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Abstract

We present a detailed physiological model of the (human) retina that includes

the biochemistry and electrophysiology of phototransduction, neuronal electrical cou-

pling, and the spherical geometry of the eye. The model is a parabolic-elliptic sys-

tem of partial differential equations based on the mathematical framework of the

bi-domain equations, which we have generalized to account for multiple cell-types.

We discretize in space with non-uniform finite differences and step through time with

a custom adaptive time-stepper that employs a backward differentiation formula and

an inexact Newton method. A refinement study confirms the accuracy and efficiency

of our numerical method. We generalize our time-stepping scheme to higher order

and derive estimates for the corresponding local truncation errors. Numerical sim-

ulations using the model compare favourably with experimental findings, such as

desensitization to light stimuli and calcium buffering in photoreceptors. Other nu-

merical simulations suggest an interplay between photoreceptor gap junctions and

inner segment, but not outer segment, calcium concentration. Applications of this

model and simulation include analysis of retinal calcium imaging experiments, the

design of electroretinograms, the design of visual prosthetics, and studies of ephaptic

coupling within the retina.
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Chapter 1

Introduction

The retina is a unique part of the brain in that it is physically exposed to the outside

world and has a relatively simple anatomical structure as compared to other parts of

the brain [35]. This explains why it has been heavily studied for well over a century

now [35] and, hence, much about retinal physiology and anatomical structure is well

understood. For example, the anatomical structure and density of photoreceptors,

which are the site of light detection and where signal transduction and processing

begins [98], are well known in numerous species [127, 58, 45, 134]. Moreover, much

has been discovered about the various processes and functions of the retina. For

instance, phototransduction, which is the process in which light is converted into an

electrical signal, is understood in great detail. There is a widely accepted description

of phototransduction including the various molecules and proteins crucial to this

process, such as opsins that isomerize after absorbing a photon and guanosine 3’,5’-

cyclic monophosphate (cGMP) that keeps some cGMP-gated cation channels open

maintaining a dark current [44]. As a result of all this research, many biological

models of the various retinal neurons have been developed [64, 124, 123, 7, 59].

Being a physically accessible part of the brain, there have been numerous experi-

mental studies on the electrical activity in and around the retina as a result of light

1



2 CHAPTER 1. INTRODUCTION

stimuli. Visual prosthetics [41, 25, 126] and medical diagnosis [26, 35] are two promi-

nent applications of such studies. Electroretinograms (ERGs) are a clinical diagnosis

tool in which patients are shown various flashes of light stimuli and the resulting

change in electrical potential on the eye surface is recorded. ERGs can be used to de-

tect various diseases, such as retinitis pigmentosa and retinal vascular diseases [26]. A

biologically-realistic, full-retina model would aid such studies and their applications.

Considering that the retina is composed of hundreds of millions of neurons, we will

use a continuum model in which the electrical activity is described in spatial aggregate

rather than in a cell-by-cell basis. The bi-domain model, first introduced by Tung,

is such a continuum model, which uses homogenization to account for the multiple

scales present in similar tissue-level models [120]. This model includes two sepa-

rate domains (extracellular and intracellular spaces) which occupy the same physical

space. Current is allowed to flow between the two domains (see Section 2.2.1). The

currents and the dynamic variables in the bi-domain equations are spatial averages,

over a large number of cells, of the corresponding currents and dynamic variables

for individual cells, derived through homogenization [120, 55]. Homogenization is a

mathematical technique which is used to obtain the macroscopic properties of a sys-

tem from its microscopic ones [55, 23]. It can be used to obtain averaged equations

from a system of partial differential equations whose (spatial) domain has a periodic

microstructure [66]. See [66, 55] for a derivation of the bi-domain equations using

homogenization.

The bi-domain equations have been applied extensively in modelling cardiac tissue.

One such example is in predicting and suggesting mechanisms [109, 99, 102, 100, 101,

12] for cardiac strength-interval curves [65]. Results from studies using the bi-domain

equations [101, 12] resembled those obtained from experimental measurements [30,

84]. In some cases, studies using the bi-domain equations [109] predicted mechanisms

that were only later confirmed by experimental studies [129, 69, 88, 121, 89, 128,
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68]. We hope to attain similar results in modelling the retina using the bi-domain

equations.

The bi-domain equations have also been used to study neural tissues [87, 106,

107, 83]. The most notable bi-domain model of the retina was proposed by Dokos et

al. [34], which is concerned with epiretinal stimulation via stimulus electrodes. This

model has since been further developed, in various directions, for various purposes,

such as handling different electrode stimulation techniques, using finite element im-

plementation, and incorporating more details of the retina [63, 131, 132, 62, 110, 1, 5].

Numerous studies have been conducted based on the various versions of this model

and have largely been concerned with visual prosthetics and/or electrical stimulation

of the retina [2, 111, 112, 4, 6]. Given the scope of their work, the model proposed

by Dokos et al. does not accurately describe the entire geometry of the retina and

makes no attempt to model the entirety of the vitreous chamber. Also, the stimuli to

the retina in most versions of this model was provided solely by stimulus electrodes.

Only one version of this model was developed with light stimuli, but without detailed

biological descriptions of some of the neurons, including photoreceptors, nor did they

account for the geometry of the eye [132]. In particular, they studied the retinal

response to small and large light-spot stimuli. Their findings were consistent with

experimental studies, especially as it pertains to the relation between the size of the

stimuli and surround antagonism [132].

An important reason for using the bi-domain equations in modelling the retina

(and cardiac tissue) is that it provides an accurate description of the micro-scale

structures in a macro-scale model. To illustrate, tissues are made out of cells on the

micro-scale, and the intracellular and extracellular spaces are physically separated by

cell membranes. Using the bi-domain equations, we retain this micro-scale description

in the macro-scale model. However, when modelling tissues with multiple, densely

packed cell-types, such as the four known photoreceptors of the retina [35, 98, 72], the
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presence of the different intracellular spaces is not addressed in the macro-scale model.

For this reason, we generalized our model to handle this multi-domain scenario (see

Section 2.2.3 for the derivation of the multi-domain equations). This generalization

also allows us to apply different light stimuli for the different photoreceptors. Thus, we

are able to account for the differences in the sensitivities of the various photoreceptors

to light of certain wavelengths [35, 98, 72]. A dissimilar multi-domain model of the

retina, based on Dokos et al., has been proposed [5]. The multiple domains in that

model represent the different compartments of the retinal ganglion cells, such as the

dendrites, soma and axon, rather than different cell-types [5, 4, 6].

We present a detailed model of the human retina, which takes into account retinal

physiology and the spherical geometry of the eye. While we present our model in

the human species, the model and its framework is readily generalizable to other

species (see Chapter 2). Light incident on the retina provides the stimuli, through

a model of the phototransduction pathway [64]. The retina model is a system of

PDEs which we solve using a finite difference scheme (see Sections 2.2.1 and 4.1). We

overcome many challenges to successfully model the retina in this way including the

3D nature of this problem, the spherical geometry of the eye, numerical stiffness of the

retinal dynamics, and the multiple space and time scales involved in this model. We

implicitly step through time using a backward differentiation formula and Newton’s

method (see Section 4.2). We present an adaptive time-stepper (Section 4.2.1) and two

inexact Newton methods (Section 4.3) that we were able to use, separately, to mitigate

the computational cost and time arising from such complications. We generalize

our adaptive time-stepping scheme to apply to higher order backward differentiation

formulas (Chapter 5).

We discuss the details of our model in Chapter 2. We begin by describing the

spatial aspect of the model (Section 2.1). We then discuss the mathematical basis of

the model, including a derivation of the bi-domain and multi-domain equations and
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the additional assumptions we make (Section 2.2). In an effort to be self-contained,

we include a comprehensive overview of iterative methods (Chapter 3) including some

of their preconditioning techniques (Section 3.3). While most of the contents of that

chapter are not new, the presentation and some of the presented proofs are novel.

This adequately prepares us for the detailed discussion of the numerical methods we

used to solve our system of PDEs (Chapter 4). Details from the spatial discretization

(Section 4.1) and the implicit time-stepping scheme used (Section 4.2), to the adaptive

time-stepper (Section 4.2.1) and the two inexact Newton methods used (Section 4.3)

are included in that discussion. We then generalize our adaptive time-stepper to be

of higher order (Chapter 5). This generalization includes a novel derivation of the

backward differentiation formulas coefficients (Section 5.1). Subsequently, we present

and discuss findings (Chapter 6) obtained using a few numerical simulations of the

model (Appendix A).
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Chapter 2

Mathematical Model

In this chapter, we introduce the mathematical framework of our model, which has

been published in Mathematical Biosciences [3]. This includes deriving the bi-domain

equations and the resulting partial differential equation (PDE) system for the entire

eye. We also generalize the bi-domain equations to the multi-domain equations to

account for more cellular domains.

2.1 Geometrical Setup

We assume the eye S = B(0, reye) ⊂ R3 to be a closed ball centered at the origin with

radius reye = 12.25 mm [71]. We orient the eye so that the retina, R = {(r, θ, ϕ) ∈ S :

reye−rretina ≤ r ≤ reye, ϕretina ≤ ϕ ≤ π
2
}, is situated on the north pole of S. We choose

ϕretina = 0 rad to obtain an experimentally accepted (outer) retinal radius value of

19.2 mm [73]. We segment the retinal boundary, ∂R, into an outer boundary, ∂Ro,

lateral boundary, ∂R`, and an inner boundary, ∂Ri as shown in Fig. 2.1. Hence,

∂R = ∂Ro ∪ ∂R` ∪ ∂Ri, with ∂Ro = {(r, θ, ϕ) ∈ S : r = reye, ϕretina ≤ ϕ ≤
π
2
}, ∂R` = {(r, θ, ϕ) ∈ S : reye − rretina ≤ r ≤ 1, ϕ = ϕretina}, ∂Ri = {(r, θ, ϕ) ∈ S :

r = reye − rretina, ϕretina ≤ ϕ ≤ π
2
}. The parameters reye, rretina and ϕretina are chosen

to match that of humans, but can easily be chosen to study other species with similar

7
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R ∂R = ∂Ro ∪ ∂Rl ∪ ∂Ri R ⊂ S
Figure 2.1: Left: The retina, R is shown. Middle: The outer boundary, ∂Ro, lateral
boundary, ∂R`, and inner boundary, ∂Ri of the retina are shown. Right: The retina
is centered across the north pole of the eye, S. In this set up the cornea would be
located around the south pole of the eye.

eye structure to humans.

2.2 Model Derivation

As shown in Fig. 2.1, we segment the eye into the sensory part, the retina R, and

the rest of the eye, S \ R, which will consist of various parts including the vitreous

chamber and the lens, assumed to be homogeneous. We use the bi-domain/multi-

domain equations to model the retina, while we model the passive region using the

mono-domain equation. The interface between the two regions is the lateral boundary,

∂R`, and the inner boundary ∂Ri.

2.2.1 Bi-domain Equations Setup

For the sake of completeness, we present a derivation of the bi-domain equations.

Many similar derivations can be found in the literature, for example [66]. Let φi, φe

be the intracellular and the extracellular potentials of the retina, respectively, and φs

be the potential of the rest of the eye. Using the microscopic version of Ohm’s law
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we get

Ji = µiEi = −µi∇φi,

Je = µeEe = −µe∇φe,

Js = µsEs = −µs∇φs,

in which µi, µe are the conductivity of the intracellular and extracellular domains

of the retina, and µs is the conductivity of the interior of the eye; Ji, Je denote

the intracellular and extracellular current densities in the retina, and Js the current

density in the rest of the eye; and Ei, Ee denote the intracellular and extracellular

electric fields in the retina, andEs the electric field in the rest of the eye. In our setting,

the conductivities will be (symmetric positive definite) tensors that are functions of

space as discussed in Section 4.1.

As is typical in electrostatics, our assumption that charge cannot accumulate at

any point on the passive region of the eye takes the form

∇ · Js = 0.

As each point in the retina resides in both the intracellular and extracellular domain,

our assumption about charge accumulation takes the form

∇ · (Je + Ji) = 0.

In each domain, transmembrane currents, capacitive currents, and any applied cur-

rents appear as sources

∇ · Ji = −∇ · (µi∇φi) = − 1

χ
(Cm

∂Vm

∂t
+ Im),

∇ · Je = −∇ · (µe∇φe) =
1

χ
(Cm

∂Vm

∂t
+ Im),
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in which χ is the volume-to-surface ratio of the cell membrane, Cm is the cell mem-

brane capacitance, Im is the transmembrane current density, and Vm = φi − φe is the

membrane voltage, the difference between the intracellular and extracellular poten-

tial. The sign difference between the right hand sides is expected since current exiting

the intracellular region enters the extracellular region.

We choose the transmembrane currents to be given by a conductance-based, rod-

photoreceptor model [64], the Kamiyama model. However, our model is adaptable

to any choice of transmembrane currents. The flexibility of the model, both geo-

metrically (see Section 2.1) and physiologically, makes it readily adaptable to study

numerous other species. In transmembrane current models where the total current is

reported rather than the density, one needs to divide by the surface area of the cell

membrane, which may be absorbed into χ. Parameters associated with the trans-

membrane currents are permitted to depend on space if required. Since cone and rod

photoreceptors have similar ionic currents in their inner segments [10], we can also

model cones by reducing some time constants in the Kamiyama model. As photore-

ceptors are the main retinal cells of our interest, we used the same set of equations

for the transmembrane currents throughout the entire retina.

To address boundary conditions of this system, we start by assuming that the eye

is surrounded by perfectly insulating material (so that the current cannot leave the

eye)

no · (µi∇φi) = 0 (on ∂Ro),

no · (µe∇φe) = 0 (on ∂Ro),

ns · (µs∇φs) = 0 (on ∂S \ ∂Ro),

in which ns is the normal vector to ∂S = {(r, θ, ϕ) ∈ S : r = reye} and no is the

normal to ∂Ro. On the boundary of the retina and the rest of the eye, where the
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transition of a bi-domain to a mono-domain occurs, we require that the extracellular

potential and the current be continuous

φe = φs (on ∂Ri ∪ ∂R`), (2.1)

nx · (µi∇φi + µe∇φe) = nx · (µs∇φs) (on ∂Rx for x = i, `).

Following Tung [120], we make the additional assumption that the intracellular do-

main of the retina is isolated from the rest of the eye, which gives

nx · (µi∇φi) = 0 (on ∂Rx for x = i, `),

nx · (µe∇φe) = nx · (µs∇φs) (on ∂Rx for x = i, `). (2.2)

In summary, our model is a system of partial differential equations for unknowns

φi, φe (defined on R), and φs (defined S \ R),

retina



∇ · (µi∇φi + µe∇φe) = 0 (on R),

∇ · (µe∇φe) = − 1
χ

(
Cm

∂Vm
∂t

+ Im(Vm,X)
)

(on R),

Vm = φi − φe (on R),

∂X
∂t

= G(Vm,X) (on R),

retina boundary



nx · (µi∇φi) = 0 (on ∂Rx for x = o, i, `),

no · (µe∇φe) = 0 (on ∂Ro),

φe = φs (on ∂Ri ∪ ∂R`),

nx · (µe∇φe) = nx · (µs∇φs) (on ∂Rx for x = i, `),

rest of the eye

 ∇ · (µs∇φs) = 0 (on S \ R),

ns · (µs∇φs) = 0 (on ∂S \ ∂Ro),

in which t is time, ns is the outward normal vector to ∂S, nx is the normal to ∂Rx

(pointing away from the retina) for x = o, i, `, X contains all of the auxiliary dynamic
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variables from the transmembrane currents model (including channel gating variables

and concentrations of proteins involved in phototransduction), and G describes their

evolution in time.

We eliminate φi and re-arrange for a dynamic equation for Vm,

∇ · (µs∇φs) = 0 (on S \ R), (2.3)

∇ · (µi∇(Vm + φe) + µe∇φe) = 0 (on R), (2.4)

∂Vm

∂t
= − 1

Cm

(χ∇ · (µe∇φe) + Im(Vm,X)) (on R), (2.5)

∂X

∂t
= G(Vm,X) (on R). (2.6)

Equations (2.3) and (2.4) are the elliptic constraints on the evolution of the system

in time. In Section 4.1, we see explicitly that the discretization of this PDE system

is a system of differential algebraic equations (DAE). The elliptic constraints become

the algebraic restriction on the system.

2.2.2 Uniqueness and Boundary Conditions

By inspecting the PDE system (2.3) to (2.6), it is clear that its solutions are not

unique. That is, if Vm, φe, φs are solutions then so are Vm, φe + c, φs + c for any

constant c. Potentials are not unique so long as the potential difference is unchanged.

Since we will be solving this system in time as well, it is important to note that c is

allowed to depend on time. So fixing the time dependent constant c, makes the PDE

system (2.3) to (2.6) well-posed.

We choose c to ensure that

∫
∂S\∂R

φs +

∫
∂Ro

φe = 0 (2.7)

at all times. The motivation behind this choice can be thought of as selecting the
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ground electrical potential to be zero. Let φo be the harmonic function on R3\S whose

values on ∂S matches φs and φe, and let φ∞ = lim
r→∞

φo. Hence, φo is an extension of

φe (on ∂Ro) and φs (on ∂S \∂R), while φ∞ can be thought of as the ground potential

at infinity. Using the mean value property on the Kelvin transform of φo shows that

our assumption is tantamount to φ∞ =
∫
∂S φo = 0.

2.2.3 Multi-domain Equations Setup

We will derive the multi-domain equations with an arbitrary number of distinct intra-

cellular domains, say there are q of them with intracellular potentials φ1
i , φ

2
i , . . . , φ

q
i .

The derivation will be very similar to that of the bi-domain equations (Section 2.2.1),

so many of the details will be omitted. We also omit redefining variables introduced

previously.

Considering the multi-domain setup, assuming that charge cannot accumulate at

any point gives

∇ ·

(
Je +

q∑
j=1

J ji

)
= 0,

in which J ji is the current density of the jth intracellular domain. Different photore-

ceptors are electrically coupled via channels called gap junctions [35, 98, 72]. Hence,

gap junctional currents also appear as a source of current

∇ · J ji = −∇ · (µji∇φ
j
i ) = − 1

χj

(
Cj

m

∂V j
m

∂t
+ Ijm +

q∑
k=1

gjk(φ
j
i − φki )

)
,

in which µji is the conductivity of the jth intracellular domain, χj is the volume-

to-surface ratio of the cell membrane of the jth cell-type, Cj
m is the cell membrane

capacitance of the jth cell-type, Ijm is the transmembrane current density of the jth

cell-type, V j
m = φji − φe is the difference of the jth intracellular domain potential and
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extracellular potential, and gjk is the gap junctional conductance between the jth

and kth intracellular domains (we set gjj = 0, for j = 1, . . . , q).

The boundary conditions are handled similarly to the bi-domain equations. The

overall multi-domain model will also be a system of partial differential equations for

unknowns φji , φe, and φs (for j = 1, . . . , q). These are

retina



∇ · (µe∇φe +
∑q

j=1 µ
j
i∇φ

j
i ) = 0 (on R),

∇ · (µji∇φ
j
i ) = 1

χj

(
Cj

m
∂V j

m

∂t
+ Ijm +

∑q
k=1 gjk(φ

j
i − φki )

)
(on R, j = 1, . . . , q),

V j
m = φji − φe (on R, j = 1, . . . , q),

∂Xj

∂t
= Gj(V j

m,X
j) (on R, j = 1, . . . , q),

retina boundary



nx · (µji∇φ
j
i ) = 0 (on ∂Rx for x = o, i, `; j = 1, . . . , q),

no · (µe∇φe) = 0 (on ∂Ro),

φe = φs (on ∂Ri ∪ ∂R`),

nx · (µe∇φe) = nx · (µs∇φs) (on ∂Rx for x = i, `),

rest of the eye

 ∇ · (µs∇φs) = 0 (on S \ R),

ns · (µs∇φs) = 0 (on ∂S \ ∂Ro),

in which Xj contains all of the auxiliary dynamic variables from the transmembrane

currents model for the jth cell type and Gj describes their evolution in time.

As before, we obtain the following PDE system for the multi-domain equations:

∇ · (µs∇φs) = 0 (on S \ R), (2.8)

∇ ·

(
µe∇φe +

q∑
j=1

µji∇(V j
m + φe)

)
= 0 (on R), (2.9)

∂V j
m

∂t
=

1

Cj
m

(
χj∇ ·

(
µji∇(V j

m + φe)
)

(2.10)

−Ijm(Vm,X
j)−

q∑
k=1

gjk(V
j

m − V k
m)

)
(on R, j = 1, . . . , q),

∂Xj

∂t
= Gj(V j

m,X
j) (on R, j = 1, . . . , q). (2.11)



Chapter 3

Iterative Methods for Solving

Linear Systems

Given an n× n nonsingular matrix, A, solving the linear system

Ax = b, (3.1)

continues to be a main subject in numerical research up to this point. Beginning

in the 1970s, there has been a shift towards solving large linear systems iteratively

as opposed to directly. This is because direct solvers are prohibitively slow for very

large n. Indeed, in the same time span that computer hardware had a speedup factor

of 109, our ability to solve large systems improved only by a factor of 103 [119]. A

main advantage of iterative methods is the ability to stop when a suitable, but not

necessarily exact, solution to (3.1) is found. This can significantly cut down the

computational costs.

In this chapter, we introduce, and provide background on, the iterative methods

that we use in solving linear systems that arise from using Newton’s method on the

discretized PDE system (see Chapter 4). We conclude this chapter with a discussion

on preconditioners, especially as it pertains to iterative methods. A reader who is

15
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mainly concerned with how we simulated our model rather than the details on the

techniques used can safely skip this chapter.

3.1 Fixed-point Iteration

The equation

xn+1 = f(xn)

is called a functional iteration [67]. If we assume that f is a continuous function and

xn → x is a convergent sequence, it is clear that x = f(x). In other words, the limit

of the sequence generated by the functional iteration is a fixed-point of the function

f .

It is often the case that a mathematical problem can be framed as a fixed-point

iteration of some operator. An example of this is solving the linear system (3.1) using

the Jacobi iteration. If we let D be the diagonal matrix with the same diagonal as A,

assuming D is invertible, then the Jacobi iteration is the fixed-point iteration defined

by

Dxn+1 = b− (A−D)xn.

Indeed, if xn → x, then Dx = b − (A − D)x is equivalent to x being a solution to

(3.1).

In fact, given any splitting A = B + (A− B), solving the linear system (3.1) can

be casted as a fixed point iteration, namely

Bxn+1 = b− (A−B)xn. (3.2)
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Furthermore, it can be shown that the above iteration will always converge if the

spectral radius of the matrix B−1(A−B) is strictly less than unity [133, 104].

Equation (3.2) is also a semi-explicit iteration for solving (3.1). This can be seen

by writing (3.1) as

Bx+ (A−B)x = b

and solving the B part implicitly and the A−B part explicitly.

3.1.1 Richardson-D’Jakonov Iteration

In 1911, Richardson [97] proposed solving the linear equation Ax = 0 iteratively using

xj+1 = xj − γjAxj,

in which xj is a sequence that converges to the solution of the linear equation and the

iteration parameters γj ∈ R are allowed to vary with each iteration. The Richardson

iteration can be viewed as a fixed-point iteration based on the splitting γjA = I +

(γjA − I) [104]. Around 50 years later, D’Jakonov [32, 33] proposed a more general

iteration for solving the linear equation Ax = b, which is given by

Bxj+1 = γjb− (γjA−B)xj. (3.3)

This iteration later became known as the Richardson-D’Jakonov iteration [113].

3.2 Krylov Subspace Methods

In this section, we survey the Krylov subspace methods, which are a class of iterative

techniques for solving the linear system (3.1). From these methods, we only use the
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generalized minimal residual (GMRES) method in our simulation (see Section 4.3.2),

however, we provide this in depth introduction to place this method in context. The

majority of the facts in this section can be found in modern textbooks, for example

the great books of Saad [104], and Trefethen and Bau [119], upon which we relied

heavily. However, we provide this survey from a historical lens, starting with the

oldest method and moving on to more recent ones, while addressing, in detail, the

more modern view that is found in textbooks today. Also, some relations are proved

in a novel way, namely the relation between Lanczos methods and the conjugate

gradient method (see Section 3.2.6).

3.2.1 Introduction to Krylov Subspace Methods

Given an initial approximation, x0, to the solution of (3.1), a Petrov-Galerkin method

seeks to find an approximation, x̃, to the solution of (3.1), in an affine space x0 +K,

for some specified subspace K [104]. This approximation is chosen so that the residual

vector b−Ax̃ is orthogonal to a subspace L. In this context, Petrov-Galerkin methods

are synonymous to projection methods [104]. In the special case when L = K, they

are usually referred to as Galerkin methods (i.e. orthogonal projection methods) [104].

A Krylov subspace method is a Petrov-Galerkin method onto the Krylov subspace

Km(A, r0) = span
{
r0, Ar0, A

2r0, . . . , A
m−1r0

}
,

in which r0 = b − Ax0 is the initial residual vector. We will simply use Km to refer

to the mth Krylov subspace when both A and r0 are understood from context and

Km(r0) when only A is understood from context. We will only consider methods in

which L = Km or L = AKm.
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3.2.2 Conjugate Gradient Method

The conjugate gradient method is the original Krylov subspace method (in 1951-

1952), yet it is still one of the best known iterative methods for solving a sparse

symmetric positive definite linear system. It was independently developed by Hestenes

(with help from Rosser, Forsythe, and Paige) and by Stiefel [57, 56]. Some also credit

Lanczos for independently discovering this method [74, 75, 104]. This method can

easily be implemented and is found in many textbooks (e.g. [104, 119]). It is stated

below.

Algorithm 1 Conjugate Gradient Method

Require: x0 initial approximation for solution of (3.1), A symmetric positive definite
Define r0 = b− Ax0, p0 = r0

for j = 0, 1, . . . (until convergence) do

γj =
〈rj, rj〉
〈Apj, pj〉

xj+1 = xj + γjpj % new approximation
rj+1 = rj − γjApj % new residual

ξj =
〈rj+1, rj+1〉
〈rj, rj〉

pj+1 = rj+1 + ξjpj % new search direction
end for

The name of the method comes from the fact that all the search directions pj’s

are A-conjugate (i.e. 〈Api, pj〉 = 0 for i 6= j). It probably is difficult to see how

Algorithm 1 solves (3.1). We will purposefully avoid directly commenting on that

here. Instead we will explain how the Lanczos methods (see Section 3.2.3) work and

then show that the conjugate gradient is a Lanczos method (Section 3.2.6).

3.2.3 (Symmetric) Lanczos Methods

The original Lanczos method was developed for solving the eigenvalue problem of

linear operators [74]. In [74], Lanczos points that his proposed method can be used

to solve linear systems, which he later demonstrated in detail in [75]. We will only
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be concerned with symmetric Lanczos methods (i.e. A is symmetric in (3.1)), and,

from here on, we will be referring to them simply as Lanczos methods. At the heart

of Lanczos methods is the Lanczos algorithm, which, in ideal conditions, gives an

orthonormal basis {v1, . . . , vk} of the Krylov subspace Kk (with v1 = r0
‖r0‖) for k =

1, . . . ,m. This algorithm can be stated independently from the projection problem of

interest and can also be found in many textbooks (e.g. [104, 119]). We state it below.

At a first encounter, it probably is difficult to believe that the Lanczos algorithm

Algorithm 2 Lanczos Algorithm

Require: arbitrary unit vector v1, A symmetric
Define β1, v0 = 0
for j = 1, 2, . . . ,m do

αj = 〈Avj, vj〉
ωj = Avj − βjvj−1 − αjvj % projection onto (span{vj−1, vj})⊥
βj+1 = ‖ωj‖
if βj+1 = 0 then

Stop
end if

vj+1 =
1

βj+1

ωj % normalizing

end for

results in orthogonal vectors; we discuss this in detail in Section 3.2.5.

The ideal conditions referred to earlier are tantamount to dimKm = m. This

ensures that the Lanczos algorithm does not come to a premature halt (in the ‘if’

statement). These premature halts are referred to as breakdowns.

The other component to Lanczos methods is finding the approximation, x̃, of the

desired solution to (3.1). In the case of Galerkin methods onto the Krylov subspace

Km, one simple way to do this is, subsequent to the Lanczos algorithm, solve the

system


x̃ = x0 + Vmx̂

V T
m (b− Ax̃) = 0

,
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in which Vm is the n ×m matrix whose columns are obtained from the Lanczos al-

gorithm (as they form a spanning set of Km). The orthogonality condition can be

simplified further since b − Ax̃ = r0 − AVmx̂ = ‖r0‖v1 − AVmx̂. Thus, the approxi-

mation can be found using


x̃ = x0 + Vmx̂

x̂ = ‖r0‖T−1
m e1

, (3.4)

in which Tm = V T
mAVm is an m×m matrix. In fact, it will prove useful to similarly

define Vk, Tk = V T
k AVk by taking the first k vectors from the Lanczos algorithm

(Algorithm 2) for all k = 1, . . . ,m.

3.2.4 Arnoldi’s Method

Arnoldi gave his generalization of the (symmetric) Lanczos method to the nonsym-

metric case shortly after it was first proposed [8]. Much like the Lanczos method,

Arnoldi’s method can be broken down into: 1) finding an orthonormal basis of the

Kyrlov subspace and 2) approximating the solution of (3.1) using that basis. The for-

mer is commonly known as Arnoldi’s algorithm and can be found in many textbooks

(e.g. [104, 119]). We state it below.

It is easily observed that Arnoldi’s algorithm is theoretically equivalent to the Gram-

Schmidt process and, hence, we conclude that the resulting v1, . . . , vk form an or-

thonormal basis for the Krylov subspace Kk for k = 1, . . . ,m (again assuming no

breakdown occurs).

Much like the Gram-Schmidt process can be viewed as a way to factor a matrix,

with linearly independent columns, into QR form, Arnoldi’s algorithm factors, under

the previously mentioned ideal conditions, a matrix into its Hessenberg form. Indeed,

if Vk is the n× k matrix whose columns are the output of Arnoldi’s algorithm, then
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Algorithm 3 Arnoldi’s Algorithm

Require: arbitrary unit vector v1

for j = 1, 2, . . . ,m do
for i = 1, 2, . . . , j do

hij = 〈Avj, vi〉
end for

ωj = Avj −
j∑
i=1

hijvi % projection onto (span{v1, . . . , vj})⊥

h(j+1)j = ‖ωj‖
if h(j+1)j = 0 then

Stop
end if

vj+1 =
1

h(j+1)j

ωj % normalizing

end for

V T
k AVk is a Hessenberg matrix (i.e. all entries below the first subdiagonal are zeros) for

all k = 1, . . . ,m. To show this, we define Hk to be the k×k Hessenberg matrix whose

nonzero entries are defined in the first k iterations of the main loop of Algorithm 3

(disregarding h(k+1)k). From the algorithm, one can readily observe that

AVk = VkHk + ωke
T
k (for k = 1, . . . ,m), (3.5)

in which ωk is the one defined in the main loop of Algorithm 3 (again, we assume

we are in the case of no breakdowns). The desired result is obtained using the

orthonormality of v1, . . . , vk+1.

The second component of Arnoldi’s method, namely finding the approximation to

the solution of (3.1), can also be solved using various methods. One such method,

known as the full orthogonalization method, uses the same approach discussed previ-

ously for the Lanczos method [104]. We state it below. A second approach to finding

the approximation x̃ is introduced when we discuss the generalized minimal residual

method (see Section 3.2.7).
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Algorithm 4 Full Orthogonalization Method

Require: arbitrary unit vector v1

for j = 1, 2, . . . ,m do
for i = 1, 2, . . . , j do

hij = 〈Avj, vi〉
end for

ωj = Avj −
j∑
i=1

hijvi % projection onto (span{v1, . . . , vj})⊥

h(j+1)j = ‖ωj‖
if h(j+1)j = 0 then

m = j
Break

end if

vj+1 =
1

h(j+1)j

ωj % normalizing

end for
x̂ = ‖r0‖H−1

m e1 % r = b− Ax̃ ∈ L⊥ = K⊥m
x̃ = x0 + Vmx̂ % x̃ ∈ x0 +Km

3.2.5 Lanczos Methods are a Special Case of Arnoldi’s Method

Now that it is clear that the columns of Vk, obtained from Arnoldi’s algorithm, are

an othonormal basis of Kk, the next proposition is the key to showing the relation

between Arnoldi’s algorithm and the Lanczos algorithm.

Proposition 3.1. If A is a symmetric n×n matrix, then the Hessenberg matrix Hk,

defined using Arnoldi’s algorithm, is a tridiagonal matrix (for all k = 1, . . . ,m).

Proof. For any k = 1, . . . ,m, as Hk = V T
k AVk is a symmetric matrix it suffices to show

(Hk)ij = 0 for i > j + 1. So we need to show 〈vi, Avj〉 = 0. Since vj ∈ Kj, we have

Avj ∈ Kj+1 = span{v1, . . . , vj+1}, which gives the desired result by the orthogonality

of the vi’s. �
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So, in the case of A being symmetric, we have

Hk =

h11 h12 h1k

h21 h22 h2k

hk(k−1) hkk

· · ·
· · ·

···
· · ·

· · ·0

=

h11 h21

h21 h22

hk(k−1)

hk(k−1) hkk

· · ·
· · ·

· · ·

0

0
.

Noting the shape of Hk, it is not too difficult to see that the jth projection in Arnoldi’s

algorithm is, theoretically, equivalent to projecting onto (span{vj−1, vj})⊥. Since

hjj = αj and h(j+1),j = βj+1, we get that the Lanczos methods are a special case of

Arnoldi’s method since the algorithms are identical after simplifying to the symmetric

case. Thus, we see that the Lanczos algorithm indeed generates an orthonormal basis

and in that case

Tk = Hk =

α1 β1

β1 α2

βk−1

βk−1 αk

· · ·
· · ·

· · ·

0

0
.

3.2.6 Conjugate Gradient Method is a Lanczos Method

The goal of the Lanczos (and Arnoldi’s) algorithm is to form a basis of Km by iter-

atively enlarging a basis of Kk for k = 1, . . . ,m (in that order). So we can poten-

tially reduce the cost of Lanczos methods (and Arnoldi’s) by finding approximations

x̃k ∈ x0 +Kk as follows.

Algorithm 5 is a poor implementation since, other than not recomputing vi’s, the ap-

proximations are computed independently. We now show that, in the case of A being

positive definite, we can pose the above Lanczos method as an iterative method that

avoids these high costs. In fact, the iterative method we derive is the conjugate gra-

dient method, thus showing that the conjugate gradient method is a Lanczos method
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Algorithm 5 Lanczos Method

Require: x0 initial approximation for solution of (3.1)
Define β1, v0 = 0, r0 = b− Ax0, v1 = 1

‖r0‖r0

for k = 1, 2, . . . ,m do
x̂k = ‖r0‖T−1

k e1

x̃k = x0 + Vkx̂k % kth approximation in the affine subspace x0 +Kk
if xk is a satisfactory approximation then

Stop
end if
αk = 〈Avk, vk〉
ωk = Avk − βkvk−1 − αkvk % projection onto (span{vk−1, vk})⊥
βk+1 = ‖ωk‖
if βk+1 = 0 then

Stop
end if

vk+1 =
1

βk+1

ωk % normalizing

end for

in the special case of symmetric positive definite matrices.

As A is a symmetric positive definite matrix, so is Tk = V T
k AVk for all k =

1, . . . ,m, and so it has a Cholesky factorization. In fact, we can write Tk = LkDkL
T
k ,

for some unique Lk unit lower triangular (diagonal entries are all 1) and unique Dk

diagonal matrix. The particular structure of the matrices in this decomposition is

the key to have the desired iterative formulation. By comparing entries we get

Lk =

1

µ1 1

µ2

µk−1 1

· · ·· · ·0

0
, Dk =

d1

d2

dk

· · ·0

0
,

in which d1 = α1, di = αi − βi−1µi−1 for i = 2, . . . , k and µi =
βi
di

for i = 1, . . . , k − 1.

So the kth approximation can be written as

x̃k = x0 +
(
‖r0‖VkL−Tk

)(
D−1
k L−1

k e1

)
.
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Now we examine the solutions of LkDkyk = e1. We can observe that

Lk+1Dk+1 =

d1

β1 d2

β2

βk−1 dk

βk dk+1

· · ·· · ·
0

0
=

0

0

0 0 βk dk+1

·
·
·

· · ·

LkDk ,

and so yk+1 =

[
yk;−

βky
k
k

dk+1

]
can be easily obtained from yk (note that yji refers to

the jth entry of yi). As the jth entry of all the yk’s (if defined) are equal, we will

simply write yj to denote that value. The next lemma shows the relation between

the residual vectors and the orthonormal basis obtained from Lanczos method.

Lemma 3.2. The residual vector rk = b− Ax̃k is a constant multiple of vk+1 for all

k = 1, . . . ,m− 1. In particular, rk’s form an orthogonal set as well.

Proof. Since we already know vk’s form an orthonormal set, it suffices to show that

rk is a constant multiple of vk+1 for all k = 0, . . . ,m − 1. Clearly r0 = ‖r0‖v1 is a

constant multiple of v1. For k > 0 we have

rk = b− Ax̃k

= b− Ax0 − AVkx̂k

= r0 − ‖r0‖Vke1 − ‖r0‖ωkeTk T−1
k e1 (using (3.4) and (3.5))

= r0 − ‖r0‖Vke1 − ‖r0‖ωk
(
eTkL

−T
k

)
yk (using the LkDkL

T
k factorization of Tk)

= r0 − ‖r0‖Vke1 − ‖r0‖ωkeTk yk (Lk is unit lower triangular).

Since r0 = ‖r0‖v1 and ωk = βkvk+1 we get

rk = −‖r0‖βkykvk+1, (3.6)
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as needed to conclude the proof. �

We now turn our attention to the solutions of P ′kL
T
k = Vk. Using Lemma 3.2

and the fact that the conjugate gradient method only relies on residuals rather than

the vi’s, we instead focus on −‖r0‖P ′kLTkBk = −‖r0‖VkBk =.. Rk, in which Rk =[
r0 r1 . . . rk−1

]
is an n× k matrix whose columns are the residual vectors, and

Bk
..=

−1

β1y
1

βk−1y
k−1

· · ·0

0
.

Right multiplications by a diagonal matrix scale all columns by the corresponding

diagonal entry, as opposed to left multiplications, which scale rows. Thus, it is not

too difficult to see that LTkBk = BkL
′T
k , in which

L′k
..=

1

−β1y
1µ1 1

β2y2µ2
β1y1

βk−1y
k−1µk−1

βk−2yk−2 1

·
·
·

·
·
·

0

0
=

1

−µ2
1 1

−µ2
2

−µ2
k−1 1

·
·
·

·
·
·

0

0

.

The second equality above follows from the recursive definition of yk. Defining Pk =

−‖r0‖P ′kBk, we get PkL
′T
k = Rk and if Pk =

[
p0 p1 . . . pk−1

]
we get p0 = r0 and

the recursive relation

pk = rk + µ2
kpk−1 (for all k = 1, . . . ,m− 1). (3.7)
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Putting it all together, we get

x̃k = x0 +
(
‖r0‖VkL−Tk

)(
D−1
k L−1

k e1

)
= x0 −

(
(−‖r0‖VkBk)

(
B−1
k L−Tk

))
yk

= x0 −
(
Rk

(
LTkBk

)−1
)
yk

= x0 −
(
RkL

′−T
k

)
B−1
k yk

= x0 − PkB−1
k yk

= x0 + Pk


1
d1

...

1
dk

 (using y1 =
1

d1

and the recursive definition of yk)

Since Pk =

[
Pk−1 pk−1

]
we get the following recursive definition of x̃k and, thus, rk

x̃k = x̃k−1 +
1

dk
pk−1 (for all k = 1, . . . ,m), (3.8)

rk = rk−1 −
1

dk
Apk−1 (for all k = 1, . . . ,m). (3.9)

Now we prove a technical lemma before proving our main result.

Lemma 3.3. (a) The pk vectors are A-conjugate for all k = 1, . . . ,m− 1. That is,

〈Api, pj〉 = 0 for i 6= j.

(b) βky
k = (−1)k+1

k∏
i=1

µi for all k = 1, . . . ,m− 1.

(c) 〈rk+1, rk+1〉 = 〈r0, r0〉
∏k+1

i=1 µ
2
i for all k = 0, . . . ,m− 2.

(d) 〈Ark+1, rk〉 = 〈Ark+1, pk〉 for all k = 0, . . . ,m− 2.

Proof. (a) It suffices to show that (APk)
TPk is a diagonal matrix (for any k =
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1, . . . ,m). By using the various previously stated definitions, we get

(APk)
TPk = P T

k A
TPk

=
(
RkL

′−T
k

)T
A
(
RkL

′−T
k

)
(since A is symmetric)

= ‖r0‖2(VkBkL
′−T
k

)T
A
(
VkBkL

′−T
k

)
=
(
BkL

′−T
k

)T
V T
k AVk

(
BkL

′−T
k

)
=
(
L−Tk Bk

)T
Tk
(
L−Tk Bk

)
(since LTkBk = BkL

′T
k )

= ‖r0‖2BT
k L
−1
k TkL

−T
k Bk

= ‖r0‖2BkDkBk,

which is clearly a diagonal matrix.

(b) This result is immediate as β1y1 =
β1

d1

= µ1 and so, by induction, we get

βky
k = (−1)

βk
dk
βk−1y

k−1 = −µk · (−1)k
k−1∏
i=1

µi = (−1)k+1

k∏
i=1

µi.

(c) Using the symmetry of A, (3.7) and (3.9), and Lemma 3.2, we get 〈rk+1, rk+1〉 =

− 1

dk+1

〈Ark+1, pk〉 = − 1

dk+1

(
〈Ark+1, rk〉+ µ2

k〈Ark+1, pk−1〉
)
. The second term

vanishes since, by the first part of this lemma, rk+1 = pk+1 − µ2
k+1pk is A-

conjugate to pk−1. Using (3.6) and the previous part of this lemma, we get

− 1

dk+1

〈Ark+1, rk〉 = 〈r0, r0〉µk+1

k∏
i=1

µ2
i

1

dk+1

〈Avk+2, vk+1〉 = 〈r0, r0〉
k+1∏
i=1

µ2
i .

(d) This result is immediate using (3.7) and the A-conjugacy of rk+1 and pk−1.

�

Theorem 3.4. The conjugate gradient method is a Lanczos method in the case of

symmetric positive definite matrices.

Proof. Comparing (3.7) to (3.9) with the conjugate gradient method, we see that,

since x0, p0 are identical in both methods, it suffices to show that dk+1 =
1

γk
for



30 CHAPTER 3. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

k = 0, . . . ,m− 1 and µ2
k+1 = ξk for k = 0, . . . ,m− 2. The range of k can be justified

since Km has at most dimension m.

The latter is an immediate corollary of Lemma 3.3. Indeed, µ2
1 =
〈r1, r1〉
〈r0, r0〉

has been

proven and so, using induction, we get 〈rk+1, rk+1〉 = 〈r0, r0〉µk+1

k∏
i=1

µ2
i = 〈rk, rk〉µk+1

as needed.

As for the former, we can show this relation by first checking the k = 0 case.

Clearly, d1 = 〈Av1, v1〉 =
1

γ0

as v1 =
1

‖r0‖
r0. Then, for k = 1, . . . ,m − 1, repeatedly

using (3.7) and Lemma 3.3 gives

1

γk
=
〈Apk, pk〉
〈rk, rk〉

=
〈Apk, rk〉
〈rk, rk〉

=
〈Ark, rk〉+ µ2

k〈Apk−1, rk〉
〈rk, rk〉

=
〈Ark, rk〉+ µ2

k〈Ark, pk−1〉
〈rk, rk〉

(since A is symmetric)

=
〈Ark, rk〉+ µ2

k〈Ark, rk−1〉
〈rk, rk〉

=
〈r0, r0〉

(
βky

k
)2

(〈Avk+1, vk+1〉+ µk〈Avk+1, vk〉)
〈rk, rk〉

(using (3.6))

= αk+1 + µkβk,

as needed to conclude the proof. �

3.2.7 Generalized Minimal Residual Method

The generalized minimal residual (GMRES) method, proposed by Saad and Schultz

in 1986, is one of the more recent and versatile Krylov subspace methods [105]. At

its core, GMRES is an Arnoldi method and thus can be used to find solutions of

(3.1), even when A is nonsymmetric and/or indefinite. GMRES is a Petrov-Galerkin
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method onto K = Km orthogonal to L = AKm. Consistent with our prior exposition,

one way to find the approximation, x̃, is to solve


x̃ = x0 + Vmx̂

(AVm)T (b− Ax̃) = 0

.

Setting Wm = AVm, and simplifying gives


x̃ = x0 + Vmx̂(
W T
mWm

)
x̂ = ‖r0‖W T

mv1

.

Assuming, no breakdown occurs we have span{v0, . . . , vm−1} = span{v1, Av1, . . . , Avm−1},

and so Wm−1 = AVm−1 has linearly independent columns. If we further assume

Avm−1 /∈ Km, then we get Wm is invertible and the above system can be simplified to


x̃ = x0 + Vmx̂

x̂ = ‖r0‖W−1
m v1

. (3.10)

3.2.8 Practical Implementation Details

Practical implementation details of the Krylov subspace methods are quite important,

however, they have not been within our purview thus far. For example, Paige and

Saunders’ SYMMLQ, which is a Lanczos method, was not the first theoretically sound

method proposed to deal with symmetric indefinite systems [93, 43, 79, 80], however,

it has been more widely adopted due its practical superiority [93, 104, 105]. Two

practical implementation details of GMRES that are hard to avoid even in a more

theoretical discussion are restarts and preconditioners. The latter is in fact essential

to all iterative methods and is discussed in Section 3.3. Before delving into their

discussion, since the discussion of practical implementation details has come about,
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we briefly mention a few details that were omitted earlier.

First of all, the orthogonalization process used in Arnoldi’s algorithm is usually

replaced with one more resembling the modified Gram-Schmidt process, which re-

places the single projection onto (span{v1, . . . , vj})⊥ with j iterative projections onto

(span{v1})⊥, (span{v2})⊥, . . . , (span{vj})⊥, or even Householder orthogonalization

for greater stability [104]. For example, most formulations of the Lanczos method

discussed in Section 3.2.3 uses the modified Gram-Schmidt process, which we include

below.

Algorithm 6 Lanczos Algorithm (modified Gram-Schmidt version)

Require: arbitrary unit vector v1

Define β1, v0 = 0
for j = 1, 2, . . . ,m do

ωj = Avj − βjvj−1 % projection onto (span{vj−1})⊥
αj = 〈ωj, vj〉
ωj = ωj − αjvj % second projection onto (span{vj})⊥
βj+1 = ‖ωj‖
if βj+1 = 0 then

Stop
end if

vj+1 =
1

βj+1

ωj % normalizing

end for

In addition, most implementations of GMRES do not obtain the approximation

by directly imposing (3.10). Instead, the approximation, x̃, is picked so that ‖b− Ax̃‖

is minimized, giving rise to the name “minimal residual”. To the uninitiated, this

may seem more difficult than our previous approach, but in fact it turns out to be a

(m+ 1)×m least squares problem, where m is relatively small. To see this, we first

define H̃m to be the (m+ 1)×m Hessenberg matrix defined by Arnoldi’s algorithm.

That is, H̃k is Hk with the row h(k+1)ke
T
k appended at the bottom. It is not too hard

to see, from (3.5), that AVk = Vk+1H̃k. As seen previously, if x̃ ∈ x0 +Km, we obtain

‖b− Ax̃‖ = ‖r0 − AVmx̂‖
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=
∥∥∥‖r0‖v1 − Vm+1H̃mx̂

∥∥∥
=
∥∥∥Vm+1

(
‖r0‖e1 − H̃mx̂

)∥∥∥.
So to find x̂, and thus x̃, we must minimize

∥∥∥Vm+1

(
‖r0‖e1 − H̃mx

)∥∥∥. As V T
m+1Vm+1 =

Im+1, this is tantamount to minimizing
∥∥∥‖r0‖e1 − H̃mx

∥∥∥, which is an (m+1)×m least

squares problem. We now state the original and most common form of the GMRES

method.

Algorithm 7 GMRES (modified Gram-Schmidt version)

Require: x0 initial approximation for solution of (3.1)
Define r0 = b− Ax0, v1 = 1

‖r0‖r0

for j = 1, 2, . . . ,m do
ωj = Avj
for i = 1, 2, . . . , j do

hij = 〈ωj, vi〉
ωj = ωj − hijvi % iterative projections onto (span{vi})⊥ for i = 1, 2, . . . , j

end for
h(j+1)j = ‖ωj‖
if h(j+1)j = 0 then

m = j
Break

end if

vj+1 =
1

h(j+1)j

ωj % normalizing

end for
x̂ = arg min

x∈Rm

∥∥∥‖r0‖e1 − H̃mx
∥∥∥ % minimize ‖r‖ = ‖b− Ax̃‖

x̃ = x0 + Vmx̂ % x̃ ∈ x0 +Km

The minimization step can be solved using plane rotations which iteratively transform

the Hessenberg matrix into an upper triangular matrix [105, 104]. So, like the Lanczos

method, GMRES can also be posed as an iterative method.

Restarts

Due to the high cost and memory requirement of the Gram-Schmidt orthogonalization

process, GMRES gets prohibitively expensive as m, the dimension of the Krylov
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subspace Km, gets large. However, since our goal is to find a solution to (3.1), it

appears that we should try to keep m as large as possible so we end up finding that

solution. The key realization to solving these seemingly contradicting objectives is

that the Krylov subspaces Km(r0) are nested for the same initial residual vector only.

That is K`(r0) ⊂ Km(r0) whenever ` ≤ m for the same residual vector but, in general

Km(r0) 6= Km(r′0). So it is true, as expected, that the mth approximation, x̃m, is

a better (or identical) approximation to the solution of (3.1) than x̃`, for ` ≤ m.

However, instead of looking at Krylov subspaces of prohibitively high dimension in

order to improve our approximations, we may be able to get away with looking at

different Krylov subspaces of low dimensions. Since approximations only get better

(or stay the same), we do not risk getting worse approximations by changing the

Krylov subspace we are projecting onto. Thus, given an initial residual vector, r0,

we iteratively look for a suitable solution to (3.1) in the nested Krylov subspaces

K1(r0) ⊂ . . . ⊂ Km(r0) for a suitable value of m. If we are unsuccessful, we repeat

the same process but starting with the mth residual vector obtained from projecting

onto Km(r0). Going from projecting onto the m-dimensional subspace Km(r0) to the

1-dimensional subspace K1(r′0) is called restarting [105]. GMRES(m) refers to the

GMRES procedure with restarting every m steps [105] and it is stated below.

In general, choosing an appropriate restart value is problem dependent and is more

of an art than a science [11]. On the one hand, it is easy to see that GMRES with

larger restart values has a higher chance of finding an appropriate approximation to

the solution, while with small restart values it may stagnate and never find such an

approximation. On the other hand, it has been shown that in some cases the opposite

is true; GMRES with lower restart values found an appropriate approximation of the

solution in fewer iterations than higher ones, which at times stagnated and never

found an appropriate approximation [39, 38].
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Algorithm 8 GMRES(m) (modified Gram-Schmidt version)

Require: x0 initial approximation for solution of (3.1)
Define r0 = b− Ax0, v1 = 1

‖r0‖r0

while not converge do
for j = 1, 2, . . . ,m do

ωj = Avj
for i = 1, 2, . . . , j do

hij = 〈ωj, vi〉
ωj = ωj−hijvi% iterative projections onto (span{vi})⊥ for i = 1, 2, . . . , j

end for
h(j+1)j = ‖ωj‖
if h(j+1)j = 0 then

m = j
Break

end if
x̂j = arg min

x∈Rm

∥∥∥‖r0‖e1 − H̃jx
∥∥∥ % minimize ‖rj‖ = ‖b− Ax̃j‖

x̃j = x0 + Vjx̂j % x̃j ∈ x0 +Kj
if x̃j is a suitable approximation then

x̃ = x̃j % the desired approximation is found
Break

end if

vj+1 =
1

h(j+1)j

ωj % normalizing

end for
r0 = rm
v1 = 1

‖r0‖r0

end while
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3.3 Preconditioners

Unlike analytical solutions, finding numerical solutions to a linear system, say (3.1),

depends on various numerical properties of the matrix A, such as its spectral proper-

ties, condition number, singular values, sparsity pattern, and bandwidth [104, 119, 11,

22]. Preconditioning a linear system is replacing it with one that has the same solu-

tion set but with better numerical properties. From that perspective, preconditioning

can be used for both direct and iterative solvers. However, since preconditioning is es-

sential to iterative methods, most discussions of preconditioning are usually restricted

to iterative solvers [104, 119, 11]. In fact, many attribute the rise of iterative solvers

in the 1970s and 1980s to the developments in preconditioning techniques [104, 119].

Historically, the concept of preconditioning linear systems is well over 150 years

old. Indeed, in 1845 Jacobi [61] described preconditioning linear systems, which

arise from least square problems, to make them more diagonally dominant [13, 17].

However, the word “preconditioning” seems to originate with Turing [122] in 1948

[119, 13]. The link between preconditioning and iterative methods, specifically Krylov

subspace methods, came much later around 1970s. The highly influential paper by

Meijerink and van der Vorst [85], in which they introduced an incomplete factorization

preconditioner to the method of conjugate gradients, is credited with bringing much

of the attention to this connection between preconditioners and iterative methods

[104, 119, 13]. It is not that they were the first to introduce incomplete factorization,

rather it is that they demonstrated the potency of this combination [104, 13].

In general, preconditioning a linear system, say (3.1), is done via a nonsingular

matrix M , referred to as the preconditioner. The preconditioner can be applied as a

left preconditioner,

M−1Ax = M−1b,
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a right preconditioner,

AM−1y = b, x = M−1y,

or, if we write M = M1M2, a split preconditioner,

M−1
1 AM−1

2 y = M−1
1 b, x = M−1

2 y.

The ultimate goal here is that the new system is better to solve than the original

one (better here can be thought of as cheaper to solve or yields a more accurate

answer when solved). From that perspective, choosing M = A is probably the best

idea. Further investigating this idea, gets us into the practical restraint that we

must satisfy, namely, the preconditioner must be relatively easy to apply. In the

M = A example, applying the preconditioner is as difficult as solving the original

system, which is of no benefit. On the other hand, choosing M = I is the easiest

preconditioner to apply, however, the new system is not better to solve than the

original one. A balance between the goal and restraint of preconditioning, which is

usually problem dependent, is where most of the useful preconditioners are found.

Typically, M is chosen so that it approximates A in some sense so that the matrix

M−1A, for example, is easier to solve with than A.

In some cases, M−1, instead of M , is known and thus applying the preconditioner

is as simple as matrix multiplication. Some use this to define a new type of precon-

ditioners, the inverse type preconditioners [22]. An inverse type preconditioner is a

matrix, M , which is usually chosen to approximate A−1 instead of A. Inverse type

preconditioners can also be applied as left, right, or split preconditioners in much the

same way shown before, for example

MAx = Mb
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is a left inverse type preconditioners. This distinction of the types of preconditioners is

of little practical consequences since, in practice, preconditioners can either be applied

through solving a linear system or matrix multiplication, as mentioned earlier. This

along with the fact that most preconditioners happen to be of the first type introduced

[11], make it clear why most discussions of preconditioners omit this distinction. In

the remainder of this section, we will survey preconditioners from the scope of iterative

solvers. We will mainly focus the ones we found success with in the GMRES iteration

for solving the linear systems arising in our simulation (see Section 4.3.2). For more

detailed discussions, the reader is referred to [104, 119, 11, 22].

3.3.1 Incomplete LU Factorization

An LU factorization of a matrix A = LU , is obtained via Gaussian elimination so

that L and U are, respectively, lower and upper triangular nonsingular matrices. In

the case of large and sparse matrices, Gaussian elimination may result in significantly

more dense factors than the original matrix. For example, Fig. 3.1 shows an example

in which the L,U factors are at least twice as dense as the original matrix.

An ILU factorization of a matrix A is a lower triangular matrix L and an upper

triangular matrix U , such that A = LU+R, for some remainder matrix R. In practice,

ILU factorizations are rarely computed as an LU factorization of A − R. Rather, it

is obtained by dropping, meaning setting to zero, some nonzero entries during the

Gaussian elimination process as it is applied to A (refer to, for example, [104, 22]

for more details). The different variations of ILU preconditioners mostly arise from

which elements are dropped and how the dropping decisions are made [104, 22].

The simplest ILU preconditioner is ILU(0), in which an element of L and U is

dropped if it corresponds to a zero entry in the original matrix A. Fig. 3.1 shows

an example of this factorization including the resulting remainder matrix, R. In

comparison to the LU factorization of the same matrix, the L and U factors from
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Figure 3.1: Top: Sparsity pattern of a matrix A, (left), and its L, (middle), and U ,
(right), factors. The LU factors are at least twice as dense as the original matrix.
Bottom: The sparsity pattern of the resulting remainder matrix R = A− LU , (left),
and L, (middle), and U , (right), factors of the ILU(0) incomplete LU factorization of
A. The incomplete LU factors are more sparse than the original matrix and signifi-
cantly more sparse than the complete LU factors. nz denotes the number of nonzero
entries in a matrix.
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ILU(0) are much more sparse. Another advantage to the ILU(0) preconditioner is

that it is inexpensive to compute [104, 13]. However, for some problems the ILU(0)

preconditioner is not an adequate approximation of A and the preconditioned iteration

fails to converge in a reasonable number of iterations [104].

One way to obtain a better approximation of A, is to be less stringent and allow

more fill-in than the sparsity pattern of A. This generalization leads to the ILU(p)

preconditioners, where p is the level-of-fill allowed (p = 0 matches the already in-

troduced ILU(0)). Another generalization is to drop elements in L and U whose

magnitude is below a certain (relative) threshold, otherwise known as the ILUT pre-

conditioner. A remarkable advantage to this ILU preconditioner is that it is sensitive

to the numerical values rather than just the structure of A. However, it is much more

expensive to apply as we discuss in Section 4.3.2. The reader is referred to [104] for

a more detailed discussion of the various ILU preconditioners.

3.3.2 Reordering and Scaling

As we mentioned, the sparsity pattern and bandwidth of a coefficient matrix affect

one’s ability to find numerical solutions to its linear system. Thus, one should expect

that reordering, or permuting, the rows and columns of a matrix can be a useful

preconditioning technique. More precisely, reordering a linear system, say (3.1), is

accomplished via two permutation matrices P and Q

PAQy = Pb, x = Qy. (3.11)

A permutation matrix here denotes a product of row-interchanging elementary ma-

trices. The permutation matrix P permutes the rows of A, while Q permutes the

columns of A. Using our previous terminology, one can say that reordering is applied

as a split preconditioner, with the left preconditioner permuting the equations and
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the right preconditioner permuting the unknowns of the linear system.

Our discussion will be limited to a special type of premutation known as a sym-

metric permutation. These permutations are mostly used to reduce the fill-in that

occurs when Gaussian elimination is applied on a matrix or to reduce the bandwidth

of a matrix [104, 13]. These permutations, otherwise known as symmetric reorder-

ings, are reorderings where Q = P T [104, 13]. Essentially the unknowns of the linear

system are reordered in the same manner as its equations. A special property of

symmetric permutation is that it leaves the adjacency graph of a matrix unchanged,

except for relabelling of the vertices [104]. Thus, if a matrix has some desirable prop-

erties, such as diagonal dominance or symmetry, symmetric permutations preserve

these properties while minimizing fill-in or reducing the bandwidth.

One of the more commonly used symmetric reordering techniques is the reverse

Cuthill McKee (RCM) ordering [50, 104, 13]. Discovered and named by George in

his thesis [49], the RCM ordering is in fact the Cuthill-McKee (CM) ordering [29]

in reverse order. George observed that the RCM ordering is superior to the CM

ordering in systems arising from finite element methods [49]. This observation was

corroborated and generalized by other numerical experiments [28, 78] and proofs [78].

Various similar justifications to this observation have been proposed [49, 28, 78, 104],

the main point of which is illustrated in Fig. 3.2. Figure 3.2 shows a comparison be-

tween the CM and RCM orderings of a matrix. While the bandwidth of the resulting

matrices are identical, the CM ordering, by construction (see [29, 104, 49] for details),

results in nonzero entries to the right and below the diagonal entries. This results in

a significant amount of fill-in during Gaussian elimination. Reversing this ordering

leads to the nonzero entries being to the left and above the diagonal entries, which

results in significantly less fill-in. This was effectively distilled by Saad [104] by using

the term arrow submatrices. In Fig. 3.2, we observe many arrow submatrices that

point upwards in the CM ordering as compared to downwards in the RCM ordering.
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Figure 3.2: Top: Sparsity pattern of a matrix A, (left), and its CM, (middle), and
RCM, (right), orderings. In the CM ordering there are many instances where nonzero
entries occur to the right and below diagonal entries. In contrast, these instances cor-
respond to nonzero entries to the left and above diagonal entries in the RCM ordering.
This significantly reduces fill-in. Bottom: Sparsity pattern of the L factor (from LU
factorization) of A, (left), and its CM, (middle), and RCM, (right), orderings. While
the CM ordering decreased the bandwidth of A, it increased the fill-in resulting from
Gaussian elimination. In contrast, RCM ordering decreased both the bandwidth and
fill-in of A.

The consequence of this is significantly less fill-in for the RCM ordering. It is worth

noting that the CM ordering was designed with the goal of reducing the bandwidth

of a matrix [29, 104, 49, 50]. However, the RCM ordering is superior to the CM

ordering as it better minimizes fill-in while still achieving the same level in reducing

bandwidth.

Much like reordering, scaling of a linear system, say (3.1), can also be applied as

a split preconditioner

RACy = Rb, x = Cy, (3.12)
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in which R and C are diagonal matrices scaling the rows and columns of A, respec-

tively. Scaling can be an effective preconditioning technique considering how the

numerical stability of methods such as Gaussian elimination are dependent on the

size, and relative size, of the values of the matrix [119]. We provide an example of the

significant impact a scaling preconditioner can have using our model in Section 4.3.2.

The combination of a reordering and scaling preconditioner has been shown to be

quite effective [92, 37, 36]. A reordering and scaling preconditioner can be applied by

combining (3.11) and (3.12)

RPAQCy = RPb, x = QCy,

in which the matrices are as defined in (3.11) and (3.12). Clearly this is equivalent

to applying the scaling preconditioner first as P TRP is a diagonal matrix.
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Chapter 4

Numerical Methods for Retinal

Dynamics

In this chapter, we discuss the numerical methods we employed to solve the PDE

system (2.3) to (2.6). For the purpose of clarity and to avoid any repetition, the

discussion here will be focused on the bi-domain equations. The method can naturally

be extended to the multi-domain equations.

4.1 Spatial Discretization

We discretize our system in space using non-uniform finite differences. We use a

spherical coordinate system (r, θ, ϕ), where r is the distance of a point to the origin,

θ is the polar angle in the xy-plane, and ϕ is the signed latitude from the xy-plane.

4.1.1 Non-Uniform Tensor Product Grid

For our finite difference discretization we opt to use a non-uniform tensor product grid

(see Fig. 4.1). We choose a non-uniform grid as the retina, being an active domain

which receives a variety of light stimuli, requires a very fine grid. Extending such a

45
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Figure 4.1: An illustrative example of the difference between uniform, non-uniform
tensor product, and completely non-uniform grids. Left: Uniform grid discretization
of [0, 1]2. The spacing is uniform of size 0.2 units. Middle: Non-uniform tensor
product grid discretization of [0, 1]2. The grid can be obtained by the tensor product
{0, 0.2, . . . , 0.8, 0.85, 0.9, . . . , 1}× {0, 0.2, . . . , 0.8, 0.85, 0.9, . . . , 1}. Right: Completely
non-uniform grid discretization of [0, 1]2. The points at the top right corner do not
align with any of the gridlines making it impossible to obtain this grid as a tensor
product.

grid to the rest of the eye, noting the difference in size, would make the computations

unwieldy. A completely non-uniform grid (i.e. one that is not a tensor product) would

be even more efficient, but difficult to implement correctly, especially considering the

variety of boundary conditions in the system.

4.1.2 Discretized PDE System in Spherical Coordinates

The gradient in spherical coordinates is

∇ = r̄
∂

∂r
+

1

r cosϕ
θ̄
∂

∂θ
+

1

r
ϕ̄
∂

∂ϕ
, (4.1)

in which r̄, θ̄, ϕ̄ are unit vectors in the radial, polar, and latitudinal directions, re-

spectively, which locally form a spherical basis on R3 (not including the z-axis).

Considering the column packing of the retina, we restricted the types of conductivity
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tensors, in this spherical basis, to be of the form

µx =


µrx 0 0

0 µθx 0

0 0 µϕx

 for x = i, e,

in which µrx, µ
θ
x, µ

ϕ
x are the conductivities in the radial, polar, and latitudinal direc-

tions, respectively. Off of the retina, on S \R (Section 2.1), considering we are in the

assumed electrically passive vitreous chamber, in which current has equal resistance

for traveling in all directions (isotropic), one can justifiably consider µs to be a non-

negative scalar (equivalently, µrs = µθs = µϕs ). Continuing generically, locally we can

write µx as a linear transformation

µx(r, θ, ϕ)(v) = µrx(r, θ, ϕ)r̄∗(v)r̄ + µθx(r, θ, ϕ)θ̄∗(v)θ̄ + µϕx (r, θ, ϕ)ϕ̄∗(v)ϕ̄

for x = i, e, s, (4.2)

in which r̄∗, θ̄∗, ϕ̄∗ are the standard linear functionals associated with the basis r̄, θ̄, ϕ̄.

Using (4.1) and (4.2), we can express (2.3) to (2.5) in spherical coordinates. For

example, (2.3) can be written in spherical coordinates as

∂µrs
∂r

∂φs

∂r
+ µrs

∂2φs

∂r2
+ 2

µrs
r

∂φs

∂r
+

1

r2 cos2 ϕ

(
∂µθs
∂θ

∂φs

∂θ
+ µθs

∂2φs

∂θ2

)
− µϕs sinϕ

r2 cosϕ

∂φs

∂ϕ
+

1

r2

(
∂µϕs
∂ϕ

∂φs

∂ϕ
+ µϕs

∂2φs

∂ϕ2

)
= 0. (4.3)

The spherical coordinate representation of the other equations is included in Ap-

pendix B.

We use the non-uniform centered finite difference formulas to discretize the first

and second derivatives. Let {r0 = 0, . . . , rn = reye} be the discretization points in the

radial direction and φ(i,j,k) correspond to the value of φ at the (i, j, k) node, where
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i, j, k are indices for the radial, polar, and latitudinal directions, respectively. The

equations we use are

∂φ(i,j,k)

∂r
=
φ(i+1,j,k) − γ2

i φ
(i−1,j,k) − (1− γ2

i )φ
(i,j,k)

(1 + γi)hi+1

, (4.4)

∂2φ(i,j,k)

∂r2
= 2γi

φ(i+1,j,k) + γiφ
(i−1,j,k) − (1 + γi)φ

(i,j,k)

(1 + γi)h2
i+1

, (4.5)

in which hi+1 = ri+1 − ri and γi = hi+1

hi
. The finite difference equations used for the

other variables are also included in Appendix B.

Equations (4.3) to (4.5) (and similar equations for the polar and latitudinal direc-

tions) provide a linear relation between the potential values on the grid. From (2.3)

and boundary conditions (2.1) and (2.2), we have

Aφs = Bφe, (4.6)

in which A and B are sparse matrices, and φs and φe are vectors containing the grid

point values of the corresponding functions stored in reverse lexicographical order.

Similarly, (2.4) becomes

C[φs;φe;Vm] = 0, (4.7)

in which C is also a sparse matrix, Vm is a vector containing the grid point values

of Vm stored in reverse lexicographical order, and the square bracket notation [ · ; · ]

denotes concatenating two or more vectors. Unambiguously, given two vectors x =

(x1, . . . , xn),y = (y1, . . . , ym), using the square bracket notation we get [x;y] =

(x1, . . . , xn, y1, . . . , ym). Equations (2.5) and (2.6) become a system of ODEs for the

values of Vm and X on the grid,

d[Vm;X]

dt
= G(φs,φe,Vm,X). (4.8)
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Note that we abuse the notation by writing X for both the function and its values

on the grid. We also note that, in this setup, G is a nonlinear function as a result

of the nonlinearity in the transmembrane currents, Im. Equations (4.6) to (4.8) are a

system of differential algebraic equations (DAEs). A summary of the theory of DAEs

and methods for their numerical solution is described in [9].

4.1.3 Boundary Conditions

To setup the detailed discussion of the boundary conditions , let {r0 > 0, . . . , ri =

reye−rretina, . . . , r
n = reye} be the grid lines in the radial direction. We do not include

r = 0 in our grid as it is a coordinate singularity. When the finite differences require

the value at the origin, it is given by taking the average values of grid points on the

sphere of radius r0.

The potential φe appears in (4.6) as a result of the retinal boundary conditions

imposed on the system. In fact, the discretization resulting in (4.6) to (4.8) incor-

porates the boundary conditions. The Neumann boundary conditions in our system

are

nx · (µi∇Vm) = −nx · (µi∇φe) (on ∂Rx for x = o, i, `), (4.9)

nx · (µe∇φe) = nx · (µs∇φs) (on ∂Rx for x = i, `), (4.10)

no · (µe∇φe) = 0 (on ∂Ro), (4.11)

ns · (µs∇φs) = 0 (on ∂S \ ∂Ro), (4.12)

which were obtained from the original boundary conditions by using φi = Vm +φe, to

eliminate φi.

The conditions in (4.11) and (4.12) are tantamount to ∂φ
∂r

= 0 (we dropped the

subscript as the treatment of (4.11) and (4.12) are similar). We impose this condition
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using the grid extension method [76] to get

∂φ(n,j,k)

∂r
=
φ(n+1,j,k) − γ2

nφ
(n−1,j,k) − (1− γ2

n)φ(n,j,k)

(1 + γn)hn+1

= 0,

in which γn = 1 as we choose hn+1 = hn. Thus we get φ(n+1,j,k) = φ(n−1,j,k), which

gives that the second order radial derivative is

∂2φ(n,j,k)

∂r2
= 2γn

φ(n+1,j,k) + γnφ
(n−1,j,k) − (1 + γn)φ(n,j,k)

(1 + γn)h2
n+1

=
2φ(n−1,j,k) − 2φ(n,j,k)

h2
n

.

Now we deal with the first group of boundary conditions, and we take (4.10), with

x = i, as our working example. After expansion, (4.10) becomes µre
∂φe
∂r

= µrs
∂φs
∂r

(on

∂Ri). Using the one sided finite difference formula on φs and φe we get

µre
φ

(i,j,k)
e − φ(i−1,j,k)

e

hi
= µrs

φ
(i,j,k)
s − φ(i−1,j,k)

s

hi
,

which can be rearranged to give

φ(i−1,j,k)
e =

µrs
µre
φ(i−1,j,k)

s +

(
1− µrs

µre

)
φ(i,j,k)

e , (4.13)

as φ
(i,j,k)
e = φ

(i,j,k)
s on Ri. Again using the grid extension method, (4.13) can be used

in (4.4) and (4.5) to compute the derivative on Ri, which finishes our treatment of

the boundary conditions.

4.2 An Adaptive Time-stepper

After spatial discretization, we must solve the DAE in time. This involves solving

an equation of the form dx
dt

= f(s, t,x). To simplify notation, we can assume that

we are interested in dx
dt

= f(t,x) instead, since we can solve for the potentials from

the membrane voltage using (4.6) and (4.7). However, we emphasize that in our
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implementation we solve the system in its original form, (4.6) to (4.8), to preserve

its sparsity [46]. To solve the differential equation, we use the second order, variable

step-size, backward differentiation formula (BDF2). That is, to solve for the value of

x at time tn+1 = tn + hn (i.e. xn+1) we must solve the equation

xn+1 + α0xn + α1xn−1 = hnβf(tn+1,xn+1),

with parameters α0, α1, β given later in (4.14). We do so using Newton’s method to

find the root of the function F (x) = x+α0xn+α1xn−1−hnβf(tn+1,x). So the linear

equation we need to solve is F ′(xi)∆xi+1 = −F (xi), in which xi is the value of the

previous Newton iteration and ∆xi+1 = xi+1 − xi. This equation and the algebraic

constraints (4.6) and (4.7) can be written as

Di∆xi+1 = ri,

in which

ri =



0

0

−F (xi)

0


and Di is an (n + 1) × n matrix composed of an arrangement of A,B,C, and the

Jacobian F ′(xi). The extra row at the bottom of Di and ri is to pick the additive

constant for the potentials by imposing (2.7). Solving this Jacobian update equation

is the most time consuming step in the simulation and we will discuss various aspects

of it, including the size and structure of the Jacobian and the ordering of the variables,

in great detail in Section 4.3.

It is worth noting that when light hits the retina and activates the opsin proteins,
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it triggers a cascade of events bringing about rapid changes in the retina. Once the

light stimulus is gone, retinal cells return to a resting state relatively slowly. For

example, in the case of a 20 ms light flash, the rapid change occurs within 0.1 s

of the onset of the flash, while it takes the photoreceptors around 1 s to return to

their resting state. The presence of these multiple time scales in our model and the

costly computation of each time-step, necessitates a variable time-step solver. The

complexity of the system we are studying, as well as all the possible variability in

light stimuli make it clear that we must employ an adaptive time-stepping method

as opposed to a variable time-stepping method with preset time-step values.

4.2.1 General Scheme and Underlying Numerical Method

We are using this time-stepper to solve the differential equation in our DAE system,

namely

d[Vm;X]

dt
= G(φs,φe,Vm,X) (on R).

To simplify notation, the details of the time-stepper will be explained as to solve the

generic equation dx
dt

= f(t,x). Let xn denote the computed approximation of x(tn)

and hn = tn+1 − tn be the step-size of the nth step.

The basic idea of the method is a coarse-fine computation, which has been well

studied and is regularly used to study various physical systems [53, 130]. Starting

at xn we compute our coarse approximation, xc
n+1, using one step of size hn. We

then go back to xn and compute the fine approximation, xf
n+1, using two steps of

size hn/2. Finally, we use both these approximations to estimate our coarse local

truncation error, εc, (see Section 4.2.2) and if the error is suitable the step-size, hn,

and the coarse approximation are accepted. If the error is too small or too large then
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we reject the time-step and choose a new step-size according the formula

hn ·min

{
max

{(
tol

εc

) 1
p

, ηmin

}
, ηmax

}
,

in which tol is the desired local truncation error (LTE), p is the order of the LTE

(calculated in Section 4.2.2), and ηmax, ηmin are safety factors that prevent hn from

drastically changing from one iteration to the next. Once a new hn is chosen, we

recompute xc
n+1 and xf

n+1 and repeat the procedure to get an LTE within the accepted

range.

The underlying numerical method used here is the variable step-size BDF2 given

by

xn+1 −
(1 + ωn)2

1 + 2ωn
xn +

ω2
n

1 + 2ωn
xn−1 = hn

1 + ωn
1 + 2ωn

f(tn+1,xn+1), (4.14)

in which ωn = hn
hn−1

. To compute xc
n+1 we use xn and xn−1. We also use xn and xn−1

to approximate x at the half-step (tn+ 1
2

= tn + hn
2

), xn+ 1
2
. We subsequently use xn+ 1

2

and xn to compute xf
n+1. A schematic sketch of the method is provided in Fig. 4.2.

It should be clear from Fig. 4.2 that the coarse and fine computation are completely

independent and could be carried out in parallel to enhance performance. However,

since there are only two parallel tasks of modest duration, any performance gains will

be diminished by the overhead costs of parallelization.

4.2.2 Local Truncation Error Estimate

Let us approximate LTE = x(tn+1)−xn+1 for our method. Using (4.14), f(tn+1,xn+1) ≈

x′(tn+1) (see Section 5.2.2), and a Taylor series about tn (assuming xn = x(tn) and

xn−1 = x(tn−1)) we get

LTE = − 1 + ωn
1 + 2ωn

x′′′(tn)

3!
h2
n(hn + hn−1) +O(h4), (4.15)
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Figure 4.2: Left: The coarse approximation of x at tn+1, xc
n+1, is computed using

two accepted values, xn and xn−1, which were precomputed at previous time-steps.
Right: The fine approximation of x at tn+1, xf

n+1, is computed in two steps. First
we compute the intermediate value xn+ 1

2
, which approximates x at tn+ 1

2
= tn + hn

2

(shown in blue). Then we compute xf
n+1 using xn and xn+ 1

2
(shown in red).

in which h4 is understood as a product of hn and hn−1 with combined powers of 4.

From (4.15), we obtain the coarse LTE,

εc = − 1 + ωn
1 + 2ωn

x′′′(tn)

3!
h2
n(hn + hn−1) +O(h4). (4.16)

We now compute the fine LTE, εf = x(tn+1)−xf
n+1. Using (4.14) with equal step-sizes

hn
2

on the second fine step we obtain

εf = x(tn+1)−
(

4

3
xn+ 1

2
− 1

3
xn +

hn
2

2

3
f(tn+1,xn+1)

)
.

We then use (4.14) a second time but with step-size hn−1 and hn
2

on xn+ 1
2

and obtain

the fine LTE to be

εf = − 1

3! · 3
1

1 + ωn
x′′′(tn)h2

nhn−1 −
1

3! · 2
1 + ωn

2

1 + ωn
x′′′(tn)h3

n +O(h4).
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The third derivative in (4.15) can be approximated using our coarse-fine approach

since

xc
n+1 − xf

n+1 = εf − εc ≈
( 1

2
ω2
n + 3

4
ωn + 1

2

(1 + 2ωn)(1 + ωn)

x′′′(tn)

3!

)
h3
n

+

(
ω2
n + 4

3
ωn + 2

3

(1 + 2ωn)(1 + ωn)

x′′′(tn)

3!

)
h2
nhn−1.

Solving for x′′′(tn) gives

x′′′(tn) =
3!(1 + 2ωn)(1 + ωn)

(
xc
n+1 − xf

n+1

)
(1

2
ω2
n + 3

4
ωn + 1

2
)h3

n + (ω2
n + 4

3
ωn + 2

3
)h2

nhn−1

,

and substituting into (4.16) we obtain

εc ≈ −
(1 + ωn)3

1
2
ω3
n + 7

4
ω2
n + 11

6
ωn + 2

3

(xc
n+1 − xf

n+1).

We are thus able to estimate the LTE of the coarse step without computing any

derivatives using the coarse and fine approximations. We note that in this case εc is

a vector and so we use the max-norm, εc = ‖εc‖∞, to determine whether or not the

error lies within the acceptable range.

4.2.3 Richardson Extrapolation

If εc is within the acceptable range, then we can accept the coarse approximation

xc
n+1 as the next value. However, since we already have an approximation for εc =

x(tn+1)− xc
n+1, we can use this to obtain a numerical scheme of one order higher (3

as opposed to 2 for us) by taking the following linear combination of xc
n+1 and xf

n+1

x(tn+1) = xc
n+1 + εc ≈ −

1
2
ω3
n + 5

4
ω2
n + 7

6
ωn + 1

3
1
2
ω3
n + 7

4
ω2
n + 11

6
ωn + 2

3

xc
n+1 +

(1 + ωn)3

1
2
ω3
n + 7

4
ω2
n + 11

6
ωn + 2

3

xf
n+1.
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Despite its reported stability issues [130], Richardson extrapolation has performed

well for our retinal dynamics model.

4.2.4 Convergence Study

Since the underlying time-stepping scheme in our solver is BDF2, we expect to have

a global error that is O(∆t2). We confirm this with a convergence analysis using

numerical simulation 1 (see Appendix A), in which the light stimuli is constant in

order to preserve the C3 requirement needed for the Taylor series (see Section 4.2.2).

Since the true solution is not available for our numerical simulations, we use the

approximation

err∆t ..=

∥∥Vm
∆t − Vm

∆t∗
∥∥
∞

1−
(

∆t∗

∆t

)p ≈ C∆tp, (4.17)

in which Vm
∆t is the solution Vm using constant step-size ∆t, ∆t∗ is the finest constant

step-size used to approximate the solution to numerical simulation 1, C is a constant,

and p is the order of the method. The modification term 1 −
(

∆t∗

∆t

)p
approaches

unity as ∆t∗ vanishes since Vm
∆t∗ becomes the true value, yielding the usual error

approximation formula. Figure 4.3 shows the logarithmic relation between err∆t error

and ∆t. We obtain slope p = 2 confirming the expected order of our method.

4.2.5 Wall Time and Accuracy

We also use numerical simulation 1 to compare the wall time and accuracy of the adap-

tive time-stepper and the constant time-stepper. Figure 4.3 shows that the adaptive

time-stepper, for most choices of tol (see Section 4.2.1), improves the accuracy by a

factor of at least 10, as compared to the constant time-stepper with similar wall time.

Figure 4.3 makes it clear that we can use the constant time-stepper with larger time-

steps and achieve better wall time than that of the adaptive time-stepper, but the cost
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Figure 4.3: Left: A convergence study for our time-stepping method showing the
relation between err∆t and the step-size. The dashed lines have slopes 1, 2, and
3. The expected order of 2 is observed. Right: The relation between the wall time
and the maximum relative potential error (as compared to the finest constant sim-
ulation) for various adaptive (×), and constant time-step (•) simulations. Accuracy
and simulation time are, roughly, inversely proportional. In some cases, the adap-
tive time-stepper decreases the error by a factor of around 100 as compared to a
simulation of similar wall time. The difference between the various adaptive simu-
lations is the tol value chosen (see Section 4.2.1). We ran adaptive simulations for
tol = 5 · 10−3, 10−3, 5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6 (see Fig. 4.7).
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would be a loss in accuracy. Similarly, using the constant time-stepper with much

smaller time-steps achieves better accuracy than that of the adaptive time-stepper,

but the cost would be much slower simulations. So while the adaptive time-stepper

is neither the most accurate nor the fastest simulation, it is the best compromise.

This result depends on the type of experiment conducted. For example, an exper-

iment with a shorter light pulse would increase the efficiency of the adaptive time-

stepper as it will use larger time-steps in the absence of light stimuli (see Section 4.2.6).

On the other hand, an experiment with multiple light pulses would decrease the effi-

ciency of the adaptive time-stepper as it would need to adjust the step-size numerous

times. Such light stimuli would also affect the constant time-stepper as only small

step-sizes would yield reasonably accurate results.

4.2.6 In-depth Analysis of the Adaptive Time-stepper

We use numerical simulation 2 (see Appendix A) to study the adaptive time-stepper

in greater detail. Figure 4.4 offers a deeper look on how the adaptive time-stepper

works. It shows how the step-size gradually increases until a suitable step-size is

found. This suitable step-size varies depending on the situation, for example, in the

presence of a light stimulus (t ≤ 0.02 s), the step-size that the adaptive time-stepper

stabilized on was much smaller than that in the absence of light (t > 0.02 s). This

is expected as the photoreceptor dynamics are undergoing much more rapid change

in the presence of light. Another feature shown in Fig. 4.4 is the gradual, rather

than sudden, change of step-size. This is evident as for most time-steps at most one

rejection was made.

Figure 4.4 also shows a few safety guards put in place for the adaptive time-

stepper. These include a maximum and minimum allowed step-size, and forcing the

time-stepper to step to certain critical time values. The reason for the latter is that

when the light stimulus shuts off we lose differentiability and so using BDF2 would
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Figure 4.4: Step-size (left y-axis) and number of rejections (right y-axis) as functions
of time. The dashed lines are the minimum and maximum allowed step-sizes, ∆tmin

and ∆tmax. Any decision of the adaptive stepper to take steps of size outside of the
interval [∆tmin,∆tmax] will be overridden by a safety feature. Around t = 0.02 s the
step-size decreases sharply as we force the time-stepper to step to certain critical
times such as the beginning and end of light stimuli. This is also observed for the
step at t = 5 s. As the dynamics of the photoreceptors change less frequently (due to
absence of any light stimuli) the adaptive stepper uses larger and larger time-steps.

not be justified. Instead, we step to the critical time and use the improved forward

Euler method, whose order is the same as BDF2, to take the subsequent first step.

4.2.7 Comparison of Adaptive Time-steppers

Our work on the adaptive time-stepper was partially inspired by [130]. In this section

we will compare the two time-steppers to highlight the key differences and compare

the overall performances of the two on a simple problem. The two main differences

are in computing the fine approximation, xf
n+1, and the local error estimations. To

better compare the local error estimations, we have implemented an adaptive time-

stepper identical to that of [130], but with our local error estimates. In what follows,

we will refer to that time-stepper as the memory-intensive B (MI-B) time-stepper,

to the time-stepper in [130] as the memory-intensive M (MI-M) time-stepper, and to
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Figure 4.5: Schematic depiction for the MI time-steppers. Left: The coarse approx-
imation of x at tn+1, xc

n+1, is computed identically to what was done in the ME
time-stepper (see Fig. 4.2). Right: The fine approximation of x at tn+1, xf

n+1, is
computed in two steps. First an intermediate value, xn+ 1

2
, is computed using xn− 1

2

and xn (shown in blue). Then xf
n+1 is computed using xn and xn+ 1

2
identically to

what was done in the ME time-stepper. The difference in calculating the intermedi-
ate value in the fine approximation necessitates keeping an additional set of historical
values, xn− 1

2
, for the MI time-stepper.

our original time-stepper as the memory-efficient (ME) time-stepper. Also, when the

distinction is not necessary we will refer to either of the MI-B and MI-M time-steppers

as the MI time-steppers.

Addressing the first difference, the ME time-stepper uses the same historical data,

namely xn and xn−1, to compute both the coarse approximation of x and the approx-

imation of x at the half-step, xn+ 1
2

(see Fig. 4.2). On the other hand, as is shown

in Fig. 4.5, the MI time-steppers use xn and xn− 1
2

for the approximation of x at the

half-step, while the coarse approximation is still computed using xn and xn−1. This

implies that the MI time-steppers must keep track of one more set of historical data,

namely the previous half-step values, xn− 1
2
. For simple models this extra memory

cost might be negligible, however, for complicated models, such as ours, the cost will

be burdensome.
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As for the difference in local error estimation, it mostly stems from missing the

1 + ωn
1 + 2ωn

factor in (4.15). This factor arises from using variable step-sizes as opposed

to the constant step-size BDF2.

To confirm our LTE calculation and to study further ramifications of these differ-

ences, we study the scalar initial value problem

dx

dt
= −x+ g(t), (4.18)

g(t) = sin

(
t

(
1 + 5 exp

(
−(t− 5)2

4

)))
, (4.19)

x(0) = −1

2
, (4.20)

over the time interval [0, 30]. Using integrating factors, we can determine that the

exact solution to this initial value problem is x(t) = e−t
(∫ t

0

etg(t)dt− 1

2

)
. This

allows us to compare the predicted coarse LTE, εc, to the actual coarse LTE, ε∗c

(see Fig. 4.6). We do this by using the adaptive time-steppers to step one time-step

using accurate historical data from the known analytic solution. Figure 4.6 shows

that for almost all time-steps, both the MI-B and ME time-steppers LTE predictions

are two orders of magnitude more accurate than that of the MI-M time-stepper.

This supports the validity of our error calculations, especially since this is the only

difference between the two MI time-steppers.

All that said, we have observed that all time-steppers tested behaved roughly the

same from a global view. Figure 4.6 shows global error of the various methods for the

initial value problem at hand. All three time-steppers have approximately the same

global error throughout the simulation. A possible explanation for this is that the

LTE estimate in the MI-M time-stepper is an overestimate of that in the MI-B and

ME methods, since

∥∥∥∥ 1 + ωn
1 + 2ωn

∥∥∥∥ < 1. This implies that the MI-M time-stepper will

not be taking bigger time-steps due to the faulty error approximation. Hence, we do

not expect the accumulation of any extra errors from this difference. Furthermore,
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Figure 4.6: Top: The difference between the predicted coarse LTE, εc, and the actual
coarse LTE, ε∗c, of the various methods as a function of time. Using our error estimate
yields a much more accurate LTE approximation as opposed to the standard error
estimate. Bottom: Global error of the various methods as a function of time. All
three methods roughly have the same global error.
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an LTE is considered suitable if it falls within some interval containing our desired

LTE. This along with the safety factors (see Section 4.2.1) decrease the effect of the

differences in the error approximations on the computed solutions.

4.3 Solving the Linear Jacobian Update Equation

As discussed in Section 4.2, the linear Jacobian update equation can be written as

Di∆xi+1 = ri. (4.21)

After ensuring uniqueness of the solution (see Section 2.2.2), Di’s are (n + 1) × n,

large, sparse matrices. Solving these updates directly proved to be onerous and

expensive. This is expected as the system Jacobian is quite large and complicated,

mixing between diffusion of electrical potentials and chemical reactions occurring in

photoreceptors. However, the Jacobian is sparse and highly structured (see Fig. 4.9),

which can be exploited for a significant reduction in cost. Iterative methods are

particularly well suited for such problems [119, 104]. Two iterative methods that we

found success with in solving (4.21) were the Richardson-D’Jakonov iteration and

GMRES. In this section, we discuss our use of these two methods, including our

attempts to further reduce their cost.

4.3.1 Richardson-D’Jakonov Iteration

Using our terminology in (4.21), D’Jakonov’s proposed iteration (3.3) is based on the

splitting

γjD
i = B + (γjD

i −B), (4.22)
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in which γj may vary with each inner iteration. We choose B = D0 and γj = 1.

Hence, our inner iteration is a semi-explicit iteration given by

D0∆xi+1
j+1 = ri − (Di −D0)∆xi+1

j , (4.23)

in which ∆xi+1
j is a sequence that converges to ∆xi+1 (we choose ∆xi+1

0 = 0).

As is common with iterative solvers, we choose to solve (4.21) only approximately.

Once the relative residual,

∥∥Di∆xi+1
j − ri

∥∥
∞

‖ri‖∞
,

decreases below 10−6, we halt the iterative solver and accept the iterate ∆xi+1
j . Hence,

in this setting, we are solving (4.14) using an inexact Newton method [116, 31].

The motivation for the choice of splitting of Di, seen in (4.22), is two fold. First,

through our experimentation with this model, we notice that the Newton method

converges very quickly (around 3 iterations) for most time-steps. This, the relatively

small step-sizes the solver takes, and the nature of our model suggests that D0 is an

adequate approximation of Di. Second, this choice allows us to decompose D0 once

and use the decomposition to solve all subsequent iterations (for each application

of this Newton-iterative method). This makes solving (4.23) significantly faster in

comparison to direct solves of (4.21). To illustrate, we use numerical simulation 1

to compare the performance of the direct and iterative solvers. Figure 4.7 shows

that, given a specific tol value (see Section 4.2.1), the iterative solver is twice as

fast as the direct solver while the accuracy of the two solvers are identical. This

means that all the advantages of the adaptive-direct time-stepper are retained by the

adaptive-iterative time-stepper. Recalling Fig. 4.3, this implies the adaptive-iterative

time-stepper improves accuracy by a factor of at least 10, as compared to the constant

time-stepper with twice the wall time.
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Figure 4.7: Left: The relation between the wall time and the maximum relative poten-
tial error (as compared to the finest constant simulation) for various adaptive-direct
(×), and adaptive-iterative (+) simulations. The colour bar on the right indicates
the tol values. For all tol values tested, the iterative solver improves the wall time
of simulations by roughly a factor of 2 while retaining the same accuracy level (also
shown in Fig. 4.3). Right: Number of inner iterations needed to achieve the desired
relative residual level as a function of γj. The curve, although just an example, is
basically the same through out our experimentation. In particular, in our experience
γj = 1 has always been the optimal choice and the more γj deviates from unity the
more inner iterations required to achieve the desired relative residual level.

The choice of γj = 1, in (4.22), is also based on the intuition that D0 is an adequate

approximation to Di. We verified this by experimenting with the model, as shown

in Fig. 4.7. Figure 4.7 shows the number of inner iterations needed to achieve the

desired relative residual level as a function of γj. It is clear the γj = 1 is the optimal

choice to minimize the number of inner iterations needed. We also observed that

the larger ‖γj − 1‖ gets the more inner iterations are required to achieve the desired

relative residual level. These results hold true through out our extensive experience

with the model.

In addition, the number of inner iterations is also affected by the adaptive time-

stepper tol value (see Section 4.2.1). Figure 4.8 shows a positive correlation between

tol values and number of inner iterations required. This was expected as lower tol
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Figure 4.8: The number of inner iterations required (for all tol values tested) as a
function of time. The colour bar on the right indicates the tol values. For all simu-
lations the maximum number of inner iterations needed is less than 10. We observe
that tol values and number of inner iterations required have a positive correlation.
This is expected as simulations with lower tol values take smaller step-sizes and so
the solution to the Jacobian update equation (4.21) is closer to the initial guess as
compared to those with higher tol values.

values force the time-stepper to take smaller steps, which means the solution to the

Jacobian update equation (4.21) is not far from the initial guess ∆xi+1
0 = 0. This

allows the iterative solver to converge faster for smaller tol values .

4.3.2 Generalized Minimal Residual Method

Unlike the Richardson-D’Jakonov iteration, GMRES is not readily adaptable to non-

square systems. Hence, we must forgo the uniqueness condition (2.7) and apply

GMRES on the square, singular Jacobian matrix. For the remainder of this chapter,

the Jacobian matrix, Di, refers to the n× n system Jacobian which does not include

the appended extra row for ensuring uniqueness (see Section 2.2.2). Two immediate

concerns arise as a result of this choice. The first concern is we are applying GMRES

to solve the Jacobian update equation (4.21), in which the matrix, Di, is singular.

Can GMRES find solutions to singular systems? The other concern is, suppose we are
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able to obtain a solution to (4.21), how can we ensure that the solutions obtained at

various time-steps correspond to the single solution of the PDE system (2.3) to (2.6)

that we are interested in?

As for the first concern, a considerable amount of research has been directed at

applying GMRES to singular and nearly singular systems, for example [108, 77, 19,

21, 18, 86, 96]. In fact, some of these studies offered insights as to when GMRES

can be applied to find a solution (in the least square sense) of inconsistent systems

[77, 19, 18]. As for the case of consistent but singular systems, such as ours, the issue

of applying GMRES is that a suitable solution may not lie in the Krylov subspace

(see Section 3.2) [60]. Fortunately, some progress have been made as to when singular

consistent systems admit a Krylov solution [60, 18, 96]. In our case, we are guaranteed

the existence of a Krylov solution since we can check that the range of Di intersects

its one dimensional null space trivially [18].

The second concern is easier to address. Assuming that, for a specific time-step,

we are able to find a solution, Vm, φe, φs to the PDE system (2.3) to (2.6). Since, for

any constant, Vm, φe + c, φs + c is also a solution (see Section 2.2.2), we can simply

choose c so that (2.7) is satisfied. More concretely, we pick c to satisfy

∫
∂S\∂R

(φs + c) +

∫
∂Ro

(φe + c) = 0.

Equivalently,

c = − 1

area(∂S)

(∫
∂S\∂R

φs +

∫
∂Ro

φe

)
,

in which area(∂S) =

∫
∂S

1 = 4πr2
eye is the surface area of the eye. It is not difficult to

see that by doing this at every time-step we end up at our desired solution (described

in Section 2.2.2).

After resolving both concerns, we were immediately faced with another problem:
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a straight forward application of GMRES on (4.21) was not fruitful. GMRES was not

converging, if at all, after a reasonable amount of iteration, regardless of how we vary

the restart parameter m in GMRES(m) (see Section 3.2.7). This was not completely

unexpected since, as we mention in Section 3.3, preconditioners are essential to the

success of iterative methods.

Most of our effective approaches centered around ILU preconditioners (see Sec-

tion 3.3.1 for an introduction). Specifically, ILU(0) and the more sophisticated ILUT

preconditioners. Unsurprisingly, the latter of the two is significantly improved when

combined with a reordering and rescaling preconditioner (see Section 3.3.2 for an

introduction). We discuss the various permutations and the scaling of the Jacobian

matrices before comparing the overall performances.

Jacobian Reorderings

We begin by addressing the initial ordering of the system Jacobian. We arbitrarily

choose the order of the equations to be (4.6) to (4.8), respectively. Noting the depen-

dency of these equations on the variables (see Fig. 4.9), it is clear that the natural

order of the variables should start with φs and φe, respectively, and then Vm and

the auxiliary variables X. Otherwise, most nonzero entries will be away from the

diagonal, which will make solving (4.21) more difficult.

Figure 4.9 shows the sparsity pattern of the Jacobian with this initial ordering,

which will be referred to as the standard ordering. It is evident that the Jacobian is

very sparse, with roughly 0.003% of its entries being nonzero, and highly structured.

One can readily see the dependency of (4.6) on φs and φe from the top block; (4.7) on

φs, φe, and Vm from the middle block; and (4.8) on all the variables from the bottom

block. The bottom block also shows the intercellular interactions, which manifest

as the off-diagonal bands in the bottom-right block of the Jacobian. Intracellular

interactions also appear in the bottom-right block of the Jacobian as the diagonal
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Figure 4.9: Left: Sparsity pattern of the Jacobian matrix in the standard ordering.
The horizontal dashed lines segment the matrix into the three equations (4.6) to (4.8),
respectively. The vertical dashed lines segment the variables into φs, φe, and Vm

and the auxiliary variables X (ordered per discretization node), respectively. The
Jacobian matrix is very sparse (only about 0.003% of its entries are nonzero) and
highly structured. Broad bandwidth and upward-pointing arrow submatrices are
clearly observed. Right: Sparsity pattern of the Kamiyama block submatrix, in
which Vm correspond to the first column. The dependency pattern clearly shows
upward-pointing arrow submatrices as well.

blocks (shown in Fig. 4.9), which correspond to Vm (first column) and X, associated

to each discretization node (hereafter referred to as the Kamiyama block).

From Fig. 4.9 it is evident that the Jacobian, in its current ordering, has a very

broad bandwidth. Indeed, the dependency of the middle block on Vm and the bot-

tom block on φs and φe is the main cause of this undesirable property. However,

upon examining the PDE system (2.3) to (2.6), it is clear that only the Vm equa-

tions (corresponding to (2.5)) in (4.8) that depends on φs and φe. Since the middle

block only depends on Vm and not X, (symmetrically) reordering the Jacobian so

that Vm for all the discretization nodes appear first and then X may significantly

reduce the bandwidth. This ordering will be referred to as the Vm-first ordering and

is shown in Fig. 4.10. We note that this ordering will also make the aforementioned

off-diagonal entries in the bottom-right block, corresponding to the intercellular inter-
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actions disappear (see Fig. 4.10). This is because all the direct intercellular interaction

occur between the Vm variables. The auxiliary variables X are directly affected only

through intracellular interactions.

An additional apparent feature of the Jacobian in Fig. 4.9 is that the arrow sub-

matrices are pointing up. This is noticeable in the Kamiyama blocks and the larger

arrow submatrices forming as a result of the dependency of the top and middle blocks

on φe and φs, respectively, as well as the middle and bottom block on Vm and φs and

φe, respectively. As discussed in Section 3.3.2, having these arrow submatrices point

down is more numerically desirable for solving (4.21). This suggests that reversing

the ordering of the Jacobian is a good reordering to consider. The reordering arising

from reversing the standard ordering will, naturally, be referred to as the reverse stan-

dard ordering. It is shown in Fig. 4.10. We will also consider reversing the Vm-first

ordering since the preceding argument applies to it as well. Naturally, that ordering

will be referred to as the reverse Vm-first ordering and it is shown in Fig. 4.10.

In addition to the aforementioned orderings, we will also consider the RCM order-

ing. Hence, we will have five different orderings to consider; the Jacobian structure

under the standard ordering is shown in Fig. 4.9, and the rest are shown in Fig. 4.10.

The reason for considering the RCM ordering of the Jacobian is that studies have

found it to improve the performance of ILU preconditioners [15, 14]. In fact, one can

say that it became “common knowledge” to try the RCM ordering when applying

ILU preconditioners since it is usually effective [104].

We gain further insight into these permutations by examining their corresponding

Jacobian structure (shown in Fig. 4.10). A remarkable difference in the Vm-first

ordering as compared to the standard ordering is absence of the off-diagonal bands

in the bottom-right block. This was expected and may improve solving (4.21) as

the large lower block has significantly less off-diagonal nonzero entries. However, the

bandwidth of the Jacobian in the Vm-first ordering is only slightly reduced. This is
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because the auxiliary variables X depend on Vm, which is now ordered before X

as opposed to being intertwined with it per discretization node. Clearly, both these

points hold for the reverse orderings as well. We also observe, as we expected, that the

arrow submatrices point downwards for the reverse orderings as opposed to upwards

for the ‘forward’ ones. This may improve the ILU preconditioner as it reduces fill-

in. The most significant bandwidth reduction is attained using the RCM ordering.

This may also improve the ILU preconditioner as, on average, all nonzero entries are

clustered near the diagonal compared to the other orderings.

These observations are optimistic in theory, however, it is not necessary that they

translate into practical improvements. Before presenting our findings, we discuss the

scaling we used since we found the most success when combining it with reordering.

Jacobian Scaling

In general, the convergence of Krylov methods depends on the eigenvalues of the

system in question [104, 60]. In fact, the convergence of GMRES has been shown to

depend on the radii and number of the eigenvalue clusters [20]. In the case where

multiple eigenvalue clusters are present, GMRES may behave as if the linear system

has one big eigenvalue cluster [20]. This along with Gershgorin’s theorem indicate that

a scaling that produces ones on the diagonals of the Jacobian and small off-diagonal

entries may be effective.

Our Jacobian scaling method consists of iteratively normalizing the rows, under

the max-norm, and then scaling the columns to have unit diagonal entires. Unam-

biguously, given a Jacobian matrix, Di, and a preset number of scaling iteration,

n, the new scaled matrix is RDiC, in which R = Rn · · ·R1 and C = C1 · · ·Cn are

products of diagonal matrices. We define R1 and C1 to be the diagonal matrices with

entries (R1)kk = 1
maxj{(Di)kj}

and (C1)kk =
maxj{(Di)kj}

(Di)kk
, respectively. Rm and Cm are

defined identically with Rm−1 · · ·R1D
iC1 · · ·Cm−1 in place of Di. In simpler terms
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Figure 4.10: Top-left: Sparsity pattern of the Jacobian matrix in the Vm-first or-
dering. The horizontal dashed lines segment the matrix into (4.6), (4.7), the Vm

equations of (4.8), and the X equations of (4.8), respectively. The vertical dashed
lines segment the variables into φs, φe, Vm, and X, respectively. Top-right: Sparsity
pattern of the Jacobian matrix in the reverse Vm-first ordering. The dashed lines
segment the matrix in the exact opposite order as is done for Vm-first ordering (top-
left). Bottom-left: Sparsity pattern of the Jacobian matrix in the RCM ordering. The
RCM ordering exhibits the smallest bandwidth of all orderings, however, the physical
intuition behind the ordering of the equations and variables is lost. The superior
bandwidth reduction is not surprising considering the RCM ordering was designed
for this purpose (as we mention in Section 3.3.2). Bottom-right: Sparsity pattern of
the Jacobian matrix in the reverse standard ordering. The dashed lines segment the
matrix in the exact opposite order as is done for the standard ordering (Fig. 4.9).
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the scaling matrices are iteratively defined so that at each stage Rm normalizes the

rows and Cm is chosen so that the diagonal entries are unity.

Theoretically the point of scaling the Jacobian more than once may not be clear,

however, our experimental evidence shows it to be quite effective. We will refer to the

time required to compute the ILU preconditioner of the system Jacobian as ILU com-

putation time. Figure 4.11 shows a plot of the relation between the ILU computation

time and the step-size that the adaptive time-stepper is taking (for various number

of scaling iterations). The plot clearly shows that scaling once significantly reduces

the ILU computation time. However, as the time-stepper takes bigger time-steps

the ILU computation time significantly increases. Examining the number of rows

of the Jacobian in which the diagonal entry is the largest entry (in absolute value)

provides some justification to this observation. We will refer to such rows as diag-

onally dominant rows, Figure 4.11 shows a plot of the relation between the fraction

of diagonally dominant rows of the system Jacobian and the step-size taken by the

adaptive time-stepper (for various number of scaling iterations). It is clear that with

bigger step-sizes less rows are diagonally dominant. This indicates that the overall

Jacobian matrix is less diagonally dominant, which may be causing the increase in

the ILU computation time.

We note that the results in Fig. 4.11 are not typical of all the orderings previously

discussed. The results are representative only of the reverse orderings. We choose to

limit our discussion to the reverse orderings here since, after considering all possible

combinations, we obtained the best results with these orderings.

Also, as we mentioned in Section 3.3, preconditioning is problem dependent and

this scaling technique is not an exception. In fact, similar scaling techniques have

been found to perform poorly in some cases [27]. While more sophisticated (unsym-

metric) reordering and scaling techniques have been developed [92, 37, 36], it is our

experience that such techniques, for the problem at hand, performed comparably with
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Figure 4.11: Left: A plot of the relation between ILU computation time [s] and the
step-size [s] that the adaptive time-stepper decided to take for the various number of
scaling iterations. Applying one scaling iteration significantly reduces ILU computa-
tion time, however, there is a positive correlation between ILU computation time and
the step-size taken by the time-stepper. This correlation is not observed if more than
one scaling iteration is applied. Right: A plot of the relation of the fraction of di-
agonally dominant rows and the step-size [s] that the adaptive time-stepper decided
to take for the various number of scaling iterations. A strong negative correlation
between the fraction of diagonally dominant rows and the step-size taken by the
time-stepper is observed only when fewer than two scaling iterations are applied.



4.3. SOLVING THE LINEAR JACOBIAN UPDATE EQUATION 75

Table 4.1: Time [s] required for a Newton iteration for each of the preconditioners
and for the various Jacobian orderings.

Preconditioner
Ordering ILU(0) ILUT Delayed ILUT
Standard 2.5 37 14

Reverse Standard 2.5 12 4.7
Vm-first 2.5 37 14

Reverse Vm-first 2.5 12 4.7
RCM 2.5 19 7

the aforementioned method but were more costly.

Summary

We found more success when combining reordering with rescaling. More precisely,

rescaling reduced the computation time by a factor of 2/3 (when comparing the best

performing reorderings). For this reason, and to limit the number of combinations

possible, we will only focus on ILU(0) and ILUT with (2 iterations of) scaling. We

will also be considering a delayed version of the ILUT preconditioner. That is, we

compute the ILUT preconditioner once for the first iteration of the Newton method

and reuse the same one for subsequent iterations. We found great success with this

method as it allows for the cost of computing the ILUT preconditioner to be split

across the Newton iterations. Table 4.1 shows the time it takes for a single solve of

(4.21) for the various preconditioners and orderings.

We found ILU(0) to be quite fast and is independent of the ordering (and, in

fact, scaling). The time to compute the ILU(0) preconditioner was about 0.5 s with

GMRES accounting for the majority of the Newton iteration time. However, the

residual requirement in the Newton method needed to be relaxed for it to converge

under this preconditioner. This did not seem to significantly affect the accuracy of

the solution. In fact, all three preconditioners computed the solution with similar

accuracy.
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Unsurprisingly, the delayed ILUT preconditioner was more cost effective than

the standard ILUT preconditioner. It is important to note that delaying the ILUT

preconditioner had no effect on the convergence of either GMRES or the Newton

method. The ILUT preconditioner was found to perform best on either of the reverse

orderings. The superiority to the ‘forward’ orderings was somewhat expected as we

discussed previously. ILUT with the RCM ordering performed well but not the best.

However, we did observe it to be the most consistent regardless of scaling.

In summary, when comparing to the Richardson-D’Jakonov iteration, which takes

about 3.5 s per Newton iteration, GMRES offers a faster alternative in ILU(0). How-

ever, as mentioned, this comes at the cost of relaxing the residual requirement in

the Newton method. On the other hand, ILUT performs at least as well as the

Richardson-D’Jakonov iteration but is slower. It also boasts the backing of theoreti-

cal and experimental results (as mentioned in Section 4.3.2), unlike our applications

of the Richardson-D’Jakonov iteration to rectangular systems.



Chapter 5

Adaptive Time-Stepper

Generalization

In this chapter, we generalize our adaptive time-stepper, that is based on variable step-

size BDF2 (see Section 4.2) to variable step-size backward differentiation formulas

(BDFs) of higher order. Our discussion will be mainly focused on BDFk, for k =

3, . . . , 6. We omit BDF1 from our discussion since it is a one-step method. We also

omit BDFk for k > 6 as they are unstable, even for constant step-sizes [53, 9, 54].

We recall that the BDFs are used in solving the differential equation x′(t) = f(t, x)

given by

k = 2 : xn+1 + α0xn + α1xn−1 = hnβf(tn+1, xn+1), (5.1)

k = 3 : xn+1 + α0xn + α1xn−1 + α2xn−2 = hnβf(tn+1, xn+1), (5.2)

k = 4 : xn+1 + α0xn + α1xn−1 + α2xn−2 + α3xn−3 = hnβf(tn+1, xn+1), (5.3)

k = 5 : xn+1 + α0xn + α1xn−1 + α2xn−2 + α3xn−3

+ α4xn−4 = hnβf(tn+1, xn+1), (5.4)

k = 6 : xn+1 + α0xn + α1xn−1 + α2xn−2 + α3xn−3

+ α4xn−4 + α5xn−5 = hnβf(tn+1, xn+1), (5.5)

77
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in which xn ≈ x(tn), tn+1 = tn + hn, and αi and β are coefficients chosen so that

BDFk will have order k. We start by deriving the αi and β coefficients, and the linear

systems that determine them, for all the BDFk for k = 2, . . . , 6. We then move on to

discuss how our time-stepping scheme generalizes to the rest of the BDFs and derive

the required error estimates. We conclude this chapter with an example to compare

the adaptive time-stepper of various orders.

5.1 Determining the BDF Coefficients

The standard way of determining the BDF coefficients is by using Taylor series on

the local truncation error LTE = x(tn+1)−xn+1, in which xn+1 is taken from the cor-

responding BDFk equation, one of (5.1) to (5.5). Subsequently setting the constants

associated with O(hi), i ≤ k terms to zero gives a system of equations (henceforth

referred to as the BDFk conditions) that, once solved, gives the BDF coefficients.

This approach is relatively easy for the constant step-size with some good references

demonstrating it, see for example [9, 53]. However, clear references for deriving the

variable step-size coefficients are hard to find. For this reason we will be detailed in our

approach to this derivation, providing summary tables (see for example Table 5.1)

where beneficial, as to serve as a good reference on this topic. We will, however,

avoid repetition where possible as we hope to strike a balance between detailedness

and readability.

5.1.1 Deriving the BDF Conditions

Since it has already been established that BDFk has LTE of order k + 1, our goal

here is not to derive the sufficient conditions for the BDFs to satisfy this property.

Instead, it suffices to obtain a system of necessary conditions for this requirement,

that so happens to fully determine the BDF coefficients. This offers a much easier to
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follow derivation of the BDF conditions as we hope to demonstrate.

The essential insight to this approach is BDFk must be able to determine polyno-

mials of degree k or less with no error. Specifically, we are interested in the monomials

1, t, t2, t3, . . . , tk as they simplify computations considerably.

We start with the constant polynomial x(t) = 1. Since this is a degree 0 polynomial

it must satisfy (5.1) to (5.5). In the case of BDF2, substituting xi = 1 for all

i = n− 1, n, n+ 1 and f(tn+1, xn+1) = x′(tn+1) = 0 into (5.1), we get

1 + α0 + α1 = 0 (5.6)

must hold. A summary of all the BDF conditions is given in Table 5.1. Similarly, for

BDF3 we get

1 + α0 + α1 + α2 = 0 (5.7)

and the pattern is obvious for the rest of BDFs (see Table 5.1).

Also, the linear polynomial x(t) = t must satisfy (5.1) to (5.5). For BDF2, using

xn = tn, xn+1 = tn + hn = xn + hn, xn−1 = xn − hn−1 and f(tn+1, xn+1) = 1, we get

(1 + α0 + α1)xn + (hn − α1hn−1) = hnβ.

Using (5.6) and rearranging gives us our second BDF2 condition

(1− β)hn − α1hn−1 = 0. (5.8)

Noting xn−2 = xn − (hn−1 + hn−2), the above can similarly be done to BDF3 giving

its second condition

(1− β)hn − α1hn−1 − α2(hn−1 + hn−2) = 0. (5.9)
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The pattern continues in the same way for the rest of the BDFs and is included in

Table 5.1.

Furthermore, the quadratic polynomial x(t) = t2 must satisfy (5.1) to (5.5). For

BDF2, using xn−1 = (tn − hn−1)2 = xn + 2hntn + h2
n, xn+1 = (tn + hn)2 = xn −

2hn−1tn + h2
n−1 and f(tn+1, xn+1) = 2tn+1, we get

(1 + α0 + α1)xn + 2(hn − α1hn−1)tn +
(
h2
n + α1h

2
n−1

)
= 2hntn+1.

Using tn+1 = tn + hn and rearranging, we get

(1 + α0 + α1)xn + 2((1− β)hn − α1hn−1)tn +
(
(1− 2β)h2

n + α1h
2
n−1

)
= 0.

which, after using (5.6) and (5.8) reduces to the BDF2 condition

(1− 2β)h2
n + α1h

2
n−1 = 0. (5.10)

Equations (5.6), (5.8) and (5.10) fully determine the coefficients of BDF2 as we show

in Section 5.1.2. The following procedure can similarly be followed to give the BDF3

counterpart

(tn + hn)2 + α0xn + α1(tn − hn−1)2 + α2(tn − (hn−1 + hn−2))2 = 2hnβ(tn + hn)

(1 + α0 + α1 + α2)xn + 2((1− β)hn − α1hn−1 − α2(hn−1 + hn−2))tn

+
(
(1− 2β)h2

n + α1h
2
n−1 + α2(hn−1 + hn−2)2) = 0,

(1− 2β)h2
n + α1h

2
n−1 + α2(hn−1 + hn−2)2 = 0. (5.11)

Unlike the previous polynomials, the polynomial x(t) = t3 must only satisfy (5.2)

to (5.5) since it is of degree 3. This is expected and inconsequential as the BDF2

coefficients are fully determined by (5.6), (5.8) and (5.10) as we already mentioned.
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So here we start with BDF3; noting that xn+1 = xn + 3t2nhn + 3tnh
2
n + h3

n we get

(1 + α0 + α1 + α2)xn + 3((1− β)hn − α1hn−1 − α2(hn−1 + hn−2))t2n

+ 3
(
(1− 2β)h2

n + α1h
2
n−1 + α2(hn−1 + hn−2)2)tn

+
(
(1− 3β)h3

n − α1h
3
n−1 − α2(hn−1 + hn−2)3) = 0.

Applying conditions (5.7), (5.9) and (5.11) we get

(1− 3β)h3
n − α1h

3
n−1 − α2(hn−1 + hn−2)3 = 0, (5.12)

which completes all the BDF4 conditions, which fully determine the coefficients of

BDF4.

We leave deriving the rest of the conditions to interested readers. It is not dif-

ficult, rather, it is tedious as the formulas get longer. A good strategy is to use

the binomial expansion theorem (or Pascal’s triangle), since it makes it easy to see

how the calculations unfold. For example, the most cumbersome condition to de-

rive is that for BDF6, which comes from letting x(t) = t6. Since, in that case,

xn+1 = x6
n + 6t5nhn + 15t4nh

2
n + 20t3nh

3
n + 15t2nh

4
n + 6tnh

5
n + h6

n and so plugging x(t) into

(5.5) gives

(
1 + α0 + α1 + α2 + α3 + α4 + α5

)
xn

+ 6

(
(1− β)hn − α1hn−1 − α2(hn−1 + hn−2)− α3(hn−1 + hn−2 + hn−3)

− α4(hn−1 + hn−2 + hn−3 + hn−4)− α5(hn−1 + hn−2 + hn−3 + hn−4 + hn−5)

)
t5n

+ 15

(
(1− 2β)h2

n + α1h
2
n−1 + α2(hn−1 + hn−2)2 + α3(hn−1 + hn−2 + hn−3)2

+ α4(hn−1 + hn−2 + hn−3 + hn−4)2 + α5(hn−1 + hn−2 + hn−3 + hn−4 + hn−5)2

)
t4n
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+ 20

(
(1− 3β)h3

n − α1h
3
n−1 − α2(hn−1 + hn−2)3 − α3(hn−1 + hn−2 + hn−3)3

− α4(hn−1 + hn−2 + hn−3 + hn−4)3 − α5(hn−1 + hn−2 + hn−3 + hn−4 + hn−5)3

)
t3n

+ 15

(
(1− 4β)h4

n + α1h
4
n−1 + α2(hn−1 + hn−2)4 + α3(hn−1 + hn−2 + hn−3)4

+ α4(hn−1 + hn−2 + hn−3 + hn−4)4 + α5(hn−1 + hn−2 + hn−3 + hn−4 + hn−5)4

)
t2n

+ 6

(
(1− 5β)h5

n − α1h
5
n−1 − α2(hn−1 + hn−2)5 − α3(hn−1 + hn−2 + hn−3)5

− α4(hn−1 + hn−2 + hn−3 + hn−4)5 − α5(hn−1 + hn−2 + hn−3 + hn−4 + hn−5)5

)
tn

+

(
(1− 6β)h6

n + α1h
6
n−1 + α2(hn−1 + hn−2)6 + α3(hn−1 + hn−2 + hn−3)6

+α4(hn−1 + hn−2 + hn−3 + hn−4)6 +α5(hn−1 + hn−2 + hn−3 + hn−4 + hn−5)6

)
= 0.

We know all the terms except the last one is equal to zero from the other BDF6

conditions (see Table 5.1). So we get

(1− 6β)h6
n + α1h

6
n−1 + α2(hn−1 + hn−2)6 + α3(hn−1 + hn−2 + hn−3)6

+ α4(hn−1 + hn−2 + hn−3 + hn−4)6 + α5(hn−1 + hn−2 + hn−3 + hn−4 + hn−5)6 = 0,

which is the last BDF6 condition.

We now have all the BDF conditions, which happen to be linear in in αi and β. So

in theory, we are able to solve this system with a symbolic computer algebra system.

While this approach works, in our experience, most symbolic solvers are not able to

simplify the increasing complicated coefficients nicely. Hence, we opt to solve these

linear systems by hand. We describe our approach in Section 5.1.2. A nice conse-

quence of our approach is that we are able to retain the geometric intuition behind

the formulas for the BDF coefficients (see Section 5.1.3). This intuition allows us to

develop general formulas, applicable to all BDFs, that are novel to us. Having these

formulas allows one to evaluate the BDF coefficients without the need to numerically



5.1. DETERMINING THE BDF COEFFICIENTS 83

solve the linear system, which may be poorly conditioned.

5.1.2 Solving for the BDF Coefficients

BDF2

Although this system is rather easy to solve by hand, it is good to show our approach

to solving the system of conditions in a simple setting. We begin by restating the

BDF2 conditions

1 + α0 + α1 = 0, (B1)

(1− β)hn − α1hn−1 = 0, (B2)

(1− 2β)h2
n + α1h

2
n−1 = 0. (B3)

Multiplying (B2) by hn−1 and adding it to (B3) gives the system

1 + α0 + α1 = 0, (B1)

(1− β)hn − α1hn−1 = 0, (B2)(
(1− β)hn−1 + (1− 2β)hn

)
hn = 0, (B3.1)

which can be rearranged to give

β =
hn + hn−1

hn−1 + 2hn
.

We substitute β into (B2) to get

α1 =
h2
n

hn−1(hn−1 + 2hn)
.
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We then use (B1) to get

α0 = − (hn + hn−1)2

hn−1(hn−1 + 2hn)
.

It is easy to check the we land at the same coefficients as in (4.14). This finishes

our derivation for the BDF2 coefficients. Table 5.1 contains a list of all the BDF

coefficients. We now proceed to solve for the BDF3 coefficients. We note that we will

intentionally reuse the same numbering of the equation system above in the coming

sections.

BDF3

The system of BDF3 conditions is

1 + α0 + α1 + α2 = 0, (B1)

(1− β)hn − α1hn−1 − α2(hn−1 + hn−2) = 0, (B2)

(1− 2β)h2
n + α1h

2
n−1 + α2(hn−1 + hn−2)2 = 0, (B3)

(1− 3β)h3
n − α1h

3
n−1 − α2(hn−1 + hn−2)3 = 0. (B4)

Carrying the row reduction operations (hn−1 + hn−2)·(B3) + (5.3) and (hn−1 + hn−2)·(B2)

+ (5.2) give the system

1 + α0 + α1 + α2 = 0, (B1)

(1− β)hn − α1hn−1 − α2(hn−1 + hn−2) = 0, (B2)

(1− β)hn(hn−1 + hn−2) + (1− 2β)h2
n − α1hn−1hn−2 = 0, (B3.1)

(1− 2β)h2
n(hn−1 + hn−2) + (1− 3β)h3

n + α1h
2
n−1hn−2 = 0. (B4.1)
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Furthermore, hn−1· (B3.1) + (B4.1) yields the system

1 + α0 + α1 + α2 = 0, (B1)

(1− β)hn − α1hn−1 − α2(hn−1 + hn−2) = 0, (B2)

(1− β)hn(hn−1 + hn−2) + (1− 2β)h2
n − α1hn−1hn−2 = 0,

(B3.1)(
(1− β)hn−1(hn−1 + hn−2) + (1− 2β)hn(2hn−1 + hn−2) + (1− 3β)h2

n

)
hn = 0.

(B4.2)

β can now be determined from (B4.2) to be

β =
(hn + hn−1)(hn + hn−1 + hn−2)

hn−1(hn−1 + hn−2) + 2hn

(
hn−1 + (hn−1 + hn−2)

)
+ 3h2

n

,

and, consequently, α1 can be determined from (B3.1) to be

α1 =
h2
n(hn + hn−1 + hn−2)2

hn−1hn−2

(
hn−1(hn−1 + hn−2) + 2hn

(
hn−1 + (hn−1 + hn−2)

)
+ 3h2

n

) .

Similarly, α2 and, in turn, α0 will be determined from (B2) and (B1), respectively, to

be

α2 = − h2
n(hn + hn−1)2

(hn−1 + hn−2)hn−2

(
hn−1(hn−1 + hn−2) + 2hn

(
hn−1 + (hn−1 + hn−2)

)
+ 3h2

n

) ,
α0 = − (hn + hn−1)2(hn + hn−1 + hn−2)2

hn−1(hn−1 + hn−2)

(
hn−1(hn−1 + hn−2) + 2hn

(
hn−1 + (hn−1 + hn−2)

)
+ 3h2

n

) ,

which concludes our derivation of the BDF4 coefficients.
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BDF4-6

Deriving the coefficients of the higher order BDFs gets quite cumbersome, however, it

follows the exact same procedure. For the sake of readability, instead of fully deriving

these coefficients as we did with BDF2 and BDF3, we only highlight how to do so for

the rest of BDFs and leave the verification for the interested reader. We do, however,

include all BDF coefficients in Table 5.1.

Figure 5.1 illustrates how the proposed technique generalizes to higher order

BDFs. In particular, it includes a diagram showing which equations are involved

in the row reductions, when variables are eliminated, and which system of equations

will eventually be used to determine the coefficients. For example, a scaled version

of B4 and B5 will be used to obtain B5.1, which does not involve the variable α3. In

turn, using B4.1 and B4.2 allows us to eliminate α2 and α1, respectively, and obtain

B5.3, which only involves β. The system of equations that will eventually be used to

determine the coefficients will consist of those equations appearing at the end of each

row. In the case of BDF4, that is B1,B2,B3.1,B4.2, and B5.3.

We also see that the proposed elimination procedure is nested as shown in the

compact diagram in Fig. 5.1. By nested, we mean that after the first set of row

reductions for, say BDF6, one can simply follow the same row reduction steps, albeit

on a subset of the resulting system of equations and with different weights, as BDF5

to eventually solve the system of equations. This was shown in our derivation of the

BDF3 coefficients. After the first set of row-reductions, we obtained the system (B1),

(B2), (B3.1), and (B4.1). The procedure we applied on the subsystem consisting of

(B2), (B3.1), and (B4.1) to obtain β, α1, and α2 is the same as the one we followed

to solve for the BDF2 coefficients.
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B1

B2

B3

B4

B5

B2

B3.1

B4.1

B5.1

B3.1

B4.2

B5.2

B4.2

B5.3

Figure 5.1: Left: The proposed row reduction scheme for solving for the BDF4 coef-
ficients with the same naming convention. Each set of row reductions results in the
elimination of a variable from the new equations. The last equation from each row
will be used to determine the coefficients. Right: A compact version of the proposed
row reduction scheme for solving for all the BDF coefficients. The scheme is nested
in the sense that after the first set of row reductions for BDFk, one can complete
solving the system using the same row reduction steps, albeit with different coeffi-
cients, as BDF(k − 1). The gray dashed lines indicate the boundaries of the block of
a lower order BDF. The nested blocks in order of increasing sizes are for the BDFs
of increasing order, respectively.
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ttn−5 tn−4 tn−3 tn−2 tn−1 tn tn+1

α5 α4 α3 α2 α1 α0

hn−5 + hn−4 + hn−3 + hn−2 + hn−1

hn−4 + hn−3 + hn−2 + hn−1

hn−3 + hn−2 + hn−1

hn−2 + hn−1

hn−1

hn

Figure 5.2: Geometry of the BDF setup. The various backward steps are shown red,
while the forward step is shown in blue. It will be useful to associate each αi to the
corresponding time node it appears with (see (5.1) to (5.5)) as shown here.

5.1.3 A General Formula for the BDF Coefficients

Going through the battle of manually solving the system of BDF conditions allowed

us to obtain simplified expressions for the BDF coefficients (see Table 5.1). This

triumph enables us to notice a connection between the formulas and the geometry

of the BDFs, as is indicated in the colour-coded BDF formulas in Table 5.1. Using

algebraic-geometric connection we are able to collect our prize, general formulas for

all the BDF coefficients for all orders.

Before we begin our discussion, it is useful to categorize steps based on the direc-

tion from the point tn, as shown in Fig. 5.2. For example, in the case of BDF2 we

have one backward step of size hn−1 and one forward step of size hn. It is also useful

to associate the αi’s with their corresponding node as we illustrate in Fig. 5.2. For

example, as αi appears as the weight of xn−i in (5.1) to (5.5), we will associate it with

time tn−i.

We begin our generalization with β (see Table 5.1). As it is written, it can be

seen that the denominator of β contains terms with increasing powers of the forward

step hn with product of some combination of backward steps, so that the terms have
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O(hk−1). Thus, the denominator of the β coefficients for all BDFs is

k−1∑
j=0

(j + 1)hjn

 ∑
H⊂B

|H|=k−1−j

∏
h∈H

h

,
in which B is defined to be the set of all backward steps. We can also see that the

numerator happens to be the product of all the backward steps concatenated with

the forward step, or in other words

k−1∏
j=1

(tn+1 − tn−j).

Hence, we get

β =

k−1∏
j=1

(tn+1 − tn−j)

k−1∑
j=0

(j + 1)hjn

 ∑
H⊂B

|H|=k−1−j

∏
h∈H

h


,

for all the BDFs.

As for the αi’s, their denominators are composed of two terms, one of which is the

denominator of β. To see the geometric connection with the other part, we reiterate

the usefulness of associating each αi to a time node as shown in Fig. 5.2. From that

lens, it can be seen that the other term in the denominator is the distance from the

time node associated to αi to all other historical time nodes, or in other words

k−1∏
j=0
j 6=i

(tn−i − tn−j).

By historical time nodes, we mean tn−(k−1), . . . , tn, which correspond to the known
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values xn−i, as opposed to the one we are determining, xn+1, at tn+1. As for the

numerator of the αi’s, it is quite similar to that of β, with the exception of the power

and of skipping the factor which involves the time node tn−i. In other words, the

numerator is given by

k−1∏
j=1
j 6=i

(tn+1 − tn−j)2.

All in all we get

αi =

k−1∏
j=1
j 6=i

(tn+1 − tn−j)2

k−1∏
j=0
j 6=i

(tn−i − tn−j)


k−1∑

j=0

(j + 1)hjn

 ∑
H⊂B

|H|=k−1−j

∏
h∈H

h



,

which can also be stated as

αi = (−1)i+1

k−1∏
j=1
j 6=i

(tn+1 − tn−j)2

k−1∏
j=0
j 6=i

|tn−i − tn−j|


k−1∑

j=0

(j + 1)hjn

 ∑
H⊂B

|H|=k−1−j

∏
h∈H

h



,

for i = 0, . . . , k − 1 in the case of BDFk.

Thus, we are able to distill all of Table 5.1 into a much more compact Table 5.2.

It is possible to simplify this further by having one formula for all αi’s and β but it

overcomplicates the resulting formula. We also find it to be unnecessary and, given

the context of the coefficients, unnatural.
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5.2 Higher Order Adaptive Time-Stepper

We are now ready to begin generalizing the adaptive timer-stepper to the higher order

BDFs. We will begin with describing the generalized time-stepping scheme and move

on to deriving the appropriate error bounds as was done in Section 4.2.

5.2.1 The General Time-Stepping Scheme

We choose our general time-stepping scheme to be a natural extension of the time-

stepping scheme described in Section 4.2.1. More concretely, our general time-stepping

scheme will involve a coarse and a fine approximation that allow us to estimate the

coarse local truncation error. The only difference of the general method to the one

previously described is using more historical points for the higher order BDFs. In

particular, we also retain the memory efficiency of the scheme, which was described

in Section 4.2.7. Since the general time-stepping scheme is such a natural extension

of the original one, we are able to depict it for all the BDFs at once (see Fig. 5.3).

5.2.2 Local Truncation Error Estimate for the General Time-

Stepper

In this section we will find and prove an LTE estimate for the general time-stepper.

We start by addressing a few notational issues that will arise in the course of the proof.

First, from Table 5.1, it is clear that the αi’s and β are functions of the step-sizes taken.

Hence, we can refer to them as αi(hn, hn−1, . . . , hn−(k−1)) and β(hn, hn−1, . . . , hn−(k−1))

when necessary to indicate the step-sizes. We let αi = αi(hn, hn−1, . . . , hn−(k−1)), α
′
i =

αi(
hn
2
, hn−1, . . . , hn−(k−1)), and α′′i = αi(

hn
2
, hn

2
, hn−1, . . . , hn−(k−2)) and similarly define

β, β′, and β′′. In particular, the (αi, β), (α′i, β
′), and (α′′i , β

′′) are the BDF coefficients

associated to the coarse step, first fine, and second fine step, respectively (see Fig. 5.3).

Furthermore, we recall that xn will refer to the approximation of x(tn) obtained using
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t
tn−5 tn−4 tn−3 tn−2 tn−1 tn tn+1

hn−5 hn−4 hn−3 hn−2 hn−1 hn

xn−5 xn−4 xn−3 xn−2 xn−1 xn

xc
n+1

t
tn−5 tn−4 tn−3 tn−2 tn−1 tn tn+ 1

2
tn+1

hn−5 hn−4 hn−3 hn−2 hn−1
hn
2

hn
2

xn−5 xn−4 xn−3 xn−2 xn−1 xn

xn+ 1
2

xc
n+1

Figure 5.3: Schematic depiction for the general time-stepper for BDFk, k = 2 . . . , 6.
Top: The coarse approximation of x at tn+1, xc

n+1, is computed using k accepted
values, xn−(k−1), . . . ,xn, which were precomputed at previous time-steps. Bottom:
The fine approximation of x at tn+1, xf

n+1, is computed in two steps. First we
compute the intermediate value xn+ 1

2
, which approximates x at tn+ 1

2
= tn + hn

2

(shown in blue). Then we compute xf
n+1 using xn−(k−2), . . . ,xn and xn+ 1

2
(shown in

red). The dashed gray lines are to indicate the scheme for the various BDFs. For
example, this diagram depicts the time-stepping scheme for BDF6 if we consider all
time values, while it does so for BDF5 if we ignore the time values to the left of the
dashed line (i.e. ignore tn−5).
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one of the BDFs. For the rest of the proof, since we are interested in local estimates,

we assume xn, . . . , xn−(k−1) to be known and thus are equal to x(tn), . . . , x(tn−(k−1)),

respectively. We only make the distinction between the approximate and exact values

for xn+1 and xn+ 1
2
. Also, we recall that dx

dt
= f(t, x) and note that we will be assuming

the existence of as many derivatives as needed for the rest of this section.

The following lemma is essential to computing the LTE for the various BDFs and

can be found in good numerical analysis textbooks, for example [53].

Lemma 5.1. For a fixed value t ∈ R, f(t, x1) and f(t, x2) are equal up to the same

order as x1 and x2.

Proof. In the case of scalar functions the above lemma follows from an application

of the mean value theorem on the function g(x) = f(t, x), for the fixed value t. For

vector-valued functions we simply repeat the above component-wise. �

Lemma 5.2. The LTE for the variable BDFk is of order k + 1. Furthermore, the

lowest order error term of the LTE is

1

(k + 1)!

(1− (k + 1)β)hk+1
n + (−1)k+1

k−1∑
i=1

αi

(
i∑

`=1

hn−`

)k+1
x(k+1)(tn).

Proof. By definition of the LTE and (5.1) to (5.5)

LTE = x(tn+1)− xn+1

= x(tn+1)−

(
−

(
k−1∑
i=0

αixn−i

)
+ hnβf(tn+1, xn+1)

)
. (5.13)

By Lemma 5.1, we can simply replace f(tn+1, xn+1) by f(tn+1, x(tn+1)) as the hn

factor means it will not affect the lowest order error term. Furthermore, using a
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Taylor series about tn, we obtain that

1 +
k−1∑
i=0

αi

is the zeroth order term and that

1

j!

(1− jβ)hjn + (−1)j
k−1∑
i=1

αi

(
i∑

`=1

hn−`

)j
xj(tn),

for j = 1, · · · , k+ 1 are the order 1, . . . , k+ 1 terms, respectively. The desired results

follow from noting that all these terms, with the exception of the k + 1 order term,

are forced to be zero by our assumptions for BDFk (see Table 5.2). �

Using Lemma 5.2, we can derive the coarse LTE, εc, and fine LTE, εf .

Theorem 5.3. For BDFk, the coarse and fine LTEs are given by

εc =
1

(k + 1)!

(1− (k + 1)β)hk+1
n + (−1)k+1

k−1∑
i=1

αi

(
i∑

`=1

hn−`

)k+1
x(k+1)(tn)

+O(hk+2), (5.14)

εf =
1

(k + 1)!

(1− (k + 1)β′′)

(
hn
2

)k+1

+ (−1)k+1

k−1∑
i=1

α′′i

(
i∑

`=1

h′′n−`

)k+1


−α′′0

(1− (k + 1)β′)

(
hn
2

)k+1

+ (−1)k+1

k−1∑
i=1

α′i

(
i∑

`=1

hn−`

)k+1
x(k+1)(tn)

+O(hk+2), (5.15)

in which h′′n−1 = hn
2

and h′′n−` = hn−(`−1) for ` = 2, . . . , k − 1.

Proof. In light of Lemma 5.2, it suffices to only prove (5.15). Using Lemma 5.2

and (5.13) we see that
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−

(
k−1∑
i=1

αixn−i

)
+ hnβf(tn+1, xn+1) = x(tn+1) + α0xn

− 1

(k + 1)!

(1− (k + 1)β)hk+1
n + (−1)k+1

k−1∑
i=1

αi

(
i∑

`=1

hn−`

)k+1
x(k+1)(tn)

+O(hk+2).

Similarly, for the first fine step we get

−

(
k−1∑
i=1

α′ixn−i

)
+
hn
2
β′f(tn+ 1

2
, xn+ 1

2
) = x(tn+ 1

2
) + α′0xn

− 1

(k + 1)!

(1− (k + 1)β′)

(
hn
2

)k+1

+ (−1)k+1

k−1∑
i=1

α′i

(
i∑

`=1

hn−`

)k+1
x(k+1)(tn)

+O(hk+2). (5.16)

Assuming we apply BDFk to obtain xn+1 from x(tn+ 1
2
), xn, . . . , xn−(k−2), we similarly

get

−

(
k−1∑
i=1

α′′i xn−(i−1)

)
+
hn
2
β′′f(tn+1, xn+1) = x(tn+1) + α′′0x(tn+ 1

2
)

− 1

(k + 1)!

(1− (k + 1)β′′)

(
hn
2

)k+1

+ (−1)k+1

k−1∑
i=1

α′′i

(
i∑

`=1

h′′n−`

)k+1
x(k+1)(tn)

+O(hk+2). (5.17)

Now by definition of εf , we have

εf = x(tn+1)− xf
n+1

= x(tn+1)−

[
−α′′0xn+ 1

2
−

(
k−1∑
i=1

α′′i xn−(i−1)

)
+
hn
2
β′′f(tn+1, xn+1)

]

= x(tn+1)−

[
−α′′0

(
−α′0xn −

(
k−1∑
i=1

α′ixn−i

)
+
hn
2
β′f(tn+ 1

2
, xn+ 1

2
)

)
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−

(
k−1∑
i=1

α′′i xn−(i−1)

)
+
hn
2
β′′f(tn+1, xn+1)

]
. (5.18)

Substituting (5.16) and (5.17) into (5.18) completes the proof. �

We are now in a position to state and prove our LTE error estimate based on the

approximations xc
n+1 and xf

n+1.

Theorem 5.4. The coarse LTE can be stated without the use of derivatives as

εc =

(1− (k + 1)β)hk+1
n + (−1)k+1

k−1∑
i=1

αi

(
i∑

`=1

hn−`

)k+1


(1− (k + 1)β′′)

(
hn
2

)k+1

+ (−1)k+1

k−1∑
i=1

α′′i

(
i∑

`=1

h′′n−`

)k+1


− α′′0

(1− (k + 1)β′)

(
hn
2

)k+1

+ (−1)k+1

k−1∑
i=1

α′i

(
i∑

`=1

hn−`

)k+1


−

(1− (k + 1)β)hk+1
n + (−1)k+1

k−1∑
i=1

αi

(
i∑

`=1

hn−`

)k+1
−1(

xc
n+1 − xf

n+1

)
+O(hk+2). (5.19)

Proof. We know that xc
n+1 − xf

n+1 = εf − εc. Substituting in (5.14) and (5.15) and

solving for x(k+1)(tn) gives

x(k+1)(tn) =
[
(k + 1)!

(
xc
n+1 − xf

n+1

)](1− (k + 1)β′′)

(
hn
2

)k+1

+ (−1)k+1

k−1∑
i=1

α′′i

(
i∑

`=1

h′′n−`

)k+1


− α′′0
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)k+1
−1

+O(h),
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which gives the desired results once plugged back into (5.14). �

Corollary 5.5. Richardson Extrapolation of the generalized adaptive time-stepper

takes the following linear combination of xc
n+1 and xf

n+1
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in which
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.

Proof. This follows directly from setting x(tn+1) = xc
n+1 + εc (see Section 4.2.3). �

5.3 Comparison of the Adaptive Time-Stepper of

Various Orders

We use the initial value problem (4.18) to (4.20), on the same time interval [0, 30],

to compare our adaptive time-steppers of various orders. Figure 5.4 shows the global

error for our adaptive time-steppers for orders k = 2, . . . , 6. In addition to achieving

smaller global error values, the higher order time-steppers do so with much larger
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Table 5.3: Number of steps taken to solve the initial value problem (4.18) to (4.20)
by the adaptive time-steppers based on the various BDFs.

Method Number of steps
BDF2 5708
BDF3 1793
BDF4 942
BDF5 639
BDF6 525

time-steps. Indeed the safety mechanism (see Section 4.2.6) prevented the time-

steppers based on BDF5 and BDF6 from taking bigger step-sizes. This occurred

more frequently for the time-stepper based on BDF6. By taking larger step-sizes,

higher order time-steppers took significantly fewer time-steps as shown in Table 5.3.

BDF6 needed a tenth of the number of steps that BDF2 needed to solve the initial

value problem to the same tolerance.

However, we must mention that the stability of the higher order BDFs for variable

step-sizes is a concern [53]. It appears to be dependent on the ratio of the step-sizes

taken [53, 52]. For example Grigorieff [52] proved that variables step-size BDF2 is sta-

ble so long as the ratio of the step-sizes is in the interval [0, 2.414] [53]. In comparison,

he showed the intervals for BDF3-5 to be [0.836, 1.127], [0.979, 1.019], [0.997, 1.003], re-

spectively, with the bound for BDF6 to be a proper subset of [0.999, 1.001] [52]! That

said, this was proven without any assumptions on how the step-sizes vary [53, 52].

Some considerations have been given to the stability of the variable BDFs of higher

order when extra assumptions, such as ensuring the rate of change of the step-size,

are made [53, 47, 48].
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Figure 5.4: Top: Global error of the various adaptive time-steppers as a function of
time for tol = 10−7. Higher order adaptive time-steppers achieve lower global error
than the lower order ones. The different colours indicate the order of the adaptive
time-stepper as shown in the colour bar. Bottom: Step-size taken by the various adap-
tive time-steppers as a function of time. The dashed horizontal line is the maximum
allowed step-size ∆tmax. Higher order time-steppers can take much larger step-sizes
as compared to lower order ones and attain lower global error. The decision of an
adaptive time stepper to take step-sizes larger than ∆tmax is overridden by a safety
feature. This is best observed for the BDF6 timer-stepper in this figure.
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Chapter 6

Simulation Results

In this chapter we present and discuss the results of a variety of simulations with var-

ious experimental set-ups. Some of these findings were consistent with the literature

while others have no experimental counterpart, but ought to have experiments de-

signed to study them. For complete details of the various simulations see Appendix A.

6.1 Desensitization and a-Waves

In numerical simulation 3, the center of the retina is stimulated with spatially Gaus-

sian (σ = 50), 20 ms light pulses at t = 0, 2.0, 2.1, 2.2, . . . , 2.9 s. Our aim is to see

what general features of the electroretinogram (ERG) and retinal physiology can be

detected with our model. A 2 s gap provides time for a dark-adapted photoreceptor

to return to resting potential. Figure 6.1 shows the induced change in potential and

voltage throughout the surface of the eye and the retina, respectively. It also includes

a plot of the potential as a function of time at a specified location in the eye. In

the time plots of the potential, there are two very different time scales, a fast one

occurring right after the light stimulus accompanied by hyperpolarization, and a very

slow one in which the cell membrane returns to its depolarized equilibrium. This

property is exactly what we are hoping to exploit in our adaptive time-stepper, since
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Figure 6.1: Top-left: Extracellular potential throughout the eye at t = 0.15 s. The
region outlined in black is the retina. The black dot is the location of the potential
measurement shown in the bottom plot. The effect of the light stimulus is observed in
the darker green region near and around the center of the retina. Top-right: Voltage
on the retina at t = 0.15 s. The hyperpolarization, as a result of the light stimulus, is
observed in yellow in the central region of the retina. Bottom: Extracellular potential
at the specified point (black dot in the top-left extracellular potential plot) on the
surface of the eye as a function of time. There are two distinct phases observed in
the resulting change from the stimulus, a fast hyperpolarization phase followed by
a much slower depolarization phase. See numerical simulation 3 in Appendix A for
more details about the set-up of this simulation.
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in periods of slow change the solver may take much larger steps.

Many features of retinal physiology are present in our model, some of which are

immediately clear from Fig. 6.1. For example, the voltage response between the flashes

at time t = 0 s and t = 3 s is similar, while the response is weaker for the subsequent

flashes. This is expected as there was an extended period of time between the first

two flashes, while the remaining flashes were temporally close. This implies that the

photoreceptors were able to recover from the first flash but later was desensitized to

the rapid light stimuli and so the response was less pronounced.

The a-wave is another feature of retinal physiology that was present in our model.

The two main components of a human ERG reading are the a-wave and the b-

wave [94]. The a-wave is hypothesized to occur as a result of the hyperpolarization

of the photoreceptors [94], and hence we were able to observe it in the surface of

eye measurements shown in Fig. 6.1. However, the b-wave is hypothesized to occur

as a result of the depolarization of retinal cells that are postsynaptic to photorecep-

tors [94], which are not included in the present model, so we were not able to detect

them using our model. This is a confirmation of the proposed mechanism for the

a-waves and b-waves. The overshoot observed as the membrane returns to resting

potential in Fig. 6.1 is different, and much smaller in amplitude, than the typical

b-wave [94].

6.2 Calcium in Photoreceptors

The model can be used to study other aspects of the retina as well, depending on

the level of detail of the chosen transmembrane current model. For instance, the

Kamiyama model we chose distinguishes between the calcium concentrations at dif-

ferent locations in the photoreceptor. It defines distinct auxiliary variables for the

concentrations of the outer segment calcium, [Ca], inner segment submembrane cal-
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Figure 6.2: Top: The concentration of the outer segment calcium, [Ca], (left), inner
segment submembrane calcium, [Cas], (center), inner segment central space calcium,
[Caf ], (right) at t = 0.15 s. The associated colour bar of each plot is located at
the bottom of the plot’s column. The outer segment calcium is quicker to respond to
light stimuli than the inner segment calcium. As the movement of calcium is buffered,
central space calcium response is not yet visible. Bottom: similar to the top row but
at t = 0.57 s. Inner segment calcium response to light stimuli is longer lasting than
that of the outer segment. There are no observed differences between submembrane
and central space calcium in terms of duration of response.

cium, [Cas], and inner segment central space calcium, [Caf ]. So, using the aforemen-

tioned numerical simulation 3, we are able to study calcium in both the outer segment

and the inner segment of the photoreceptors. Figure 6.2 shows [Ca], [Cas], and [Caf ]

at times t = 0.15 s and t = 0.57 s. The distinction between the submembrane calcium

and central space calcium reflects research showing that the movement of calcium is

controlled in cells using various buffers [82]. Using the model, we observe the time

delay between the calcium response to the light stimulus in the outer and inner seg-

ment. This is expected as the outer segment is the site of photon absorption, which

marks the beginning of phototransduction [35]. Furthermore, we observe the delay in

the response between the submembrane and central space calcium due to the buffers

action on calcium. We also observe that the response in the outer segment is longer

lasting than that of the inner segment, which has yet to be observed experimentally.
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6.3 Gap Junctional Effect on Inner Segment Cal-

cium Concentration

In numerical simulation 4, we use the multi-domain framework to model four ac-

tive domains (rods and long (L-), medium (M-), and short wavelength cones (S-

cones)). Each active domain is given a disjoint light stimulus at distinct times (see

Appendix A). In reality, it may not be possible to give completely disjoint light stim-

uli to all the different kinds of cones, since, for example, the L-cones and M-cones

have significant overlap in the frequencies of light they are sensitive to [72]. However,

one can essentially do so for rods and cones by using light stimuli of different fre-

quencies [26]. The goal of this simulation study is to see whether the various calcium

concentrations in an active domain can be affected solely through gap junctions.

Our findings indicate that this is possible for the inner segment calcium concentra-

tions only. Figure 6.3 shows the various calcium concentrations of the L-cones domain.

It shows that even in the absence of a light stimuli to the L-cones domain, both the in-

ner segment submembrane calcium concentration and the inner segment central space

calcium concentration are affected by the light stimuli to the rods domain. However,

no change was detected in the outer segment calcium concentration. While we found

no experimental evidence supporting these observations, we believe they will hold

considering that calcium plays a key role in phototransduction (contributing about a

fourth of the photocurrent) [118]. The observations are also consistent with the find-

ings that gap junctions occur far away from the outer segments, with some occurring

in the inner segments [95, 70, 115, 24, 72].
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Figure 6.3: Top: The concentration of the outer segment calcium, [Ca], (left), inner
segment submembrane calcium, [Cas], (center), inner segment central space calcium,
[Caf ], (right) of the L-cones domain at t = 0.29 s. The associated colour bar of
each plot is located at the bottom of the plot’s column. The inner segment calcium
concentration is affected by light stimuli to another photoreceptor. As the movement
of calcium is buffered, central space calcium response is not yet clearly visible. No
outer segment response is observed. Bottom: similar to the top row but at t = 0.82
s. The newly observed response in all three plots is a result of a light stimuli to the
L-cones domain, unlike the previous response, whose affects can still be observed in
both inner segment calcium concentrations.
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6.4 An Unhealthy Retina Affects ERG Measure-

ments

As mentioned in Chapter 1, ERGs can be used to detect retinal diseases such as

retinitis pigmentosa [26]. Using our model, we can study a variety of retinal diseases

since we have extensive control over retinal cells in the model. For example, in numer-

ical simulation 5, we use our model to study the effect of photoreceptor degeneration

on ERG measurements. We do so by stimulating retinae with various patterns of

photoreceptor degeneratrion (see Appendix A) with a spatially Gaussian (σ = 50),

20 ms light pulse.

Figure 6.4 shows a plot of the potential as a function of time at a point on the

surface of the eye. As the plot shows, potential measurements at the surface of the

eye, in other words ERG measurements, exhibit different features for the different

retinae. An obvious distinguishing feature is the amplitude of the hyperpolarization

response is diminished for the diseased retinae. The decrease in potential appears to

be proportional to the extent of the damage of the retina. For instance, the most

heavily damaged retina (with disease C) has a much weaker response amplitude than

the other retinae. A more subtle distinguishing feature of the ERG measurements is

that there appears to be a phase-shift in the slow depolarization phase between the

various retinae. This is most apparent when comparing the retinae with disease A and

B to the healthy one. It is the case that in real life such distinguishing features are

used to diagnose diseases [26]. For example, ERGs can be used to identify individuals

with myotonic dystrophies, a type of muscular dystrophy, even when the person does

not exhibit any neurological symptoms [26]. This is because the ERG measurements

of such individuals usually shows a significantly diminished b-wave [26].

It is also evident from Fig. 6.4 that this particular ERG measurement is not useful

in distinguishing between retinae with disease A or B as the response is quite similar.
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Figure 6.4: Extracellular potential at a point on the surface of the eye as a function of
time for various retinae. See numerical simulation 5 in Appendix A for more details
about the set-up of this simulation.

However, this does not imply that ERGs cannot be used to distinguish between the

types of photoreceptor degeneration patterns. Perhaps a narrower light spot that is

slightly off-center may evoke a more distinguished ERG response between the two

types of retinae. It is also the case in the clinic that some ERG tests appear normal

while others indicate the presence of a disease [26, 42]. For example, patients with

congenital achromatopsia, sometimes referred to as colour blindness, can show normal

rod responses while their cone responses are completely diminished [40, 42, 81].

In addition to controlling the light stimuli, we are also able to control the nature

of the modelled retinal disease. For example, the results shown in Fig. 6.4 are based

on diseased where the photoreceptor, L-cones in this case, is completely insensitive to

light. For example, the photoreceptor is no longer able to manufacture the pigment

that absorbs photons and starts the phototransduction pathway [44, 72]. Since we

are using a biological model of the photoreceptor, we are able to, for example, in-

terrupt the phototransduction pathway at a different stages instead. This shows the

possibility that this model can be used for ERG diagnosis and potentially tracking

the progression of a variety of diseases.



Chapter 7

Conclusion

7.1 Summary

In this dissertation, we presented a detailed model and simulation of the retina, which

takes into account the retinal physiology as well as the geometry of the eye. The

model is based on the bi-domain equations and is the first bi-domain retina model

which takes into account the entirety of the eye. It is a versatile model in the sense

that it can be used with any model of transmembrane currents. This model can be

viewed as complimentary to the current retinal models, such as the one proposed

by Dokos et al. [34], which were mainly concerned with electrode stimulation of and

signal propagation through the retina. We also generalized our bi-domain model to a

multi-domain model, which can account for all types of known photoreceptors. This

significantly extends the scope of the model and increases the number of questions that

can be investigated with it. We demonstrated some of these questions by presenting

numerical simulations that compare favourably with experimental findings.

Furthermore, we detailed how we discretize the model’s system of PDEs and our

implicit time-stepping scheme which used BDF2 and a Newton-iterative method.

We demonstrated how our adaptive time-stepper was used to significantly decrease
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simulation time while maintaining accuracy. We also investigated various iterative

methods for solving the arising Jacobian update equation in the Newton iteration and

demonstrated how they can be used to significantly decrease simulation time while

maintaining accuracy. While all this numerical work was in the context of our model,

it is clearly applicable to other systems, most notably those arising from discretizing

PDE systems with elliptic constraints. We then fully generalized our adaptive time-

stepper to higher order BDFs, providing the coefficients and error bounds needed to

implement the adaptive time-stepper. This further extends the use of the time-stepper

to problems that cannot be satisfactorily solved with lower order methods.

7.2 Future Directions

There are three main distinct, yet interdependent, future directions for the presented

work. Namely, improving the level of detail of the model, improving the numerics

and implementation of the simulation, and working on applications of the model and

simulation.

Currently, this model only accounts for one type of neurons present in the retina,

namely the photoreceptors. Adding other types of neurons will increase the scope

of applicability of this model since it will reproduce more features of the retina (for

example, the b-wave mentioned in Section 6.1). However, this evidently will lead to

higher computational cost of the simulation, which in turn places more importance

on the numerics and implementation of the simulation.

On that front, a limitation of the model is the computational cost of this simu-

lation. This, unfortunately, has been the downfall of cardiac tissue models using the

bi-domain equations as well, which limited their usage [66]. Even though we were

able to significantly cut this cost by the use of an adaptive time-stepper and iterative

methods, there is still much left to be done. For example, the curse of dimensionality
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is evident in our simulation. We tried to mitigate some the cost by using a non-

uniform tensor product grid (see Section 4.1), however, that approach is limited. We

hypothesize that implementing something like an algebraic multigrid method may

significantly reduce computation cost [104]. A more minor change than multigrid

methods is further investigation into the GMRES preconditioners. There has been

many instances where preconditioners built based on information of the original prob-

lem out performed general ones [104, 51, 103, 125, 114]. While our reordering and

scaling preconditioner may be categorized as such, the information used to built them

is limited to the structure and number of diagonally dominant rows of the Jacobian

(see Section 4.3.2). We hypothesize that using information about the physical and

chemical properties of the underlying biological model will yield significantly better

results.

Improving the numerics of the simulation will allow us to investigate applications

of the model more effectively. For instance, an exciting area of application for this

model is in aiding electroretinogram (ERG) diagnostics. The model can be manipu-

lated to mimic many diseases that ERGs are used to diagnose. Thus, through various

techniques such as parameter fitting, we hope to be able to use this model to replicate

ERG measurements and subsequently aid ERG diagnostics. This will require numer-

ous simulations of the model further emphasizing the importance of improving the

numerics and implementation of the simulation. Another important application of

this model is in providing deeper understanding of ERG measurements. For example,

it has been shown that there is a correlation between ERG measurements and the

thickness of a diseased retina [117, 16, 90, 91]. Improving the model to account for

various geometries, such as variable thickness, of the retina will enable us to propose

and understand mechanisms for such observed phenomena. This feeds into our first

goal of improving the level of detail of the model.
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Appendix A

Simulation Details

Numerical Simulation 1:

• Grid size (r × θ × ϕ): 30× 29× 27.

• Total number of unknowns: 142, 352.

• Simulation interval: [0, 1] (seconds).

• Active Domains: L-cones.

• Stimulus: Spatially Gaussian (σ = 50), 1 s light flash at t = 0 s aimed at center

of retina.

Numerical Simulation 2:

• Grid size (r × θ × ϕ): 30× 29× 27.

• Total number of unknowns: 142, 352.

• Simulation interval: [0, 5] (seconds).

• Active Domains: L-cones.
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Figure A.1: Left to right: Location of light stimuli flashed at rods, L-cones, M-cones,
and S-cones, respectively. The times of the 20 ms light pulses were at t = 0, 0.5, 1.0, 1.5
s for rods, L-cones, M-cones, and S-cones, respectively

• Stimulus: Spatially Gaussian (σ = 50), 20 ms light pulse at t = 0 s aimed at

center of retina.

Numerical Simulation 3:

• Grid size (r × θ × ϕ): 30× 29× 27.

• Total number of unknowns: 142, 352.

• Simulation interval: [0, 5] (seconds).

• Active Domains: L-cones.

• Stimulus: Spatially Gaussian (σ = 50), 20 ms light pulses at t = 0, 2.0,

2.1, 2.2, . . . , 2.9 s aimed at center of retina.

Numerical Simulation 4:

• Grid size (r × θ × ϕ): 30× 35× 46.

• Total number of unknowns: 1, 146, 412.

• Simulation interval: [0, 5] (seconds).

• Active Domains: Rods, L-cones, M-cones, and S-cones.

• Stimulus: Spatially-disjoint, 20 ms light pulses were given at t = 0, 0.5, 1.0, 1.5

s to rods, L-cones, M-cones, and S-cones, respectively (see Fig. A.1).
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disease A disease B disease C

Figure A.2: Left to right: the different patterns of photoreceptor degeneration for
disease A, disease B, and disease C retinae, respectively.

Numerical Simulation 5:

• Grid size (r × θ × ϕ): 30× 29× 27.

• Total number of unknowns: 142, 352.

• Simulation interval: [0, 5] (seconds).

• Active Domains: L-cones.

• Stimulus: Spatially Gaussian (σ = 50), 20 ms light pulse at t = 0 s aimed at

the center of a healthy retina and several retinae suffering from phtoreceptor

degeneration (see Fig. A.2).
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Appendix B

Supplementary Equations

Spherical Coordinate Representations of (2.3) to (2.5):

The spherical representation of (2.3) to (2.5) are
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respectively.

Finite Difference Equations for all variables: Let {r0 = 0, . . . , rn = reye}, {θ0 =

0, . . . , θm}, {ϕ0 > π/2, . . . , ϕp < π/2} be the discretization points in the radial di-

rection, polar, and latitudinal directions, respectively. Also let φ(i,j,k) correspond to

the value of φ at the (i, j, k) node, where i, j, k are indices for the radial, polar, and

latitudinal directions, respectively.
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∂r2
= 2γi

φ(i,j,k+1) + γiφ
(i,j,k−1) − (1 + γi)φ

(i,j,k)

(1 + γi)h2
i+1

,

in which hi+1 = xi+1−xi (x ∈ {r, θ, ϕ} is the obvious choice of variable) and γi = hi+1

hi
.
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