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We present a thorough study of the differential geometry of weightings

and develop the theory of weightings for vector bundles, Lie groupoids,

and Lie algebroids.

We begin by extending the work of Loizides and Meinrenken in [LM23]

on weighted manifolds. We define weighted submanifolds, weighted im-

mersions, and weighted embeddings, and prove normal form theorems for

these objects. We also study characterizations of weighted morphisms in

terms of their graphs and in terms of weighted paths. We further extend

the theory of weighted manifolds by developing a theory of linear weight-

ings for vector bundles. Our work on linear weightings is the content of

the pre-print [Hud23].

Following this, we give three equivalent definitions of a multiplicative

weighting for a Lie groupoid G ⇒ M: one involving the structure maps for

the Lie groupoid, one involving the graph of the groupoid multiplication,

and one involving the weighted deformation space. We also include a

discussion of weighted VB-groupoids, and prove some basic theorems

involving these objects.

ii



In the last two chapters of this thesis, we study infinitesimally multiplica-

tive weightings for Lie algebroids. We characterize these in terms of linear

Poisson structures and homological vector fields. We show that multiplica-

tive weightings differentiate to infinitesimally multiplicative weightings

and solve the integration problem for infinitesimally multiplicative weight-

ings along wide Lie subalgebroids. In particular, we classify multiplicative

weightings of a Lie groupoid along its units in terms of Lie filtrations

of its Lie algebroid (cf. [VEY19, Definition 67]). We make progress to-

wards a solution for the general integration problem by giving a condition

for when an infinitesimally multiplicative weighting along a general Lie

subalgebroid integrates.
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1
I N T R O D U C T I O N

The purpose of this thesis is to give a detailed and thorough study of
the theory of weightings in the categories of manifolds, vector bundles,
Lie groupoids, and Lie algebroids, with the goal of unifying, clarify,
and generalizing constructions of Connes [Con94], Debord and Skan-
dalis [DS14], Higson and Yi [HY19], Haj and Higson [SH18], van Erp and
Yuncken [VEY17], and Ševera [Šev17].

1.1 background

1.1.1 Connes’ tangent groupoid

The story of weightings can be said to have started with the so-called
tangent groupoid introduced by Connes in his book [Con94]. Given a smooth
manifold M, the tangent groupoid TM is defined as a set to be the disjoint
union

TM = TM ⊔ (M × M × R×).

The topology on TM is specified by declaring that M× M×R× is an open
set, and a sequence (xn, yn, tn) ∈ M × M × R× with tn → 0 converges to a
tangent vector Xp ∈ Tp M if and only if

xn → p, yn → p,
xn − yn

tn
→ Xp,

where the last term is understood to take place in a local coordinate system.
This admits the structure of a Lie groupoid TM ⇒ M ×R. Alternatively, it
can be understood as a family of Lie groupoids TMt ⇒ M parameterized
t ∈ R, where

TMt =

{
Pair(M) t ̸= 0
TM t = 0.

Connes uses this construction together with K-theory for groupoid C∗-
algebras to give a geometric reformulation of the analytic index map
of Atiyah and Singer and a proof of the Atiyah-Singer index theorem
(see [Hig23] for a more thorough account of Connes’ argument).

1



1.1 background 2

1.1.2 The groupoid approach to pseudodifferential operators

There is a smooth action α : R× × TM → TM (the zoom action) defined on
the open set M × M × R× by

αλ(p, q, t) = (p, q, λ−1t)

and on TM by scalar multiplication. Debord and Skandalis [DS14] ob-
served that any order k differential operator D on M extends to a family
of differential operators Dt on TM which is homogeneous of degree k, as
follows. Suppose that in local coordinates xa on M one has

D = ∑
|α|≤k

aα(x)∂α.

Let D0 be the differential operator on TM which, for p ∈ M, acts on the
fibre Tp M as the constant coefficient differential operator

D0,p = ∑
|α|=k

aα(p)∂α.

Then Dt is given by

Dt =

{
tkD t ̸= 0
D0 t = 0,

where tkD acts on the first component of TMt = M × M × {t}. More
generally, if D is a pseudodifferential operator on M of order k with
Schwartz kernel d ∈ D′(M × M), then d extends to a distribution D on
TM such that α∗

λD − λkD is a smooth density. It was then shown by van
Erp and Yuncken that this property characterizes the pseudodifferential
operators on M ([VEY19, Theorem 2]).

An attractive feature of this result is that it allows for a coordinate
free definition of pseudodifferential operators. In particular, it provides
an avenue for defining pseudodifferential operators and their principal
symbols in situations where the Fourier transform is unavailable. The
setting in which van Erp and Yuncken apply this principle is that of
filtered (or Carnot) manifolds, first considered by Melin [Mel82]. A filtered
manifold is a manifold M together with a filtration

TM = F−r ⊇ F−r+1 ⊇ · · · ⊇ F−1 ⊇ 0

of TM by subbundles F−i such that

[Γ(F−i), Γ(F−j)] ⊆ Γ(F−i−j).
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The Lie bracket condition ensures that the graded vector bundle

tF M =
r⊕

i=0

F−i/F−i+1 → M

has the structure of a family of nilpotent Lie algebras. The corresponding
family TF M = exp(tF M) of simply connected nilpotent Lie groups fits
into a smooth family of Lie groupoids

TF M = TF M ⊔ (Pair(M)× R×)

generalizing Connes’ tangent groupoid ([CP15, VEY17, SH18]). The action
of R× on tF M defined by

αλ(ξ) = λiξ, for ξ ∈ F−i/F−i+1,

is by Lie algebroid automorphisms, hence integrates to an action on TFG
by Lie groupoid automorphisms, and this extends to a smooth action
on TF M by Lie groupoid automorphisms; this is the zoom action on
TF M. Using their characterization of pseudodifferential operators, van Erp
and Yuncken then define the F-pseudodifferential calculus for a filtered
manifold M by replacing TM with TF M.

1.1.3 Euler-like vector fields and deformation to the normal cone

Around the same time as van Erp and Yuncken’s work on pseudodifferen-
tial operators, Bischoff, Bursztyn, Lima, and Meinrenken ([BLM19, Mei21,
BBLM20]) had discovered that many linearization and normal form results
could be deduced from the fact that a specific class of vector fields, called
Euler-like vector fields, could be linearized.

Recall that the Euler-vector field E on a vector bundle V → M is the
vector field whose flow is given by scalar multiplication by et; if xa, pb are
local vector bundle coordinates for V then

E = ∑
b

pb
∂

∂pb
.

A vector field X ∈ X(M) is called Euler-like with respect to a submanifold
N ⊆ M if it vanishes along N and the induced vector field ν(X) on the
normal bundle ν(M, N) is equal to the Euler vector field; if xa, yb are local
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coordinates on M such that N is cut out by setting yb = 0, then X ∈ X(M)

is Euler-like with respect to N if and only if

X = ∑
a

fa(x, y)
∂

∂xa
+ ∑

b
(yb + gb(x, y))

∂

∂yb

where fa vanishes along N and gb vanishes to order 2 along N. The
linearization theorem of Bursztyn, Lima, and Meinrenken ([BLM19, Propo-
sition 2.7]) is that there is a 1-1 correspondence between (germs of) tubular
neighbourhoods of N in M and vector fields on M which are Euler-like
with respect to N. The connection between the linearization theorem of
Bursztyn, Lima, and Meinrenken and Connes’ tangent groupoid was es-
tablished by Haj and Higson ([SH18]), who use TM to give a beautiful
geometric explanation of this result.

1.1.4 Weightings

More generally, Haj and Higson also considered filtered manifolds. If M
is a filtered manifold, then they define (cf. [SH18, Definition 7.1]) filtered
submanifolds to be submanifolds N ⊆ M with the property that the inter-
sections TN ∩ (F−i)|N are vector subbundles of TM|N . Haj and Higson
construct a smooth deformation to the normal cone is this setting, and
explain how this construction generalizes the aforementioned F-tangent
groupoid ( [SH18, Section 9]). Motivated by this work, Loizides and Mein-
renken (cf. [LM23]) determined what additional structure was needed
along a submanifold to define these “exotic” deformation spaces. To this
end, they introduced the concept of a weighting (cf. [LM23, Definition 2.2]);
a similar definition was given by Melrose in [Mel96] under the name of a
“quasi-homogeneous structure".

A weighting of a manifold M along a closed, embedded submanifold N
in defined terms of a multiplicative filtration

C∞
M = C∞

M,(0) ⊇ C∞
M,(1) ⊇ C∞

M,(2) ⊇ · · · (1.1)

of the sheaf of smooth functions on M such that C∞
M,(1) = IN is the

vanishing ideal of N (see Definition 2.1). Given a weighting of M along N,
Loizides and Meinrenken define a fibre bundle

νW (M, N) → N,
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called the weighted normal bundle (Definition 2.39), generalizing the normal
bundle of M in N. Additionally, they explain how the weighted normal
bundle fits into a weighted deformation space

δW (M, N) = νW (M, N) ⊔ (M × R×)

(Definition 2.46). Loizides and Meinrenken explain in [LM22] how their
constructions generalize the work of Haj and Higson, by showing that if
M is a filtered manifold then M × M has a canonical weighting along the
diagonal and with respect to this one has δW (M × M, M) = TF M.

1.2 overview and summary of results

A key feature of Connes’ construction is that the tangent groupoid is, as
the name suggests, a groupoid. Therefore a motivating question for this
work is when a weighting of a Lie groupoid G along a subgroupoid H
is compatible with the Lie groupoid structure in such a way that the
groupoid structure of G × R× extends to δW (G, H).

This question turns out to be more subtle than one might expect. Recall
(or see Section 4.1) that the data of a Lie groupoid G ⇒ M includes the
submanifold M ⊆ G of units, two surjective submersions s, t : G → M,
a partially defined multiplication mult : G ×M G → G, and an inversion
map G → G. Therefore, the reasonable first attempt at a definition of a
“multiplicative weighting” would be to simply add the adjective “weighted”
in front of everything. However, this already begs the question of what
exactly one means by this: what is a weighted submanifold? What is a
weighted submersion? In order to ask that multiplication be a weighted
morphism, we need the fibre product G ×M G to be weighted - is this au-
tomatic? Once the notion of weighted submanifold is understood, another
reasonable definition of multiplicative weighting would be the requirement
that the graph of the groupoid multiplication be a weighted submanifold
of G3. Do these two approaches amount to the same thing?

1.2.1 Overview of Chapter 2

This question thus demands a careful investigation into the weighted
analogs of the basic notions of differential geometry, and to this we de-
vote Chapter 2. We begin in Section 2.1 by reviewing the basics of weight-
ings, as described in [LM23]. In particular, we recall how a weighting of
M along N defines a filtration

TM|N = (TM|N)(−r) ⊇ · · · ⊇ (TM|N)(−1) ⊇ (TM|N)(0) = TN (1.2)
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by subbundles. In Section 2.2, we define the notion of weighted subman-
ifolds, give several examples, and explain how weighted submanifolds
become weighted manifolds in their own right.

A weighted morphism is a smooth map between weighted manifolds
whose pull-back respects the filtrations of smooth functions (1.1). We
devote Section 2.3 to an in depth study of weighted morphisms, where
we define weighted embeddings (Definition 2.14) and weighted submer-
sions (Definition 2.20) using the filtration (1.2). The weighted analogues
of the classical normal form theorems for these maps are the content
of Theorem 2.16 and Theorem 2.22.

It is not always easy to check whether or not a map is a weighted
morphism, and so an important result in this chapter is the following.

Theorem (= Theorem 2.32). Suppose that (M, N) and (M′, N′) are weighted
pairs and F : (M, N) → (M′, N′) is a smooth map of pairs. Then F is a weighted
morphism if and only if

(a) the graph Γ(F) ⊆ M′ × M is a weighted submanifold and

(b) the tangent map TF : TM|N → TM′|N′ is filtration preserving.

This theorem combined with our work on weighted embeddings is a
valuable tool for our work on multiplicative weightings. We also include
another characterization of weighted morphisms, this time using weighted
paths (Definition 2.34), which is based on valuable discussions with Beiner,
Loizides, and Meinrenken.

Theorem (= Theorem 2.35). (a) We have f ∈ C∞(M)(i) if and only if

f (γ(t)) = O(ti)

for every weighted path γ : R → M.

(b) A smooth map F : (M, N) → (M′, N′) between weighted pairs is a
weighted morphism if and only if it takes weighted paths to weighted paths.

In Section 2.4 and Section 2.5, we review the aforementioned weighted
normal bundle and weighted deformation space and their functorial prop-
erties. In particular, we show that our definitions of weighted immersions
and weighted submersions are exactly the correct ones:

Theorem (= Theorem 2.49). Suppose that F : (M, N) → (M′, N′) is a
weighted morphism. Then

(a) F is a weighted immersion if and only if δW (F) : δW (M, N) → δW (M′, N′)

is an immersion.
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(b) F is a weighted submersion if and only if δW (F) : δW (M, N) → δW (M′, N′)

is a submersion.

This chapter ends with Section 2.6, which is a review of singular Lie fil-
trations; these constitute an important method of constructing weightings.

1.2.2 Overview of Chapter 3

With a more thorough understanding of the differential geometry of
weightings, we turn our attention to linear weightings for vector bundles.
In addition to Connes’ tangent groupoid and the F-tangent bundle of Choi-
Ponge and van Erp-Yuncken, another example of a weighted deformation
space appearing in the literature is the re-scaled spinor bundle of Higson
and Yi [HY19], which we now recall. Suppose that M is a Riemannian spin
manifold with spinor bundle S → M. In order to understand Getzler’s
approach ([BGV03, Get83]) to the index theorem from the perspective
Connes’ tangent groupoid, Higson and Yi introduce their rescaled spinor
bundle S, which is a vector bundle over the tangent groupoid TM =

TM ⊔ (M × M × R×). It can be understood as a family of vector bundles
parameterized by R, given by

St =

{
S ⊠ S∗ t ̸= 0
π∗(∧•TM) t = 0,

where π : TM → M is the vector bundle projection and S⊠ S∗ is the vector
bundle over M × M with fibre (S ⊠ S∗)(m1,m2) = Sm1 ⊗ S∗

m2
.

We unify the constructions of the rescaled spinor bundle S and the
weighted deformation space δW (M, N) by introducing linear weightings.
If V → M is a vector bundle over a weighted manifold, then a linear
weighting of V is defined in terms of a Z-graded filtration

· · · ⊇ ΓV,(i) ⊇ ΓV,(i+1) ⊇ · · · (1.3)

of the sheaf of sections of V which is compatible with the filtration of
C∞

M, see Definition 3.1. In particular, we allow the filtration (1.3) to be
non-trivial in negative degree, in contrast with (1.1); this was originally
suggested by Beiner [Bei22].

We give the basic definitions, examples, and constructions of linear
weightings in Section 3.1. A specific result we obtain (Theorem 3.8) says
that linear weightings may equivalently be defined in terms of a multi-
plicative filtration

· · · ⊇ C∞
pol,V,(i) ⊇ C∞

pol,V,(i+1) ⊇ · · · ,
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where C∞
pol,V denotes the sheaf of fiber-wise polynomial functions on V.

We use this result in Section 3.2 and Section 3.3 to extend the definition
of the weighted normal bundle and weighted deformation space to linear
weightings. This gives vector bundles

νW (V) → νW (M, N) and δW (V) → δW (M, N)

such that δW (V) can be understood as a family of vector bundles

δW (V) = νW (V) ⊔ (V × R×)

��
δW (M, N) = νW (M, N) ⊔ (M × R×);

see Theorem 3.21 and Theorem 3.34. We also give the following explicit de-
scription of the sections of νW (V) → νW (M, N) and δW (V) → δW (M, N).

Theorem (= Theorem 3.29 and Theorem 3.40). If V → M is a linearly
weighted vector bundle then

(a) Γ(νW (V)) = C∞(νW (M, N))⊗gr(C∞(M)) gr(Γ(V)) and

(b) Γ(δW (V)) = C∞(δW (M, N))⊗Rees(C∞(M)) Rees(Γ(V)).

In Section 3.4 how our construction captures the rescaled spinor bundle
of Higson and Yi ([HY19]), as well as a related construction by Ševera in
his letters to Weinstein ([Šev17]).

1.2.3 Overview of Chapter 4

In Chapter 4 we return to the issue of multiplicative weightings for Lie
groupoids. We begin by reviewing the basics of Lie groupoids, including
VB-groupoids. After this, equipped with correct definitions of weighted
submanifolds and weighted submersions, we give the following definition:

Definition (= Definition 4.8). A weighting of G along H ⊆ G is said to be
multiplicative if

(a) The units M ⊆ G are a weighted submanifold,

(b) the source map is a weighted submersion,

(c) multiplication m : G(2) → G is a weighted morphism, and

(d) inversion is a weighted morphism.
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We devote Section 4.2 to exploring this definition and examples thereof.
We prove, in particular, that it is not enough to simply ask that the graph
of multiplication be weighted.

Theorem (= Theorem 4.12). A weighting of G ⇒ M along H ⊆ G is multi-
plicative if and only if

(a) M is a weighted submanifold,

(b) the graph of multiplication is a weighted submanifold, and

(c) the filtration of TG|H is by subgroupoids

(TG|H)(i) ⇒ (TM|N)(i)

This characterization of multiplicative weightings is particularly useful
when applied to VB-groupoids, which we shall use for the problem of
differentiating multiplicative weightings (Theorem 5.20). We close this
chapter by showing that our definition of multiplicative weightings is
exactly the right one, by proving the following theorem:

Theorem (= Theorem 4.22). A weighting of a Lie groupoid G along H is
multiplicative if and only if the groupoid structure G × R× → M × R× extends
to

δW (G, H) ⇒ δW (M, N).

1.2.4 Overview of Chapter 5

Chapter 5 is devoted to the study of the infinitesimal analogue of mul-
tiplicative weightings, called infinitesimally multiplicative weightings. We
being with a review of the basics of Lie algebroids, including the Lie
functor from Lie groupoids to Lie algebroids, as well as the descriptions
of Lie algebroids as linear Poisson manifolds and 1-shifted vector bundles
equipped with a homological vector field.

In Section 5.2 we give the following definition:

Definition (= Definition 5.11). An infinitesimally multiplicative weighting of
A ⇒ M is a linear weighting of A with the additional properties that

(a) the anchor a : A → TM is a weighted morphism, and

(b) for all σ ∈ Γ(A)(i) and τ ∈ Γ(A)(j), we have

[σ, τ] ∈ Γ(A)(i+j).
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In Section 5.3 we prove the following alternative characterizations of
infinitesimally multiplicative weightings.

Theorem (= Theorem 5.15). Let A ⇒ M be a Lie algebroid endowed with a
linear weighting. Then the following are equivalent.

(a) A is a weighted Lie algebroid,

(b) the Poisson bivector field π ∈ X2(A∗) has filtration degree zero,

(c) the differential dA : Γ(∧A∗) → Γ(∧A∗) is filtration preserving.

We use this, as well as the theory of weighted VB-groupoids, in Sec-
tion 5.5 to prove that multiplicative weightings can be differentiated to
infinitesimally multiplicative weightings.

Theorem (= Theorem 5.20). Let G ⇒ M be a weighted Lie groupoid with Lie
algebroid Lie(G) ⇒ M. Then

Γ(Lie(G)|U)(i) = {σ ∈ Γ(Lie(G)|U) : σL ∈ XL(G|U)(i)} (1.4)

defines an infinitesimally multiplicative weighting of Lie(G) such that

Lie(νW (G, H)) = νW (Lie(G)) and Lie(δW (G, H)) = δW (Lie(G)).

In Section 5.6 we prove the following partial converse to the previous
theorem.

Theorem (= Theorem 5.23). Suppose that G ⇒ M is a Lie groupoid and

A = A−r ⊇ A−r+1 ⊇ · · · A−1 ⊇ 0 (1.5)

is a Lie filtration of A = Lie(G). Suppose that H ⊆ G is a wide, s-connected Lie
subgroupoid. If B = Lie(H) is such that

(a) [Γ(B), Γ(A−i)] ⊆ Γ(A−i) for all i

(b) the assignment m 7→ dim(Bm + A−i|m) is constant as a function on M

then (1.5) defines a multiplicative weighting of G along H such that the induced
weighting of A defined by Theorem 5.20 is given by the filtration

A = A−r + B ⊇ A−r+1 + B ⊇ · · · A−1 + B ⊇ B.

Using this, we show that a filtered Lie groupoid (cf. [VEY19, Definition
67]) is the same thing as a Lie groupoid with a multiplicative weighting
along its objects (Theorem 5.28).
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1.2.5 Overview of Chapter 6

In Chapter 6 we use a description of weightings as graded subbundles of
the higher jet bundles to prove another partial converse the differentiation
theorem, Theorem 5.20.

We begin by reviewing the r-th order tangent bundle Tr M → M, and
review Loizides and Meinrenken’s work ([LM23, Section 7] relating weight-
ings of M along N and graded subbundles Q ⊆ Tr M over N. We charac-
terize multiplicative and infinitesimally multiplicative weightings in terms
of the graded bundle Q.

Theorem (= Theorem 6.12 and Theorem 6.15). (a) Let G ⇒ M be weighted
along H ⊆ G. The weighting is multiplicative if and only if the graded
subbundle QG ⊆ TrG is a Lie subgroupoid QG ⇒ QM of TrG ⇒ Tr M.

(b) Let A ⇒ M be linearly weighted along B ⇒ N. The weighting is infinites-
imally multiplicative if and only if the corresponding graded subbundle
QA ⊆ Tr A is a Lie subalgebroid QA ⇒ QM of Tr A ⇒ Tr M.

Taking advantage of this characterization of multiplicative and infinites-
imally multiplicative weightings, we show that the spray exponential
([CMS20, Definition 3.20]) corresponding to any Lie algebroid spray of
filtration degree zero is a (partially defined) weighted morphism. The
main result of Chapter 6 is following theorem.

Theorem (= Theorem 6.23). Suppose that G ⇒ M is a s-connected Lie groupoid
and H ⇒ N is a s-connected Lie subgroupoid with Lie algebroids A = Lie(G)

and B = Lie(H), respectively, and suppose that A is infinitesimally multiplica-
tively weighted along B. Let QA ⇒ QM be the graded subbundle of Tr A ⇒ Tr M
corresponding to the weighting of A along B. If QA integrates to an s-connected
subgroupoid QG ⇒ QM of TrG ⇒ Tr M, then QG is a graded subbundle of
TrG ⇒ Tr M which defines a multiplicative weighting of G along H.

1.2.6 Overview of Chapter 7

We end this thesis with some possible future directions we would like
to pursue. First, we propose a definition of linear singular Lie filtrations
(Definition 7.1) and put forward the problem of determining when a linear
singular Lie filtration defines a linear weighting, extending the work of
Loizides and Meinrenken on singular Lie filtrations ([LM22]) to vector
bundles.

Next, we briefly review associative algebroids in the sense of Ševera
([Šev17, Letter 6]) and present the task of studying deformation spaces in
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this setting, with a possible application the work of van Erp and Yuncken
to pseudodifferential operators acting on sections of vector bundles.

Following this, we summarily explain k-multifiltered manifolds and
multiweightings. We ask for a connection between the two in a way that
generalizes Theorem 5.23. In particular, we make a conjecture that the right
object for the "tangent groupoid" for a 2-multifiltered manifold should be
a double groupoid of the form

δW (Pair2(M), ∆h, ∆v)

�� ��

//// TFh M

�� ��
TFv M //// M × R,

where Fv and Fh are Lie filtrations of M coming from the 2-multifiltration.
We conclude by asking what type of C∗-algebraic information could be
obtained from such an object.



2
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Weightings were first introduced by Melrose under the name of “quasi-
homogeneous structures" in order to do analysis on manifolds with corners
([Mel96]). Independently, they were later considered by Loizides and Mein-
renken ([LM23]) in order to understand the local information necessary to
construct the exotic deformation spaces appearing in the work of Haj and
Higson on linearization theorems for Euler-like vector fields with weights
([SH18]). Our exposition follows the work by Loizides and Meinrenken.

2.1 basics of weightings

Let M be a smooth manifold and N ⊆ M an embedded submanifold.
Associated to N is a filtration of the sheaf of smooth functions C∞

M by
ideals

C∞
M ⊇ IN ⊇ I2

N ⊇ · · ·

where
IN(U) = { f ∈ C∞(U) : f |U∩N = 0};

that is, Ik
N is the subsheaf of smooth functions on M vanishing to order k

along N. This filtration has the following special property: if x1, . . . , xm is
a coordinate system defined on U ⊆ M such that

N ∩ U = {x1 = · · · = xn = 0}

then Ik
N(U) is the ideal generated by the monomials

xs1
1 · · · xsn

n where ∑ si ≥ k. (2.1)

A weighting of a manifold M along a submanifold N is a modified notion
of order of vanishing along N. More specifically, a weighting of M along
N multiplicative filtration of the sheaf smooth functions on M satisfying a
local property generalizing (2.1). We recall their definition now.

13
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2.1.1 Definition of a Weighting

A weight vector w = (w1, . . . , wm) ∈ Zm
≥0 is an m-tuple of non-negative

integers. Any integer r ∈ Z satisfying r ≥ maxi{wi} will be called the order
of the weight vector. Given an open subset U ⊆ Rm, let C∞(U)(i) ⊆ C∞(U)

be the ideal generated by the monomials

xs1
1 · · · xsm

m where ∑
a

wasa ≥ i.

This defines a filtration

C∞(U) = C∞(U)(0) ⊇ C∞(U)(1) ⊇ C∞(U)(2) ⊇ · · · (2.2)

Definition 2.1 ([LM23, Definition 2.2]). A weighting of M is a multiplicative
filtration

C∞
M = C∞

M,(0) ⊇ C∞
M,(1) ⊇ C∞

M,(2) ⊇ · · · (2.3)

of the sheaf of smooth functions on M with the property that each point
p ∈ M has an open neighbourhood U ⊆ M with coordinates x1, . . . , xn

defined on U so that the filtration of C∞
M(U) = C∞(U) is given by (2.2).

The coordinates xa will be called weighted coordinates. Given a weighting
of M, let N ⊆ M denote the set of points for which the filtration (2.3) is
non-trivial. Then [LM23, Lemma 2.4] implies that N is closed submanifold
and C∞

M,(1) = IN . If N is given in advance, then we will say that M is
weighted along N and refer to (M, N) as a weighted manifold pair. We note
that, by definition, weighted coordinates serve as submanifold coordinates
for N.

If (M, N) and (M′, N′) are weighted pairs, a weighted morphism from
(M, N) to (M′, N′) is a smooth map F : M → M′ such that

F∗C∞
M′,(i) ⊆ C∞

M,(i)

for all i ≥ 0.

Remark 2.2. In this thesis we will work in the C∞-category unless explicitly
stated otherwise. Therefore we may take advantage of the existence of
partitions of unity to avoid the use of sheaves, working instead with the
filtration of global functions

C∞(M) = C∞(M)(0) ⊇ C∞(M)(1) ⊇ C∞(M)(2) ⊇ · · · .

Basic Examples

We now give several examples of weightings.
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Examples 2.3. (a) As already discussed, if N is a closed submanifold of
M then order of vanishing defines a weighting of M along N:

C∞
M ⊇ IN ⊇ I2

N ⊇ · · · .

We refer to this weighting as the trivial weighting of M along N. There
are two extreme cases we want to point out: N = M and N = ∅. In
these cases, the trivial weighting is given by

C∞(M) ⊇ 0 ⊇ 0 ⊇ · · · ,

and
C∞(M) ⊇ C∞(M) ⊇ C∞(M) ⊇ · · · ,

respectively.

(b) Define a weighting of R2 along the origin by declaring that x has
weight 1 and y has weight 3. The resulting filtration is given by

C∞(R2) ⊇ ⟨x, y⟩ ⊇ ⟨x2, y⟩ ⊇ ⟨x3, y⟩ ⊇ ⟨x4, xy, y2⟩ ⊇ · · · .

As simple as it is, this example will shed a considerable amount of
light on some of the concepts later in this chapter.

(c) [LM23, Examples 2.9 (c)] A nested sequence

M = Nr+1 ⊇ Nr ⊇ · · · ⊇ N1 ⊇ N0 = N

of embedded submanifolds Ni (with N closed) defines a weighting
of order r by

C∞
M,(i) = ∑

k≥0
∑

i1+···+ik=i
INi1

· · · INik
.

Weighted coordinates near point p ∈ N are given by coordinates xa

which are submanifold coordinates for each of the Ni.

(d) [LM23, Secton 2.2] If (M, N) and (M′, N′), then M × M′ is natu-
rally weighted along N × N′ by letting C∞(M × M′)(i) be the ideal
generated by

∑
i1+i2=i

C∞(M)(i1) ⊗ C∞(M)(i2).

If xa are local weighted coordinates for M and yb are local weighted
coordinates for M′, then xa, yb for a local weighted coordinate system
for M × M′.
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2.1.2 Filtration of the Tangent and Cotangent Bundles

It was observed ([LM23, Proposition 2.6]) the a weighting of M along N
determines a filtration

ν(M, N) = F−r ⊇ F−r+1 ⊇ · · · ⊇ F0 = 0 (2.4)

of the normal bundle of N in M by subbundles F−i → N. This filtration is
induced by a filtration of TM|N , which is in turn defined by “dualizing” a
filtration of T∗M|N . Through our study of weighted manifolds, we found
it to be fruitful to consider the filtrations of TM|N and T∗M|N in their own
right. We recall their constructions now.

Let
(T∗M|N)(i) = spanC∞(N){d f |N : f ∈ C∞(M)(i)}.

If xa is a weighted coordinate system defined on U ⊆ M, then {dxa|U∩N :
wa ≥ i} is a frame for T∗M|U∩N , hence each (T∗M|N)(i) is a subbundle of
T∗M|N . This defines the filtration

T∗M|N = (T∗M|N)(0) ⊇ (T∗M|N)(1) ⊇ · · · ⊇ (T∗M|N)(r) ⊇ 0. (2.5)

We remark, in particular, that (T∗M)(1) = ann(TN) and

rank(gr(T∗M|N)(i)) = #{a : wa = i},

where
gr(T∗M|N)(i) = (T∗M|N)(i)/(T∗M|N)(i+1).

Lemma 2.4. Let (M, N) be a weighted pair and p ∈ N. Let x1, . . . , xk be
functions of filtration degrees w1, . . . , wk defined near p. Suppose that for all i the
image of the set {dpxa : wa = i} in gr(T∗

p M)(i) is linearly independent. Then
the functions xa are contained in a system of weighted coordinates on an open
neighbourhood U of p.

Proof. Let ya be any system of weighted coordinates near p. The image
of {dpya : wa = i} in gr(T∗

p M)(i) is a basis for gr(T∗
p M)(i), hence by the

replacement theorem from linear algebra there is an index set Ji such that
the image of

{dpxa : wa = i} ∪ {dpya : wa = i, a ∈ Ji}

in gr(T∗
p M)(i) is a basis for gr(T∗

p M)(i). Letting J =
⋃

i Ji it follows that
{dpxa} ∪ {dpya : a ∈ J} is a basis for T∗

p M, hence

{xa} ∪ {yb : b ∈ J}
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is the required coordinate system.

The filtration of TM|N ,

TM|N = (TM|N)(−r) ⊇ · · · ⊇ (TM|N)(0) ⊇ 0, (2.6)

is the “dual” of (2.5), given by

(TM|N)(−i) = ann((T∗M|N)(i+1)).

In a local weighted coordinate system xa defined near p ∈ N we have

(Tp M)(−i) = span

{
∂

∂xa

∣∣∣∣
p

: wa ≤ i

}
;

note in particular that (TM|N)(0) = TN. As we will see in the forthcoming
sections, the tangent bundle for the weighted pair (M, N) should be TM
together with the filtration of TM|N .

Examples 2.5. (a) If M is given then trivial weighting along N, then the
filtration (2.6) is just

TM|N ⊇ TN.

(b) If R2 is weighted by declaring that wt(x) = 1 and wt(y) = 3 as
in Examples 2.3 (b), then the filtration of T0R2 = R2 is

R2 ⊇ {y = 0} ⊇ {y = 0} ⊇ {0}

(c) If M is given the weighting defined by a nested sequence of subman-
ifolds M = Nr+1 ⊇ Nr ⊇ · · · ⊇ N1 ⊇ N0 = N as in Examples 2.3 (c),
the filtration of TM|N is given by

TM|N ⊇ TNr|N ⊇ TNr−1|N ⊇ · · · ⊇ TN.

(d) If (Mi, Ni), i = 1, 2 are weighted pairs, then the filtration of T(M1 ×
M2) = TM1 × TM2 is given by

(T(M1 × M2)|N1×N2)(i) = (TM1|N1)(i) × (TM2|N2)(i)

2.2 weighted submanifolds

Recall that submanifolds of M are subsets which locally look like coordi-
nate subspaces. Modifying this definition by requiring one use weighted co-
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ordinates gives the definition of a submanifold in the category of weighted
manifolds.

Definition 2.6. Let (M, N) be a weighted pair. A submanifold R ⊆ M is
called a weighted submanifold if there exists a weighted atlas of submanifold
charts. Such a choice of coordinates will be called weighted submanifold
coordinates.

That is, at each point p ∈ N ∩ R there exist local coordinates which are
simultaneously submanifold coordinates for R and weighted coordinates
for N.

Examples 2.7. (a) Let (M, N) be a weighted pair. If R ∩ N = ∅ then R
is a weighted submanifold of (M, N). Any submanifold R ⊆ N is a
weighted submanifold.

(b) Any point p ∈ M is a weighted submanifold.

(c) Recall submanifolds N, R ⊆ M are said to intersect cleanly if N ∩ R
is a submanifold and T(N ∩ R) = TN ∩ TR. This is equivalent to M
admitting an atlas of submanifold charts for N and R simultaneously
(see [Hör07, Proposition C.3.1], for instance). Thus, if M is trivially
weighted along N, then the weighted submanifolds are exactly the
submanifolds of M intersecting N cleanly.

(d) If (M, N) is a weighted pair then any submanifold R which is trans-
verse to N is a weighted submanifold. Indeed, let p ∈ R ∩ N. Choos-
ing weighted coordinates xa near p, then N is, by definition, given
near p by {xa = 0 : wa ≥ 1}. If R is given near p by {yb = 0}, then
transversality ensures that each yb ∈ C∞(M)(0) and the image of the
set {dpyb} in gr(T∗

p M)(0) is independent. Thus,

{yb} ∪ {xa : wa ≥ 1}

can be completed to a weighted coordinate system near p by Lemma 2.4.

(e) If Rn is weighted by assigning weights to the standard coordinates
xa, then any linear subspace V is a weighted submanifold. To see this,
let ei be the standard basis for Rn. The weighting defines a filtration

Rn = W(−r) ⊇ W(−r+1) ⊇ · · · ⊇ W(0) ⊇ 0,

where
W(−i) = span{ea : wa ≤ i}.
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Letting V(−i) = V ∩ W(−i), we can inductively find subspaces

V ′
(−r) ⊇ V ′

(−r+1) ⊇ · · · ⊇ V ′
(−1) ⊇ V ′

(0) ⊇ 0

such that W(−i) = V(−i) ⊕ V ′
(−i). Let

B(i) = {v(i)a : a = 0, . . . , dim(V(−i)/V(−i+1))}

be a linearly independent set with the property that
⋃j

i=0 B(i) is a
basis for V(j); in particular, B =

⋃r
i=0 B(i) is a basis for V. Letting B′

be an analogously constructed basis for V ′, the linear coordinates for
Rn defined by B ∪ B′ define weighted submanifold coordinates for
V.

(f) Define a weighting of R2 along the origin by declaring that wt(x) = 1
and wt(y) = 3, as in Examples 2.3 (b). Then the weighted submani-
folds of (R2, {0}) are precisely those which:

a) do not pass through the origin

b) submanifolds S passing through the origin which are not tan-
gent to the x-axis.

c) submanifolds R passing through the origin with at least third
order tangency with the x-axis. In particular, the curve y = x2

is not a weighted submanifold.

The first case is obvious. For the second case, by the implicit function
theorem we can locally describe S as x = f (y) for some function f
with f (0) = 0. In this case, the weighted submanifold coordinates
can be given by x̃ = x − f (y) and ỹ = y. For the third case, the
submanifold R is given near the origin by y = f (x) with f (0) = 0
and f ′(x) = 0 (i.e. tangent to the x-axis). Suppose that x̃ and ỹ are
weighted coordinates so that the curve y = f (x) has the standard
form ỹ = 0. Then

ỹ = a(y − f (x)) + O f (4)

where O f (4) are terms of filtration order at least 4. However, this has
filtration order 3 if and only if only if f = O(x3).

Remarks 2.8. (a) Note that Examples 2.7 shows that for a weighted pair
(M, N), submanifolds R ⊆ M containing N need not be weighted
submanifolds.
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(b) A weighted submanifold R of a weighted pair (M, N) is not simply
a submanifold with a weighting along R ∩ N such that the inclusion
R ↪→ M is a weighted morphism.

For example, consider the weighting of R2 defined by declaring x to
have weight 1 and y to have weight 3. If we give the curve y = x2

the doubled trivial weighting along {0} then the inclusion into R2 is
a weighted morphism, but y = x2 is not a weighted submanifold.

Proposition 2.9. If R is a weighted submanifold of the weighted pair (M, N),
then R inherits a natural weighting along R ∩ N. With respect to this weighting,
the inclusion R ↪→ M is a weighted morphism, and we have moreover that

(TR|R∩N)(i) = TR ∩ (TM|N)(i). (2.7)

Proof. Recall that restriction to R determines an isomorphism

C∞(M)/IR ∼= C∞(R).

Using this, we define

C∞(R)(i) = C∞(M)(i)/(C
∞(M)(i) ∩ IN);

the restriction of weighted submanifold coordinates to R yields weighted
coordinates for R, hence this defines a weighting. Since the inclusion
R ↪→ M induces the restriction map C∞(M) → C∞(R), it is clear that it is
a weighted morphism.

For the statement about filtration of tangent spaces, let p ∈ N ∩ R and
let xa, yb be a weighted submanifold coordinate system defined on U ⊆ M
containing p so that R ∩ U = {yb = 0}. As a subbundle of T∗

p M,

ann((TpR)(i)) = span{dpxa : wa ≥ i}+ span{dpyb}.

On the other hand, we have that

ann(TpR) = span{dpya} and

T∗
p M(i) = span{dpxa, dpyb : wa ≥ i, wb ≥ i},

hence ann((TR|R∩N)(i)) = ann(TR) + (T∗M|N)(i). Therefore,

(TR|R∩N)(i) = ann(ann((TR|R∩N)(−i+1))

= ann(ann(TR) + (T∗M|N)(−i+1)) = TR ∩ (TM|N)(i).

Proposition 2.10. Let (M, N) be a weighted pair. Given p ∈ M, any subspace
of Tp M is realized as the tangent space to a weighted submanifold S.
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Proof. A choice of weighted coordinates xa on U ⊂ M allows us to identify
U with TpU = Rn as weighted manifolds, where Rn is weighted as
in Examples 2.7 (e), from which the result follows.

We close our discussion with a weighted version of [KMS13, Theorem
1.13].

Proposition 2.11. Let (M, N) be a weighted pair, and suppose that p : M → M
is a weighted morphism satisfying p ◦ p = p. Then R = p(M) is a weighted
submanifold.

Before proceeding to the proof, we need a lemma from linear algebra.

Lemma 2.12. Let V be a finite dimensional vector space and P : V → V be
a projection. If {v1, . . . , vn} is any basis for V, then there exists an index set
I ⊆ {1, 2, . . . , n} with |I| = dim(Im(P)) such that

{Pva : a ∈ I} ∪ {(1 − P)vb : b ∈ I c}

is a basis for V.

Proof. For the existence of I , by an inductive argument it is enough to show
that {Pv1, v2, . . . vn} or {(1 − P)v1, v2, . . . , vn} is a basis for V. If Pv1 = 0
or (1 − P)v1 = 0 then there is nothing to prove, so assume that Pv1 ̸= 0
and (1 − P)v1 ̸= 0. If neither of these sets are linearly independent then
Pv1 ∈ span{v2, . . . vn} and (1 − P)v1 ∈ span{v2, . . . vn}. However, this
implies that v1 ∈ span{v2, . . . vn}, which is a contradiction.

To see that |I| = dim(Im(P)), note that we obviously have |I| ≤
dim(Im(P)). On the other hand, since P is a projection,

n − |I| = |I c| ≤ dim(Im(1 − P)) = n − dim(Im(P))

hence dim(Im(P)) ≤ |I|.

Proof of Proposition 2.11. By [KMS13, Theorem 1.13], p has constant rank
near R = p(M). Let q ∈ R and let xa be a weighted coordinate sys-
tem defined near q. Since the cotangent map T∗

q p : T∗
q M → T∗

q M is a
projection, Lemma 2.12 implies that there is an index set I with |I| =
rankq(p) = dim(R) such that

{p∗xa : a ∈ I} ∪ {xb − p∗xb : b ∈ I c} (2.8)

is a coordinate system. In fact, since p is a weighted morphism, it is a
weighted coordinate system near q. Note as well that for any q′ ∈ R
sufficiently close to q we have that

(xb − p∗xb)(q′) = xb(q′)− xb(p(q′)) = xb(q′)− xb(q′) = 0;
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since |I c| = codim(R) it follows that (2.8) is a weighted submanifold
coordinate system for R.

2.3 weighted morphisms

We now turn our attention to weighted morphisms. In this section we
will establish the weighted analogues of embeddings, submersions, and
transversality. In practice, it can be hard to check whether a given map
is a weighted morphism or not, so we also give two characterizations
of weighted morphisms - one in terms of its graph and one in terms
of “weighted paths”. Let us begin be giving some examples of weighted
morphisms.

Examples 2.13. (a) Let (M, N) and (M′, N′) be weighted pairs, and let
F : M → N be a smooth map. If M and M′ are both trivially
weighted, then F is a weighted morphism if and only if F(N) ⊆ N′.
In general, if F is weighted then F(N) ⊆ N′.

(b) With the set up as above, if N = ∅ or N′ = M′, then F is a weighted
morphism.

(c) Suppose that (M, N) and (M′, N′) are weighted manifolds. Then
both of the projections M× M′ → M and M× M′ → M are weighted
morphisms. If p ∈ M′, then the inclusion M → M × M′, m 7→ (m, p)
is a weighted morphism if and only if p ∈ N′. On the other hand,
the inclusion M × {p} ↪→ M × M′ is a weighted morphism for any
p ∈ M′ since M × {p} is a weighted submanifold of M × M′; in the
case when p /∈ N′, M × {p} is weighted along the empty set, hence
is not isomorphic to M as a weighted manifold.

2.3.1 Weighted Embeddings

We now discuss weighted embeddings. Recall that an immersion is a smooth
map whose tangent map is an isomorphism onto its image. Taking into
account the philosophy that the tangent bundle of a weighted pair (M, N)

is TM together with the filtration (2.6) of TM|N , we arrive at the following
definition.

Definition 2.14. A weighted morphism f : (M, N) → (M′, N′) is called a
weighted immersion if

(a) f : M → M′ is an immersion,
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(b) T f : TM → TM′ restricts to injections (TM|N)(i) → (TM′|N′)(i) with
image

T f (TM) ∩ (TM′|N′)(i).

A weighted embedding is defined analogously.

In particular, the intersections T f (TM) ∩ (TM′|N′)(i) are subbundles of
TM′|N′ and

T f : TM → T f (TM) ∩ (TM′|N′)(i)

is a vector bundle isomorphism.

Examples 2.15. (a) If R is a weighted submanifold of the weighted pair
(M, N), then the inclusion ι : (R, R ∩ N) ↪→ (M, N) is a weighted
embedding by Proposition 2.9.

(b) If (M, N) and (M′, N′) are both given the trivial weighting, then a
weighted morphism f : (M, N) → (M′, N′) is a weighted embedding
if and only if f is an embedding and f (M) intersects N′ cleanly, with
intersection f (N). Indeed, for i = 1 the bundles in question are the
zero bundles, so we have a diffeomorphism

N ∼= f (M) ∩ N′,

which, in particular, says that f (M)∩ N′ is a manifold with T( f (M)∩
N′) = T f (TN). For i = 0 this says that

TN ∼= T f (TM) ∩ TN′,

hence f (M) intersects N′ cleanly.

(c) Let M = R with wt(x) = 2 and M′ = R with wt(x) = 1. Then
the identity map M → M′ is a weighted morphism, but it is not a
weighted embedding, since (T0M)(−1) = 0 but (T0M′)(−1) = R.

Theorem 2.16 (Normal Form for Weighted Immersions). Let i : M → M′

be a smooth map between weighted manifolds of dimensions n ≤ n′. Then i
is a weighted immersion if and only if for all p ∈ M, with image p0 = i(p),
there exist weighted coordinates x1, . . . , xn near p0 such that i∗x1, . . . , i∗xn are
weighted coordinates near p and i∗xn+1 = · · · = i∗xn′ = 0.

We refer to the coordinates x1, . . . , xn′ in Theorem 2.16 as immersion
coordinates for the map i.

Proof. The direction (⇐) follows by direct examination in weighted immer-
sion coordinates. For the converse, suppose that ι is a weighted immersion.
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To build weighted submanifold coordinates near p0 ∈ f (M) ∩ N′, choose
a system of weighted coordinates x1, . . . , xn′ . We may choose a subset
of coordinates, re-indexed as x1, . . . , xn, such that the image of the set
{dp0 xa : wa = i} in gr(T∗

p0
M′)(i) pulls back to a basis of gr(T∗

p M)(i). In
particular, ya = ι∗xa, for a = 1, . . . , n, are weighted coordinates on M. If
the pull-backs of remaining coordinates vanish, we are done. Otherwise,
consider a coordinate xa with a > n and i = wa as large as possible that
such that ι∗xa ̸= 0. Then ι∗xa has filtration degree i, so it can be written as
ι∗xa = h(y1, . . . , yn), where h is a function with h(tw1 c1, . . . , twn cn) = O(ti)

for all c ∈ Rn. By replacing xa with xa − h(x1, . . . , xn), we can arrange
that ι∗xa = 0. Proceeding in this way, we obtain the required weighted
coordinate system.

Applying this to the case that our weighted immersion is a weighted
embedding yields the following.

Corollary 2.17. If i : (M, N) → (M′, N′) is a weighted embedding, then i(M)

is a weighted submanifold of (M′, N′) such that i(M) ∩ N′ = i(N) and (M, N)

is isomorphic to (i(M), i(N)) as weighted manifolds.

Applying this to the inclusion of a submanifold R ⊆ M yields the
following characterization of weighted submanifolds, which generalizes
clean intersection.

Corollary 2.18. If (M, N) is a weighted pair, then a submanifold R ⊆ M is a
weighted submanifold if and only if

(a) R is weighted along R ∩ N,

(b) the inclusion R ↪→ M is a weighted morphism, and

(c) (TR|R∩N)(i) = TR ∩ (TM|N)(i).

Remark 2.19. Note that this says that we could have taken the conclusion
of Proposition 2.9 as a definition of weighted submanifolds. In particular,
we could use this to give a define immersed weighted submanifolds.

2.3.2 Weighted Submersions

We now discuss weighted submersions. Since a submersion is a smooth map
whose tangent map is fibrewise surjective, the discussion at the beginning
of the last section leads us to the following definition.
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Definition 2.20. Let (M, N) and (M′, N′) be weighted pairs. A submersion
π : M → M′ is called a weighted submersion if it is a weighted morphism
such that for each i the map

(TM|N)(i) → (TM′|N′)(i)

is fibrewise surjective.

Examples 2.21. (a) If (M1, N1) and (M2, N2) are weighted pairs, then
both of the projections πi : M1 × M2 → Mi are weighted submer-
sions.

(b) If M = R2 is weighted by wt(x) = 1 and wt(y) = 3, and M′ = R2 is
given the trivial weighting along the curve y = x2, then the identity
map M → M′ is a weighted morphism and a submersion, but it is not
a weighted submersion. Indeed, we have that (T0M)(−i) = span{∂x},
but (T0M′)(−1) = span{∂x, ∂y}

(c) If (M, N) and (M′, N′) are both trivially weighted, then the weighted
submersions are the submersions π : M → M′ which restrict to
submersions π|N : N → N′.

Theorem 2.22 (Normal Form for Weighted Submersions). Let π : M → M′

be a smooth map between weighted manifolds of dimensions n ≥ n′. Then π is a
weighted submersion if and only if for all p ∈ M, with image p0 = π(p), there
are weighted coordinates x1, . . . , xn around p such that x1, . . . , xn′ are π-basic
and descend to weighted coordinates near p0.

We refer to the coordinates x1, . . . , xn in Theorem 2.22 as submersion
coordinates for the map π.

Proof. The direction (⇐) follows by direct examination in weighted sub-
mersion coordinates. For the opposite direction, note that the condition
implies that for p ∈ N, with image p0 = π(p), the map

gr(T∗
p0

M′)(i) → gr(T∗
p M)(i)

is injective for each i. Let {yb} be coordinates on an open neighborhood
U0 of p0. Then the set {dp0 yb : wt(yb) = i} defines a basis of gr(T∗

p0
M′)(i).

Their pullbacks under π are hence linearly independent in gr(T∗
p M)(i).

By Lemma 2.4, the functions π∗yb are part of a system of weighted coordi-
nates near p.

Put differently, this result says that given a weighted submersion we can
always find weighted coordinates which are simultaneously submersion
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coordinates. In light of this, we have the following weighted versions of
the standard results from differential geometry.

Corollary 2.23. Let (M, N) and (M′, N′) be weighted pairs and π : (M, N) →
(M′, N′) a weighted submersion. Then the pre-image of any weighted submanifold
is a weighted submanifold. In particular, the fibres of a weighted submersion are
weighted submanifolds.

2.3.3 Weighted Transversality

We may also consider the weighted analogue of transversality. Let (M, N),
(M′, N′), and (M′′, N′′) be weighted pairs and f : M → M′′, g : M′ → M′′

be weighted morphisms.

Definition 2.24. We say that f and g are weighted transverse if they are
transverse and

Tp f (gr(Tp M)(i)) + Tqg(gr(Tq M′)(i)) = gr(Tf (p)M
′′)(i)

for all (p, q) ∈ N × N′ such that f (p) = g(q).

Example 2.25. A weighted submersion is weighted transverse to any
weighted morphism.

Remark 2.26. If f and g are weighted transverse, then their restrictions to
N and N′ remain transverse. Hence N ×N′′ N′ is a smooth manifold.

Theorem 2.27. If f : M0 → M and g : M1 → M are weighted transverse, then
their fibre product

M1 ×M M0 = {(q, p) ∈ M1 × M0 : f (p) = g(q)}

is a weighted submanifold of M1 × M0, with induced weighted along N1 ×N N0.
Moreover, the projections

pri : M1 ×M M0 → Mi, i = 0, 1,

are both weighted morphisms.

Proof. Since f and g are transverse, it follows that M1 ×M M0 is a sub-
manifold of M1 × M0. Therefore, we must produce weighted submanifold
coordinates near any (p, q) ∈ (M1 ×M M0) ∩ (N1 × N0).
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Let U ⊆ M be an open neighbourhood of the point r = f (p) = g(q) ∈ M
and let x1, . . . , xm be a weighted coordinate system defined on U. Consider
the functions

ya : M1 × M0 → R

(q, p) 7→ ( f ∗xa)(p)− (g∗xa)(q).

Since f and g are weighted morphisms, and since xa has weight wa, it
follows that ya ∈ C∞(M1 × M0)(wa). Moreover, since

dya = f ∗dxa − g∗dxa

the weighted transversality assumption ensures that the image of the
set {d(q,p)ya : wa = i} in gr(T∗

(q,p)(M1 × M0))(i) is linearly independent.
Thus, Lemma 2.4 ensures that ya can be extended to a weighted coordinate
system. Since M1 ×M M1 is locally cut out by the ya, it follows that the
completed coordinate system are the required weighted submanifold
coordinates. Since the projections factor as the composition

M1 ×M M0 ↪→ M1 × M0 → Mi,

it is clear that they are weighted morphisms.

Corollary 2.28. If two weighted submanifolds intersect in a weighted transverse
manner (i.e. the inclusions are weighted transverse), then their intersection is
again a weighted submanifold.

Remark 2.29. In fact, if the intersection of two weighted submanifolds R
and R′ is weighted transverse, then by modifying the standard argument
appropriately one finds that any point p ∈ R ∩ R′ is contained in an open
neighbourhood U ⊆ M on which there is a local weighted coordinate
system xa such that

R ∩ U = {x1 = · · · = xr = 0} and R′ ∩ U = {xr+1 = · · · = xr′ = 0}.

2.3.4 Characterizations of Weighted Morphisms

It can be difficult in practice to verify if a given map between weighted
manifolds is a weighted morphism. It is therefore desirable to have alter-
native characterizations that one can appeal to in specific examples.

Let (M, N) and (M′, N′) be weighted manifolds. One might guess that
weighted morphisms are the smooth maps of pairs f : (M, N) → (M′, N′)

for which the tangent map T f : TM|N → TM′|N′ is filtration preserving.
However, this is not sufficient, as the following example shows.
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Example 2.30. Consider R with the trivial weighting along the origin, and
R2 weighted along the origin by declaring that wt(x) = 1 and wt(y) = 3.
Consider the function

f : R → R2

x 7→ (x, x2);

this is not a weighted morphism because y has weight 3, but f ∗y = x2 has
weight 2. However, T f0 : T0R → T0R2 is a filtration preserving map.

For another possible approach, recall that morphisms of manifolds with
some additional structure can be characterized in terms of their graphs.
For instance,

(a) linear maps between vector spaces are exactly the maps φ : V → W
whose graph

Γ(φ) = {(φ(v), v) : v ∈ V} ⊆ W × V

is a linear subspace of W × V;

(b) Lie algebroid morphisms are the vector bundle morphisms φ : A →
B between Lie algebroids whose graphs are Lie subalgebroids of
B × A;

(c) Lie groupoid morphisms are exactly the smooth maps φ : G → H
between Lie groupoids whose graphs are Lie subgroupoids of H × G.

In light of this, one might guess that weighted morphisms are exactly the
smooth maps whose graph is a weighted submanifold of the product. It
turns out that this is also not sufficient, as the following example shows.

Example 2.31. Let (M, N) = (R2, {0}) be the trivially weighted pair, and
let (M′, N′) = (R2, {0}) be weighting pair given by assigning x weight
1 and y weight 3. Then the identity map id : (M, N) → (M′, N′) is
not a weighted morphism, but its graph is a weighted submanifold of
(M′ × M, N′ × N). Indeed, this follows because id : (M′, N′) → (M, N) is
a weighted morphism.

The following theorem says that these two conditions together are
enough to characterize weighted morphisms.

Theorem 2.32. Suppose that (M, N) and (M′, N′) are weighted pairs and
f : (M, N) → (M′, N′) is a smooth map of pairs. Then f is a weighted morphism
if and only if

(a) the graph Γ( f ) ⊆ M′ × M is a weighted submanifold and
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(b) the tangent map T f : TM|N → TM′|N′ is filtration preserving.

Proof. First, suppose that f : (M, N) → (M′, N′) is a weighted morphism.
Let xa be weighted coordinates near p ∈ N and yb be weighted coordinates
near q = f (p) ∈ N′. Then weighted submanifold coordinates for Γ( f ) near
(q, p) are given by x̃a = xa and ỹb = yb − f ∗yb. To see that T f |N is filtration
preserving, let p ∈ N. Since ∂xa( f ∗yb) ∈ C∞(M)(w′

b−wa) we have that

w′
b > wa =⇒ ∂( f ∗yb)

∂xa

∣∣∣∣
p
= 0.

Therefore,

Tp f

(
∂

∂xa

∣∣∣∣
p

)
= ∑

b : w′
b≤wa

∂(y∗b f )
∂xa

∣∣∣∣
p

∂

∂yb

∣∣∣∣
f (p)

∈ (Tf (p)M
′)(−wa).

For the converse, suppose that (a) and (b) are satisfied. The map f
factors as a composition of the diffeomorphism

M → Γ( f ), x 7→ ( f (x), x), (2.9)

the inclusion Γ( f ) → M′ × M, and the projection M′ × M → M′. Since the
composition of weighted morphisms is a weighted morphism, it suffices to
show that the map (2.9) is a weighted diffeomorphism (i.e. a weighted mor-
phism with weighted inverse). The inverse map Γ( f ) → M is a weighted
morphism, since it is the restriction of the projection M′ × M → M to a
weighted submanifold. By Theorem 2.22 it is enough to show that the map

TΓ( f )|Γ( f )∩N → TM|N

is an isomorphism of filtered vector bundles. By Proposition 2.9, the
filtration on TΓ( f ) = TΓ( f ) ∩ (N′ × N) is defined by the intersections

(TΓ( f )|Γ( f )∩N)|(i) = TΓ( f ) ∩ ((TM′|N′)(i) × (TM|N)(i)).

This intersection consists of all (T f (v), v) such that v ∈ (TM|N)(i) and
T f (v) ∈ (TM′

N′)(i), hence it maps isomorphically onto (TM|N)(i) if and
only if T f is filtration preserving.

Example 2.33. For any weighted manifold M, the diagonal ∆M ⊆ M × M
is a weighted submanifold.

Another characterization of weighted morphisms is given by the notion
of a weighted path. Let (M, N) be a weighted pair.
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Definition 2.34. A path γ : R → M is called a weighted path if it is a
weighted morphism for the trivial weighting of R along the origin.

If xa is a system of weighted coordinates, with weight wa, then γ is of
the form

γ(t) = (x1(t), . . . , xn(t)) = (O(tw1), . . . , O(twn)).

We can completely recover the weighting of M by knowledge of the
weighted paths.

Theorem 2.35. (a) We have f ∈ C∞(M)(i) if and only if

f (γ(t)) = O(ti)

for every weighted path γ : R → M.

(b) A smooth map ϕ : (M, N) → (M′, N′) between weighted pairs is a
weighted morphism if and only if it takes weighted paths to weighted paths.

Proof. (a) We have to show the "only if" direction. Suppose that f ∈
C∞(M) has the property that f (γ(t)) = O(ti) for every weighted
path γ : R → M has filtration degree i.

Let p ∈ N and let xa be weighted coordinates defined on U ⊆ M.
Consider the Taylor expansion of f with respect to these coordinates:

f (x) = ∑
I·w<i

cI xI + g(x) =
i−1

∑
j=1

pj(x) + g(x),

where I = (i1, . . . , in) is a multi-index, g ∈ C∞(M)(i), and pj are
weighted homogeneous of degree j. Let λ = (λ1, . . . , λn) ∈ Rn and
consider the weighted path γ(t) = (λ1tw1 , . . . , λntwn). Using that the
pj are weighted homogeneous of degree j, we have, by assumption,
that

f (γ(t)) =
i−1

∑
j=0

pj(γ(t)) + g(γ(t)) =
i−1

∑
j=0

tj pj(λ) + g(γ(t)) = O(ti).

Since g(γ(t)) = O(ti), this implies that tj pj(λ) = O(ti), whence
pj(λ) = 0 for all λ ∈ Rn. Thus, f = g ∈ C∞(M)(i).

(b) Since the composition of weighted morphisms is weighted, a weighted
morphism takes weighted paths to weighted paths. For the con-
verse, suppose that ϕ takes weighted paths to weighted paths. Let
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f ∈ C∞(M′)(i) and let γ : R → M be a weighted path. Then
ϕ ◦ γ : R → M′ is a weighted path and

(ϕ∗ f )(γ(t)) = f (ϕ(γ(t))) = O(ti),

hence ϕ∗ f ∈ C∞(M)(i) by part (a).

2.4 the weighted normal bundle

Let us motivate this section by the following observation, which we learned
from Haj and Higson ([SH18]). Suppose that N ⊆ M is a closed submani-
fold, and let

ν(M, N) = TM|N/TN

be the normal bundle of N in M. Any f ∈ C∞(M) defines a fibrewise con-
stant function f [0] ∈ C∞

[0](ν(M, N)) = C∞(N) by restriction to N followed

by pull back, and the assignment f 7→ f [0] defines an isomorphism

C∞(M)/IN → C∞
[0](ν(M, N)).

If f ∈ IN , the differential d f vanishes along TN, hence defines a fibrewise
linear map

f [1] ∈ C∞
[1](ν(M, N)) = Γ(ν(M, N)∗), Xp 7→ dp f (Xp),

and the assignment f 7→ f [1] defines an isomorphism

IN/I2
N → C∞

[1](ν(M, N)).

This extends uniquely to an isomorphism of graded algebras

∞⊕
k=0

Ik
N/Ik+1

N → C∞
pol(ν(M, N)),

where C∞
pol(ν(M, N)) denotes the graded algebra of fibrewise polynomial

functions on ν(M, N) (see (2.11)). It can be shown (see, for instance, [GR09])
that the map

ν(M, N) → Homalg(C∞
pol(ν(M, N)), R), Xp 7→ evXp

is a bijection of sets. Even more, one can naturally define a vector bundle
structure on Homalg(C∞

pol(ν(M, N)), R) in such a way that the evaluation
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map is an isomorphism of vector bundles. From this observation, we
deduce that we can recover the normal bundle of N in M from the filtration

C∞(M) ⊇ IN ⊇ I2
N ⊇ · · · .

Loizides and Meinrenken repeated this construction with general weight-
ings in [LM23], calling the resulting object the weighted normal bundle
νW (M, N) → N, which is the topic of this section.

2.4.1 Graded Bundles

In contrast to the normal bundle, the weighted normal bundle is not
naturally a vector bundle; instead it is a graded bundle, in the sense of
Grabowski and Rotkiewicz, [GR12].

Definition 2.36 ([GR12]). A graded bundle is a smooth manifold E with a
smooth monoid action of (R, ·),

κ : R × E → E, (t, x) 7→ κt(x).

A morphism of graded bundles if a smooth map between graded bundles
which intertwines the (R, ·)-action.

Note in particular that κ0 ◦ κ0 = κ0, hence N = κ0(E) is a submanifold of
E; in fact, Grabowski and Rotkiewicz showed in [GR12] that E is a locally
trivial fibre bundle over N.

Examples 2.37. (a) A vector bundle V → M is a graded bundle, with the
monoid action of R given by scalar multiplication. In fact, Grabowski
and Rotkiewicz showed in [GR09] that vector bundles are precisely
the graded bundle for which the map

V → TE, v 7→ d
dt

∣∣∣∣
t=0

κt(v) (2.10)

is injective.

(b) A negatively graded vector bundle E = E−r ⊕ E−r+1 ⊕ · · · ⊕ E−1 →
N is a graded bundle, where R acts on the factor E−i as scalar
multiplication by ti. If E → N is a graded bundle, then ν(E, N) is a
graded vector bundle and there is a non-canonical isomorphism

E ∼= ν(E, N)

as graded bundles (see [GR12]). Thus, any graded bundle is non-
canonically the total space of a vector bundle.
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(c) A graded Lie groupoid is a Lie groupoid G ⇒ M with a monoid
action of (R, ·) by Lie groupoid morphisms. In the case that the
scalar multiplication satisfies (2.10), then this recovers the notion of a
VB-groupoid. On the other hand, if G ⇒ M is a vector bundle, then
this recovers the notion of a graded vector bundle.

Given a graded bundle π : E → N, let C∞
[n](E) = { f ∈ C∞(E) : κ∗t f =

tn f } and let
C∞

pol(E) =
⊕
n≥0

C∞
[n](E) (2.11)

be the space of polynomial functions on E; note that C∞
[0](E) = C∞(N).

Let k0 = dim(N) and ki = rank(ν(E, N)−i). Given an open set U ⊆ N,
coordinate systems xa defined on π−1(U) ⊆ E are called graded bundle
coordinates if xa ∈ C∞

[i](E) for ki−1 < a ≤ ki. A graded subbundle is a
submanifold F ⊆ E which is closed under the monoid action of R; graded
subbundles are always locally cut out by graded coordinates.

Example 2.38. If E → N is a vector bundle then C∞
[1](E) ∼= Γ(E∗). More

generally, we have
C∞

pol(E) ∼= Sym(Γ(V∗))

as graded algebras. Graded coordinate systems for E are vector bundle
coordinates systems, consisting of coordinates for the base and linear
coordinates on the fibres.

As shown in [GJR17], graded bundles are completely determined by
their polynomial functions, in the sense that

E = Homalg(C∞
pol(E), R). (2.12)

2.4.2 Definition of the weighted normal bundle

In light of (2.12), one could define a graded bundle by declaring what its
polynomial functions are (cf. [SH18]). Motivated by the observation that
C∞

pol(ν(M, N)) =
⊕

k≥0 Ik
N/Ik+1

N , let (M, N) be a weighted pair and let
gr(C∞(M)) be the graded algebra with graded components

gr(C∞(M))(i) = C∞(M)(i)/C∞(M)(i+1).

Definition 2.39 ([LM23]). The weighted normal bundle of the weighted pair
(M, N) is the set

νW (M, N) = Homalg(gr(C∞(M)), R).
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Given f ∈ C∞(M)(i), let f [i] denote its class in gr(C∞(M))(i). Evaluation
by f [i] determines a map, which we also denote by f [i],

f [i] : νW (M, N) → R φ 7→ φ( f [i])

which we refer to as the i-th homogeneous approximation of f . The C∞-
structure of νW (M, N) is defined by declaring that f [i] is smooth for any
f ∈ C∞(M)(i).

Theorem 2.40 ([LM23, Theorem 4.2]). (a) The weighted normal bundle νW (M, N)

has a unique structure as a graded bundle over N, of dimension equal to
that of M, in such a way that

C∞
pol(νW (M, N)) = gr(C∞(M))

as graded algebras.

(b) Given weighted coordinates x1, . . . , xn on U ⊆ M, the homogeneous ap-
proximations x[wa]

a for a = 1, . . . , n serve as graded bundle coordinates
on νW (M, N)|U∩N = νW (U, U ∩ N). Moreover, C∞

pol(νW (U, U ∩ N)) is

generated as an algebra over C∞(U ∩ N) by x[wa]
a with wa ≥ 1.

This construction is functorial for weighted morphisms. That is, any
weighted morphism φ : (M, N) → (M′, N′) induces a morphism of graded
bundles

νW (φ) : νW (M, N) → νW (M′, N′).

Note as well that for any f ∈ C∞(M′)(i) we have

νW (φ)∗ f [i] = (φ∗ f )[i].

Examples 2.41. (a) If M is trivially weighted along N then νW (M, N) =

ν(M, N), as explained at the beginning of this section. In particular,
νW (M, M) = M and νW (M, ∅) = ∅

(b) If (M, N) and (M′, N′) are weighted pairs then the canonical map

νW (M × M′, N × N′) → νW (M, N)× νW (M′, N′)

is an isomorphism of graded bundles, as can be seen by considering
local graded bundle coordinates. Moreover if φ : (M, N) → (R, Q)

and ψ : (M′, N′) → (R′, Q′) are weighted morphisms, then under
this identification νW (φ × ψ) = νW (φ)× νW (ψ).
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(c) If R2 is weighted be declaring that wt(x) = 1 and wt(y) = 3, then
νW (R, {0}) = R2. The monoid action of R on R2 is given by

κt(x, y) = (tx, t3y).

(d) If E → N is a graded bundle, then E is canonically weighted along
N by

C∞(E)(i) = { f ∈ C∞(E) : κ∗t f = O(ti)};

weighted coordinates are then given by graded bundle coordinates.
With respect to this weighted, νW (E, N) = E canonically.

2.4.3 Properties of the weighted normal bundle

Proposition 2.42. If ι : (R, Q) ↪→ (M, N) is a weighted embedding then

νW (ι) : νW (R, Q) → νW (M, N)

is an embedding.

Proof. By Theorem 2.16 we may assume that R is a weighted submanifold
of M and Q = R ∩ N. We will show that any choice of weighted subman-
ifold coordinates for R define submanifold coordinates for the image of
νW (R, R ∩ N) in νW (M, N).

Recall that the weighting on R is defined so that ι : R ↪→ M defines a
surjection gr(C∞(M)) → gr(C∞(R)), hence an injection νW (R, R ∩ N) →
νW (M, N). The image of νW (R, R ∩ N) in νW (M, N) consists of algebra
morphisms φ : gr(C∞(M)) → R with the property that the value of
φ( f [i]) depends only on ( f |R)[i] ∈ C∞(R)(i)/C∞(R)(i+1). Therefore, if xa

are weighted submanifold coordinates defined on U ⊆ M such that

R ∩ U = {x1 = · · · = xr = 0},

and φ ∈ νW (U, U ∩ N) is in the image of νW (R∩U, R∩ N ∩U), then since
(xa|R)[wa] = 0 for a = 1, . . . , r we have x[wa]

a (φ) = 0. This shows that

νW (R ∩ U, R ∩ N ∩ U) ⊆ {x[w1]
1 = · · · = x[wr ]

r = 0}.

For the reverse inclusion, let φ ∈ {x[w1]
1 = · · · = x[wr ]

r = 0}. Given f ∈
C∞(U)(i) ∩ IR∩U , we want to show that φ( f [i]) = 0. Since f vanishes along
R ∩ U we can write f = ∑r

a=1 faxa with fa ∈ C∞(U)(i−wa), hence

φ( f [i]) =
r

∑
a=1

x[wa]
a (φ) · f [i−wa]

a (φ) = 0,
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as needed.

Proposition 2.43. There is a canonical isomorphism

TνW (M, N)|N = gr(TM|N).

If φ : (M, N) → (M′, N′) is a weighted morphism, then with respect to this
identification one has

TνW (φ)|N = gr(Tφ|N)

Proof. Using that νW (M, N) is a graded bundle and [LM23, Proposition
4.4], we have that

TνW (M, N)|N = TN ⊕ gr(ν(M, N)).

The filtration of ν(M, N) is given by ν(M, N)(i) = (TM|N)(i)/TN, so that

TνW (M, N)|N = TN ⊕
r⊕

i=1

νW (M, N)(−i)/νW (M, N)(−i+1)

= TN ⊕
r⊕

i=1

(TM|N)(−i)/(TM|N)(−i+1)

= gr(TM|N),

as claimed.

Corollary 2.44. If F : M → M′ is a weighted submersion between weighted
pairs (M, N) and (M′, N′), then νW (F) is a submersion.

Proof. By Proposition 2.43, νW (F) is a submersion along N ⊆ νW (M, N)

hence near N. Since νW (F) is a morphism of graded bundles it follows
that it is a submersion everywhere.

Proposition 2.45. Suppose that F : M → M′′ and G : M′ → M′′ are weighted
transverse. Then

(a) νW (F) : νW (M, N) → νW (M′′, N′′) and νW (G) : νW (M′, N′) →
νW (M′′, N′′) are transverse, and

(b) the canonical map

νW (M ×M′′ M′, N ×N′′ N′) → νW (M, N)×νW (M′′,N′′) νW (M′, N′)

is an isomorphism of graded bundles.

Here the graded bundle structure on the fibre product is as a graded
subbundle of νW (M, N)× νW (M′, N′) → N × N′,
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Proof. (a) By modifying the standard argument appropriately, one finds
that F and G are weighted transverse if and only if the graph Γ(F ×
G) of F × G is weighted transverse to the diagonal ∆M′′×M′′×M×M′ =

{(m′′, m′′, m, m′)} ⊆ M′′ × M′′ × M × M′. It follows by considering
weighted coordinates adapted to this transverse intersection that
Γ(νW (F × G)) = Γ(νW (F)× νW (G)) is transverse to the diagonal in
νW (M′′ × M′′ × M × M′, N′′ × N′′ × N × N′), which establishes the
claim.

(b) This follows by considering graded bundle coordinates, since it is a
graded bundle morphism which is the identity along the base.

2.5 the weighted deformation space

Motivated by the construction of Haj and Higson [SH18], Loizides and
Meinrenken show that a weighted manifold M can be "deformed" to its
weighted normal bundle in a smooth way. The construction is known in
algebraic geometry as the deformation to the normal cone, which we now
review.

2.5.1 Construction of the Weighted Deformation Space

Let (M, N) be a weighted pair, and let

Rees(C∞(M)) =

{
∑
i∈Z

fiz−i : f ∈ C∞(M)(i)

}
⊆ C∞(M)[z−1, z]

denote the Rees algebra associated to the weighting of M.

Definition 2.46 ([LM23]). The weighted deformation space of the weighted
pair (M, N) is the set

δW (M, N) = Homalg(Rees(C∞(M)), R).

We now explain how to endow δW (M, N) with a smooth structure.
Given f ∈ C∞(M)(i), its i-th homogeneous interpolation is the function

f̃ [i] : δW (M, N) → R, φ 7→ φ( f z−i);
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note that if f ∈ C∞(M)(i) and g ∈ C∞(M)(j) then f̃ g
[i+j]

= f̃ [i] g̃[j]. The
map π = 1̃[−1] : δW (M, N) → R is a surjection with fibres

δW (M, N)t = π−1({t}) =
{

M t ̸= 0
νW (M, N) t = 0,

(2.13)

see [SH18, LM23]. Given f ∈ C∞(M)(i) one has

f̃ [i]|π−1({t}) : δW (M, N)t → R, x 7→
{

t−i f (x) t ̸= 0
f [i](x) t = 0.

(2.14)

Loizides and Meinrenken prove the following.

Theorem 2.47 ([LM23, Theorem 5.1]). (a) There is a unique C∞-structure
on δW (M, N), as a manifold of dimension dim(M) + 1, such that the
maps (2.14) are smooth for each f ∈ C∞(M)(i). In terms of this struc-
ture, the map π : δW (M, N) → R is a surjective submersion and the
identifications (2.13) are diffeomorphisms.

(b) If xa is a weighted coordinate system on U ⊆ M, then the homogeneous
interpolations x̃[wa]

a , together with the coordinate t = π : δW (M, N) → R

are coordinates on δW (U, U ∩ N) = νW (U, U ∩ N) ⊔ (U × R×).

Examples 2.48. (a) If M is trivially weighted along N, then δW (M, N) is
the standard deformation to the normal cone. In particular, δW (M ×
M, M) is the tangent groupoid TM of Connes (cf. [Con94, SH18]).

(b) If M is weighted along itself then δW (M, M) = M × R.

(c) If E is a graded bundle over N, then δW(E, N) is canonically isomor-
phic to E × R. The isomorphism is given by the family of maps

δW (E, N)t → E

e 7→
{

κt−1 e t ̸= 0
e t = 0,

where on the t = 0 we are identifying νW (E, N) with E.

(d) If (M, N) and (M′, N′) are weighted pairs, then δW (M × M′, N ×
N′) = δW (M, N)×R δW (M′, N′).

2.5.2 Properties of the Weighted Deformation space

We now list some properties of the weighted normal bundle. Most of the
proofs are similar as for the weighted normal bundle, so we will be brief.
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(a) The weighted deformation space is functorial for weighted mor-
phisms. That is, any weighted morphism F : (M, N) → (M′, N′)

induces a smooth map δW (F) : δW (M, N) → δW (M′, N′). In terms
of the identifications (2.13), one has

δW (F)|π−1({t}) : x 7→
{

F(x) t ̸= 0
νW (F)(x) t = 0.

Moreover, given f ∈ C∞(M′)(i) we have that δW (F)∗ f̃ [i] = F̃∗ f
[i]

.

(b) If R is a weighted submanifold of the weighted pair (M, N), then
δW (R, R∩ N) is a submanifold of δW (M, N). In particular, δW (N, N) =

N × R is a submanifold of δW (M, N). As with the weighted nor-
mal bundle, if xa are weighted submanifold coordinates for R on
U ⊆ M, then x̃[wa]

a together with t, are submanifold coordinates for
δW (R, R ∩ N) on δW (U, U ∩ N).

(c) If F : (M, N) → (M′′, N′′) and G : (M′, N′) → (M′′, N′′) are
weighted transverse, then δW (F) : δW (M, N) → δW (M′′, N′′) and
δW (G) : δW (M′, N′) → δW (M′′, N′′) are transverse and the canonical
map

δW (M ×M′′ M′, N ×N′′ N′) → δW (M, N)×δW (M′′,N′′) δW (M′, N′)

is a diffeomorphism.

(d) ([LM23, Section 5.2]) Given u ∈ R×, consider the algebra morphism
of Rees(C∞(M))

κu : ∑
i

fiz−i 7→ ∑
i

fiuiz−i.

This defines a smooth action of the group R× on δW (M, N) called the
zoom action. Given f ∈ C∞(M)(i), the function f̃ [i] is homogeneous of
degree i; in particular, π = 1̃[−1] is homogeneous of degree -1. Thus,

κu : δW (M, N)t → δW (M, N)u−1t.

On the open set M × R× = π−1(R×) ⊆ δW (M, N) the action is
given by

κu : (m, t) 7→ (m, u−1t),

whereas on νW (M, N) = δW (M, N)0 the action is the graded bundle
multiplication. If F : (M, N) → (M′, N′) is a weighted morphism,
then δW (F) : δW (M, N) → δW (M′, N′) is R×-equivariant.
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We have, furthermore, the following theorem which justifies our defini-
tions of weighted immersions and weighted submersions.

Theorem 2.49 (Characterization of Weighted Immersions and Submer-
sions). A weighted morphism F : (M, N) → (M′, N′) is a weighted immersion
(resp. submersion) if and only if the induced map

δW (F) : δW (M, N) → δW (M′, N′)

is an immersion (resp. submersion).

Proof. We prove the statement for weighted immersions, the proof for
weighted submersions being entirely analogous.

If F is a weighted immersion, then δW (F) is an immersion as can be
seen by considering weighted immersion coordinates. On the other hand,
if δW (F) is an immersion, then clearly F is a immersion. To see that the
map (TM|N)(i) → (TM′|N′)(i) is fibrewise injective, we remark that

TδW (M, N)|N×{0} = gr(TM|N)× R

and with respect to this

TpδW (F) =

[
TpνW (F) ∂t (̃F∗y)

[w′]
(p)

0 1

]

for any p ∈ N ⊆ δW (M, N)|π−1({0}), where

∂t (̃F∗y)
[w′]

(p) = [∂t (̃F∗y1)
[w′

1]
(p), . . . , ∂t

˜(F∗ym)
[w′

m]
(p)]⊺.

In particular, TpδW (F) is injective only if TpνW (F) is, which happens
if only if the map (TM|N)(i) → (TM′|N′)(i) is fibrewise injective. It re-
mains to show that TF(TM) ∩ (TM′|N′)(i) ⊆ TF((TM|N)(i)) (the other
inclusion is automatic since F is a weighted morphism). Let p ∈ N and
XF(p) ∈ TF(Tp M) ∩ (TF(p)M′)(i). Since F is an immersion, there exists
a unique Yp ∈ Tp M such that TF(Yp) = XF(p), and furthermore, be-
cause TνW (F)|N = gr(TF|N) is injective, we see that Yp ∈ (Tp M)(i), as
needed.

2.6 singular lie filtrations

In this section we review singular Lie filtrations, which are the main tech-
nique for constructing weightings. Singular Lie filtrations are filtrations
of the sheaf of vector fields on a smooth manifold by locally finitely gen-
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erated C∞
M-submodules which are compatible with Lie brackets (see Defi-

nition 2.50), generalization both Lie filtrations and singular foliations in
the sense of Androulidakis and Skandalis [AS09]. They recently made
an appearance in the work of Androulidakis, Mohsen, and Yuncken on
maximally hypoelliptic operators [AMY22].

Every weighted manifold has a canonical singular Lie filtration asso-
ciated to the weighting. Conversely, Loizides and Meinrenken showed
in [LM22] that a singular Lie filtration on a manifold M together with a
submanifold N satisfying a cleanness assumption canonically defines a
weighting of M along N, generalizing the work of Haj and Higson [SH18].
This has the practical application that, in examples, it is more natural to
define a singular Lie filtration than a weighting. In this section, we review
their work.

2.6.1 Filtration of vector fields

Let M have an order r weighting along N. Define X(M)(i) to be the
collection of vector fields X ∈ X(M) whose Lie derivative shifts filtration
degree by i; that is,

f ∈ C∞(M)(j) =⇒ X f ∈ C∞(M)(i+j).

This defines a filtration

X(M) = X(M)(−r) ⊇ X(M)(−r+1) ⊇ · · · (2.15)

which is compatible with Lie brackets in the sense that if X ∈ X(M)(i)
and Y ∈ X(M)(j) then [X, Y] ∈ X(M)(i+j). If xa is a system of weighted
coordinates on U, then X ∈ X(U)(i) if and only if

X = ∑
a

fa
∂

∂xa
,

with f ∈ C∞(U)(i−wa). In particular, for any p ∈ N we have

Tp M(i) = span{Xp : X ∈ X(M)(i)}.

More generally, the weighting of M determines a filtration

· · · ⊇ DO(M)(q) ⊇ DO(M)(q+1) ⊇ · · ·
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of the graded algebra of differential operators on M, where DO(M)(q) is
the operators D ∈ DO(M) with the property that

f ∈ C∞(M)(i) =⇒ D f ∈ C∞(M)(i+q).

One has that D ∈ DO(M)(q) if locally D is given by a linear combination
of terms of the form

X1 · · · Xk,

where Xj ∈ X(U)(ij) with i1 + · · ·+ ik = q; in particular, we note that the

filtration of DOk(M)(q) starts in degree −kr

DOk(M) = DOk(M)(−kr) ⊇ DOk(M)(−kr+1) ⊇ · · ·

where r is the order of the weighting. With respect to the filtration of
differential operators we have

C∞(M)(i) = { f ∈ C∞(M) : −q < i, D ∈ DO(M)(q) =⇒ D f |N = 0}.
(2.16)

2.6.2 Singular Lie filtrations

Equation 2.16 implies, in particular, that we can recover the weighting of
M from the filtration of X(M) and the submanifold N. It is reasonable,
therefore, to ask when a filtration of X(M) defines a weighting of M. An
answer to this question was given by Loizides and Meinrenken in [LM22],
which we now summarize.

Definition 2.50 ([LM22]). Let M be a smooth manifold.

(a) A singular distribution on M is a sheaf D of C∞
M-submodules of XM

which is locally finitely generated. That is, each point p ∈ M is
contained in an open neighbourhood U such that D(U) is a finitely
generated C∞(U)-module.

(b) A singular foliation is a singular distribution F on M which is involu-
tive:

[F ,F ] ⊆ F .

(c) A singular Lie filtration is a filtration

XM = F−r ⊇ F−r+1 ⊇ · · · ⊇ F0

of XM by singular distributions Fi with the property that

[Fi,Fj] ⊆ Fi+j.
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Examples 2.51. (a) If (M, N) is a weighted pair then X(M)(0) is a singu-
lar foliation and the filtration of vector fields (2.15) is a singular Lie
filtration.

(b) A filtered manifold is a manifold M together with a filtration of TM
by subbundles

TM = F−r ⊇ F−r+1 ⊇ · · · ⊇ F−1 ⊇ 0

satisfying [Γ(Fi), Γ(F)j] ⊆ Γ(Fi+j); this called a (regular) Lie filtra-
tion. Filtered manifolds appear in CR geometry, contact geometry,
and parabolic geometry (see [CP15, SH18, VEY19, Yun18] and the
references therein).

Definition 2.52 ([LM22]). Let M be a smooth manifold.

(a) Let D be a singular distribution on M. A (closed) submanifold
N ⊆ M is called D-clean if the function

N → N, p 7→ dim(Dp + TpN)

is a constant.

(b) Let F• be a singular Lie filtration on M. A (closed) submanifold
N ⊆ M is called F•-clean if it is Fi-clean for each i.

Examples 2.53. (a) If (M, N) is a weighted pair and X(•) is the corre-
sponding singular Lie filtration, then N is X(M)(•)-clean.

(b) If H• is a singular Lie filtration on M, then F• ×F• is a singular Lie
filtration on M × M. The diagonal ∆M ⊆ M × M is F• ×F•-clean if
and only if the F• is a regular Lie filtration.

(c) Let D be the submodule of X(R2) generated by the vector fields x ∂
∂x

and ∂
∂y . Then the x-axis is D-clean, whereas the y-axis is not.

The theorem relating singular Lie filtrations with weightings is the
following.

Theorem 2.54 ([LM22, Theorem 4.1]). Let F• be a singular Lie filtration on a
manifold M, and let N ⊆ M be an F•-clean, closed submanifold. The filtration
defined by C∞

M,(1) = IN and

C∞(U)(i) = { f ∈ C∞(U) : X ∈ Fj(U), 0 < j < i =⇒ X f ∈ C∞(U)(i−j)}

for i > 1 defines a weighting of M along N such that

(TM|N)(i) = Fi|N + TN.
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Before moving on, we record the following simple proposition about
weighted morphisms, the proof of which is obvious from the construction
of the weighting in Theorem 2.54.

Proposition 2.55. Let F• be a singular Lie filtration on M and let N ⊆ M
be an F•-clean submanifold. Suppose that (M′, N′) is a weighted pair, and
that F : (M, N) → (M′, N′) is a map of pairs with the property that for all
X ∈ F (U)(i) there exists some Y ∈ X(M′)(i) such that X ∼F Y. Then F is a
weighted morphism with respect to the weighting of M defined in Theorem 2.54.

2.7 inner automorphisms of weighted manifolds

Let (M, N) be a weighted pair. We close this chapter by showing that vector
fields X ∈ X(M)(0) are exactly those whose flow is an automorphism of
the weighted manifold. We begin with a lemma.

Lemma 2.56 ([AS09, GY19, LGLR22, Propositions 1.6, 3.1, 1.6.9]). Let D be
a singular distribution on M and let X ∈ X(M) be a vector field whose flow ϕt

is defined for |t| < ϵ. If [X,D] ⊆ D, then

ϕ∗
t (D) ⊆ D.

Proposition 2.57. Let (M, N) be a weighted pair, and let X ∈ X(M) be a vector
field whose time flow ϕt is defined for |t| < ϵ. Then the following are equivalent:

(a) X ∈ X(M)(0),

(b) [X,X(M)(i)] ⊆ X(M)(i) for all i,

(c) ϕt is a weighted diffeomorphism for all |t| < ϵ.

Proof. Recall that the filtration of X(M) is compatible with brackets in the
sense that if Y ∈ X(M)(i) and Z ∈ X(M)(j) then [Y, Z] ∈ X(M)(i+j). Thus,
(a) implies (b).

Now suppose that (b) holds. By applying Lemma 2.56 to the singular
distribution D = X(M)(i), we have that

ϕ∗
t (X(M)(i)) ⊆ X(M)(i)

for all |t| < ϵ. By Proposition 2.55, this implies that ϕt is a weighted
diffeomorphism.

Finally, suppose that (c) holds and let f ∈ C∞(M)(i). Since

ϕ∗
t X f =

d
dt

ϕ∗
t f ∈ C∞(M)(i),

it follows that X f ∈ C∞(M)(i), hence X ∈ X(M)(0).
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3.1 weighted vector bundles

We now turn our attention to weightings for vector bundles. In [LM23],
Loizides and Meinrenken define a linear weighting of a vector bundle V to
be one for which scalar multiplication is a weighted morphism. We found
this definition to be too restrictive in the sense the it excludes some basic
examples. For instance, there is no natural weighting of the cotangent
bundle of a weighted pair (M, N) even though the tangent bundle is
canonically weighted. Moreover, since vector bundles can be defined in
terms of their sheaf of sections, it is desirable to have a definition of linear
weighting in these terms.

We define linear weightings in terms of a Z-graded filtration

· · · ⊇ ΓV,(i) ⊇ ΓV,(i+1) ⊇ · · ·

filtration of the sheaf of sections of a vector bundle, satisfying a local
condition modelled after Definition 2.1. To ensure our definition contains
naturally arising examples, we allow for the filtration of the sections of
V to be non-trivial in both positive and negative degree. If V → M is
a linearly weighted vector bundle, then M is a weighted manifold and
the constructions of the weighted normal bundle and the weighted defor-
mation space still go through yielding vector bundles over the weighted
normal bundle and weighted deformation space of M, respectively.

We let Γ(V) denote the (smooth) sections of V. If W → N is a subbundle
of V → M then Γ(V, W) = {σ ∈ Γ(V) : σ|N ∈ W}.

3.1.1 Definition of linear weightings

A linear weighting of a vector space V is a filtration of V by subspaces.
Therefore, we define a weighted vector bundle to be one which is locally
the product of a weighted manifold with a filtered vector space. This is
formalized as follows.

Let (M, N) be a weighted pair and M × Rk → M the trivial bundle of
rank k over M. A vertical weight vector for M × Rk is a k-tuple of integers

45
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(v1, . . . , vk) ∈ Zk. A choice of vertical weight vector determines a filtration
of Γ(M × Rk) by C∞(M)-submodules

Γ(M × Rk)(i) =
k

∑
a=1

C∞(M)(i−va)σa, (3.1)

where σ1, . . . , σk is the standard basis for Rk.

Definition 3.1. A linear weighting of a rank k vector bundle V over the
weighted pair (M, N) is a Z-graded filtration

· · · ⊇ ΓV,(i) ⊇ ΓV,(i+1) ⊇ · · ·

of the sheaf of sections ΓV by C∞
M-submodules such that for every point

p ∈ M there exists an open neighbourhood U ⊆ M containing p and a
frame σ1, . . . , σk ∈ Γ(V|U) such that Γ(V|U)(i) is given by (3.1). The frame
σa is called a weighted frame. We refer to a vector bundle with a linear
weighting as a weighted vector bundle.

Remarks 3.2. (a) If v1, . . . , vk is the vertical weight sequence for V, then
ΓV,(i) = ΓV for i ≤ mina{va}.

(b) By definition, ΓV is a filtered module over the filtered algebra C∞
M.

That is, for all i, j ∈ Z,

C∞
M,(i) · ΓV,(j) ⊆ ΓV,(i+j).

(c) Using that we are working in the C∞-category, we may take advan-
tage of the existence of partitions of unity to avoid the use of sheaves,
working instead with the filtration of global sections

· · · ⊇ Γ(V)(i) ⊇ Γ(V)(i+1) ⊇ · · ·

Examples 3.3. (a) If M is weighted along itself, then a filtration of V

· · · ⊇ V(i) ⊇ V(i+1) ⊇ · · ·

by subbundles Vi → M via defines a linear weighting of V via
correspondence

Γ(V)(i) = Γ(V(i)).

(b) If M is a weighted manifold and V is a weighted vector space, then
the trivial bundle M × V is a weighted vector bundle.
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(c) Let (M, N) be a weighted pair and let

· · · ⊇ X(M)(i) ⊇ X(M)(i+1) ⊇ · · · (3.2)

be the induced filtration of X(M) (see Section 2.6). If xa is a local
weighted coordinate system on M, then the local coordinate vector
fields ∂

∂xa
define a local weighted frame for TM. Thus, (3.2) is a

linear weighting of TM. If w1, . . . , wn are the weights for M, then the
vertical weights for TM are given by −w1,−w2, . . . ,−wn.

(d) With the same setting as in (c), let Ω1(M)(i) denote the 1-forms
ω ∈ Ω1(M) on M with the property that

X ∈ X(M)(j) =⇒ ⟨ω, X⟩ ∈ C∞(M)(i+j).

If xa is a weighted coordinate system on M, then the differentials
dxa form a weighted frame for T∗M. Thus, T∗M is a weighted
vector bundle. If w1, . . . , wn are the weights for M, then the vertical
weights for T∗M are given by w1, . . . , wn as well. Note that the map
d : C∞(M) → Ω1(M) is filtration preserving.

(e) Let N ⊆ M be a closed submanifold with vanishing ideal IN . The
trivial weighting of M along N is given by order of vanishing,

C∞(M)(j) = I j
N .

If W → N is a subbundle of V → M, then the filtration

Γ(V)(i) =


Γ(V) i ≤ −1,
Γ(V, W) i = 0,
I i

N · Γ(V) i ≥ 1,

determines a linear weighting of V. If M is trivially weighted along
N, this recovers the tangent weighting of TM from the previous
example for W = TN

Recall from Section 2.1 that a weighting of M along N determines a
filtration of TM|N be subbundles. The analogue of this in the context of
linear weightings is the following.

Proposition 3.4. Let (M, N) be a weighted pair. A linear weighting of V → M
with vertical weights v1, . . . , vk determines a filtration of V|N

· · · ⊇ (V|N)(i) ⊇ (V|N)(i+1) ⊇ · · ·
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by subbundles (V|N)i → N of rank ki = #{a : va ≥ i}. In fact, Γ((V|N)(i)) is
given by the image of Γ(V)(i) in

Γ(V)/(IN · Γ(V)) = Γ(V|N)

under the quotient map.

Proof. Let p ∈ N be contained in the open neighbourhood U ⊆ M, and
let σa be a weighted frame for V|U . Then the image of Γ(V|U)(i) in the
quotient Γ(V|U)/(IN∩U · Γ(V|U)) is freely generated by

{σa|N∩U : va ≥ i}.

Remark 3.5. This shows that if M is weighted along itself then a linear
weighting of V → M is equivalent to a filtration of V by subbundles, as
in Examples 3.3 (a). In particular, a weighted vector space is equivalent to a
filtered vector space.

Examples 3.6. (a) If (M, N) is a weighted pair and TM and T∗M are
weighted as in Examples 3.3 (c) and (d), then the filtrations of TM|N
and T∗M|N are the ones defined in Section 2.1.

(b) If V → M is trivially weighted along W → N as in Examples 3.3 (e),
then the filtration of V|N is

V|N ⊇ W ⊇ 0.

(c) Let R be given the trivial weighting along the origin, so that the

coordinate x has weight 1. Let V = R × R2 pr1−→ R be the trivial
bundle of rank 2 over R, and let σ1, σ2 ∈ Γ(V) be standard frame.
The linear weightings

Γ(V)(i) = C∞(R)(i) · σ1 + C∞(R)(i+2) · σ2

Γ(V)′(i) = C∞(R)(i) · (σ1 + xσ2) + C∞(R)(i+2) · σ2

determine the same filtration of V0 = {0}×R2, but they are different
weightings. Indeed, σ1 + xσ2 ∈ Γ(V)′(0), but σ1 + xσ2 /∈ Γ(V)(0). In
particular, this example shows that the filtration of V|N alone is not
enough to recover the weighting of V.

3.1.2 Constructions

We now explain how various constructions with vector bundles work in
the weighted setting.
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(a) (Dual weighting) The dual of a weighted vector bundle is linearly
weighted by

τ ∈ Γ(V∗)(i) ⇐⇒ ∀σ ∈ Γ(V)(j), ⟨τ, σ⟩ ∈ C∞(M)(i+j).

If σa is a weighted frame for V|U then the corresponding dual frame
τa is a weighted frame for V∗|U . In particular, if va are the vertical
weights for V then −va are the vertical weights for V∗ and V =

(V∗)∗ as weighted vector bundles. Furthermore, the corresponding
filtration of V∗|N is given by

(V∗|N)(i) = ann((V|N)(−i+1)).

This generalizes the weighting of T∗M defined in Examples 3.3 (d).

(b) (Direct sums, tensor products, etc.) If V → M and W → M are weighted
vector bundles over the weighted pair (M, N), then V ⊕ W, V ⊗ W,
Hom(V, W), ∧nV, and Symn(V) all inherit linear weightings in a
canonical way.

For example, the linear weighting on V ⊗ W is given by

Γ(V ⊗ W)(k) = ∑
i+j=k

Γ(V)(i) ⊗C∞(M) Γ(W)(j).

The linear weighting on Hom(V, W) is given by the identification
Hom(V, W) ∼= V∗ ⊗ W. With respect to this weighting we have that,
for all i, j ∈ Z,

Γ(Hom(V, W))(i) × Γ(V)(j) → Γ(W)(i+j).

(c) (Shifted weighting) Given a linear weighting of V → M we denote by
V[k] the vector bundle V linearly weighted by

Γ(V[k])(i) = Γ(V)(i+k).

Note that:

(i) (V[k]|N)(i) = (V|N)(i+k), and

(ii) V[k]∗ = V∗[−k].

(d) (Pullbacks) Suppose that (M, N) and (M′, N′) are weighted pairs and
that φ : M′ → M is a weighted morphism.



3.1 weighted vector bundles 50

Proposition 3.7. If V → M is a weighted vector bundle, then

Γ(φ∗V)(i) = ∑
j≥0

C∞(M′)(j) · φ∗Γ(V)(i−j). (3.3)

defines a linear weighting of the pullback bundle φ∗V → M′.

Proof. Let U ⊆ M be open and let σ1, . . . , σk be a weighted frame
for V|U . We claim that the pullbacks φ∗σa ∈ Γ(φ∗(V|U)) define a
weighted frame for φ∗(V|U). Indeed, we have that

Γ(φ∗(V)|φ−1(U))(i) = ∑
j≥0

C∞(φ−1(U))(j) · φ∗Γ(V|U)(i−j)

= ∑
a

(
∑
j≥0

C∞(φ−1(U))(j) · φ∗C∞(U)(i−j−va)

)
φ∗σa.

To complete the proof, we must show that

∑
j≥0

C∞(φ−1(U))(j) · φ∗C∞(U)(i−j−va) = C∞(φ−1(U))(i−va);

note that there is nothing to show if i − va < 0. We have that
φ∗C∞(U)(i−j−va) ⊆ C∞(φ−1(U))(i−j−va) as φ : M′ → M is a weighted
morphism, hence the left hand side is contained in the right hand
side. The other inclusion follows by putting j = i− va in the sum.

3.1.3 Linear Weightings as a Filtration of Polynomial Functions

We now relate linear weighting to the weightings discussed in Chapter 2.
For this, we replace the algebra of smooth functions on M with the algebra
of fibrewise polynomial functions on the total space of V. Recall that the space
of space of fibrewise polynomial functions on a vector bundle V → M is
the direct sum

C∞
pol(V) =

⊕
n≥0

C∞
[n](V),

where C∞
[n](V) are the functions of homogeneity n. This perspective al-

lows for a quick definition of the weighted normal bundle and weighted
deformation bundles in Section 3.2 and Section 3.3.

Theorem 3.8 (Polynomial Characterization of Linear Weightings). Let V be
a rank k vector bundle over the m-dimensional manifold M. There is a one to one
correspondence between linear weightings of V and multiplicative filtrations

· · · ⊇ C∞
pol(V)(i) ⊇ C∞

pol(V)(i+1) ⊇ · · ·
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of the sheaf of polynomial functions on V with the following property: there
exist tuples (w1, . . . , wm) ∈ Zm

≥0 and (v1, . . . , vk) ∈ Zk such that for each
ξ ∈ V, there is an open set U ⊆ M with ξ ∈ V|U and vector bundle coordinates
xa ∈ C∞

[0](V|U), pb ∈ C∞
[1](V|U) such that C∞

pol(V|U)(i) is generated as a C∞(U)-
module by the monomials

xs pt = xs1
1 · · · xsm

m · pt1
1 · · · ptk

k (3.4)

such that s · w − t · v = ∑m
i=1 siw1 − ∑k

i=1 tivi ≥ i.

We refer to the coordinate system xa, pb described in Theorem 3.8 as
weighted vector bundle coordinates. We stress that while the base coordinates
xa have non-negative weight, the fibre coordinates yb can have both positive
and negative weight.

Proof. Suppose that V is linearly weighted. For each n ≥ 0 we will define
a filtration of C∞

[n](V) and define filtration of C∞
pol(V) by taking the direct

sum. Given n ≥ 0, recall that there is an identification

C∞
[n](V) ∼= Γ(Symn(V∗)). (3.5)

Since Symn(V∗) inherits a linear weighting from the weighting of V
(see Section 3.1.2 (b)), we use the identification (3.5) to define the filtration
of C∞

[n](V). Explicitly, for any open set U ⊆ M, elements of C∞
[n](V|U)(i) are

functions f ∈ C∞
[n](V|U) such that for any σ ∈ Γ(V|U)(j) one has

f ◦ σ ∈ C∞(U)(i+nj).

In particular, C∞
[0](V)(i) = C∞(M)(i) and C∞

[1](V)(i) = Γ(V∗)(i). Let

C∞
pol(V)(i) =

⊕
n≥0

C∞
[n](V)(i).

To get weighted vector bundle coordinates, let U ⊆ M be an open subset
over which V|U is trivialized, let xa be weighted coordinates on U and
let σb be a weighted frame for V|U . Let τb ∈ Γ(V∗|U) denote the dual
frame and pb ∈ C∞

[1](V|U) the corresponding linear coordinates. The n-fold
symmetric products of the τb form a weighted frame for Symn(V|∗U), hence
the functions xa, pb define the necessary vector bundle coordinate system.
Note that if the section σb has weighted vb, then the corresponding fibre
coordinate pb has weight −vb.

Conversely, suppose that we are given a filtration

· · · ⊇ C∞
pol(V)(i) ⊇ C∞

pol(V)(i+1) ⊇ · · ·
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as described in the statement of the theorem. For U ⊆ M open, define

C∞(U)(i) = C∞
[0](V|U) ∩ C∞

pol(V|U)(i) and (3.6)

Γ(V|∗U) = C∞
[1](V|U) ∩ C∞

pol(V|U)(i). (3.7)

The requirement that C∞
pol(V|U) be generated as a C∞(U)-module by terms

of the form (3.4) ensures that (3.6) defines a weighting of M and (3.7)
defines a linear weighting of V∗. By taking the dual weighting, we have
thus also defined a linear weighting of V. These constructions are clearly
inverse to one another, and so we have proved the theorem.

Example 3.9. If W → N is a vector subbundle of V → M, then order
of vanishing defines a linear weighting of V, which we refer to as the
trivial weighting along W. This agrees with the linear weighting defined
in Examples 3.3 (c).

Remarks 3.10. (a) One can use to conclusion of Theorem 3.8 to define
graded bundle weightings, using graded bundle coordinates in place of
vector bundle coordinates.

(b) Let V → M be a linearly weighted vector bundle. Recall that the
weighting of V determines a filtration

· · · ⊇ (V|N)(i) ⊇ (V|N)(i+1) ⊇ · · ·

of V|N by wide subbundles. In local vector bundle coordinates
x1, . . . , xm ∈ C∞(U), p1, . . . , pk ∈ C∞

[1](V|U), (V|N∩U)(i) is cut out
by the equations

xa = 0 for wa > 0,

pb = 0 for vb < i.

(c) As a consequence of Theorem 3.8, one finds that a linear weighting
of V naturally defines a filtration of TV|N by subbundles. In terms
of the canonical decomposition TV|N = TM|N ⊕ V|N , one has

(TV|N)(i) = (TM|N)(i) ⊕ (V|N)(i).

(d) We say that a linear weighting of V → M is concentrated in non-positive
degree if

(V|N)(i) = 0 for i > 0.
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In this case, Theorem 3.8 shows that a linear weighting is a weighting
in the sense of Definition 2.1 along the subbundle

W = (V|N)(0),

and we say that V is linearly weighted along W. For example, if
(M, N) is a weighted pair then the linear weighting of TM is con-
centrated in non-positive degree and TM is linearly weighted along
TN.

Weighted subbundles

Now that we have a characterization of linear weightings in terms of
polynomial functions, we can define weighted subbundles.

Definition 3.11. Let V → M be a weighted vector bundle. A subbundle
W → R is a weighted subbundle if there exists a weighted atlas of subbundle
coordinates for W.

That is, W is a weighted subbundle if and only if for every w ∈ W
there exist weighted vector bundle coordinates xa ∈ C∞

[0](V|U) and pb ∈
C∞
[1](V|U) such that W is locally defined by the vanishing of a subset of the

coordinates. Coordinates with this property are called weighted subbundle
coordinates.

Examples 3.12. (a) If V is a linearly weighted vector bundle over the
weighted pair (M, N), then V|N is a weighted subbundle. Any sys-
tem of weighted vector bundle coordinates are weighted subbundle
coordinates for V|N .

(b) If V is linearly weighted vector space then any subspace is a weighted
subspace (cf. Examples 2.7 (e)).

Proposition 3.13. Let V → M be a linearly weighted vector bundle. If W → R
is a weighted subbundle,

(a) R is a weighted submanifold of (M, N),

(b) W inherits a linear weighting and the filtration of W|R∩N is given by

(W|R∩N)(i) = W ∩ (V|N)(i).

Proof. One proceeds as in the proof of Proposition 2.9 using weighted
subbundle coordinates.



3.1 weighted vector bundles 54

3.1.4 Weighted vector bundle morphisms

We now discuss morphisms of weighted vector bundles. The easiest defini-
tion uses the characterization of linear weightings in terms of polynomial
functions.

Definition 3.14. A vector bundle morphism φ : V → V ′ between linearly
weighted vector bundles V → M and V ′ → M′ is called weighted if
φ∗C∞

pol(V
′)(i) ⊆ C∞

pol(V)(i) for all i ∈ Z.

Recall that a vector bundle map φ : V → V ′ induces a module map
φ∗ : Γ((V ′)∗) → Γ(V∗). In terms of this perspective, one has the following
characterization of weighted vector bundle morphisms.

Proposition 3.15. Let φ : V → V ′ be a vector bundle morphism between linearly
weighted vector bundles V → M and V ′ → M′, respectively. Then φ is weighted
if and only if

(a) the base map φM : M → M′ is weighted and

(b) for all i ∈ Z, φ∗ : Γ((V ′)∗)(i) → Γ(V∗)(i).

Proof. Suppose that φ : V → V ′ is a weighted vector bundle morphism.
Then,

φ∗
MC∞(M′)(i) = φ∗

M(C∞
pol(V

′)(i) ∩ C∞
[0](W))

⊆ C∞
pol(V)(i) ∩ C∞

[0](V) = C∞(M)(i),

whence φM : M → M′ is weighted. Similarly, for any σ ∈ Γ((V ′)∗),
let fσ ∈ C∞

[1](V) be the corresponding function under the identification
C∞
[1](V) = Γ(V∗). Then

φ∗(σ) = φ∗ fσ ∈ C∞
[1](V)(i) = Γ(V∗)(i).

The converse follows by a similar argument, using that φ∗ : C∞
pol(V

′) →
C∞

pol(V) is an algebra morphism and C∞
pol(V)(i) is locally generated as a

filtered algebra by C∞(M) and C∞
[1](V) = Γ(V∗).

Example 3.16. If f : M → M′ is a weighted morphism between weighted
pairs (M, N) and (M′, N′), then the tangent map T f : TM → TM′ is a
weighted vector bundle morphism.

In the case that V and V ′ are vector bundles over a common base the
definition of a weighted vector bundle morphism reduces to the one that
one might expect.
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Proposition 3.17. Suppose that that V and V ′ and linearly weighted vector
bundles over a common weighted pair (M, N) and φ : V → V ′ is a vector bundle
morphism covering the identity. Then φ is a weighted vector bundle morphism if
and only if φ(Γ(V)(i)) ⊆ Γ(V ′)(i) for all i.

Proof. Suppose that φ∗(Γ((V ′)∗)(i)) ⊆ Γ(V∗
(i)), and let σ ∈ Γ(V)(i). Let

τ ∈ Γ((V ′)∗)(j) be arbitrary, and note that

⟨τ, φ(σ)⟩ = ⟨φ∗(τ), σ⟩ ∈ C∞(M)(i+j),

since φ∗(τ) ∈ Γ(V∗)(j); here the angular brackets denote the pairing
between a vector bundle and its dual. This implies that φ(σ) ∈ Γ(V ′)(i),
proving one inclusion. The opposite inclusion follows similarly.

We state the following observation, whose proof is obvious, which
allows us to apply the results of Section 2.3 to vector bundle morphisms.

Lemma 3.18. Let V → M and V ′ → M′ be weighted vector bundles, and k ∈ Z.
A vector bundle morphism φ : V → V ′ is a weighted vector bundle morphism if
and only if φ : V[k] → V ′[k] is weighted.

Note that by taking k to be sufficiently large, the weighting of V[k] is con-
centrated in negative degree. In particular, V[k] is weighted along a closed
submanifold N ⊆ M in the sense of Chapter 2. In light of Lemma 3.18,
all of the definitions and results in Section 2.3 hold for vector bundle
morphisms, replacing TM|N with TV|N = V|N ⊕ TM|N . Let us illustrate
this with the following result (cf. Theorem 2.32).

Theorem 3.19. Suppose that V → M and V ′ → M′ are weighted vector bundles
and φ : V → V ′ is a vector bundle morphism whose base map is a smooth map of
pairs (M, N) → (M′, N′). Then φ is a weighted VB-morphism if and only if

(a) the graph Γ(φ) ⊆ V ′ × V is a weighted subbundle and

(b) the maps V|N → V ′|N′ and TM|N → TM′|N′ are filtration preserving.

Proof. By replacing V and V ′ with V[k] and V ′[k] for sufficiently large
k, we may assume the weightings are concentrated in negative degree.
By Theorem 2.32, φ : V → V ′ is a weighted morphism if and only if its
graph is a weighted subbundle of V ′ × V and the map Tφ|N : TV|N →
TV ′|N′ is filtration preserving. With respect to the canonical decomposition
TV|N = TM|N ⊕V|N , the map Tφ|N decomposes as Tφ|N = TφM|N ⊕ φ|N
hence Tφ|N is filtration preserving if and only if the maps V|N → V ′|N′

and TM|N → TM′|N′ are filtration preserving. Therefore, φ : V → V ′ is a
weighted morphism.
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3.2 the weighted normal bundle

We now define the weighted normal bundle of a linearly weighted vector
bundle. Since we have defined weightings in terms of filtrations of fibre-
wise polynomial functions on V, much of the discussion in Section 2.4
carries over, almost verbatim, to linear weightings.

3.2.1 Definition

Let V → M be a linearly weighted vector bundle. Let gr(C∞
pol(V)) be the

graded algebra associated to the filtered algebra, with graded components
given by

gr(C∞
pol(V))i = C∞

pol(V)(i)/C∞
pol(V)(i+1).

Definition 3.20. The weighted normal bundle of the linearly weighted vector
bundle V → M is the character spectrum

νW (V) = Homalg(gr(C∞
pol(V)), R)

Given a function f ∈ C∞
pol(V)(i), let f [i] denote the class of f in gr(C∞

pol(V))i.

We think of f [i] as a function on νW (V), defined by evaluation

f [i] : νW (V) → R, φ 7→ φ( f [i]).

Let π : V → M and κλ : V → V denote the bundle projection and
scalar multiplication by λ ∈ R, respectively. Since these maps are filtration
preserving, they induce maps

νW (π) : νW (V) → νW (M, N) and νW (κλ) : νW (V) → νW (V),

which we take to be our vector bundle projection and scalar multiplication,
respectively, in the following theorem.

Theorem 3.21. Let V → M be a weighted vector bundle.

(a) The weighted normal bundle νW (V) has the unique structure of a C∞-
vector bundle over νW (M, N) of rank equal to that of V, such that for all
n ≥ 0

gr(C∞
[n](V)) ⊆ C∞

[n](νW (V)).

(b) Given weighted vector bundle coordinates xa and pb on V|U , the functions
x[wa]

a , p[vb]
b serve as vector bundle coordinates on νW (V|U) = νW (V)|νW (U,U∩N).
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(c) This construction is functorial: any weighted vector bundle morphism
φ : V → W between linearly weighted vector bundles defines a vector
bundle morphism νW (φ) : νW (V) → νW (W).

The proof mirrors that of [LM23, Theorem 4.2]. We include it for com-
pleteness and to explain the use of polynomial functions.

Proof. Let U ⊆ M and let x1, . . . , xm, p1, . . . , pk ∈ C∞(V|U) be a system of
weighted vector bundle coordinates. We will show that the homogeneous
approximations ya = x[wa]

a , qb = p[−vb]
b serve as vector bundle coordinates

on νW (π)−1(νW (U, U ∩ N)) = νW (V|U). By Theorem 2.40, the map

(y1, . . . , ym) : νW (U, U ∩ N) → Rm

is a diffeomorphism onto an open set U ⊆ Rm. Since gr(C∞
pol(V|U)) is gen-

erated as an algebra over gr(C∞(U)) by the elements q1, . . . , qk it follows
that the map

(y1, . . . , ym, q1, . . . , qk) : νW (π)−1(νW (U, U ∩ N)) → Rm+k

is a bijection onto an open set of the form U × Rk. This defines a smooth
structure on νW (V|U). We now show that if f ∈ C∞

pol(V|U)(i), then f [i] :
νW (V|U) → R is smooth. We may assume that f (x, p) = g(x)ps1

1 · · · psk
k

with g ∈ C∞(U)(j), s · v = ∑ sbvb = i − j, and ∑b sb = n, in which case

f [i](y, q) = g[j](y)qs1
1 · · · qsk

k

which is evidently smooth and homogeneous of degree n with respect to
the scalar multiplication νW (κt). In particular, if y′1, . . . , y′k is a different
choice of weighted linear coordinates on V|U then (y′b)

[−vb] is smooth as
a function of ya and qb. The uniqueness assertion and the claim about
functoriality are clear.

Remark 3.22. This proof shows that if [ fab] is the transition matrix for
V|U corresponding to two weighted vector bundle coordinate systems,
then fab ∈ C∞(U)(vb−va) and the transition matrix for νW (V|U) is given by

[ f [vb−va]
ab ] ∈ C∞(νW (U, U ∩ N), GL(Rk)).

Examples 3.23. (a) Suppose that W → N is a subbundle of V → M. If
V is given the trivial weighting along W, then

νW (V) = ν(V, W),

as a vector bundle over ν(M, N).
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(b) If V is linearly weighted by a filtration of wide subbundles

V = V(−r) ⊇ V(−r+1) ⊇ · · · ⊇ V(q) ⊇ 0,

as in Examples 3.3 (a), then νW (V) = gr(V) → M. In particular, if
V = V(−r) ⊕ · · · ⊕ V(q) is a graded vector bundle, then νW (V) = V.

(c) If (M, N) is a weighted pair and TM is linearly weighted as in Ex-
amples 3.3 (b), then

νW (TM) = TνW (M, N).

Remark 3.24. The weighted normal bundle is invariant under shifting the
weighting: for any k ∈ Z one has that

νW (V[k]) = νW (V).

In particular, shifting the weighting of V so that it is concentrated in
negative degrees, we can see that the weighted normal bundle as a bundle
of homogeneous spaces of nilpotent Lie groups (cf. [LM23, Proposition
7.7].)

3.2.2 Action of R×

Let R× act on gr(C∞
pol(V))i by multiplication by ti. This defines a smooth

action α : R× × νW (V) → νW (V) on the weighted normal bundle which
commutes with the vector bundle multiplication and extends the action of
R× on νW (M, N) described in Section 2.4.2; note in particular that since we
are allowing the fibre coordinates to have negative weights multiplication
by zero is not defined, so νW (V) fails to be a graded bundle in general. As
in Section 2.4.2, given any f ∈ C∞

pol(V)(i) the function f [i] ∈ C∞(νW (V))

is homogeneous of degree i. Letting C∞
[i,j](νW (V)) denote the functions

with are homogeneous of degree i with respect to the vector bundle
multiplication and homogeneous of degree j with respect to the R×-action,
we have that

C∞
[i,j](νW (V)) = gr(C∞

[i](V))j.

Example 3.25. Suppose that V = V(−r)⊕ · · · ⊕V(q) → M is a graded vector
bundle over M.With respect to the identification νW (V) = V explained
in Examples 3.23 (b), we have that

αλ(v−r, . . . , vq) = (λrv−r, . . . , λ−qvq).
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3.2.3 Sections of the weighted normal bundle

Recall from Section 2.4.2 that

gr(C∞(M)) = C∞
pol(νW (M, N)).

In this section, we are going to define a canonical identification

gr(Γ(V)) → Γpol(νW (V))

of graded gr(C∞(M))-modules, where

gr(Γ(V)) =
⊕
i∈Z

Γ(V)(i)/Γ(V)(i+1)

and Γpol(νW (V)) are the polynomial sections of νW (V), defined as follows.
For i ∈ Z, let Γ[i](νW (V)) denote the sections of νW (V) which are homo-
geneous of degree i, i.e. sections σ ∈ Γ(νW (V)) such that

αλ,∗(σ) = αλ ◦ σ ◦ αλ−1 = λiσ.

Then
Γpol(νW (V)) =

⊕
i∈Z

Γ[i](νW (V)).

Before we begin, recall that

νW (M, N) = Homalg(gr(C∞(M)), R)

and that for any σ ∈ Γ(V)(i) and f ∈ C∞
[n](V)(j) one has f ◦σ ∈ C∞(M)(j+ni).

This motivates the following definition.

Definition 3.26. Given σ ∈ Γ(V)(i), the i-th homogeneous approximation is
the map σ[i] : νW (M, N) → νW (V) defined by

(σ[i](φ))( f [j]) = φ(( f ◦ σ)[j+ni]), (3.8)

where φ ∈ νW (M, N) and f ∈ C∞
[n](V)(j).

Example 3.27. Suppose that V = V(−r)⊕ · · · ⊕V(q) → M is a graded vector
bundle over M. A section σ ∈ Γ(V) has filtration degree −i if and only if
it can be written as a sum

σ = σ−i + σ−i+1 + · · ·+ σq, where σ−j ∈ Γ(V(−j)).

Then νW (V) = V and σ[−i] = σ−i with respect to this identification. Note
that σ[−i] ∈ Γ[i](νW (V)), by Example 3.25.



3.2 the weighted normal bundle 60

Lemma 3.28. For σ ∈ Γ(V)(i), the i-th homogeneous approximation is a smooth
section of νW (V) which is homogeneous of degree −i and which depends only
on the class of σ in Γ(V)(i)/Γ(V)(i+1). Moreover, for any f ∈ C∞

[n](V)(j) and
g ∈ C∞(M)(k) one has

f [j] ◦ σ[i] = ( f ◦ σ)[j+ni] ∈ C∞(νW (M, N)) and

g[k]σ[i] = (gσ)[i+k] ∈ Γ(νW (V)).
(3.9)

Proof. See Section C.1.

This establishes a map gr(Γ(V)) → Γpol(νW (V)). By abusing notation,
given σ ∈ Γ(V)(i) we denote both its class in Γ(V)(i)/Γ(V)(i+1) and its
i-homogeneous approximation by σ[i].

Theorem 3.29. If σb is a weighted frame for V|U , then the homogeneous approx-
imations σ

[vb]
b define a frame for νW (V|U) = νW (V)|νW (U,U∩N). In particular,

the map

gr(Γ(V)) → Γpol(νW (V)) (3.10)

is an isomorphism of graded gr(C∞(M))-modules and

Γ(νW (V)) = C∞(νW (M, N))⊗gr(C∞(M)) gr(Γ(V)).

Proof. Let pb ∈ C∞
[1](V|U)(−vb) be the linear vector bundle coordinates

defined by the frame σa and note that for any non-zero φ0 ∈ νW (U, U ∩ N)

one has

σ
[vb]
b (φ0)

(
p[−va]

a

)
= φ0

(
(pa ◦ σb))

[vb−va]
)
=

{
1 if a = b
0 else,

which shows that σ
[va]
a form a linearly independent set. In particular, this

shows that the map (3.10) is injective.
Since gr(C∞

pol(V|U)) is generated as an algebra over gr(C∞(U)) by the

elements p[−vb]
b , any φ ∈ νW (V|U) is determined by its value on gr(C∞(U))

and p[−vb]
b , b = 1, . . . , k. In particular, if νW (π)(φ) = φ0 then

φ = ∑
b

φ
(

p[−vb]
b

)
σ
[vb]
b (φ0),

so σ
[vb]
b spans as well.



3.2 the weighted normal bundle 61

To see that (3.10) is an isomorphism, it suffices to show that it is surjective
as we have already established injectivity. Suppose that σ ∈ Γ(νW (V|U))
can be written as σ = ∑b fbσ

[vb]
b . The pairing

Γ(νW (V))⊗ Γ(νW (V∗)) → C∞(νW (M, N))

respects homogeneity, hence

σ ∈ Γ[i](νW (V|U)) ⇐⇒ fb ∈ C∞
[i−vb]

(νW (U, N ∩ U))

for b = 1, . . . , k. This implies that gr(Γ(V)) → Γpol(νW (V)) is surjective,
which completes the proof.

3.2.4 Weighted Subbundles

Recall that a subbundle W → R of a linearly weighted vector bundle
V → M is called a weighted subbundle if there exist a weighted atlas of
subbundle coordinates for W. In this case, it is explained in Section 3.1.3
that W inherits a linear weighting.

Proposition 3.30. If W → R is a weighted subbundle of V → M, then νW (W)

is a subbundle of νW (V).

Proof. If xa, pb are weighted subbundle coordinates for W|R∩U , then the ho-
mogeneous approximations x[wa]

a , p[−vb]
b ∈ C∞(νW (V|U)) define subbundle

coordinates for νW (W|R∩U), as in Proposition 2.42.

Let (V|N)(i) → N be the filtration of V|N defined by the linear weighting
(see Proposition 3.4). Proposition 3.30 allows us to describe the weighted
normal bundle of V in terms of the associated graded bundle

gr(V|N) =
⊕

i

(V|N)(i)/(V|N)(i+1).

Corollary 3.31. Suppose that V → M is linearly weighted. If π : νW (M, N) →
N denotes the graded bundle projection, then one has a (non-canonical) identifica-
tion

νW (V) ∼= π∗gr(V|N).

Proof. Recall that V|N is a weighted subbundle of V and that the induced
weighting of V|N is given by the filtration (V|N)(i). As in Examples 3.23

(b), we have
νW (V|N) = gr(V|N).
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On the other hand νW (V|N) is a subbundle of νW (V)|N of equal rank, and
so νW (V|N) = νW (V)|N . Since π : νW (M, N) → N is a smooth homotopy
inverse of the inclusion ι : N ↪→ νW (M, N) it follows that

νW (V) ∼= π∗ι∗νW (V) = π∗(νW (V)|N) = π∗gr(V|N),

as claimed.

Example 3.32. If V → M is given the trivial weighting along the subbundle
W → R, then this proposition amounts to the identification

ν(V, W) ∼= π∗(V|N/W ⊕ W)

as vector bundles over π : ν(M, N) → N.

3.3 the weighted deformation bundle

Let V → M be a linearly weighted vector bundle. As explained above,
the weighting of M determines a weighted deformation space δW (M, N)

which admits a set-theoretic decomposition

δW (M, N) = νW (M, N) ⊔ (M × R×).

The purpose of this section is to explain how this construction carries over
to the context of linearly weighted vector bundles, yielding a weighted
deformation bundle δW (V) which is itself a vector bundle over δW (M, N).
Since many of the proofs in this section are very similar to those in the
previous section we will omit them for brevity.

3.3.1 Definitions

We use the same definition for the weighted deformation bundle as in Sec-
tion 2.5.

Definition 3.33. The weighted deformation bundle of the linearly weighted
vector bundle V → (M, N) is the character spectrum

δW (V) = Homalg(Rees(C∞
pol(V)), R)

Given f ∈ C∞
pol(V)(i), let f̃ [i] : δW (V) → R be as in Section 2.5 and

πδ = 1̃[−1] : δW (V) → R. If π : V → M and κλ : V → V denote the
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vector bundle projection and scalar multiplication by λ ∈ R, respectively,
it follows that we get maps

δW (π) : δW (V) → δW (M, N) and δW (κλ) : δW (V) → δW (V).

As before, these give δW (V) the structure of a family of vector spaces over
δW (M, N). The following can be proved by the same argument as [LM23,
Theorem 5.1] (cf. Theorem 2.40 and [LM23, Theorem 4.2]).

Theorem 3.34. Let V → M be a weighted vector bundle.

(a) The weighted deformation bundle has the unique structure of a C∞-vector
bundle over δW (M, N) of rank equal to that of V over δW (M, N) such
that πδ : δW (V) → R is a surjective submersion and that for all n ≥ 0

Rees(C∞
[n](V)) ⊆ C∞

[n](δW (V)).

(b) Given weighted vector bundle coordinates xa and pb on V|U , the func-
tions x̃a

[wa], p̃b
[−vb] serve as vector bundle coordinates on δW (V|U) =

δW (V)|δW (U,U∩N).

(c) This construction is functorial: any weighted vector bundle morphism
φ : V → W between linearly weighted vector bundles defines a vector
bundle morphism δW (φ) : δW (V) → δW (W).

As before, the surjective submersion πδ : δW (V) → R defines a decom-
position δW (V) = νW (V) ⊔ (V × R×). The following diagram commutes

δW (V)
δW (π) //

πδ
##

δW (M, N)

πδ
zz

R

so we can think of δW (V) as a family of vector bundles over δW (M, N),
with

δW (V)|π−1
δ (t) =

{
V t ̸= 0,
νW (V) t = 0.

(3.11)

Examples 3.35. (a) If V = V(−r) ⊕ · · · ⊕ V(q) is a graded vector bundle,
then there is a canonical diffeomorphism δW (V) → V × R given by
the family of maps

δW (V)|π−1
δ (t) → V,

{
(v−r, . . . , vq) 7→ (t−rv−r, . . . , tqvq), t ̸= 0
(v−r, . . . , vq) 7→ (v−r, . . . , vq), t = 0,

where we are identifying νW (V) with V for t = 0.
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(b) If (M, N) is a weighted pair and TM is linearly weighted as in Ex-
amples 3.3 (b), then

δW (TM) =
⋃
t∈R

TδW (M, N)|π−1
δ (t).

3.3.2 Zoom action of R×

The action of R× on νW (V) extends smoothly to a linear action of R× on
δW (V) such that for any f ∈ C∞

pol(V)(i) the homogeneous interpolation

f̃ [i] ∈ C∞(δW (V)) is homogeneous of degree i. On the open dense set
V × R× ⊆ δW (V), this action is given by

αλ(v, t) = (v, λ−1t)

Example 3.36. If V = V(−r) ⊕ · · · ⊕ V(−1) is a graded vector bundle then,
with respect to the identification δW (V) → V × R described in Exam-
ples 3.35, the zoom action is given by

αλ(v−r, . . . , vq, t) = (λrv−r, . . . , λ−qvq, λ−1t).

3.3.3 Sections of the weighted deformation bundle

Analogous to Section 3.2.3, let Γ[i](δW (V)) denote the sections of δW (V)

which are homogeneous of degree i with respect to the zoom action of R×,
and let

Γpol(δW (V)) =
⊕
i∈Z

Γ[i](δW (V)).

We are going to define an inclusion

Rees(Γ(V)) → Γpol(δW (V))

of Rees(C∞(M))-modules, where

Rees(Γ(V)) =

{
∑
i∈Z

σiz−i : σi ∈ Γ(V)(i)

}
⊆ Γ(V)[z, z−1].

Definition 3.37. Given σ ∈ Γ(V)(i), the i-th homogeneous interpolation is the
map σ̃[i] : δW (M, N) → δW (V) defined by

(σ̃[i](φ))( f z−j) = φ(( f ◦ σ)z−j−ni), (3.12)

where φ ∈ δW (M, N) and f ∈ C∞
[n](V)(j).
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Lemma 3.38. For σ ∈ Γ(V)(i), the i-th homogeneous interpolation is a smooth
section of δW (V) of homogeneity i such that, for any f ∈ C∞

[n](V)(j) and g ∈
C∞(M)(k), one has

f̃ [j] ◦ σ̃[i] = f̃ ◦ σ
[j+ni]

∈ C∞(δW (M, N)) and

g̃[k]σ̃[i] = g̃σ[i+k] ∈ Γ(δW (V)).
(3.13)

As was the case for the weighted normal bundle, this yields a map

Rees(Γ(V)) → Γpol(δW (V)), ∑
i

σiz−i 7→ ∑
i

σ̃
[i]
i

In terms of the decomposition (3.11) one finds, using the relations (3.13),
that if σ ∈ Γ(V)(i) then

σ̃[i]|π−1
δ (t) =

{
t−iσ t ̸= 0
σ[i] t = 0.

Example 3.39. Suppose that V = V(−r) ⊕ · · · ⊕ V(q) is a graded vector
bundle, and let

σ = σ−i + σ−i+1 + · · ·+ σq ∈ Γ(V)(−i).

With respect to the identification δW (V) → V × R described in Exam-
ples 3.35 (a), we have that

σ̃[−i] = σ−i + tσ−i+1 + · · ·+ ti+qσq,

which clearly extends to σ−i = σ[−i] as t → 0.

Theorem 3.40. If σb is a weighted frame for V|U , then the homogeneous interpo-
lations σ̃

[vb]
b define a frame for δW (V|U) = δW (V)|δW (U,U∩N). In particular, the

map
Rees(Γ(V)) → Γpol(δW (V))

is an inclusion of Rees(C∞(M))-modules and

Γ(δW (V)) = C∞(δW (M, N))⊗Rees(C∞(M)) Rees(Γ(V)).

Remark 3.41. In general, the map Rees(Γ(V)) → Γpol(δW (V)) fails to be
surjective because the map Rees(C∞(M)) → C∞

pol(δW (M, N)) need not be
surjective.

For completeness, we record the following.
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Proposition 3.42. If W → R is a weighted subbundle of V → M, then δW (W)

is a subbundle of δW (V).

3.4 the rescaled spinor bundle and ševera’s algebroid

We now take a some time to explain how our constructions put two
separate constructions in the literature, namely the rescaled spinor bundle
of Higson and Yi introduced in [HY19] and the "associative algebroid"
introduced by Ševera in [Šev17], under the same umbrella. The results
of this section are the result of discussions with Gabriel Beiner, Yiannis
Loizides, and Eckhard Meinrenken. See [Bei22] for another account and
more information on the connections to index theory.

3.4.1 The rescaled spinor bundle

Let M be an even dimensional spin Riemannian manifold with spinor
bundle S → M and Clifford connection ∇ on S. Higson and Yi define a
filtration of differential operators acting on sections of S by declaring that
Clifford multiplication and covariant differentiation have order −1. Thus,
D ∈ DO(S)(−q) if and only if it can be locally expressed as a sum of terms
of the form

f D1 · · · Dq

where f ∈ C∞(M) and each Di is either a covariant derivative ∇X, Clifford
multiplication c(X), or the identity operator (cf. [HY19, Definition 3.3.1]).
Higson and Yi say that D has Getzler order −q if D ∈ DO(S)(−q).

The Getzler filtration of DO(S) determines a filtration of Γ(S ⊠ S∗) as
follows. Recall that Cl(TM) is naturally filtered

Cl(TM) = Cl−dim(TM)(TM) ⊇ · · · ⊇ Cl0(TM) = C, (3.14)

hence S ⊠ S∗|M = S ⊗ S∗ ∼= Cl(TM) is naturally filtered. Define

Γ(S ⊠ S∗)(i) = {σ ∈ Γ(S ⊠ S∗) : D ∈ DO(S)(−q)

=⇒ Dσ ∈ Γ(S ⊠ S∗, Cli−q(TM))},
(3.15)

where we are using the identification Cl(TM) = S ⊠ S∗|M.

Theorem 3.43 ([HY19, Lemma 3.4.10]). . If M × M is given the trivial weight-
ing along the diagonal then the filtration (3.15) defines a linear weighting of
S ⊠ S∗ such that the induced filtration of S ⊠ S∗|M is given by (3.14).

Applying the weighted deformation bundle to S ⊠ S∗ with this linear
weighting yields the rescaled spinor bundle.
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Definition 3.44. (cf. [HY19, Section 3.4]). The rescaled spinor bundle is the
weighted deformation bundle

S = δW (S ⊠ S∗) → TM.

3.4.2 Ševera’s algebroid

Let V → M be a rank k vector bundle with inner product and assume
that the principal SO(k)-frame bundle admits a lift to a principal Spin(k)-
bundle P. Let Cl(Rk) be the complexified Clifford algebra, and consider
the action of Pair(Spin(k)) on Pair(P)× Cl(Rk) given by

(g1, g2).( f1, f2, v) = ( f1.g1, f2.g2, g1vg−1
2 ).

Definition 3.45 (cf. [Šev17]). If V is a rank k vector bundle equipped with
inner product and spin structure, the Clifford algebroid is the associated
bundle

C l(V) = Pair(P)×Pair(Spin(k)) Cl(Rk) → Pair(M)

We will show that there is a canonical linear weighting of C l(V), starting
with a technical lemma. The proof of this lemma uses weighted paths so in
order to keep our exposition short, we postpone the proof to the appendix.

Lemma 3.46. If Pair(P), Pair(Spin(k)) are given the doubled trivial weighting
along the diagonal, and Cl(Rk) is given the linear weighting defined by its
filtration by subspaces, then the group action

Pair(Spin(k))× Pair(P)× Cl(Rk) → Pair(P)× Cl(Rk) (3.16)

is a weighted morphism.

Proof. See C.2 (cf. [Bei22]).

A consequence of this lemma is the following theorem.

Theorem 3.47. Let π : Pair(P)× Cl(Rk) → C l(V) be the quotient map. Then

C∞
pol(C l(V))(i) = { f ∈ C∞

pol(C l(V)) : π∗ f ∈ C∞
pol(Pair(P)× Cl(Rk))(i)}

defines a linear weighting of C l(V), where Pair(P)×Cl(Rk) is given the product
weighting.

Proof. We have to find weighted vector bundle coordinates. Any point
p ∈ Pair(M) is contained in an open neighbourhood U ⊆ Pair(M) such
that Pair(P)|U is isomorphic to U × Pair(Spin(k)) as weighted manifolds.
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Choosing U small enough, we may assume that there exist weighted
coordinates xa ∈ C∞(U). If pb are linear weighted coordinates on Cl(Rk)

then since the action map (C.3) is weighted and the following diagram
commutes

Pair(P)|U × Cl(Rk) ∼= U × Pair(Spin(k))× Cl(Rk)

++
π

��
C l(V)|U ∼=

// U × Cl(Rk),

(3.17)

it follows that we can take xa, pb to be our weighted vector bundle coordi-
nates on C l(V)|U .

Definition 3.48. The Ševera algebroid is the weighted deformation bundle

τC l(V) = δW (V).



4
M U LT I P L I C AT I V E
W E I G H T I N G S

In this chapter we will develop the theory of multiplicative weightings for
Lie groupoids G ⇒ M. We will show that if G ⇒ M is multiplicatively
weighted along H ⇒ N, then one has Lie groupoids

νW (G, H) ⇒ νW (M, N) and δW (G, H) ⇒ δW (M, N).

We also discuss the appropriate notion of equivalence of weighted Lie
groupoids.

4.1 preliminaries on lie groupoids

4.1.1 Definition and basic examples

A Lie groupoid G ⇒ M is a smooth manifold G with a partially defined
associative binary operation together with two surjective submersions
t, s : G → M onto a smooth submanifold M ⊆ G. Elements of G are called
arrows, elements of M are called units, and the maps t, s are called the target
and source, respectively. The space of k-arrows is the k-fold fibre product

G(k) = {(g1, . . . , gk) ∈ Gk : s(gi) = t(gi+1), i = 1, . . . , k − 1};

we refer to G(2) as the space of composable arrows. The partially defined
multiplication is a map

multG : G(2) → G, (g1, g2) 7→ g1 ◦ g2

defined on composable arrows, satisfying

(a) g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3,

(b) t(g) ◦ g = g ◦ s(g) = g.

Moreover, we assume that for every g ∈ G there exists some h ∈ G such
that (g, h) ∈ G(2), (h, g) ∈ G(2) and that both g ◦ h and h ◦ g are units. It is
automatic that for a given g, the corresponding element h is unique and
denoted g−1; the map corresponding map g 7→ g−1 is denoted invG.

69
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A smooth map F : H → G between Lie groupoids H ⇒ N and G ⇒ M
is called a morphism of Lie groupoids if

F(g0 ◦ g1) = F(g0) ◦ F(g1).

If F is the inclusion of a submanifold then H ⇒ N is called a Lie sub-
groupoid. We will often denote a Lie groupoid G ⇒ M together with a Lie
subgroupoid H ⇒ N as a pair (G, H) ⇒ (M, N). If (G, H) ⇒ (M, N) is a
Lie groupoid pair with N = M then we call H a wide subgroupoid.

Remark 4.1. In general, it is not required our Lie groupoids to be Hausdorff
manifolds, asking only that the source (equivalently, target) fibres and units
be Hausdorff. However, for simplicity, we will assume that all groupoids
are Hausdorff.

Examples 4.2. (a) A Lie group is a Lie groupoid whose object space is a
single point.

(b) Any smooth manifold M defines a trivial Lie groupoid with s = t =
idM.

(c) The pair groupoid of a manifold M is the groupoid

Pair(M) = M × M ⇒ M

where s(m, m′) = m′ and t(m, m′) = m. Composition is defined as

(m, m′) ◦ (m′, m′′) = (m, m′′).

(d) Let G be a Lie group, M be a smooth manifold M, and

α : G × M → M, (g, m) 7→ g · m

be a smooth action. The action groupoid is the defined to be the
manifold G × M with source map s(g, m) = m, target t(g, m) = g · m,
and composition law

(g, m) = (g′, m′) ◦ (g′′, m′′) ⇐⇒ m = m′′, m′ = g′′ ·m′′, and g = g′g′′.

By identifying G × M with the graph of the group action, the action
groupoid can be realized as a Lie subgroupoid of G × Pair(M)

(e) A Lie groupoid G ⇒ M such that s = t is called a family of Lie groups
over M. Note that this differs slightly from a Lie group bundle over
M, since the Lie group structure may differ from fibre to fibre. In
particular, vector bundles are examples of Lie groupoids.
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An important observation is that the groupoid structure of G is com-
pletely determined by the graph of multiplication,

Γ(multG) = {(g, g0, g1) ∈ G3 : g = g0 ◦ g1} ⊆ G3.

Indeed,

(a) the objects of G are exactly the elements m ∈ G with the property
that (m, m, m) ∈ Γ(multG)

(b) given g ∈ G, s(g) is the unique element of G such that (g, g, s(g)) ∈
Γ(multG); t(g) is described similarly,

(c) g−1 is the unique element for which (s(g), g−1, g) ∈ Γ(multG) and
(t(g), g, g−1) ∈ Γ(multG).

4.1.2 The group of bisections

One consequence of the partially defined multiplication operation is that
there is no map

G → Diff(G)

generalizing left or right translation on a Lie group. Instead, one needs to
consider certain submanifolds S ⊆ G called bisections.

Definition 4.3. A bisection of a Lie groupoid G ⇒ M is a submanifold
S ⊆ G such that both t and s restrict to diffeomorphisms s|S, t|S : S → M.
The set of bisections of the groupoid G is denoted Γ(G).

The set of bisections is naturally a group, with multiplication given by

S1 ◦ S2 = {g1 ◦ g2 : (g1, g2) ∈ (S1 × S2) ∩ G(2)}.

The group Γ(G) acts on G in three ways:

(a) the left action

AL : Γ(G)× G → G, (S, g) 7→ AL
S(g) = h ◦ g,

where h ∈ S is the unique element such that s(h) = t(g);

(b) the right action

AR : Γ(G)× G → G, (S, g) 7→ AR
S (g) = g ◦ h−1,

where h ∈ S is the unique element so that s(h) = s(g);
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(c) the adjoint action, AdS = AR
SAL

S .

For a general Lie groupoid, a global bisection through an element g ∈ G
might not exist, unless the groupoid has connected source fibres ([ZCL09,
Theorem 3.1]). On the other hand, there always exists a local bisection
through any g ∈ G.

4.1.3 VB-groupoids

A useful tool for the problem of differentiating weighted groupoids is
the notion of a so-called "vector bundle groupoid", or VB-groupoid. Using
the Grabowski-Rotkiewicz characterization of vector bundles in terms of
their scalar multiplication (cf. [GR09]), Bursztyn, Cabrera, and del Hoyo
showed that VB-groupoids can be defined rather simply as groupoids with
a vector bundle scalar multiplication by groupoid morphisms [BCdH16,
Theorem 3.2.3]. Following their lead, we define graded bundle groupoids, or
GB-groupoids.

Definition 4.4 (cf. [BCdH16, Theorem 3.2.3]). A Lie groupoid V ⇒ E is
called a GB-groupoid if it is also a graded bundle such that the monoid
action κ : R × V → V is by groupoid morphisms. If V is a vector bundle
then it is called a VB-groupoid. A GB-subgroupoid is a Lie subgroupoid
which is closed under scalar multiplication.

If V ⇒ E is a VB-groupoid, then the zero section G ⊆ V inherits a
groupoid structure over the zero section M ⊆ E. We depict a VB-groupoid
as a diagram

V ////

��

E

��
G //// M

(4.1)

If V ⇒ E is any VB-groupoid, then the dual bundle V∗ is canonically a VB-
groupoid with units ann(E) (cf. [Mei17b, Theorem 4.8]; see also [Mac05,
Section 11.2] and [Pra88]). The groupoid structure on V∗ is uniquely
characterized by the requirement that µ = µ1 ◦ µ2 if and only if

⟨µ, v⟩ = ⟨µ1, v1⟩+ ⟨µ2, v2⟩

whenever v = v1 ◦ v2. The graph of multiplication of V∗ is

Γ(multV∗) = ann♯(Γ(multV)),

where ann♯(Γ(multV)) is the subbundle defined by

(µ2, µ1) ∈ ann♯(Γ(multV)) ⇐⇒ ⟨µ2, v2⟩ = ⟨µ1, v1⟩ ∀(v2, v1) ∈ Γ(multV).
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Example 4.5. The main example of a VB-groupoid is given by applying the
tangent functor to a Lie groupoid G ⇒ M. This yields the tangent groupoid,

TG ////

��

TM

��
G //// M.

An explicit formula for multiplication on the tangent groupoid can be given
using bisections. Indeed, let Xg0 ∈ Tg0 G and Yg1 ∈ Tg1 G be composable. If
S0 is a bisection through g0 and S1 is a bisection through g1, then

Xg0 ◦ Yg1 = (Tg0AR
S1
)(Xg0) + (Tg1AL

S0
)(Yg1)− (Tg1(AL

S0
AR

S1
t))(Yg1); (4.2)

see [MX97, Proposition 3.1].

We now record two lemmas that we will need later on.

Lemma 4.6 ([LBM14, Corollary C.4]). Let V ⇒ E be a VB-groupoid. If W
is a VB-subgroupoid, then ann(W) ⊆ V∗ is a VB-subgroupoid with objects
ann(W) ∩ ann(E).

Suppose that V ⇒ W and W ⇒ F are VB-groupoids with base groupoid
G ⇒ M. Their direct sum is the VB-groupoid

V ⊕ W // //

��

E ⊕ F

��
G //// M

with the obvious source and target maps, and multiplication defined by

(v0, w0) ◦ (v1, w1) = (v0 ◦ v1, w0 ◦ w1)

for ((v0, w0), (v1, w1)) ∈ V(2) ⊕ W(2) = (V ⊕ W)(2).

Lemma 4.7. If
V ////

��

E

��
G //// M

is a VB-groupoid, then TV|G is the direct sum VB-groupoid TG ⊕V ⇒ TM ⊕ E.

Proof. The map

TG ⊕ V → TV|G, (ξ, v) 7→ ξ + v,
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where we are identifying V with the vertical bundle in TV|G, is an iso-
morphism of vector bundles, so it remains to show that it is a groupoid
morphism. But this follows since multV : V(2) → V is a linear map with
base map multG, so

TmultV |G = TmultG ⊕ multV .

4.2 definition of multiplicative weightings

We are now move on to multiplicative weightings for Lie groupoids G ⇒ M.
The obvious definition is given by inserting the adjective "weighted" in the
standard definition. However, we recall from Section 2.2 and Section 2.3
that it is not obvious how to do this!

Definition 4.8. A weighting of G along H ⊆ G is said to be multiplicative if

(a) The units M ⊆ G are a weighted submanifold,

(b) the source map is a weighted submersion,

(c) multiplication m : G(2) → G is a weighted morphism, and

(d) inversion is a weighted morphism.

A groupoid with a multiplicative weighting is called a weighted Lie groupoid.

Remarks 4.9. (a) Since inversion is its own inverse, it is automatically a
weighted diffeomorphism.

(b) Since t = s ◦ inv, it follows that the target map is also a weighted
submersion.

(c) Since the source and target are weighted submersions, if follows
from Theorem 2.27 that the space of k-arrows is a weighted submani-
fold of Gk. In particular, the space of composable arrows is naturally
a weighted manifold, and therefore Definition 4.8 (c) makes sense.

(d) All of the face maps ∂i : G(k) → G(k−1),

∂i(g1, . . . , gk) =


(g2, . . . , gk) i = 0,
(g1, . . . , gi ◦ gi+1, . . . , gk) 0 < i < k,
(g1, . . . , gk−1) i = k,

and all the degeneracy maps

ϵi : G(k) → G(k+1) (g1, . . . , gk) 7→ (g1, . . . , gi, s(gi), gi+1, . . . , gk)

are automatically weighted.
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Note that in the definition we did not assume that H ⊆ G was a Lie
subgroupoid. It turns out that this is automatic.

Proposition 4.10. Suppose that a weighting of G ⇒ M along H is multiplicative.
Then H is a Lie subgroupoid of G with units N = H ∩ M.

Proof. Since M ⊆ G is a weighted submanifold, it follows by Proposi-
tion 2.9 that H intersects M cleanly; in particular, N = H ∩ M is a sub-
manifold. We have furthermore that N ̸= ∅ so long as H ̸= ∅ because
s : (G, H) → (M, N) is a map of pairs (it is a weighted morphism).

Similarly, both

multG : (G(2), H(2)) → (G, H) and invG : (G, H) → (G, H)

are maps of pairs, hence H is also closed under multiplication and inver-
sion. Finally, it follows from the normal form for weighted submersions
(Theorem 2.22) that the restrictions of s and t to H are submersions.

Lemma 4.11. Let V → M and W → N be smooth vector bundles and let
φ : V → W be a vector bundle morphism. Then φ is a submersion if and only if
it is fibrewise surjective and the base map φM : M → N is a submersion.

Proof. Suppose that φ is a submersion, and let p ∈ M. Since φ is a vector
bundle morphism, the tangent map Tp φ splits as Tp φ = Tp φM ⊕ φ with
respect to the splitting TpV = Tp M ⊕ Vp. Thus φM is a submersion and φ

is fibrewise surjective.
Conversely, if φ is fibrewise surjective and the base map φM : M → N

is a submersion then by the previous paragraph it is a submersion near
M ⊆ V. Since it is equivariant with respect to the R-action, it follows that
it is a submersion everywhere.

In practice it can be difficult to verify that all the structure maps are in-
deed weighted in the appropriate sense. As an application of Theorem 2.32

we have the following equivalent characterization of multiplicative weight-
ings.

Theorem 4.12. A weighting of G ⇒ M along H ⊆ G is multiplicative if and
only if

(a) M is a weighted submanifold of G,

(b) the graph of multiplication is a weighted submanifold of G3, and

(c) the filtration of TG|H is by subgroupoids

(TG|H)(i) ⇒ (TM|N)(i).
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Proof. Suppose that G is multiplicatively weighted along H. Since multi-
plication is a weighted morphism, its graph is a weighted submanifold,
establishing (b). To establish (c), note that since s, t, multG, and invG are
all weighted morphisms their tangent maps are filtration preserving and
so each

(TG|H)(i) ⇒ (TM|N)(i), i = −r,−r + 1, . . . , 0,

are set-theoretic subgroupoids. To show that they are Lie subgroupoids, it
remains to show that Ts and Tt are submersions. To see this, note that since
s is a weighted submersion its tangent map Ts : (TG|H)(i) ⇒ (TM|N)(i)
is a fibrewise surjection whose base map is a submersion. Therefore, it
follows by Lemma 4.11 that Ts : (TG|H)(i) ⇒ (TM|N)(i) is a submersion.
Similarly, Tt : (TG|H)(i) ⇒ (TM|N)(i) is a submersion, establishing (c).

For the converse, suppose that (a), (b), and (c) hold and let π1 : G(2) → G
be projection onto the first factor. It is sufficient to show that G(2) is a
weighted submanifold of G2 and that multG, π1 : G(2) → G are weighted
submersions for the following reason. Since the filtration of TG|H is by
subgroupoids

(TG|H)(i) ⇒ (TM|N)(i)
it follows that TinvG is filtration preserving and Ts is filtration preserving
and fibrewise surjective in each filtration degree. Therefore, to establish
conditions (b) and (d) in Definition 4.8 it suffices by Theorem 2.32 to show
that their graphs are weighted submanifolds. This will follow because the
graphs of invG and s are the inverse images of M ⊆ G under the weighted
submersions multG : G(2) → G and π1 : G(2) → G.

Let f : Γ(multG) → G2 be the restriction of the map G3 → G2 given
by projection to the last two factors. In order to show that G(2) is a
weighted submanifold, we will show that f is a weighted embedding.
Since this map is an embedding as well as a weighted morphism, it
suffices, by Theorem 2.16, to check that the maps

(TΓ(multG)|multH )(i) → (TG2|TH2)(i)

are injective, with range equal to the intersection with ran(T f ). This is
clear since (TG|H)(i) is a subgroupoid: the graph of its multiplication is a
subbundle of

TΓ(multG) = Γ(multTG).

This establishes the claim that G(2) is a weighted subbundle and that
f : Γ(multG) → G(2) is a weighted diffeomorphism. The maps multG and
π1 are weighted morphisms since they factor as compositions

G(2) → Γ(multG) ↪→ G3 → G.
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To see that they are weighted submersions we only need to check that the
maps

((TG|H)(i))(2) = ((TG(2)|H(2))(i) → (TM|N)(i)
are fibrewise surjective bundle maps, which follows since the (TG|H)(i)
are subgroupoids.

Corollary 4.13. Suppose that G ⇒ M is a weighted Lie groupoid and K ⇒ P is
a Lie subgroupoid. If K is a weighted submanifold of G then the induced weighting
is multiplicative.

Proof. It is clear that inversion invK : K → K is a weighted morphism
because it is the restriction of a weighted morphism to a weighted sub-
manifold. It remains to show that P is a weighted submanifold of K, that
s : K → P is a weighted submersion, and that multiplication on K is a
weighted morphism.

Consider the map K → K defined as the restriction of the composition

G s−→ M ↪→ G

to K. This is a weighted projection of K whose image is P, hence P is a
weighted submanifold of K by Proposition 2.11.

We now show that s|K : K → P is a weighted submersion. Since K is
a weighted submanifold, it follows by considering weighted submani-
fold coordinates that TK intersects (TG|H)(i) cleanly. By Theorem 4.12,
each (TG|H)(i) is a Lie subgroupoid of TG|H, so it follows by [Mei17b,
Theorem 4.20] that the intersections TK ∩ (TG|H)(i) = (TK|K∩H)(i) are
Lie subgroupoids with objects TP ∩ (TM|N)(i) = (TP|P∩N)(i). This, in
particular, implies that

Ts|K∩H : (TK|K∩H)(i) → (TP|P∩N)(i)

is fibrewise surjective, hence s|K : K → P is a weighted submersion.
Finally, we show that multiplication is weighted. Both s|K and t|k are

weighted submersions, and so K(2) is a weighted submanifold of G(2).
Since multiplication for K is the restriction of multiplication for G, it is a
weighted morphism.

Remark 4.14. In particular, Corollary 4.13 shows that "weighted subgroupoids"
are simply the Lie subgroupoids which are weighted submanifolds.

Examples 4.15. (a) If H ⇒ N is a Lie subgroupoid of G ⇒ M, then the
trivial weighting of G along H is multiplicative.
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(b) If (M, N) is a weighted pair, then M × M = Pair(M) is a weighted
groupoid with respect to the product weighting along Pair(N). In-
deed, the units are a weighted submanifold by Example 2.33, the
graph of multiplication is a weighted submanifold as it is the image
of the weighted embedding

M3 → M6 (m1, m2, m3) 7→ (m1, m3, m1, m2, m2, m3),

and the filtration of TPair(M)|Pair(N) is given by the subgroupoids

(TPair(M)|Pair(N))(i) = Pair((TM|N)(i)).

(c) If π : M → N is a weighted submersion, then the submersion
groupoid M ×π M is a weighted Lie groupoid. Indeed, this follows
by Corollary 4.13 as it is a weighted submanifold of the pair groupoid
Pair(M).

(d) A weighted Lie groupoid G ⇒ M with M equal to a point will
be called a weighted Lie group. In this case, the first condition
in Definition 4.8 is vacuous, and the second just says that H contains
the group unit. Hence, weighting of a Lie group along a submanifold
H is multiplicative if and only if H contains the group unit and both
multiplication and inversion are weighted morphisms.

(e) An action of a weighted Lie group G on a weighted manifold M will
be called weighted if the action map G × M → M is a weighted mor-
phism. In this case, the action groupoid G × M ⇒ M is a weighted
Lie groupoid. Indeed, the action groupoid can be identified with
the graph of the group action, a subgroupoid of G × Pair(M). Since
the group action is weighted, the graph is a weighted submanifold,
and the corresponding weighting on the action groupoid is weighted
by Corollary 4.13.

(f) If V → M is a vector bundle over M thought of as a Lie groupoid,
then a weighting is multiplicative if and only if it is linear and
concentrated in non-positive degrees.

(g) Let (G, H) be a weighted Lie group pair and P → B a principal G-
bundle with a principal weighting along Q ⊆ P (see Definitions A.4
(b)). By Proposition A.10, Q is a principal H-bundle. Using an ar-
gument analogous to to proof of Theorem A.8 one finds that the
product weighting on Pair(P) descends to a weighting of the Atiyah
groupoid At(P) = (P × P)/G along At(Q) = (Q × Q)/H and that
this weighting is multiplicative.
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Proposition 4.16. Let G ⇒ M be a weighted Lie groupoid. For all g ∈ G there
is a local bisection through g which is given by a weighted submanifold.

Proof. We may assume that g ∈ H as otherwise the statement is obvious.
The tangent space TgG is a weighted vector space (cf. Remark 3.5) with
both ker(Tgt) and ker(Tgs) as weighted subspaces. We may choose a
subspace of TgG which is a weighted complement to both. This weighted
subspace is realized as the tangent space to a weighted submanifold S.
Taking S smaller if needed, this is the desired local bisection.

4.2.1 Weighted VB-groupoids

Using the conclusion of Theorem 4.12, we can combine linear weightings
and multiplicative weightings to give rise to a notion of weighted VB-
groupoids. These will be used for the differentiation procedure discussed
in Section 5.5.

Definition 4.17. A weighted VB-groupoid is a VB-groupoid

V // //

��

E

��
G //// M

together with a linear weighting such that

(a) E is a weighted subbundle of V,

(b) the graph of multiplication is a weighted subbundle of V3, and

(c) the filtrations of V|H and TG|H are by subgroupoids

(V|H)(i) ⇒ (E|N)(i) and (TG|H)(i) ⇒ (TM|N)(i),

respectively.

Note that this definition ensures that the weighting of G along H is also
multiplicative.

Example 4.18. If G ⇒ M is a weighted groupoid, then TG ⇒ TM is a
weighted VB-groupoid. Indeed, since M is a weighted submanifold of G it
follows that TM is a weighted subbundle of TG. Similarly, we have that

Γ(multTG)) = TΓ(multG) ⊆ TG3,

so it is a weighted subbundle. Finally, the filtration of

T(TG)|H = TG|H ⊕ TG|H
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is by subgroupoids because the weighting of G is multiplicative.

Lemma 4.19. Let V → M be a weighted vector bundle and W ⊆ V a weighted
subbundle. Then ann(W) is a weighted subbundle of V∗.

Proof. See Section C.3.

Proposition 4.20. Let V ⇒ E be a weighted VB-groupoid. Then the dual VB-
groupoid V∗ ⇒ ann(E), equipped with the dual weighting (Section 3.1.2), is a
weighted VB-groupoid.

Proof. Since E is a weighted subbundle of V , its annihilator is a weighted
subbundle of V∗ by Lemma 4.19. Similarly, ann♯(Gr(multV )) = Gr(multV∗)

is a weighted subbundle of (V∗)3 (see Remark C.6). To conclude, we recall
that

(V∗|H)(i) = ann((V|H)(−i+1))

whence the filtration of (TV∗)|H is by subgroupoids, since the annihilator
of a VB-subgroupoid is itself a VB-subgroupoid by Lemma 4.6.

4.3 the weighted normal and deformation groupoids

Let G ⇒ M be a Lie groupoid. The most naive definition of a multiplicative
weighting would be one with the property that the groupoid structure G ×
R× ⇒ M × R× extends to a groupoid structure δW (G, H) ⇒ δW (M, N).
In this section we will show that this is equivalent to our definition of
multiplicative weighting.

Lemma 4.21. Suppose that (M, N) and (M′, N′) are weighted pairs and F :
M → M′ is a smooth map. Then F is a weighted morphism if and only if the map

F̃ : M × R× → M′ × R×, (p, t) 7→ (F(p), t)

extends to a smooth map δW (M, N) → δW (M′, N′).

Proof. Given f ∈ C∞(M)(i) we will show that the function

f̃ [j] : M × R× → R p 7→ t−i f (p)

extends to δW (M, N) if and only if i ≥ j. Working locally we may assume
that xa is a global weighted coordinate system on M. Let

ya = x̃[wa]
a =

{
t−wa xa t ̸= 0
x[wa]

a t = 0
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be the corresponding (global) coordinates on δW (M, N). Using that f ∈
C∞(M)(i) we may write

f (x1, . . . , xm) = χ(x1, . . . , xm)xs = χ(x1, . . . , xm)xs1
1 xs2

2 · · · xsm
m

where χ ∈ C∞(M) and s · w = ∑a sawa = i. Then, for t ̸= 0, we have

f̃ [j](y, t) = t−j f (x) = t−jχ(x)xs = ts·w−jχ(tw1 y1, . . . , twm ym)ys

which extends smoothly to t = 0 if and only if i − j = s · w − j ≥ 0.
To see how this implies the lemma, yb ∈ C∞(M)(w′

b)
be weighted co-

ordinates on M′. Then F extends to δW (M, N) if and only if each of the
component functions fb = F∗yb extend to δW (M, N). By the previous
argument, this happens if and only if each fb has weight w′

b, which is
equivalent to F being a weighted morphism.

We now state the main theorem of the chapter.

Theorem 4.22. Let G ⇒ M be a Lie groupoid which is weighted along the Lie
subgroupoid H ⇒ N. If the weighting of G along H is multiplicative, then the
Lie groupoid G × R× → M × R× extends uniquely to

δW (G, H) ⇒ δW (M, N).

Conversely, if (M, N) is a weighted pair and the groupoid structure on G×R× ⇒
M × R× extends to δW (G, H) ⇒ δW (M, N), then (G, H) is a weighted Lie
groupoid pair.

Proof. Suppose that the weighting of G along H is multiplicative. Since
M is a weighted submanifold of G, it follows from the discussion in Sec-
tion 2.5.2 (b) that δW (M, N) is a submanifold of δW (G, H). Since both s, t :
G → M are weighted submersions, the maps δW (sg), δW (tg) : δW (G, H) →
δW (M, N) are submersions by Theorem 2.49. By Section 2.5.2 (c) we have
that δW (G, H)(2) = δW (G(2), H(2)), and therefore define groupoid multi-
plication by

multδW (G,H) = δW (multG).

Associativity of multiplication, that δW (M, N) are the units, and exis-
tence of inverses all follow from functoriality. For example, the fact that
multδW (G,H)(φ, sδW (G,H)(φ)) = φ for any φ ∈ δW (G, H) follows since the
composition

G
(id,s) // G(2) multG // G

is the identity. Uniqueness of this extension is clear since G × R× is a
dense open set in δW (G, H).
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Conversely, suppose that the Lie groupoid structure of G × R× ⇒
M×R× extends to δW (G, H) → δW (M, N). By Lemma 4.21, it follows that
inversion is a weighted morphism and, using Theorem 2.49 in addition,
the source and target maps are weighted submersions. Similarly, M is
a weighted submanifold of G. Since s and t are weighted submersions
G(2) is a weighted submanifold of G2, and δW (G, H)(2) = δW (G(2), H(2))

because this holds on the dense open set G2 × R ⊆ δW (G2, H2). It follows
from Lemma 4.21 that multG is a weighted morphism as well.

Remark 4.23. If G ⇒ M is multiplicatively weighed along a wide sub-
groupoid H ⇒ M then δW (M, M) = M × R and we may think of

δW (G, H) ⇒ M × R

as a family of Lie groupoids over M.
Recall (Definition 4.4) that a GB-groupoid is a Lie groupoid together

with a monoid action of R by groupoid morphisms. Applying the weighted
normal functor to a weighted Lie groupoid gives an example of such an
object.

Corollary 4.24. If (G, H) ⇒ (M, N) is a weighted Lie groupoid pair, then

νW (G, H) ⇒ νW (M, N)

is a GB-groupoid with

(a) sνW (G,H) = νW (s) and tνW (G,H) = νW (t),
(b) νW (G, H)(2) = νW (G(2), H(2)),
(c) multνW (G,H) = νW (multG)

(d) invνW (G,H) = νW (invG)

Examples 4.25. (a) If G ⇒ M is trivially weighted along H ⇒ N, then
νW (G, H) is just ν(G, H) ⇒ ν(M, N) with its usual Lie groupoid
structure.

(b) If (M, N) is weighted pair, then the product weighting of Pair(M)

along Pair(N) is multiplicative and

δW (Pair(M), Pair(N)) = Pair(δW (M, N))

by the discussion in Section 2.5.2 (c).

(c) If (M, N) and M′, N′) are weighted pairs, and q : M → M′ is a
weighted submersion, then submersion groupoid M ×M′ M is multi-
plicatively weighted along N ×N′ N. In this case

δW (M ×M′ M, N ×N′ N) = δW (M, N)×δW (M′,N′) δW (M, N),
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see Section 2.5.2 (c) again.

(d) Suppose that (G, H) is a weighted Lie group pair and (M, N) is a
weighted G-space, then δW (G, H) acts on δW (M, N) and applying
the weighted deformation functor to the action groupoid gives that
action groupoid for the action of δW (G, H) on δW (M, N).

(e) Let G be a weighted Lie group and P → B a weighted princi-
pal G-bundle. Then δW (P, Q) → δW (B, C) is a weighted principal
δW (G, H)-bundle and

At(δW (P, Q)) = δW (At(P), At(Q)).

(f) ([VEY17, SH18]) Recall that a filtered manifold is a manifold M
together with a filtration

TM = F−r ⊇ F−r+1 ⊇ · · · ⊇ F−1 ⊇ 0

by subbundles satisfying [Γ(F)(−i), Γ(F−j)] ⊆ Γ(F−i−j). By Theo-
rem 2.54, the product filtration

Pair(TM) = Pair(F−r) ⊇ Pair(F−r+1) ⊇ · · · ⊇ Pair(F−1) ⊇ 0

defines a weighting of Pair(M) along M. Since the weighting is along
M, it follows in particular that it is a weighted submanifold and it is
shown in [VEY17] that the groupoid structure

Pair(M)× R× ⇒ M × R×

extends to δW (Pair(M), M) ⇒ M × R×. By Theorem 4.22 it follows
that this weighting is multiplicative. In the next chapter we will
give a direct proof of this fact (Theorem 5.23). In this example,
νW (Pair(M), M) ⇒ M is the family of simply connected Lie groups
integrating the family of nilpotent Lie algebras

tH M =
⊕

H−i/H−i+1 → M.
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The infinitesimal counterpart a Lie groupoid is a Lie algebroid. In this chap-
ter we will define infinitesimally multiplicative weightings (Definition 5.11),
which are the infinitesimal analogue of multiplicative weightings. We
then explain two equivalent characterizations in terms of linear Poisson
manifolds and the de Rham complex of the Lie algebroid (Theorem 5.15).
We will then discuss differentiation of multiplicative weightings (The-
orem 5.20) and integration of infinitesimally multiplicative weightings
along wide subalgebroids (Theorem 5.23), and use this to show that Lie
groupoids with a multiplicative weighting along their units are in 1-1 cor-
respondence with filtered groupoids in the sense of van Erp and Yuncken
(cf. [VEY19, Definition 67]).

5.1 preliminaries on lie algebroids

Lie algebroids were introduced by Pradines in [Pra67].

Definition 5.1. A Lie algebroid over a smooth manifold M is a vector bundle
A → M together with a Lie bracket [·, ·] : Γ(A)× Γ(A) → Γ(A) and a
vector bundle morphism a : A → TM, called the anchor, such that

[σ, f τ] = f [σ, τ] + La(σ) f · τ

for all σ, τ ∈ Γ(A) and f ∈ C∞(M).

We use the notation A ⇒ M to imply that the vector bundle A → M is
a Lie algebroid.

Examples 5.2. (a) The tangent bundle TM of any smooth manifold M
is a Lie algebroid with anchor map given by the identity.

(b) A Lie algebroid over a point is a Lie algebra.

(c) The tangent bundle TF M of a foliation F on M is a Lie algebroid
with anchor map given by the identity.

84
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(d) If κ : P → M is a principal G-bundle, then At(P) = TP/G → M is
a Lie algebroid with Lie bracket induced by the Lie bracket on G-
invariant vector fields on P and anchor map induced by Tκ : TP →
TM.

In the special case the P is the frame bundle of a vector bundle
V → M, we may identify Γ(At(P)) with the linear vector fields on V,
i.e. the vector fields X ∈ X(V) with the property that

LX : C∞
[n](V) → C∞

[n](V)

for all n ≥ 0, where C∞
[n](V) denotes the functions on V which are

fibrewise homogeneous of degree n (see Section 2.4.1).

(e) A family of Lie algebras is a vector bundle A → M with a fibre-wise
Lie bracket. A family of Lie algebras is a Lie algebroid over M by
taking the anchor map to be zero. Conversely, any Lie algebroid with
zero anchor map is given in this way.

(f) Let ω ∈ Ω2(M) be a 2-form on a manifold M and consider the vector
bundle A = TM × R → M. Define a bracket on sections by

[X + f , Y + g] = [X, Y] + LXg −LY f + ω(X, Y)

and let a : TM × R → TM be the projection onto the first factor.
Then (A, [·, ·], a) is a Lie algebroid if and only if ω is closed.

For our work on weighted Lie algebroids, we will need two equivalent
characterizations of Lie algebroids.

5.1.1 Lie algebroids as linear Poisson manifolds

Recall that a Poisson structure on a manifold M is a is skew-symmetric
bilinear map {·, ·} : C∞(M)× C∞(M) → C∞(M) such that, for all f , g, h ∈
C∞(M),

(i) the derivation property: { f , gh} = { f , g}h + g{ f , h}, and

(ii) the Jacobi identity: { f , {g, h}} = {{ f , g}, h}+ {g, { f , h}}.

A Poisson structure on M defined bivector field π ∈ X2(M) = Γ(∧2TM)

by the property that
π(d f , dg) = { f , g}. (5.1)

Conversely, a bivector field π ∈ X2(M) defines a skew-symmetric bracket
on C∞(M) satisfying the derivation property by (5.1); it is called a Poisson
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bivector field if the induced bracket on C∞(M) satisfies the Jacobi identity.
If V is a vector bundle, then a Poisson structure on V is linear if C∞

[n](V) is
a subalgebra of C∞(V) for any n ≥ 0. Equivalently, π ∈ X2

[−1](V).

Example 5.3. Let ω ∈ Ω2(M) be a symplectic form on M. Since ω is
non-degenerate it defines an isomorphism

ω♭ : TM → T∗M, X 7→ ιXω.

Let π♯ : T∗M → TM be the inverse map and, given f ∈ C∞(M), let
X f ∈ X(M) denote the Hamiltonian vector field

X f = −π♯(d f ).

Then
{ f , g} = ω(X f , Xg)

defines a Poisson structure on M. In this way, every symplectic manifold is
canonically a Poisson manifold. If x1, . . . , xm, y1, . . . , ym are local Darboux
coordinates for M so that ω = ∑i dxi ∧dyi, then the corresponding Poisson
bivector field is given by

∑
i

∂

∂xi
∧ ∂

∂yi
. (5.2)

In particular, the cotangent bundle T∗M of any manifold M is canonically
a Poisson manifold. Moreover, from (5.2) we deduce that it is a linear
Poisson manifold.

Given a section σ ∈ Γ(V) let fσ ∈ C∞
[1](V

∗) be the corresponding linear
function. The following theorem explains how linear Poisson structures
are related to Lie algebroid structures.

Theorem 5.4. [Cou90, Theorem 2.1.4] For any Lie algebroid A ⇒ M, the total
space of the dual bundle p : A∗ → M has a unique Poisson structure such that
for all sections σ, τ ∈ Γ(A),

{ fσ, fτ} = f[σ,τ].

The anchor map is described in terms of the Poisson bracket as

p∗(a(σ) f ) = { fσ, p∗ f },

for f ∈ C∞(M) and σ ∈ Γ(A), while {p∗ f , p∗g} = 0 for all functions f , g. The
Poisson structure on A∗ is linear; conversely, every linear Poisson structure on a
vector bundle V → M arises in this way from a unique Lie algebroid structure
on the dual bundle V∗.
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Example 5.5. Recall from Examples 5.2 (a) that the tangent bundle TM of
any manifold M is a Lie algebroid. The Poisson structure on T∗M described
in Theorem 5.4 is the one corresponding to the canonical symplectic
structure, as described in Example 5.3.

5.1.2 Super-geometric characterization of Lie algebroids

A Lie algebroid structure on a vector bundle A → M induces a differential
graded algebra structure on Γ(∧A∗) by setting

(dAω)(σ1, . . . , σk) = ∑
i<j

(−1)i+jω([σi, σj], σ1, . . . , σ̂i, . . . , σ̂j, . . . , σk)

+
k

∑
i=1

(−1)i+1La(σi)ω(σ1, . . . , σ̂i, . . . , σk),
(5.3)

where ω ∈ Γ(∧k A∗) and where the hat denotes omission.
Vaintrob [Vai97] observed that the converse is also true. If A → M is

a vector bundle and dA : Γ(∧A∗) → Γ(∧A∗) is a degree +1 derivation
satisfying dA ◦ dA = 0, then we can define a Lie algebroid structure on A
as follows. For σ ∈ Γ(A), let ισ : Γ(∧A∗) → Γ(∧A∗) be contraction by σ

and let Lσ = dA ◦ ισ + ισ ◦ dA. Given σ1, σ2 ∈ Γ(A), define [σ1, σ2] ∈ Γ(A)

by the formula
ι[σ1,σ2] = [Lσ1 , ισ2 ].

Finally, define the map a : A → TM by the equation

La(σ) f = Lσ f ,

where on the right hand side we are identifying Γ(∧0A∗) with C∞(M).
Then (A, [·, ·], a) is a Lie algebroid over M. Moreover, these two construc-
tions are inverse to one another. Summarizing, we have:

Theorem 5.6 ([Vai97]). Let A → M be a vector bundle, and let dA be a
differential on Γ(∧A∗), that is, dA is a derivation of degree 1 with dA ◦ dA = 0.
Then dA determines a unique Lie algebroid structure on A for which dA is the de
Rham differential.

This approach has the benefit that Lie algebroid morphisms are readily
defined.

Definition 5.7. Let A ⇒ M and B ⇒ N be Lie algebroids. A vector bundle
morphism φ : B → A is a Lie algebroid morphism if the pullback map
Γ(∧A∗) → Γ(∧B∗) is a cochain map.

See [Mei17b, Section 12] for more details.
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Remark 5.8. In super-geometric terms, the graded commutative algebra
Γ(∧A∗) is understood as the smooth functions on a "super-manifold" de-
noted1 A[1]. The differential dA is a derivation of this graded commutative
algebra, hence can be thought of as a vector field H on A[1]. The condition
that dA ◦ dA = 0 is equivalent to [H, H] = 2H2 = 0. Such a vector field
is called a homological vector field. One may therefore restate Theorem 5.6
as saying that a Lie algebroid is a vector bundle A → M together with a
homological vector field H.

5.1.3 The Lie functor

We now explain how to associate a Lie algebroid to a Lie groupoid G ⇒ M;
our approach is somewhat non-standard, so for more details see [Mei17a,
Section 11]. As a vector bundle, let Lie(G) = ν(G, M) → M be the normal
bundle of the units. Recall that the tangent bundle TG is a VB-groupoid,
hence dually we obtain the cotangent groupoid

T∗G ////

��

Lie(G)∗

��
G //// M

The canonical Poisson structure on T∗G defines a Poisson structure on
Lie(G)∗ by the formula

{s∗T∗G f , s∗T∗Gg}T∗G = s∗T∗G{ f , g}Lie(G)∗ , (5.4)

which is linear since the Poisson structure on T∗G is linear. By Theorem 5.4,
this gives Lie(G) the structure of a Lie algebroid.

We can describe this Lie algebroid structure more concretely as follows.
Since the source and target maps sG, tG : G → M agree on M, it follows
that Ts − Tt : TG → TM vanishes on TM and therefore descends to a
map a : Lie(G) → TM; we take this to be the anchor map. To describe
the bracket on sections, let σ ∈ Γ(Lie(G)) and let fσ ∈ C∞

[1](Lie(G)∗) be
the corresponding linear function. Since sT∗G : T∗G → Lie(G)∗ is a vector
bundle morphism, the pullback s∗T∗G fσ ∈ C∞

[1](T
∗G) is a linear function

and therefore corresponds to a vector field σL ∈ X(G); it is called the
left-invariant extension of σ ∈ Γ(Lie(G)). The Lie bracket on Γ(Lie(G)) is
the determined by the equation

[σL, τL] = [σ, τ]L.

1 Not to be confused with the shifted weighting, as described in Section 3.1.2 (c).
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Similarly, we define the right-invariant extension of σ ∈ Γ(Lie(G)) to be
the vector field σR ∈ X(G) corresponding to −t∗T∗G fσ ∈ C∞

[1](T
∗G).

Example 5.9 ([Mac05, Example 11.3.1]). Let G = Pair(M) ⇒ M. In this
case, we identify Lie(Pair(TM)) with TM using the map

TM ⊕ TM → TM, (X, Y) 7→ Y − X.

The cotangent groupoid of Pair(M) is the VB-groupoid

T∗Pair(M) // //

��

T∗M

��
Pair(M) //// M,

where
sT∗Pair(M)(ξ, τ) = τ and tT∗Pair(M)(ξ, τ) = −ξ.

Given a vector field X ∈ X(M), we have that

s∗T∗Pair(M) fX = f(0,X) and t∗T∗Pair(M) fX = f(−X,0),

hence XL = (0, X) ∈ X(Pair(M)) and XR = (X, 0) ∈ X(Pair(M)).

For reference, we record the following fact.

Lemma 5.10. Let G ⇒ M be a Lie groupoid with Lie algebroid Lie(G) ⇒ M.
Then for all σ, τ ∈ Γ(Lie(G)):

(a) a(σ) ∼i σL − σR, where i : M → G is the inclusion, and

(b) [σL, τR] = 0 and [σR, τR] = −[σ, τ]R.

5.2 definition of infinitesimally multiplicative weight-
ings

Let A ⇒ M be a Lie algebroid.

Definition 5.11. An infinitesimally multiplicative weighting of A ⇒ M is a
linear weighting of A with the additional properties that

(a) a(Γ(A)(i)) ⊆ X(M)(i) for all i, and

(b) for all σ ∈ Γ(A)(i) and τ ∈ Γ(A)(j), we have

[σ, τ] ∈ Γ(A)(i+j).
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A Lie algebroid endowed with an infinitesimally multiplicative weighting
is called a weighted Lie algebroid.

Examples 5.12. (a) If B ⇒ N is a Lie subalgebroid of A ⇒ M, then the
trivial weighting of A along B is infinitesimally multiplicative.

(b) If (M, N) is a weighted pair, then TM with its induced weighting is
a weighted Lie algebroid.

(c) If π : M → N is a weighted submersion, then ker(Tπ) is infinitesi-
mally weighted via the filtration

Γ(ker(Tπ))(i) = {X ∈ X(M)(i) : X ∼π 0}.

(d) Recall from Remark 3.5 that a linear weighting of a vector space
is simply a filtration by subspaces. Hence, an infinitesimally multi-
plicative weighting of a Lie algebra g is given by a filtration of g by
subspaces gi with the property that

[gi, gj] ⊆ gi+j. (5.5)

If (G, H) is a weighted Lie group pair then the filtration of TG|H
restricts to a filtration of g satisfying (5.5). Hence the Lie algebra
of a weighted Lie group inherits an infinitesimally multiplicative
weighting.

(e) An action of a weighted Lie algebra g on a weighted manifold M is
called weighted if the action map

g× M → TM, (ξ, p) 7→ ξM(p)

is a morphism of weighted vector bundles. In this case, the action
algebroid

g× M ⇒ M

is a weighted Lie algebroid.

(f) Any linearly weighted vector bundle can be thought of as a weighted
Lie algebroid by taking both the anchor and bracket to be zero.

(g) If G is a weighted Lie group and P → M is a principal G-bundle
with a principal weighting along Q → N, then the Atiyah alge-
broid At(P) ⇒ M has a canonical Lie algebroid weighting along
At(Q) ⇒ N. The filtration of the sections is defined by the identifica-
tion with G-invariant vector fields on P. Similarly, the Lie algebroid
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gau(P) = (P × g)/G ⇒ M has a canonical infinitesimally multiplica-
tive weighting along gau(Q) ⇒ N. Moreover,

0 −→ gau(P) −→ At(P) −→ TM −→ 0

is an exact sequence of weighted vector bundles in the sense that one
can find a splitting TM → At(P) which is a weighted vector bundle
morphism.

(h) An infinitesimally multiplicative weighting of a Lie algebroid A ⇒ M
along the zero subalgebroid is given by a filtration

A = F−r ⊇ F−r+1 ⊇ · · · ⊇ 0

such that [Γ(F−i), Γ(F−j)] ⊆ Γ(F−i−j). If A = Lie(G) for some Lie
groupoid G, then this is a Lie filtration of G, in the sense of van Erp
and Yuncken (cf. [VEY17, Definition 17]). In particular, a Lie filtration
of M is a infinitesimally multiplicative weighting of TM along the
zero section.

(i) Let (M, N) be a weighted pair and let ω ∈ Ω2(M) be closed. Let
A = TM × R ⇒ M be the Lie algebroid defined in Examples 5.2 (f),
with

[X + f , Y + g] = [X, Y] + LX f −LYg + ω(X, Y)

Then Γ(A)(i) = X(TM)(i)⊕C∞(M)(i) is an infinitesimally multiplica-
tive weighting if and only if ω ∈ Ω2(M)(0).

Let A ⇒ M be a weighted Lie algebroid. Given a frame weighted σa for
A|U let Γc

ab ∈ C∞(U) be the corresponding structure functions for the Lie
algebroid, defined by

[σa, σb] = ∑
c

Γc
abσc.

Since ∑c Γc
abσc ∈ Γ(V|U)(va+vb) if and only if Γc

ab ∈ C∞(U)(va+vb−vc), we
have the following lemma.

Lemma 5.13. A linear weighting of a Lie algebroid A ⇒ M is infinitesimally
multiplicative if and only if the anchor map is a weighted vector bundle morphism
and for any choice of weighted frame σa ∈ Γ(A|U)(va) the associated structure
functions satisfy Γc

ab ∈ C∞(U)(va+vb−vc).

Remark 5.14. For a weighted Lie algebra g with structure constants Γc
ab,

this says that Γc
ab = 0 whenever va + vb > vc.
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5.3 alternative characterizations of lie algebroid weight-
ings

We now explain the weighted analogue of the characterizations of Lie alge-
broids described in Section 5.1.1 and Section 5.1.2. The latter perspective
allows for quick definition of weighted Lie algebroid morphisms, whereas
the former will be used in our proof of Theorem 5.20, which says that the
Lie algebroid of a weighted Lie groupoid has a canonical infinitesimally
multiplicative weighting.

Before we begin, we remind the reader of Section 3.1.2 and Theorem 3.8,
where we explain how a linear weighting of V → M defines a linear
weighting of V∗ → M and how this can be described in terms of a
filtration of C∞

pol(V
∗).

Theorem 5.15. Let A ⇒ M be a Lie algebroid endowed with a linear weighting.
Then the following are equivalent.

(a) A is a weighted Lie algebroid,

(b) the Poisson bivector field π ∈ X2(A∗) has filtration degree zero,

(c) the differential dA : Γ(∧A∗) → Γ(∧A∗) is filtration preserving.

Proof that (a) and (b) are equivalent. Let {·, ·}π be the Poisson bracket de-
fined by π. By considering weighted vector bundle coordinates we see that
π ∈ X2

[−1](A∗) has filtration degree zero if and only if

{·, ·}π : C∞
[n](A∗)(i) × C∞

[n](A∗)(j) → C∞
[n](A∗)(i+j) (5.6)

for n=0,1.
We start with n = 1. Given σ ∈ Γ(A)(i) and τ ∈ Γ(A)(j), let fσ ∈

C∞
[1](V

∗)(i) and fτ ∈ C∞
[1](V

∗)(j) be the corresponding linear functions. The
equation

{ fσ, fτ}π = f[σ,τ]

shows that [σ, τ] ∈ Γ(V)(i+j) if and only if { fσ, fτ}π ∈ C∞
[1](V

∗)(i+j),
i.e. (5.6) holds for n = 1.

Now let f ∈ C∞(M)(j). Since the bundle projection p : A∗ → M is a
weighted morphism and M is a weighted submanifold of A∗, the equation

p∗(La(σ) f ) = { fσ, p∗ f }π

shows that { fσ, p∗ f }π ∈ C∞
[1](V

∗)(i+j) if and only if La(σ) f ∈ C∞(M)(i+j).
Since f ∈ C∞(M)(j) was arbitrary, the latter holds if and only if a(σ) ∈
X(M)(i). Thus (5.6) holds for n = 0 if and only if a : Γ(V)(i) → X(M)(i),
which completes the proof.
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Proof that (a) and (c) are equivalent. Suppose that A is a weighted Lie alge-
broid and let σj ∈ Γ(V)(ij) and ω ∈ Γ(∧k A∗)(i). Since [σℓ, σj] ∈ Γ(V)(iℓ+ij)

and a(σj) ∈ X(M)(ij) it follows that both

ω([σℓ, σj], σ1, . . . , σ̂ℓ, . . . , σ̂j, . . . , σk) and La(σℓ)ω(σ1, . . . , σ̂ℓ, . . . , σk+1)

are in C∞(M)(i+i1+···+ik+1). It follows by Equation 5.3 that

(dAω)(σ1, . . . , σk+1) ∈ C∞(M)(i+i1+···+ik+1),

hence dA is filtration preserving.
For the converse, recall that the weighting of ∧A∗ is defined so that

ισ : Γ(∧A∗)(j) → Γ(∧A∗)(i+j) if and only if σ ∈ Γ(A)(i). In particular, if dA
is filtration preserving then

Lσ = dA ◦ ισ + ισ ◦ dA : Γ(∧A∗)(j) → Γ(∧A∗)(i+j)

whenever σ ∈ Γ(A)(i). Thus, given σ1 ∈ Γ(A)(i) and σ2 ∈ Γ(A)(j), the
formula ι[σ1,σ2] = [Lσ1 , ισ2 ] implies that [σ1, σ2] ∈ Γ(A)(i+j). Similarly, given
σ ∈ Γ(A)(i), the formula La(σ) f = Lσ f implies that a(σ) ∈ X(M)(i).

As promised, we give the following definition.

Definition 5.16. Let A ⇒ M and B ⇒ N be weighted Lie algebroids. A
weighted Lie algebroid morphism φ : B → A is a vector bundle mor-
phism such that pullback map Γ(∧A∗) → Γ(∧B∗) is a filtration preserving
cochain map.

5.4 the weighted normal and weighted deformation alge-
broids

We now explain how the weighted normal bundle and weighted defor-
mation bundles of a weighted Lie algebroid A ⇒ M are naturally Lie
algebroids.

Theorem 5.17. Let A ⇒ M be a weighted Lie algebroid. Then both νW (A) →
νW (M, N) and δW (A) → δW (M, N) are naturally Lie algebroids and the iso-
morphism

δW (A)|π−1
δ (t) →

{
A t ̸= 0
νW (A) t = 0

is an isomorphism of Lie algebroids.

Proof. Recall from Examples 3.23 (c) that νW (TM) = TνW (M, N). Since
a : A → TM is a weighted morphism, νW (a) : νW (A) → νW (TM) is
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defined and we take this to be our anchor for νW (A). We define the Lie
bracket as follows. Given σ ∈ Γ(A)(i) and τ ∈ Γ(V)(j) define

[σ[i], τ[j]] = [σ, τ][i+j]; (5.7)

this defines a Lie bracket gr(Γ(A))× gr(Γ(A)) → gr(Γ(A)). Given f ∈
C∞(M)(k), we compute

[σ[i], f [k]τ[j]] = [σ[i], ( f τ)[j+k]]

= [σ, f τ][i+j+k]

= ( f [σ, τ] + La(σ) f · τ)[i+j+k]

= f [k][σ, τ][i+j] + La(σ)[i] f [k] · τ[j]

= f [k][σ, τ][i+j] + LνW (a)(σ[i]) f [k] · τ[j],

hence (5.7) satisfies the Leibniz rule for any f ∈ C∞
pol(νW (M, N)) =

gr(C∞(M)). Recall from Theorem 3.29 that

Γ(νW (A)) = C∞(νW (M, N))⊗gr(C∞(M)) gr(Γ(A)),

hence we may extend (5.7) to Γ(νW (A)) using the Leibniz rule, which
gives the Lie algebroid structure for νW (A). An analogous construction
gives the Lie algebroid structure for δW (A). The last statement is clear.

Remarks 5.18. (a) If Γk
ij ∈ C∞(U)(vi+vj−vk) are the local structure func-

tions for A|U corresponding to a local weighted frame, then

(Γk
ij)

[vi+vj−vk ] and (̃Γk
ij)

[vi+vj−vk ]

are the local structure functions for νW (A) and δW (A), respectively.

(b) If π ∈ X2(A∗)(0) is the Poisson bivector field then π[0] ∈ X2(νW (A)∗)

and π̃[0] ∈ X2(δW (A)∗) are the Poisson bivector fields for νW (A)∗

and δW (A)∗, respectively. .

(c) The de Rham differentials for νW (A) and δW (A) are defined by the
equations

dνW (A)ω
[i] = (dAω)[i] and dδW (A)ω̃

[i] = (̃dAω)
[i]

,

respectively.

(d) By the last remark, we see that this construction is functorial for
weighted Lie algebroid morphisms.
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Examples 5.19. (a) Let A = A−r ⊕ · · · ⊕ A0 ⇒ M be a graded Lie al-
gebroid, i.e. [Ai, Aj] ⊆ Ai+j. If M is weighted along itself then the
filtration

Γ(A)(−i) = Γ(A−i)⊕ · · · ⊕ Γ(A0)

defines an infinitesimally multiplicative weighting.

In particular, we can view any Lie algebroid A ⇒ M as a graded Lie
algebroid by setting A = A−r. The corresponding bracket on δW (A)

is given by

[σ̃[−r], τ̃[−r]] = [̃σ, τ]
[−2r]

= tr[σ, τ].

(b) Let A ⇒ M be a Lie algebroid with Lie filtration

A = A−r ⊇ A−r+1 ⊇ · · · ⊇ A−1 ⊇ 0.

This defines an infinitesimally multiplicative weighted of A and the
weighted normal algebroid is given by gr(A) =

⊕r
i=1 A−i/A−i+1.

Since X(M) = X(M)(0), then anchor map for νW (A) is zero and
νW (A) is a family of nilpotent Lie algebras.

(c) If (M, N) is a weighted pair, ω ∈ Ω(M)(0), and TM × R ⇒ M is
the Lie algebroid defined in Examples 5.12, then νW (TM × R) =

TνW (M, N) × R ⇒ νW (M, N) is the Lie algebroid defined analo-
gously, using ω[0] ∈ Ω2(νW (M, N)).

5.5 differentiation of multiplicative weightings

Let G ⇒ M be a weighted groupoid with Lie algebroid A ⇒ M. In this
section we will show that the weighting of G differentiates to an infinites-
imally multiplicative weighting of A, and the the Lie functor commutes
with both a weighted normal and weighted deformation functors. More
specifically, we prove the following theorem.

Theorem 5.20. Let G ⇒ M be a weighted Lie groupoid with Lie algebroid
A = Lie(G) ⇒ M. Then

Γ(A|U)(i) = {σ ∈ Γ(A|U) : σL ∈ XL(G|U)(i)} (5.8)

defines an infinitesimally multiplicative weighting of A such that

Lie(νW (G, H)) = νW (A) and Lie(δW (G, H)) = δW (A).

The idea of the proof is as follows. Since G ⇒ M is a weighted Lie
groupoid, the cotangent groupoid T∗G ⇒ A∗ is a weighted VB-groupoid,
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as per Proposition 4.20. In particular, A∗ is a weighted subbundle of
T∗G and is therefore weighted in its own right. We then argue that the
Poisson structure on A∗ induced by the canonical one on T∗G has filtration
degree zero. By Theorem 5.15, this implies the dual weighting on A is
infinitesimally multiplicative. We then verify that (5.8) agrees with the
dual weighting.

To begin, note that for any weighted manifold M the canonical Poisson
structure on T∗M has filtration degree zero. Indeed, the follows from The-
orem 5.15 since the weighting of TM is infinitesimally multiplicative. In
particular, for a weighted Lie groupoid G the canonical Poisson structure
on T∗G has filtration degree zero. Recall that the Poisson structure on A∗

is defined by the equation

{s∗T∗G f , s∗T∗Gg}T∗G = s∗T∗G{ f , g}A∗ , (5.9)

where sT∗G : T∗G → AG∗ is the source map for T∗G.

Lemma 5.21. The Poisson bivector field on A∗ defined by (5.9) has filtration
degree zero.

Proof. We have to show that

f ∈ C∞
pol(A∗)(i), g ∈ C∞

pol(A∗)(j) =⇒ { f , g}A∗ ∈ C∞
pol(A∗)(i+j).

We claim that this happens if and only if s∗{ f , g}A∗ ∈ C∞
pol(T

∗G)(i+j).
Indeed, since s : T∗G → A∗ is a weighted morphism we have that

{ f , g}A∗ ∈ C∞
pol(A∗)(i+j) =⇒ s∗{ f , g}A∗ ∈ C∞

pol(T
∗G)(i+j).

On the other hand, since AG∗ is a weighted subbundle of T∗G, the inclu-
sion i : A∗ ↪→ T∗G is a weighted morphism. Hence

s∗{ f , g}A∗ ∈ C∞
pol(T

∗G)(i+j) =⇒ { f , g}A∗ = i∗s∗{ f , g}A∗ ∈ C∞
pol(A∗)(i+j)

which proves the claim. Combining this with the fact that the canonical
Poisson structure on T∗G is filtration preserving and using (5.9) completes
the proof.

Proof of Theorem 5.20. By Lemma 5.21 and Theorem 5.15 the weighting of
A defined as the dual of A∗ is infinitesimally multiplicative. It remains to
establish that this weighting is given by (5.8).

Given σ ∈ Γ(A|U), let fσ ∈ C∞
[1](A|∗U) be the corresponding linear func-

tion. Recall that σL ∈ X(G|U) is the vector field corresponding to the linear
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function s∗T∗G fσ ∈ C∞
[1](T

∗G). Using this and the fact that sT∗G : T∗G → A∗

is a weighted submersion we have

σ ∈ Γ(A|U)(i) ⇐⇒ fσ ∈ C∞
[1](A|∗U)(i)

⇐⇒ s∗T∗G fσ ∈ C∞
[1](T

∗G|U)(i)
⇐⇒ σL ∈ X(G|U)(i),

as claimed. The identification Lie(νW (G, H)) = νW (A) is given at the level
of sections by the map

gr(Γ(A)) → XL(νW (G, H)), σ[i] 7→ (σL)[i].

Similarly, the identification Lie(δW (G, H)) = δW (A) is given by

Rees(Γ(A)) → XL(δW (G, H)), σ̃[i] 7→ (̃σL)
[i]

.

Remark 5.22. Since invG is a weighted diffeomorphism and σL ∼invG −σR,
it follows that

σ ∈ Γ(A)(i) ⇐⇒ σR ∈ X(G)(i).

5.6 integration of lie algebroid weightings - the wide case

In this section we give a partial converse to Theorem 5.20. Notice from the
previous work that any infinitesimally multiplicative weighting defined
by differentiating a multiplicative weighting is necessarily concentrated in
non-positive degrees.

Theorem 5.23. Suppose that G ⇒ M is a Lie groupoid and

A = A−r ⊇ A−r+1 ⊇ · · · A−1 ⊇ 0 (5.10)

is a Lie filtration of A = Lie(G). Suppose that H ⊆ G is an s-connected Lie
subgroupoid. If B = Lie(H) is such that

(a) [Γ(B), Γ(A−i)] ⊆ Γ(A−i) for all i

(b) the assignment m 7→ dim(Bm + A−i|m) is constant as a function on M

then (5.10) defines a multiplicative weighting of G along H such that the induced
weighting of A defined by Theorem 5.20 is given by the filtration

A = A−r + B ⊇ A−r+1 + B ⊇ · · · A−1 + B ⊇ B. (5.11)

The idea of the proof is to use the filtration (5.10) to define a singular
Lie filtration of G with respect to which H is clean. By Theorem 2.54, this



5.6 integration of lie algebroid weightings - the wide case 98

defines a weighting of G along H which we then show that this weighting
is multiplicative.

5.6.1 Definition of the singular Lie filtration

Let FL
−i ⊆ TG be the subbundle spanned by the left-invariant vector fields

σL ∈ X(G) for σ ∈ Γ(A−i), and let FR
−i be defined analogously using

right-invariant extensions. Motivated by Equation (5.8) and Remark 5.22,
we define

F(−i) = Γ(FL
−i) + Γ(FR

−i) ⊆ X(G), i = 1, . . . , r − 1 (5.12)

and F(−r) = X(G).

Lemma 5.24. F• is a Lie filtration.

Proof. Since FL
−i and FR

−i are vector bundles, it follows that each F(−i) is
locally finitely generated. To see that the bracket condition is satisfied, let
σ ∈ Γ(A−i), τ ∈ Γ(A−j), and f ∈ C∞(G). Since (5.10) is a Lie filtration, we
have

[σL, f τL] = f [σ, τ]L + LσL f · τL ∈ F(−i−j),

because LσL f · τL ∈ F(−j) ⊆ F(−i−j) as −i − j ≤ −j; the same computation
works for right invariant vector fields. Finally, since left and right invariant
vector fields commute, we have

[σL, f τR] = LσL f · τR ∈ F(−i−j),

as needed.

5.6.2 Showing that H is F•-clean.

In order to show that (5.12) defines a weighting of G along H, we need to
show that H is F•-clean. Recall (cf. Definition 2.52) that this means that
the function

H → N, h 7→ dim(ThH +F(−i)|h)

is constant for each i = 1, . . . , r.
Before proceeding, we fix some notation. Let σ ∈ Γc(B) be a compactly

supported section of B. Since σ is compactly support, the corresponding
left-invariant extension σL ∈ X(H) is complete (cf. [ZCL09]), and so σ

defines a bisection exp(σ) ∈ Γ(H) by the formula

exp(σ) : M → H, m 7→ ϕ1(m)
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where ϕ1 denotes the time 1 flow of the left-invariant vector field σL.

Lemma 5.25. H is F•-clean.

Proof. To begin we claim that, for any m ∈ M, one has

TmH +F(−i)|m = TmH + (A−i)m.

Indeed, let Xm + σL
m + τR

m ∈ TmH +F(−i)|m and observe that

Xm + σL
m + τR

m = Xm + σL
m − σR

m + σR
m + τR

m

= (Xm + a(σm)) + (σm + τm)
R ∈ TmH + (A−i)m,

where was have used Lemma 5.10, which says that the restriction of
σL − σR to M is given by a(σ).

Next, let h ∈ H. Since H is s-connected, we may choose compactly
supported sections σ1, . . . , σk ∈ Γc(B) such that the bisection

S = exp(σ1) · · · exp(σk) ∈ Γ(H)

passes through h−1. Let Xh + σL
h + τR

h ∈ ThH + F−i|h. Since exp(adσ) =

Ad(exp(σ)) as operators on Γ(A), it follows that adΓ(B)(Γ(A−i)) ⊆ Γ(A−i)

implies Adexp(σ)(A−i) ⊆ A−i. Therefore,

ThAL
S(Xh + σL

h + τR
h ) = ThAL

S(Xh) + σL
s(h) + (AdSτ)R

s(h) ∈ Ts(h)H +F−i|s(h).

This shows that

dim(ThH +F−i|h) = dim(Ts(h)H +F−i|s(h))
= dim(Ts(h)H + (A−i)s(h))

= dim(Ts(h)M) + dim(Bs(h) + A−i|s(h))

which is constant as a function of h ∈ H by assumption.

Therefore, by [LM23, Theorem 4.1], the Lie filtration F• defines a weight-
ing of G along H such that (TG|H)(−i) = TH + (FL

−i + FR
−i)|H.

5.6.3 Verification the weighting is multiplicative

We conclude by showing that the weighting of G along H is multiplicative.
Since H is a wide subgroupoid, it follows from Corollary 2.18 that M is
a weighted submanifold of G and the induced weighting of M is along
itself. It remains to show two things:
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(a) the bundles
(TG|H)(−i) = TH + (FL

−i + FR
−i)|H

are wide VB-subgroupoids of TG|H ⇒ TM and

(b) the graph of multiplication is a weighted submanifold of G3.

To see why (b) holds, recall from Example 4.5 that the composition rule
for TG is given by

Xg0 ◦ Yg1 = Tg0AR
S1
(Xg0) + Tg1AL

S0
(Yg1)− Tg1(AL

S0
AR

S1
t)(Yg1), (5.13)

where Xg0 ∈ Tg0 G and Yg1 ∈ Tg1 G are composable, S0 is a bisection through
g0 and S1 is a bisection through g1.

Lemma 5.26. Each (TG|H)(−i) ⇒ TM is a VB-subgroupoid.

Proof. First of all, note that both Ts, Tt : (TG|H)(−i) ⇒ TM are submersions
because TH ⊆ (TG|H)(−i) and H is a wide subgroupoid. Similarly, TM ⊆
(TG|H)(−i). We now show that (TG|H)(−i) is closed under composition
and inversion.

Let X + σL
0 + τR

0 ∈ (Th0 G)(−i) and Y + σL
1 + τR

1 ∈ (Th1 G)(−i) be compos-
able. We have

Th0A
R
S1
(X + σL

0 + τR
0 ) = Th0A

R
S1

X + (AdS1 σ0)
L + τR

0 ∈ (Th0◦h1 G)(−i),

Th1A
L
S0
(Y + σL

1 + τR
1 ) = Th1A

L
S0

Y + σL
1 + (AdS0 τ1)

R ∈ (Th0◦h1 G)(−i).

Moreover, since H is assumed to be wide and S0 and S1 are bisections in
H,

Th1(A
L
S0
AR

S1
t)(Y + σL

1 + τR
1 ) ∈ Th0◦h1 H ⊆ (Th0◦h1 G)(−i),

where we have used that σL
1 ∼t 0 and τR

1 ∼t a(τ1). Since the composition
(X + σL

0 + τR
0 ) ◦ (Y+ σL

1 + τR
1 ) is the sum of these three terms Equation 5.13,

it follows that (TG|H)(−i) is closed under multiplication. Similarly, using
that σL ∼inv −σR, it follows that (TG|H)(−i) is closed under inversion
hence hence is a VB-groupoid.

We conclude the proof with the following lemma.

Lemma 5.27. The graph of multiplication is a weighted submanifold.

Proof. Recall (cf. [Mei17b, Section 9.6]) that Γ(multG) ⊆ G3 is the flow-out
of {(m, m, m) : m ∈ M} ⊆ G3 by the vector fields

Xσ = (−σR,−σR, 0) and Yτ = (0, τL,−τR),

with σ, τ ∈ Γ(A). Therefore, analogously to the work above, we can define
a singular Lie filtration of Γ(multG) with respect to which Γ(multH) is
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clean. This defines a weighting of Γ(multG) along Γ(multH). One has, by
construction, that

(TΓ(multG)|multH )(−i) = TΓ(multG) ∩ (TG3|H3)(−i),

since G3 is weighted along H3 using the product Lie filtration. Further-
more, Proposition 2.55 implies that the inclusion Γ(multG) ↪→ G3 is a
weighted morphism. Corollary 2.18 implies that Γ(multG) is a weighted
submanifold.

This concludes the proof of Theorem 5.23. As an immediate application,
we have the following classification theorem, which says that any multi-
plicative weighting along an s-connected wide subgroupoid arises in this
way. In particular, a Lie groupoid with a multiplicative weighting along
its objects is a filtered Lie groupoid in the sense of van Erp and Yuncken
(cf. [VEY17, Definition 17]), and conversely.

Theorem 5.28. The differentiation procedure of Theorem 5.20 and integration
procedure of Theorem 5.23 define a 1-1 correspondence between multiplicative
weightings along s-connected, wide Lie subgroupoids and infinitesimally multi-
plicative weightings along wide Lie subalgebroids.

Proof. Let G ⇒ M be a Lie groupoid and H ⇒ M be an s-connected, wide
Lie subgroupoid. An infinitesimally multiplicative weighting of Lie(G)

along Lie(H) is a Lie filtration

Lie(G) = F−r ⊇ · · · ⊇ F−1 ⊇ Lie(H)

which satisfies the assumptions of Theorem 5.23. Thus, it defines a multi-
plicative weighting of G along H and Equation 5.11 says that the differen-
tiated weighting of Lie(G) along Lie(H) is the one we started with.

Now, suppose that G is multiplicatively weighted along H. By Theo-
rem 5.20, the induced weighting of Lie(G) along Lie(H) is given by

Lie(G) = F−r ⊇ · · · ⊇ F−1 ⊇ Lie(H),

where
F−i = (TG|M)(−i)/TM.

Let G̃ denote G but with the weighting along H defined by Theorem 5.23.
By Proposition 2.55, the identity map

G̃ → G

is a weighted morphism. We claim that it is a weighted diffeomorphism.
By the normal form for weighted submersions (Theorem 2.22), it is enough
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to show that ThG̃(−i) = ThG(−i) for all h ∈ H. But this clearly holds for all
h ∈ M and since left multiplication by any bisection in H is a weighted
diffeomorphism2 it therefore holds for all h ∈ H.

Examples 5.29. (a) Suppose that G = Pair(M) is the pair groupoid and
H = M is the units. An infinitesimally multiplicative weighting of
Lie(Pair(M)) = TM is a filtered structure on M,

TM = F−r ⊇ F−r+1 ⊇ · · · ⊇ F−1 ⊇ 0.

The singular Lie filtration of Pair(M) defined by (5.12) is regular,
and is given by

TPair(M)−i = F−i × F−i.

(b) Let G be a Lie be a Lie group, H ⊆ G a connected, closed subgroup,
and let

g = g−r ⊇ g−r+1 ⊇ · · · g−1 ⊇ h = Lie(H),

be a Lie filtration. The weighting defined by Theorem 5.23 is the
same as the weighting defined by the (right-invariant) Lie filtration

TG = G × g−r ⊇ G × g−r+1 ⊇ · · · G × g−1 ⊇ G × h,

given by left-translation. Indeed, this follows by a similar argument
as in Theorem 5.28.

2 This can be seen as a consequence of Lemma 4.21. Indeed, since S ⊆ H it is automatically
a weighted submanifold of G. Therefore, δW (S, S) = S × R is a bisection of δW (G, H) and
one has that δW (AL

S) = AL
δW (S,S)
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One of the main goals in [LM23] is to give a “coordinate-free" definition
of a weighting. They accomplish this by showing that a weighting of M
along N is completely described by a graded subbundle (cf. Section 2.4.1)
of the r-th order tangent bundle Tr M. This perspective can be used to give
an alternative characterization of multiplicative and infinitesimally multi-
plicative weightings. In this chapter we will explain this perspective and
use it to extend Theorem 5.23 to arbitrary s-connected Lie subgroupoids
(Theorem 6.23).

6.1 higher tangent bundles

6.1.1 Definition

We begin be reviewing the definition of Tr M, following the algebraic
perspective presented in [KMS13, Chapter VIII]. Consider the truncated
polynomial algebra Ar := R[ϵ]/⟨ϵr+1⟩.

Definition 6.1. The r-th order tangent bundle of M is the character spectrum

Tr M := Homalg(C∞(M), Ar).

Example 6.2. Any φ ∈ Tr M = Homalg(C∞(M), Ar) can be written as

φ =
r

∑
i=0

uiϵ
i

for linear maps ui : C∞(M) → R. We see that u0 is simply an algebra
morphism and therefore is given by evaluation at a point p ∈ M. Hence
T0M = M. Similarly, u1 is a derivation with respect to u0, and is therefore
a tangent vector based at p ∈ M. Thus, T1M = TM.

The assignment M 7→ Tr M is functorial: for a smooth map F : M → M′

its r-th order tangent lift is defined by

TrF(u) = ∑(ui ◦ F∗)ϵi.

103
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6.1.2 Lifts of functions and vector fields

Any function f ∈ C∞(M) admits r tangent lifts f (i) ∈ C∞(Tr M), for
i = 0, 1, . . . , r, defined by

f (i) :
r

∑
i=0

uiϵ
i 7→ ui( f ).

These lifts satisfy the product rule

( f g)(i) =
i

∑
j=0

f (j)g(i−j). (6.1)

Furthermore, if F : M → M′ and g ∈ C∞(M′) then

(TrF)∗g(i) = (F∗g)(i).

If xa, a = 1, . . . , m, are coordinates for M defined on U, then the lifts x(i)a ,
a = 1, . . . , m and i = 0, . . . , r, define coordinates on TrU ⊆ Tr M.

Example 6.3. Given f ∈ C∞(M), the zeroth lift f (0) ∈ C∞(TM) is just the
pullback of f to TM, while f (1) ∈ C∞(TM) is d f thought of as a function
on TM.

Morimoto observed in [Mor70] that any vector field X ∈ X(M) also
admits lifts X(−i) ∈ X(Tr M) for i = 0, 1, . . . , r. These lifts are uniquely
determined by their action on lifts of functions f ∈ C∞(M), which is given
by

X(−i) f (j) = (X f )(j−i).

These lifts satisfy the product rule and are compatible with Lie brackets:

( f X)(−i) =
r

∑
k=i

f (k−i)X(−k) and [X(−i), Y(−j)] = [X, Y](−i−j), (6.2)

where [X, Y](−i−j) = 0 if i + j > r.

6.1.3 Iterating the higher tangent functor

Given non-negative integers r1, . . . , rk one can, more generally, define

Tr1,...,rk(M) = Homalg(C∞(M), Ar1 ⊗ · · · ⊗ Ark).
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This can be identified with the iterated tangent bundles Tr1 Tr2 · · · Trk(M).
In particular, for any permutation σ ∈ Sr the corresponding algebra
isomorphism Ar1 ⊗ · · ·Ark → Arσ(1) ⊗ · · ·Arσ(k) induces an isomorphism

δσ : Tr1 Tr2 · · · Trk(M)
∼=−→ Trσ(1)Trσ(2) · · · Trσ(k)(M). (6.3)

In the case k = 2, the isomorphism TrTs M ∼= Ts,r M is given as follows.
Let φ ∈ TrTs M = Homalg(C∞(Ts M), Ar) and define φ̃ ∈ Tr,s M by

φ̃( f ) =
s

∑
i=0

φ( f (i))τi.

To see that the map

TrTs M → Ts,r M, φ 7→ φ̃

is an isomorphism we write down its inverse. Let Ψ ∈ Tr,s M, and write
Ψ = ∑s

i=0 ψiτ
i. Define Ψ̂ ∈ TrTs(M) by

(Ψ̂)( f (i)) = ψi( f ) ∈ Ar, f ∈ C∞(M);

since Ts M is a graded bundle, after extending as needed to make Ψ̂ an
algebra morphism, this is sufficient to define Ψ̂. It is straight forward to
check that these maps are inverse to one another.

Remark 6.4. With respect to the identification T(Tr M) = Tr(TM) we have

TrX = X(0) and Trϕt
X = ϕt

X(0) ,

where ϕt
X represents the time t flow of X; see Lemma B.10.

6.1.4 Higher tangent bundles of vector bundles

If V → M is a vector bundle with scalar multiplication given by κt, then
TrV is a vector bundle over Tr M with scalar multiplication given by Trκt.
In this section we will generalize the lifting procedure for vector fields to
sections of an arbitrary vector bundle.

Let E ∈ X(V) be the Euler vector field on V, and let X[n](V) denote the
vector fields X ∈ X(V) with the property that [E, X] = nX. Recall that any
section σ ∈ Γ(V) defines a vector field Xσ ∈ X[−1](V) by the formula

Xσ(v) = σ(p) v ∈ Vp
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where we are identifying Vp with the vertical subspace of TvV. The corre-
sponding map

Γ(V) → X[−1](V), σ 7→ Xσ

is an isomorphism of C∞(M)-modules. We will use this observation to
define the tangent lifts of sections of V.

Lemma 6.5. If E ∈ X(V) is the Euler vector field for V, then E(0) ∈ X(TrV) is
the Euler vector field for TrV.

Proof. Recall that the Euler vector field on V is the vector field whose flow
is given by ϕt

E = κet . Using Remark 6.4, we find that

Φt
E(0) = Trϕt

E = Trκet .

Since scalar multiplication on TrV is given by Trκ, the result follows.

Proposition 6.6. Any section σ ∈ Γ(V) admits tangent lifts σ(−i) ∈ Γ(TrV)

for i = 0, 1, . . . , r. These lifts are uniquely characterized by the conditions that

(a) σ(0) = Trσ : Tr M → TrV,

(b) ( f σ)(0) = ∑r
k=0 f (k)σ(−k) for all f ∈ C∞(M), and

(c) if V is a vector space then TrV = ⊕r
i=0V, and we demand that σ(−i) be the

copy if σ in the i-th term of this direct sum.

Proof. Given σ ∈ Γ(V), let Xσ ∈ X[−1](V) be the vector field on V it corre-
sponds to under the identification Γ(V) ∼= X[−1](V). Using, Remark 6.4,
and Equation 6.2 we find that

[E(0), X(−i)
σ ] = [E, Xσ]

(−i) = −X(−i)
σ

hence, by Lemma 6.5, it follows that

X(−i)
σ ∈ X[−1](TrV)

for i = 0, 1, . . . , r. Using the isomorphism Γ(TrV) ∼= X[−1](TrV) we thus
define σ(−i) by

Xσ(−i) = X(−i)
σ .

It follows that these lifts satisfy conditions (a), (b), and (c) because the
lifts of vector fields do. Furthermore, by considering local vector bundle
coordinates we see that these conditions uniquely characterize the lifts.
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Remark 6.7. We can also proceed as follows. First of all, note that applying
the r-th order tangent functor to the non-degenerate bilinear pairing

V ×M V∗ → R

gives a map TrV ×Tr M TrV∗ → TrR, and composing this with projection
onto the last factor or TrR = ⊕r

i=0R gives give a non-degenerate bilinear
pairing between TrV and TrV∗. In particular, this shows that TrV∗ =

(TrV)∗.
Now, given σ ∈ Γ(V), let fσ ∈ C∞

[1](V
∗) be the corresponding linear func-

tion. For each i = 0, 1, · · · , r, the lift f (i)σ ∈ C∞(TrV∗) is linear. Using the
previous observation, we let σ(−i) ∈ Γ(TrV) be the section corresponding
to the linear function f (r−i)

σ . Conditions (a), (b), and (c) in Proposition 6.6
are all satisfied, hence this gives the same result as before.

6.1.5 Higher tangent lifts of Poisson and Lie algebroid structures

As an application of the previous section, we can describe how to define
tangent lifts of Poisson and algebroid structures. There is (see [KW23,
Section 4.1]) a vector bundle morphism

ϵ
r,q
M : Tr(ΛqTM) → ΛqT(Tr M)

and so any multi-vector field X ∈ Xq(M) = Γ(ΛqTM) admits lifts X(−i) ∈
Xq(Tr M), i = 0, 1, . . . , r, defined as the composition

Tr M X(−i)
−→ Tr(ΛqTM)

ϵ
r,q
M−→ ΛqT(Tr M).

Proposition 6.8 ([KW23, Theorems 4.2 and 5.1]). (a) If X ∈ X2(M) is a
Poisson bivector field, then X(0) ∈ X2(Tr M) is a Poisson bivector field for
Tr M. Furthermore, the corresponding Poisson bracket satisfies

{ f (r−i), g(r−j)} = { f , g}(r−i−j) ∀ f , g ∈ C∞(M).

(b) If A ⇒ M is a Lie algebroid with anchor map a : A → TM, then there is a
unique bracket on Γ(Tr A) such that

[ f (i), g(j)] = [ f , g](i+j)

making Tr A ⇒ Tr M a Lie algebroid with anchor map given by the compo-
sition

Tr A Tra−→ Tr(TM)
∼=−→ T(Tr M).
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Moreover, the corresponding dual Poisson structure on Tr A∗ is the order 0
lift of the dual Poisson structure on A∗ as specified in the previous point.

Example 6.9. Given any Lie groupoid G ⇒ M, the r-order tangent bundle
has the structure a Lie groupoid TrG ⇒ Tr M by applying the r-th order
tangent functor to all the structure maps. If A ⇒ M is the Lie algebroid of
G ⇒ M, then Tr A ⇒ Tr M is the Lie algebroid of TrG ⇒ Tr M.

6.2 weightings as graded subbundles of Tr M

6.2.1 The graded subbundle defined by a weighting

We now explain how an order r weighting of M naturally gives rise to a
graded subbundle Q ⊆ Tr M and how multiplicative and infinitesimally
multiplicative weightings can be described in terms of this graded sub-
bundle. Let M be weighted to order r along N and consider the set

Q := {q ∈ Tr M : ∀ f ∈ C∞(M)(i), j < i ≤ r =⇒ f (j)(q) = 0}. (6.4)

We summarize the results of [LM23, Sections 7 and 8] in the following
theorem.

Theorem 6.10 ([LM23]). With Q as in (6.4), we have the following

(a) Q is a graded subbundle of Tr M with base N.

(b) TQ|N = TN ⊕ (TM|N)(−1) ⊕ (TM|N)(−2) ⊕ · · · ⊕ (TM|N)(−r) as a

graded subbundle of T(Tr M)|N = TM|⊕(r+1)
N .

(c) The weighting of M along N can be recovered from Q as

C∞(M)(i) = { f ∈ C∞(M) : j < i =⇒ f (j)|Q = 0}. (6.5)

(d) X ∈ X(M)(−i) if and only if X(−i) is tangent to Q. Moreover, vector fields
of the form X(−i) with 0 ≤ i ≤ r and X ∈ X(M)(−i) span the tangent
bundle of Q everywhere.

(e) A smooth map F : M → M′ is a weighted morphism if and only if
TrF(QM) ⊆ TrF(QM′).
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If xa ∈ C∞(U) is a weighted coordinate system then the set Q ∩ TrU is
given by

x(0)a = 0 for wa > 0

x(1)a = 0 for wa > 1
...

x(r−1)
a = 0 for wa > r − 1.

(6.6)

Conversely, if Q ⊆ Tr M is a graded subbundle over N ⊆ M with the
property any p ∈ N is contained in an open neighbourhood U ⊆ M with
coordinates xa ∈ C∞(U) such that Q ∩ TrU is defined by (6.6), then Q
defines a weighting of M along N and the xa form a weighted coordinate
system on U.

Proposition 6.11. Let (M, N) be a weighted pair. A submanifold R ⊆ M is a
weighted submanifold if and only if TrR intersects Q cleanly in Tr M. In this case,
the induced weighting of R along R ∩ N is given by Q ∩ TrR.

Proof. Suppose that R is a weighted submanifold. If xa, yb ∈ C∞(U) are
weighted coordinates such that R is locally cut out by the yb coordinates,
then Tr(R ∩ U) is cut out by the lifts y(i)b , i = 0, . . . , r. Therefore, by (6.6),

we see that the system of lifts x(i)a , y(i)b , i = 0, . . . , r form submanifold
coordinates for Tr(R ∩ U) and Q ∩ TrU which implies that TrR intersects
Q cleanly.

Conversely, if Q intersects TrR cleanly then the intersection Q ∩ TrR ⊆
TrR defines an order r weighting of R along R ∩ N such that the inclusion
R ↪→ M is a weighted morphism. By Theorem 6.10 (b), we have that

(TQ|R∩N ∩ T(TrR)|R∩N)(−i) = (TM|R∩N)(−i) ∩ TR|R∩N

Therefore, since Q and TrR intersect cleanly it follows that

(TR|R∩N)(−i) = (T(Q ∩ TrR)|R∩N)(−i) = (TM|R∩N)(−i) ∩ TR|R∩N

hence R is a weighted submanifold of M by Corollary 2.18.

6.2.2 Multiplicative and infinitesimally multiplicative weightings in terms of Q

Recall that if G ⇒ M is a Lie groupoid, then TrG ⇒ Tr M is a Lie groupoid
as well. We can use this observation to give another characterization of
multiplicative weightings in terms of the graded subbundle Q ⊆ TrG.
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Theorem 6.12 (cf. [LM23, Section 8.5]). Let G ⇒ M be weighted along H ⊆ G.
The weighting is multiplicative if and only if the graded subbundle QG ⊆ TrG is
a Lie subgroupoid QG ⇒ QM of TrG ⇒ Tr M.

Proof. Suppose that G is multiplicatively weighted along H, so that M ⊆ G
is a weighted submanifold, s, t : G → M are weighted submersions, and
multG : G(2) → G, and inv : G → G are weighted morphisms. By Proposi-
tion 6.11, the intersection Tr M ∩ QG = QM is clean and is the graded sub-
bundle associated to the induced weighting of M. Using Theorem 6.10 (e),
we see that QG is closed under multiplication and inversion. Furthermore,
by Theorem 6.10 (b) and Proposition 2.9, it follows that Trs|QG : QG → QM

and Trt|QG : QG → QM are submersions near H ⊆ QG. By homogeneity
they are therefore submersions on all of QG.

Conversely, suppose that QG ⊆ TrG is a subgroupoid. It follows by
reversing the above argument at inversion and multiplication are weighted
morphisms, and that source and target are weighted submersions. Since
Tr M are the objects of TrG, it follows that QG intersects Tr M cleanly, hence
M is a weighted submanifold of G by Proposition 6.11.

Example 6.13. Let (M, N) be a weighted pair. If the graded bundle corre-
sponding to the weighting of M along N is QM ⊆ Tr M, then the graded
bundle corresponding to the product weighting of Pair(M) along Pair(N)

is Pair(QN). In particular, gives another proof that the product weighting
is multiplicative.

Carry on, let G ⇒ M be a Lie groupoid with the property that the
groupoid anchor aG = (s, t) : G → Pair(M) is transverse to Pair(N). In
this case, TraG : TrG → Pair(Tr M) is transverse to Pair(QM) and

(TraG)
−1(Pair(QM)) ⊆ TrG

is a graded subbundle which defines a multiplicative weighting of G along
G|N .

Corollary 6.14. Let V → M be a vector bundle, thought of as a manifold. A
weighting of V is linear (with weights concentrated in non-positive degree) if
and only if the graded subbundle QV ⊆ TrV is a vector subbundle. In this case,
we have that σ ∈ Γ(V)(i) if and only if σ(i) restricts to a section of QV over
QV ∩ Tr M.

Proof. Thinking of V as a Lie groupoid over M, the weighting of V is
linear (with weights concentrated in non-positive degree) if and only if it is
multiplicative. Hence, it is linear if and only if QV ⊆ TrV is a subgroupoid,
which in this case is a vector subbundle. The statement about lifts is just a
reformulation of Theorem 6.10 (d).
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Likewise, we have a similar characterization for Lie algebroid weightings
which are concentrated in non-positive degree.

Theorem 6.15 (cf. [LM23, Section 8.5]). Let A ⇒ M be a Lie algebroid with
Lie subalgebroid B ⇒ N. A linear weighting of A along B concentrated in non-
positive degree is infinitesimally multiplicative if and only if the corresponding
graded subbundle QA ⊆ Tr A is a Lie subalgebroid QA ⇒ QM of Tr A ⇒ Tr M.

Proof. Suppose that A is infinitesimally weighted along B, with corre-
sponding graded bundle QA ⊆ Tr A, and let QM = Tr M ∩ Q be the graded
bundle associated to the induced weighting of M along N. To show that
QA is a Lie subalgebroid of Tr A, we must show

(a) aTr A(QA) ⊆ TQM, and

(b) Γ(Tr A, QA) ⊆ Γ(Tr A) is a Lie subalgebra.

For (a), recall that the anchor map for Tr A is Tra. Using Corollary 6.14

and Theorem 6.10, it is enough to show that Tra(σ(i)) is tangent to QM for
any σ ∈ Γ(A)(i). But, as the weighting is infinitesimally multiplicative, if
σ ∈ Γ(A)(i) one has that a(σ) ∈ X(M)(i) and since

Tra(σ(i)) = (a(σ))(i)

it follows from Theorem 6.10 (d) that Tra(σ(i)) is tangent to QM.
For (b), it suffices to show that if f σ(i) ∈ Γ(Tr A, QA) and gτ(j) ∈

Γ(Tr A, QA), then [ f σ(i), gτ(j)] ∈ Γ(Tr A, QA), where σ, τ ∈ Γ(V) and
f , g ∈ C∞(Tr M). Using the Jacobi identity

[ f σ(i), gτ(j)] = f g[σ, τ](i+j) + fLTra(σ(i))g · τ(j) − gLTra(τ(j)) f · σ(i), (6.7)

we see that there are three cases to consider:

• If σ(i), τ(j) ∈ Γ(Tr A, QA), then by Corollary 6.14 it follows that
σ ∈ Γ(A)(i) and τ ∈ Γ(A)(J). Since the weighting is infinitesimally
multiplicative, we have [σ, τ] ∈ Γ(A)(i+j), hence

[σ(i), τ(j)] = [σ, τ](i+j) ∈ Γ(Tr A, QA).

Therefore, [ f σ(i), gτ(j)] ∈ Γ(Tr A, QA) in this case.

• If σ(i), τ(j) /∈ Γ(Tr A, QA), then both f and g must vanish on QM.
By the Jacobi identity, [ f σ(i), gτ(j)] also vanishes along QM, hence
belongs to Γ(Tr A, QA) in this case.

• Finally, suppose that σ(i) /∈ Γ(Tr A, QA) and τ(j) ∈ Γ(Tr A, QA). In
this case, we must have that f vanishes along QM. Since Tra(τ(j)) =
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(a(τ))(j) is tangent to QM, it follows that LTra(τ(j)) f vanishes on QM

and therefore [ f σ(i), gτ(j)] vanishes along QM as well.

In each of these cases we see that [ f σ(i), gτ(j)] ∈ Γ(Tr A, QA), which shows
that Γ(Tr A, QA) is a Lie subalgebra of Γ(Tr A).

Conversely, suppose that QA ⊆ Tr A is a Lie subalgebroid. In order
to show that conditions (a) and (b) in Definition 5.11 are satisfied, it is
sufficient, since the weighting is concentrated in non-positive degree, to
consider indices −i,−j with 0 ≤ i, j ≤ r. If σ ∈ Γ(A)(−i), and τ ∈ Γ(A)(−j),
then σ(−i) ∈ Γ(Tr A, QA) and τ(−j) ∈ Γ(Tr A, QA), whence [σ(−i), τ(−j)] =

[σ, τ](−i−j) ∈ Γ(Tr A, QA) as QA is a Lie subalgebroid. This shows that
[σ, τ] ∈ Γ(A)(−i−j). Similarly, let σ ∈ Γ(A)(−i). Then σ(−i) ∈ Γ(Tr A, QA)

and Tra(σ(−i)) = (a(σ))(−i) is tangent to QN , which shows that a(σ) ∈
X(M)(−i), as needed.

Proposition 6.16. Suppose that G ⇒ M is multiplicatively weighted along H,
with graded bundle QG ⊆ TrG. Then the graded bundle for the weighting of
A = Lie(G) is given by QA = Lie(QG).

Proof. Recall that the weighting of A is given by σ ∈ Γ(A)(i) if and only
if σL ∈ X(G)(i). The result follows since (σ(−i))L = (σL)(−i) for 0 ≤ i ≤
r, which follows because they are both left invariant and agree along
Tr M.

6.3 integration of lie algebroid weightings revisited

In this section we will return to the integration problem for infinitesimally
multiplicative weightings. More specifically, suppose that H ⇒ N is an
s-connected Lie subgroupoid of G ⇒ M, and suppose that A = Lie(G)

has an infinitesimally multiplicative weighting along B = Lie(H). We
will show that if the graded bundle QA ⊆ Tr A corresponding to this
weighting integrates to an s-connected Lie subgroupoid QG ⊆ TrG then
this subgroupoid defines a weighting of G along H. In order to do this,
we will use a weighted Lie algebroid spray to define an exponential map
which allows us to find weighted coordinates for G near the object space.
Flowing these coordinates along the s-fibres using left invariant vector
fields of filtration degree 0 gives weighted coordinates everywhere along
H, proving that QG indeed defines a weighting.

6.3.1 The spray exponential for a weighted Lie algebroid

Let A ⇒ M be a weighted Lie algebroid and let G ⇒ M be a Lie groupoid
integrating A. We briefly review how to construct a partially defined
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exponential map for A 99K G; for a complete discussion, see Appendix B.
The data to define an exponential map A → G is a Lie algebroid spray:

Definition 6.17 ([CMS20, Definition 3.1]). Let A ⇒ M be a Lie algebroid.
A Lie algebroid spray on A is a vector field V ∈ X(A) such that

(a) κ∗t V = tV for all t ̸= 0, where κt denotes scalar multiplication by t,
and

(b) for all ξ ∈ A, one has Tπ(Vξ) = a(ξ), where π : A → M is the vector
bundle projection and a : A → TM is the anchor.

If V ∈ X(A) is a Lie algebroid spray, then there is an open neighbour-
hood UV ⊆ A of the zero section for which the flow ϕt

V is defined for
|t| ≤ 1. For each u ∈ UV , the path t → u(t) = ϕt

V(u) is an A-path, and
therefore integrates to a G-path ũ(t). The spray exponential is the map

expV : UV → G, u 7→ ũ(1).

Following the notation in [CMS20] we use the dotted arrow notation

expV : A 99K G

to denote that expV is only defined on an open neighbourhood of the zero
section.

Example 6.18. Let G be a Lie group and g = Lie(G). Then 0 ∈ X(g) is
a Lie algebroid spray for g and exp0 is the standard exponential map
exp : g → G.

If A is a weighted Lie algebroid, the the appropriate sprays to consider
are ones having filtration degree zero.

Lemma 6.19. For any weighted Lie algebroid A, there exists a spray V ∈
X(A)(0).

Proof. Note that any convex combination of sprays is again a spray. There-
fore, by pulling back a partition of unity on M it suffices to work locally.

Let wi and vj be the base and vertical weights for A, respectively. If
Γk

ij ∈ C∞(M) denote the structure functions for A corresponding to a local
weighted frame then recall from Lemma 5.13 that Γk

ij ∈ C∞(M)(vi+vj−vk). If
xa, pb are weighted vector bundle coordinates for A then

V = aij(x)pi
∂

∂xj
+ Γk

ij(x)pi pj
∂

∂pk

defines a spray for A. Since a : Γ(A)(−i) → X(M)(−i), it follows that
aij ∈ C∞(M)(vi+wj), hence V ∈ X(A)(0).
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Let G ⇒ M be a Lie groupoid with a multiplicative weighting along
H ⇒ N, let A = Lie(G) and let B = Lie(H). Let QG ⊆ TrG be the graded
bundle corresponding to the weighting, and let QA = Lie(QG) ⊆ Tr A.

Lemma 6.20. Let V ∈ X(A)(0) be a Lie algebroid spray on A. Then the spray
exponential is a partially defined map of pairs

Tr expV : (Tr A, QA) 99K (TrG, QG).

It is a diffeomorphism of pairs in a sufficiently small open neighbourhood of
Tr M ⊆ TrG. In particular, if expV is globally defined it is a weighted morphism.

Proof. By Proposition B.12, we have that Tr expV = expV(0) . Since V ∈
X(V)(0), it follows by Theorem 6.10 (d) that V(0) is tangent to QA, hence
by Lemma B.9

expV(0) : (Tr A, QA) 99K (TrG, QG)

is a (partially defined) map of pairs.

This immediately implies the following result.

Proposition 6.21. For any weighted Lie group G, the exponential map is a
weighted morphism. It is a weighted diffeomorphism on any sufficiently small
open neighbourhood of the origin in g.

Proof. The zero vector field on g is a weighted Lie algebroid spray, and the
corresponding spray exponential is the standard exponential map. Hence
the result follows by Lemma 6.20.

Remark 6.22. This can also be proved using weighted paths in g, but the
proof is considerably longer.

6.3.2 Integration of Lie algebroid weightings revisited

Let G ⇒ M be a Lie groupoid with Lie algebroid A = Lie(G). We now
prove the main result of this section, which says that if the graded bun-
dle corresponding to an infinitesimally multiplicative weighting of A
integrates to a subgroupoid of TrG, then this is automatically a graded
subbundle which defines a multiplicative weighting of G.

Theorem 6.23. Suppose that G ⇒ M is a s-connected Lie groupoid and
H ⇒ N is a s-connected Lie subgroupoid with Lie algebroids A = Lie(G)

and B = Lie(H), respectively, and suppose that A is infinitesimally multiplica-
tively weighted along B. Let QA ⇒ QM be the graded subbundle of Tr A ⇒ Tr M
corresponding to the weighting of A along B. If QA integrates to an s-connected
subgroupoid QG ⇒ QM of TrG ⇒ Tr M, then QG is a graded subbundle of
TrG ⇒ Tr M which defines a multiplicative weighting of G along H.
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Proof. Let QA ⊆ Tr A be the graded bundle associated to the weighting of A
along B, and let QG ⊆ TrG be the Lie subgroupoid integrating it. To show
that QG is a GB-subgroupoid we just have to show that it is closed under
scalar multiplication. To do this, let V ∈ X(A)(0) be a Lie algebroid spray.
Let κt : TrG → TrG be scalar multiplication by t ∈ R; abusing notation
we let κt denote scalar multiplication on Tr A as well. Since V(0) = TrV, it
follows that V(0) ∼κt V(0), hence the following diagram commutes

Tr A
κt //

exp
V(0)

��

Tr A
exp

V(0)

��
TrG

κt
// TrG.

Using this, the fact that both

expV(0) : (Tr A, QA) 99K (TrG, QG) and κt : (Tr A, QA) → (Tr A, QA)

are maps of pairs, and the assumption that QG is s-connected implies that
QG is a graded subbundle. Since

Lie(κ0(QG)) = κ0(Lie(QG)) = B

it follows that H = κ0(QG), since H is the Lie subgroupoid of G integrating
B.

It remains to show that QG ⊆ TrG defines a weighting. To do this, we
will show that near any point p ∈ H one can always find local coordinates
xa for G such that QG is locally defined by Equation 6.6. There are open
neighbourhoods UA ⊆ A and UG ⊆ G containing the objects for which
expV : UA → UG is a diffeomorphism. By the previous section, we have

Tr expV(QA ∩ TrUA) = QG ∩ TrUG

In particular, if xa are weighted coordinates defined on U ⊆ UA, then
QG ∩ TrU is defined by the the equations

((expV)∗xa)
(0) =(expV(0))∗x(0)a = 0 for wa > 0,

((expV)∗xa)
(1) =(expV(0))∗x(1)a = 0 for wa > 1,

...

((expV)∗xa)
(r−1) =(expV(0))∗x(r−1)

a = 0 for wa > r − 1.

This gives weighted coordinates for G near M.
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We will now construct weighted coordinates away from M. Let h ∈ H
and assume, for simplicity, that h = ϕt

σL(s(h)) for some σ ∈ Γ(A)(0). If
xa are weighted coordinates for G defined on U ⊆ G containing s(h), let
x̃a = (ϕt

σL)∗xa; these give coordinates on Ũ = ϕ−t
σL (U), and we claim that

QG ∩ TrŨ = {x̃(i)a = 0 : wa > i, i = 0, . . . , r − 1}.

To see this, note that by Lemma B.10

x̃(i)a = ((ϕt
σL)∗xa)

(i) = (Trϕt
σL)∗x(i)a = (ϕt

(σL)(0)
)∗x(i)a .

Since σ ∈ Γ(V)(0), it follows that (σL)(0) is tangent to QG hence QG is
invariant under its flow. This shows that

QG ∩ TrŨ = ϕt
(σL)(0)

(QG ∩ TrU)

= ϕt
(σL)(0)

({x(i)a = 0 : wa > i, i = 0, . . . , r − 1})

= {(ϕt
(σL)(0)

)∗x(i)a = 0 : wa > i, i = 0, . . . , r − 1})

= {x̃(i)a = 0 : wa > i, i = 0, . . . , r − 1},

as claimed. Using induction and the fact that H is s-connected, we see
that any h ∈ H is contained in a neighbourhood on which weighted
coordinates are defined, which completes the proof.

Remark 6.24. The question of whether or not the subalgebroid QA ⇒ QM

integrates to a subgroupoid of TrG ⇒ Tr M is a little subtle. At first one
might think that such an integration always exists, since any subalgebroid
of an integrable Lie algebroid is always integrable. However, [MM06]
shows that this is not always the case. Taking into account the graded
bundle structure, one might wonder if it is enough to assume that the base
algebroid integrates to a subgroupoid. However this is also not sufficient,
as explained in [CBO18]. We leave it as an open problem to give conditions
on when such an integration is possible.



7
O U T L O O K

We conclude this thesis by examining some possible directions this research
can lead. The following is speculative and vague, yet our aim is to inspire
readers to explore the topic more thoroughly.

7.1 more on linear weightings

7.1.1 Linear singular Lie filtrations

The first avenue we think is worth pursuing is an adaptation of Section 2.6
to vector bundles. Let V → M be a vector bundle. Recall that the linear
vector fields on V is the C∞(M)-module

X[0](V) = {X ∈ X(V) : [E, X] = 0},

where E ∈ X(V) is the Euler vector field. The linear vector fields on V can
be identified with first-order differential operators acting on Γ(V) having
scalar principal symbol. We propose the following definition.

Definition 7.1. (a) A linear singular distribution on a vector bundle V →
M is a sheaf of C∞

M-submodules L ⊆ X[0](V) which is locally finitely
generated in the sense that each p ∈ M has an open neighbourhood
U ⊆ M such that L(V|U) is finitely generated.

(b) A linear singular Lie filtration of order r is a filtration of the sheaf of
linear vector fields

X[0](V) = L(−r) ⊇ L(−r+1) ⊇ · · · ⊇ L(−1) ⊇ 0 (7.1)

by linear singular distributions such that

[L−i,L−j] ⊆ L−i−j

for all i, j.

The linear vector fields on V are the sections of a Lie algebroid At(V) ⇒
M, called the Atiyah algebroid of V, which fits in to an exact sequence

0 −→ End(V) −→ At(V) −→ TM −→ 0. (7.2)

117
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In particular, we see that a linear singular Lie filtration on V determines
a filtration of Γ(End(V)) by C∞(M)-submodules. The space of linear
differential operators acting on sections of V can be identified with the
quotient

U (At(V))/I

where U (At(V)) is the universal enveloping algebra of the Lie algebroid
At(V) (cf. [MM10]) and I ⊆ U (At(V)) is the ideal generated by elements
of the form η ⊗ ϕ − ηϕ, where η, ϕ ∈ Γ(End(V)). Therefore, a linear
singular Lie filtration (7.1) determines an algebra filtration

· · ·DO(V)(i) ⊇ DO(V)(i+1) ⊇ · · ·

of DO(V), so long as the induced filtration of Γ(End(V)) (using the exact
sequence (7.2)) is multiplicative.

Let N ⊆ M be a closed submanifold and suppose that

· · · ⊇ (V|N)(i) ⊇ (V|N)(i+1) ⊇ (7.3)

be a filtration of V|N be subbundles (V|N)(i) → N. With the filtration of
DO(V) as above, let

Γ(V)(i) = {σ ∈ Γ(V) : D ∈ DO(V)(q) =⇒ Dσ ∈ Γ(V, (V|N)(i+q)}. (7.4)

This defines a filtration of Γ(V).

Problem 7.2. Find the correct compatibility conditions between the linear
singular Lie filtration (7.1) and the filtration (7.3) so that the filtration (7.4)
defines a linear weighting of V.

One possible approach to this problem would be to mimic the technique
sketched in Remark A.12 and find conditions for which the bundle of
filtered frames is clean. We intend to pursue this in a future work.

Remark 7.3. This problem appears to be closely related to the works of
Higson and Yi [HY19] and Braverman and Haj [BS22], where a filtration
of DO(V) is defined using a connection on V and a filtration of End(V).

7.1.2 Weightings for associative algebroids

Let G be a Lie groupoid. An associative algebroid (cf. [Šev17, Letter 6]) is
a vector bundle V → G with an associative (in the appropriate sense)
fibrewise product

Vg ⊗ Vh → Vg◦h,
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whenever g, h ∈ G are composable. There is an obvious notion of weight-
ings for associative algebroids.

Problem 7.4. Explain whether or not the weighted deformation bundle
of a weighted associative algebroid has a canonical associative algebroid
structure.

If yes, then there is a well-defined convolution product on sections of
the weighted deformation bundle.

Problem 7.5. Understand multipliers of the convolution algebra of sections
of an associative algebroid as algebras of pseudodifferential operators.

Combining this with the the previous question, it would be interesting
to try to define a rescaled spinor bundle on a manifold with boundary, i.e.
a deformation bundle over the b-tangent groupoid, and try to understand
Getzler rescaling ([Get83]) in this context.

7.2 tangent (k-fold) groupoid of a multifiltered manifold

7.2.1 Multifiltered manifolds

Recall that a filtered manifold is a smooth manifold M together with a
filtration by subbundles

TM = F−r ⊇ F−r+1 ⊇ · · · ⊇ F−1 ⊇ 0

satisfying [Γ(F−i), Γ(F−j)] ⊆ Γ(F−i−j). This generalizes to a multifiltered
manifold.

Definitions 7.6 ([Yun18, Definitions 3.4.1 and 3.4.2]). (a) Let V → M be
a vector bundle. A k-multifiltration on V is a family of subbundles
F−i ⊆ V indexed by i ∈ Nk such that

(i) F0 = 0 and F−n = V for some n ∈ Nk

(ii) F−i ∩ F−j = F−i∧j for all i, j ∈ Nk, where i ∧ i is the entry-wise
minimum of the two multi-indices.

(b) A k-multifiltered manifold is a smooth manifold M with an k-multifiltration
of TM by subbundles F−α satisfying

[Γ(F−i), Γ(F−j)] ⊆ Γ(F−i−j). (7.5)

The k-multifiltration (7.5) will be referred to as a Lie multifiltration.

Examples 7.7 (cf. [Yun18, Section 3.4]). (a) Any filtered manifold is a 1-
multifiltered manifold.
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(b) The full flag manifold of a complex semisimple Lie group G is an
k-multifiltered manifold, where k is the rank of G.

7.2.2 Multiweightings

Let M be an m-dimensional manifold. A k-multiweight sequence for M is a
list w1, . . . , wm ∈ Zk

≥0. Any upper bound r ∈ Z≥0 for the sequence |wa| is
called its order. A monomial

xs = xs1
1 · · · xsm

m

has multiweight s · w = ∑a sawa. For an open set U ⊆ Rm and a vector
i ∈ Zk

≥0, we define C∞(U)(i) to be the ideal generated by the monomials

xs with s · w ≥ i,

where we use the standard component-wise partial ordering on Zk
≥0.

Definition 7.8 ([LM23, Section 9.2]). A k-multiweighting of a manifold M
is a mutlifiltration of the sheaf of smooth functions by ideals C∞

M,(i) with
the property that each point p ∈ M has an open neighbourhood U ⊆ M
so that C∞(U)(i) is the ideal defined above.

Let ea be the standard basis vectors of Zk. A k-multiweighting of M
determines k weightings C∞

M,(i·ea)
of M along submanifolds N1, . . . , Nk. We

say that M is multiweighted along (N1, N2, . . . , Nk). Completely analogously
to the work above, one obtains the k-fold weighted normal bundle

νW (M, N1, . . . , Nk) = Homalg(gr(C∞(M)), R),

which is a k-fold graded bundle over the intersection N1 ∩ · · · ∩ Nk. Simi-
larly, one obtains the k-fold weighted deformation space

δW (M, N1, . . . , Nk) → Rk.

Theorem 5.28 says, in particular, that Lie filtrations of a manifold M are
the same things as multiplicative weightings of Pair(M) along the units.
Therefore, it is reasonable to expect that a k-multifiltration corresponds to
a k-fold multiweighting of the k-fold pair groupoid Pairk(M) = ∏2k

i=1 M.

Problem 7.9. Explain the correspondence between k-multifiltered mani-
folds and multiplicative weightings of the k-fold pair groupoid Pairk(M)

along the various diagonals.
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Let us take a minute to speculate how this might look in the case k = 2.
A 2-multifiltration on a manifold M is given by a family of subbundles

TM = F(−r1,−r2) F(−r1+1,−r2) · · · F(0,−r2)

F(−r1,−r2+1) F(−r1+1,−r2+1) · · · F(0,−r2+1)
...

...
. . .

...
F(−r1,0) F(−r1+1,0) · · · F(0,0) = 0.

(7.6)

Within this, there are two Lie filtrations Fh
• and Fv

• of M, given by the
top row and left column of (7.6). Correspondingly, there are two tangent
groupoids TFv M and TFh M. Our conjecture is that the 2-multifiltration (7.6)
will determine a 2-multiweighting of the double pair groupoid Pair2(M)

along the diagonals

∆h = {(m1, m0, m1, m0) ∈ Pair2(M)}, ∆v = {(m1, m1, m0, m0) ∈ Pair2(M)}

such that the double deformation space has the structure of a double
groupoid

δW (Pair2(M), ∆h, ∆v)

�� ��

//// TFh M

�� ��
TFv M //// M × R.

(7.7)

It therefore our belief that δ(Pair2(M), ∆h, ∆v) is the right notion of the
tangent (double) groupoid of the filtered 2-multifiltered manifold M.

7.2.3 C∗-algebraic perspective

As mentioned in the introduction, an important feature of Connes’ tangent
groupoid is that it defines a continuous field of C∗-algebras.

Problem 7.10. Given a weighted groupoid G ⇒ M, determine when the
deformation groupoid δW (G, H) ⇒ δW (M, N) determines a continuous
field of C∗-algebra

Given a Lie groupoid, one can form the convolution algebra and from
that a groupoid C∗-algebra ([Ren06]). Some work towards determining the
convolution algebra of a double groupoid has been done in [RV23], but
there appears to be much work to be done in this direction. Related to the
discussion in the previous section, we also pose the following.

Problem 7.11. Determine what C∗-algebraic information is contained in a
double groupoid.
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a.1 weighted morita equivalence

A Morita equivalence is a special instance of generalized morphisms, called
Hilsum-Skandalis morphisms, which are invertible in the appropriate sense.
The following approach to Morita equivalence is adapted from [MM03,
Ler10].

a.1.1 Definition of Morita Equivalence

Definitions A.1. Let G ⇒ M and H ⇒ N be Lie groupoids.

(a) A right action of G ⇒ M on a manifold Q is given by a map µ : Q →
M together with an action map

Q ×M G = {(q, g) : µ(q) = t(g)} → Q, (q, g) 7→ q · g

such that µ(q · g) = s(g), (q · g1) · g2 = q · (g1 ◦ g2), and q · µ(q) = q
for all g1, g2 ∈ G, whenever this is defined. A left action is defined
analogously, swapping the roles of t and s.

(b) A right principal G-bundle over B is given by a diagram

P

π
�� µ

$$

}} G

�� ��
B M

where (P, µ) is a right G-space such that

(i) π : P → B is a surjective submersion,

(ii) π(p · g) = π(p) whenever µ(p) = t(g), and

(iii) the map

P ×M G → P ×B P, (p, g) 7→ (p, p · g)

is a diffeomorphism.
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(c) A Hilsum-Skandalis morphism P : G → H is represented by a diagram

G

�� ��

!! P

µGzz
µH

$$

}} H

�� ��
M N

where (P, µG) is a left G-space and (µG : P → M, µH) is a right
principal H-bundle.

(d) A Morita equivalence P : G → H is a Hilsum-Skandalis morphism as
above such that (µH : P → H, µG) is a left principal G-bundle.

Remark A.2. Hilsum-Skandalis morphisms can be composed, but their
composition is only associative up to isomorphism.

Examples A.3. (a) Let M and N be spaces (thought of as trivial Lie
groupoids), and let F : M → N be a smooth map. Then

N ×M M → M, (n, m) 7→ m

is a left action of N on M along F, and

M

�� ��

!! M

idyy F %%

}} N

�� ��
M N

is a Hilsum-Skandalis morphism M : M → N, which is a Morita
equivalence if and only if F is a diffeomorphism. In fact, any Hilsum-
Skandalis morphism between spaces is of this form.

(b) Two Lie groups G and H are Morita equivalent if and only if they are
isomorphic.

(c) For any manifold M, the canonical action

Pair(M)×M M → M, ((m0, m1), m1) 7→ m0

is a left action of Pair(M) on M and

Pair(M)

�� ��

!! M

id
xx $$

}} pnt

�� ��
M pnt

is a Morita equivalence.
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a.1.2 Weighted Morita Equivalence

We now state the analogue of Definitions A.4 for weighted groupoids.

Definitions A.4. Let G ⇒ M and H ⇒ N be weighted Lie groupoids.

(a) A right action of G ⇒ M on a weighted manifold Q along µ is
weighted if both µ and the action map

Q ×M G = {(q, g) : µ(q) = t(g)} → Q, (q, g) 7→ q · g

are weighted. We say that Q is a weighted right G-space.

(b) A right principal G-bundle over B

P

π
�� µ

$$

}} G

�� ��
B M

is weighted if both P and B are weighted and

(i) π : P → B is a weighted submersion,

(ii) the map

P ×M G → P ×B P, (p, g) 7→ (p, p · g)

is a weighted diffeomorphism.

(c) A weighted Hilsum-Skandalis morphism P : G → H is a diagram

G

�� ��

!! P

µGzz
µH

$$

}} H

�� ��
M N

where (P, µG) is a weighted left G-space and (µG : P → M, µH) is a
weighted right principal H-bundle.

(d) A weighted Morita equivalence P : G → H is a weighted Hilsum-
Skandalis morphism as above such that (µH : P → H, µG) is a
weighted left principal G-bundle.

Remarks A.5. (a) In the definition of right weighted groupoid action,
note that since µ : Q → M is weighted and s : G → M is a
weighted submersion, the fibre product Q ×M G inherits a weighting
as weighted submanifold of Q × G. Therefore, this definition makes
sense.
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(b) In the definition of a weighted right principal G-bundle, note that
since the action map P ×M G → P factors through

P ×M G → P ×B P
pr2−→ P

is follows that the action map is automatically weighted.

Examples A.6. (a) If B is a weighted manifold and µ : B → M is a
weighted morphism, then

B ×M G

pr2
�� s

&&

}} G

�� ��
B M

is the trivial weighted right principal G-bundle over B.

(b) If G ⇒ M is any weighted Lie groupoid, then

G

�� ��

!! G

tyy
s

%%

}} G

�� ��
M M

defines a weighted Morita equivalence from G to itself.

(c) If (M, N) is a weighted pair, then

Pair(M)

�� ��

!! M

id
xx $$

}} pnt

�� ��
M pnt

(A.1)

is a weighted Morita equivalence when Pair(M) is weighted along
Pair(M).

(d) If Pair(M) is trivially weighted along its units, then (A.1) is not a
weighted Morita equivalence. This is because

M

id
�� id

&&

}} Pair(M)

�� ��
pnt M

is not a weighted principal Pair(M)-bundle as the action map

M ×M Pair(M) → M ×pnt M
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is not a weighted diffeomorphism. Indeed, M×M Pair(M) is weighted
along the diagonal M ↪→ M ×M Pair(M), whereas M ×pnt M is
weighted along itself, so the inverse map is not a weighted morphism.

We now work towards showing that weighted Morita equivalence is
an equivalence relation on the set of (isomorphism classes of) weighted
Lie groupoids, the main point being that weighted Hilsum-Skandalis
morphisms can be composed. Since the composition of Hilsum-Skandalis
morphisms is defined as a quotient, it is not immediately clear that their
composition is weighted in any canonical way. The main tool in establish-
ing that the quotient is naturally weighted is the following lemma, which
says that weighted principal G-bundles are locally trivial in a weighted
sense.

Lemma A.7. If
P

π
�� µ

$$

}} G

�� ��
B M

is a right principal G-bundle, then any point p ∈ B has an open neighbourhood
U ⊆ B together with a weighted morphism U → M such that

P|U = π−1(U) ∼= U ×M G

as weighted principal G-bundles.

Proof. Since π is a weighted submersion, we can find a weighted section
σ : U → P defined near p. The map U → M is defined as the composition

U σ−→ P|U → M,

which is weighted.
The map

U ×B G → P|U , (u, g) 7→ σ(u).g (A.2)

is a weighted, being the composition of weighted morphisms. We will
show that it is a weighted diffeomorphism by constructing an explicit
weighted inverse. The map

δ : P ×B P
∼=−→ P ×M G

pr2−→ G

is a weighted morphism and therefore so is

P|U → U ×M G, p 7→ (π(p), δ(σ(π(p)), p)). (A.3)
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The maps (A.2) and (A.3) are inverse to one another, which proves the
claim.

Theorem A.8. Let G ⇒ G0, H ⇒ H0, and K ⇒ K0 be weighted Lie groupoids.
If P : G → H and Q : H → K are weighted Hilsum-Skandalis morphisms then
there is a unique weighting on the composition P ◦ Q = (P ×H0 Q)/H such that

(a) the quotient map π : P ×H0 Q → P ◦ Q is a weighted submersion and

(b) P ◦ Q : G → K is a weighted Hilsum-Skandalis morphism.

Proof. Let

C∞(P ◦ Q)(i) = { f ∈ C∞(P ◦ Q) : π∗ f ∈ C∞(P ×H0 Q)(i)}. (A.4)

In order to show that this defines a weighting of P ◦ Q, we must produce
weighted coordinates.

The work in the previous sections shows that g0 ∈ G0 has an open
neighbourhood U ⊆ G0 with a weighted morphism U → H0 such that

(P ×H0 Q)|U = P|U ×H0 Q ∼= U ×H0 H ×H0 Q

as weighted H-spaces. Moreover, the map

U ×H0 H ×H0 Q → U ×H0 Q, (u, h, q) 7→ (u, q)

is an H-equivariant weighted submersion which descends to a diffeomor-
phism (U ×H0 H ×H0 Q)/H ∼= U ×H0 Q making the following diagram
commute

U ×H0 H ×H0 Q

�� ((
(U ×H0 H ×H0 Q)/H ∼=

// U ×H0 Q

In particular, submersion coordinates for U ×H0 H ×H0 Q → U ×H0 Q in-
duced weighted coordinates on (U ×H0 H ×H0 Q)/H for the filtration (A.4)
so that the quotient map P ×H0 Q → P ◦ Q is a weighted submersion.

Corollary A.9. Weighted Morita equivalence is an equivalence relation on the
set of isomorphism classes of weighted groupoids.

a.2 weighted principal bundles and their associated bun-
dles

For completeness, we explain the associated bundle construction in the
weighted setting.
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Proposition A.10. Let (G, H) be a weighted Lie groupoid pair. If P → M is
a weighted right principal G-bundle, then the submanifold Q along which P is
weighted is a right principal H-bundle.

Proof. Since the action map P × G → P is weighted, it follows that H acts
on Q. Furthermore, since the projection P → M is a weighted submersion,
it follows that the restriction Q → N is a submersion. Finally, since the
action map P×M G → P×B P is a weighted diffeomorphism, its restriction

Q ×N H → Q ×N Q

is an isomorphism as well.

Next, we specialize to the case when (G, H) is a weighted Lie group
pair. Let V be a weighted vector space, and suppose that

ρ : G × V → V (A.5)

is a linear action of G on V, which is weighted in the sense ρ is a weighted
morphism between weighted vector bundles. We remark that for any
h ∈ H the map

V(i) → V, v 7→ h.g

is a weighted morphism, whence H acts on V by filtration preserving
automorphisms. Let P ×G V → M be the associated bundle and let

q : P × V → P ×G V

be the quotient map.

Proposition A.11. The filtration

C∞
pol(P ×G V)(i) = { f ∈ C∞

pol(P ×G V) : q∗ f ∈ C∞
pol(P × V)(i)}

defines a linear weighting of P ×G V. The filtration of (P ×G V)|N is given by

((P ×G V)|N)(i) = Q ×H V(i).

Proof. Given p ∈ N we will construct weighted vector bundle coordinates
near p. Choose an open neighbourhood U ⊆ M containing p and an
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isomorphism P|U ∼= U × G of weighted principal bundles. Since the
diagram

U × G × V

q
�� ''

(U × G)×G V ∼=
// U × V

commutes, it follows that any choice of weighted vector bundle coordinate
system for U × V does the trick.

For the filtration statement, let σ : U → P be a weighted section, and let
e1, . . . , ek be a weighted frame for V. Then the sections

σa : U → P ×G V u 7→ [(σ(u), ea)]

form a weighted frame for (P×G V)|U , hence ((P×G V)|N∩U)(i) is spanned
by σa with va ≥ i. Since Q is an H-principal subbundle of P the map

Q ×H G → P|N , [(q, g)] 7→ q.g

is a reduction of the structure group of P|N from G to H. In particular,
(P ×G V)|N ∼= Q ×H V. Since σ(N ∩U) ⊆ Q, if follows that Q|U∩N ×H V(i)
is exactly the image of ((P ×G V)|U∩N)(i) under this isomorphism.

Remark A.12. Let V → M be a rank k complex vector bundle. One might
wonder if a linear weighting of V → M induces a principal weighting of
its frame bundle. The answer to this question is yes. This can be seen as
an application of Theorem 5.23, which we outline now.

The weight vector defines a filtration of Ck by subspaces, and this
filtration, in turn, defines a Lie filtration of gl(Ck). The space of filtra-
tion preserving endomorphisms of the filtered vector space Ck, denoted
gl(Ck)(0), is the Lie algebra of a connected Lie group GL(Ck)(0) ⊆ GL(Ck).
Hence, by Theorem 5.23, GL(Ck) has a canonical multiplicative weighting
along GL(Ck)(0). Furthermore, the canonical action

GL(Ck)× Ck → Ck

is weighted (using Proposition 2.55).
Next, let F(V) → M denote the frame bundle of V, and let

FW(V) = {(p, f ) ∈ N ×N F(V)| f : Ck → Vp is filtration preserving}

be the bundle of filtration preserving frames. This is a principal GL(Ck)(0)-
subbundle of F(V). The weighting of V induces an infinitesimally mul-
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tiplicative weighting of the Atiyah algebroid At(V) ⇒ M such that the
follow sequence of weighted vector bundles

0 −→ End(V) −→ At(V) −→ TM −→ 0 (A.6)

is weighted exact, in the sense that one can find a weighted splitting. Identi-
fying sections of At(V) with the GL(Ck)-invariant vector fields on F(V)

we see that the linear weighting of V induces a singular Lie filtration on
F(V). Moreover, using that (A.6) is weighted exact, we have that FW(V) is
a clean submanifold with respect to this singular Lie filtration. By Theo-
rem 2.54, this defines a weighting of F(V) along FW(V). Again, using (A.6)
one can deduce that this weighting is principal.
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For a Lie group G with Lie algebra g, there is a canonical exponential map
exp : g → G which is a diffeomorphism near the origin. For a general
Lie groupoid G ⇒ M with Lie algebroid A ⇒ M there is no longer
a canonical exponential map relating the two. Nonetheless, it is shown
in [CMS20] that after a choice of a Lie algebroid spray V ∈ X is made an
exponential map expV : A 99K G defined on an open neighbourhood of
the zero section in A can be defined. In this appendix we review this
construction. For the following, let G ⇒ M be a Lie groupoid with Lie
algebroid A = Lie(G) ⇒ M.

b.1 A-paths and G -paths

Let J ⊆ R be an open neighbourhood of the origin. Since J is one dimen-
sional, a Lie algebroid morphism is a vector bundle morphism φ : TJ → A
with the property that

(a ◦ φ)

(
∂

∂t

∣∣∣∣
t=s

)
= Ts φM

(
∂

∂t

∣∣∣∣
t=s

)
for all s ∈ J. In particular, φ defines a path

γ : J → A, s 7→ φ

(
∂

∂t

∣∣∣∣
t=s

)
which lifts the path φM. We summarize these properties in the following
definition.

Definition B.1. An A-path is a path γ : J → A with the property that

a(γ(s)) = TsγM

(
∂

∂t

∣∣∣∣
t=s

)
(B.1)

for all s ∈ J, where γM : J → M is the base map of γ.
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Thus any Lie algebroid morphism γ : TJ → A defines an A-path. The
converse is also true: given an A-path γ : R → A we let γ̃ : TJ → A be the
vector bundle morphism defined by

γ̃

(
∂

∂t

∣∣∣∣
t=s

)
= γ(s).

This is a morphism of anchored vector bundles precisely because of (B.1).
Thus, we have established a 1-1 correspondence between A-paths J → A
and Lie algebroid morphisms TJ → A.

The dual notion of an A-path is a G-path:

Definition B.2. A G-path is a path γ : J → G such that

t(γ(t)) = γ(0) ∈ M

for all t ∈ J.

Given a G-path γ : J → G, the map

γ̃ : Pair(J) → G, (t, s) 7→ γ(t)−1γ(s)

is a Lie groupoid morphism. Conversely, any groupoid morphism γ :
Pair(J) → G defined a G-path by

t 7→ γ(0, t).

Thus, there is a 1-1 correspondence between G-paths J → G and groupoid
morphisms Pair(J) → G.

b.2 the maurer-cartan form

Let TtG = ker(Tt) be the tangent space to the t-fibres. Given g ∈ G with
s(g) = x and t(g) = y, left multiplication by g defines a diffeomorphism
Lg : t−1(x) → t−1(y). For each g ∈ G, this defines an isomorphism

TgLg−1 : Tt
gG → Tt

s(g)G = As(g)

which fits together to define a vector bundle map

θG : TtG → A

covering s : G → M.

Definition B.3. The vector bundle morphism θG : TtG → A is the (left-
invariant) Maurer-Cartan form for G.
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We can use the Maurer-Cartan form to differentiate G-paths to A-paths.
Let γ : J → G be a G-path. Since t(γ(t)) = γ(0) for all t ∈ J, it follows that

γ̇(t) : J → TG, t 7→ Ttγ

(
∂

∂t

∣∣∣∣
t

)
defines a path J → TtG. Hence we can define

DLγ : J → A, t 7→ θG(γ̇(t)).

Alternatively, we can identify γ with a groupoid morphism Pair(J) → G
and let DLγ : J → A be the A-path defined by the induce Lie algebroid
morphism TJ → A (see [CF03, Propostion 1.1]). Using Lie’s second theo-
rem for Lie algebroids ( [MX00, Theorem A.1]), any A-path also integrates
(uniquely) to a G-path. Summarizing,

Proposition B.4. (cf. [CF03, Propostion 1.1]) The assignment γ 7→ DLγ defines
a 1-1 correspondence between G-paths and A-paths.

In particular, the G-path φ : J → G integrating a given A-path γ : J → A
with γ(0) ∈ Ax is the unique solution to the initial value problem

θG(φ̇(t)) = γ(t), φ(0) = x. (B.2)

b.3 the spray exponential

We want to use the correspondence between A-paths and G-paths to define
an exponential map for Lie groupoids. In order to do this, we need a way
of defining an A-path through a given a ∈ A. The data needed for this is a
Lie algebroid spray (cf. [CMS20, Definition 3.1]).

Definition B.5. A spray on a Lie algebroid A → M is a vector field
V ∈ X(A) such that

(a) κ∗t V = tV for all t ̸= 0, where κt denotes scalar multiplication by t,
and

(b) for all a ∈ A, one has Tπ(Va) = ρ(a), where π : A → M is the vector
bundle projection and ρ : A → TM is the anchor.

Remarks B.6. Let us summarize some facts about Lie algebroid sprays, as
explained in [CMS20, Section 3.1].

(a) The first condition implies that V vanishes along M. Hence, there is
an open neighbourhood M ⊆ UV ⊆ A for which the flow ϕt

V up to
time t = 1 is defined for all v ∈ UV .
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(b) The second condition implies that for all v ∈ UV the map

ϕv : J → A, t 7→ ϕt
V(v)

is an A-path, where J ⊆ R is an open interval centered at 0 and
containing 1.

In particular, a choice Lie algebroid spray V ∈ X(A) determines an
A-path starting at v for any v ∈ A sufficiently close to the zero section.
This motivated the following definition, cf. [CMS20, Definition 3.20].

Definition B.7. Let A = Lie(G) and let V ∈ X(A) be a Lie algebroid
spray. Given v ∈ A sufficiently close to the zero section, let expV(v) =

ϕG(1) ∈ G where ϕG(t) is the G-path integrating the A-path ϕt
V(v). The

spray exponential is the map

expV : A 99K G, v 7→ expV(v)

defined on an open neighbourhood UV ⊆ A containing the zero section.

Remark B.8. In [CMS20] they define the spray exponential to be the solution
of the initial value problem (B.2), but by the discussion in the previous
section we see they give the same result.

Lemma B.9. Let H ⇒ N be a Lie subgroupoid of G ⇒ M, and let B = Lie(H).
If V ∈ X(A) is tangent to B, then expV(v) ∈ H for all v ∈ B sufficiently close
to the zero section.

Proof. Since B is a Lie subalgebroid, the restriction of V to B is a Lie
algebroid spray for B. Thus, for v ∈ B sufficiently close to zero, ϕt

V(v) is
an A-path whose image lies in B, hence integrates to an G-path whose
image lies in H.

b.4 applying the higher tangent functor

Finally, we are interested in examining how applying the higher tangent
functor affects to corresponding exponential map.

Lemma B.10. Suppose that X ∈ X(M) with flow ϕX, defined for time |t| ≤ ϵ.
Then

Trϕt
X = ϕt

X(0) .

Proof. For t, s sufficiently small we have by functoriality that

Trϕ0
X = id and Trϕt+s

X = Tr(ϕ
t
Xϕs

X) = Trϕt
XTrϕs

X,
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hence Trϕt
X is the flow of a vector field. To verify that this vector field is

X(0), let f ∈ C∞(M) and observe that

d
dt

∣∣∣∣
t=0

(Trϕt
X)

∗ f (i) =
d
dt

∣∣∣∣
t=0

((ϕt
X)

∗ f )(i) = (X f )(i) = X(0) f (i),

for i = 0, 1, . . . , r.

Remark B.11. In particular, ϕt
X(0) is also defined for |t| ≤ ϵ.

Recall that if A ⇒ M is a Lie algebroid, then there is a canonical Lie
algebroid structure Tr A ⇒ Tr M such that

aTr A = Tra and [σ(−i), τ(−j)] = [σ, τ](−i−j).

The canonical identification Tr(TG) ∼= T(TrG) restricts to an identifica-
tion Tr(TtG|M) ∼= TTrt(TrG)|Tr M. In particular, we see that Tr A is the Lie
algebroid of TrG.

Proposition B.12. (a) If V ∈ X(A) is a Lie algebroid spray, then TrV = V(0)

is a Lie algebroid spray for Tr A.

(b) For any Lie algebroid spray V ∈ X(A), the partially defined maps

Tr expV : Tr A 99K TrG and expV(0) : Tr A 99K TrG

agree.

Proof. (a) Let E ∈ X(A) denote the Euler vector field for A. Then E(0) ∈
X(Tr A) is the Euler vector field for Tr A and we have that

[E(0), V(0)] = [E, V](0) = V(0),

so TrV satisfies Definition B.5 (a). Condition (b) in Definition B.5
follows by functoriality.

(b) Let UV ⊆ A be an open neighbourhood of the zero section for which
ϕt

V is defined for |t| ≤ 1. By applying Lemma B.10 to M = UV we
see that, for any u ∈ TrUV , the Tr A-paths Trϕt

V(u) and ϕt
V(0)(u) agree.

Therefore, they integrate to the same TrG-path, which proves the
claim.
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c.1 proof of Lemma 3 .28

Lemma C.1 (= Lemma 3.28). For σ ∈ Γ(V)(i), the i-th homogeneous approx-
imation is a smooth section of νW (V) which is homogeneous of degree −i and
which depends only on the class of σ in Γ(V)(i)/Γ(V)(i+1). Moreover, for any
f ∈ C∞

[n](V)(j) and g ∈ C∞(M)(k) one has

f [j] ◦ σ[i] = ( f ◦ σ)[j+ni] ∈ C∞(νW (M, N)) and

g[k]σ[i] = (gσ)[i+k] ∈ Γ(νW (V)).
(C.1)

Proof. The equation f [j] ◦ σ[i] = ( f ◦ σ)[j+ni] follows from (3.8), and it
follows from this that σ[i] : νW (M, N) → νW (V) is smooth. To see that it is
a section, we note that

νW (π) ◦ σ[i] = νW (π ◦ σ) = idνW (M,N).

Given g ∈ C∞(M)(k), f ∈ C∞
[n](V)(j) and φ ∈ νW (M, N), using that f is

homogeneous of degree n we compute

((g[k]σ[i])(φ))( f [j]) = (νW (κφ(g[k]))σ
[i](φ))( f [j])

= (σ[i](φ))(κ∗
φ(g[k]) f [j])

= (σ[i](φ))(φ(g[k])n f [j])

= φ(g[k])n φ(( f ◦ σ)[j+ni])

= φ((gn)[nk]( f ◦ σ)[j+ni])

= φ((gn( f ◦ σ))[j+ni+nk])

= φ(( f ◦ (gσ))[j+n(i+k)])

= ((gσ)[i+k](φ))( f [j]),

which establishes (C.1). To show that σ[i] only depends on the class of
σ ∈ Γ(V)(i)/Γ(V)(i+1), it suffices to show that if σ ∈ Γ(V)(i+1) then σ[i] = 0.
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Specifically, what this means is that for any f ∈ C∞
pol(V)(j) and φ ∈

νW (M, N) one has
(σ[i](φ))( f [j]) = φ(κ∗0 f [j]). (C.2)

If f ∈ C∞
[n](V)(j) with n ≥ 1, one has that

f ◦ σ ∈ C∞(M)(j+n(i+1)) =⇒ ( f ◦ σ)[j+ni] = 0,

so (C.2) follows in this case. For f ∈ C∞
[0](V)(j) = C∞(M)(j) one has that

(σ[i](φ))( f [j]) = φ(( f ◦ σ)[j]) = φ( f [j]) = φ(κ∗0 f [j]),

since f is homogeneous of degree zero. Since any polynomial is a sum of
monomials, it follows that σ[i] = 0. Finally, to see that σ[i] ∈ Γ[−i](νW (V)),
we compute

(αλ(σ
[i](φ)))( f [j]) = (σ[i](φ))(λj f [j])

= φ(λj( f ◦ σ)[j+ni])

= φ(λj+ni( f ◦ (λ−iσ))[j+ni])

= (αλ(φ))(( f ◦ (λ−iσ))[j+ni])

= (λ−iσ[i](αλ(φ)))( f [j]).

c.2 proof of Lemma 3 .46

We now prove the following.

Lemma C.2 (= Lemma 3.46). If Pair(P), Pair(Spin(k)) are given the doubled
trivial weighting along the diagonal, and Cl(Rk) is given the linear weighting
defined by its filtration by subspaces, then the group action

Pair(Spin(k))× Pair(P)× Cl(Rk) → Pair(P)× Cl(Rk) (C.3)

is a weighted morphism.

As indicated above, the proof uses a characterization of weighted mor-
phisms in terms of weighted paths. We being by explaining this character-
ization and then give a proof of the lemma. The contents of this section
are based on communications with Gabriel Beiner, Yiannis Loizides, and
Eckhard Meinrenken.

Let us briefly recall the set up. Let V → M be a rank k vector bundle
with inner product and given spin structure. Let P → M be the principal
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Spin(k)-bundle specified by the spin structure, and recall that the action
of Pair(Spin(k)) on Pair(P)× Cl(Rk) is given by

(g1, g2).(p1, p2, v) = (p1.g1, p2.g2, g1vg−1
2 ),

where we are making use of the inclusion Spin(k) ⊆ Cl(Rk). In order to
show that this action is weighted, we make use of weighted paths.

The weighting on both Pair(P) and Pair(Spin(k)) is the doubled weight-
ing along the diagonal, where a function has filtration degree 2i if it van-
ishes to order i along the diagonal. Giving Pair(M) the doubled weighting
along the diagonal, one finds that Pair(P) can be identified locally with
Pair(M)× Pair(Spin(k)) as weighted manifolds. Thus, to show that the
action of Pair(Spin(k)) on Pair(P) is weighted, it is sufficient (in fact,
equivalent) to show that the action of Pair(Spin(k)) on itself is a weighted
morphism.

Lemma C.3. Suppose that G is a Lie group and H ⊆ G is a closed subgroup. If
G is given the doubled weighting along H, then the map

a : G × G → G

(g1, g2) 7→ g1g−1
2

is a weighted morphism.

Proof. By definition of the doubled weighting, the map a is weighted if and
only if a∗IH ⊆ IH×H. From this it follows that a is a weighted morphism,
since H is a subgroup.

It remains to show that the action of Pair(Spin(k)) on Cl(Rk) is weighted,
which we accomplish by making use of weighted paths. It is sufficient to
consider path γ in Pair(Spin(k))× Cl(Rk) of the form

γ(t) =

(
g exp(ξt) exp(ξ1(t)), g exp(ξt) exp(ξ2(t)),

k

∑
i=0

citi

)
,

where g ∈ Spin(k), ξ ∈ spin(k), ξ1(t), ξ2(t) = O(t2), and ci ∈ Cli(R
k).

Composing this with the action Pair(Spin(k))× Cl(RK) → Cl(Rk) gives

k

∑
i=0

Adg exp(ξt)

(
exp(ξ1(t))ci exp(−η2(t))ti

)
. (C.4)
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Using that the adjoint action of Spin(k) on Cl(Rk) is filtration preserving,
the identification spin(k) = Cl2(Rk), and the fact that ξ1(t), ξ2(t) = O(t2),
it follows from the power series expansion of the exponential map that

k

∑
i=0

Adg exp(ξt)

(
exp(ξ1(t))ci exp(−η2(t))ti

)
=

k

∑
i=0

viti + O(tk+1),

for some vi ∈ Cli(R
k). In particular, (C.4) is a weighted path. By Theo-

rem 2.35, this completes the proof of Lemma 3.46.

c.3 proof of Lemma 4 .19

Let V → M and W → M′ be weighted vector bundles.

Proposition C.4. Suppose that φ : V → W is a weighted vector bundle mor-
phism such that the base map φM : M → M′ is a weighted submersion and the
maps

(V|N)(i) → (W|M′)(i)

are fibrewise surjective. The ker(φ) is a weighted subbundle of V.

Proof. As in the proof of Theorem 3.19, we may assume that the weightings
of both V and W are concentrated in negative degree. In this case, the
assumptions on φ ensure that it is a weighted submersion. Since M′ is a
weighted submanifold of W, it follows that

ker(φ) = φ−1(M′)

is a weighted subbundle of V by Corollary 2.23.

Corollary C.5 (= Lemma 4.19). Let V → M be a weighted vector bundle and
W → R a weighted subbundle. Then ann(W) is a weighted subbundle of V∗.

Proof. Let i : R ↪→ M be the inclusion. Then i∗V∗ → R is a weighted vector
bundle by Section 3.1.2. The induced map

i∗V∗ → W∗

satisfies the assumptions of Proposition C.4 and has kernel equal to
ann(W).

Remark C.6. By a similar argument, if V1 and V2 are weighted vector
bundles, and R ⊆ V2 × V1 is a weighted subbundle, then ann♯(R) ⊆
V∗

2 × V∗
1 is a weighted subbundle. Indeed, it is the kernel of the map

i∗(V∗
2 × V∗

1 ) → R∗, (ξ2, ξ1) 7→ ξ2 − ξ1.
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[MM06] Ieke Moerdijk and Janez Mrčun, On the integrability of lie subal-
gebroids, Advances in Mathematics 204 (2006), no. 1, 101–115.

[MM10] , On the universal enveloping algebra of a lie algebroid, Pro-
ceedings of the American Mathematical Society 138 (2010),
no. 9, 3135–3145.

[Mor70] Akihiko Morimoto, Liftings of tensor fields and connections to
tangent bundles of higher order, Nagoya Mathematical Journal 40
(1970), 99–120.

[MX97] Kirill Mackenzie and Ping Xu, Classical lifting processes and
multiplicative vector fields, arXiv preprint dg-ga/9710030 (1997).

[MX00] Kirill CH Mackenzie and Ping Xu, Integration of lie bialgebroids,
Topology 39 (2000), no. 3, 445–467.

[Pra67] Jean Pradines, Theorie de lie pour les groupoides differentiable, CR
Acad. Sci. Paris 264 (1967), 245–248.

[Pra88] , Remarque sur le groupoıde cotangent de weinstein-dazord,
CR Acad. Sci. Paris Sér. I Math 306 (1988), no. 13, 557–560.

[Ren06] Jean Renault, A groupoid approach to c*-algebras, vol. 793,
Springer, 2006.

[RV23] Angel Roman and Joel Villatoro, Convolution algebras of double
groupoids and strict 2-groups, arXiv preprint arXiv:2312.00341

(2023).

[Šev17] Pavol Ševera, Letters to alan weinstein about courant algebroids,
arXiv preprint arXiv:1707.00265 (2017).

[SH18] Ahmad Reza Haj Saeedi Sadegh and Nigel Higson, Euler-like
vector fields, deformation spaces and manifolds with filtered structure,
Documenta Mathematica 23 (2018), 293–325.

[Vai97] Arkady Yu Vaintrob, Lie algebroids and homological vector fields,
Russian Mathematical Surveys 52 (1997), no. 2, 428–429.

[VEY17] Erik Van Erp and Robert Yuncken, On the tangent groupoid of a
filtered manifold, Bulletin of the London Mathematical Society
49 (2017), no. 6, 1000–1012.



bibliography 144

[VEY19] , A groupoid approach to pseudodifferential calculi, Journal
für die reine und angewandte Mathematik (Crelles Journal)
2019 (2019), no. 756, 151–182.

[Yun18] Robert Yuncken, On pseudodifferential operators on filtered and
multifiltered manifolds, arXiv preprint arXiv:1810.10272 (2018).

[ZCL09] De Shou Zhong, Zhuo Chen, and Zhang Ju Liu, On the existence
of global bisections of lie groupoids, Acta Mathematica Sinica,
English Series 25 (2009), 1001–1014.



colophon

This thesis was typeset using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosić.
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