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We establish the local well-posedness of the Bartnik static metric exten-

sion problem for arbitrary Bartnik data that perturb that of any sphere in

a Schwarzschild {t = 0} slice. Our result in particular includes spheres

with arbitrary small mean curvature. We introduce a new framework

to this extension problem by formulating the governing equations in a

geodesic gauge, which reduce to a coupled system of elliptic and transport

equations. Since standard function spaces for elliptic PDEs are unsuitable

for transport equations, we use certain spaces of Bochner-measurable

functions traditionally used to study evolution equations. In the process,

we establish existence and uniqueness results for elliptic boundary value

problems in such spaces in which the elliptic equations are treated as

evolutionary equations, and solvability is demonstrated using rigorous

energy estimates. The precise nature of the expected difficulty of solving

the Bartnik extension problem when the mean curvature is very small is

identified and suitably treated in our analysis.
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1
I N T R O D U C T I O N

We consider the Bartnik static metric extension problem, which originates
in the Bartnik mass-minimization problem, [Bar89,Bar97]: In the latter, one
considers a topological 3-ball (B, g) equipped with a Riemannian 3-metric
of positive scalar curvature. A natural example of such a metric arises
on any compact space-like maximal hypersurface Ω (with boundary) in
a (3 + 1)-spacetime (M, g) that satisfies the dominant energy condition,
where g is the restriction of the space-time metric g to Ω.

One wishes to assign a notion of mass to (Ω, g); in fact ideally, [Bar97],
the notion of mass should depend just on the restriction of g to ∂Ω,
the second fundamental form of Ω ⊂ M at ∂Ω, as well as the second
fundamental form of ∂Ω inside Ω.

Bartnik’s definition, see [Bar97, Cor17], considers such data on ∂Ω and
associates to it a class PM of admissible asymptotically flat extensions
(Mext, gext), and seeks to minimize the ADM mass among all such exten-
sions. There are many possibilities on how to define the space PM of
extensions, see [Bar97]. The most “minimal” requirements are that the
3-metrics gext ∈ PM should be of positive scalar curvature, the metrics
on ∂Mext induced from the two sides Ω (interior side) and Mext (exterior
side) should match: gext|∂Mext = g|∂Ω; moreover, the mean curvature Hext of
∂Mext in Mext should agree with the mean curvature Hint of ∂Mext = ∂Ω
with respect to the interior metric g over Ω. Additional requirements,
such as the non-existence of closed minimal surfaces in the extension
(Mext, gext) are very natural (see [Bar97]) and are also frequently imposed.
Once the class of admissible extensions has been chosen the Bartnik Mass
is defined to be the infimum of the ADM masses, among all admissible
extensions.

An important feature of the Bartnik mass is the result of Corvino,
[Cor00, Cor17] that if this infimum is attained for some (asymptotically
flat) metric g, on a manifold Mext with ∂Mext = ∂Ω, then this extension g

must satisfy the system of equations:

∆g f = 0, Ricg = f−1 Hessg( f ), (1.1)

as well as the two imposed requirements

g|∂Mext = g|∂Ω, Hext(g) = Hint. (1.2)

1



introduction 2

A solution to the system (1.1) implies that the metric g = − f 2dt2 + g on
Mext × R would satisfy the Einstein Vacuum equations, and also be static,
in the sense that L∂t g = 0.

Remark 1.1. We note further that if the Bartnik minimizer exists, it is
known–see [Bar97]–that the metric gtotal defined over Mtotal = Ω

⋃
Mext

by joining g with g across ∂Mext is generically expected to be merely
Lipschitz across the joining boundary ∂Mext: The traceless parts K̂|g, K̂|g
of the second fundamental forms K|g, K|g induced on ∂Ω = ∂Mext from
the two sides (Ω, g), (Mext, g) are generically expected to not match.

In view of the result of [Cor00] the question of the attainment of the
Bartnik mass leads to the Bartnik static extension problem with data
supported on a 2-sphere:

Question (Bartnik static metric extension problem). Consider a Riemannian
2-sphere (S2, γ) equipped with a function H over S2. We consider a (topological)
manifold M = R3 \ B and seek an asymptotically flat metric g over M which
satisfies:

• g|∂M = γ,

• the mean curvature Hext of ∂M relative to g equals H, and:

• There exists a positive function f over M with f (x) → 1 as |x| → ∞ on
M so that the pair (g, f ) satisfy the system of equations (1.1).

Definition 1. The system in (1.1) will be called the static vacuum equations.
The pair of prescribed data over S2 (the metric γ and the putative mean
curvature function H) will be called Bartnik data. A solution (g, f ) to (1.1)
to this prescribed data with g being asymptotically flat and f going to 1 at
infinity will be called a static vacuum extension with Bartnik data (γ, H).

Two important examples of static vacuum extensions are:

1. The Euclidean solution (geuc, 1) on R3 \ B1 with Bartnik data (γS2 , 1),
where γS2 is the round metric on S2.

2. The Riemannian Schwarzschild solution (gsc, fsc) with mass m0 on
R3 \ Br0 and Bartnik data (r2

0γS2 , fsc(r0)
r0

), where r0 > 2m0 and

gsc = f−2
sc dr2 + r2γS2 , fsc =

√
1 − 2m0

r



introduction 3

Since the static vacuum equations are highly nonlinear, one first hopes
to achieve a local well-posedness result near arbitrary solutions. In fact,
Anderson and Khuri in [AK09] prove, by means of counterexamples, that
global well-posedness does not hold (see also [And23]) . Nonetheless,
there has been significant progress on establishing local well-posedness
results. Miao in [Mia03] confirmed that the extension problem is locally
well-posed near Euclidean Bartnik data on the unit sphere under a triple
reflectional symmetry assumption. This symmetry assumption was later
removed by Anderson in [And15] with the result generalized by Huang
and An in [AH21] and [AH22a] for a large range of connected embedded
surfaces in Euclidean R3.

Subsequently, Huang and An in [AH22b] introduced a general crite-
rion for local well-posedness near a given solution, which hinges on the
triviality of the kernel of a particular operator. They identified a class
of static vacuum extensions they call “static regular”, characterized by
the linearized operator having a trivial kernel, as sufficient conditions
for local well-posedness. They showed that static regularity is, in some
sense, generic for smooth hyper surfaces which are already inside a static
vacuum extension. However since this relies in a very essential way on
the data already lying in the interior of a given solution (which must be
analytic), this result does not guarantee genericity in any sense in the
space of smooth Bartnik data. Their findings in particular implies that for
any given m0 > 0 and ϵ > 0, the set of radii r0 ≥ 2m0 + ϵ for which the
Schwarzschild manifold R3 \ Br0 with mass m0 is static regular forms an
open dense subset of [2m0 + ϵ, ∞).

Summary of Main Results

Our main result in this paper is establishing local well-posedness for
perturbations of every Schwarzschild solution, hence strengthening Huang
and An’s result in [AH22b]. We present a new approach to this problem
that can be applied to similar extension problems. In this approach, we
write the putative solution (g, f ) with respect to a geodesic gauge, which
was not used before for this problem. One benefit of this gauge is that
the connection coefficients of the desired solution g can be linked to f
by ordinary differential equations, where f provides the forcing terms.
More precisely, we will be considering the metrics g := f 2 · g, whose Ricci
curvature must then satisfy: Ricij(g) = 2∇iu ⊗∇ju (with u = ln f ), and
we will reduce the extension problem in (1.1) to an elliptic equation on u
coupled with Riccatti equations on the second fundamental form of g, with
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u providing the forcing term, and constraint equations on the boundary
coming from the contracted Gauss and Codazzi equations. We rigorously
establish estimates for the linearized operator and its inverse, showing
that the linearization of the reduced equations is an isomorphism on
appropriate Banach spaces. We then invoke the implicit function theorem
on Banach manifolds to conclude local well-posedness.

An interesting remark concerns the expected difficulty of solving Bart-
nik’s extension problem when the Schwarzschild sphere is very close to
the horizon, in which the mean curvature is positive but very small. This
difficulty is anticipated by the black hole uniqueness theorem (see [Isr67]),
which in particular implies the following: for surfaces with zero mean
curvature, the existence of static vacuum extensions fails unless the sur-
face is a round sphere, in which case the Schwarzschild exteriors are the
only possible extension. Therefore, one expects that the space of allowed
perturbations of the Schwarzschild spheres Sr must be shrinking as r goes
to 2m0. This also suggests that solving the linearized problem should be
progressively harder as r → 2m0. We do capture this difficulty in our
analysis and resolve it (see proposition 5.20), showing the solvability of
Barntik’s extension problem near all spheres Sr, r > 2m0.

The choice of gauge influences which Banach spaces are most appro-
priate to use. Due to our choice of gauge, the equations in (1.1) reduce to
an elliptic PDE coupled with transport equations. Consequently, the stan-
dard spaces used for elliptic PDEs, such as weighted Sobolev and Hölder
spaces, are not appropriate as they do not provide the correct setting to
solve transport equations. Instead, we use spaces of Bochner-measurable
functions that are traditionally used as the setting to study hyperbolic and
parabolic PDEs (see [Eva98]). More specifically, the spaces we use for u
are AC

(2,k)
δ (M) and AH

(2,k)
δ (M) defined by (see definition 2.9)

u ∈ AH
(2,k)
δ (M) ⇐⇒


u ∈ L2

δ

(
[r0, ∞); Hk(S2)

)
∂ru ∈ L2

δ−1

(
[r0, ∞); Hk−1(S2)

)
∂2

r u ∈ L2
δ−2

(
[r0, ∞); Hk−2(S2)

)

u ∈ AC
(2,k)
δ (M) ⇐⇒


u ∈ C0

δ

(
[r0, ∞); Hk(S2)

)
∂ru ∈ C0

δ−1

(
[r0, ∞); Hk−1(S2)

)
∂2

r u ∈ C0
δ−2

(
[r0, ∞); Hk−2(S2)

)
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where r0 > 0, k ≥ 2, and δ ∈ (−1,− 1
2 ) is a weight introduced appropri-

ately in the norms of the above spaces to control the decay at infinity. These
spaces are not traditionally used to study elliptic PDEs. In this paper, we
establish solvability of a certain elliptic problem in the above spaces. More
specifically, defining the operator Q : u 7→ (∆gu, u|∂M) with respect to a
certain asymptotically flat metric g on M = R3 \ Br0 , we demonstrate that
(see chapter 3 )

Q : AH
(2,k)
δ (M) → L2

δ−2

(
[r0, ∞); Hk−2(S2)

)
× Hk−1/2(∂M) is an isomorphism

Q : AC
(2,k)
δ (M) → C0

δ−2

(
[r0, ∞); Hk−2(S2)

)
× Hk(∂M) is an isomorphism

This result can be generalized to arbitrary asymptotically flat metrics
and more general elliptic boundary value problems, thereby establishing
the solvability of such problems in the above spaces.

An interesting comparison we can make to the above is the study of
elliptic boundary value problems in Ck spaces. It is well known that there
is no general existence theorem for elliptic boundary value problems in
Ck(M) (see [GT13] problem 4.9 for a counterexample). In [GT13], the au-
thors demonstrate via the celebrated Schauder and Calderon-Zygmund
estimates that Hölder spaces Ck,α(Ω) and Sobolev spaces Hk(Ω) on a
bounded open set Ω, instead of Ck(Ω), have sufficiently nice properties
allowing for general existence theorems for elliptic boundary value prob-
lems. Modification of those spaces by including wights generalizes these
existence results to unbounded spaces (see for example [Bar86]). In this
paper, we establish an existence theorem in C0

δ

(
[r0, ∞); Hk(S2)

)
spaces, a

mix of both Hölder and Sobolev spaces. Our work readily implies similar
existence results in the spaces C0([a, b] : Hk(S2)) when the domain is
bounded.



2
P R E L I M I N A R I E S

Let M := R3 \ Bn·m0 where n > 2 and m0 > 0. Denote by geuc the Euclidean
metric on M and by γS2 the round metric on the unit sphere S2.

2.1 properties of static vacuum extensions

In this section, we will discuss some decay and regularity properties of
static vacuum extensions and demonstrate that they can be written in the
geodesic gauge. More precisely, we will show that given a static vacuum
extension (g, f ), we can globally write the metric g := f−2g in geodesic
coordinates so that g takes the form

g = f−2dr2 + γgr

where r is the distance function from the boundary with respect to g
and γgr is the induced metric on the level sets of r. Note that this form is
directly observable in the Schwarzschild solutions (gsc, fsc) as gsc is given
by

gsc = f−2
sc dr2 + r2γS2

Definition 2.1. Let η > 0. A metric g over M is asymptotically flat of order
η > 0 if there exists a coordinate system (x1, x2, x3) near infinity in which
the metric satisfies

• gij − δij = O(|x|−η)

• ∂kgij = O(|x|−η−1)

• ∂l∂kgij = O(|x|−η−2)

where ∂k := ∂
∂xk and |x| =

√
|x1|2 + |x2|2 + |x3|2. For conciseness, we will

write gij = δij +O2(|x|−η) if the above conditions are satisfied.

Definition 2.2. For a metric g and a positive function f , we say that a
pair (g, f ) is a strongly asymptotically flat if g admits a coordinate system
(x1, x2, x3) near infinity in which

6



2.1 properties of static vacuum extensions 7

gij =

(
1 +

2m
|x|

)
δij +O2(|x|−2), f = 1 − m

|x| +O2(|x|−2) (2.1)

The Schwarzschild solutions (gsc, fsc) discussed in the introduction are
examples of smooth strongly asymptotically flat static vacuum extensions.

The system in (1.1) is equivalent to a lower order system of equations.
Letting g := f 2g, u := ln u, a direct computation shows that (g, f ) solves
equation (1.1) if and only if (g, u) solve

Ricg = 2du ⊗ du, ∆gu = 0. (2.2)

We will call the above equations the conformal static vacuum equations.
We will call the pair (gsc, usc) := ( f 2

sc gsc, ln fsc) the conformal Schwarzchild
solution.

By taking advantage of the form that the Ricci curvature takes for g,
Murchadha in [KM95] shows that every static vacuum extension (g, f )
is strongly asymptotically flat and is smooth away from the boundary.
For the rest of this section, we will describe how this strong decay and
regularity of static vacuum extensions allows us to write the extension
problem in a geodesic gauge.

Let (g, u) solve the conformal static vacuum equations in (2.2). We wish
to write the metric g in geodesic coordinates. Let r(·) = dist(·, ∂M) + r0

be a shifted distance function from ∂M. Due to the compactness of ∂M,
the function r is smooth on a neighborhood of ∂M, with ∂M excluded,
and so defines a foliation near ∂M with the leaves being the level sets of
r. We can then write the metric with respect to this foliation as dr2 + γr

where γr is the induced metric on the level sets. This representation of
the metric generally does not hold globally and is valid only whenever
r is differentiable. However, under a smallness assumption on the Ricci
curvature of g, it will hold that r is differentiable everywhere on M \ ∂M
and the metric can be written globally as dr2 + γr. This follows from the
next proposition, which follows from a straightforward adaptation of the
argument in proposition 5.01 in [CK93].

Proposition 2.3. There exists τ′ = τ′(n, m0) > 0 small enough such that the
following is true for any 0 < τ < τ′.
If an asymptotically flat metric g on M of order η > 0 satisfies |Ricg| <

τdistg(x, ∂M)−2−η for x ∈ M, then:
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1. The affine parameter r(·) = distg(∂M, ·) + r0 is differentiable everywhere
on M \ ∂M and defines a global radial foliation with leaves Sr diffeomorphic
to S2. Moreover, given a coordinate system (x1, x2, x3) near infinity as
described in definition 2.1, r and |x| are comparable in the sense that

C−1|x| ≤ r ≤ C|x| (2.3)

for some constant C > 0.

2. With respect to this foliation, we have

trK =
2
r
+O1(r−1−η), |K̂| = O1(r−1−η) (2.4)

where K = Hess(r) is the second fundamental form on the leaves Sr, trK is
the trace of K, and K̂ is the traceless part of K.

3. There exists a unique diffeomorphism Φ : M → [nm0, ∞)× S2 such that
Φ|∂M = IdS2 , r(·) = πr ◦ Φ(·) where πr is the projection onto the first
coordinate, and Φ∗g = dr2 + γgr where γgr is the push forward of the
induced metric on Sr.

This allows us to globally express the static vacuum extension (g, f ) in
geodesic coordinates as follows:

g = f−2dr2 + γgr, where γgr is the induced metric on Sr

and, hence, justifies the space of metrics that we will be working in (see
definition 2.8 in the next section).

2.2 function spaces

In this section, we define the function spaces that we will be using. Fix
k ∈ Z≥0 and δ ∈ R. From here onwards, we will identify M with the space
[nm0, ∞)× S2.

Definition 2.4. We define the weighted Sobolev space Hk
δ(M) with weight

δ to be the space of all functions u in Hk
loc(M) such that ∥u∥k,δ < ∞

respectively, where

∥u∥k,δ =
k

∑
l=0

{∫
M

(
|Dlu| · rl−δ

)2
r−3dV

} 1
2

(2.5)

where r = |x|, D is the connection with respect to the Euclidean metric on
M, and dV is the Euclidean volume form on M. We will also denote the
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space Hk
δ(M) by L2

δ(M) when k = 0.

Definition 2.5. We define the space X k
δ (M) to be the space of vector fields

X on M with components Xi := X(xi) in Hk
δ(M), where (x1, x2, x3) is the

standard cartesian coordinates. The norm we use is

∥X∥k,δ :=
k

∑
l=0

∥∥∥|DlX|
∥∥∥

0,δ−l
(2.6)

Definition 2.6. Let Hk(S2) be the usual L2 space, when k = 0, and Sobolov
space, when k ≥ 1, on (S2, γS2). Let Mk(S2) and Hk(S2) be the space of
metrics on S2 and symmetric tensors on S2, respectively, with components
in Hk(S2). The norm we will use is as follows:

∥h∥2
Hk(S2) :=

k

∑
l=0

∥∥∥| /Dlh|
∥∥∥2

L2(S2)
(2.7)

where /D is the covariant derivative on S2 with respect γS2 .

Let Ωk(S2) be the space of 1-forms on S2 with components in Hk(S2). The
norm used on this space is as follows:

∥ω∥2
Ωk(S2) :=

k

∑
l=0

∥∥∥| /Dlω|
∥∥∥2

L2(S2)
(2.8)

Definition 2.7. Let t ∈ Z≥0. We define the space Ht
δ

(
[nm0, ∞); Hk(S2)

)
to

be the space of functions u in Ht
loc

(
[nm0, ∞); Hk(S2)

)
such that ∥u∥H,(t→k),δ <

∞, where

∥u∥2
H,(t→k),δ :=

t

∑
t′=0

∫ ∞

nm0

r−2δ−1+2t′
∥∥∥∂

(t′)
r u(r)

∥∥∥2

Hk(S2)
dr (2.9)

We also define the space Ct
δ

(
[nm0, ∞); Hk(S2)

)
to be the space of contin-

uous Hk(S2)-valued functions u on [nm0, ∞) such that ∥u∥C,(t→k),δ < ∞,
where

∥u∥2
C,(t→k),δ :=

t

∑
t′=0

sup
r≥nm0

(
r−2δ+2t′

∥∥∥∂
(t′)
r u(r)

∥∥∥2

Hk(S2)

)
(2.10)
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We then define the space Ht
δ

(
[nm0, ∞);Mk(S2)

)
and Ht

δ

(
[nm0, ∞);Hk(S2)

)
similarly to the above with norm

∥h∥2
H,(t→k),δ :=

t

∑
t′=0

∫ ∞

nm0

r−2δ−1+2t′
∥∥∥∂

(t′)
r h(r)

∥∥∥2

Hk(S2)
dr (2.11)

Definition 2.8. Define Mk
δ(M) to be the space of metrics on [nm0, ∞)× S2

of the form dr2 + g(r) where g(r) = r2(γ∞ + h(r)), γ∞ ∈ Mk(S2), and h ∈
H2

δ

(
[nm0, ∞);Hk(S2)

)
. The space Mk

δ(M) can be naturally identified with
an open subset of the Banach space Hk(S2)⊕ H2

δ

(
[nm0, ∞);Hk(S2)

)
. This

makes Mk
δ(M) an open Banach submanifold of Hk(S2)⊕ H2

δ

(
[nm0, ∞);Hk(S2)

)
and, in particular, a Banach manifold. Given g0 ∈ Mk

δ(M), the tan-
gent space Tg0 Mk

δ is isomorphic to the space of tensors g̃ of the form
g̃ = r2(γ̃∞ + h̃(r)), where γ̃∞ ∈ Hk(S2) and h̃ ∈ H2

δ

(
[nm0, ∞);Hk(S2)

)
,

equipped with the norm

∥g̃∥Mk
δ

:= ∥γ̃∞∥Hk(S2) +
∥∥h̃
∥∥

H,(2→k),δ (2.12)

Definition 2.9. Let t ≥ 0. Denote by AH
(t,k)
δ (M) and AC

(t,k)
δ (M) the spaces

AH
(t,k)
δ (M) :=

t⋂
t′=0

Ht′
δ

(
[nm0, ∞); Hk−t′(S2)

)
, AC

(t,k)
δ (M) :=

t⋂
t′=0

Ct′
δ

(
[nm0, ∞); Hk−t′(S2)

)
(2.13)

equipped with the norms

∥u∥2
AH

(t,k)
δ

:= max
0≤t′≤t

∥u∥2
H,(t′→k−t′),δ , ∥u∥2

AC
(t,k)
δ

:= max
0≤t′≤t

∥u∥2
C,(t′→k−t′),δ

(2.14)
Note that

u ∈ AH
(t,k)
δ (M) ⇐⇒ for every 0 ≤ t′ ≤ t, ∂

(t′)
r u ∈ L2

δ−t′

(
[nm0, ∞); Hk−t′(S2)

)
u ∈ AC

(t,k)
δ (M) ⇐⇒ for every 0 ≤ t′ ≤ t, ∂

(t′)
r u ∈ C0

δ−t′

(
[nm0, ∞); Hk−t′(S2)

)
Denote the intersection of these spaces by A(t,k)

δ (M) defined by

A(t,k)
δ (M) := AH

(t,k)
δ (M)

⋂
AC

(t,k)
δ (M)

equipped with the norm
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∥u∥2
A(t,k)

δ

:= max
0≤t′≤t

(∥u∥2
H,(t′→k−t′),δ + ∥u∥2

C,(t′→k−t′),δ) (2.15)

In the next proposition, we list some important results regarding the
spaces we defined that will be repeatedly used in the rest of the paper.

Proposition 2.10.

(a) Let k ≥ 0, t ≥ 1 and δ < 0. Every function u ∈ Ht
δ

(
[nm0, ∞); Hk(S2)

)
has a representative in Ct−1

loc

(
[nm0, ∞); Hk(S2)

)
, which will also be denoted

by u. Furthermore, there exists a constant C > 0 such that for every
u ∈ Ht

δ

(
[nm0, ∞); Hk(S2)

)
∥u∥C,(t−1→k),δ ≤ C ∥u∥H,(t→k),δ (2.16)

If in addition k ≥ 2, then ∂
(t′)
r u(r) ∈ Ck−2(S2) for every r ∈ [nm0, ∞)

and 0 ≤ t′ ≤ t − 1. Also, for every 0 ≤ l ≤ k − 2 and 0 ≤ t′ ≤ t − 1,

| /Dl∂
(t′)
r u| = o(rδ−l−t′) as r → ∞ (2.17)

(b) Let dr2 + g(r) ∈ Mk
δ(M) with g(r) = r2(γ∞ + h(r)).

Then with respect to the foliation defined by the level sets of r, the trace and
traceless part of the fundamental form satisfy

∣∣∣∣trK − 2
r

∣∣∣∣ ∈ H1
δ−1

(
[nm0, ∞); Hk(S2)

)
, K̂ ∈ H1

δ−1

(
[nm0, ∞);Hk(S2)

)
(2.18)

Furthermore, the metric dr2 + g(r) is asymptotically flat if and only if γ∞

is of constant curvature 1.

(c) Let k1 < k2, t1 < t2, and δ2 < δ1 < 0. Then the space Ht2
δ2

(
[nm0, ∞); Hk2(S2)

)
is compactly embedded in Ht1

δ1

(
[nm0, ∞); Hk1(S2)

)
. Furthermore, the space

Ct2
δ2

(
[nm0, ∞); Hk2(S2)

)
is compactly embedded in Ct1

δ1

(
[nm0, ∞); Hk1(S2)

)
.

(d) Let k ≥ 1 and δ ∈ R. Suppose a function u satisfies

u ∈ L2
δ

(
[nm0, ∞); Hk(S2)

)
(M), ∂ru ∈ L2

δ−1

(
[nm0, ∞); Hk−1(S2)

)
(M)

Then for every r ∈ [nm0, ∞),

u(r) ∈ Hk−1/2(S2)
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Proof. (a), (b) and (d) follow immediately from standard results on Sobolev
spaces (see [Bar86] theorem 1.2 and lemma 1.4, and [Eva98] section 5.9).

We focus on proving (b). The metric g(r) evolves according to the
equation

∂rg(r) = trK g(r) + 2K̂ (2.19)

where K = Hess(r) is the second fundamental form on the leaves Sr, trK
is the trace of K, and K̂ is the traceless part of K. Since g(r) = r2(γ∞ + h(r)),
it follows that

trK =
2
r
+

1
2

trr−2g(r)(∂rh(r)), 2K̂ = r2
(

∂rh(r)− trg(r)(∂rh(r))g(r)
)

(2.20)
This directly implies equation (2.18)
In view of the Gauss and Codazzi equations, we get

R = 2Ric(
∂

∂r
,

∂

∂r
)+RSr −

1
2

trK2 + |K̂|2, Ric(
∂

∂r
,

∂

∂r
) = −∂rtrK− 1

2
(trK)2 −|K̂|2

(2.21)
It follows immediately using equation (2.18) and the fact that the scalar

curvature Rγ∞ of (S2, γ∞) is the limit of r2RSr as r goes to infinity that R
decays faster than r−2 if and only if Rγ∞ = 2. We conclude that the metric
is asymptotically flat if and only if γ∞ is of constant curvature 1.

2.3 the main theorem

Definition 2.11. In place of the mean curvature H, we will work with
trKB := 2H for convenience, which represents the trace of the hypothet-
ical second fundamental form on ∂M. From this point forward, we will
denote the Bartnik data on ∂M by (γB, 1

2 trKB). We will also denote by
(γgsc ,

1
2 trKgsc) the Schwarzschild Bartnik data, which is given by

γgsc = (nm0)
2γS2 , trKgsc =

2
√

1 − 2
n

nm0
(2.22)

The statement of the main theorem is as follows.

Main Theorem. Let δ ∈ (−1,− 1
2 ] and k ≥ 5. There exists a neighbour-

hood U of (γgsc ,
1
2 trKgsc) in Mk+1(∂M) × Hk(∂M) and a unique C1 map
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H : (γB, 1
2 trKB) 7→ (g, u) on U to Mk

δ(M)×A(2,k+1)
δ (M) in which (g, f ) :=

(e−2ug, eu) solves the static Einstein vacuum equations with Bartnik data (γB, 1
2 trKB).

Given Bartnik data (γB, 1
2 trKB) ∈ U , the pair (g, u) = H(γB, 1

2 trKB)

will then solve the conformal static vacuum equations written out in
equation (2.2). Due to proposition 2.10, g and f are C2 on M and satisfy,
in some coordinates (x1, x2, x3),

gij = δij +O2(|x|δ), f = 1 +O2(|x|δ) (2.23)

Moreover, the discussion in section 2.1 implies that (g, f ) is strongly
asymptotically flat and is smooth away from the boundary.



3
S O LVA B I L I T Y O F E L L I P T I C
B V P I N A H

( 2 , k )
δ ( M ) A N D

A C
( 2 , k )
δ ( M )

In this chapter, we will establish the well-posedness of the elliptic PDE
∆gsc ũ = 0 on (M, gsc), subject to Dirichlet boundary conditions, in the

function spaces AH
(2,k)
δ (M) and AC

(2,k)
δ (M). Here, gsc is the conformal

Schwarzschild metric on M = R3 \ Bn·m0 given by

gsc = dr2 + r(r − 2m0)γS2 (3.1)

and n > 2, m0 > 0.
More precisely, we will prove the following theorem.

Theorem 3.1. Define the operator Q by:

Q(ũ) :=

∆gsc ũ

ũ


For δ ∈ (−1,− 1

2 ] and k ≥ 1,

Q : AH
(2,k+1)
δ (M) → AH

(0,k−1)
δ−2 (M)× Hk+1/2(∂M) is an isomorphism

and

Q : AC
(2,k+1)
δ (M) → AC

(0,k−1)
δ−2 (M)× Hk+1(∂M) is an isomorphism

Remark 3.2. In particular, it holds that

Q : A(2,k+1)
δ (M) → A(0,k−1)

δ−2 (M)× Hk+1(∂M) is an isomorphism,

which will be used in section 5.4.

The map Q can be defined on the space AH
(2,k+1)
δ (M) and AC

(2,k+1)
δ (M)

with codomain AH
(0,k−1)
δ−2 (M)× Hk+1/2(∂M) and AC

(0,k−1)
δ−2 (M)× Hk+1(∂M)

14



solvability of elliptic bvp in AH
(2,k)
δ (M) and AC

(2,k)
δ (M) 15

repsectively. Indeed, we deduce directly from the definition of our Banach
spaces that for all u ∈ AH

(2,k+1)
δ (M),

∆gsc ũ = ∂2
r ũ+

2(r − m0)

r(r − 2m0)
∂rũ+

1
r(r − 2m0)

/∆γ
S2 ũ(r) ∈ L2

δ−2

(
[nm0, ∞); Hk−1(S2)

)
= AH

(0,k−1)
δ−2 (M)

ũ(nm0) ∈ Hk+1/2(S2) (by proposition 2.10 (d))

Similarly, for all u ∈ AC
(2,k+1)
δ (M),

∆gsc ũ = ∂2
r ũ+

2(r − m0)

r(r − 2m0)
∂rũ+

1
r(r − 2m0)

/∆γ
S2 ũ(r) ∈ C0

δ−2

(
[nm0, ∞); Hk−1(S2)

)
= AC

(0,k−1)
δ−2 (M)

ũ(nm0) ∈ Hk+1(S2)

We recall the following result from Maxwell in [Max05]:

Q : H2
δ (M) → L2

δ−2(M)× H3/2(∂M) is an isomorphism

To prove theorem 3.1, it then suffices to prove the estimates

∥ũ∥AH
(2,k+1)
δ

≤ C ∥Q(ũ)∥AH
(0,k−1)
δ−1 ×Hk+1/2(∂M)

∥ũ∥AC
(2,k+1)
δ

≤ C ∥Q(ũ)∥AC
(0,k−1)
δ−1 ×Hk+1(∂M)

for all ũ in AH
(2,k+1)
δ (M) and AC

(2,k+1)
δ (M) respectively. These estimates

will be the content of the next lemma.

Lemma 3.3. • There exist a constant C > 0 such that for any ũ ∈ AH
(2,k+1)
δ (M),

the following estimate holds.

∥ũ∥AH
(2,k+1)
δ

≤ C
(∥∥∆gsc ũ

∥∥
AH

(0,k−1)
δ

+ ∥ũ∥Hk+1/2(∂M)

)
(3.2)

• There exist a constant C > 0 such that for any ũ ∈ AC
(2,k+1)
δ (M), the

following estimate holds.

∥ũ∥AC
(2,k+1)
δ

≤ C
(∥∥∆gsc ũ

∥∥
AC

(0,k−1)
δ

+ ∥ũ∥Hk+1(∂M)

)
(3.3)

Proof. Since A(2,k+1)
δ (M) is dense in both AH

(2,k+1)
δ (M) and AC

(2,k+1)
δ (M),

it suffices to prove both estimates for all ũ ∈ A(2,k+1)
δ (M).
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Let ũ ∈ A(2,k+1)
δ . Define F := ∆gsc ũ and h := ũ(nm0). Then

F ∈ A(0,k−1)
δ−2 (M) = L2

δ−2

(
[nm0, ∞); Hk−1(S2)

)
∩C0

δ−2

(
[nm0, ∞); Hk−1(S2)

)
, h ∈ Hk+1(∂M)

We utilize the spherical symmetry of (M, gsc) to reduce the equation
∆gsc ũ = F to differential equations on the coefficients of ũ with respect to
its spherical harmonics decomposition. Decompose ũ, F, and h as follows

ũ(r, x) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

amℓ(r)Ymℓ(x), F(r, x) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

bmℓ(r)Ymℓ(x), h(x) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

cmℓYmℓ(x)

(3.4)
for r ∈ [nm0, ∞) and x ∈ ∂M. Here and below the spherical harmonics

Ymℓ(x) are viewed as functions over the unit sphere S2. These same func-
tions will also be thought of over round spheres of any other radius via
the natural push-forward map. We will assume that they are normalized
with respect to the round metric γS2 on the unit sphere.

We first rewrite the norms of the relevant Banach spaces in terms of
the coefficients with respect to the spherical harmonics decomposition.
For a nonnegative integer s and f ∈ Hs(∂M) with spherical harmonic
coefficients fmℓ, the norm

∥ f ∥Hs(∂M) :=

(
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]s | fmℓ|2
)1/2

(3.5)

is equivalent to the standard norm on Hs(∂M). For a nonnegative integer t
and real number τ, we will rewrite the norm on Ht

τ

(
[nm0, ∞); Hs(S2)

)
(M)

and Ct
τ

(
[nm0, ∞); Hs(S2)

)
.

We begin with the norm on Ht
τ

(
[nm0, ∞); Hs(S2)

)
(M). Given a function

v ∈ Ht
τ

(
[nm0, ∞); Hs(S2)

)
, recall that

∥v∥2
H,(t→s),τ =

t

∑
t′=0

∫ ∞

nm0

r−2δ−1+2t′
∥∥∥∂t′

r v(r)
∥∥∥2

Hs(S2)
dr (3.6)

Let vmℓ = vmℓ(r) be the spherical harmonic coefficients for v. The first
term in the sum becomes
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∫ ∞

nm0

r−2δ−1 ∥v(r)∥2
Hs(S2) dr =

∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]s
∫ ∞

nm0

r−2δ−1|vmℓ(r)|2dr

(3.7)
where we invoked the monotone convergence theorem to switch the

order of the integral and the infinite sum. Now for each 1 ≤ t′ ≤ t and
r ∈ [nm0, ∞), we have that∫

S2
Ymℓ ∂t′

r v(r)dσS2 = ∂t′
r

∫
S2

Ymℓ v(r)dσS2 (3.8)

since ∂t′−1
r lives in H1

loc

(
[nm0, ∞); L2(S2)

)
. In light of the fact that vmℓ(r) =∫

S2 Ymℓ v(r)dσS2 , it follows that vmℓ are differentiable t times in r and v(t
′)

mℓ

are the spherical harmonic coefficients of ∂t′
r v.

We can then rewrite the norm in equation (3.6) as follows:

∥v∥2
(t→s),τ =

∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]s
t

∑
t′=0

∫ ∞

nm0

r−2τ−1+2t′
(

v(t
′)

mℓ (r)
)2

dr (3.9)

where we have repeatedly invoked the monotone convergence theorem
to switch the order of the integral and the infinite sum.

Now consider a function w ∈ Ct
τ

(
[nm0, ∞); Hs(S2)

)
. Recall that

∥w∥2
C,(t→s),τ =

t

∑
t′=0

sup
(

r−2τ+2t′
∥∥∥∂t′

r w(r)
∥∥∥2

Hs(S2)

)
(3.10)

Letting wmℓ = wmℓ(r) be the spherical harmonic coefficients for w, we
have

∥w∥2
C,(t→s),τ =

∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]s
t

∑
t′=0

sup
(

r−2τ+2t′(w(t′)
mℓ (r))

2
)

(3.11)

It is then convenient to define the following norms for functions on
[nm0, ∞): for a function f1 ∈ Ht

loc([nm0, ∞) and f2 ∈ Ct([nm0, ∞)), define

∥ f1∥2
H,t,τ :=

t

∑
t′=0

∫ ∞

nm0

r−2τ−1+2t′
(

f (t
′)

1 (r)
)2

dr, ∥ f2∥2
C,t,τ :=

t

∑
t′=0

sup
(

r−2τ+2t′( f2
(t′)(r))2

)
(3.12)
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We denote by Ht
τ([nm0, ∞)) and Ct

τ([nm0, ∞)) all functions f1 ∈ Ht
loc([nm0, ∞)

and f2 ∈ Ct([nm0, ∞)) in which ∥ f1∥H,t,τ < ∞ and ∥ f2∥C,t,τ < ∞ respec-
tively.

Using the above notation, we can then write equation (3.6) and (3.11) as
follows:

∥v∥2
H,(t→s),τ =

∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]s ∥vmℓ∥2
H,t,τ

∥w∥2
C,(t→s),τ =

∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]s ∥wmℓ∥2
C,t,τ (3.13)

We now return to the statement of the lemma. Recall from equation (3.4)
that

• ũ ∈ A(2,k+1)
δ (M) with coefficients amℓ ∈ H2

δ ([nm0, ∞))∩C2
δ([nm0, ∞)).

• F := ∆gsc ũ ∈ A(0,k−1)
δ−2 (M) with coefficients bmℓ ∈ L2

δ−2([nm0, ∞)) ∩
Cδ−2([nm0, ∞)).

• h := ũ(nm0) ∈ Hk+1(S2) with coefficients cmℓ.

To prove the lemma, it then suffices to show that there exist a constant
C > 0 independent of m and ℓ such that∥∥a′′mℓ

∥∥2
H,0,δ−2 + [1 + ℓ(ℓ+ 1)]

∥∥a′mℓ

∥∥2
H,0,δ−1 + [1 + ℓ(ℓ+ 1)]2 ∥amℓ∥2

H,0,δ

≤ C(∥bmℓ∥2
H,0,δ−2 + [1 + ℓ(ℓ+ 1)]3/2 |cmℓ|2)

( H-Est)

∥∥a′′mℓ

∥∥2
C,0,δ−2 + [1 + ℓ(ℓ+ 1)]

∥∥a′mℓ

∥∥2
C,0,δ−1 + [1 + ℓ(ℓ+ 1)]2 ∥amℓ∥2

C,0,δ

≤ C(∥bmℓ∥2
C,0,δ−2 + [1 + ℓ(ℓ+ 1)]2 |cmℓ|2)

( C-Est)
for each m and ℓ. Indeed, if we multiply H-Est and C-Est by [1 +

ℓ(ℓ+ 1)]k−1 and sum over m and ℓ, we get the two desired estimates in
the statement of the lemma. We will demonstrate this for H-Est: after
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multiplying H-Est by [1 + ℓ(ℓ+ 1)]k−1, we sum over m and ℓ to get the
following three estimates

∥ũ∥2
H,(2→k−1),δ

=
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]k−1 ∥amℓ∥2
H,2,δ

=
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]k−1
(∥∥a′′mℓ

∥∥2
H,0,δ−2 +

∥∥a′mℓ

∥∥2
H,0,δ−1 + ∥amℓ∥2

H,0,δ

)
≤ C

(
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]k−1 ∥bmℓ∥2
H,0,δ−2 +

∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]k+1/2|cmℓ|2
)

= C
(
∥F∥2

AH
(0,k−1)
δ−2

+ ∥h∥2
Hk+1/2(S2)

)

∥ũ∥2
H,(1→k),δ

=
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]k ∥amℓ∥2
H,1,δ

=
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]k
(∥∥a′mℓ

∥∥2
H,0,δ−1 + ∥amℓ∥2

H,0,δ

)
≤ C

(
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]k−1 ∥bmℓ∥2
H,0,δ−2 +

∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]k+1/2|cmℓ|2
)

= C
(
∥F∥2

AH
(0,k−1)
δ−2

+ ∥h∥2
Hk+1/2(S2)

)

∥ũ∥2
H,(0→k+1),δ

=
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]k+1 ∥amℓ∥2
H,0,δ

≤ C

(
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]k−1(∥bmℓ∥2
H,0,δ−2 +

∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[1 + ℓ(ℓ+ 1)]k+1/2|cmℓ|2
)

= C
(
∥F∥2

AH
(0,k−1)
δ−2

+ ∥h∥2
Hk+1/2(S2)

)
It then follows that
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∥ũ∥AH
(2,k+1)
δ

= max
{
∥u∥H,(2→k−1),δ , ∥u∥H,(1→k),δ , ∥u∥H,(0→k+1),δ

}
(3.14)

≤ C
(
∥F∥2

AH
(0,k−1)
δ−2

+ ∥h∥2
Hk+1/2(S2)

)
(3.15)

as needed.

The rest of the proof is then devoted to prove estimates H-Est and
C-Est.

We first introduce a piece of notation. Given 2 quantities α, β, we will
write α ≲ β if there exists a constant C > 0 depending only on n, m0 and
δ, such that α ≤ Cβ. In particular, the constant will not depend on ũ, F, h,
m, and ℓ. In this notation, the estimates that we will be proving are

∥∥a′′mℓ

∥∥2
H,0,δ−2 + [1 + ℓ(ℓ+ 1)]

∥∥a′mℓ(r)
∥∥2

H,0,δ−1 + [1 + ℓ(ℓ+ 1)]2 ∥amℓ(r)∥2
H,0,δ

≲ ∥bmℓ∥2
H,0,δ−2 + [1 + ℓ(ℓ+ 1)]3/2 |cmℓ|2

( H-Est)

∥∥a′′mℓ

∥∥2
C,0,δ−2 + [1 + ℓ(ℓ+ 1)]

∥∥a′mℓ(r)
∥∥2

C,0,δ−1 + [1 + ℓ(ℓ+ 1)]2 ∥amℓ(r)∥2
C,0,δ

≲ ∥bmℓ∥2
C,0,δ−2 + [1 + ℓ(ℓ+ 1)]2 |cmℓ|2

( C-Est)
for every m and ℓ.

The relation between ũ, F and h, namely F = ∆gsc ũ and h = ũ(nm0),
imply the following differential equation on the coefficients amℓ, bmℓ, and
cmℓ:

{
r(r − 2m0)a′′mℓ(r) + 2(r − m0)a′mℓ(r)− ℓ(ℓ+ 1)amℓ(r) = r(r − 2m0)bmℓ(r), r ∈ [nm0, ∞)

amℓ(nm0) = cmℓ

(3.16)
We first consider the case ℓ = 0. we integrate once the above differential

equation to get

r(r − 2m0)a′00(r) =
∫ r

nm0

s(s − 2m0)b00(s)ds + n(n − 2)m2
0a′00(nm0) (3.17)
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which immediately gives the following estimate on ∥a′00∥C,0,δ−1:∥∥a′00
∥∥

C,0,δ−1 ≲ ∥b00∥C,0,δ−2 + |a′00(nm0)| (3.18)

To estimate ∥a′00∥H,0,δ−1, we use equation (3.17) to get

∫ ∞

nm0

r−2δ+1(a′00(r))
2dr ≲

∫ ∞

nm0

r−2δ+1

r2(r − 2m0)2

(∫ r

nm0

s(s − 2m0)b00(s)ds
)2

dr + |a′00(nm0)|2

(3.19)

≲
∫ ∞

nm0

r−2δ+3(b00(r))2dr + |a′00(nm0)|2 (3.20)

where Hardy’s inequality was used in the last line. We then conclude
the following estimate on ∥a′00∥H,0,δ−1:∥∥a′00

∥∥
H,0,δ−1 ≲ ∥b00∥H,0,δ−2 + |a′00(nm0)| (3.21)

We divide equation (3.17) by r(r − 2m0) and integrate to get

a00(r) = c00 +
∫ r

nm0

1
s(s − 2m0)

∫ s

nm0

s′(s′− 2m0)b00(s′)ds′ds+ a′00(nm0) ln
(

n(r − 2m0)

(n − 2)r

)
n(n − 2)m0

2
(3.22)

which, in the same manner as for a′00, gives the following estimates:

∥a00∥C,0,δ ≲ |c00|+ ∥b00∥C,0,δ−2 + |a′00(nm0)| (3.23)

∥a00∥H,0,δ ≲ |c00|+ ∥b00∥H,0,δ−2 + |a′00(nm0)| (3.24)

Using the fact that a00 vanishes at infinity, we take the limit as r goes to
infinity in equation (3.22) to get the following expression for a′00(nm0) in
terms of c00 and b00:

a′00(nm0) =
2

n(n − 2) ln
( n

n−2

) (−c00 −
∫ ∞

nm0

1
r(r − 2m0)

∫ r

nm0

s(s − 2m0)b00(s)dsdr
)

(3.25)
which allows us to estimate a′00(nm0) to get

|a′00(nm0)| ≲ |c00|+ ∥b00∥H,0,δ−2 (3.26)

|a′00(nm0)| ≲ |c00|+ ∥b00∥C,0,δ−2 (3.27)
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We now get an estimate for a′′00(r). Using the ODE in (3.16) we isolate
for a′′00(r) to get:

a′′00(r) = b00(r)−
2(r − m0)

r(r − 2m0)
a′00(r) (3.28)

It then follows that∥∥a′′00
∥∥

C,0,δ−2 ≲ ∥b00∥C,0,δ−2 +
∥∥a′00

∥∥
C,0,δ−1 (3.29)∥∥a′′00

∥∥
H,0,δ−2 ≲ ∥b00∥H,0,δ−2 +

∥∥a′00
∥∥

H,0,δ−1 (3.30)

Combining the estimates for a00, a′00 and a′′00 in equations (3.23), (3.24),
(3.18), (3.21), (3.29) and (3.30) together with the estimates for |a′00(nm0)| in
equations (3.26) and (3.27), we finally deduce the desired estimates:

∥a00∥H,2,δ ≲ |c00|+ ∥b00∥H,0,δ−2 (3.31)

∥a00∥C,2,δ ≲ |c00|+ ∥b00∥C,0,δ−2 (3.32)

We now deal with the case ℓ ≥ 1.

Proving H-Est for ℓ ≥ 1

We multiply both sides of the differential equation in (3.16) by r−2δ−1amℓ(r)
and integrate by parts to obtain:

∫ ∞

nm0

r−2δ−1r(r − 2m0)a′2mℓ(r)dr +
∫ ∞

nm0

[
ℓ(ℓ+ 1) + (2δ + 1)

(
δ − m0(2δ + 1)

r

)]
r−2δ−1a2

mℓ(r)dr

= −
∫ ∞

nm0

r−2δ−1amℓ(r)bmℓ(r)dr − (nm0)
−2δm0(n − 2)cmℓa′mℓ(nm0) +

−2δ − 1
2

(nm0)
−2δ−1m0(n − 2)c2

mℓ

(3.33)

We observe that for ℓ ≥ 1,

ℓ(ℓ+ 1) + (2δ + 1)
(

δ − m0(2δ + 1)
r

)
> ℓ(ℓ+ 1)− 1

2
(3.34)

and, hence, we have that
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∥∥a′mℓ

∥∥2
H,0,δ−1 + [1 + ℓ(ℓ+ 1)] ∥amℓ∥2

H,0,δ ≲
∫ ∞

nm0

r−2δ−1r(r − 2m0)a′2mℓ(r)dr

+
∫ ∞

nm0

[
ℓ(ℓ+ 1) + (2δ + 1)

(
δ − m0(2δ + 1)

r

)]
r−2δ−1a2

mℓ(r)dr

(3.35)

Deriving an upper bound for the expression in right hand side of
equation (3.33) will then lead to an upper bound for

∥∥a′mℓ

∥∥2
H,0,δ−1 + [1 +

ℓ(ℓ+ 1)] ∥amℓ∥2
H,0,δ.

We obtain an estimate for a′mℓ(nm0) by multiplying equation (3.16) by
a′mℓ(r) and integrating by parts to get

∫ ∞

nm0

(r−m0)a′2mℓ(r)dr+ ℓ(ℓ+ 1)
1
2

c2
mℓ−

1
2

nm2
0(n− 2)a′2mℓ(nm0) =

∫ ∞

nm0

r(r− 2m0)a′mℓ(r)bmℓ(r)dr

(3.36)
where we used the fact that a′2mℓ(r)r(r − 2m0) = o(1) and a2

mℓ(r) = o(1).
By estimating the right side of the above equation as follows

∣∣∣∣∫ ∞

nm0

r(r − 2m0)a′mℓ(r)bmℓ(r)dr
∣∣∣∣ ≲ [ℓ(ℓ+ 1)]1/2 ∥∥a′mℓ

∥∥2
H,0,δ−1 +[ℓ(ℓ+ 1)]−1/2 ∥bmℓ∥2

H,0,δ−2 ,

(3.37)
we deduce that

|a′mℓ(nm0)| ≲ [ℓ(ℓ+ 1)]1/4 ∥∥a′mℓ

∥∥
H,0,δ−1 +[ℓ(ℓ+ 1)]−1/4 ∥bmℓ∥H,0,δ−2 +[ℓ(ℓ+ 1)]1/2|cmℓ|

(3.38)

We can now estimate the right hand side of equation (3.33) to get

−
∫ ∞

nm0

r−2δ−1amℓ(r)bmℓ(r)dr − (nm0)
−2δm0(n − 2)cmℓa′mℓ(nm0) +

−2δ − 1
2

(nm0)
−2δ−1m0(n − 2)c2

mℓ

≲ ∥amℓ∥H,0,δ ∥bmℓ∥H,0,δ−2 + |cmℓ|
(
[ℓ(ℓ+ 1)]1/4 ∥∥a′mℓ

∥∥
H,0,δ−1 + [ℓ(ℓ+ 1)]−1/4 ∥bmℓ∥H,0,δ−2 + [ℓ(ℓ+ 1)]1/2|cmℓ|

)
+ c2

mℓ (3.39)

We estimate each term appearing in the right hand side of the above
equation. Let ϵ > 0 that will be chosen to be small later on. Then we have
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∥amℓ∥H,0,δ ∥bmℓ∥H,0,δ−2 ≤ ϵℓ(ℓ+ 1) ∥amℓ∥2
H,0,δ +

D(ϵ)

ℓ(ℓ+ 1)
∥bmℓ∥2

H,0,δ−2

(3.40)

cmℓ ∥bmℓ∥H,0,δ−2 ≤ [ℓ(ℓ+ 1)]3/4

2
c2

mℓ +
1

2[ℓ(ℓ+ 1)]3/4 ∥bmℓ∥2
H,0,δ−2 (3.41)

cmℓ

∥∥a′mℓ

∥∥
H,0,δ−1 ≤ ϵ[ℓ(ℓ+ 1)]−1/4 ∥∥a′mℓ

∥∥2
H,0,δ−1 + D(ϵ)[ℓ(ℓ+ 1)]1/4c2

mℓ

(3.42)
where D = D(ϵ) is a constant depending on ϵ.

Combining the above, we get

∥∥a′mℓ

∥∥2
H,0,δ−1 + [1 + ℓ(ℓ+ 1)] ∥amℓ∥2

H,0,δ (3.43)

≤ Cϵ
(
ℓ(ℓ+ 1) ∥amℓ∥2

H,0,δ +
∥∥a′mℓ

∥∥2
H,0,δ−1

)
+ CD(ϵ)

(
[ℓ(ℓ+ 1)]1/2c2

mℓ +
1

ℓ(ℓ+ 1)
∥bmℓ∥2

H,0,δ−2

)
(3.44)

for some constant C > 0 that only depends on n, m0, and δ. Choosing ϵ

to be small, we can absorb the expression multiplied to Cϵ in the above
equation to the left hand side to finally deduce

∥∥a′mℓ

∥∥2
H,0,δ−1 + [1 + ℓ(ℓ+ 1)] ∥amℓ∥2

H,0,δ ≲ [1 + ℓ(ℓ+ 1)]−1 ∥bmℓ∥2
H,0,δ−2 + [1 + ℓ(ℓ+ 1)]1/2c2

mℓ

(3.45)

which is the desired estimate for
∥∥a′mℓ

∥∥
H,0,δ−1 and ∥amℓ∥H,0,δ.

What is left is to estimate
∥∥a′′mℓ

∥∥
H,0,δ−2. We use the ODE in (3.16) to get

r−2δ−1r2(r− 2m0)
2 (a′′mℓ(r)

)2
= r−2δ−1

[
bmℓ(r)+ ℓ(ℓ+ 1)amℓ(r)− 2(r−m0)a′mℓ(r)

]2

(3.46)
We can then estimate
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∥∥a′′mℓ

∥∥2
H,0,δ−2 ≲ ∥bmℓ∥2

H,0,δ−2 + [1 + ℓ(ℓ+ 1)]2 ∥amℓ∥2
H,0,δ +

∥∥a′mℓ

∥∥2
H,0,δ−1 + ℓ(ℓ+ 1) ∥bmℓ∥H,0,δ−2 ∥amℓ∥H,0,δ

+
∥∥a′mℓ

∥∥
H,0,δ−1 ∥bmℓ∥H,0,δ−2 + ℓ(ℓ+ 1) ∥amℓ∥H,0,δ

∥∥a′mℓ

∥∥
H,0,δ−1

(3.47)

≲ [1 + ℓ(ℓ+ 1)]
∥∥a′mℓ

∥∥2
H,0,δ−1 + [1 + ℓ(ℓ+ 1)]2 ∥amℓ∥2

H,0,δ + ∥bmℓ∥2
H,0,δ−2

(3.48)

≲ [1 + ℓ(ℓ+ 1)]3/2c2
mℓ + ∥bmℓ∥2

H,0,δ−2 (3.49)

where we used equation (3.45) in the last line. Combining the above
equation with equation (3.45), we finally get the desired estimate H-Est:∥∥a′′mℓ

∥∥2
H,0,δ−2 +[1+ ℓ(ℓ+ 1)]

∥∥a′mℓ

∥∥2
H,0,δ−1 +[1+ ℓ(ℓ+ 1)]2 ∥amℓ∥2

H,0,δ ≲ ∥bmℓ∥2
H,0,δ−2 +[1+ ℓ(ℓ+ 1)]3/2c2

mℓ

(3.50)

Proving C-Est for ℓ ≥ 1

For r ∈ [nm0, ∞) define

z :=
r

m0
− 1, R := n− 1, hmℓ(z) := amℓ(r), fmℓ(z) := r(r− 2m0)bmℓ(r)

Note that R > 1 since n > 2. The desired estimate in C-Est in terms of h
is then

∥∥h′′mℓ

∥∥2
C,0,δ−2 +[1+ ℓ(ℓ+ 1)]

∥∥h′mℓ

∥∥2
C,0,δ−1 +[1+ ℓ(ℓ+ 1)]2 ∥hmℓ∥2

C,0,δ ≲ ∥ fmℓ∥2
C,0,δ +[1+ ℓ(ℓ+ 1)]2c2

mℓ

(C-Est′)
The IVP for amℓ in (3.16) becomes


(z2 − 1)h′′mℓ(z) + 2zh′mℓ(z)− ℓ(ℓ+ 1)hmℓ(z) = fmℓ(z), z ∈ [R, ∞)

hmℓ(R) = cmℓ

hmℓ ∈ H2
δ ([R, ∞)) ∩ C2

δ([R, ∞))

(3.51)
The above ODE is the Legendre differential equation; the Legendre func-

tions of the first and second kind, Pℓ and Qℓ, are two linearly independent
solutions to the homogeneous equation in (3.51) (i.e. with fmℓ = 0) satis-
fying the following asymptotics as z → ∞ (see [OR14] chapter 5 section
12):
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Pℓ(z) = O(zℓ), Qℓ(z) = O(z−ℓ−1) (3.52)

We will frequently use some properties of those functions discussed and
proved in section A.3 in the Appendix.

We normalize Pℓ and Qℓ so that

lim
z→∞

z−ℓPℓ(z) = 1, lim
z→∞

zℓ+1Qℓ(z) = 1 (3.53)

Using the method of Frobenius, we can expand Pℓ and Qℓ as a sum
of powers of z on [R, ∞), which we present in proposition A.4 in the
Appendix. We rewrite the proposition here for convenience.

Proposition 3.4. Pℓ and Qℓ admit an expansion of the following form. For z > 1,

Pℓ(z) =
ℓ

∑
k=0

akzℓ−k, Qℓ(z) =
∞

∑
k=0

bkz−ℓ−1−k (3.54)

where the coefficients ak and bk are defined recursively as follows:

a0 = b0 = 1, a1 = b1 = 0

for k ≥ 2, ak =
(ℓ− k + 2)(ℓ− k + 1)

k2 − k(2ℓ+ 1)
ak−2, bk =

(ℓ+ k − 1)(ℓ+ k)
k(2ℓ+ k + 1)

bk−2

We observe immediately from the above that Qℓ(z) is positive and
zℓ+1Qℓ(z) is decreasing on [R, ∞).

Using the variation of parameters method (see [BO13]), we can explicitly
write the solution to (3.51):

hmℓ(z) = AQℓ(z)+ Pℓ(z)
∫ ∞

z
Qℓ(t) fmℓ(t)[W(t)(t2 − 1)]−1dt+Qℓ(z)

∫ z

R
Pℓ(t) fmℓ(t)[W(t)(t2 − 1)]−1dt

(3.55)
where W(t) := Pℓ(t)Q′

ℓ(t)− P′
ℓ(t)Qℓ(t) is the Wronskian and A is de-

fined by

A =
1

Qℓ(R)

(
cmℓ − Pℓ(R)

∫ ∞

R
Qℓ(t) fmℓ(t)[W(t)(t2 − 1)]−1dt

)
(3.56)

Note that W(t)(t2 − 1) is a constant by Lagrange’s identity (see [Ric02] pg
354). We compute that constant to be 2ℓ+ 1 by taking the limit as z goes
to ∞ in the expansion of Pℓ and Qℓ.
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We summarize here some estimates on the Legendre functions uniform
in z and ℓ that we prove in the Appendix (check proposition A.5): There
exists a constant C = C(R) such that for any ℓ ≥ 1 and z ∈ [R, ∞), the
following holds

z−ℓ|Pℓ(z)| ≤ C
(

2z
z +

√
z2 − 1

)−ℓ

, zℓ+1|Qℓ(z)| ≤ C
(

2z
z +

√
z2 − 1

)ℓ

(3.57)

z−(ℓ−1)|P′
ℓ(z)| ≤ Cℓ

(
2z

z +
√

z2 − 1

)−ℓ

, zℓ+2|Q′
ℓ(z)| ≤ Cℓ

(
2z

z +
√

z2 − 1

)ℓ

(3.58)
We note that the function 2z

z+
√

z2−1
is decreasing on [R, ∞) and is bounded

below and above by 1 and 2 respectively. Using the expression for hmℓ in
equation (3.55) and the uniform bounds of Pℓ and Qℓ in equation (3.57),
we obtain

z−δ|hmℓ(z)| ≤ z−δ|A||Qℓ(z)|+ z−δ 1
2ℓ+ 1

|Pℓ(z)|
∫ ∞

z
|Qℓ(t)|| fmℓ(t)|dt + z−δ 1

2ℓ+ 1
|Qℓ(z)|

∫ z

R
|Pℓ(t)|| fmℓ(t)|dt

(3.59)

≤ z−δ|A|Qℓ(R)Rℓ+1z−ℓ−1

+
C2

2ℓ+ 1

(
sup
t≥R

t−δ| fmℓ(t)|
)

zℓ−δ

(
2z

z +
√

z2 − 1

)−ℓ ∫ ∞

z

(
2t

t +
√

t2 − 1

)ℓ

t−ℓ−1tδdt

+
C2

2ℓ+ 1

(
sup
t≥R

t−δ| fmℓ(t)|
)

z−ℓ−1−δ

(
2z

z +
√

z2 − 1

)ℓ ∫ z

R

(
2t

t +
√

t2 − 1

)−ℓ

tℓtδdt

(3.60)

≤ |A|Qℓ(R)R−δ +
C2

2ℓ+ 1

(
sup
t≥R

t−δ| fmℓ(t)|
)(

1
ℓ− δ

+
1

ℓ+ 1 + δ

(
1 − (

R
z
)ℓ+δ+1

))
(3.61)

It immediately follows that

∥hmℓ∥C,0,δ ≲ |A|Qℓ(R) + ℓ−2 ∥ fmℓ∥C,0,δ (3.62)

To derive an estimate for |A|Qℓ(R), we use equation (3.56) to get
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|A|Qℓ(R) ≤ |cmℓ|+
C2

2ℓ+ 1

(
sup
t≥R

t−δ| fmℓ(t)|
)

Rℓ

(
2R

R +
√

R2 − 1

)−ℓ ∫ ∞

R

(
2t

t +
√

t2 − 1

)ℓ

t−ℓ−1tδdt

(3.63)

≤ |cmℓ|+
C2Rδ

(2ℓ+ 1)(ℓ− δ)

(
sup
t≥R

t−δ| fmℓ(t)|
)

(3.64)

The above estimate for |A|Qℓ(R) together with equation (3.62) implies

∥hmℓ∥C,0,δ ≲ |cmℓ|+ ℓ−2 ∥ fmℓ∥C,0,δ (3.65)

To achieve an estimate for
∥∥h′mℓ

∥∥
C,0,δ−1, we take the derivative of equa-

tion (3.55) to get

h′mℓ(z) = AQ′
ℓ(z)+

1
2ℓ+ 1

P′
ℓ(z)

∫ ∞

z
Qℓ(t) fmℓ(t)dt+

1
2ℓ+ 1

Q′
ℓ(z)

∫ z

R
Pℓ(t) fmℓ(t)dt

(3.66)
In a similar manner, we will apply the uniform bounds on Pℓ and Qℓ in
equations (3.57) and (3.58) to obtain the desired estimate for

∥∥h′mℓ

∥∥
C,0,δ−1.

Using the above equation for h′mℓ as well as equations (3.57) and (3.58), we
get

z−δ+1|h′mℓ(z)| ≤ z−δ+1|A||Q′
ℓ(z)|

+ z−δ+1 1
2ℓ+ 1

|P′
ℓ(z)|

∫ ∞

z
|Qℓ(t)|| fmℓ(t)|dt + z−δ+1 1

2ℓ+ 1
|Q′

ℓ(z)|
∫ z

R
|Pℓ(t)|| fmℓ(t)|dt

(3.67)

≤ z−δ+1|A||Q′
ℓ(z)|

+
C2ℓ

2ℓ+ 1

(
sup
t≥R

t−δ| fmℓ(t)|
)

zℓ−δ

(
2z

z +
√

z2 − 1

)−ℓ ∫ ∞

z

(
2t

t +
√

t2 − 1

)ℓ

t−ℓ−1tδdt

+
C2ℓ

2ℓ+ 1

(
sup
t≥R

t−δ| fmℓ(t)|
)

z−ℓ−1−δ

(
2z

z +
√

z2 − 1

)ℓ ∫ z

R

(
2t

t +
√

t2 − 1

)−ℓ

tℓtδdt

(3.68)

≤ z−δ+1|A||Q′
ℓ(z)|+

C2ℓ

2ℓ+ 1

(
sup
t≥R

t−δ| fmℓ(t)|
)(

1
ℓ− δ

+
1

ℓ+ 1 + δ

(
1 − (

R
z
)ℓ+δ+1

))
(3.69)



solvability of elliptic bvp in AH
(2,k)
δ (M) and AC

(2,k)
δ (M) 29

We estimate the term z−δ+1|A||Q′
ℓ(z)|. First, we observe from the expan-

sion of Qℓ(z) in proposition A.4 that zℓ+2Q′
ℓ(z) is negative and increasing

on [R, ∞), which in particular implies that

z−δ+1|A||Q′
ℓ(z)| ≤ z−δ+1|A||Q′

ℓ(R)|Rℓ+2z−ℓ−2 (3.70)

≤ z−δ−1
(

R
z

)ℓ

R2|A||Q′
ℓ(R)| (3.71)

≤ R−δ+1|A||Q′
ℓ(R)| (3.72)

We then use the recursive relation for Qℓ in equation (A.44) to deduce
that

|Q′
ℓ(R)| = ℓ

R2 − 1
(−RQℓ(R) + Qℓ−1(R)) (3.73)

<
ℓ

R2 − 1
Qℓ−1(R) (3.74)

which, in light of equations (3.72) and (3.64), implies that

z−δ−1|A||Q′
ℓ(z)| ≤

ℓR−δ+1

R2 − 1
|A|Qℓ−1(R) (3.75)

≤ ℓR−δ+1

R2 − 1

(
|cmℓ|+

C2Rδ

(2ℓ− 1)(ℓ− 1 − δ)

(
sup
t≥R

t−δ| fmℓ(t)|
))

(3.76)

The above together with equation (3.69) finally lead to the desired estimate
for
∥∥h′mℓ

∥∥
C,0,δ−1: ∥∥h′mℓ

∥∥
C,0,δ−1 ≲ ℓ|cmℓ|+ ℓ−1 ∥ fmℓ∥C,0,δ (3.77)

What is left is estimating
∥∥h′′mℓ

∥∥
C,0,δ−2. Using the ODE satisfied by hmℓ

in (3.51), we have

z2−δh′′mℓ(z) = −2
z3−δ

z2 − 1
h′mℓ(z)+

ℓ(ℓ+ 1)z2−δ

z2 − 1
hmℓ(z)+

z2−δ

z2 − 1
fmℓ(z) (3.78)

which then, using equations (3.65) and (3.77) implies

∥∥h′′mℓ

∥∥
C,0,δ−2 ≲

∥∥h′mℓ

∥∥
C,0,δ−1 + ℓ(ℓ+ 1) ∥hmℓ∥C,0,δ + ∥ fmℓ∥C,0,δ (3.79)

≲ ℓ2|cmℓ|+ ∥ fmℓ∥C,0,δ (3.80)
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The above equation together with equations (3.65) and (3.77) finally
imply the desired estimate:

∥∥h′′mℓ

∥∥2
C,0,δ−2 +[1+ ℓ(ℓ+ 1)]

∥∥h′mℓ

∥∥2
C,0,δ−1 +[1+ ℓ(ℓ+ 1)]2 ∥hmℓ∥2

C,0,δ ≲ ∥ fmℓ∥2
C,0,δ +[1+ ℓ(ℓ+ 1)]2c2

mℓ

(C-Est′)

This concludes the proof of the lemma.



4
R E D U C T I O N O F T H E
P R O B L E M

In this section, we reduce the static Einstein vacuum equations into a
simpler system involving ODEs, the Laplace equation on M, and first
order partial differential equations on ∂M.

Let g be a metric on M of the form dr2 + g(r), where g(r) is a metric on
S2 for each r ∈ [nm0, ∞). The level sets of the function r defines a foliation
with leaves denoted by Sr. We define the unit vector field n := ∂

∂r that is
normal to the foliation. We denote by /∇ and ��div the covariant derivative
and divergence with respect to the induced metric g(r) on Sr, and /d the
exterior derivative on Sr.

We then define the second fundamental form K as the (0, 2) symmetric
tensor field on M that is tangential to the leaves Sr of the foliation and
satisfies:

K(X, Y) := g(∇nX, Y) (4.1)

for vector fields X, Y on M that are tangential to Sr. We will decompose K
into the sum of its traceless and trace parts:

K = K̂ +
1
2

trK g

Note that Hessg(r) = K and ∆gr = trK.

The following equations on the leaves Sr describe the evolution of the
geometry on M in terms of K and Ric (see [CK93] and [KN12]). Given
coordinates (r, θ1, θ2) on M,

∂rtrK +
1
2
(trK)2 + |K̂|2 = −R00 (4.2)

∇rK̂ij + trKK̂ij = −
[

Rij +
1
2

gij(R00 − R)
]

(4.3)

31
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RSr −
1
2
(trK)2 + |K̂|2 = R − 2R00 (4.4)

/∇jK̂ji −
1
2

/∇itrK = R0i (4.5)

∂rgij = 2K̂ij + trK gij (4.6)

where i, j = 1, 2, RSr is the scalar curvature of (Sr, g(r)), R is the scalar
curvature on (M, g), and /∇ is the connection on (Sr, g(r)). Moreover,
R00 := Ric(n, n) and R0i := Ric(n, ∂

∂θi ) for i = 1, 2.

We note that the left side of equation (4.3) can be simplified as follows

∇rK̂ij + trKK̂ij = ∂rK̂ij − 2Γl
0jK̂il + trKK̂ij (4.7)

= ∂rK̂ij (4.8)

Equation (4.3) can then be written as follows:

(L ∂
∂r

K̂)ij = −
[

Rij +
1
2

gij(R00 − R)
]

(4.9)

The above equations determine all the components of the Ricci curvature
of g. More specifically, if the right hand sides of equations (4.2) to (4.5) are
known on all the leaves, then the Ricci curvature can be fully recovered.
In fact, if we in addition know that (g, u) solves the conformal static
vacuum Einstein equations for some function u on M, then, due to the
contracted Bianchi identities, equations (4.4) and (4.5) need only to be
imposed on the boundary for the Ricci curvature to be fully recovered.
The next proposition will prove this fact and will demonstrate the desired
reduction of our problem.

Reduction Theorem. Let (γB, 1
2 trKB) be Bartnik data. Let g = dr2 + g(r)

and u be a metric and function on M respectively, where g(r) is a metric on S2

for every r ∈ [nm0, ∞). The pair (g, f ) = (e−2ug, eu) solves the static Einstein
vacuum equations with Bartnik data (γB, 1

2 trKB) if and only if (g, u) satisfies



reduction of the problem 33

∆gu = 0, on M (4.10)

∂rtrK +
1
2

trK2 + |K̂|2 + 2(∂ru)2 = 0, on M (4.11)

L ∂
∂r

K̂ +
[
2/du ⊗ /du + g(r)

(
(∂ru)2 − |∇u|2

)]
= 0, on M (4.12)

2|/∇u|2 − 2(∂ru)2 − |K̂|2 − R∂M +
1
2

trK2 = 0, on ∂M (4.13)

2(∂ru)/du −��div(K̂) +
1
2

/dtrK = 0, on ∂M (4.14)

e−2ug
∣∣
∂M = γB, on ∂M (4.15)

eu (trK|∂M − 2∂ru) = trKB, on ∂M (4.16)

Proof. The “only if " direction is clear from equations (4.2) to (4.5). We
prove the “if " direction.

Suppose (g, u) satisfy equations (4.10) to (4.16). It suffices to show that
Ric = 2du ⊗ du. We first decompose the Ricci curvature of g with respect
to the foliation. Let Π be the (1, 1) projection tensor field defined by

Πµ
ν = δ

µ
ν − nµnν (4.17)

We then define the function Q, the 1-form P tangential to the foliation, and
the (0, 2) symmetric tensor field S tangential to the foliation as follows:

Q := Ric(n, n), Pµ := Πµ′

µ nνRµ′ν, Sµν := Πµ′

µ Πν′
ν Rµ′ν′ (4.18)

The Ricci curvature of g can then be written in the following way:

Ric = Qn ⊗ n + P ⊗ n + n ⊗ P + S (4.19)

where n is the 1-form achieved by lowering the index for n. We will omit
the underbar when we write n in components.

Define the function H on M and the 1-form A tangent to the foliation in
the following way:

H := R − 2|∇u|2 (4.20)

A := P − 2n(u)/du (4.21)
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We now compare equations (4.2) - (4.5) with equations (4.11) - (4.14).
From Equation (4.2) and (4.11), we deduce on M that

Q = 2n(u)2 (4.22)

From equation (4.9) and (4.12), we deduce on M that

S = 2/du ⊗ /du +
1
2

γH (4.23)

We also have by definition of A:

P = 2n(u)/du + A (4.24)

From equation (4.4) and (4.13), it follows that on ∂M,

R − 2Q = 2|∇u|2 − 4n(u)2 (4.25)

which gives us:
H|∂M = 0 (4.26)

From equation (4.5) and (4.14), we get:

A|∂M = 0

To prove the statement, we just need to show that H, A = 0.

We first prove the following lemma.

Lemma 4.1. Let dr2 + g(r) be a metric on M where g(r) is a metric on S2 for
every r ∈ [nm0, ∞). Suppose that the Ricci decomposition relative to the foliation
defined by r, as written in equation (4.19), is

Q = 2n(u)2, P = 2n(u)/du + A, S = 2/du ⊗ /du +
1
2

g(r)H (4.27)

where u is a harmonic function on M, H is a function, and A is a 1-form tangent
to the foliation.

Then A and H satisfy

(∇n A)k + AiKi
k + trKAk = 0 (4.28)

∇nH + HtrK = 2div(A) (4.29)
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Proof. Recall the second Bianchi identity:

1
2
∇νR = ∇µRνµ (4.30)

where µ, ν = 0, 1, 2.
We can write the Ricci curvature as follows:

Ric = Qn ⊗ n + P ⊗ n + n ⊗ P + S (4.31)

We compute the divergence of the tensor 2du ⊗ du to be:

∇µ(2du ⊗ du)µν = 2∇µduµduν + 2duµ∇µduν (4.32)

= ∆u duν + 2Hess(u)(∇u, ∂ν) (4.33)

= ∇ν|∇u|2 (4.34)

where ∆u = 0 was used in the last line. Using the Bianchi identities, we
get

1
2
∇νR = ∇µ

(
2du ⊗ du + A ⊗ n + n ⊗ A +

1
2

Hγ

)
µν

(4.35)

= ∇µ(2du ⊗ du)µν +∇µ Aµnν + Aµ∇µnν +∇µnµ Aν + nµ∇µ Aν

(4.36)

+
1
2
∇ν′ HΠν′

ν +
1
2

H∇µ(gµν − nµnν)

= ∇ν|∇u|2 +∇µ Aµnν + AµKµ
ν + trKAν +∇n Aν (4.37)

+
1
2
∇ν′ HΠν′

ν − 1
2

HtrKnν

where Πν′
µ = δν′

µ − nν′nµ. We also used the fact that γµν = gµ′ν′Π
µ′

µ Πν′
ν =

gµν − nµnν.

Using fermi coordinates (r, θ1, θ2) and letting ν = i = 1, 2 , we get

(∇n A)i + AjK
j
i + trKAi = 0 (4.38)

Letting ν = 0, we get

∇nH + HtrK = 2∇µ Aµ (4.39)

as desired.
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We then have that A satisfies,{
(∇n A)k + AiKi

k + trKAk = 0, on M

A = 0, on ∂M
(4.40)

By the existence and uniqueness theory of ODEs, it follows that A = 0.

Since div(A) = 0, we get that H satisfies{
∇nH + HtrK = 0, on M

H = 0, on ∂M
(4.41)

By invoking again the existence and uniqueness theorem of ODEs, we
deduce that H = 0.



5
P R O O F O F T H E M A I N

T H E O R E M

The reduction theorem in section 4 suggests that we study the map

Ψ : Mk+1(∂M)× Hk(∂M)×Mk
δ(M)×A(2,k+1)

δ

→ A(0,k−1)
δ−2 (M)× L2

δ−2

(
[nm0, ∞); Hk(S2)

)
× L2

δ−2

(
[nm0, ∞);Hk(S2)

)
× Hk−1(∂M)× Ωk−1(∂M)×Hk(∂M)× Hk(∂M)

Ψ(γB,
1
2

trKB, g, u) :=



∆gu

∂rtrK + 1
2 trK2 + |K̂|2 + 2(∂ru)2

L ∂
∂r

K̂ +
[
2/du ⊗ /du + g(r)

(
(∂ru)2 − |∇u|2

)]
2|/∇u|2 − 2(∂ru)2 − |K̂|2 − R∂M + 1

2 trK2

2(∂ru)/du −��div(K̂) + 1
2 /dtrK

e−2ug
∣∣
∂M − γB

trK|∂M − e−u (trKB + 2eu∂ru)


(5.1)

where trK and K̂ are with respect to the metric g, and R∂M is with respect
to the metric e2uγB. Furthermore, norms |·| used in the second, third and
fourth line are with respect to the metric g.

We wish to show that there exists a map taking Bartnik data (γB, 1
2 trKB)

close to Schwarzchild data to a pair (g, u) satisfying Ψ(γB, 1
2 trKB, g, u) =

0, showing that (g, f ) = (e−2ug, eu) solves the static Einstein vacuum
equations with Bartnik data (γB, 1

2 trKB). This can be achieved by first
attempting to show that the linearization of Ψ with respect to (g, u) at
(γgsc ,

1
2 trKgsc , gsc, usc) is an isomorphism, or merely surjective, and then

37
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invoking the implicit function theorem. However, the linearization of the
contracted Codazzi equation, in the fifth line of the definition of Ψ, leads
to obstructions to surjectivity stemming from the divergence operator
acting on symmetric traceless tensors on S2. More specifically, we are faced
with the cokernel of the divergence operator: a 6-dimensional space of
obstructions equal to the space of conformal Killing vector fields on S2.

This difficulty does not preclude the possibility of finding solutions
given arbitrary Bartnik data close to Schwarzchild data. A similar situation
arises when one attempts to show the existence of metrics on the sphere
with prescribed scalar curvature (see [KW75]). The operator of study will
not satisfy the conditions for the inverse function theorem, yet existence
holds as shown in [AH21]. In our case, we circumvent this difficulty by
introducing an artificial object, in the form of a vector field X, to the
meaning of a solution to our problem, proving its existence using the
implicit function theorem, and then finally showing that this vector field
X vanishes, yielding a solution to the original problem.

5.1 definition of the artificial vector field X

As explained in the introduction of section 5, the contracted Codazzi
equations give rise to obstructions that are in correspondence with the
space of conformal Killing vector fields on S2. We will overcome these
seeming obstructions by introducing an artificial vector field X to the
definition of a solution; this means that the solution will consist of a metric
g, a function u, and a vector field X. This needs to be done in a way so
that, firstly, the corresponding modified problem is solvable, and secondly,
the artificial vector field, in fact, vanishes for a solution to the modified
problem, yielding a solution to the original problem. To achieve this, the
artificial vector field X needs to be carefully defined, which will require a
certain way of uniquely extending conformal Killing fields from S2 to the
ambient manifold M. This procedure will be outlined in this section.

Notably, Huang and An have also introduced an artificial vector field X
in [AH21] and [AH22b] for analogous purposes; specifically, they define
X to be a vector field that vanishes on the boundary and asymptotically
approaches a Killing vector field at infinity. In contrast, we will define

X to be a vector field that satisfies
(
L ∂

∂r
X
)T

= 0 on the boundary and
asymptotically approaches a conformal killing vector field on (M, gsc) that
restricts to a conformal Killing vector field on (∂M, γS2).
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Given a a metric g and a vector field X on M, we denote by Lg,con f X
and ∆g,con f X the conformal Lie derivative of g with respect to X and the
conformal laplacian of X defined by

Lg,con f X := L̂Xg, ∆g,con f X := divg
(
Lg,con f X

)
(5.2)

where L̂Xg is the traceless part of LXg. It follows that X is conformal
Killing on (M, g) if and only if Lg,con f X = 0.

Definition 5.1. Given a conformal Killing vector field XCK on (∂M, γS2),
we denote by XCK the unique vector field on (M, gsc) extending XCK on
∂M and satisfying the evolution equation

L ∂
∂r

XCK = 0, in M (5.3)

Also, we will use “��divγ
S2 (XCK)” to denote both the divergence of XCK on

(∂M, γS2) and the same function extended to a function on M independent
of r. It should be clear from context which one we are referring to.

Definition 5.2. Define the space X∞ as the space of conformal killing
vector fields X∞ on (M, gsc) of the form

X∞ = f (r)
(
��divγ

S2 (XCK)

)
∂

∂r
+ h(r)XCK (5.4)

where f = f (r) and h = h(r) are smooth functions on M such that f = 0
and h = 1 on ∂M and XCK is a conformal Killing vector field on (∂M, γS2).

In the case that XCK is Killing, equation (5.4) becomes

X∞ = h(r)XCK (5.5)

Lemma 5.3. Let XCK be a nontrivial conformal Killing vector field on (∂M, γS2).

(a) Suppose XCK is Killing on (∂M, γS2). Then h ≡ 1 is the unique smooth
function h = h(r) on M in which h = 1 on ∂M and X∞, defined by
equation (5.5), is conformal Killing on (M, gsc). In fact, X∞ would also be
Killing.

(b) Suppose XCK is not Killing on (∂M, γS2). There exists unique smooth
functions f = f (r) and h = h(r) on M such that f ≡ 0, h ≡ 1 on ∂M
and the vector field X∞ defined by (5.4) is conformal Killing on (M, gsc).
Furthermore, f = O(r2) and h = O(r2).
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In particular, X∞ is a 6 dimensional vector space of conformal Killing vector fields
on (M, gsc).

Proof. We will repeatedly use the following identity of the Lie derivative:
for any vector fields X, Y, Z and any (0, 2) tensor field T on M,

[
LXT

]
(Y, Z) = X

(
T(Y, Z)

)
− T([X, Y], Z)− T(Y, [X, Z]) (5.6)

We first prove (a). Suppose XCK is Killing on (∂M, γS2). It is clear that
h(r)XCK is Killing on (M, gsc) for h ≡ 1 on M as it is a rotation vector on
the spherically symmetric Schwarzschild manifold. Now suppose h = h(r)
is a smooth function such that h ≡ 1 on ∂M and h(r)XCK is conformal
Killing on M. In particular, we have that

0 =
[
Lh(r)XCK

gsc

] ( ∂

∂r
, XCK

)
(5.7)

= gsc

([
∂

∂r
, h(r)XCK

]
, XCK

)
+ gsc

([
Y, h(r)XCK

]
,

∂

∂r

)
(5.8)

= h′(r)gsc(XCK, XCK) (5.9)

In view of the fact that XCK ̸= 0, it follows that h′ ≡ 0 and so h ≡ 1 on M
as needed.

We now prove (b). Suppose XCK is not Killing on (∂M, γS2). Let f = f (r)
and h = h(r) be smooth functions on M. Recall that the metric gsc can be
written as

gsc = dr2 + r(r − 2m0)γS2

Only for the proof of this lemma, we will denote the function ��divγ
S2 (XCK)

by BXCK for simplicity of the notation. Recall that BXCK is understood as a
function on M or a function on ∂M depending on the context, and that
BXCK as a function on M is constant in r.

Since XCK is not Killing, we have that BXCK is nonzero. Moreover, after
fixing a spherical coordinate system on ∂M, the vector field XCK can
be written as a linear combination of the vector fields /∇γ

S2 Yℓ=1
m , for m =

−1, 0, 1, where Yℓ=1
m are the ℓ = 1 spherical harmonics on ∂M. In particular,

it holds that

/∇γ
S2 BXCK = −2XCK (5.10)
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This implies that

∇gsc (BXCK) =
1

r(r − 2m0)
/∇γ

S2 (BXCK) (5.11)

= − 2
r(r − 2m0)

XCK (5.12)

For X∞ := f (r)BXCK
∂
∂r + h(r)XCK and arbitrary vector fields Y, Z tangent

to the foliation, we compute

[
LX∞ gsc

] ( ∂

∂r
,

∂

∂r

)
= 2gsc

([
∂

∂r
, X∞

]
,

∂

∂r

)
(5.13)

= 2 f ′(r)BXCK (5.14)

[
LX∞ gsc

] ( ∂

∂r
, Y
)
= gsc

([
∂

∂r
, X∞

]
, Y
)
+ gsc

(
[Y, X∞] ,

∂

∂r

)
(5.15)

= h′(r)gsc(XCK, Y) + f (r)Y (BXCK) (5.16)

= h′(r)gsc(XCK, Y) + f (r)gsc (∇BXCK , Y) (5.17)

=

(
h′(r)− 2

r(r − 2m0)
f (r)

)
gsc(XCK, Y) (5.18)

[
LX∞ gsc

]
(Y, Z) =

[
L f (r)BXCK

∂
∂r

gsc

]
(Y, Z) +

[
Lh(r)XCK

gsc

]
(Y, Z) (5.19)

= f (r) BXCK trKsc gsc(Y, Z) + r(r − 2m0)h(r)
[
LXCK γS2

]
(Y, Z)

(5.20)

= f (r) BXCK trKsc gsc(Y, Z) + r(r − 2m0)h(r) BXCK γS2(Y, Z)
(5.21)

= [ f (r)trKsc + h(r)] BXCK gsc(Y, Z) (5.22)

In the above calculation, we used the fact that XCK is conformal Killing
on each leaf and hence LXCK γS2 = BXCK γS2 .

It follows that LX∞ gsc is conformal to gsc, f ≡ 0 and h ≡ 1 on ∂M if and
only if the pair ( f , h) satisfy the following on [nm0, ∞).



5.1 definition of the artificial vector field X 42


2 f ′(r) = f (r)trKsc + h(r),

h′(r) = 2
r(r−2m0)

f (r),

f (nm0) = 0,

h(nm0) = 1

(5.23)

This decouples to the following initial value problems for f and h on
[nm0, ∞). 

f ′′(r)− (r−m0)
r(r−2m0)

f ′(r) + 2m2
0

r2(r−2m0)2 f (r) = 0

f (nm0) = 0

f ′(nm0) =
1
2

(5.24)

{
h′(r) = 2

r(r−2m0)
f (r)

h(nm0) = 1
(5.25)

Invoking the existence and uniqueness theorem for ODEs, it follows that
there exists unique smooth functions f and g satisfying the above initial
value problems.

We have then proven that there exists unique smooth functions f = f (r)
and h = h(r) on M such that f ≡ 0, h ≡ 1 on ∂M and the vector field X∞

is conformal Killing on (M, gsc).

We utilize Fuchsian theory to establish that both f and h are O(r2). We
first observe that the ODE for f in equation (5.24) has a regular singular
point at infinity. We can then express f as a Frobenius series as follows
(see [BO13]):

f (r) = (r − m0)
α

∞

∑
n=0

an(r − m0)
−n (5.26)

where α ∈ R is to be determined and a0 ̸= 0. We substitute this expres-
sion of f into the ODE in (5.24) to get

∞

∑
n=0

an(α − n)(α − n − 1)(r − m0)
α−n−2 −

∞

∑
n=0

an(α − n)(r − m0)
α−n−2

(
1 +

m2
0

r(r − 2m0)

)
+ 2m2

0

∞

∑
n=0

an(r − m0)
α−n−4 (r − m0)4

r2(r − 2m0)2

= 0

(5.27)
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Upon examining the highest power of r − m0, we deduce that α must
satisfy the equation

α(α − 1)− α = 0 (5.28)

implying that α can only be 0 or 2. It follows that f = O(r2). The fact
that h = O(r2) follows immediately from equation (5.25).

Remark 5.4. Note that any vector field X∞ in X∞ satisfies(
L ∂

∂r
X∞

)T
= 0, on ∂M

Hence, the lemma proves an existence and uniqueness result for an overde-
termined problem: for any conformal Killing vector field XCK on (∂M, γS2),
there exists a unique conformal Killing vector field X∞ on (M, gsc) satisfy-
ing the following boundary conditions on ∂M:

X∞|∂M = XCK,
(
L ∂

∂r
X∞

)T
= 0 (5.29)

Furthermore, X∞ will of the form as in equation (5.4) for some functions
f = f (r) and h = h(r).

Definition 5.5. We define X̂ 2
δ (M) to be all vector fields X ∈ X 2

δ (M) (see

definition 2.5) such that X|∂M is tangent to ∂M and
(
L ∂

∂r
X
)T

= 0 on ∂M.

The artificial vector field X will be chosen to live in the space X̂ 2
δ (M)⊕

X∞(M). The reasons for this choice will be clear in the next sections.

5.2 definition and existence of the modified solution

In this section, we will define the modified problem and its solutions,
which we call “the modified solutions", and prove their existence. Here
and onwards, we fix a number δ ∈ (−1,− 1

2 ] and an integer k ≥ 5.

Let η be a smooth cut off function on [nm0, ∞) satisfying η(r) = 1 for
r ≥ nm0 + 2 and η(r) = 0 for r ≤ nm0 + 1. Given X ∈ X̂ 2

δ (M)⊕X∞(M),
define the function F(X) on M by

F(X) := e−r4η(r)|X|2 (5.30)

where | · | is taken with respect to gsc.
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Given g = dr2 + g(r) ∈ Mk
δ(M) and X∞ ∈ X∞, define ω(g, X∞) to be

the 1-form on ∂M achieved by lowering the index of X∞|∂M with respect
to g(nm0). Note that X∞|∂M is a conformal Killing field on (∂M, γS2) by
definition of the space X∞.

Define Φ by:

Φ : Mk+1(∂M)× Hk(∂M)×Mk
δ(M)×A(2,k+1)

δ (M)×
(
X̂ 2

δ (M)⊕X∞(M)

)
→ A(0,k−1)

δ−2 (M)× L2
δ−2

(
[nm0, ∞); Hk(S2)

)
× L2

δ−2

(
[nm0, ∞);Hk(S2)

)
×X 0

δ−2(M)

× Hk−1(∂M)× Ωk−1(∂M)×Hk(∂M)× Hk(∂M)

Φ(γB,
1
2

trKB, g, u, X) :=



∆gu on M

∂rtrK + 1
2 trK2 + |K̂|2 + 2(∂ru)2 on M

L ∂
∂r

K̂ +
[
2/du ⊗ /du + g(r)

(
(∂ru)2 − |∇u|2

)]
on M

∆g,con f (F(X)X) on M

2|/∇u|2 − 2(∂ru)2 − |K̂|2 − R∂M + 1
2 trK2 on ∂M

2(∂ru)/du −��div(K̂) + 1
2 /dtrK + ω(g, X∞) on ∂M

e−2ug
∣∣
∂M − γB on ∂M

trK|∂M − e−u (trKB + 2eu∂ru) on ∂M


(5.31)

where X∞ is the projection of X onto X∞(M), trK and K̂ are with respect
to the metric g, and R∂M is with respect to the metric e2uγB. Furthermore,
norms |·| used in the second, third and fifth equation are with respect to
the metric g.

Definition 5.6. Given Bartnik data (γB, 1
2 trKB), we say that a 3-tuple

(g, u, X) is a modified solution if Φ(γB, 1
2 trKB, g, u, X) = 0.

Remark 5.7. In view of proposition , a modified solution is a solution to
the original problem if and only if X = 0.
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The main tool to obtain the existence of the modified problem is the
implicit function theorem on Banach manifolds (see [AMR12]), which is
stated here for convenience.

Theorem 5.8. Let U ⊂ E, V ⊂ F be open subsets of Banach spaces E and F,
and let Ψ : U × V → G be a Cr map to a Banach space G, with r ≥ 1. For
some x0 ∈ U, y0 ∈ V, assume the partial derivatives in the second argument
D2Ψ(x0, y0) : F → G is an isomorphism. Then there are neighbourhoods U0 of
x0 and W0 of Ψ(x0, y0) and a unique Cr map H : U0 × W0 → V such that for
all (x, w) ∈ U0 × W0, Ψ(x, H(x, w)) = w.

The map Φ is indeed C1 near (γgsc ,
1
2 trKgsc , gsc, usc, 0). To see this, we

first note the following:

• The map u 7→ du⊗ du is C1 from A(2,k+1)
δ (M) to H1

2δ−2

(
[nm0, ∞);Hk(S2)

)
.

• The map g 7→ trK is C1 from Mk
δ(M) to H1

δ−1

(
[nm0, ∞); Hk(S2)

)
.

• The map g 7→ K̂ is C1 from Mk
δ(M) to H1

δ−1

(
[nm0, ∞);Hk(S2)

)
.

This immediately shows that each line, excluding the fourth line, in the def-
inition of Φ is C1. It remains to show that the map (g, X) 7→ ∆g,con f (F(X)X)

is C1 from Mk
δ(M)×

(
X̂ 2

δ (M)⊕X∞(M)

)
to X 0

δ−2 near (gsc, 0). This fol-

lows directly from the smoothness of F(X) and the following identity of
the conformal laplacian (see [Yor74]):

∆g,con f (F(X)X)µ = ∆g(F(X)X)µ +
1
3
∇µ

(
divg(F(X)X)

)
+ RµνF(X)Xν

(5.32)

We can then differentiate Φ at (γgsc ,
1
2 trKgsc , gsc, usc, 0) and study its

derivative.

Let DΦsc denote the derivative of Φ with respect to the last three
components evaluated at (γgsc ,

1
2 trKgsc , gsc, usc, 0) where

DΦsc : TgscMk
δ ×A(2,k+1)

δ ×
(
X̂ 2

δ (M)⊕X∞(M)

)
→ A(0,k−1)

δ−2 (M)× L2
δ−2

(
[nm0, ∞); Hk(S2)

)
× L2

δ−2

(
[nm0, ∞);Hk(S2)

)
× Hk−1(∂M)× Ωk−1(∂M)×Hk(∂M)× Hk(∂M)
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Proposition 5.9. DΦsc is an isomorphism.

Proof. The proof of this will be the content of section (5.4).

We can now conclude the existence theorem for the extended problem.

Theorem 5.10. There exists a neighbourhood U of (γgsc ,
1
2 trKgsc) in Mk+1(∂M)×

Hk(∂M) and a unique C1 map H : (γB, 1
2 trKB) 7→ (g, u, X) on U into

Mk
δ(M)×A(2,k+1)

δ (M)× X̂ 2
δ (M)⊕X∞(M) satisfying

Φ(γB,
1
2

trKB, H(γB,
1
2

trKB)) = 0, for all (γB,
1
2

trKB) ∈ U (5.33)

Proof. Follows from proposition (5.9) and the implicit function theorem
on Banach manifolds.

5.3 the vanishing of X for modified solutions (g , u , X )

The next step is to show that if (g, u, X) is a modified solution, then
X = 0, yielding a solution (g, u) to the conformal static vacuum Einstein
equations.

Let (γB, 1
2 trKB) ∈ U be Bartnik data and let (g, u, X) := H(γB, 1

2 trKB)

be the corresponding modified solution.

We first find the Ricci curvature of the metric g.

Proposition 5.11. The Ricci decomposition of g = dr2 + g(r) relative to the
foliation defined by r is given by

Ric = Qn ⊗ n + P ⊗ n + n ⊗ P + S (5.34)

Q = 2n(u)2, P = 2n(u)/du + A, S = 2/du ⊗ /du +
1
2

g(r)H (5.35)

where H and A are the unique function on M and 1-form on M tangent to the
foliation satisfying:{

∇n Ak + AiKi
k + trKAk = 0, on M

A = ω(g, X∞), on ∂M
(5.36)
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{
∇nH + HtrK = 2div(A), on M

H = 0, on ∂M
(5.37)

Proof. Lemma (4.1) shows that A and H satisfy the desired transport
equations on M. The boundary condition for A and H follow by comparing
equations

2|/∇u|2 − 2(∂ru)2 −|K̂|2 −R∂M +
1
2

trK2 = 0, and 2(∂ru)/du−��div(K̂)+
1
2

/dtrK+ω(g, X∞) = 0

with equations (4.4) and (4.5).

The relation between the Ricci curvature of g and u as described in the
above proposition leads to the following regularity result.

Proposition 5.12. The following holds for any modified solution (g, u, X).

• The Ricci curvature of g is C1 away from the boundary. Furthermore, there
exists a universal constant C > 0 such that for R > nm0,

sup
r>R

r2(|Ric|+ r|∇Ric|) ≤ C ∥γ∞ − γS2∥Hk(∂M) + o(Rδ) (5.38)

as R goes to ∞.

• The vector field F(X)X lies in X 3
δ (M).

Proof. We first find explicit expressions for A and H. Letting (r, θ1, θ2) be
fermi coordinates, we compute for i = 1, 2,

∇n Ai = ∂r Ai − Γj
0i Aj (5.39)

= ∂r Ai − K j
i Aj (5.40)

Equation (5.36) for A then becomes{
∂r Ai + trKAi = 0, on M

A = ω(g, X∞), on ∂M
(5.41)

which gives

Ai(r) =
1

L(r)
ωi (5.42)
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where L(r) := exp
(∫ r

nm0

trK(s)ds
)

.

We then solve equation(5.37) for H to obtain

H(r) =
1

L(r)

∫ r

nm0

L(s)2div(A(s))ds (5.43)

From proposition (2.10), we have

∣∣∣∣trK − 2
r

∣∣∣∣ ∈ H1
δ−1

(
[nm0, ∞); Hk(S2)

)
, K̂ ∈ H1

δ−1

(
[nm0, ∞);Hk(S2)

)
(5.44)

It then follows that A ∈ H2
loc

(
[nm0, ∞);Hk(S2)

)
and div(A) ∈ H1

loc

(
[nm0, ∞);Hk−1(S2)

)
,

which in turn implies that H ∈ H2
loc

(
[nm0, ∞); Hk−1(S2)

)
.

Furthermore, since k ≥ 5, the Sobolev embedding described in propo-
sition (2.10) imply that trK and K̂ are continuous in r, have 3 continuous
angular derivatives, and satisfy

trK =
2
r
+ o(rδ−1), |K̂| = o(rδ−1) (5.45)

Using the asymptotics of trK described above, we derive the asymptotics
of L to be

L(r)−1 = O(r−2), ∂r(L(r)−1) = O(r−3), |/∇(L(r)−1)| = O(r−3)

(5.46)
as r goes to ∞.

It follows that A and H have continuous first derivatives and satisfy

|A(r)| = O(r−3), |∂r A(r)| = O(r−4), |/∇A(r)| = O(r−4) (5.47)

H(r) = O(r−2), ∂r H(r) = O(r−3), |/∇H(r)| = O(r−3) (5.48)

By virtue of the fact that (g, u, X) is a modified solution, we have

∂2
r u + trK∂ru + /∆g(r)u = 0 (5.49)
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The above equation together with the fact that u ∈ A(2,k+1)
δ (M) then

implies ∂2
r u ∈ H1

δ−2

(
[nm0, ∞); Hk−2(S2)

)
. This in particular implies that

∂ru, |/∇u| ∈ H2
δ−1

(
[nm0, ∞); Hk−2(S2)

)
. Using the Sobolev embeddings

again and the fact that k ≥ 5, we deduce that ∂ru, |/∇u| have continuous
first derivatives and satisfy

∂ru = o(rδ−1), ∂2
r u = o(rδ−2), |/∇∂ru| = o(rδ−2) (5.50)

Having achieved the asymptotics for u, we can now derive an explicit
expression for the leading order term for H and ∇H. Using the Gauss
equation, we get

r2H(r) = r2Rg(r)− 2 + 2r2(∂ru)2 + r2|K̂|2 − r2

2

(
trK − 2

r

)2

+ 2r
(

trK − 2
r

)
(5.51)

= r2Rg(r) − 2 + o(rδ) (5.52)

where we have used equations (5.50) and (5.45).

It then follows that

H(r) = r−2(Rγ∞ − 2)+ o(rδ−2), |∇H(r)| = r−3
(
|Rγ∞ − 2|2 + |/dRγ∞ |2γ∞

)1/2
+ o(rδ−3)

(5.53)
where | · |γ∞ is the γ∞-norm.

In view of the expression of the Ric in terms of u, A, and H in equations
(5.34) and (5.35), we deduce the desired regularity of Ric, namely that
it is C1 away from the boundary. We are now in a position to prove
equation (5.38). Using again equations (5.34) and (5.35), we estimate |Ric|
and |∇Ric|: for some universal constant C > 0, we have

|Ric| ≤ C(|∇u|2 + |A|+ |H|), |∇Ric| ≤ C(|∇2u|2 + |∇A|+ |∇H|)
(5.54)

Using the asymptotics of u, A, and H laid out in equations (5.50), (5.47)
and (5.53), we get that for R > nm0,
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sup
r>R

r2(|Ric|+ r|∇Ric|) ≤ C sup
S2

(|Rγ∞ − 2|+ |/dRγ∞ |γ∞) + o(Rδ) (5.55)

≤ C ∥γ∞ − γS2∥C3(S2) + o(Rδ) (5.56)

≤ C ∥γ∞ − γS2∥Hk(S2) + o(Rδ) (5.57)

as R goes to ∞. In the last line, we have used again the Sobolev embeddings
and the fact that k ≥ 5. We have also allowed the constant C to change
from line to line while staying universal, i.e. independent of g and u.

We turn our attention to the second statement of the proposition. It
suffices to show that X0 admits 3 derivatives. By virtue of the fact that
(g, u, X) is a modified solution, we have

∂rtrK +
1
2

trK2 + |K̂|2 = −2(∂ru)2 (5.58)

L ∂
∂r

K̂ + trK K̂ = −2/du ⊗ /du − g(r)((∂ru)2 − |∇u|2) (5.59)

Thanks to equation (5.50), we have that |∇u| ∈ H2
δ−1

(
[nm0, ∞); Hk−2(S2)

)
and so admits 2 radial derivatives. Hence, the above equations directly
impy that trK and K̂ admit 3 radial derivative and, in fact, live in H3

δ−1

(
[nm0, ∞); Hk(S2)

)
and H3

δ−1

(
[nm0, ∞);Hk(S2)

)
respectively. Due to the evolution equation

∂rg(r) = trK g(r) + 2K̂, (5.60)

we deduce that g(r) ∈ H4
loc

(
[nm0, ∞);Hk(S2)

)
and so admits 4 radial

derivatives. By the Sobolev embedding and the fact that k ≥ 5, this implies
that g(r), ∂rg(r), ∂2

r g(r) are continuous in r and are C3 on the sphere.
We conclude that the metric g = dr2 + g(r) is of class C3. Since F(X)X
satisfy the elliptic equation ∆g,con f F(X)X = 0 with respect to a C3 metric,
standard localized interior estimates show that F(X)X lives in X 3

δ (M) (see
for example [CB08] appendix II).

Remark 5.13. Stronger regularity results can be proven for the modified
solution (g, u, X). Specifically, g, u, and X are in fact smooth away from
the boundary. Nonetheless, the above regularity result is sufficient for our
purpose. We will use it to show the nonexistence of nontrivial conformal
Killing fields on (M, g) (see lemma (5.14)).
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We now show that X = 0. Letting X̄ := F(X)X, we note that ∆g,con f X̄ =

0 on M in light of the fourth line in the definition of Φ and the fact that
(g, u, X) is a modified solution. We decompose X as follows,

X = X0 + X∞ (5.61)

where X0 ∈ X̂ 2
δ (M) and X∞ ∈ X∞. We make the following observations:

• If lim supr→∞ r4|X|2 = ∞, then F(X) decays exponentially in r. Since
|X| = |X∞ + X0| = O(r2) by lemma 5.3, we deduce that |X̄| decays
exponentially in r.

• If lim supr→∞ r4|X|2 < ∞, then F(X) = O(1) and so |X̄| = O(r−2).

The above implies that |X̄| = O(r−2). This allows us to perform the
following integration-by-parts computation:

0 =
∫

M
X̄µ∆g,con f X̄µdVg (5.62)

= −1
2

∫
M

∣∣Lg,con f X̄
∣∣2 dVg −

∫
∂M

Lg,con f X̄(X̄,
∂

∂r
)dσg(nm0) (5.63)

The above calculation is valid since
∣∣Lg,con f X̄

∣∣2 is integrable and the
boundary integral at infinity vanishes.

We now compute Lg,con f X̄(X̄, ∂
∂r ) on ∂M in order to evaluate the bound-

ary integral in equation (5.63). Recall that we decomposed X as follows,

X = X0 + X∞ (5.64)

where X0 ∈ X̂ 2
δ (M) and X∞ ∈ X∞. We also have that X0 and X∞ satisfy

the following on ∂M.

X∞ = XCK,
(
L ∂

∂r
X0

)T
= 0 (5.65)

L ∂
∂r

X∞ = f ′(nm0)��divγ
S2 (XCK)

∂

∂r
+ h′(nm0)XCK =

1
2
��divγ

S2 (XCK)
∂

∂r
(5.66)

g(X0,
∂

∂r
) = g(X∞,

∂

∂r
) = 0 (5.67)

Using the above, we compute that the integrand of the boundary integral
appearing in equation (5.63) satisfies the following on ∂M.
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Lg,con f X̄(X̄,
∂

∂r
) = Lg,con f X(X,

∂

∂r
) (5.68)

= LXg(X,
∂

∂r
)− 2

3
divX g(X,

∂

∂r
) (5.69)

= g(L ∂
∂r

X, X) (5.70)

= g(L ∂
∂r

X0, X) + g(L ∂
∂r

X∞, X) (5.71)

= 0 (5.72)

where the fact that X̄ = X near ∂M was used in the first equality. It then
follows that

0 =
1
2

∫
M

∣∣Lg,con f X̄
∣∣2 dVg (5.73)

implying that X̄ is conformal Killing on (M, g). However, the next
lemma shows that if γ∞ is close enough to γS2 , then there does not exist a
non trivial conformal Killing field on (M, g) that vanishes at ∞.

Lemma 5.14. Let δ < 0. There exists ϵ > 0 such that the following holds.
Let g ∈ Mk

δ(M) satisfy the statement of proposition (5.12) (i.e. Ric is C1 away
from ∂M and equation (5.38) holds). Suppose also that ∥γ∞ − γS2∥Hk(S2) < ϵ. If
Z ∈ X 3

δ (M) is a conformal Killing vector field on (M, g), then Z = 0.

Proof. Let Z ∈ X 3
δ (M) is a conformal Killing vector field on (M, g). A

direct computation shows that we can express the third covariant derivative
of Z as follows.

∇3Z = A · ∇Z + B · Z (5.74)

where A and B are linear expressions in Riem and ∇Riem, where Riem
is the Riemann curvature tensor. We will move the proof to the appendix
to avoid digressing from the main discussion (refer to A.1). Since the
dimension of M is 3, Riem can be written in terms of only Ric and g, and
so A and B can be thought of as linear expressions in Ric and ∇Ric.

An application of a Hardy-type inequality shows that there exists an
R0 > nm0 depending only on g and a positive constant C depending only
on δ such that for any R ≥ R0 and any vector field Z ∈ X 3

δ (M),∫
[R,∞)×S2

r−2δ−3(|Z|2 + r2|∇Z|2)dVg ≤ C
∫
[R,∞)×S2

r−2(δ−3)−3|∇3Z|2dVg

(5.75)
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A proof of this inequality is provided in section A.2 in the Appendix (see
corollary A.3).

On the other hand, given R > nm0, equation (5.74) implies∫
[R,∞)×S2

r−2(δ−3)−3|∇3Z|2dV ≤ C
∫
[R,∞)×S2

r−2(δ−3)−3(|∇Ric|2|Z|2 + |Ric|2|∇Z|2)dV

(5.76)

≤ C

(
sup
r>R

r4(|Ric|2 + r2|∇Ric|2)
) ∫

[R,∞)×S2
r−2δ−3(|Z|2 + r2|∇Z|2)dV

(5.77)

≤ C
(
∥γ∞ − γS2∥2

Hk(S2) + R2δ
) ∫

[R,∞)×S2
r−2δ−3(|Z|2 + r2|∇Z|2)dV

(5.78)

≤ C(ϵ + R2δ)
∫
[R,∞)×S2

r−2δ−3(|Z|2 + r2|∇Z|2)dV

(5.79)

where the constant C is allowed to change from line third to fourth line
while staying universal, i.e. independent of Z, R, and g.

We have then proven that∫
[R,∞)×S2

r−2δ−3(|Z|2 + r2|∇Z|2)dV ≤ C(ϵ+R2δ)
∫
[R,∞)×S2

r−2δ−3(|Z|2 + r2|∇Z|2)dV

(5.80)
Choosing ϵ small enough and R large enough so that C(ϵ + R2δ) < 1

implies that Z = 0 on [R, ∞)× S2.

Since Z satisfies the elliptic equation ∆g,con f Z = 0 and vanishes on
an open set, standard arguments then imply that Z = 0 on M (see for
example [CO81]).

Remark 5.15. The nonexistence of nontrivial conformal Killing vector fields
vanishing at infinity on asymptotically flat manifolds has already been
established in [CO81] and [Yor74]. The above lemma extends this nonex-
istence result to a broader class of metrics, including some that are not
asymptotically flat.

After possibly shrinking the neighbourhood U of (γgsc ,
1
2 trKgsc) and

using the continuity of H, we can assume that for (γB, 1
2 trKB) ∈ U ,

the metric g of the modified solution H(γB, 1
2 trKB) = (g, u, X) satisfies



5.4 proof that DΦ sc is an isomorphism 54

∥γ∞ − γS2∥Hk(S2) < ϵ. Since X̄ is conformal Killing on (M, g) and lives
in X 3

δ (M), the above lemma then implies that X̄ = 0, and hence X = 0.
We then finally conclude, by remark 5.7, that (g, u) is a solution to the
conformal static vacuum Einstein equations with Bartnik data (γB, 1

2 trKB).
This concludes the proof of the main theorem.

5.4 proof that DΦ sc is an isomorphism

In this section, we will prove proposition 5.9.

We first remind the reader of the values of some key parameters for the
Schwarzchild solution (gsc, fsc) and the conformal Schwarzschild solution
gsc = f 2

scgsc, usc = ln( fsc)

• gsc =
(

1 − 2m0
r

)−1
dr2 + r2γS2

• trKgsc =
2
√

1− 2m0
r

r

• γgsc = (nm0)2γS2

• fsc =
√

1 − 2m0
r

• gsc = dr2 +
(

1 − 2m0
r

)
r2γS2

• γsc = n(n − 2)m0
2γS2

• usc = ln
√

1 − 2m0
r

• trKsc =
2(r−m0)
r(r−2m0)

• K̂sc = 0

• R∂Msc =
2

n(n−2)m02

Let g̃ ∈ TgscMk
δ, ũ ∈ A(2,k+1)

δ (M), and X̃ ∈ X̂ 2
δ (M). For small t, let g(t),

u(t), and X(t) be smooth 1-parameter families satisfying

• g(0) = gsc

• u(0) = usc

• X(0) = 0

• g′(0) = g̃

• u′(0) = ũ

• X′(0) = X̃

Define the following

• t̃rK := d
dt

∣∣∣
t=0

trK(t)

• ˜̂K := d
dt

∣∣∣
t=0

K̂(t)

• γ̃ := d
dt

∣∣∣
t=0

g̃(t)(nm0)

• ω̃ := d
dt

∣∣∣
t=0

ω(g(t), X∞(t))
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where X∞(t) is the projection of X(t) into the space X∞. By definition
of ω, we have that ω̃ is a conformal Killing field on (S2, gsc(nm0)).

We compute DΦsc to be

DΦsc : TgscMk
δ ×A(2,k+1)

δ (M)×
(
X̂ 2

δ (M)⊕X∞(M)

)
→ A(0,k−1)

δ−2 (M)× L2
δ−2

(
[nm0, ∞); Hk(S2)

)
× L2

δ−2

(
[nm0, ∞);Hk(S2)

)
×X 0

δ−2(M)× Hk−1(∂M)× Ωk−1(∂M)×Hk(∂M)× Hk(∂M)

DΦsc(g̃, ũ, X̃) =
d
dt

∣∣∣∣
t=0

Φ(γgsc ,
1
2

trKgsc , g(t), u(t), X(t))

=



∆gsc ũ + (∂rusc)(t̃rK)

∂r t̃rK + trKsc t̃rK + 4(∂rusc)(∂rũ)

L ∂
∂r

˜̂K
∆gsc,con f X̃

−4(∂rusc)(∂rũ) + trKsc t̃rK
∣∣∣
∂M

+ 4
n(n−2)m2

0
ũ + 2/∆γsc ũ

2(∂rusc)/dũ −��div( ˜̂K) + ω̃

n
n−2 γ̃ − 2n2m2

0 ũ gS2

t̃rK
∣∣∣
∂M

+ 2
nm0

ũ − 2∂rũ


(5.81)

Let (A, B, C, D, E, F, G, H) be an arbitrary element in the codomain of
DΦsc. We wish to show that there exists a unique (g̃, ũ, X̃) in the domain
satisfying

∆gsc ũ + (∂rusc)(t̃rK) = A, on M (5.82)

∂r t̃rK + trKsc t̃rK + 4(∂rusc)(∂rũ) = B, on M (5.83)

L ∂
∂r

˜̂K = C, on M (5.84)
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∆gsc,con f X̃ = D, on M (5.85)

−4(∂rusc)(∂rũ) + trKsc t̃rK
∣∣∣
∂M

+
4

n(n − 2)m2
0

ũ + 2/∆γsc ũ = E, on ∂M

(5.86)

2(∂rusc)/dũ −��div( ˜̂K) + ω̃ = F, on ∂M (5.87)

n
n − 2

γ̃ − 2n2m2
0 ũ gS2 = G, on ∂M (5.88)

t̃rK
∣∣∣
∂M

+
2

nm0
ũ − 2∂rũ = H, on ∂M (5.89)

The above equations can be decoupled to give a a non-local elliptic
system on ũ.

Lemma 5.16. Let ũ ∈ A(2,k+1)
δ (M) and g̃ ∈ TgscMk

δ satisfy equations (5.83)
and (5.89).

Then ũ and g̃ satisfy equations (5.82) and (5.86) if and only if ũ satisfies

∆gsc ũ− 4m2
0

[r(r − 2m0)]2
ũ = −n(n − 2)m0

2
4m2

0
[r(r − 2m0)]2

(
4 − n

n(n − 2)m0
ũ|∂M + ∂rũ|∂M

)
+ψ, on M

(5.90)

4
nm0

∂rũ + 2/∆ũ +
4

n2(n − 2)m2
0

ũ = Γ, on ∂M (5.91)

where ψ and Γ are defined as follows

ψ := A − m0

r2(r − 2m0)2

∫ r

nm0

s(s − 2m0)B ds − m3
0n(n − 2)

r2(r − 2m0)2 H (5.92)

Γ := E − 2(n − 1)
n(n − 2)m0

H (5.93)

Remark 5.17. In light of the spaces that A, B, E and H live in, it follows
that ψ ∈ A(0,k−1)

δ−2 (M) and Γ ∈ Hk−1(S2). Note that the boundary value
problem that ũ satisfies in equations (5.90) and (5.91) does not depend on
g̃ or X̃; hence, we have indeed decoupled the system.
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Proof. We directly deduce that equations (5.91) and (5.86) are equivalent
by using equation (5.89).

We rewrite equation (5.83) as follows:

∂r

(
exp

(∫ r

nm0

trKsc(s)ds
)

t̃rK
)
= − exp

(∫ r

nm0

trKsc(s)ds
)(

4(∂rusc)(∂rũ)− B
)

.

(5.94)
A direct computation gives:

exp
(∫ r

nm0

trKsc(s)ds
)
=

1
n(n − 2)m2

0
r(r − 2m0). (5.95)

We integrate equation (5.94) to get an expression for t̃rK in terms of ũ:
for r ∈ [nm0, ∞) and p ∈ S2, we have

t̃rK(r, p) =
n(n − 2)m2

0
r(r − 2m0)

t̃rK
∣∣∣
∂M

(p)− 4
n(n − 2)m2

0
r(r − 2m0)

∫ r

nm0

1
n(n − 2)m2

0
s(s − 2m0)(∂rusc)(s)(∂rũ)(s, p)ds

+
n(n − 2)m2

0
r(r − 2m0)

∫ r

nm0

1
n(n − 2)m2

0
s(s − 2m0)B(s, p)ds (5.96)

=
n(n − 2)m2

0
r(r − 2m0)

t̃rK
∣∣∣
∂M

(p)− 4
m2

0
r(r − 2m0)

∫ r

nm0

1
m2

0
s(s − 2m0)

(
m0

s(s − 2m0)

)
(∂rũ)(s, p)ds

+
1

r(r − 2m0)

∫ r

nm0

s(s − 2m0)B(s, p)ds (5.97)

=
n(n − 2)m2

0
r(r − 2m0)

t̃rK
∣∣∣
∂M

(p)− 4m0

r(r − 2m0)

∫ r

nm0

∂rũ(s, p) ds +
1

r(r − 2m0)

∫ r

nm0

s(s − 2m0)B(s, p)ds

(5.98)

=
n(n − 2)m2

0
r(r − 2m0)

t̃rK
∣∣∣
∂M

(p)− 4m0

r(r − 2m0)

(
ũ(r, p)− ũ|∂M(p)

)
+

1
r(r − 2m0)

∫ r

nm0

s(s − 2m0)B(s, p)ds (5.99)

We plug this into equation (5.82) to derive
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A = ∆scũ +
m0

r(r − 2m0)

(
n(n − 2)m2

0
r(r − 2m0)

t̃rK
∣∣∣
∂M

− 4m0

r(r − 2m0)

(
ũ − ũ|∂M

))
+

m0

r2(r − 2m0)2

∫ r

nm0

s(s − 2m0)B(s, p)ds (5.100)

= ∆scũ − 4m2
0

r2(r − 2m0)2 ũ +
4m2

0
r2(r − 2m0)2

(
ũ|∂M +

n(n − 2)m0

4
t̃rK
∣∣∣
∂M

)
+

m0

r2(r − 2m0)2

∫ r

nm0

s(s − 2m0)B(s, p)ds (5.101)

Using equation (5.89), it then follows that ũ satisfies:

∆gsc ũ − 4m2
0

r2(r − 2m0)2 ũ = A − n(n − 2)m0

2
4m2

0
r2(r − 2m0)2

(
4 − n

n(n − 2)m0
ũ|∂M + ∂rũ|∂M

)
− n(n − 2)m3

0
r2(r − 2m0)2 H − m0

r2(r − 2m0)2

∫ r

nm0

s(s − 2m0)B(s, p)ds

(5.102)

= −n(n − 2)m0

2
4m2

0
r2(r − 2m0)2

(
4 − n

n(n − 2)m0
ũ|∂M + ∂rũ|∂M

)
+ ψ

(5.103)

This proves that equation (5.90) is equivalent to equation (5.82).

The rest of the proof will proceed in the following steps.

Step 1: We will show that for every ψ ∈ A(0,k−1)
δ−2 (M) and Γ ∈ Hk−1(S2),

there exists a unique solution ũ ∈ A(2,k+1)
δ solving equations (5.90)

and (5.91).

Step 2: We will show if ũ ∈ A(2,k+1)
δ satisfies (5.90) and (5.91) with ψ and

Γ given by equations (5.92) and (5.93), then there exists a unique
g̃ ∈ TgscMk

δ(M) and a unique conformal Killing field ω̃ satisfying
equations (5.82) to (5.84) and (5.86) to (5.89).

Step 3: We will show that there exists a unique vector field Ỹ ∈ X̂ 2
δ (M)

satisfying ∆gsc,con f Ỹ = D.

The above 3 steps will then imply that there exists a unique (g̃, ũ, X̃) in
the domain of DΦsc solving equations (5.82) to (5.89). In particular, ũ and
g̃ are achieved from steps 1 and 2 respectively and X̃ := Ỹ + ω̃, where Ỹ
and ω̃ are achieved from steps 2 and 3 respectively.
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Step 1: Solving for ũ

To study the boundary value problem in (5.90) and (5.91), we will
investigate the properties of the corresponding non-local elliptic operator
Psc, which maps A(2,k+1)

δ (M) into A(0,k−1)
δ−2 (M)× Hk−1(∂M) and is defined

by

Psc(ũ) :=

∆gsc ũ − 4m2
0

[r(r−2m0)]2
ũ + n(n−2)m0

2
4m2

0
[r(r−2m0)]2

(
4−n

n(n−2)m0
ũ|∂M + ∂rũ|∂M

)
2

nm0
∂rũ + /∆ũ + 2

n2(n−2)m2
0
ũ


(5.104)

In fact, this operator will turn out to be Fredholm of index 0 as shown
in the following proposition.

Remark 5.18. In [AH21] and [AH22b], the authors study the static Ein-
stein vacuum equations in a gauge different from the one used in this
paper. Specifically, they study an operator analogous to the operator Φ
considered here. They achieve that the linearization of their operator is
an isomorphism, so as to invoke the implicit function theorem, by first
establishing that it is Fredholm of index 0 and then showing that its kernel
is trivial. Our approach here is similar except that our gauge allows us
to decouple the equations; this decoupling reduces the task of proving
that DΦsc is an isomorphism to proving that a much simpler operator,
Psc acting on the linearization of the lapse function ũ, is an isomorphism.
Specifically, we will establish that Psc is Fredholm of index 0 and has
a trivial kernel. The remaining parameters, g̃ and X̃, are governed by
straightforward ODEs with ũ appearing in the forcing term, and the fact
that DΦsc is an isomorphism will follow readily (see Step 2).

Proposition 5.19. Fix δ ∈ (−1,− 1
2 ] and k ∈ Z≥0. Let T : A(2,k+1)

δ (M) →
Hk−1(∂M) and S : A(2,k+1)

δ (M) → Hk−1(∂M) be operators defined by

T(ũ) := ∂rũ + µũ (5.105)

S(ũ) := /∆γsc ũ + β1∂rũ + β2ũ (5.106)

where µ, β1, β2 ∈ Hk(∂M).

Let P be the nonlocal elliptic differential operator defined by

P : A(2,k+1)
δ (M) → A(0,k−1)

δ−2 (M)× Hk−1(∂M)
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P(ũ) :=

∆gsc ũ − V1ũ − V2T(ũ)

S(ũ)

 (5.107)

where V1, V2 ∈ H1
−3
(
[nm0, ∞); Hk(S2)

)
and T(ũ) is the function on M

defined by (r, p) 7→ T(ũ)(p) for (r, p) ∈ M. Then P is Fredholm of index 0.

Proof. Decompose the operator P = P1 + P2, where the operators P1,P2 :
A(2,k+1)

δ (M) → A(0,k−1)
δ−2 (M)× Hk−1(∂M) are defined by

P1(ũ) :=

∆gsc ũ

/∆γsc ũ

 , P2(ũ) :=

−V1ũ − V2T(ũ)

β1∂rũ + β2ũ


In light of proposition (2.10), we observe that P2 is a compact oper-

ator. Indeed, for any ũ ∈ A(2,k+1)
δ , we have that −V1ũ − V2T(ũ) lives

in H1
−3
(
[nm0, ∞); Hk(S2)

)
which compactly embeds in A(0,k−1)

δ−2 (M), and
β1∂rũ + β2ũ lives in Hk(∂M) which compactly embeds in Hk−1(∂M). To
show that P is Fredholm of index 0, it then suffices to show that P1 is
Fredholm of index 0 (see [Sch71])

By theorem 3.1, the operator Q defined by:

Q(ũ) :=

∆gsc ũ

ũ


is an isomorphism from A(2,k+1)

δ to A(0,k−1)
δ−2 (M)× Hk+1(∂M).

We also recall the following standard result on the laplacian on com-
pact manifolds: The operator /∆γsc : Hk+1(∂M) → Hk−1(∂M) is Fredholm
of index 0. In fact, the kernel is the one-dimensional space of constant
functions on ∂M and the cokernel is the same since /∆γsc is self-adjoint.

We observe that P1 = (ID, /∆γsc) ◦ Q, where

(ID, /∆γsc) : A(0,k−1)
δ−2 (M)× Hk+1(∂M) → A(0,k−1)

δ−2 (M)× Hk−1(∂M)

is defined by
(ID, /∆γsc)(ṽ, f ) := (ṽ, /∆γsc f )
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Since (ID, /∆γsc) is Fredholm of index 0 and Q is an isomorphism, it then
follows that P1 is Fredholm of index 0 as needed.

By the above proposition, showing that the nonlocal operator Psc de-
fined in (5.104) has trivial kernel is sufficient to prove that the system
in (5.90) and (5.91) is uniquely solvable for every ψ ∈ A(0,k−1)

δ−2 (M) and
Γ ∈ Hk−1(S2). This will be the content of the next proposition.

Proposition 5.20. Fix δ ∈ (−1,− 1
2 ]. Let u ∈ A(2,k+1)

δ satisfy∆gsc ũ − 4m2
0

[r(r−2m0)]2
ũ = − n(n−2)m0

2
4m2

0
[r(r−2m0)]2

(
4−n

n(n−2)m0
ũ|∂M + ∂rũ|∂M

)
, on M

4
nm0

∂rũ + 2/∆ũ + 4
n2(n−2)m2

0
ũ = 0, on ∂M

(5.108)
Then ũ = 0.

Proof. Similarly to what was done in the proof of lemma (3.3), we utilize
the spherical symmetry of the conformal Schwarzchild metric to reduce
the system in (5.90) and (5.91) to differential equations on the coefficients
of ũ with respect to its spherical harmonics decomposition:

ũ(r, x) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

ãmℓ(r)Ymℓ(x) (5.109)

for r ∈ [nm0, ∞) and x ∈ ∂M.

We define the functions amℓ(r) := ãmℓ(nm0r) on [1, ∞). Using the dis-
cussion in lemma (3.3), the condition ∥ũ∥A(2,k+1)

δ

< ∞ in particular implies

∥amℓ∥1,δ < ∞ for every m and ℓ, where

∥amℓ∥2
1,δ =

∫ ∞

1
r−2δ+1(a′mℓ(r))

2dr +
∫ ∞

1
r−2δ−1(amℓ(r))2dr (5.110)

The system in (5.90) and (5.91) as well as the condition ∥amℓ∥1,δ < ∞
implies the following non-local differential equations on all the coefficients
ãmℓ(r):
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r(r − 2m0)ã′′mℓ(r) + 2(r − m0)ã′mℓ(r)−
(

4m2
0

r(r − 2m0)
+ ℓ(ℓ+ 1)

)
ãmℓ(r)

= − 2n(n−2)m3
0

r(r−2m0)

(
4−n

n(n−2)m0
ãmℓ(nm0) + ã′mℓ(nm0)

)
, r ∈ [nm0,+∞)

2
nm0

ã′mℓ(nm0)− 1
n(n−2)m2

0
(ℓ(ℓ+ 1)− 2

n )ãmℓ(nm0) = 0,

∥amℓ∥1,δ < ∞
(5.111)

The functions amℓ, using (5.111), satisfy the following similar non-local
differential equations:



r(r − 2
n )a′′mℓ(r) + 2(r − 1

n )a′mℓ(r)−
(

4
n2r(r− 2

n )
+ ℓ(ℓ+ 1)

)
amℓ(r)

= − 2(n−2)
n2r(r− 2

n )

(
4−n
n−2 amℓ(1) + a′mℓ(1)

)
,

2
n2 a′mℓ(1)−

1
n(n−2) (ℓ(ℓ+ 1)− 2

n )amℓ(1) = 0,

∥amℓ∥1,δ < ∞
(5.112)

Note that the mass parameter m0 does not appear in the non-local
differential equation for amℓ. From here onwards we will study the system
(5.112) instead of (5.111).

We consider (5.112) for any nonnegative integer ℓ and seek to derive that
amℓ(r) = 0 is the only solution. We consider the ℓ = 0 case separately. We
replace the last condition in (5.112) with a′mℓ(1) = C and find the explicit
(unique) solution to this shooting problem to be

a00(r) = −C
−2 + n + 6r − 3nr − 2nr2 + n2r2

r(nr − 2)
, (5.113)

It then can easily be verified that limr→∞ a00(r) = 0 if and only if C = 0,
implying that a00 = 0 is the only solution to (5.112).

We conclude the only solutions to (5.112) in the ℓ = 0 case is the zero
solution.
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We now deal with the ℓ ≥ 1 case. We will write aℓ instead of amℓ for
simplicity.

Define the following constants:

•

Cℓ = −2(n − 2)
n2

(
4 − n
n − 2

aℓ(1) + a′ℓ(1)
)

•

αℓ =
n2

n(2 − ℓ(ℓ+ 1))− 6

•

βℓ =
n2(nℓ(ℓ+ 1)− 2)

(n(2 − ℓ(ℓ+ 1))− 6)(2(n − 2))

Note that αℓ and βℓ are well defined for ℓ ≥ 1 and are both negative.
Then the function aℓ solves the following initial value problem:


r(r − 2

n )a′′ℓ (r) + 2(r − 1
n )a′ℓ(r)−

(
4

n2r(r− 2
n )

+ l(l + 1)
)

aℓ(r) = 1
r(r− 2

n )
Cℓ

a′ℓ(1) = βℓCℓ

aℓ(1) = αℓCℓ

(5.114)
If Cℓ = 0, then aℓ = 0 by the existence and uniqueness theorem from

ODE theory. Suppose now that Cℓ ̸= 0. By considering aℓ
Cℓ

instead of aℓ, we
can assume without loss of generality that Cℓ = 1.

We rewrite the system in the following way:


d
dr

[
r(r − 2

n )a′ℓ(r)
]
=
(

4
n2r(r− 2

n )
+ ℓ(ℓ+ 1)

)
aℓ(r) + 1

r(r− 2
n )

a′ℓ(1) = βℓ

aℓ(1) = αℓ

(5.115)

We will show that aℓ blows up at infinity contradicting that ∥aℓ∥1,δ < ∞.
This will then imply that Cℓ = 0 and hence aℓ = 0. First, we prove a
technical lemma.

Lemma 5.21. Let h1, h2 be smooth functions on [1, ∞) such that h1 is positive
and limr→∞ h1(r) = C1 for some C1 > 0. Let g be a function on [1, ∞) satisfying
the following ODE:

d
dr

[
r(r − 2

n
)g′(r)

]
= h1(r)g(r) + h2(r) (5.116)
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Then the following is true.

• Suppose that h2(r) ≥ 0 (≤ 0) on [1, ∞) and that both g(r∗) and g′(r∗)
are positive (negative) for some r∗ ∈ [1, ∞). Then g and g′ are positive
(negative) on (r∗, ∞).

• Suppose that g and g′ are positive (negative) on (r∗, ∞) for some r∗ ∈ [1, ∞)

and that h2(r) = O(r−2). Then limr→∞ g(r) = ∞ (−∞).

Proof. Suppose that h2 is nonnegative everywhere. Let r∗ ∈ [1, ∞) be such
that g′(r∗) > 0 and g(r∗) > 0. We will prove that g′(r) > 0 on (r∗, ∞) by
using a simple bootstrap method. By continuity of g′(r), we know that
g′(r) > 0 on [r∗, r∗ + δ) for some δ > 0. Then the set B := {r ∈ (r∗, ∞) |
g′(s) > 0 for s ∈ [r∗, r)} is nonempty. Suppose that R := sup B < ∞.
By continuity, we have that g′(R) = 0 and g′(r) > 0 for r ∈ (r∗, R).
Since g(r∗) > 0 and g is increasing on (r∗, R), we have that g(R) > 0.
By letting r = R in equation (5.116), it follows that d

dr [r(r − 2/n)g′] is
positive at R and, in turn, on a neighbourhood of R. This implies that
r(r − 2/n)g′(r) is increasing on a neighbourhood of R, which implies that
0 < r(r − 2/n)g′(r) < R(R − 2/n)g′(R) for r < R and close to R. As this
contradicts that g′(R) = 0, we conclude that sup B = ∞ and hence g′ and
g are positive on (r∗, ∞).

Suppose now that g and g′ are positive on (r∗, ∞) for some r∗ ∈ [1, ∞)

and that h2(r) = O(r−2). In virtue of the positivity of g′ and g as well as
the monotone convergence theorem, it follows that limr→∞ g(r) either is
a positive number or is ∞. Suppose that limr→∞ g(r) = A > 0, which in
particular implies that g′ is integrable.

By integrating equation (5.116), we get that

r(r − 2/n)g′(r) =
n − 2

n
g′(1) +

∫ r

1
[h1(s)g(s) + h2(s)]ds (5.117)

Using the fact that h1 and g are O(1) and that h2(r) = O(r−2), it follows
that supr≥1 rg′(r) < ∞.

Furthermore, we have that
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rg′(r)− g′(1) =
∫ r

1
[sg′(s)]′ds (5.118)

=
∫ r

1
g′(s)ds +

∫ r

1
sg′′(s)ds (5.119)

=
∫ r

1

h1(s)g(s)
s − 2/n

ds +
∫ r

1

h2(s)
s − 2/n

ds −
∫ r

1

s
s − 2/n

g′(s)ds

(5.120)

It follows that there exists a constant M > 0 such that∫ r

1

h1(s)g(s)
s − 2/n

ds ≤ M (5.121)

for any r ∈ [1, ∞); since the integrand is positive, the limit as r tends
to ∞ exists. In particular, this implies that g

r ∈ L1([1, ∞)), which then
contradicts that A is positive. Hence, we see that limr→∞ g(r) = ∞, as
needed.

The case when h2 is nonpositive is identical.

Corollary 5.22. Let h1, h2 be smooth functions on [1, ∞) such that h1 is positive
and limr→∞ h1(r) = C1 for some C1 > 0. Let g and g̃ be functions on [1, ∞)

satisfying the following ODE:

d
dr

[
r(r − 2

n
)g′(r)

]
= h1(r)g(r)+ h2(r),

d
dr

[
r(r − 2

n
)g̃′(r)

]
= h1(r)g̃(r)+ h2(r),

(5.122)
If g(1) = g̃(1) and g′(1) < g̃′(1), then g(r) < g̃(r) for any r ∈ (1, ∞).

Proof. Define f := g − g̃ and observe that f satisfies

d
dr

[
r(r − 2

n
) f ′(r)

]
= h1(r) f (r) (5.123)

Observe also that f (1) = 0 and f ′(1) < 0. This in particular implies that
there exists an r∗ > 1 close enough to 1 such that f (r) and f ′(r) are
negative for any r ∈ (1, r∗). By invoking lemma (5.21), we conclude that
f (r) < 0 for any r ∈ (1, ∞) as needed.

We now return to our goal of showing that aℓ blows up at ∞.
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We first decompose aℓ = fℓ + gℓ where fℓ solves


d
dr

[
r(r − 2

n ) f ′ℓ(r)
]
=
(

4
n2r(r− 2

n )
+ ℓ(ℓ+ 1)

)
fℓ(r)− 4αℓ

n2r(r−2/n)

f ′ℓ(1) = 0

fℓ(1) = αℓ

(5.124)

and gℓ solves


d
dr

[
r(r − 2

n )g′ℓ(r)
]
=
(

4
n2r(r− 2

n )
+ ℓ(ℓ+ 1)

)
gℓ(r) +

1+(4/n2)αℓ
r(r−2/n)

g′ℓ(1) = βℓ

gℓ(0) = 0

(5.125)

By letting r = 1 in the equation for fℓ, we observe that r(r − 2/n) f ′ℓ(r) is
decreasing near r = 1; since f ′ℓ(1) = 0, it follows that fℓ and f ′ℓ are negative
near r = 1. In particular, letting f̃ℓ(r) := fℓ(r)− αℓ, we also have that f̃ℓ
and f̃ ′ℓ are negative near r = 1. Using the system in (5.124), we deduce
that f̃ℓ satisfies the following:

d
dr

[
r(r − 2

n ) f̃ ′ℓ(r)
]
=
(

4
n2r(r− 2

n )
+ ℓ(ℓ+ 1)

)
f̃ℓ(r) + αℓℓ(ℓ+ 1)

f̃ ′ℓ(1) = 0

f̃ℓ(1) = 0

(5.126)

We invoke lemma (5.21) on f̃ℓ to deduce that f̃ℓ and f̃ ′ℓ are negative on
(1, ∞). This in particular implies that fℓ(r) and f ′ℓ(r) are negative on (1, ∞).
We again invoke lemma (5.21) on fℓ to conclude that limr→∞ fℓ(r) = −∞.

It suffices to show that gℓ(r) < 0 for all r ∈ [1, ∞). We first observe from
the definition of βℓ and αℓ that

βℓ

1 + (4/n2)αℓ
= − n2

2(n − 2)

(
1 +

2(n − 2)
n(ℓ(ℓ+ 1)− 2) + 2

)
(5.127)

< − n2

2(n − 2)
(5.128)

for all n > 2 and ℓ ∈ N. In particular, we have that 1 + (4/n2)αℓ > 0 for
every n > 2 and ℓ ∈ N.

Let g̃ℓ be the function on [1, ∞) solving
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d
dr

[
r(r − 2

n )g̃′ℓ(r)
]
=
(

4
n2r(r− 2

n )
+ ℓ(ℓ+ 1)

)
g̃ℓ(r) + 1

r(r−2/n)

g̃′ℓ(1) = − n2

2(n−2)

g̃ℓ(1) = 0

(5.129)

In light of corollary (5.22) along with equation (5.128), it follows that the
negativity of g̃ℓ(r) on (1, ∞) implies the negativity of gℓ(r)

1+(4/n2)αℓ
on (1, ∞),

which in turn implies that the negativity of gℓ(r) on (1, ∞). It then suffices
to show that g̃ℓ(r) < 0 on (1, ∞).

We will prove that g̃ℓ(r) < 0 on (1, ∞) by induction on ℓ. We first find
the solution for ℓ = 0 to be:

g̃0(r) = − n(r − 1)
2(r − 2/n)

(5.130)

which is negative everywhere.

Now suppose that g̃ℓ(r) < 0 on (1, ∞) for some nonnegative integer ℓ.
Define hℓ := g̃ℓ+1 − g̃ℓ, which will solve:


d
dr

[
r(r − 2

n )h
′
ℓ(r)

]
=
(

4
n2r(r− 2

n )
+ (ℓ+ 1)(ℓ+ 2)

)
hℓ(r) + 2(ℓ+ 1)g̃ℓ(r)

h′ℓ(1) = 0

hℓ(1) = 0
(5.131)

We directly compute h′′ℓ (1) = n
n−2 2(ℓ + 1)g̃ℓ(1) = 0 and h′′′ℓ (1) =

n
n−2 2(ℓ+ 1)g̃′ℓ(1) < 0. This then implies that hℓ and h′ℓ are negative near
r = 1. Using the fact that g̃ℓ(r) < 0 on (1, ∞) and invoking lemma (5.21),
it follows that hℓ(r) < 0 on (1, ∞), which in turn implies that g̃ℓ+1(r) < 0
on (1, ∞) as needed.

We have finally shown that aℓ blows up at infinity for every ℓ ∈ N

contradicting that ∥aℓ∥1,δ < ∞. We conclude that the assumption that
Cℓ ̸= 0 was false and hence aℓ = 0 for every ℓ ∈ N and, in turn, ũ = 0.

This concludes Step 1, and we move on to Step 2.
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Step 2: Solving for g̃ and ω̃

Let ũ ∈ A(2,k+1)
δ be the function satisfying equations (5.90) and (5.91)

with ψ and Γ given by equations (5.92) and (5.93). We wish to show that
there exists a unique g̃ ∈ TgscMk

δ and a conformal Killing field ω̃ satisfying
equations (5.82) to (5.84) and (5.86) to (5.89).

Equation (5.89) determines uniquely the initial data for t̃rK, which is
given by

t̃rK
∣∣∣
∂M

= H + 2∂rũ|∂M − 2
nm0

ũ|∂M (5.132)

and is living in Hk(∂M). We rewrite the ODE (5.83) obeyed by t̃rK here
for convenience.

∂r t̃rK + trKsc t̃rK + 4(∂rusc)(∂rũ) = B, on M

which, together with the initial condition in (5.132), determines uniquely
t̃rK on M. We explicitly solve for t̃rK on M to get:

t̃rK(r, p) =
n(n − 2)m2

0
r(r − 2m0)

t̃rK
∣∣∣
∂M

(p)− 4m0

r(r − 2m0)

(
ũ(r, p)− ũ|∂M(p)

)
+

1
r(r − 2m0)

∫ r

nm0

s(s− 2m0)B(s, p)ds

(5.133)
for r ∈ [nm0, ∞) and p ∈ S2.

We observe that

• (∂rusc)(∂rũ) ∈ L2
δ−2

(
[nm0, ∞); Hk(S2)

)
• B ∈ L2

δ−2

(
[nm0, ∞); Hk(S2)

)
.

and so t̃rK lies in H1
δ−1

(
[nm0, ∞); Hk(S2)

)
.

We turn our attention to ˜̂K. We first recall the well known fact regarding
the divergence operator on symmetric traceless tensors on S2 (see [CK93]).

Proposition 5.23. Let k ≥ 2. Let γ be a smooth metric on S2 with positive
curvature. Denote by Dk(S2) the space of traceless symmetric (0, 2) tensors on
(S2, γ) with components in Hk(S2). Let Ω⊥k−1

(∂M) be the space of vector fields
on S2 with components in Hk−1(M) that are L2 orthogonal to conformal Killing
vector fields on (S2, γ). Then the divergence operator ��divγ is an isomorphism
from Dk(S2) to Ω⊥k−1

(S2)
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The above proposition along with equation (5.87) imply that 2
n(n−2)m0

/dũ+

ω̃ − F must be orthogonal to conformal Killing vector fields on (∂M, γsc).
Since ω̃ is conformal Killing on (∂M, γsc), this requirement determines
ω̃ uniquely. Indeed, if Y1, ..., Y6 is an L2 orthonormal basis of conformal
Killing vector fields, then ω̃ must be

ω̃ :=
6

∑
i=1

(∫
S2

Yi · (F − 2
n(n − 2)m0

/dũ)dσγsc

)
Yi (5.134)

The above proposition together with (5.87) determine uniquely the initial
condition for ˜̂K to be

˜̂K∣∣∣
∂M

=��div−1
γsc

(
2

n(n − 2)m0
/dũ + ω̃ − F

)
(5.135)

living in Hk(∂M). We rewrite the ODE (5.84) obeyed by ˜̂K here for conve-
nience.

L ∂
∂r

˜̂K = C, on M

which, together with the initial condition in (5.135), determines K̂ uniquely
on M. Fixing fermi coordinates, (r, θ1, θ2), we explicitly solve for K̂ on M
to get:

K̂ij(r, p) = ˜̂Kij

∣∣∣
∂M

+
∫ r

nm0

Cij(s, p) (5.136)

for i, j = 1, 2, r ∈ [nm0, ∞) and p ∈ S2.
Since C ∈ L2

δ−2

(
[nm0, ∞);Hk(S2)

)
, it follows that K̂ lies in H1

δ−1

(
[nm0, ∞);Hk(S2)

)
.

Equation (5.88) determines uniquely initial date for g̃ given by

g̃|∂M =
n − 2

n
(
2n2m2

0 ũ γS2 + G
)

(5.137)

living in Hk(∂M). The evolution of g̃ is determined by t̃rK and ˜̂K in the
following equation:

L ∂
∂r

g̃ = 2˜̂K + t̃rK gsc + trKsc g̃ (5.138)

Equations (5.138) and (5.137) determine uniquely g̃ to be, in fermi coordi-
nates (r, θ1, θ2),
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g̃ij = r(r − 2m0)
∫ r

nm0

1
s(s − 2m0)

(
2˜̂Kij + t̃rKgscij

)
ds +

r(r − 2m0)

nm2
0

Gij

(5.139)
In light of the fact that t̃rK ∈ H1

δ−1

(
[nm0, ∞); Hk(S2)

)
and ˜̂K ∈ H1

δ−1

(
[nm0, ∞);Hk(S2)

)
,

it follows g̃ is of the form g̃ = r2(G + h(r)) where G ∈ Hk(S2) and
h ∈ H2

δ

(
[nm0, ∞);Hk(S2)

)
; this implies that g̃ ∈ TgscMk

δ as needed.

We have then shown that there exists a unique g̃ and ω̃ satisfying
equations (5.83), (5.84) and (5.86) to (5.89). It follows by lemma (5.16) that
equation (5.82) is satisfied as well. This concludes Step 2, and we move on
to Step 3.

Step 3: Solving for X̃

We wish to show that there exists a unique Ỹ ∈ X̂ 2
δ (M) satisfying

∆gsc,con f Ỹ = D (5.140)

where D ∈ X 0
δ−2(M). Similar results have been shown in [Max05] for the

above equation with trivial Dirichlet and Neumann conditions. In our case,
vector fields Y in X̂ 2(M) satisfy the following mixed boundary conditions

g(Y,
∂

∂r
) = 0,

(
L ∂

∂r
Y
)T

= 0 (5.141)

The isomorphism of the operator ∆gsc,con f in our space follows by minor
modifications of the proof in [Max05]. We add the proof here for the sake
of completeness.

Proposition 5.24. Let δ ∈ (−1,− 1
2 ]. The operator ∆gsc,con f is an isomorphism

from X̂ 2
δ (M) to X 0

δ−2(M).

Proof. Recall that if X ∈ X̂ 2
δ (M), then

g(X,
∂

∂r
) = 0,

(
L ∂

∂r
X
)T

= 0 (5.142)
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on ∂M. In particular, we have that

Lgsc,con f X(X,
∂

∂r
) = LXg(X,

∂

∂r
)− 2

3
divX g(X,

∂

∂r
) (5.143)

= g(L ∂
∂r

X, X) (5.144)

= 0 (5.145)

on ∂M.

Let X ∈ X̂ 2
δ (M) satisfy ∆gsc,con f X = 0. Given R ≥ nm0, let ϕR be a

cutoff function on [nm0, ∞) satisfying ϕR(x) = 1 for x ≤ R, ϕR(x) = 0 for
x ≥ R + 1, and −2 ≤ ϕ′

R(x) ≤ 0 for any x ∈ [nm0, ∞).
We integrate by parts to get

0 =
∫

M
ϕRXµ∆gsc,con f XµdVgsc (5.146)

= −1
2

∫
M

(
Lgsc,con f ϕRX

)
·
(
Lgsc,con f X

)
dVgsc −

∫
∂M

Lgsc,con f X(X,
∂

∂r
)dσgsc(nm0)

(5.147)

= −1
2

∫
M

ϕR
∣∣Lgsc,con f X

∣∣2 dVgsc −
1
2

∫
M

2ϕ′
R Lgsc,con f X(X,

∂

∂r
)dVsc (5.148)

This implies that for any R ≥ nm0,

∫
BR\Bnm0

∣∣Lgsc,con f X
∣∣2 dVgsc ≤

∫
M

ϕR
∣∣Lgsc,con f X

∣∣2 dVgsc (5.149)

= −
∫

M
2ϕ′

R Lgsc,con f X(X,
∂

∂r
)dVsc (5.150)

≤ 4
∫

BR+1\BR

|Lgsc,con f X(X,
∂

∂r
)|dVsc (5.151)

≲
∫

BR+1\BR

|∇X|2dVsc (5.152)

Since δ ∈ (−1,− 1
2 ), we have that |∇X|2 ≤ |∇X|2r−2δ−1 and so |∇X|2

is integrable on M and
∫

M |∇X|2dVsc ≤ ∥∇X∥2
0,δ−1. We can then take the

limit as R goes to infinity in the above equations to deduce that∫
M

∣∣Lgsc,con f X
∣∣2 dVgsc = 0 (5.153)

implying that X is conformal Killing on (M, gsc). Since the equation
∆gsc,con f X = 0 is an elliptic PDE with smooth coefficients, elliptic reg-
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ularity shows that X is C∞. We can then invoke lemma 5.14 to conclude
that X = 0, which shows that the kernel of ∆gsc,con f is trivial.

Now we show that the kernel of the adjoint is also trivial. It will then
follow that ∆gsc,con f is an isomorphism. Recall that

∆∗
gsc,con f :

(
X 0

δ−2(M)
)∗ → (

X 2
δ (M)

)∗
For any number τ ∈ R, Riesz’s representation theorem allows us to

identify
(
X 0

τ (M)
)∗ with X 0

τ (M) via the map :

J : X 0
τ (M) →

(
X 0

τ (M)
)∗

For Y ∈ X 0
τ (M), J(Y) : X ∈ X 0

τ (M) 7→
∫

M
X · Yr−2τ−3dVgsc

where · is with respect to gsc. For simplicity of the notation, we will denote
both Y and J(Y) by Y; it will be clear from context which one we are
referring to.

We then have that Y ∈
(
X 0

δ−2(M)
)∗ is in the kernel of ∆∗

gsc,con f if and
only if ∫

M
Y · ∆gsc,con f X r−2(δ−2)−3dVgsc = 0 (5.154)

for every X ∈ X̂ 2
δ (M), which is equivalent to the above equation holding

for every smooth compactly supported vector field X in X̂ 2
δ (M) by a

density argument.

It follows from elliptic regularity that Y ∈ X 2
δ−2(M). In fact, Y will

be smooth since the metric gsc is smooth. Given an arbitrary smooth
compactly supported vector field X in X̂ 2

δ (M), we can then integrate by
parts to get
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∫
M

Y · ∆gsc,con f X r−2(δ−2)−3dVsc =
∫

M
X · ∆gsc,con f ȲdVsc (5.155)

+
∫

∂M

(
Lgsc,con f Ȳ(X,

∂

∂r
)−Lgsc,con f X(Ȳ,

∂

∂r
)

)
dσ

(5.156)

=
∫

M
X · ∆gsc,con f ȲdVsc (5.157)∫

∂M

[
Xi(L ∂

∂r
Ȳi − ∂iȲ0) +

5
3

∂rX0Ȳ0 +
2
3
��div(XT)Ȳ0

]
dσ

(5.158)

where Ȳ := r−2(δ−2)−3Y, X0 := gsc(
∂
∂r , X) and Ȳ0 := gsc(

∂
∂r , Ȳ). Note that

the boundary terms vanish at infinity since X is compactly supported.
Since X was an arbitrary vector field in a dense subset of X̂ 2

δ (M), it follows
that Ȳ satisfies

∆gsc,con f Ȳ = 0, g(
∂

∂r
, Ȳ) = 0,

(
L ∂

∂r
Ȳ
)T

= 0 (5.159)

Considering that Y ∈ X 0
δ−2(M), it follows that Ȳ ∈ X̂ 2

−δ−1(M). Since
∆gsc,con f Ȳ = 0 and −1 < −δ − 1 < 0, we have that Y ∈ X̂ 2

τ (M) for
any τ ∈ (−1, 0) (see [CB08] and [Bar86]). We can then apply the same
integration-by-parts argument carried out earlier to conclude that Ȳ is
conformal Killing on (M, gsc) and hence, by lemma (5.14), vanishes as
needed.



A
A P P E N D I X

a.1 a pde of finite type for conformal killing vector fields

In this section, we will prove an identity satisfied by conformal Killing
vector fields that is used in the proof of lemma 5.14. More specifically,
we will prove that any conformal Killing vector field Z on an arbitrary
n-dimensional Riemannian manifold (M, g) satisfies the following PDE of
finite type:

∇3Z = A · ∇Z + B · Z (A.1)

where A and B are linear expressions in Riem and ∇Riem.

Let Z be a conformal Killing field and let ψ := 2
n divZ. The conformal

Killing equation is

∇iZj +∇jZi = ψgij (A.2)

Eisenhart in [Eis49] (see pages 231-232 in [Eis49]) proves the following
identities:

∇k∇jZi = −ZmRm
kij +

1
2
(gij∇kψ + gik∇jψ − gjk∇iψ) (A.3)

gilZm∇l Rm
kij −Zm∇kRm

j −∇kZmRm
j −∇jZmRm

k +
n − 2

2
∇k∇jψ+

1
2

gjk∆ψ = 0
(A.4)

where R denotes Riem or Ric depending on the number of indices.
Taking the trace of equation (A.4), we get

∆ψ =
2

n − 1

(
Zm∇iRmi +∇iZmRmi

)
(A.5)

74
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Using equation (A.5) to eliminate ∆ψ in equation (A.4), we get the
following expression of ∇k∇jψ:

∇k∇jψ =
2

n − 2

(
− gilZm∇l Rm

kij +Zm∇kRm
j +∇kZmRm

j +∇jZmRm
k − 1

n − 1
gjk

(
Zm∇iRmi +∇iZmRmi

))
(A.6)

Taking a derivative of equation (A.3) and using equation (A.6), we get
the desired result.

a.2 a hardy-type inequality

In this section, we will prove a Hardy-type inequality that is used in the
proof of lemma 5.14, namely equation (5.75).

Let g ∈ Mk
δ(M) be a Riemannian metric on M = [nm0, ∞)× S2 of the

form

g = dr2 + r2(γ∞ + h(r))

where γ∞ is a metric on S2 and h ∈ H2
δ

(
[nm0, ∞);Hk(S2)

)
. We will prove

the following.

Proposition A.1. There exists an R0 > nm0 depending only on g such that for
R ≥ R0 and τ > 0, the inequality∫

[R,∞)×S2
rτ−2|T|2 dVg ≤ 4

τ2

∫
[R,∞)×S2

rτ|∇T|2dVg (A.7)

holds for all tensor fields T ∈ C1
c (M).

Proof. The main tool we will use is a general Lp Hardy inequality in
Riemannian manifolds developed by D’Ambrosio and Dipierro in [DD12].
We present the relevant version of it below.

Theorem A.2. Let ρ ∈ C2(M) such that ∆gρ ≥ 0 such that |∇ρ|2
∆ρ ∈ L1

loc(M).
Then for any R > nm0, the inequality

∫
[R,∞)×S2

|u|2∆ρ dVg ≤ 4
∫
[R,∞)×S2

|∇ρ|2
∆ρ

|∇u|2dVg (A.8)

holds for all u ∈ C1
c (M).

Letting ρ = rτ for τ > 0, we compute

∆ρ = τrτ−2
[

τ + 1 + r
(

trK − 2
r

)]
, |∇ρ|2 = τ2r2τ−2 (A.9)
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In light of the Sobolev embeddings in proposition 2.10, we have that

|trK − 2
r
| = o(r−1+δ) (A.10)

So we can choose R0 > nm0 depending only on g such that for any
R ≥ R0, ∣∣∣∣r(trK − 2

r

)∣∣∣∣ ≤ 1 (A.11)

This, in turn, implies that for any τ > 0 and any R ≥ R0,

∆ρ ≥ τ2rτ−2 ≥ 0 (A.12)

on [R, ∞)× S2 .

We can then invoke theorem A.2 directly to deduce that the inequality∫
[R,∞)×S2

rτ−2|u|2 dVg ≤ 4
τ2

∫
[R,∞)×S2

rτ|∇u|2dVg (A.13)

hold for any R ≥ R0 and u ∈ C1
c (M).

The same inequality holds with u replaced with a tensor field T. To see
this, we first compute that for any tensor field T on M,

|∇|T||2 ≤ |∇T|2 (A.14)

Using the above and letting u = |T| in equation (A.13), we immediately
deduce that the inequality∫

[R,∞)×S2
rτ−2|T|2 dVg ≤ 4

τ2

∫
[R,∞)×S2

rτ|∇T|2dVg (A.15)

holds for any R ≥ R0 and tensor field T ∈ C1
c (M).

Corollary A.3. Let δ ∈ (−1,− 1
2 ). There exists an R0 > nm0 depending only

on g and a positive constant C depending only on δ such that for any R ≥ R0

and any vector field Z ∈ X 3
δ (M),∫

[R,∞)×S2
r−2δ−3(|Z|2 + r2|∇Z|2)dVg ≤ C

∫
[R,∞)×S2

r−2(δ−3)−3|∇3Z|2dVg

(A.16)
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Proof. By repeatedly applying proposition A.1 for τ = −2δ − 1,−2δ +

1,−2δ + 3 and T = Z,∇Z,∇2Z, we deduce that there exists a positive
constant C = C(δ) such that∫

[R,∞)×S2
r−2δ−3(|Z|2 + r2|∇Z|2)dVg ≤ C

∫
[R,∞)×S2

r−2(δ−3)−3|∇3Z|2dVg

(A.17)
for any R ≥ R0 and any vector field Z ∈ C3

c (M). The above inequality can
be rewritten in terms of the norm on X k

δ (M) (see definition 2.5) as follows:

∥Z∥2
1,δ ≤ C

∥∥∇3Z
∥∥2

0,δ−3 (A.18)

The desired inequality then follows from the density of C3
c (M) in X 3

δ (M).

a.3 the legendre functions Pℓ and Qℓ

In this section, we will prove properties of the Legendre functions of the
first and second kind, Pℓ and Qℓ, that are used in the proof of lemma 3.3.

Fix R > 1 (which is n − 1 in chapter 3). For a positive integer ℓ, as
described by Olver in [OR14], the Legendre functions, Pℓ and Qℓ, are
linearly independent solutions to the ODE

(z2 − 1)h′′(z) + 2zh′(z)− ℓ(ℓ+ 1)h(z) = 0, z ∈ [R, ∞) (A.19)

with the following asymptotics as z → ∞,

Pℓ(z) = O(zℓ), Qℓ(z) = O(z−ℓ−1) (A.20)

We normalize Pℓ and Qℓ so that

lim
z→∞

z−ℓPℓ(z) = 1, lim
z→∞

zℓ+1Qℓ(z) = 1 (A.21)

which is different than Olver’s. Letting Pℓ and Qℓ be the Legendre func-
tions as defined by Olver, the relation between ours and his can imme-
diately be obtained is as follows (see [OR14] chapter 5 section 12 and
13):

Pℓ(z) =
√

πΓ(ℓ+ 1)
2ℓΓ(ℓ+ 1

2 )
Pℓ(z), Qℓ(z) =

2ℓ+1Γ(ℓ+ 3
2 )√

πΓ(ℓ+ 1)
Qℓ(z) (A.22)
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In the following proposition, we will apply the method of Frobenius to
obtain the expansion of Pℓ and Qℓ in terms of powers of z.

Proposition A.4. Pℓ and Qℓ admit an expansion of the following form. For
z > 1,

Pℓ(z) =
ℓ

∑
k=0

akzℓ−k, Qℓ(z) =
∞

∑
k=0

bkz−ℓ−1−k (A.23)

where the coefficients ak and bk are defined recursively as follows:

a0 = b0 = 1, a1 = b1 = 0

for k ≥ 2, ak =
(ℓ− k + 2)(ℓ− k + 1)

k2 − k(2ℓ+ 1)
ak−2, bk =

(ℓ+ k − 1)(ℓ+ k)
k(2ℓ+ k + 1)

bk−2

The expansion of Pℓ and Qℓ as described above agree with [WW96] pg
302 and 320.

Proposition A.5. There exists a constant C = C(R) such that for any ℓ ≥ 1
and z ∈ [R, ∞), the following holds

z−ℓ|Pℓ(z)| ≤ C
(

2z
z +

√
z2 − 1

)−ℓ

, zℓ+1|Qℓ(z)| ≤ C
(

2z
z +

√
z2 − 1

)ℓ

(A.24)

z−(ℓ−1)|P′
ℓ(z)| ≤ Cℓ

(
2z

z +
√

z2 − 1

)−ℓ

, zℓ+2|Q′
ℓ(z)| ≤ Cℓ

(
2z

z +
√

z2 − 1

)ℓ

(A.25)

Proof. Olver, in [OR14] chapter 12 section 12, has established an asymptotic
expansion of Pℓ and Qℓ for large degree ℓ that is uniformly valid for z ∈
(1, ∞). Shivakumar and Wong, in [SW88], proved an equivalent expansion
of Pℓ that is more computable; letting u = ℓ+ 1/2, he has shown that for
ξ > 0,

Pℓ(cosh ξ) =

(
ξ

sinh ξ

)1/2 (
I0(uξ) + ϵ(u, ξ)

)
(A.26)

where

|ϵ(u, ξ)| ≤ Γ(3/2)
2Γ(1/2)

2ξ

1 + ξ

I1(uξ)

u
(A.27)

and I0, I1 are the modified Bessel functions (see [OR14] chapter 2 section
10).

Similarly, Frenzen, in [Fre90], proved an equivalent expansion of Qℓ that
is more computable than Olver’s; he has shown that for ξ > 0,

Qℓ(cosh ξ) =

(
ξ

sinh ξ

)1/2 (
K0(uξ) + η(u, ξ)

)
(A.28)
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where

|η(u, ξ)| ≤ ξ

2(2 + ξ)

K1(uξ)

u
(A.29)

and K0, K1 are the modifed Bessel functions (see [OR14] chapter 7 section
8)

Letting ξ0 be the positive number in which cosh ξ0 = R, Olver’s asymp-
totics of the modified Bessel function in [OR14] chapter 12, section 1

implies that for all ξ ≥ ξ0,

|I0(uξ)|+ |I−1(uξ)| ≤ C
euξ

2π
√

uξ
, |K0(uξ)|+ |K1(uξ)| ≤ C

(
π

2uξ

)1/2

e−uξ

(A.30)
for some constant C > 0 depending only on R. We can then compute

for ξ ∈ [ξ0, ∞),

(cosh ξ)−ℓ|Pℓ(cosh ξ)| =
√

πΓ(ℓ+ 1)
2ℓΓ(ℓ+ 1

2 )
(cosh ξ)−ℓ|Pℓ(cosh ξ)| (A.31)

≤ C
√

πΓ(ℓ+ 1)
2ℓΓ(ℓ+ 1

2 )
2ℓ(eξ + e−ξ)−ℓ

√
2ξ√

eξ − e−ξ

e(ℓ+1/2)ξ

2π
√
(ℓ+ 1/2)

√
ξ

(A.32)

≤ C
Γ(ℓ+ 1)
Γ(ℓ+ 1

2 )

1√
ℓ

(
eξ

eξ − e−ξ

)1/2 ( eξ

eξ + e−ξ

)ℓ

(A.33)

≤ C
Γ(ℓ+ 1)
Γ(ℓ+ 1

2 )

1√
ℓ

(
eξ

eξ + e−ξ

)ℓ

(A.34)

(cosh ξ)ℓ+1|Qℓ(cosh ξ)| =
2ℓ+1Γ(ℓ+ 3

2 )√
πΓ(ℓ+ 1)

(cosh ξ)ℓ+1|Qℓ(cosh ξ)| (A.35)

≤ C
2ℓ+1Γ(ℓ+ 3

2 )√
πΓ(ℓ+ 1)

2−ℓ−1(eξ + e−ξ)ℓ+1
√

2ξ√
eξ − e−ξ

(
π

2(ℓ+ 1/2)ξ

)1/2

e−(ℓ+1/2)ξ

(A.36)

≤ C
Γ(ℓ+ 3

2 )

Γ(ℓ+ 1)
1√
ℓ

(
eξ

eξ − e−ξ

)1/2 ( eξ + e−ξ

eξ

)ℓ+1

(A.37)

≤ C
Γ(ℓ+ 3

2 )

Γ(ℓ+ 1)
1√
ℓ

(
eξ + e−ξ

eξ

)ℓ

(A.38)

where we have allowed the constant C to change from line to line but
remains dependent only on R and not on ξ or ℓ.
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In light of Stirling’s formula (see [OR14], chapter 3, section 8), the
Gamma function enjoys the following asymptotics:

Γ(x) = e−xxx(1 +O(x−1)), as x → ∞ (A.39)

In particular, we have

Γ(ℓ+ 1)
Γ(ℓ+ 1

2 )
=

(
1 +

1
2(ℓ+ 1/2)

)ℓ+1/2 √
ℓ+ 1√

e
(1 +O(ℓ−1)) (A.40)

and

Γ(ℓ+ 3
2 )

Γ(ℓ+ 1)
=

(
1 +

1
2(ℓ+ 1)

)ℓ+1
√
ℓ+ 3

2√
e

(1 +O(ℓ−1)) (A.41)

as ℓ → ∞. It then follows that Γ(ℓ+1)
Γ(ℓ+ 1

2 )
1√
ℓ

and Γ(ℓ+ 3
2 )

Γ(ℓ+1)
1√
ℓ

are bounded for

ℓ ≥ 1, and we finally conclude that there exists a constant C depending
only on R such that for any z ≥ R,

z−ℓPℓ(z) ≤ C
(

2z
z +

√
z2 − 1

)−ℓ

, zℓ+1Qℓ(z) ≤ C
(

2z
z +

√
z2 − 1

)ℓ

(A.42)
where we used

eξ + e−ξ

eξ
=

2z
z +

√
z2 − 1

(A.43)

for z = cosh ξ.
We have then shown equation (A.24). The estimate for P′

ℓ and Q′
ℓ in equa-

tion (A.25) follows immediately from equation (A.24) and the recurrence
relations (see [BE55] pg 161 and [WW96] pg 318)

(z2 − 1)P′
ℓ(z) = ℓ(zPℓ(z)− Pℓ−1(z)), (z2 − 1)Q′

ℓ(z) = ℓ(zQℓ(z)−Qℓ−1(z))
(A.44)
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