

Theorem 5.5.10. There is a quadratic-size many-one reduction from

Monomial Equivalence of Noncommutative Cubic Forms

to

Equivalence of Noncommutative Cubic Forms,

over any field.

If furthermore the input cubic forms f, f ′ have the property that any monomial equivalence between

them must have its nonzero scalars being d-th roots of unity, and the latter can be derived by PC in

degree d+ 1, then the reduction above is a (d, 2d)-many-one reduction.

Proof. Let f be a noncommutative cubic form in variables u1, . . . , un. Then r(f) will be a new non-

commutative cubic form, in n+ 2n(n+ 1) variables u1, . . . , un, v11, v12, . . . , vn,n+1, w11, w12, . . . , wn,n+1,

which is r(f) = f +
∑
i∈[n],j∈[n+1] uivijwij . In terms of the underlying three-way arrays, if we have

f =
∑
i,j,k∈[n] Tijkuiujuk, then we use r(T ) to denote the array underlying r(f), which can be described

as follows. The 3-way array r(T ) will have size N × N × N where N = n + 2n(n + 1). Let Ti denote
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the i-th frontal slice of Ti, that is, Ti is the matrix such that (Ti)jk = Tijk. For i = 1, . . . , n, the frontal

slices of r(T ) will be defined as:

r(T )i =



Ti

0n+1 0n+1

0n+1 0n+1

. . .
. . .

0n+1 In+1

. . .
. . .

0n+1 0n+1

0n+1 0n+1

0n+1 0n+1

. . .
. . .

0n+1 0n+1

. . .
. . .

0n+1 0n+1



,

where the In+1 occurs in the i-th (n+ 1)× (n+ 1) block of its region. That is, the lower-right 2n(n+

1) × 2n(n + 1) sub-matrix is the Kronecker product Ei,n+i ⊗ In+1, where Ei,n+i is the 2n × 2n matrix

with a 1 in position (i, n + i) and zeros everywhere else. For the slices i = n + 1, . . . , N we will have

r(T )i = 0.

Our main claim is that the map (T, T ′) 7→ (r(T ), r(T )′) is the reduction claimed in the theorem.

Many-one reduction. Suppose X · f = f ′ with X monomial. Write X = PD with D diagonal and

P a permutation matrix corresponding to the permutation π ∈ Sn. Then we claim that

Y = X ⊕ ((PD−1)⊗ In+1)⊕ (P ⊗ In+1)

is an equivalence between r(f) and r(f ′), where here we assume our variables are ordered as above. For

we have

Y · r(f) =
∑

ijk∈[n]

Tijk(Y ui)(Y uj)(Y uk) +
∑

i∈[n],j∈[n+1]

(Y ui)(Y vij)(Y wij)

=
∑

ijk∈[n]

Tijk(Xui)(Xuj)(Xuk) +
∑

i∈[n],j∈[n+1]

(Xui)(PD
−1vij)(Pwij)

= X · f +
∑

i∈[n],j∈[n+1]

Diiuπ(i)(D
−1
ii vπ(i),j)wπ(i),j

= f ′ +
∑

i∈[n],j∈[n+1]

uπ(i)vπ(i),jwπ(i),j

= r(f ′).

The final inequality here follows from the fact that π is a permutation, so the final sum includes all

terms of the form uivijwij , just listed in a different order than originally.
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Conversely, suppose Y ·r(f) = r(f ′) for an arbitrary invertibleN×N matrix Y . To find an equivalence

between f and f ′, here we find it more useful to take the viewpoint of the 3-way arrays r(T ) and r(T ′)

corresponding to r(f) and r(f ′), respectively.

The way Y acts on the 3-way array r(T ) is to first take linear combinations of the frontal slices,

say by replacing the i-th slice with
∑
j∈[N ] Yijr(T )j (corresponding to the action of Y on the third

variable in each monomial), and then to take each slice S and replace it by Y SY t (the left multiplication

corresponds to the action on the first variable in each monomial, and the right multiplication corresponds

to the action on the second variable in each monomial). As this latter transformation preserves the rank

of each slice, we will use the ranks of linear combinations of the slices to reason about properties of Y .

Claim 1: Y is a block-diagonal sum of an n× n matrix X and a 2n(n+ 1)× 2n(n+ 1) matrix.

Proof of claim 1. First we show that Y is block-triangular. To see this, note that since the last 2n(n+1)

slices are zero, the action of Y by taking linear combinations of slices cannot send any of the first n

slices to the last 2n(n + 1) slices. That is, Y has the form Y =

[
X Z

0 W

]
where X is n × n and W is

2n(n+ 1)× 2n(n+ 1). It remains to show that Z must be zero.

Since Y is block-diagonal and invertible, we have that X and W are each invertible.

Let R be the tensor gotten from r(T ) by having Y act by taking linear combinations of the slices.

That is, the i-th frontal slices of R is Ri =
∑
j∈[N ] Yijr(T )j . Since each slice r(T )i has its support in

the upper-left n× n sub-matrix and the middle-right n(n+ 1)× n(n+ 1) sub-matrix, so does each slice

Ri. Write

Ri =

R
(1,1)
i 0 0

0 0 R
(2,2)
i

0 0n(n+1) 0

 ,
where R

(1,1)
i is n× n and R

(2,2)
i is n(n+ 1)× n(n+ 1).

Now consider the action of Y that sends Ri to Y RiY
t = r(T ′)i. We now break up Y further into

blocks commensurate with how we wrote Ri above; write

Y =

X A B

0 C D

0 E F

 Z =
[
A B

]
W =

[
C D

E F

]
,

where A,B are n× n(n+ 1), and C,D,E, F are each n(n+ 1)× n(n+ 1). Then we have:

Y RiY
t =

X A B

0 C D

0 E F


R

(1,1)
i 0 0

0 0 R
(2,2)
i

0 0n(n+1) 0


X

t 0 0

At Ct Et

Bt Dt F t



=

XR
(1,1)
i 0 AR

(2,2)
i

0 0 CR
(2,2)
i

0 0 ER
(2,2)
i


X

t 0 0

At Ct Et

Bt Dt F t



=

XR
(1,1)
i Xt +AR

(2,2)
i Bt AR

(2,2)
i Dt AR

(2,2)
i F t

CR
(2,2)
i Bt ∗ ∗

ER
(2,2)
i Bt ∗ ∗

 ,
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where we have put ∗’s in positions we won’t need in the argument.

Next, since each of the first n slices of r(T ′) must be of this form, and those slices have zeros in each

block except the (1, 1) and (2, 3) blocks, by considering the blocks (1, 2), (1, 3), (2, 1), (3, 1) we must have

AR
(2,2)
i Dt = 0 AR

(2,2)
i F t = 0 CR

(2,2)
i Bt = 0 ER

(2,2)
i Bt = 0.

For reasons that will become clear below, we combine these into the two equations

AR
(2,2)
i

[
Dt F t

]
= 0

[
C

E

]
R

(2,2)
i Bt = 0.

Note that the n(n + 1) × 2n(n + 1) matrices
[
Dt F t

]
and

[
Ct Et

]
must both be full rank, since

otherwise W =

[
C D

E F

]
would not be invertible.

The sum of the (2,3) blocks (of size n(n+ 1)× n(n+ 1)) of the first n slices of r(T ) is precisely the

identity matrix In(n+1). Thus, the linear span of these blocks contains an invertible matrix in it. Since

Y is invertible, that linear span is the same as the linear span of the blocks {R(2,2)
i : i ∈ [n]}. Thus

the latter contains a full-rank matrix, say
∑n
i=1 αiR

(2,2)
i . But since we have AR

(2,2)
i

[
Dt F t

]
= 0 for

all i, we may left multiply by A and right-multiply by
[
Dt F t

]
to get A

(∑n
i=1 αiR

(2,2
i

) [
Dt F t

]
=∑n

i=1 αiAR
(2,2)
i

[
Dt F t

]
= 0. But now we have that

∑
αiR

(2,2)
i is invertible, and

[
Dt F t

]
has full

rank n(n+ 1), so their product also has full rank n(n+ 1). But then we have that A times a full rank

matrix is equal to 0, hence A must be zero. The same argument, mutatis mutandis, using the equation[
C

E

]
R

(2,2)
i Bt = 0, gives us that B = 0. Hence Y is block-diagonal as claimed.

Next, we use properties of the ranks of the slices coming from the In+1 gadgets to show that X must

in fact be monomial.

Claim 2: Y =

[
X 0

0 W

]
where X is monomial.

Proof. In both r(T ) and r(T ′), any linear combination consisting of k of the first n slices (with nonzero

coefficients) has rank in the range [k(n + 1), k(n + 1) + n], for any k = 0, . . . , n. The lower bound can

be seen by noting that any such linear combination is block-diagonal with k copies of In+1 on the block

diagonal of the (2, 3) block. The upper bound comes from the fact that these are the only nonzero blocks

in the lower-right 2n(n+1)× 2n(n+1) sub-matrix, and the only other nonzero entries are in the n× n
upper-left sub-matrix, which has rank at most n because of its size.

Using notation from the proof of the preceding claim, since Y RiY
t = r(T ′)i, and the latter has rank

in the range [n+ 1, 2n+ 1], Ri must also have rank in the same range. But this is only possible if Ri is

a linear combination of precisely one of the first n slices of r(T ). Thus, X is monomial.

From claim 2, we thus have that there is a permutation π ∈ Sn and nonzero scalars d1, . . . , dn such

that Ri = dir(T )π(i) for all i = 1, . . . , n, where X = DP with D the diagonal matrix with diagonal

entries di and P the permutation matrix corresponding to π. Finally, in the proof of claim 1, we saw

that the upper-left block of Y RiY
t was XR

(1,1)
i Xt + AR

(2,2)
i Bt, and then learned that A = B = 0.
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Putting these together, and recalling that the upper-left block of r(T )i is Ti, we thus get

(DP )diTπ(i)(DP )
t = T ′

i

for all i. In other words, X is a monomial equivalence from T to T ′ (hence, from f to f ′). This completes

the proof that the construction gives a many-one reduction.

Low-degree PC reduction. To prove the “furthermore”, suppose that the pair of cubic forms f, f ′

has the property that any monomial equivalence between them must have its nonzero entries being d-th

roots of unity, for some d ≥ 1, and that this can be derived—more specifically, the equations yd+1
ij − yij

and similarly for y′ij—in degree d+ 1.

Let Y, Y ′ be the variable matrices for (general) equivalence of r(f), r(f ′); let X,X ′ be the variable

matrices for monomial equivalence of f, f ′. Consider the substitution

Y 7→

X 0

0 X◦(d−1) ⊗ In+1

0 0 X◦d ⊗ In+1

 Y ′ 7→

X
′ 0

0 (X ′)◦(d−1) ⊗ In−1

0 0 (X ′)◦d ⊗ In+1

 ,
(5.18)

where X◦(d−1) denotes the (d− 1)-fold Hadamard product X ◦X ◦ · · · ◦X, namely, (X◦(d−1))ij = xd−1
ij .

We will show that the equations for equivalence of r(f), r(f ′), after this substitution, can be derived

from the equations for monomial equivalence of f, f ′ in low-degree PC.

(Note that the substitutions above correspond precisely to the forward direction of the many-one

reduction, in which X ⊕ (D−1P ⊗ In+1) ⊕ (P ⊗ In+1) served as an equivalence. For, once we have

xd+1
ij − xij , we have X◦(d−1) = Dd−1P = D−1P , and X◦d = DdP = P .)

Recall that these equations are Y · r(f) = r(f ′) and Y Y ′ = Y ′Y = Id. The latter equations are

easier to handle so we begin with those. They become X◦c(X ′)◦c = (X ′)◦cX◦c = Id for c ∈ {1, d− 1, d}.
For c = 1, these are some of our starting equations. For c > 1, this is similar to the argument in

Theorem 5.5.7, iterated, resulting in a proof of degree 2c for any c—in this case, 2d.

Now to the equation(s) Y · r(f) = r(f ′). After substitution, these become∑
i,j,k∈[n]

Tijk(Xui)(Xuj)(Xuk) +
∑

i∈[n],j∈[n+1]

(Xui)(X
◦(d−1)vij)(X

◦dwij) =
∑
ijk

T ′
ijkuiujuk +

∑
ij

uivijwij .

(5.19)

Focusing on the first summations on both sides of the equation, we see these are precisely the equations

X · f = f ′. After subtracting these off, we now deal with the remaining terms.

We have∑
ij

uivijwij =
∑

i∈[n],j∈[n+1]

(Xui)(X
◦(d−1)vij)(X

◦dwij)

=
∑

i∈[n],j∈[n+1]

∑
k∈[n]

xk,iuk

∑
ℓ∈[n]

xd−1
ℓ,i vℓ,j

∑
h∈[n]

xdh,iwh,j


=

∑
k,ℓ∈[n],j∈[n+1]

ukvℓ,jwℓ,j

∑
i∈[n]

xk,ix
d−1
ℓ,i x

d
ℓ,i

+
∑

k,ℓ,h∈[n],j∈[n+1]
ℓ ̸=h

ukvℓ,jwℓ′,j

∑
i∈[n]

xk,ix
d−1
ℓ,i x

d
h,i


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This becomes the system of equations

δk,ℓ =
∑
i∈[n] xk,ix

d−1
ℓ,i x

d
ℓ,i (∀k, ℓ ∈ [n])

0 =
∑
i∈[n] xk,ix

d−1
ℓ,i x

d
h,i (∀k, ℓ, h ∈ [n], ℓ ̸= h).

(Note that technically we should quantify over all j ∈ [n+ 1], but j plays no role in these equations—it

just serves to repeat the same equation n + 1 times. This corresponds to the fact that the lower-right

part of our matrices have the form ∗ ⊗ In+1.)

When k ̸= ℓ, every term in the first equation is a degree-2d multiple of the monomial axiom xk,ixℓ,i.

Similarly, every term in the second set of equations is a degree-2d multiple of the monomial axiom

xℓ,ixh,i. Thus all that remains is the first equation when k = ℓ, namely, 1 =
∑
i∈[n] xk,ix

d−1
k,i x

d
k,i. This

is derived in Lemma 5.5.9, with c = 2 in degree 2d (since d > 1, we have max{2d, d + 2} = 2d). This

completes the proof that we have a (d, 2d)-reduction.

Remark 11. There is a slightly simpler and smaller many-one reduction, namely f 7→ f+
∑
i∈[n],j∈[n+1] uiv

2
ij.

However, in using that reduction, the witness for the forward direction becomes X ⊕ (D−1/2P ⊗ In+1).

This square root introduces a square into the equations that made it difficult to show that it was also a

PC reduction. The reduction above fixes this issue.

5.5.4 From cubic forms to tensors

Our reductions here are those from Futorny–Grochow–Sergeichuk [FGS19, Cor. 3.4 and Thm. 2.1]. The

many-one property follows from the results there. We prove that each of these reductions is in fact also a

low-degree PC reduction between the corresponding polynomial solvability problems. They reduce first

to a problem we call Block Tensor Isomorphism, and then from there to Tensor Isomorphism, so

we begin by introducing the former problem and its associated equations.

Definition 5.5.3 (see Futorny–Grochow–Sergeichuk [FGS19]). A block n×m×p 3-way array is a 3-way

array together with a partition of its index sets {1, . . . , n} = {1, . . . , n1}⊔{n1+1, n1+2, . . . , n1+n2}⊔
· · · ⊔ {

∑N−1
i=1 ni + 1, . . . , n}, and similarly for the other two directions. Two block 3-way arrays are said

to be conformally partitioned if they have the same size and the same partitions of their index sets. Two

conformally partitioned 3-way arrays T, T ′ with block sizes as above are block-isomorphic (called “block-

equivalent” in [FGS19]) if there exist invertible matrices S11, . . . , S1,N , S21, . . . , S2M , S31, . . . , S3P , where

S1,I is of size nI ×nI , S2,J is of size mJ ×mJ , and S2,K is of size pK × pK , such that the block-diagonal

matrices give an isomorphism of tensors:

(S11 ⊕ S12 ⊕ · · · ⊕ S1N , S21 ⊕ · · · ⊕ S2M , S31 ⊕ · · · ⊕ S3P ) · T = T ′.

Given two block 3-way arrays T, T ′ as above, the equations for Block Tensor Isomorphism are

as folllows. There are 2(
∑
I∈[N ] ni +

∑
J∈[M ]mJ +

∑
K∈[P ] pK) variables arranged into 2(N +M + P )

square matrices XI , X
′
I (of size nI ×nI), YJ , Y ′

J (of size mJ ×mJ), and ZK , Z
′
K (of size pK × pK). Then

the equations are:

(X1 ⊕ · · · ⊕XN , Y1 ⊕ · · · ⊕ YM , Z1 ⊕ · · · ⊕ ZP ) · T = T ′

XIX
′
I = X ′

IXI = Id(∀I ∈ [N ]) YJY
′
J = Y ′

JYJ = Id(∀J ∈ [M ]) ZKZ
′
K = Z ′

KZK = Id(∀K ∈ [P ])

Lemma 5.5.12. The many-one reduction from
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Equivalence of Noncommutative Cubic Forms

to

Block Tensor Isomorphism

in [FGS19, Cor. 3.4] is in fact a linear-size (1,3)-many-one reduction.

Proof. Given a noncommutative cubic form f in n variables, f =
∑
i,j,k∈[n] Tijkuiujuk, we recall the

block tensor r(T ) from [FGS19, Cor. 3.4]. It is partitioned into 2 × 3 × 3 many blocks, with the rows

being partitioned into n, 1, the columns into n, n, 1, and the depths also into n, n, 1; thus its total size is

(n+ 1)× (2n+ 1)× (2n+ 1). Let Eijk denote the tensor of this size whose only nonzero entry is a 1 in

position (i, j, k). Then we define

r(T ) = T +
∑
i∈[n]

(Ei,n+i,2n+1 + Ei,2n+1,n+i + En+1,i,n+i + En+1,n+i,i) + En+1,2n+1,2n+1

If you wanted to think of this as part of the tensor corresponding to a cubic form, that cubic form would

have n+ 1 new variables v1, . . . , vn, z, and the form would be:

r(f) := f +
∑
i∈[n]

(uiviz + uizvi + zuivi + zviui) + z3.

(This doesn’t quite line up with the above description of a tensor, as the tensor corresponding to r(f)

would necessarily have all 3 side lengths the same, 2n + 1. However, there are n of the 2n + 1 rows in

that tensor that are entirely zero, namely, the rows corresponding to those monomials that begin with

a vi.)

The equations for block isomorphism of r(T ) and r(T ′) have the following variable matrices X,X ′

are n× n, x, x′ are 1× 1, Y1, Y
′
1 , Y2, Y

′
2 are n× n, y, y′ are 1× 1, Z1, Z

′
1, Z2, Z

′
2 are n× n, and z, z′ are

1× 1. Let U,U ′ be the n× n variable matrices for the equations for equivalence of the noncommutative

cubic forms f, f ′. We consider the following substitution:

X,Y1, Z1, Y
′
2 , Z

′
2 7→ U X ′, Y ′

1 , Z
′
1, Y2, Z2 7→ U ′ x, x′, y, y′, z, z′ 7→ 1.

Under this substitution, the equations for block isomorphism of r(T ), r(T ′) become

(U,U, U) · T +
∑
i∈[n]

((U,U ′, 1) · Ei,n+i,2n+1 + (U, 1, U ′) · Ei,2n+1,n+i

+(1, U, U ′) · En+1,i,n+i + (1, U ′, U) · En+1,n+i,i + (1, 1, 1) · En+1,2n+1,2n+1)

=T ′ +
∑
i∈[n]

(Ei,n+i,2n+1 + Ei,2n+1,n+i + En+1,i,n+i + En+1,n+i,i) + En+1,2n+1,2n+1

Now, because each summand inside the big sum corresponds to an identity matrix in a block (e.g.∑
i∈[n]Ei,n+i,2n+1 is an identity matrix in rows {1, . . . , n}, columns {n+1, . . . , 2n}, and depth 2n+1), the

above equations give us many instances of UU ′ = Id and U ′U = Id, which is one of our starting equations.

We also get the equation 1 = 1, and lastly, (U,U, U) · T = T ′, which is another one of our starting

equations. Thus the equations we get here are in fact precisely the same as the equations we started

with. As these are cubic equations and the substitutions were linear, it is a (1,3)-PC reduction.
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Lemma 5.5.13. When the number of blocks is O(1), the many-one reduction from

Block Tensor Isomorphism

to

Tensor Isomorphism

in [FGS19, Thm. 2.1] is in fact a quadratic-size (1,3)-many-one reduction.

Note that the output of the reduction of Lemma 5.5.12 has 2× 3× 3 many blocks, so the restriction

to O(1) many blocks in Lemma 5.5.13 presents no obstacle to our goal.

Proof. The key is to show how to effectively remove the partition in one of the three directions; then

that reduction can be applied three times in the three separate directions. Let T, T ′ be block tensors

of size n ×m × p, with N ×M × P many blocks. The construction of [FGS19, Lem. 2.2] shows how

to construct from this a block tensor of quadratic size with N ×M × 1 many blocks. We recall the

construction here and show that it is a (1,3)-PC reduction.

Let p1, . . . , pP denote the sizes of the parts of the partition in the third direction. Let r = min{n,m}+
1—this will govern the rank of the identity matrix gadgets we add. Let s =

∑P
K=1 2

K−1r and t =∑P
K=1 2

K−1rpK . Then the output tensor will have size (n+s)×(m+ t)×p. (Note that, since P = O(1),

we have that s is linearly bounded in n,m and t is quadratic as a function of n,m, p.) Let T1, . . . , Tp

be the frontal slices of T . The i-th slice of r(T ) will be as follows. Suppose i is in the K-th block,

and write i = i0 +
∑K
k=1 pk with 1 ≤ i0 ≤ pK+1. Write the slices Ti as Ti =

[
Ai Bi

Ci Di

]
, where Ai is

n1 ×m1—representing the first part of the partition of T into rows and columns, and Di represents all

the other parts. Then we construct:

r(T )i :=



0 · · · 0

. . .

0 · · · I2K−1r · · · 0

. . .

0 · · · 0

Ai Bi

Ci Di


,

where the I2K−1r is in the i0-th position within the K-th block-row and block-column as indicated by

the dashed lines. Here the dashed lines do not represent additional parts of the partition, they are just

for visual clarity. The solid lines indicate the first part of the new partition into rows and columns. The

rows of Ci and Di are partitioned into blocks the same as they were originally in Ti, and the columns of

Bi and Di are partitioned into parts in the same way as they were originally in Ti. That is, the entire

big gadget in the upper-left gets prepended to the first parts of the row and column partitions. This is

the many-one reduction.

Let X1, . . . , XN , Y1, . . . , YM , and Z be variable matrices (with associated primes matrices X ′
1, etc.),

with sizes as follows:

� X1 has size (s+ n1)× (s+ n1)

� XI for I ≥ 2 has size nI × nI
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� Y1 has size (t+m1)× (t+m1)

� YJ for J ≥ 2 has size mJ ×mJ

� Z has size p× p.

We start from the equations for Block Isomorphism (but now where there is only one block in the

third direction), namely

XIX
′
I = X ′

IXI = Id YJY
′
J = Y ′

JYJ = Id ZZ ′ = Z ′Z = Id

and

(X1 ⊕ · · · ⊕XN , Y1 ⊕ · · · ⊕ YN , Z) · r(T ) = r(T ′).

We make the following substitution (with the same substitutions, mutatis mutandis, for the primed

variables):

� X1 7→ Is ⊕ X̂1, where X̂1 is a matrix of variables of size n1 × n1.

� For I ≥ 2, XI maps to itself.

� Y1 7→ It ⊕ Ŷ1, where Ŷ1 is a matrix of variables of size m1 ×m1.

� For J ≥ 2, YJ maps to itself.

� Z maps to a block matrix Z1⊕ · · ·⊕ZP , where for each K ∈ [P ], we have ZK is a pK × pK matrix

of variables.

Under these substitutions, the equations for Block Isomorphism of r(T ), r(T ′) become precisely the

original equations for Block Isomorphism of T, T ′, together with equations of the form IsEiIt = Ei,

where Ei is the s× t gadget matrix in the upper-left in the i-th slice. Thus we get a (1, 3)-reduction.

Finally, this is then repeated in the other two directions to reduce the number of blocks in all three

directions to one, thus giving an instance of Tensor Isomorphism.

5.5.5 Putting it all together

Finally, we combine all the above to prove Theorem 5.5.2.

Proof of Theorem 5.5.2. Let m = cn with c ≥ 104. By Theorem 5.5.1, random 3XOR instances with

clause density c require PC degree Ω(n/c2) = Ω(n) (in our case) to refute. The number of instances that

the random distribution assigns nonzero probability is
(
2(n3)
m

)
∼
(
n3

cn

)
≥ n3cn/(cn)cn = c2cn logn−cn ≥

cΩ(n logn).

By Theorem 5.5.4, there is a (1,3)-many-one reduction from those instances to {±1}-Monomial

Equivalence of {±1} Multilinear Noncommutative Cubic Forms, where the number of vari-

ables in the cubic form is the same as the number of variables in the 3XOR instance. By Theorem 5.5.7

there is then a (2,6)-many-one reduction to Monomial Equivalence of {±1} Noncommutative

Cubic Forms, where the number of variables in the output cubic form is linear in the original number

of variables, and such that the output forms have the property that any monomial equivalence between

them has all its nonzero entries being 6-th roots of unity. This thus satisfies the hypothesis of Theo-

rem 5.5.10 with d = 6, so there is a (6,12)-many-one reduction to Equivalence of Noncommutative
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Cubic Forms, where the output has a quadratic number of variables compared to the input. Finally,

combining Lemma 5.5.12 and Lemma 5.5.13, we get a (1,3) reduction from Equivalence of Noncom-

mutative Cubic Forms to Tensor Isomorphism, which further increases the size quadratically. In

total, the size increases multiply, yielding a quartic size increase. The substitution degrees multiply and

the derivation degrees we take the max, yielding a (12,12)-many-one reduction from Random 3XOR to

Tensor Isomorphism on tensors of size O(n4)×O(n4)×O(n4). By Lemma 5.1.1, any PC refutation

of these Tensor Isomorphism instances requires degree Ω(n).

5.5.6 Lower Bound in Sum-of-Squares

We note that our lower bound for tensor isomorphism also applies to the stronger Sum-of-Squares proof

system. This is due to the fact that there is lower bound for random 3XOR in Sum-of-Squares, as shown

by Grigoriev [Gri01] and independently by Schoenbeck [Sch08], which makes the dependence on the

clause density explicit.

Theorem 5.5.14 ([Sch08, Theorem 12]). A random 3-XOR instance with clause density ∆ = m/n =

dnϵ, for all sufficiently large constants d, requires SoS degree Ω(n1−ϵ) to refute, with probability 1−o(1).

In particular, this is a linear Ω(n) lower bound in the case of constant clause density (ϵ = 0), which

matches the PC lower bound of Theorem 5.5.1.

As we observe all of our reductions go through in Sum-of-Squares, since Sum-of-Squares simulates

PC over the reals due to Berkholz [Ber18]. Furthermore, this simulation preserves degrees of proofs up

to a constant factor.

Theorem 5.5.15 ([Ber18, Theorem 1.1]). Assume that a system of equations F contains the Boolean

axioms x2 − x = 0. If a system of polynomial equations F over the reals has a PC refutation of degree

d and size s, it also has a sum-of-squares refutation of degree 2d and size poly(s).

It is observed in [BGL23] that the simulation of [Ber18] also works when the Boolean axioms are

encoded as x2 = 1, or when the domain is the set of k-roots of unity over C.
We formally state how [Ber18, Theorem 1.1] implies a lower bound on the SoS degree of Tensor

Isomorphism. This is inspired by [Ber18, Corollary 2.2] that discusses a proof system called the Posi-

tivestellensatz Calculus, which is a proof system that extends both PC and SoS.

Lemma 5.5.16. Let P be a system of polynomial equations containing the Boolean axioms. Suppose

there is a (d1, d2)-PC reduction from P to Q. If Q has a degree d SoS refutation, then P has a degree

max(2d1d, 2d2) SoS refutation.

Proof. Suppose P = {p1(x1, . . . , xm), . . . , pk(x1, . . . , xm)} and Q = {q1(y1, . . . , yn), . . . , ql(y1, . . . , yn)}.
Suppose Q has a degree d SoS refutation. Then there exists a polynomial identity of the form

l∑
i=1

fi(y1, . . . , yn)qi(y1, . . . , yn) + p0(y1, . . . , yn) = −1

where p0 is a sum-of-squares polynomial.

From the PC reduction, there exists polynomials yi = ri(x1, . . . , xm) for each 1 ≤ i ≤ n, and a degree

d2 derivation of polynomials qi(r1, . . . , rn) from the set of polynomials P.
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We claim that −1 − p0(r1, . . . , rn) can be derived from P in PC in degree max(d2, d1d). This is

because by our PC reduction, polynomials qi(r1, . . . , rn) can be derived from P in degree d2. Afterwards,

since the polynomials fi(r1, . . . , rn) have degree at most d1d, then
∑l
i=1 fi(r1, . . . , rn)qi(r1, . . . , rn) =

−1− p0(r1, . . . , rn) can be derived in degree d1d.

Now, by [Ber18], since −1 − p0(r1, . . . , rn) has a degree max(d2, d1d) PC derivation from P, and P
contains the Boolean axioms, we obtain a degree max(2d2, 2d1d) SoS certificate

−(−1− p0(r1, . . . , rn))2 =

k∑
i=1

ai(x1, . . . , xm)fi(x1, . . . , xm) + h0(x1, . . . , xm)

where h0(x) is a SoS polynomial. Since the left hand side is equal to −1 − 2p0 − p20, we obtain by

rearranging that

−1 =

k∑
i=1

ai(x)fi(x) + h0(x) + 2p0(r1, . . . , rn) + p0(r1, . . . , rn)
2.

Observe that since p0 is an SoS polynomial of degree ≤ d, then p0(r1, . . . , rn) and p0(r1, . . . , rn)
2

are also SoS polynomials, of degree ≤ 2d1d. Hence overall, this provides a SoS certificate that P is

unsatisfiable, of degree ≤ max(2d2, 2d1d).

Hence, observing that the original system of polynomial equations in Random 3XOR or Graph

Isomorphism contain the Boolean axioms, by combining Theorem 5.5.14, Lemma 5.5.16 and the PC

reductions used to prove Theorem 5.5.2, we obtain the following lower bound for tensor isomorphism in

Sum-of-Squares.

Theorem 5.5.17. Over the real numbers, there is a distribution on n× n× n Tensor Isomorphism

whose associated equations require SoS degree Ω( 4
√
n) to refute with probability 1 - o(1).

5.6 Open Questions

Lower Bounds in PC+Inv Although it remains open whether the Inversion Principle is “complete”

for linear-algebraic reasoning (see [Sol01, SC04]), we introduce the proof system PC+Inv in an attempt

to capture some linear-algebraic reasoning that seems potentially useful for TI. PC+Inv has all the same

derivation rules as PC, but in addition, for any square matrices A,B (whose entries may themselves be

polynomials—that is, we allow substitution instances), we have the rule

AB = I

BA = I
.

where the antecedent represents the set of n2 equations corresponding to AB = I, and similarly the

consequent denotes the set of n2 equations BA = I (see Section 5.1.3 for more details). Degree is still

measured in the usual way, but this rule lets us “cut out” the high-degree proof that would usually be

required to derive BA = I from AB = I.

We now formalize our intuition that linear algebra should not suffice to solve TI efficiently in the

following:

Conjecture 2. Tensor Isomorphism for n×n×n tensors requires degree Ω(n) in PC+Inv, over any

field.
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Despite the conjecture, we do not yet know how to prove lower bounds on PC+Inv for any unsat-

isfiable system of equations, let alone those coming from TI. Mod p counting principles (for p different

from the characteristic of the field) strike us as potentially interesting instances to examine for PC+Inv

lower bounds, before tackling a harder problem like TI.

Degree Beyond Conjecture 2, we highlight several more questions we find interesting about the alge-

braic proof complexity of Tensor Isomorphism.

Open Question 5.6.1. What is the correct value for the PC degree of rank-r Tensor Isomorphism?

Note that by using the reductions from Section 5.5, we can produce (random) r × r × r tensors

that require PC degree Ω(r1/4) to refute. However, the number of variables is 6r2, this lower bound

is only Ω(N1/8) where N is the number of variables. Since their rank could be as large as R = Θ(r2)

(and indeed, very likely is), the upper bound we get from Theorem 5.3.1 is only 2O(r4) (without the

xq − x axioms) or O(r4) (with the xq − x axioms, with q = O(1)). Even in the latter case, this leaves a

polynomial gap between the lower and upper bounds (without those the gap is exponential).

We note that the upper bound in Theorem 5.3.1 without the xq − x equations already applies to the

weaker Nullstellensatz proof system. Is there a polynomial upper bound on PC degree—as a function of

rank—without the xq − x axioms?

Size In the presence of the Boolean axioms, there is a size-degree tradeoff for PC (or even PCR—a

system with the same degree bounds as PC, but is stronger when measuring size by number of monomials

or number of symbols) [CEI96b, ABRW04]. This implies that in the presence of the Boolean axioms, a

good degree lower bound implies a good size lower bound. But TI does not have the Boolean axioms.

Open Question 5.6.2. Get lower and upper bounds on the size of PC proofs for Tensor (Non-

)Isomorphism. Are there subexponential size upper bounds, despite the polynomial degree lower

bounds?

Other matrix problems While many different tensor-related problems are all equivalent to TI, in

the case of matrices, we have three genuinely different problems: matrix equivalence (2-TI), matrix

conjugacy, and matrix congruence. Conjugacy is determined by the Rational Normal Form or Jordan

Normal Form, while congruence depends on the field (e.g., over algebraically closed fields it only depends

on rank, over R it depends on the signature, and over finite fields it depends on whether the determinant

is a square or not).

Open Question 5.6.3. What is the PC complexity (size, degree, etc.) of matrix conjugacy? Of matrix

congruence?

More precisely, for conjugacy we have in mind the system of equations:

XM =M ′X XX ′ = X ′X = I,

and for congruence the system of equations:

XMXT =M ′ XX ′ = X ′X = I.
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Bounded border rank Not only can testing a tensor for bounded rank can be done in polynomial

time (Remark 2), testing a tensor for bounded border -rank can also be done in polynomial time (see, e. g.,

[Gro13]), by evaluating a polynomial number of easy-to-evaluate equations. While several partial results

are available, the gap for what is known about the ratio between rank and border rank is quite large:

there are 3-tensors known whose rank approaches 3 times their border rank [Zui17], but the currently

known upper bound is Lehmkuhl and Lickteig [LL89], who show that for tensors of border rank b, the

ratio of rank to border rank is at most cΘ(nb). See the Zuiddam’s introduction [Zui17] for more details.

Open Question 5.6.4. What is the PC degree of testing isomorphism of tensors of bounded border-

rank? Can such tests be done (by any method) in polynomial time?

Relating different reductions from Graph Isomorphism While we chose a particular reduction

from GI to TI for the lower bound in Section 5.4, we are aware of several others, including:

� GI to Permutational Code Equivalence [PR97, Luk93, Miy96], then to Matrix Lie Alge-

bra Conjugacy [Gro12], then to TI [FGS19];

� GI to Semisimple Matrix Lie Algebra Conjugacy [Gro12], and then to TI [FGS19];

� GI to Alternating Matrix Space Isometry [GQ21b, HQ21], then to TI [FGS19];

� GI to Algebra Isomorphism [Gri81, AS05], then to TI [FGS19].

We believe all of these can be realized as low-degree PC reduction as well. In the first arXiv version

of [GQ21b], they asked which of these might be equivalent in some sense (though there the final target

was Alternating Matrix Space Isometry, another TI-complete problem, rather than TI itself).

Here we make this question slightly more precise, in terms of PC reductions:

Open Question 5.6.5. Which, if any, of the reductions above from Graph Isomorphism to Tensor

Isomorphism are equivalent under low-degree PC?
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Appendix A

Deferred Proofs from Part I

A.1 A Generalized Product Test Analysis

Our goal in this section is to prove Theorem 3.3.4. Let |ψ⟩ ∈ Cd ⊗ Cd be a bipartite state. Recall that

the k-copy product test uses as input k-copies of the state |ψ⟩⊗k, where each copy is on registers Ai and

Bi, and then performs the measurement {P = ΠA ⊗ ΠB , I − P}, where ΠA is the projection onto the

symmetric subspace among registers A1, . . . , Ak and ΠB is the projection onto the symmetric subspace

among registers B1, . . . , Bk. Recall from Theorem 3.3.1 that we defined

ω|ψ⟩ = max
|ϕ1⟩,|ϕ2⟩

{|⟨ψ|ϕ1 ⊗ ϕ2⟩|2, |ϕ1⟩ , |ϕ2⟩ ∈ Cd}

be the overlap with the closest product state. In particular, from Lemma 3.3.9, we have that ω|ψ⟩ = λ1

where λ1 is the largest eigenvalue of the reduced density matrix ρ of |ψ⟩ ⟨ψ| .
We establish the following bound on the performance of the product test for any constant k ≥ 2,

using the techniques of [SW22].

Theorem 3.3.4. Let ω|ψ⟩ be the overlap of |ψ⟩ with the closest product state, as defined in Theorem 3.3.1.

For all constant k ≥ 2, the probability α that the product test passes when given |ψ⟩⊗k as input satisfies

α ≤ k − 1

k + 1
ωk|ψ⟩ +

2

k + 1
.

Before proceeding with the proof, we fix some notation we will use throughout the rest of this

section. Let [n] = {1, . . . , n}, λ = (λ1, . . . , λm) be a list of real numbers and α = (α1, . . . , αl) be a list

of non-negative integers. Whenever well-defined, let λα =
∏l
i=1 λαi

and λα =
∏m
i=1 λ

αi
i . Similarly if

a = {a1, . . . , an} is a set of vectors, then |a⟩α = |aα1
⟩ ⊗ · · · ⊗ |aαl

⟩ . Next, for the list α, let n(α) be the

number of non-zero entries in α and type(α) be the list (β1, . . . , βj) where βj is the number of times

integer j appears in the list α. We will also write α ⊢ k if α = (α1, . . . , αl) is a list with
∑l
i=1 αi = k,

and
(
k
α

)
for the multinomial coefficient k!∏l

i=1 αi!
.

We first establish the exact probability the product test passes given the state |ψ⟩⊗k as input.

Lemma A.1.1. Let hk(x1, . . . , xd) =
∑
β1+···+βd=k

βi≥0

∏d
i=1 x

βi

i be the homogenous symmetric polynomial

of degree k in d variables. Then the probability that the k-copy product state passes when run on state

119
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|ψ⟩⊗k is equal to hk(λ1, . . . , λd), where λ1, . . . , λd are the eigenvalues of the reduced density matrix ρ of

|ψ⟩ ⟨ψ| .

Proof. Let k ≥ 2 be given. Consider the Schmidt decomposition of |ϕ⟩ =
∑d
i=1

√
λi |ai⟩ |bi⟩ across the

two subsystems, ordered so that λj ≥ λj+1 for every index 1 ≤ j < d. Letting Λ = (
√
λ1, . . . ,

√
λn) be

the list of Schmidt coefficients, then

|ϕ⟩⊗k =
∑

α=(α1,...,αk)
αi∈[d]

Λα |a⟩α |b⟩α . (A.1)

Now, note that if α, α′ are two sequences with the same type β, then Λα = Λα′ = Λβ . So rewrite

Equation A.1, combining sequences of the same type.

|ϕ⟩⊗k =
∑

β=(β1,...,βd)
β1+···+βd=k

Λβ
∑

α=(α1,...,αk)
type(α)=β

|a⟩α |b⟩α . (A.2)

We now consider the action of the projection ΠA on the state |ϕ⟩⊗k . Write the projection as ΠA =
1
k!

∑
σ∈Sk

Pσ where Pσ permutes vectors in (Cd)k. Note that if α and α′ have the same type β =

(β1, . . . , βd), there is some permutation Pσ for which Pσ |a⟩α = |a⟩α′ and that there is a subgroup

Sβ = Sβ1
× · · · × Sβd

≤ Sk of permutations fixing |a⟩α of size
∏d
i=1 βi!. Hence, for every |a⟩α ,

ΠA |a⟩α =
1

k!

∑
cosets σSβ

|Sβ |Pσ |a⟩α =
1(
k
β

) ∑
all α′=(α1,...,αk)

type(α)=α′

|a⟩α′ .

Therefore,

(ΠA ⊗ I) |ϕ⟩⊗k =
∑

β=(β1,...,βd)
β1+···+βd=k

Λβ(
k
β

) ∑
α=(α1,...,αk)
type(α)=β

∑
α′=(α1,...,αk)
type(α′)=β

|a⟩α′ |b⟩α .

=
∑

β=(β1,...,βd)
β1+···+βd=k

Λβ



∑
α=(α1,...,αk)
type(α)=β

|a⟩α

√(
k
β

)




∑
α=(α1,...,αk)
type(α)=β

|b⟩α

√(
k
β

)


(A.3)

We will write |a⟩β =



∑
α=(α1,...,αk)
type(α)=β

|a⟩α

√
(kβ)

 and note that the set of all {|a⟩β} over all β ⊢ k is an

orthonormal basis for the symmetric subspace (SymkCd). Hence the probability that the product test

applied to the first subsystem passes is µ =
∑
β⊢k(Λ

β)2, and conditioned on this, the post-measurement

mixed state is |a⟩β |b⟩β with probability (Λβ)2

µ . At this point, the second subsystem becomes a symmetric

state, and hence the projection onto the B registers passes with probability one. Hence, we obtain that

the probability that the product test passes is
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µ =
∑
β⊢k

(Λβ)2 =
∑

β1+···+βd=k
βi≥0

d∏
i=1

λβi

i = hk(λ1, . . . , λd). (A.4)

Proof of Theorem 3.3.4. Firstly, we claim that

2

k + 1
λk1 +

∑
β⊢k,β1<k

(Λβ)2 ≤ 2

k + 1
. (A.5)

From Equation (A.2), we observe that

1 =
∑
β⊢k

(
k

β

)
(Λβ)2 = λk1 +

∑
β⊢k.β1<k

(
k

β

)
(Λβ)2. (A.6)

Therefore, we can divide the sum into three cases depending on the length n(β) and the the value of

β1,

2

k + 1
λk1 +

∑
β⊢k,β1<k

(Λβ)2 =
2

k + 1

1− ∑
β⊢k,β1<k

(
k

β

)
(Λβ)2

+
∑

β⊢k,β1<k

(Λβ)2

=
2

k + 1
+

∑
β⊢k,β1<k

[
1− 2

k + 1

(
k

β

)]
(Λβ)2

=
2

k + 1
+

∑
n(β)=1,β1<k

[
1− 2

k + 1

(
k

β

)]
(Λβ)2 +

∑
n(β)=2,β1=k−1

[
1− 2

k + 1

(
k

β

)]
(Λβ)2

+
∑

β⊢k,β1<k−1,n(β)≥2

[
1− 2

k + 1

(
k

β

)]
(Λβ)2.

(A.7)

Observe firstly that if n(β) ≥ 2,
(
k
β

)
≥
(
k
βi

)
≥ k since βi ≤ k − 1 is the largest entry in the list β.

Hence in all these cases
[
1− 2

k+1

(
k
β

)]
(Λβ)2 ≤ 0 since 1− 2

k+1

(
k
β

)
< 0. This shows that the third case is

always negative.

Next, to bound the first and second cases:

∑
n(β)=1,β1<k

[
1− 2

k + 1

(
k

β

)]
(Λβ)2 +

∑
n(β)=2,β1=k−1

[
1− 2

k + 1

(
k

β

)]
(Λβ)2

= (1− 2

k + 1
)

d∑
i=2

λki + [1− 2k

k + 1
]

d∑
i=2

λk−1
1 λi

=
k − 1

k + 1

d∑
i=2

λki −
k − 1

k + 1

d∑
i=2

λk−1
1 λi =

k − 1

k + 1
[

d∑
i=2

(λi(λ
k−1
i − λk−1

1 )] ≤ 0

(A.8)

since each λi is positive and λ1 is the greatest of all of the Schmidt coefficients. Therefore, we have

established Equation (A.5) since we have shown all of the sums in Equation (A.7) are negative.

Equation (A.5) and Lemma A.1.1 implies our bound since the probability that the product test
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passes is

hk(λ1, . . . , λd) =
∑
β⊢k

(Λβ)2 = λk1 +
∑

β⊢k,β1<k

(Λβ)2

≤ λk1 +
2

k + 1
− 2

k + 1
λk1 =

k − 1

k + 1
λk1 +

2

k + 1
=
k − 1

k + 1
ωk|ψ⟩ +

2

k + 1
.

(A.9)

where we have used the fact that for bipartite states, ω|ψ⟩ = λ1 from Lemma 3.3.9.

A.2 A SymQMA Verifier for the Entangled Subspace Problem

We now ready to apply Theorem 3.3.4 to prove Theorem 3.3.5.

Theorem 3.3.5. Let 0 ≤ a < b < 1 be constants. Then there exists a constant k ≥ 2 sufficiently large

such that there is a SymQMA(k+ 1) verifier for the (a, b)-Entangled Subspace problem.

The verifier Vk+1 has k+1 proof registers |ψ⟩⊗k+1
. The k-copy product test is performed on registers

1 to k. Finally, the circuit performs a controlled U operation on the k + 1(st) proof state. The verifier

accepts if and only if the product test passes and the ancilla qubit for the controlled U measures to be

1. The verifier V3 is depicted in Figure A.1.

|ψ1⟩A1B1

SwapA1A2
SwapB1B2

|ψ2⟩A2B2

|ψ3⟩A3B3 U

|+⟩1 • H

|+⟩2 • H

|+⟩3 • H

Figure A.1: SymQMA(3) verifier

Proof. By assumption there exists a constant ϵ such that b2 − a2 = ϵ > 0. Choose k sufficiently large so

that k−1
k+1 (1−

ϵ2

4 )
k + 2

k+1 ≤ 1− b2. Such k exists if ϵ > 0 and 0 ≤ b < 1. We claim that the verifier Vk+1

suffices to distinguishes between the two cases.

Suppose we are given a yes instance U of the Entangled Subspace problem. This means that U

encodes a subspace S containing a state |ψ⟩ ∈ Cd ⊗ Cd that is a-close to a product state |φ⟩ ⊗ |ξ⟩ in
trace distance. Suppose we run the verifier on the following proof state: |θ⟩⊗(k+1)

where |θ⟩ = |φ⟩ ⊗ |ξ⟩.
Clearly, this proof will pass the product test with probability 1 for any k ≥ 2. Furthermore, the

acceptance probability of the subspace membership test is
∥∥∥Π( |φ⟩ ⊗ |ξ⟩)∥∥∥2 = | ⟨ψ|φ⊗ ξ⟩ |2 ≥ 1 − a2,

by assumption that S contains a state that is a-close to product.

Now suppose U is a no instance, and suppose for contradiction there exists a proof |ψ⟩⊗(k+1)
that

is accepted by the verifier with probability greater than 1− ϵ
2 − a

2. Then in particular this means that
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the product test with |ψ⟩⊗k accepts with probability at least 1 − ϵ
2 − a

2. Hence, by Theorem 3.3.4, if

the witness causes the verifier to accept with probability at least 1 − ϵ
2 − a

2, then by the choice of k,

there exists a product state |θ⟩ = |φ⟩ ⊗ |ξ⟩ such that | ⟨ϕ|θ⟩ |2 ≥ 1 − ϵ2

4 since b2 − a2 = ϵ implies that

1− ϵ
2 − a

2 ≥ 1− b2.
Let PS be the projector onto the hidden subspace S. Since the definition of trace distance implies

that:

|Tr(PS(|ψ⟩ ⟨ψ| − |θ⟩ ⟨θ|))| ≤ ∥ |ϕ⟩ ⟨ϕ| − |θ⟩ ⟨θ| ∥ ≤
√

1− (1− ϵ2

4
) =

ϵ

2
.

Then since Tr(PS |ψ⟩ ⟨ψ|) > 1− ϵ
2 − a

2, by assumption we have

Tr(PS |θ⟩ ⟨θ|) > 1− ϵ− a2 = 1− (ϵ+ a2) = 1− b2.

which is a contradiction since S was b-completely entangled. Therefore, the verifier must accept with

probability at most 1− ϵ
2 − a

2 in the no case. Hence, there is a gap of at least 1− a2− (1− ϵ
2 − a

2) = ϵ
2

in distinguishing between the yes and no cases. Thus, there is a constant gap between the acceptance

probabilities of the yes and no instances, showing that the (a, b)-Entangled Subspace problem is in

SymQMA(k+1).
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