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Chapter 0

Introduction

0.1 Introduction and Motivation

Discrete complex analysis is the study of discrete holomorphic functions. These are functions

defined on planar graphs embedded in the plane, that satisfy a discrete analogue of the Cauchy-

Riemann equations. Given a graph embedded in the plane, there are many ways one could dis-

cretize the Cauchy- Riemann equations. As such, the focus is on classes of graphs embedded in

the plane and discretizations of the Cauchy- Riemann equations on these graphs so that discrete

holomorphic functions have many of the properties that are characteristic of holomorphic func-

tions in the plane: i.e. discrete holomorphic functions integrate to 0 over closed contours, the

real and imaginary parts of a discrete holomorphic function are discrete harmonic, etc.

The subject of discrete complex analysis is classical, going back to the work of Isaacs [31] and

Lelong-Ferrand [40]. However, in the past 20- 30 years there has been a renewed interest in

the subject as a result of the work of Kenyon [32, 33], Mercat [42, 43] and Smirnov [50] who

demonstrated the power of discrete complex analysis as a tool for understanding statistical me-

chanics in two dimensions, at criticality. Landmark results following from the application of

discrete complex analysis to 2D statistical physics include the proof of Cardy’s formula for criti-

cal percolation [50], the proof of the convergence of interfaces in the critical Ising model to SLE3

[12], and the convergence of critical percolation interfaces to SLE6 [8]. Here, SLEκ refers to

Schramm- Loewner evolution, a 1- parameter family of random curves parametrized by κ ą 0

that is uniquely characterized by conformal invariance and a certain Markov- type property.

For all of these results, the story is as follows:

1. Many important models in statistical physics are defined on a lattice, rather than in the

continuum. Thus, to understand the large- scale picture that comes out of the microscopic,

lattice- level interactions, we need to take the limit of our model as the mesh of the lattice
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goes to 0.

2. Physicists have this intuition that, at criticality, 2D statistical physics should be conformally

invariant in the limit. As such, many of the limiting observables in these models are either

harmonic or holomorphic functions, depending on whether they take real or complex values.

3. This is where discrete complex analysis enters the picture. Provided our lattice accom-

modates a notion of discrete complex analysis, our first step in rigorously establishing the

limiting behavior of our statistical physics model is to identify a discrete holomorphic ob-

servable in the model. That is, we find some functional of the statistical physics model that

satisfies a discrete version of the Cauchy- Riemann equations.

4. A priori regularity estimates for discrete holomorphic functions tell us that discrete holo-

morphic observables are precompact with respect to the topology of uniform convergence on

compacts. This gives us subsequential limits for our observables as the mesh of our lattice

tends to 0. Discrete holomorphicity of the observables tells us that any subsequential limit

of our observables is a holomorphic function.

5. Since the limiting observable is holomorphic, we can uniquely identify it by its boundary

behavior. Since all the subsequential limits agree, we conclude that our discrete holomorphic

observables converge to the relevant continuum limit.

6. Convergence of this observable is then leveraged to prove convergence of the discrete random

objects of interest to their continuum limits: i.e. percolation interfaces to SLE6, interfaces

in the Ising model to SLE3, etc.

Isoradial graphs or rhombic lattices, first introduced by Duffin in [19], are a natural setting for

discrete complex analysis. At this point, critical statistical physics on isoradial graphs is well-

understood. For instance, the conformal invariance of height functions in the dimer model [41],

universality of critical exponents for the random cluster model [20], and the convergence of mul-

tipoint spin correlations for the Ising model [13] have all been established when the underlying

lattice is isoradial. For more on critical statistical physics on isoradial graphs, see the surveys

[10] and [26]. All this is in large part due to work of Chelkak and Smirnov who in [15] prove

fundamental results for discrete harmonic and holomorphic functions on isoradial graphs. In

particular, they prove convergence of discrete harmonic measure, discrete Poisson kernels and

discrete Green’s functions on isoradial graphs to their continuous counterparts. This builds on

prior work of Kenyon [33], which establishes explicit formulas and asymptotics for the whole-

plane Green’s function on isoradial graphs.

Orthodiagonal maps are another class of graphs embedded in the plane, with edge weights coming

from the geometry of this embedding, that accommodate a notion of discrete complex analysis.

They are a strict generalization of isoradial graphs: every isoradial graph is orthodiagonal. Until

the recent introduction of t- embeddings by Chelkak, Laslier and Russkikh [14] and independently
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by Kenyon, Lam, Ramassamy and Russkikh [34] orthodiagonal maps were the most general set-

ting for discrete complex analysis. Most of the well-known planar lattices- i.e. the square lattice,

the triangular lattice, the hexagonal lattice- are orthodiagonal. More generally, as a consequence

of the double circle packing theorem, a wide variety of planar graphs admit an orthodiagonal em-

bedding (see Section 2 of [25]). In contrast to the isoradial setting, critical 2D statistical physics

on general orthodiagonal maps is still poorly understood.

In this thesis, the focus will be on proving convergence results for discrete harmonic and dis-

crete holomorphic functions on orthodiagonal maps. In Chapter 2, which is joint work with my

advisor Ilia Binder, we show that for finer and finer orthodiagonal approximations of a simply

connected domain Ω with four distinguished boundary points, a certain discrete conformal map,

defined on the faces of our orthodiagonal map, converges uniformly on compacts to its continuum

analogue. In Chapter 3, we show that for Hölder boundary data, solutions to the Dirichlet prob-

lem on orthodiagonal maps converge to the solution of the corresponding continuous Dirichlet

problem with a polynomial rate of convergence in the mesh of our orthodiagonal map. Finally,

in Chapter 4, we use our estimates for Laplacian of the convolution , we prove Along the way, we

prove fundamental results for random walks, discrete harmonic functions, discrete holomorphic

functions and discrete extremal length on orthodiagonal maps that are of independent interest.

These results constitute a toolbox for extending the results of critical 2D statistical physics on

isoradial graphs to the more general orthodiagonal setting.

Our motivation for extending the tools of discrete complex analysis to a wider class of discretiza-

tions of 2D space is twofold. On the one hand, it confirms our intuition that the underlying

physical phenomena are universal. That is, it shouldn’t matter whether we define our statistical

physics model on a triangular or on a square grid. As the mesh shrinks to 0, the limiting behavior

should be the same.

Perhaps more importantly, extending discrete complex analysis techniques to wider classes of

discretizations of the 2D space is expected to have applications to the understanding of statistical

physics on random surfaces, which is one of the big open problems in modern probability theory.

The story here is as follows:

1. sample a large planar graph uniformly at random in any sort of sensible way. For instance,

we could sample a p- angulation (planar map where all the faces are polygons with p sides)

with n faces uniformly at random.

2. “decorate” this random planar graph with a critical statistical physics model. For instance,

we can decorate our planar graph with a critical Ising model. The probability of seeing a

particular random graph is then proportional to the partition function of the critical Ising

model on that graph.

3. thinking of the resulting random graph as a compact metric space with the graph metric,
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under appropriate rescaling, it should converge in Gromov- Hausdorff distance to some

limiting object.

4. the intuition from statistical physics is that the resulting random metric space is γ- Liouville

quantum gravity for some parameter γ. For details, see [48].

The trouble with this last step is that Liouville quantum gravity is typically defined as a random

metric on the sphere. Thus, to relate the object we got in step 3 to γ- Liouville quantum gravity

for some appropriate parameter γ, we need to embed our family of random graphs in the Riemann

sphere, so that the complex structure of our embedding is somehow compatible with the complex

structure of our graph. The first rigorous results in this direction were recently proven for Cardy

embeddings of random triangulations by Holden and Sun [29].

Another approach to uniformizing discrete random geometry is circle packings. Namely, if our

planar graph is a triangulation, the Koebe-Andreev-Thurston theorem tells us that this graph has

a unique representation as the tangency graph of a circle packing, up to Möbius transformations

and reflections (see Chapter 3 of [44]). Thus, as long as our random graphs are triangulations,

circle packings give us a natural embedding of our random graphs in the Riemann sphere.

If we can extend discrete complex analysis techniques to planar graphs embedded in the plane

according to one of the aforementioned schema, we should be able to use the discrete complex

analysis techniques that have been so useful for understanding critical statistical physics in 2D Eu-

clidean space to say something about critical statistical physics on random surfaces. In particular,

if we embed a triangulation in the Riemann sphere via circle packing, the resulting embedding is

orthodiagonal (see Proposition 2.1 of [25]). Thus, extending discrete complex analysis techniques

to orthodiagonal maps should already be sufficient to apply these techniques to the understanding

of critical statistical physics on random triangulations.

0.2 Orthodiagonal Maps, Tilings of Rectangles, and their

Convergence to Conformal Maps

In Chapter 2 we use discrete complex analysis techniques to solve a purely deterministic problem

in the general orthodiagonal setting. Namely, a classic paper of Brooks, Smith, Stone and Tutte

describes how planar electrical networks give rise to tilings of rectangles by smaller subrectangles

[7]. Each subrectangle in the tiling corresponds to an edge of the network and its aspect ratio is

precisely the conductance of this corresponding edge. These tilings can be thought of as discrete

analogues of the uniformizing conformal map that maps a simply connected domain to a rectangle

so that four distinguished points on the boundary of our simply connected domain are mapped

to the four corners of the rectangle. We make this idea rigorous by showing that for any simply

connected domain, if we have an increasingly fine sequence of orthodiagonal approximations, the

associated tilings converge to the corresponding uniformizing conformal map. This significantly
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improves on a previous result of Georgakopoulos and Panagiotis who prove this convergence in

the case where the approximating orthodiagonal map is just a chunk of the square grid [24].

Furthermore, our approach is significantly different from the one in [24] which relies heavily on

the fact that reflected random walks on δZ2 converge in law to reflected Brownian motion as

δ Ñ 0. To our knowledge, this result is not known for any other lattices.

In recent work, Albin, Lind and Pietro- Corradini provide an explicit rate of convergence for

these tilings to the limiting conformal map in the general orthodiagonal setting (this is effectively

Theorem 3 of [3]), subject to certain assumptions on the smoothness of the boundary of the

simply connected domain that is being approximated. They then use this to prove convergence

of the probabilistic interpretation of modulus as well as convergence of discrete extremal length

to continuous extremal length in this setting [3]. By employing a different approach, we manage

to avoid making any assumptions about the smoothness of the boundary of our simply connected

domain, at the expense of providing an explicit rate of convergence.

Our result can also be interpreted as the rectangle tiling analogue of similar results that are

known for circle packings. As we discussed earlier, the Koebe-Andreev-Thurston theorem tells

us that any finite triangulation can be realized as the tangency graph of a circle packing in the

plane. With this in mind, Bill Thurston made the observation that if you fill a simply connected

domain with circles packed together, the Koebe-Andreev-Thurston theorem gives you a natural

way to repack these circles in the unit disk in a way that preserves tangency. Since this “repack-

ing map” sends circles to circles, if we fill our simply connected domain with smaller and smaller

circles, the corresponding circles in the images should also get smaller and smaller. In the limit,

these repacking maps should converge to a function that sends infinitisimal circles to infinitisimal

circles. In other words, a conformal map. Thus, Thurston conjectured that circle packings should

give us a way to approximate the uniformizing conformal map from a simply connected domain to

the unit disk [53]. This was proven by Rodin and Sullivan when the circle packings in the simply

connected domain consist of circles, all having the same radii, packed together in a honeycomb

pattern [47]. This was later generalized to circle packings with arbitrary combinatorics by He

and Schramm [27]. For more on circle packings and their connection to complex analysis, see [52].

Finally, it is worth noting that the closely related tilings of cylinders have been the object of

recent study by Benjamini and Schramm [5], Georgakopoulos [23] and Hutchcroft and Peres [30]

in connection with the Poisson boundary of infinite planar graphs.
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0.3 A Polynomial Rate of Convergence for the Dirichlet

Problem on Orthodiagonal Maps

Due to the ubiquity of diffusion phenomenon in the physical world, the Dirichlet problem is one

of the most important partial differential equations in mathematical physics. Recently, Gurel-

Gurevich, Jerison and Nachmias showed that solutions to the Dirichlet problem on orthodiagonal

maps converge to the solution of the corresponding continuous Dirichlet problem [25]. This

improves on prior work of Chelkak and Smirnov [15], Skopenkov [49] and Werness [54], where

this result is proven for the Dirichlet problem on orthodiagonal maps, subject to various additional

regularity assumptions on the underlying lattice. In particular, Theorem 1.1 of [25] provides an

explicit rate of convergence for the Dirichlet problem on orthodiagonal maps to the corresponding

continuous Dirichlet problem for C2 boundary data. In Chapter 3, we improve upon the rate of

convergence in Theorem 1.1 of [25], by showing that as long as our boundary data is Hölder, we

have a polynomial rate of convergence for the Dirichlet problem on orthodiagonal maps to the

corresponding continuous Dirichlet problem.

0.4 Lipschitz Regularity on a Mesoscopic Scale for

Harmonic Functions on Orthodiagonal Maps

Suppose Ω is a subdomain of R2 and h : Ω Ñ R is harmonic. Then the classical Harnack estimate

says that for any x, y P Ω so that |x´ y| ď d “ distpx, BΩq ^ distpy, BΩq, we have that:

|hpyq ´ hpxq| ď 2}h}L8pΩq

´

|x´ y|

d

¯

(0.4.1)

This result follows readily from the mean value property for harmonic functions. Namely, if x P Ω

and r ă distpx, BΩq, we have that:

hpxq “
1

πr2

ż

Bpx,rq

hpuqdApuq (0.4.2)

where “dApuq” refers to integration with respect to area on Ω. Insofar as orthodiagonal maps are

good approximations of continuous 2D space, we should expect that something like this is true

for discrete harmonic functions on orthodiagonal maps. Indeed, in the more restricted setting

of isoradial graphs with angles uniformly bounded away from 0 and π, Chelkak and Smirnov

show that an anologue of the Harnack estimate holds (see Corollary 2.9 of [15]). Just as in the

continuous setting, the result follows from an analogue of the integral mean value property in

Equation 0.4.2 for discrete harmonic functions (see Proposition A.2 of [15]). The proof of this

mean value property for discrete harmonic functions on isoradial graphs requires asymptotics for

the discrete Green’s function on isoradial graphs, proven by Kenyon (see Theorem 7.3 of [33]).

It is expected that these estimates should also hold for the discrete Green’s function on general

6



orthodiagonal maps, however, this has yet to be proven. In light of this, to prove Harnack-type

estimates for discrete harmonic functions on orthodiagonal maps, we will use a different approach.

Namely, in Chapter 3, we show that if you convolve a discrete harmonic function with a smooth

mollifier, the resulting continuous function is “almost” harmonic in that its Laplacian is small in

a precise quantitative sense. It turns out that to have a Harnack-type estimate like the one in

Equation 0.4.1, we do not need our function to be harmonic. Being almost harmonic is enough.

Thus, we have a Harnack-type estimate for the convolution of a discrete harmonic function with

a smooth mollifier.

Regularity estimates for discrete harmonic functions on orthodiagonal maps tell us that that our

original discrete harmonic function is close to its convolution with a smooth mollifier, provided

the support of this smooth mollifier is small. Since discrete harmonic functions on orthodiagonal

maps are close to continuous functions that satisfy a Harnack-type estimate, we conclude that

we also have a Harnack-type estimate for discrete harmonic functions on orthodiagonal maps, at

least on a mesoscopic scale.
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Chapter 1

Preliminaries

1.1 The Theory of Electrical Networks

Following r25s, a finite network is a finite graph G “ pV,Eq along with a weight function

c : E Ñ Rą0. For any edge e P E we say that cpeq is the conductance of that edge. The

reciprocal rpeq “ 1
cpeq

is the resistance of that edge.

A function θ : E⃗ Ñ R is said to be antisymmetric if θp´e⃗q “ ´θpe⃗q for all e⃗ P E⃗. Intu-

itively, antisymmetric functions on a network G are the discrete analogues of vector fields. Let

ℓ2´pE⃗q denote the space of antisymmetric functions on E⃗ with the inner product:

xθ, ψyr :“
1

2

ÿ

e⃗PE⃗

rpeqθpe⃗qψpe⃗q

The energy of θ P ℓ2´pE⃗q is:

Epθq “ }θ}2r “ xθ, θyr

Given f : V Ñ R its gradient cdf : E⃗ Ñ R is given by:

pcdfqpe⃗q “ cpeqpfpe`q ´ fpe´qq

For any function f : V Ñ R, the gradient is antisymmetric. Thus, we can define the energy of a

function f : V Ñ R as the energy of its gradient:

Epfq “ Epcdfq “
1

2

ÿ

e⃗PE⃗

cpeq
`

fpe`q ´ fpe´q
˘2

Given a function in ℓ2´pE⃗q, we are often interested in the energy of its restriction to some subgraph

of G. To make it clear where it is we are computing the energy, if θ P ℓ2´pE⃗q and G1 “ pV 1, E1q
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is a subgraph of G “ pV,Eq with the same edge weights, then:

Epθ;G1q “
1

2

ÿ

e⃗PE⃗1

rpeqθpe⃗q2

Similarly, if f : V Ñ R,
Epf ;G1q “

1

2

ÿ

e⃗PE⃗1

cpeq
`

fpe`q ´ fpe´q
˘2

A function θ P ℓ2´pE⃗q satisfies the cycle law if for any directed cycle γ “ pe⃗1, e⃗2, ..., e⃗mq in G,

m
ÿ

i“1

rpeiqθpe⃗iq “ 0

It is not hard to see that θ P ℓ2´pE⃗q satisfies the cycle law if and only if θ “ cdf for some function

f : V Ñ R. Given θ P ℓ2´pE⃗q, its divergence divpθq : V Ñ R is given by:

`

divpθq
˘

pxq “
ÿ

e´“x

θpe⃗q

Similar to the continuous setting, the divergence of θ at x measures the net flow out of x by θ.

Given distinct vertices a, z P V , a function θ P ℓ2´pE⃗q is a flow from a to z if:

`

divpθq
˘

pxq “ 0 for all x P V zta, zu.

Given a flow θ from a to z its strength, denoted by }θ}, is defined as follows:

}θ} “
ÿ

x:x„a

θpa, xq “
`

divpθq
˘

paq

For every flow θ from a to z,

}θ} “
ÿ

y:y„z

θpy, zq “ ´
`

divpθq
˘

pzq

This is because:

ÿ

e⃗PE⃗

θpe⃗q “ 0 “
ÿ

xPV

ÿ

y:y„x

θpx, yq “
ÿ

xPV

`

divpθq
˘

pxq “
`

divpθq
˘

paq `
`

divpθq
˘

pzq

The first equality follows from the antisymmetry of θ. Given f : V Ñ R, its Laplacian ∆f :

V Ñ R is given by:

∆fpxq “
`

divpcdfq
˘

pxq “
ÿ

e´“x

cpeq
`

fpe`q ´ fpe´q
˘

“
ÿ

y:y„x

cpx, yq
`

fpyq ´ fpxq
˘

9



If ∆fpxq “ 0, we say that f is harmonic at x. Equivalently, f is harmonic at x if:

fpxq “
1

πx

ÿ

y:y„x

cpx, yqfpyq

where:

πx “
ÿ

y:y„x

cpx, yq

From this formula, it is immediate that harmonic functions satisfy the maximum principle:

Proposition 1.1.1. Suppose that G “ pV,E, cq is a finite network and h : V Ñ R is harmonic

on U Ĺ V . Define:

BU “ tw P V zU : w „ u for some u P Uu

Then:

max
uPU

hpuq ď max
vPBU

hpvq

Following [44], a simple random walk on the network G “ pV,E, cq is the discrete time Markov

process pXnqně0 with transition probabilities:

P px, yq “
cpx, yq

πx
1px„yq

Given a function f : V Ñ R and vertices a, z P V , it is clear that cdf is a flow from a to z if

and only if ∆fpxq “ 0 for all x P V zta, zu. We call such a function a voltage. Since the discrete

boundary value problem:

hpaq “ α

hpbq “ β

∆hpxq “ 0 for all x P V zta, zu

has a unique solution for any choice of α, β P R, voltages form a two-parameter family. The

flow cdh corresponding to any voltage h : V Ñ R is known as the corresponding current flow.

Given distinct vertices a, z P V , the effective resistance between a and z in G, denoted by

Reffpa Ø z;Gq, is given by:

Reffpa Ø z;Gq “
hpzq ´ hpaq

}cdh}

where h is any nonconstant voltage. To see that this quantity is well- defined, just observed

that adding a constant doesn’t affect the voltage difference between a and z, hpzq ´ hpaq, or the

current flow cdh. Similarly, multiplying h by a nonzero constant scales the voltage difference and

the strength of the corresponding current flow by the same factor, leaving the effective resistance

unchanged.

More generally, given disjoint sets of vertices A,Z Ď V , we can define a new network by iden-
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tifying the vertices of A to a single vertex a and identifying the vertices of Z to a single vertex

z. Then the effective resistance ReffpA Ø Z;Gq between A and Z in G, is given by the electrical

resistance between the vertices a and z in this new network.

In this paper, we will frequently need to bound effective resistances from above and below. To

do this, we will use the following pair of variational formulas. Dirichlet’s Principle allows us to

bound effective resistances from below by finding functions with small discrete Dirichlet energy:

Proposition 1.1.2 (Dirichlet’s Principle). If G “ pV,E, cq is a finite network with distinct

vertices a, z P V then:

Reffpa Ø z;Gq “ sup

"

1

Ephq
: h : V Ñ R, hpaq “ 0, hpzq “ 1

*

Thomson’s Principle allows us to bound effective resistances from above, by finding low- energy

flows:

Proposition 1.1.3 (Thomson’s Principle). If G “ pV,E, cq is a finite network with distinct

vertices a, z P V then:

Reffpa Ø z;Gq “ inf tEpθq : }θ} “ 1, θ is a flow from a to zu

Given f : V Ñ R and A,B Ď V nonempty, disjoint sets of vertices, we define the quantity

gapA,Bpfq as follows:

gapA,Bpfq “ min
bPB

fpbq ´ max
aPA

fpaq

Recall Proposition 4.11 of [25] which tells us that:

Proposition 1.1.4. If G “ pV,E, cq is a finite network, A,B Ď V are disjoint, nonempty sets of

vertices then for any flow θ on G and any function f : V Ñ R such that gapA,Bpfq ě 0,

}θ} ¨ gapA,Bpfq ď Epθq1{2Epfq1{2

This inequality follows almost immediately from the Cauchy- Schwarz inequality on ℓ2´pE⃗q. Fur-

thermore, Dirichlet’s Principle and Thomson’s Principle can both be recovered cheaply as corol-

laries to this inequality.

1.2 Extremal Length and Planar Networks

Suppose G “ pV,E, cq is a finite network and Γ is a nonempty collection of paths in G. Then the

extremal length of the collection of paths Γ is given by the following variational formula:

λpΓ, Gq :“ sup
ρ

ℓ2pρ,Γq

Apρq
(1.2.1)
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where our supremum is taken over all nonzero metrics ρ : E Ñ Rě0 and:

ℓpρ,Γq :“ mint
ÿ

ePγ

ρpeq : γ P Γu, Apρq :“
ÿ

ePE

cpeqρpeq2

Note that the quantity ℓ2pρ,Γq{Apρq doesn’t change if we replace ρ by some scalar multiple λρ

where λ ą 0. Thus:

λpΓ, Gq “ sup
ρ

l2pρ,Γq

Apρq
“ sup

Apρq“1

l2pρ,Γq “ sup
lpρ,Γq“1

1

Apρq
“

`

inf
lpρ,Γq“1

Apρq
˘´1

The set of metrics ρ on G such that lpρ,Γq “ 1 is referred to as the set of admissible metrics

and is denoted by ApΓq. We say that a metric ρ on G is extremal for λpΓ, Gq if λpΓ, Gq “

l2pΓ, Gq{Apρq. Looking at the second equality above, we see that when we compute the extremal

length of the path family Γ, we are optimizing a continuous function, ρ ÞÑ l2pρ,Γq, over the set

of ρ P RE
ě0 such that Apρq “ 1. This is a compact subset of RE with respect to the standard

topology on RE . Thus, in contrast to the continuous setting (see problem IV.9 of [22]), for a

finite network we always have an extremal metric.

This extremal metric is unique up to multiplication by a scalar. This follows by the same argu-

ment as the in the continuous setting: suppose that ρ1 and ρ2 are both extremal for λpΓ, Gq. First

we rescale so that Apρ1q “ Apρ2q “ 1. It follows that l2pΓ, ρ1q “ l2pΓ, ρ2q “ λpΓ, Gq. Consider

the metric ν :“ 1
2 pρ1 ` ρ2q. Trivially,

lpν,Γq ě
1

2

`

lpρ1,Γq ` lpρ2,Γq
˘

“
a

λpΓ, Gq ùñ l2pΓ, νq ě λpΓ, Gq (1.2.2)

On the other hand, by Cauchy- Schwartz, Apνq ď 1
2

`

Apρ1q `Apρ2q
˘

“ 1 with equality iff ρ1 is a

scalar multiple of ρ2. If Apνq ă 1 then l2pν,Γq{Apνq ą λpΓ, Gq. This is not possible since λpΓ, Gq

is the supremum of l2pρ,Γq{Apρq over all metrics ρ. Thus, ρ2 is a scalar multiple of ρ1. Since

Apρ1q “ Apρ2q “ 1 we actually have that ρ1 “ ρ2.

In all of the cases we’re interested in, the path family Γ will be the set of paths γ in G that

start at a vertex of S and end at a vertex of T for S, T nonempty disjoint subsets of V . We

denote the extremal length of this path family by λpS Ø T ;Gq. It turns out that the quantity

λpS Ø T ;Gq is precisely the effective resistance between S and T from the theory of electrical

networks:

Proposition 1.2.1. (Theorem 2 of [18]) Suppose G “ pV,E, cq is a finite network and S, T are

nonempty, disjoint subsets of V . Let ΓS,T denote the set of nearest- neighbor paths in G that

start at a vertex of S and end at a vertex of T . Then:

λpΓSØT , Gq “ ReffpS Ø T ;Gq

12



One nice property of extremal length is blocking duality. Given, S, T nonempty, disjoint sets of

vertices in G, we say that a set F Ă E is an S- T cut if F separates S from T in G. That is, if

we remove the edges of F from G, there is no nearest- neighbor path in G starting at a vertex of

S and ending at a vertex of T .

Let BpS, T ;Gq denote the set of S- T cuts in G. Analogous to how we defined the extremal

length of a path family, we can talk about the extremal length of the set of S- T cuts in G. This

is denoted by λpS Ü T ;Gq and defined as follows:

λpS Ü T ;Gq “ sup
ρ

ℓ2pρ,BpS, T ;Gqq

Apρq

where our supremum is taken over all nonzero metrics ρ : E Ñ Rě0, and:

ℓpρ,BpS, T ;Gqq “ mint
ÿ

ePF

ρpeq : F P BpS, T ;Gqu, Apρq “
ÿ

ePE

cpeqρpeq2 (1.2.3)

More generally, while we initially restricted our attention to path families so as to draw parallels

with the continuous theory, it is clear that if we let Γ be any family of multisets of edges in G,

definition 1.2.1 still makes sense. Thus, we can actually talk about the extremal length of any

family of multisets of edges of G. For instance, the modulus of the set of spanning trees of a

network has been the subject of recent study [2].

A classic result of Ford and Fulkerson relates the extremal length of paths from S to T to

the extremal length of the set of S- T cuts:

Proposition 1.2.2. (Theorem 1 of [21]) If G “ pV,E, cq and H “ pV,E, rq are finite networks so

that r : E Ñ Rą0 is the resistance function corresponding to the conductance function c : E Ñ

Rą0 and S, T are nonempty, disjoint sets of vertices in G, then:

λpS Ø T ;Gq ¨ λpS Ü T ;Hq “ 1

For a more modern treatment of this result as well as a generalization to the case of p- extremal

length, see [1]. This result is particularly useful in the case where our graph G is planar, in which

case we can identify the set of S- T cuts with path families in the dual graph.

A finite planar map is a finite planar graph pV,Eq along with a proper embedding of this

graph into the Riemann sphere, viewed up to homeomorphism of the Riemann sphere. Specifying

a proper embedding of a graph in the Riemann sphere up to orientation- preserving homeomor-

phism is equivalent to assigning a coherent system of orientations to the edges about each vertex

(for details, see Section 1.1.2 of [17]). Thus, despite the topology present in our initial definition,

planar maps can be viewed as purely combinatorial objects. Equivalently, we can think of finite

planar maps as gluings of polygons along edges so that the resulting topological manifold is a
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sphere.

A quadrangulation with boundary is a bipartite planar map all of whose faces are quadrilat-

erals, with the possible exception of some finite number of distinguished faces which we think of

as “holes” in our planar map. Notice that requiring our planar map to be bipartite is equivalent

to asking that all of these “hole” faces have an even number of sides. Given a quadrangulation

with boundary G “ pV,Eq, we refer to these distinguished faces as the exterior faces of G. The

remaining faces are called the interior faces of G. The edges and vertices tangent to the exterior

faces of G are known as the boundary vertices and edges of G. We denote these by BV and BE.

A quadrangulation with boundary G “ pV,Eq is simply- connected if G has a unique exterior

face whose boundary is a simple, closed curve.

Since our quadrangulations are bipartite, we have a natural bipartition of the vertices V “

V ‚ \ V ˝. The vertices of V ‚ are known as the primal vertices of G and are typically colored

black. The vertices of V ˝ are known as the dual vertices and are typically colored white. These

give rise to the primal and dual graphs G‚ “ pV ‚, E‚q and G˝ “ pV ˝, E˝q. G‚ is formed by

connecting any pair of primal vertices that share an interior face in G. Similarly, G˝ is formed

by connecting any pair of dual vertices that share an interior face in G. Since the interior faces

of G are all quadrilaterals, each interior face corresponds to one primal and one dual edge. In

this way, there is a natural correspondence between the primal and dual edges.

Based on the paragraph above, it might seem that the setting we are working in is very re-

strictive. On the contrary, observe that this procedure of recovering a graph G‚ (and its dual

G˝) from a quadrangulation G gives us a one- to- one correspondence between the set of quad-

rangulations with n faces and the set of planar maps with n edges (see Section 2.2.1 of [17]). In

other words, restricting our attention to bipartite quadrangulations with k holes is equivalent to

restricting our attention to embeddings of a graph and its dual in the Riemann sphere, up to

orientation- preserving homeomorphism, so that the resulting discrete object has the topology of

the Riemann sphere with k discs removed.

Given a quadrangulation with boundary G “ pV ‚ \ V ˝, Eq, a conformal metric on G is a

function c : E‚ \ E˝ Ñ p0,8qq such that:

cpe˝q “
1

cpe‚q

for e˝ P E˝, e‚ P E‚ so that e˝ is the dual edge corresponding to the primal edge e‚. Let

c‚ : E‚ Ñ p0,8q and c˝ : E˝ Ñ p0,8q denote the conductances on G‚ and G˝ produced by

restricting c to E‚ and E˝ respectively. If θ P ℓ2´pE⃗‚q and f : V ‚ Ñ R, we write:

E‚pθq “ Epθ;G‚q, E‚pfq “ Epf ;G‚q
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to emphasize that these energies are being computed on the primal graph G‚. Similarly, given a

subgraph H of G‚, we write:

E‚pθ;Hq “ Epθ;Hq, E‚pf ;Hq “ Epf ;Hq

Given ω P l2´pE⃗˝q, g : V ˝ Ñ R, and a subgraph H of G˝, the quantities E˝pωq, E˝pgq, E˝pω;Hq,

E˝pg;Hq are defined analogously.

A discrete conformal rectangle is a simply- connected, bipartite quadrangulation with bound-

ary endowed with a conformal metric c : E‚\E˝ Ñ p0,8q and four distinguished boundary points

A‚, B‚, C‚, D‚ P BV ‚, listed in counterclockwise order: since our quadrangulation with bound-

ary is simply- connected, it has a unique exterior face f , so A‚, B‚, C‚, D‚ must all lie along f .

Furthermore, having embedded our quadrangulation into the Riemann sphere, we can talk about

orientation.

The distinguished boundary points A‚, B‚, C‚, D‚ P BV ‚ of our discrete conformal rectangle

give rise to primal boundary arcs rA‚, B‚s, rC‚, D‚s Ď BV ‚. rA‚, B‚s refers to the set of pri-

mal vertices that lie along the counterclockwise path from A‚ to B‚ along the boundary of f .

Similarly, rC‚, D‚s is the set of primal vertices that lie along the counterclockwise path from

C‚ to D‚ along the boundary of f . These primal boundary arcs have corresponding dual arcs

rB˝, C˝s, rD˝, A˝s Ď BV ˝ where rB˝, C˝s consists of the set of dual vertices that lie along the

counterclockwise path from B‚ to C‚ along the boundary of f . Similarly, rD˝, A˝s is the set of

dual vertices that lie along the counterclockwise path from D‚ to A‚ along the boundary of f .

We say that an S- T cut, F Ď E, is minimal if for any edge e P F , F zteu is no longer an

S- T cut.

Lemma 1.2.3. (Lemma VIII.1 of [18]) If pG, cq is a discrete conformal rectangle with distin-

guished boundary points A‚, B‚, C‚, D‚ P BV ‚ giving rise to primal boundary arcs rA‚, B‚s,

rC‚, D‚s Ď BV ‚ with corresponding dual arcs rB˝, C˝s, rD˝, A˝s Ď BV ˝, then the set of minimal

rA‚, B‚s- rC‚, D‚s cuts in G‚ is in one- to- one correspondence with the set of simple paths from

rB˝, C˝s to rD˝, A˝s in G˝.

When computing the extremal length of the family of paths between disjoint vertex sets S and

T in G, for a fixed metric ρ, we are interested in the quantity:

inf
γ

#

ÿ

ePγ

ρpeq

+

where our infimum is taken over all paths γ in G between S and T . Since any such path that isn’t

simple has a simple subpath of smaller ρ- weight, when taking this infimum, it actually suffices to

restrict our attention to simple paths γ from S to T . Similarly, when we compute the extremal
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length of the set of S- T cuts in a network, rather than taking an infimum over all S- T cuts, it

suffices to restrict our attention only to minimal S- T cuts. Thus, as an immediate corollary of

Lemma 1.2.3, we have that:

Corollary 1.2.1. If pG, cq is a discrete rectangle with distinguished boundary points A‚, B‚, C‚, D‚ P

BV ‚ giving rise to primal boundary arcs rA‚, B‚s, rC‚, D‚s Ď BV ‚ with corresponding dual arcs

rB˝, C˝s, rD˝, A˝s Ď BV ˝, then:

λprA‚, B‚s Ü rC‚, D‚s; pG‚, c‚qq “ λprB˝, C˝s Ø rD˝, A˝s; pG˝, c˝qq

Suppose G “ pV ‚ \ V ˝, Eq is a bipartite quadrangulation with boundary endowed with a con-

formal metric c : E‚ \ E˝ Ñ R. We say that h : V ‚ Ñ R is harmonic on G‚ if h is harmonic on

IntpV ‚q “ V ‚zBV ‚. rh : V ˝ Ñ R is the harmonic conjugate of h on G if for any interior face f

of G, we have that:
`

rhpw2q ´ rhpw1q
˘

“ c‚pv1, v2q
`

hpv2q ´ hpv1q
˘

(1.2.4)

where v1, w1, v2, w2 are the vertices of f listed in counterclockwise order so that v1, v2 P V ‚ and

w1, w2 P V ˝. Equation 1.2.4 is a discrete analogue of the Cauchy- Riemann equations for a

quadrangulation with boundary G, endowed with a conformal metric. It is easy to check that the

conjugate of a harmonic function on G‚ is harmonic on G˝. Additionally, since c is a conformal

metric, if rh is the harmonic conjugate of h, then h is the harmonic conjugate of rh. The next two

propositions are well- known, though they are rarely stated in this generality:

Proposition 1.2.4. Suppose G “ pV ‚ \ V ˝, Eq is a bipartite quadrangulation with boundary

endowed with a conformal metric c : E‚ \ E˝ Ñ R. If h : V ‚ Ñ R is harmonic on G‚, then the

harmonic conjugate of h, if it exists, is unique up to an additive constant.

Proposition 1.2.5. Suppose G “ pV ‚ \ V ˝, Eq is a bipartite quadrangulation with boundary

endowed with a conformal metric c : E‚ \ E˝ Ñ R and h : V ‚ Ñ R is harmonic on G‚. Let

H “ pV ‚
H \V ˝

H , EHq be submap of G which is itself a simply- connected, bipartite quadrangulation

with boundary. Then h has a harmonic conjugate rh : V ˝
H Ñ R on H.

Remark 1.2.2. Ford- Fulkerson duality is a general statement that holds for any finite network.

However, in the case of discrete rectangles, it has a particularly simple proof stemming from the

fact that if h is the function on V ‚ that is equal to 0 on rA‚, B‚s, 1 on rC‚, D‚s and is harmonic

elsewhere so that:

λ‚ “ λprA‚, B‚s Ø rC‚, D‚s;Gq “
1

E‚phq

its harmonic conjugate rh is (up to an additive constant) equal to 0 on rB˝, C˝s, 1
λ‚ on rD˝, A˝s and

is harmonic elsewhere. Furthermore, by the discrete Cauchy-Riemann equations, E˝prhq “ E‚phq.

Hence:

λ˝ “ λprB˝, C˝s Ø rD˝, A˝s;G˝q “
p1{λ‚q2

E˝prhq
“

p1{λ‚q2

p1{λ‚q
“

1

λ‚
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1.3 Tilings of Rectangles

Suppose Ω Ď C is a Jordan domain with analytic boundary and distinguished boundary points

A,B,C,D listed in counterclockwise order. Let rA,Bs, rB,Cs, rC,Ds, rD,As denote the closed

boundary arcs stretching counterclockwise from A to B, B to C, C to D and D to A along BΩ.

Let pA,Bq, pB,Cq, pC,Dq, pD,Aq be the corresponding open boundary arcs. Let rh be the solution

to the following boundary value problem:

rhpxq “ 0 for x P rB,Cs

∆rhpxq “ 0 for x P Ω

rhpxq “ 1 for x P rA,Ds

Bnrhpxq “ 0 for x P pB,Cq Y pD,Aq

The existence and uniqueness of the solution to this problem is clear by conformal invariance.

Namely, if L is the extremal length from rA,Bs to rC,Ds in Ω and RL :“ p0, Lq ˆ p0, 1q then

there is a unique conformal map ϕ : Ω Ñ RL sending A,B,C,D to the corners of RL. Since our

boundary value problem is conformally invariant, rhpxq “ Impϕpxqq. Furthermore, the conjugate

harmonic function hpxq “ Repϕpxqq satisfies:

hpxq “ 0 for x P rA,Bs

hpxq “ L for x P rC,Ds

Bnhpxq “ 0 for x P pB,Cq Y pD,Aq

Thus, if we are presented with a Jordan domain Ω with four distinguished boundary points

A,B,C,D listed in counterclockwise order and ϕ : Ω Ñ RL is the conformal map that maps

A,B,C,D to the corners of RL, we can intuitively think of the real and imaginary parts of this

conformal map as solving the aforementioned boundary value problems.

Suppose pG, cq is a discrete rectangle with distinguished boundary points A‚, B‚, C‚, D‚ P BV ‚

listed in counterclockwise order, giving rise to primal boundary arcs rA‚, B‚s, rC‚, D‚s Ď BV ‚

and corresponding dual boundary arcs rB˝, C˝s, rD˝, A˝s Ď BV ˝. Let rh be the solution to the

following boundary value problem on pG˝, c˝q:

rhpxq “ 0 for x P rB˝, C˝s

rhpxq “ 1 for x P rD˝, A˝s

∆˝
rhpxq “ 0 for x P V ˝zprB˝, C˝s Y rD˝, A˝sq
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Let h be the solution to the following boundary value problem on pG‚, c‚q:

hpxq “ 0 for x P rA‚, B‚s

hpxq “ L for x P rC‚, D‚s

∆‚hpxq “ 0 for x P V ‚zprA‚, B‚s Y rC‚, D‚sq

where L is the effective resistance between rA‚, B‚s and rC‚, D‚s in pG‚, c‚q. Just as in the con-

tinuous setting, rh is the harmonic conjugate of h. Since they are defined in terms of analogous

boundary value problems, the functions h and rh on G are discrete analogues of the real and

imaginary parts of the uniformizing conformal map that takes a simply connected domain with

four distinguished prime ends to a rectangle so that the four distinguished prime ends are mapped

to the four corners of the rectangle.

Suppose pG, cq is a discrete rectangle with distinguished boundary points A‚, B‚, C‚, D‚ P BV ‚

listed in counterclockwise order, giving rise to primal boundary arcs rA‚, B‚s, rC‚, D‚s Ď BV ‚

and corresponding dual boundary arcs rB˝, C˝s, rD˝, A˝s Ď BV ˝. Let h : V ‚ Ñ R, rh : V ˝ Ñ R
be conjugate harmonic functions defined as above. For any interior face f of G with incident

vertices x, y, u, v where x, y P V ‚, u, v P V ˝, the image of f under the tiling map ϕ is defined as

follows:

ϕpfq “ rhpxq, hpyqs ˆ rrhpuq,rhpvqs

where the order of x, y and u, v is chosen so that:

hpxq ď hpyq, rhpuq ď rhpvq

As the name suggests, ϕ corresponds to a tiling of the rectangle RL by smaller subrectangles:

Theorem 1.3.1. (Theorem 4.31 of [7]) Suppose ϕ is the tiling map associated with the discrete

rectangle pG, cq with distinguished boundary points A‚, B‚, C‚, D‚ P BV ‚ listed in counterclock-

wise order. Then for any pair of distinct inner faces f, f 1 of G, the rectangles ϕpfq and ϕpf 1q have

disjoint interiors. Furthermore, if Fin is the set of interior faces of G,

ď

fPFin

ϕpfq “ r0, Ls ˆ r0, 1s

Since h and rh are conjugate, the aspect ratio of the rectangle ϕpfq corresponding to the face f

of G with incident vertices x, y P V ‚ and u, v P V ˝ is precisely the resistance of the primal edge

tx, yu P E‚ or equivalently, the conductance of the dual edge tu, vu P E˝.
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1.4 Orthodiagonal Maps

Our reason for working in the level of generality that we did in Sections 1.2 and 1.3 was to

showcase the power of the theory of planar electrical networks. That said, if we want the discrete

harmonic and discrete holomorphic functions we’re looking at to converge to the corresponding

continuous harmonic and holomorphic functions in the plane, we need to do two things:

1. Fix an embedding of our graph in the complex plane.

2. Pick a conformal metric that is tied to the geometry of this embedding.

With this in mind, an orthodiagonal map is a finite, bipartite quadrangulation with boundary

G “ pV ‚ \ V ˝, Eq with a fixed, proper embedding in the plane so that:

• Each edge is a straight line segment.

• Each interior face is a quadrilateral with orthogonal diagonals.

We allow non- convex quadrilaterals, whose diagonals do not intersect. We endow this with a

conformal metric c : E‚ \ E˝ Ñ p0,8q defined as follows:

cpe‚q “
|e˝|

|e‚|
, cpe˝q “

|e‚|

|e˝|

for e˝ P E˝, e‚ P E‚ so that e˝ is the dual edge corresponding to the primal edge e‚. For any

edge e P E‚ \ E˝, |e| is the length of the edge e in our embedding. Recall that E‚ and E˝ are the

edges of G‚ and G˝ respectively, not the edges of G. That is, they correspond to the diagonals

of interior faces of G.

To make it clear that the discussion that follows is not totally vacuous, observe that the square

lattice, the triangular lattice and the hexagonal lattice all have this property that primal and

dual edges are orthogonal. More generally, finite subdomains of isoradial lattices, which have

been widely studied in the context of critical statistical physics in 2D (i.e. see [33] and [15]), are

precisely orthodiagonal maps whose faces are all rhombii. Furthermore, as a consequence of the

double circle packing theorem, a wide variety of planar graphs admit an orthodiagonal embedding

(see Section 2 of [25]).

While our choice of conformal metric might seem strange at first, observe that if G is an or-

thodiagonal map with conformal metric c as above:

• simple random walk on pG‚, c‚q and pG˝, c˝q is a martingale.

• as a Markov chain, simple random walk on pG‚, c‚q and pG˝, c˝q is reversible.

The orthogonality of edges and dual edges gives us a natural way to write down the Cauchy-

Riemann equations on an orthodiagonal map. Namely, a function F : V ‚ \ V ˝ Ñ C is said to be
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discrete holomorphic if for every interior face Q of G with primal diagonal e‚ “ tv1, v2u and

dual diagonal e˝ “ tw1, w2u we have:

F pv2q ´ F pv1q

v2 ´ v1
“
F pw2q ´ F pw1q

w2 ´ w1
(1.4.1)

From this definition it follows that:

• discrete contour integrals vanish if the integrand is discrete holomorphic. That is, if F is

discrete holomorphic on G and γ is a simple, closed, directed curve in G so that the faces

of G enclosed by γ are all interior faces of G, then:

ÿ

e⃗Pγ

e⃗“pe´,e`
q

`

F pe´q ` F pe`q
˘

pe` ´ e´q “ 0

• the real and imaginary parts of any discrete holomorphic function are harmonic with respect

to the edge weights c‚ and c˝. That is, RepF q|V ‚ , ImpF q|V ‚ are harmonic on pG‚, c‚q and

RepF q|V ˝ , ImpF q|V ˝ are harmonic on pG˝, c˝q. Moreover, ImpF q|V ˝ is the conjugate har-

monic function of RepF q|V ‚ and RepF q|V ˝ is the conjugate harmonic function of ImpF q|V ‚ .

In short, orthodiagonal maps provide us with a notion of discrete complex analysis.
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Chapter 2

Orthodiagonal Maps, Tilings of

Rectangles and their Convergence

to Conformal Maps

In this Chapter, we’ll deliver on our promise in Section 0.2 and show that the tiling maps asso-

ciated with finer and finer orthodiagonal approximations of a simply connected domain Ω with

four distinguished boundary points, converge to the conformal map that sends Ω to a rectangle,

so that the four distinguished boundary points of Ω are mapped to the four corners of the rect-

angle. Our approach will follow the framework we laid out in Section 0.1 for proving discrete

holomorphic observables converge to their continuous counterparts. Before we do this, however,

we first need to introduce the terminology to make this precise. In particular, we need to specify

what it means for an orthodiagonal map with four distinguished primal boundary vertices to be

close to a simply connected domain Ω with four distinguished boundary points.

2.1 Orthodiagonal Approximations of Planar Domains

An orthodiagonal rectangle is an orthodiagonal map G with a unique distinguished outer face

whose boundary is a simple, closed curve with four distinguished boundary pointsA‚, B‚, C‚, D‚ Ď

BV ‚ listed in counterclockwise order. As in the case of discrete rectangles, these give rise to pri-

mal boundary arcs rA‚, B‚s, rC‚, D‚s and corresponding dual arcs rB˝, C˝s, rD˝, A˝s. Given an

orthodiagonal map G, let pG denote the subdomain of C formed by taking the interior of the union

of the faces of G.

Suppose Ω is a connected, proper subdomain of C. γ Ď Ω is a crosscut of Ω if γ “ ηpr0, 1sq

for some injective, continuous function η : r0, 1s Ñ Ω such that ηp0, 1q Ď Ω and ηp0q, ηp1q P BΩ

where ηp0q ‰ ηp1q. If γ is a crosscut of Ω, Ωzγ has two connected components. By the Jordan
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Figure 2.1: An orthodiagonal rectangle with distinguished boundary arcs rA‚, B‚s, rC‚, D‚s and
corresponding dual arcs rB˝, C˝s, rD˝, A˝s.

curve theorem, the same is true of Ωzγ when γ is a simple, closed curve in Ω. Given disjoint

subsets A,B Ď Ω we say that a simple closed curve or crosscut γ separates A and B in Ω if

γ XA “ γ XB “ H and A and B lie in distinct connected components of Ωzγ.

Fix z0 P Ω. For any z, w P Ωztz0u, their Carathéodory distance with respect to the ref-

erence point z0 is given by:

dz0Carapz, wq :“ inftlengthpγq : γ is a simple closed curve or crosscut that separates z and w from z0u

dz0Cara is a metric on Ωztz0u that is locally equivalent to the usual Euclidean metric. The

Carathéodory compactification Ω˚ of Ω is the completion of Ωztz0u with respect to dz0Cara.

As a topological space, the Carathéodory compactification Ω˚ is independent of our choice of

reference point z0 P Ω. BΩ˚ is known as the space of prime ends of Ω. The prime ends of Ω

can be interpretted geometrically as equivalence classes of chains of open sets in Ω converging to

a point on the boundary. For details, see Section 3.1 of [6] or Section 2.4 of [45]. Given disjoint

subsets A,B Ď BΩ˚, we say that a crosscut γ of Ω joins A and B in Ω if one of the endpoints of

γ lies in A and the other lies in B. If A Ď Ω, B Ď BΩ˚, we say that a crosscut γ of Ω joins A

and B in Ω if A X γ “ H, A is contained in one of the two connected components of Ω˚zγ, and

B intersects the connected component of Ω˚zγ containing A.

If Ω1,Ω2 are proper, connected subdomains of C and ϕ : Ω1 Ñ Ω2 is conformal, then ϕ ex-
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tends to a homeomorphism ϕ : Ω˚
1 Ñ Ω˚

2 . This tells us that, from the standpoint of complex

analysis, the space of prime ends is the right notion of boundary for a proper, connected sub-

domain of C. In particular, if Ω Ĺ C is simply connected, and ϕ : Ω Ñ D is the uniformizing

conformal map that maps Ω to the unit disk, we have the following estimates for the modulus of

continuity of ϕ and ϕ´1 with respect to the Carathéodory metric:

Proposition 2.1.1. Suppose Ω Ĺ C is a bounded simply connected domain, z0 P Ω and ϕ : Ω Ñ

D is a uniformizing conformal that maps Ω to the unit disk so that ϕpz0q “ 0. Then there exists

an absolute constant C1 ą 0 such that for any x, y P Ω:

|ϕpyq ´ ϕpxq| ď C1

d

dz0Carapx, yq

|ϕ1pz0q|
(2.1.1)

If additionally we know that Ω is bounded, there exists an absolute constant C2 ą 0 such that

for any x, y P D, we have that:

dz0Carapϕ´1pxq, ϕ´1pyqq ď C2

d

AreapΩq

log
`

1
|x´y|

˘ (2.1.2)

The modulus of continuity for ϕ in Equation 2.1.1 is a consequence of Beurling’s estimate (see

Proposition 3.85 of [38]). The modulus of continuity for ϕ´1 follows from Wolff’s lemma (see

Proposition 2.2 of [45]). As a consequence, if Ω Ĺ C is simply connected, Ω˚ is homeomorphic to

the closed unit disk D and the space of prime ends BΩ˚ is homeomorphic to S1. If x, y P BΩ˚ are

prime ends, let rx, ysBΩ˚ denote the arc along BΩ˚ that travels from x to y, counterclockwise.

A conformal rectangle is a bounded, simply connected domain Ω along with four distin-

guished prime ends A,B,C,D, listed in counterclockwise order. Recalling our discussion in

Section 0.2, given a conformal rectangle pΩ, A,B,C,Dq and a sequence of orthodiagonal rect-

angles
`

pGn, A
‚
n, B

‚
n, C

‚
n, D

‚
nq

˘8

n“1
that are better and better approximations of pΩ, A,B,C,Dq,

we want to show that the associated tiling maps converge to the conformal map from Ω to a

rectangle RL so that the prime ends A,B,C,D are mapped to the four corners of RL, where

in particular, ϕpAq “ i. This of course begs the question: what does it mean for an orthodiag-

onal rectangle pG,A‚, B‚, C‚, D‚q to be a good approximation of pΩ, A,B,C,Dq? One natural

requirement is that the boundary arcs rA‚, B‚s, rB˝, C˝s, rC‚, D‚s, rD˝, A˝s of G should be close

to the corresponding continuous boundary arcs rA,BsBΩ˚ , rB,CsBΩ˚ , rC,DsBΩ˚ , rD,AsBΩ˚ of

Ω. To be precise, since the Carathéodory metric is the right notion of distance for a general

simply connected domain, a natural requirement is that the discrete boundary arcs are close to

the corresponding continuous boundary arcs in Carathéodory metric. However, to define the

Carathéodory metric, we need to introduce a reference point, which a priori isn’t part of our

setup. To avoid this, we will instead use a closely related quantity, whose definition doesn’t

require the introduction of a reference point.
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For any z P Ωzγ, let N z
γ denote the component of Ωzγ containing z. Let S, S1 be disjoint

compact subsets of BΩ˚. Then for any z P Ω˚, we define the crosscut distance dΩccpz, S, S1q

from z to S, away from S1 in Ω, by:

dΩccpz, S, S1q :“ inftlengthpγq : γ is a crosscut of Ω that separates z from S1 such that N z
γ X S ‰ Hu

where N z
γ is the closure of N z

γ with respect to the Carathéodory metric. Similarly, for a compact

subset C of Ω˚, its crosscut distance to S, away from S1, is given by:

dΩccpC, S, S1q :“ sup
zPC

dΩccpz, S, S1q

The supremum on the right hand side is actually a maximum. To see this, observe that dΩccpz, S, S1q

is locally Lipschitz as a function of z. Namely,

|dΩccpz, S, S1q ´ dΩccpw, S, S1q| ď 2dΩpz, wq

where:

dΩpz, wq :“ inftlengthpγq : γ is a smooth curve from z to w in Ωu

In particular, if the line segment from z to w is contained in Ω, we have that:

|dΩccpz, S, S1q ´ dΩccpw, S, S1q| ď 2|z ´ w|

Given a conformal rectangle pΩ, A,B,C,Dq, we say that the orthodiagonal rectangle pG,A‚, B‚, C‚, D‚q

is a (δ, ε)- good interior approximation of pΩ, A,B,C,Dq if pG Ď Ω, |e| ă ε for all edges

e P E, and:

dΩccprA‚, B‚s, rA,BsBΩ˚ , rC,DsBΩ˚ q ă δ, dΩccprC‚, D‚s, rC,DsBΩ˚ , rA,BsBΩ˚ q ă δ

dΩccprB˝, C˝s, rB,CsBΩ˚ , rD,AsBΩ˚ q ă δ, dΩccprD˝, A˝s, rD,AsBΩ˚ , rB,CsBΩ˚ q ă δ

In Section 1.3 we defined the tiling map associated with a discrete rectangle. Without a fixed

embedding, the faces of a discrete rectangle are purely combinatorial objects. Having fixed an

embedding, the faces of an orthodiagonal rectangle are honest- to- goodness subsets of the plane.

Hence, we can think of the tiling map ϕ associated with an orthodiagonal rectangle G, as a func-

tion ϕ : pG Ñ C. We do this by choosing for each interior face f a homeomorphism that maps the

quadrilateral f to the corresponding rectangle ϕpfq. Unfortunately, this means that the tiling

map ϕ : pG Ñ C depends on our choice of homeomorphism. There is also some ambiguity as to

the definition of ϕ on the edges of G, since each edge is shared by two distinct faces. That said,

by the regularity estimates in Section 2.2.2 we’ll see that this isn’t a concern, since our choice of

homeomorphism doesn’t impact the convergence we are looking for.

Having established all the requisite terminology, we can now state precisely the main theorem we
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intend to prove:

Theorem 2.1.2. Suppose pΩ, A,B,C,Dq is a conformal rectangle and
`

pGn, A
‚
n, B

‚
n, C

‚
n, D

‚
nq

˘8

n“1

is a sequence of orthodiagonal rectangles so that for each n P N, pGn, A
‚
n, B

‚
n, C

‚
n, D

‚
nq is a pδn, εnq-

good interior approximation of Ω, where:

pδn, εnq Ñ p0, 0q as n Ñ 8

Let ϕn : pGn Ñ r0, Lns ˆ r0, 1s be the corresponding tiling maps, where Ln is the discrete extremal

length between rA‚
n, B

‚
ns and rC‚

n, D
‚
ns in G‚

n. Then:

ϕn Ñ ϕ uniformly on compacts as n Ñ 8

where ϕ is the conformal map from Ω to the rectangle p0, Lq ˆ p0, 1q so that the prime ends

A,B,C,D are mapped to the four corners of the rectangle and in particular, ϕpAq “ i. Here, L

is the extremal length between the arcs rA,BsBΩ˚ and rC,DsBΩ˚ in Ω. In particular, it follows

that:

Ln Ñ L as n Ñ 8

2.2 Precompactness of the Tiling Maps

To prove Theorem 2.1.2 following the framework outlined in Section 0.1, we need to show that

tiling maps corresponding to finer and finer orthodiagonal approximations of a conformal rectan-

gle pΩ, A,B,C,Dq are equicontinuous and uniformly bounded on compacts in Ω. In this section,

we address this by proving estimates for the norm and modulus of continuity of our tiling maps.

For both the norm and modulus of continuity, when doing this, we begin by proving the cor-

responding result in the continuous setting. The proof in the continuous setting motivates the

proof in the discrete setting. Furthermore, we will need the continuous analogues of our tiling

map estimates in the proof of Theorem ?? in Appendix ??.

2.2.1 Modulus of Continuity for the Limiting Conformal Map

Suppose pΩ, A,B,C,Dq is a conformal rectangle. Using the notation of Section 1.4, if z, w P Ω,

dΩccpz, wq “ mintdΩccptz, wu, rA,BsBΩ˚ ; rC,DsBΩ˚ q, dΩccptz, wu, rB,CsBΩ˚ ; rD,AsBΩ˚ q,

dΩccptz, wu, rC,DsBΩ˚ ; rA,BsBΩ˚ q, dΩccptz, wu, rD,AsBΩ˚ ; rB,CsBΩ˚ qu

In other words, dccpz, wq is the length of the shortest crosscut of Ω that joins z and w to one

boundary arc of pΩ, A,B,C,Dq and separates them from the opposite boundary arc. Recall that
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for z, w P Ω,

dΩpz, wq “ inftlengthpγq : γ is a smooth curve from z to w in Ωu

That is, dΩ is the ambient metric on Ω. Let ϕ : Ω Ñ RL be the conformal map from Ω to the

rectangle RL such that the four prime ends A,B,C,D of Ω, listed in counterclockwise order, are

mapped to the four corners of RL and in particular, ϕpAq “ i. The following theorem gives us a

modulus of continuity for the real and imaginary parts of ϕ and therefore ϕ itself:

Theorem 2.2.1. Suppose pΩ, A,B,C,Dq is a conformal rectangle and ϕ : Ω Ñ RL be the

conformal map from Ω to the rectangle RL so that the four prime ends A,B,C,D of Ω are

mapped to the four corners of RL and in particular, ϕpAq “ i. Here, L is the extremal length

between the boundary arcs rA,BsBΩ˚ and rC,DsBΩ˚ in Ω. Define:

d “ inftlengthpγq : γ is a crosscut of Ω joining rA,BsBΩ˚ and rC,DsBΩ˚ in Ωu

d1 “ inftlengthpγq : γ is a crosscut of Ω joining rB,CsBΩ˚ and rD,AsBΩ˚ in Ωu

Let h and rh be the real and imaginary parts of ϕ, respectively. Then for any x, y P Ω we have

that:

|hpyq ´ hpxq| ď
2π

log
´

d1

2pdΩpx,yq^dΩ
ccpx,yqq

¯ , |rhpyq ´ rhpxq| ď
2πL

log
´

d
2pdΩpx,yq^dΩ

ccpx,yqq

¯

Proof. As per the theorem statement, let h be the real part of ϕ. Fix x, y P Ω. If hpxq “ hpyq,

the desired result holds. Otherwise, suppose WLOG that hpxq ă hpyq. We now consider two cases:

Case 1: dΩpx, yq ď dΩccpx, yq.

Consider the region:

Ωx,y “ tz P Ω : hpxq ă hpzq ă hpyqu

This is simply connected. Furthermore, since ϕ maps Ω to the rectangle p0, Lq ˆ p0, 1q, ϕ maps

Ωx,y to the rectangle phpxq, hpyqq ˆ p0, 1q. Thus, if we think of Ωx,y as a conformal rectangle with

the distinguished boundary arcs:

N “ Ω˚
x,y X rD,AsBΩ˚ , E “ tz P Ω : hpzq “ hpyqu

S “ Ω˚
x,y X rD,AsBΩ˚ , W “ tz P Ω : hpzq “ hpxqu

Here N , E, S and W stand for “North,” “East,” “South,” and “West.” This is to emphasize that

our picture is as follows:

In summa:

λpW Ø E; Ωq “ hpyq ´ hpxq
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Figure 2.2: The subrectangle Ωx,y associated with a pair of points x and y in the conformal
rectangle pΩ, A,B,C,Dq.

Having reinterpreted the quantity we’re interested in as an extremal length, we can bound it from

above by bounding the dual extremal length from below.

Fix ε so that 0 ă ε ă d1

2 ´ dΩpx, yq. By the definition of dΩpx, yq, we can find a smooth curve γ

in Ω from x to y so that lengthpγq ă dΩpx, yq ` ε. Since x and y lie on opposite boundary arcs

of Ωx,y, while γ may not be a crosscut of Ωx,y, there must exist a subarc γ1 of γ with endpoints

x1 P W , y1 P E so that γ1 is a crosscut of Ωx,y. Consider the annulus:

A “ tu P C : dΩpx, yq ` ε ă |u´ x1| ă
d1

2
u

where:

d1 “ inftdiampγq : γ is a curve joining rB,CsBΩ˚ and rD,AsBΩ˚ in Ωu

Observe that:

1. Since lengthpγ1q ď lengthpγq ă dΩpx, yq ` ε, the diameter of γ1 is at most dΩpx, yq ` ε.

Hence, γ1 Ď Bpx1, dΩpx, yq ` εq. Since γ1 separates the boundary arcs N and S in Ωx,y, any

path from N to S in Ωx,y must intersect γ1 and therefore Bpx1, dΩpx, yq ` εq.

2. On the other hand, since any curve from N to S in Ωx,y is a curve from rB,Cs to rD,As in

Ω, such a curve must have diameter ě d1. Hence, any curve from N to S in Ωx,y must at

some point lie outside the ball Bpx1, d
1

2 q.

Putting all this together, we see that any curve from N to S in Ωx,y must cross the annulus A.
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Consider the metric:

ρpzq “
1

|z ´ x1|
1AXΩx,y pzq

on Ωx,y. Observe that if η is a C1 curve that crosses the annulus A at least once, then:

lρpηq “

ż

η

|dz|

|z ´ x1|
ě

ż d1
{2

dΩpx,yq`ε

dr

r
“ log

´ d1

2pdΩpx, yq ` εq

¯

Furthermore:

Apρq “

ż

AXΩx,y

1

|z ´ x1|
dz1dz2 ď

ż

AXΩx,y

1

|z ´ x1|
dz1dz2 “

ż 2π

0

ż d1
{2

dΩpx,yq`ε

1

r
drdθ “ 2π log

´ d1

2pdΩpx, yq ` εq

¯

Hence, plugging ρ into the variational problem for λpN Ø S; Ωx,yq we have that:

λpN Ø S; Ωx,yq ě

inf
η

`

lρpηq
˘2

Apρq
ě

´

log
´

d1

2pdΩpx,yq`εq

¯¯2

2π log
´

d1

2pdΩpx,yq`εq

¯ “
1

2π
log

´ d1

2pdΩpx, yq ` εq

¯

By duality for continuous extremal extremal length:

λpW Ø E; Ωx,yq ¨ λpN Ø S; Ωx,yq “ 1

Hence:

λpN Ø S; Ωx,yq ď
2π

log
´

d1

2pdΩpx,yq`εq

¯

Since ε ą 0 was arbitrary, letting ε tend to 0 in the above inequality, the desired result follows.

Case 2: dΩccpx, yq ď dΩpx, yq.

Fix ε so that 0 ă ε ă d1

2 ´ dΩccpx, yq. By the definition of dccpx, yq we can find a crosscut γ of Ω

that joins x and y to one of the four distinguished boundary arcs of pΩ, A,B,C,Dq and separates

it from the opposite boundary arc, such that lengthpγq ă dΩccpx, yq ` ε. We now split our problem

into two further cases, depending on whether the relevant boundary arcs of pΩ, A,B,C,Dq are

Dirichlet arcs where h is constant, or Neumann arcs along which h is monotone.

Case 2.1: γ joins x and y to one of the Dirichlet arcs and separates it from the opposite Dirichlet

arc.

WLOG, suppose that γ joins x and y to rA,BsBΩ˚ and separates x and y from rC,DsBΩ˚ . Let

Nγ
x,y denote the connected component of Ω˚zγ containing z and w. By the maximum principle

for harmonic functions,

sup
zPNγ

x,y

hpzq “ max
zPγ

hpzq
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Let v be a point of γ so that:

hpvq “ max
zPγ

hpzq

Since 0 ă hpxq ă hpyq ă hpvq, it follows that:

hpyq ´ hpxq ă hpvq

Consider the region:

Ωv “ tz P Ω : 0 ă hpzq ă hpvqu

ϕ maps Ωv to the rectangle p0, hpvqq ˆ p0, 1q. Thinking of Ωv as a conformal rectangle with the

distinguished boundary arcs:

N “ Ω˚
v X rD,AsBΩ˚ E “ Ω˚

v X rA,BsBΩ˚

S “ Ω˚
v X rB,CsBΩ˚ W “ tz P Ω : hpzq “ hpvqu

it follows that:

λpW Ø E; Ωvq “ hpvq

Similar to case 1, having reinterpreted hpvq as an extremal length, we can bound it from above

by bounding the dual extremal length from below.

Since v P W and v lies along a crosscut γ of Ω that starts and ends along rA,BsBΩ˚ , there

must exist a subarc γ1 of γ of length at most 1
2 pdΩccpx, yq ` εq travelling from E to W and thereby

separating N and S in Ωv. Let v
1 be the endpoint of γ1 that lies in W . Consider the annulus:

A “ tu P C :
dΩccpx, yq ` ε

2
ă |u´ v1| ă

d1

2
u

Just as in case 1:

• Since lengthpγ1q ď
dΩ
ccpx,yq`ε

2 , the diameter of γ1 is at most
dΩ
ccpx,yq`ε

2 . Hence, γ Ď Bpv1,
dΩ
ccpx,yq`ε

2 q.

Since γ1 separates the boundary arcs N and S in Ωv, any path from N to S in Ωv must

intersect γ1 and therefore Bpv1,
dΩ
ccpx,yq`ε

2 q

• Since any curve from N to S in Ωv is a curve from rB,CsBΩ˚ to rD,AsBΩ˚ in Ωv, such a

curve must have diameter ě d1. In particular, any such curve must at some point lie outside

the ball Bpv1, d
1

2 q.

Putting all this together, we conclude that any curve from N to S in Ωv must cross the annulus

A at least once. Hence, by the same argument as in case 1, plugging the metric:

ρpzq “
1

|z ´ v1|
1AXΩv

pzq
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into the variational problem for λpN Ø S; Ωvq, we have that:

λpN Ø S; Ωvq ě
1

2π
log

´ d1

dccpx, yq ` ε

¯

By duality for continuous extremal length:

λpW Ø E; Ωvq ¨ λpN Ø S; Ωvq “ 1

Hence:

hpyq ´ hpxq ă hpvq ď
2π

log
´

d1

dccpx,yq`ε

¯

Since ε ą 0 was arbitrary, letting ε tend to 0 in the above inequality, the desired result follows.

Case 2.2: γ joins z and w to one of the Neumann arcs and separates it from the opposite

Neumann arc.

WLOG, suppose that γ joins x and y to rB,CsBΩ˚ and separates x and y from rC,DsBΩ˚ . Let

Nγ
x,y denote the connected component of Ω˚zγ containing x and y. By the maximum principle

for harmonic functions,

sup
zPNγ

x,y

hpzq “ max
zPγ

hpzq, inf
zPNγ

x,y

hpzq “ min
zPγ

hpzq

Let u, v be points of γ so that:

hpuq “ min
zPγ

hpzq, hpvq “ max
zPγ

hpzq

Since hpuq ă hpxq ă hpyq ă hpvq, it follows that:

hpyq ´ hpxq ă hpvq ´ hpuq

Consider the region:

Ωu,v “ tz P C : hpuq ă hpzq ă hpvqu

ϕ maps Ωu,v to the rectangle phpuq, hpvqq ˆ p0, 1q. Thinking of Ωu,v as a conformal rectangle with

the distinguished boundary arcs:

N “ Ω˚
u,v X rD,AsBΩ˚ E “ tz P Ω : hpzq “ hpvqu

S “ Ω˚
u,v X rB,CsBΩ˚ W “ tz P Ω : hpzq “ hpuqu
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we have that:

λpW Ø E; Ωu,vq “ hpvq ´ hpuq

Thus, to get an upper bound for hpvq ´ hpuq and therefore hpyq ´ hpxq, it suffices to bound the

dual extremal length λpN Ø S; Ωu,vq from below. Observe that:

• Since u and v both lie along a crosscut of Ω of length at most dΩccpx, yq ` ε and u P W ,

w P E, we can join W and E by a crosscut of Ωu,v of length at most dΩccpx, yq ` ε.

• Since any curve from N to S in Ωu,v is a curve from rA,DsBΩ˚ to rB,CsBΩ˚ in Ω, such a

curve will have diameter ě d1.

Putting all this together, by the same argument as in case 1, verbatim, it follows that:

λpN Ø S; Ωu,vq ě
1

2π
log

´ d1

2pdΩccpx, yq ` εq

¯

Hence:

hpyq ´ hpxq ă hpvq ´ hpuq ď λpW Ø E; Ωu,vq ď
2π

log
´

d1

2pdΩ
ccpx,yq`εq

¯

Letting ε tend to 0 in the above inequality, the desired result follows. The analogous estimate for

rh follows by the same argument.

2.2.2 Modulus of Continuity for Tiling Maps

Suppose pG,A‚, B‚, C‚, D‚q is an orthodiagonal rectangle and let rh be the unique solution to the

following boundary value problem on G˝:

rhpxq “ 0 for all x P rD˝, A˝s

rhpxq “ 1 for all x P rB˝, C˝s

∆˝
rhpxq “ 0 for all x P V ˝zprD˝, A˝s Y rB˝, C˝sq

Let h be the solution to the following boundary value problem on G‚:

hpxq “ 0 for all x P rA‚, B‚s

hpxq “ L for all x P rC‚, D‚s

∆‚hpxq “ 0 for all x P V ‚zprA‚, B‚s Y rC‚, D‚sq

where L is the effective resistance between rA‚, B‚s and rC‚, D‚s in G‚. h and rh are the conjugate

discrete harmonic functions that correspond to the real and imaginary parts of the tiling map

ϕ : pG Ñ p0, Lq ˆ p0, 1q. In this section we will prove regularity estimates for h and rh analogous

to the regularity estimates we proved for the corresponding conformal map in Section 2.2.1. We

do this by adapting our argument in Section 2.2.1 to the discrete, orthodiagonal setting. To do
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this, we first need to establish the following lemma which gives us an estimate for the gradients

of h and rh across an edge:

Lemma 2.2.2. Suppose pG,A‚, B‚, C‚, D‚q is an orthodiagonal rectangle so that the edges of G

all have length at most ε. Let rh be the unique solution to the following boundary value problem

on G˝:

rhpxq “ 0 for all x P rD˝, A˝s

rhpxq “ 1 for all x P rB˝, C˝s

∆˝
rhpxq “ 0 for all x P V ˝zprD˝, A˝s Y rB˝, C˝sq

Let h be the harmonic conjugate of rh which solves the following boundary value problem on G‚:

hpxq “ 0 for all x P rA‚, B‚s

hpxq “ L for all x P rC‚, D‚s

∆‚hpxq “ 0 for all x P V ‚zprA‚, B‚s Y rC‚, D‚sq

where L is the effective resistance between rA‚, B‚s and rC‚, D‚s in G‚. Define:

d “ inftdiameterpγq : γ is a curve in pG from rA‚, B‚s
B pG˚ to rC‚, D‚s

B pG˚ u

d1 “ inftdiameterpγq : γ is a curve in pG from rB‚, C‚s
B pG˚ to rD‚, A‚s

B pG˚ u

If ε ď d^d1

16 , there exists an absolute constant K ą 0 so that if x, y P V ‚ are neighboring edges in

G‚ and u, v P V ˝ are neighboring edges in G˝, then:

|hpyq ´ hpxq| ď
K

log
`

d1

ε

˘ |rhpuq ´ rhpvq| ď
KL

log
`

d
ε

˘

Proof. Suppose pG,A‚, B‚, C‚, D‚q is a orthodiagonal rectangle with edges of length at most ε

and h : V ‚ Ñ R be the solution to the Dirichlet- Neumann problem on this orthodiagonal map

that is 0 on rA‚, B‚s, L on rC‚, D‚s and harmonic elsewhere, where L is the discrete extremal

length from rA‚, B‚s to rC‚, D‚s in G‚. Define:

χ :“ max
tx,yuPE‚

|hpyq ´ hpxq|

If χ “ 0, we’re done. Otherwise, select neighboring vertices x, y P V ‚ so that
`

hpyq ´ hpxq
˘

“ χ.

Consider the sets Sx and Sy defined as follows:

Sx :“ tz P V ‚ : hpzq ď hpxqu Sy :“ tz P V ‚ : hpzq ě hpyqu

By the maximum principle for harmonic functions, Sx, Sy and V ‚zpSx \ Syq are all connected

subsets of G‚. Furthermore, rA‚, B‚s Ď Sx, rC‚, D‚s Ď Sy. Let H “ pV ‚
H \ V ˝

H , EHq be the
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suborthodiagonal map of G formed by gluing together all the faces of G that are incident to

at least one vertex of V ‚zpSx \ Syq. By the maximum principle, H is simply connected with a

unique, distinguished exterior face. Moreover, let:

O‚ :“ Sx X BV ‚
H , W ‚ :“ Sy X BV ‚

H

Then O‚ and W ‚ are primal boundary arcs of H with corresponding dual arcs:

N˝ :“ rB˝, C˝s X BV ˝
H , S˝ :“ rD˝, A˝s X BV ˝

H

Similar to the proof of Theorem 2.2.1, N , O, S and W stand for ”North,” ”Orient,” ”South,”

and ”West.” We’d have used E for ”East,” however in the discrete setting, E is already being

used to denote the edges of G. Proposition 1.1.4 tells us that for any function g : V ‚
H Ñ R with

gapO‚,W ‚ pgq ě 0 and any flow θ from O‚ to W ‚ in H‚:

strengthpθq ¨ gapO‚,W ‚ pgq ď E‚pθ;Hq1{2E‚pg;Hq1{2

Plugging g “ h into the inequality above, we have that for any choice of flow θ from O‚ to W ‚

in H‚:

χ “ |hpyq ´ hpxq| ď
E‚pθ;Hq1{2E‚ph;Hq1{2

strengthpθq

By Thomson’s principle, taking the infimum over all flows θ from O‚ toW ‚ inH‚ in the expression

on the RHS, we have that:

χ ď E‚ph;Hq1{2 ¨ λpO‚ Ø W ‚;H‚q1{2

In Section 1.3 we saw that E‚phq is the total area of rectangles in the tiling associated with

the orthodiagonal rectangle pG,A‚, B‚, C‚, D‚q. Hence, by the definition of H, the restriction

E‚ph;Hq is the total area of rectangles in our tiling that intersect phpxq, hpyqq ˆ p0, 1q. Since

|hpyq ´ hpxq| “ χ and any rectangle in our tiling has width at most χ, it follows that:

E‚ph;Hq ď 3χ

Hence:

χ ď 3λpO‚ Ø W ‚;H‚q (2.2.1)

By duality:

λpN˝ Ø S˝;H˝q ¨ λpO‚ Ø W ‚;H‚q “ 1

Thus, to bound λpO‚ Ø W ‚;H‚q and therefore χ from above, it suffices to bound the dual ex-

tremal length λpN˝ Ø S˝;H˝q from below. We will do this by picking by picking a good metric

to plug into the variational problem for λpN˝ Ø S˝;H˝q.

33



Consider the metric ρ : E˝
H Ñ r0,8q defined as follows:

ρpe˝q “

ż

e˝

|dz|

|z ´
x`y
2 |

for e˝ P E˝
H contained in the annulus rA “ tz : 4ε ď

ˇ

ˇz ´
x`y
2

ˇ

ˇ ď d1

2 u, where we think of e˝ as a

line segment in the plane. If e˝ is not contained in rA, then ρpe˝q “ 0. Let tu, vu P E˝
H be the

dual edge corresponding to the primal edge tx, yu. Observe that:

1. By Lemma 1.2.3, minimal O‚- W ‚ cuts in H‚ correspond to simple paths from N˝ to S˝

in H˝ and vice versa. Since tx, yu joins O‚ and W ‚, this edge is part of any O‚- W ‚ cut.

Hence, any path from N˝ to S˝ in H˝ must use the edge tu, vu.

2. Any path from N˝ to S˝ in H˝ is a path from rD˝, A˝s to rB˝, C˝s in G˝. Using the notation

in the statement of Lemma 2.2.2, it follows that the diameter of any such path is at least

d1.

By 1, since tu, vu Ď Bp
x`y
2 , 4εq, any path in H˝ from N˝ to S˝ must at some point lie in the

bounded component of Cz rA. By 2, any path in H˝ from N˝ to S˝ must at some point lie in the

unbounded component of Cz rA. Putting all this together, we conclude that any path from N˝

to S˝ in H˝ crosses the annulus rA at least once. If γ is a piecewise C1 curve that crosses the

annulus tz : r ă |z ´ z0| ă Ru at least once, where z0 P C, R ą r ą 0, then:

ż

γ

|dz|

|z ´ z0|
ě log

´R

r

¯

If γ is a path from N˝ to S˝ in H˝, we know that γ must cross the annulus rA at least once.

However, when doing this, it is possible that γ uses edges of E˝
H that are not entirely contained

in rA and so have zero mass with respect to ρ. Since edges of G all have length at most ε, edges

of G˝ all have length at most 2ε. Thus, we can be sure that all of the edges e˝ P E˝
H that we use

when crossing the slightly smaller annulus tz : 6ε ď
ˇ

ˇz ´
x`y
2

ˇ

ˇ ď d1

2 ´ 2εu do indeed have positive

mass. Hence:

ℓρpγq “

ż

γ

|dz|

|z ´
x`y
2 |

ě log
´d1 ´ 4ε

12ε

¯

Let FinpHq denote the set of inner faces of H. Given an inner face Q P FinpHq, let e‚
Q P E‚

H , e
˝
Q P
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E˝
H denote the primal and dual diagonals of Q. Next, we estimate the area of the metric ρ:

Apρq “
ÿ

e˝
PE˝

H

ρpe˝
qą0

|e‚|

|e˝|

´

ż

e˝

|dz|

|z ´
x`y
2 |

¯2

ď
ÿ

e˝
PE˝

H

ρpe˝
qą0

|e‚|

|e˝|
¨

|e˝|2

min
zPe˝

|z ´
x`y
2 |2

piq
ď 2

ÿ

QPFinpHq

ρpe˝
Qqą0

AreapQq

min
zPQ

|z ´
x`y
2 |2

piiq
ď 2

ÿ

QPFinpHq

ρpe˝
Qqą0

ż

Q

1

p|z ´
x`y
2 | ´ 2εq2

dz1dz2
piiiq
ď 2

ż

3εă|z´
x`y
2 |ă d1

2 `ε

1

p|z ´
x`y
2 | ´ 2εq2

dz1dz2

“ 4π

ż d1

2 `ε

3ε

s

ps´ 2εq2
ds “ 4π

ż d1

2 ´ε

ε

1

u
du` 8πε

ż d1

2 ´ε

ε

1

u2
du

“ 4π log
´d1 ´ 2ε

ε

¯

` 8πε

ˆ

1

ε
´

2

pd1 ´ 2εq

˙

ď 4π log
´d1 ´ 2ε

ε

¯

` 8π

In the calculations above:

• (i) follows from the trivial observation that min
zPQ

|z ´
x`y
2 | ď min

zPe˝
Q

|z ´
x`y
2 |, as well as the

fact that for any inner face Q of H, since Q is a quadrilateral with orthogonal diagonals,

AreapQq “ 1
2 |e‚

Q||e˝
Q|.

• (ii) follows from the fact that for any inner face Q of H, since the edges of Q all have length

at most ε, Q has diameter at most 2ε. Hence, |z´
x`y
2 | ´ 2ε ď min

zPQ
|z ´

x`y
2 | for any z P Q.

• (iii) follows from the fact that if ρpe˝
Qq ą 0 for some inner face Q of H, this means that

the diagonal e˝
Q is contained in the annulus rA. Since the corresponding primal diagonal

e‚
Q has length at most ε, any point of Q lies in an ε- neighborhood of e˝

Q. In particular,

any inner face Q of H such that ρpe˝
Qq ą 0 is contained in the slightly larger annulus

tz : 3ε ă |z ´
x`y
2 | ă d1

2 ` εu.

Since d1 ě 16ε, it follows that:

Apρq ď 4π log
´d1 ´ 2ε

ε

¯

` 8π — log
´d1

ε

¯

If γ is a path from N˝ to S˝ in H˝, using the fact that d1 ě 16ε:

ℓρpγq ě log
´d1 ´ 4ε

16ε

¯

— log
´d1

ε

¯

Putting all this together, we have that:

λpN˝ Ø S˝;H˝q ě inf
γ

ℓ2ρpγq

Apρq
Á log

´d1

ε

¯
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where our infimum is over all paths γ in H˝ from N˝ to S˝. By duality,

λpO‚ Ø W ‚;H‚q “
1

λpN˝ Ø S˝;H˝q
À log

´d1

ε

¯

Plugging this into Equation 2.2.1, the desired result follows. The corresponding estimate for rh

follows by the same argument.

Having established our estimate for the gradient of h and rh across an edge, we are now ready to

state and prove the discrete analogue of Theorem 2.2.1:

Theorem 2.2.3. Suppose pG,A‚, B‚, C‚, D‚q is an orthodiagonal rectangle with edges of length

at most ε and let h and rh be the real and imaginary parts of the associated tiling map. That is,

rh is the unique solution to the following boundary value problem on G˝:

rhpxq “ 0 for all x P rD˝, A˝s

rhpxq “ 1 for all x P rB˝, C˝s

∆˝
rhpxq “ 0 for all x P V ˝zprD˝, A˝s Y rB˝, C˝sq

and h be the harmonic conjugate of rh which solves the following boundary value problem on G‚:

hpxq “ 0 for all x P rA‚, B‚s

hpxq “ L for all x P rC‚, D‚s

∆‚hpxq “ 0 for all x P V ‚zprA‚, B‚s Y rC‚, D‚sq

where L is the effective resistance between rA‚, B‚s and rC‚, D‚s in G‚. Define:

d “ inftdiameterpγq : γ is a curve in pG joining rA‚, B‚s
B pG and rC‚, D‚s

B pGu

d1 “ inftdiameterpγq : γ is a curve in pG joining rB‚, C‚s
B pG and rD‚, A‚s

B pGu

Then there exists an absolute constant K ą 0 so that:

|hpyq ´ hpxq| ď
K

log
`

d1

pd
xG

px,yq^dxG
ccpx,yqq_ε

˘ , |rhpuq ´ rhpvq| ď
KL

log
`

d

pd
xG

pu,vq^dxG
ccpu,vqq_ε

˘

for any x, y P V ‚, u, v P V ˝ such that . In particular, in the bulk (when |x´y| ď distpx, B pGq,distpy, B pGq

and |u´ v| ď distpu, B pGq,distpv, B pGq), we have that:

|hpyq ´ hpxq| ď
K

log
`

d1

|y´x|_ε

˘ , |rhpuq ´ rhpvq| ď
KL

log
`

d
|u´v|_ε

˘

A slightly weaker estimate (with
a

logp¨q in place of logp¨q) is proven in [3] in the case where

our orthodiagonal rectangle pG,A‚, B‚, C‚, D‚q is a good approximation of a conformal rectangle
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pΩ, A,B,C,Dq where Ω is a Jordan domain and rA,BsBΩ, rB,CsBΩ, rC,DsBΩ, rD,AsBΩ are ana-

lytic arcs that don’t meet at cusps. In the context of [3], “good” means that the edges of G

have length at most ε and discrete boundary arcs are δ- close to the corresponding continuous

boundary arcs in Hausdorff distance for some small ε, δ ą 0. For more details, see Theorem 3 of [3].

We should also point out that while the estimates for the modulus of continuity of h and rh

in Theorem 2.2.3 are novel for points near the boundary of G, even when our orthodiagonal map

is just a chunk of the square grid, in the bulk we can do significantly better. Namely, in [14],

Chelkak, Laslier and Russkikh show that bounded discrete harmonic and discrete holomorphic

functions on t- embeddings whose corresponding origami map is κ- Lipschitz on large scales for

some κ P p0, 1q, are β- Hölder in the bulk for some absolute constant β P p0, 1q (see Proposition

6.13 of [14]). The condition on the origami map here is known as “Lippκ, δq” where δ ą 0 is the

scale on which our origami map is κ- Lipschitz. t- embeddings are a more general class of graphs

embedded in the plane that accommodate a notion of discrete complex analysis. That is, every

orthodiagonal map is a t- embedding (see Section 8.1 of [14]). While it is not explicitly stated

in their paper, it is not hard to show that if G is an orthodiagonal map with edges of length at

most ε, then for any κ P p0, 1q there exists an absolute constant c “ cpκq ą 0 such that, as a

t -embedding, G satisfies the condition Lippκ, cεq. While the estimates in the bulk provided by

Theorem 2.2.3 are sufficient for proving the main result of this Chapter, Theorem 2.1.2, as an

immediate consequence of Proposition 6.13 of [14] we have that:

Proposition 2.2.4. Suppose pG,A‚, B‚, C‚, D‚q is an orthodiagonal rectangle with edges of

length at most ε and h and rh are the real and imaginary parts of the corresponding tiling map. If

x P V , let dx denote the distance from x to B pG. Then there exists absolute constants C,C 1 ą 0,

β P p0, 1q such that:

|hpyq ´ hpxq| ď CL

ˆ

|x´ y|

dx ^ dy

˙β

|rhpuq ´ rhpvq| ď C

ˆ

|u´ v|

du ^ dv

˙β

for x, y P V ‚, u, v P V ˝ such that C 1ε ď |x´ y| ď dx ^ dy, C
1ε ď |u´ v| ď du ^ dv.

All that having been said, we now turn to the proof of Theorem 2.2.3:

Proof. Suppose pG,A‚, B‚, C‚, D‚q is a orthodiagonal rectangle with edges of length at most ε

and h is the real part of the corresponding tiling map. Fix x, y P V ‚. Since we are taking the

maximum of d
pGpx, yq ^ d

pG
ccpx, yq and ε in our estimate for |hpyq ´ hpxq| in Theorem 2.2.3, we

can assume WLOG that d
pGpx, yq ^ d

pG
ccpx, yq ě ε, since the relevant estimate in the case where

d
pGpx, yq ^d

pG
ccpx, yq ă ε follows from the case where d

pGpx, yq ^d
pG
ccpx, yq ě ε. If hpyq “ hpxq, we’re

done. Otherwise, suppose WLOG that hpxq ă hpyq. We now consider two cases:

Case 1: d
pGpx, yq ď d

pG
ccpx, yq

Similar to the proofs of Theorem 2.2.1 and Lemma 2.2.2, we begin by reinterpreting the quantity

37



we want to estimate,
`

hpyq ´ hpxq
˘

, as an extremal length. Consider the sets Sx and Sy defined

as follows:

Sx :“ tz P V ‚ : hpzq ď hpxqu Sy :“ tz P V ‚ : hpzq ě hpyqu

By the maximum principle for harmonic functions, Sx, Sy and V ‚zpSx \ Syq are all connected

subsets of G‚. Furthermore, rA‚, B‚s Ď Sx, rC‚, D‚s Ď Sy. Let H “ pV ‚
H \ V ˝

H , EHq be the

suborthodiagonal map of G formed by gluing together all the faces of G that are incident to

at least one vertex of V ‚zpSx \ Syq. By the maximum principle, H is simply connected with a

unique, distinguished exterior face. Furthermore, let:

O‚ :“ Sx X BV ‚
H , W ‚ :“ Sy X BV ‚

H

Then O‚ and W ‚ are primal boundary arcs of H with corresponding dual arcs:

N˝ :“ rD˝, A˝s X BV ˝
H , S˝ :“ rB˝, C˝s X BV ˝

H

Proposition 1.1.4 tells us that for any function g : V ‚
H Ñ R with gapO‚,W ‚ pgq ě 0 and any flow θ

from O‚ to W ‚ in H‚:

strengthpθq ¨ gapO‚,W ‚ pgq ď E‚pθ;Hq1{2E‚pg;Hq1{2

Plugging g “ h into the inequality above, we have that for any choice of flow θ from O‚ to W ‚

in H‚:

|hpyq ´ hpxq| ď
E‚pθ;Hq1{2E‚ph;Hq1{2

strengthpθq

By Thomson’s principle, taking the infimum over all flows θ from O‚ toW ‚ inH‚ in the expression

on the RHS, we have that:

|hpyq ´ hpxq| ď E‚ph;Hq1{2 ¨ λpO‚ Ø W ‚;H‚q1{2 (2.2.2)

In Section 1.3 we saw that E‚phq is the total area of rectangles in the tiling associated with

the orthodiagonal rectangle pG,A‚, B‚, C‚, D‚q. Hence, by the definition of H, the restriction

E‚ph;Hq is the total area of rectangles in our tiling that intersect phpxq, hpyqq ˆ p0, 1q. Since the

edges of G have length at most ε, Lemma 2.2.2 tells us that the width of any rectangle in our

tiling is at most K
`

log
`

d1

ε

˘˘´1
, where K ą 0 is an absolute constant. Hence:

E‚ph;Hq ď |hpyq ´ hpxq| `
2K

log
`

d1

ε

˘ (2.2.3)

Using the shorthand λ‚ “ λpO‚ Ø W ‚;H‚q, plugging our estimate in Equation 2.2.3 into Equa-
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tion 2.2.2 and rearranging, we have that:

|hpyq ´ hpxq| ď
1

2

´

λ‚ `

d

pλ‚q2 `
8Kλ‚

log
`

d1

ε

˘

¯

ď λ‚ `
2K

log
`

d1

ε

˘ “ λ‚pO‚ Ø W ‚;H‚q `
2K

log
`

d1

ε

˘

(2.2.4)

By duality:

λpN˝ Ø S˝;H˝q ¨ λpO‚ Ø W ‚;H‚q “ 1

Thus, to bound λpO‚ Ø W ‚;H‚q and therefore |hpyq ´hpxq| from above, it suffices to bound the

dual extremal length λpN˝ Ø S˝;H˝q from below. We will do this by picking by picking a good

metric to plug into the variational problem for λpN˝ Ø S˝;H˝q.

By the definition of d
pGpx, yq we can find a smooth curve γ in pG from x to y so that lengthpγq ă

dΩpx, yq ` ε. By the maximum principle for discrete harmonic functions, pGz pH consists of two

connected components Ω1 and Ω2 so that WLOG, rA‚, B‚s Ď BΩ1 and rC‚, D‚s Ď BΩ1. Thinking

of pH as a conformal rectangle with the distinguished boundary arcs:

xW :“ BΩ1 X B pH pO :“ BΩ2 X B pH

pN :“ rD‚, A‚s
B pG X B pH pS :“ rB‚, C‚s

B pG X B pH

our curve γ from x to y in pG must have a subarc γ1 with endpoints x1 P xW, y1 P pO, so that γ1 is a

crosscut of pH. By the definition of pH, every point of xW lies within ε of a point of W ‚ and every

point of pO lies within ε of a point in O‚. Thus, perturbing γ1 slightly, we can produce a crosscut

γ2 of pH with endpoints x2 P xW, y2 P pO so that lengthpγ2q ď d
pGpx, yq ` 3ε. Since γ2 is a crosscut

of pH joining O‚ and W ‚, γ2 separates N˝ and S˝ in pH. Hence, any path in pH and therefore H˝

from N˝ to S˝ must intersect γ2. Consider the annulus:

rA :“ tu P C : d
pGpx, yq ` 3ε ă |u´ x2| ă

d1

2
u

Observe that:

1. Since lengthpγ2q ď d
pGpx, yq ` 3ε, it follows that γ2 Ď Bpx2, d

pGpx, yq ` 3εq. Since any

path from N˝ to S˝ in pH must intersect γ2, such a path must also intersect the ball

Bpx2, d
pGpx, yq ` 3εq.

2. On the other hand, since any path from N˝ to S˝ in pH is a also path from rD‚, A‚s
B pG to

rB‚, C‚s
B pG in pG, any such curve has diameter ě d1. Hence, any curve from N˝ to S˝ in pH

must at some point exit the ball Bpx2, d
1

2 q.

Putting all this together, we have that any path from N˝ to S˝ in H˝ must cross the annulus rA.

Having established this fact, consider the metric ρ : E˝
H Ñ r0,8q defined as follows:

ρpe˝q “

ż

e˝

|dz|

|z ´ x2|
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for e˝ P E˝
H contained in the annulus rA, where we think of e˝ as a line segment in the plane.

If e˝ is not contained in rA, then ρpe˝q “ 0. Suppose γ is a path in H˝ from N˝ to S˝. We

saw earlier that γ must cross the annulus rA at least once. However, when it does this, it is

possible that γ uses edges e˝ P E˝
H that are not entirely contained in rA and so have zero mass

with respect to ρ. Since edges of G have length at most ε, edges of G˝ have length at most 2ε.

Thus, we can be sure that all of the edges we use when crossing the slightly smaller annulus

tu P C : d
pGpx, yq ` 5ε ă |u´ x2| ă d1

2 ´ 2εu do indeed have positive mass. Hence:

lρpγq “

ż

γ

|dz|

|z ´ x2|
ě log

´ d1 ´ 4ε

2pd
pGpx, yq ` 5εq

¯

By the same argument as in the proof of Lemma 2.2.2:

Apρq ď 4π log
´ d1 ´ 2ε

2d
pGpx, yq

¯

`
8πε

d
pGpx, yq

By our assumption that ε ď d
pGpx, yq ă d1

4 and ε ă d1

12 , we have that:

Apρq ď 4π log
´ d1 ´ 2ε

2d
pGpx, yq

¯

`
8πε

d
pGpx, yq

À log
´ d1

d
pGpx, yq

¯

Similarly, if γ is a path from N˝ to S˝ in H˝, we have that:

lρpγq “

ż

γ

|dz|

|z ´ x2|
ě log

´ d1 ´ 4ε

2pd
pGpx, yq ` 5εq

¯

Á log
´ d1

d
pGpx, yq

¯

Putting all this together, we have that:

λpN˝ Ø S˝;H˝q ě inf
γ

ℓ2ρpγq

Apρq
Á log

´ d1

d
pGpx, yq

¯

where our infimum is over all paths γ in H˝ from N˝ to S˝. By duality,

λpO‚ Ø W ‚;H‚q “
1

λpN˝ Ø S˝;H˝q
À

1

log
´

d1

d
xG

px,yq

¯

Plugging this into Equation 2.2.4, the desired result follows.

Case 2: d
pG
ccpx, yq ď d

pGpx, yq By the definition of d
pG
ccpx, yq, we can find a crosscut γ of pG that

joins x and y to one of the four distinguished boundary arcs of p pG,A‚, B‚, C‚, D‚q and separates

it from the opposite boundary arc, such that lengthpγq ă d
pG
ccpx, yq ` ε. We now split our problem

into two further cases, depending on whether the relevant boundary arcs of p pG,A‚, B‚, C‚, D‚q

are Dirichlet arcs where h is constant, or Neumann arcs along which h is monotone.

Case 2.1: γ joins x and y to one of the Dirichlet arcs and separates them from the oppo-
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site Dirichlet arc.

WLOG, suppose γ joins x and y to rA‚, B‚s
B pG and separates them from rC‚, D‚s

B pG. Let
pNγ
x,y be

the connected component of pGzγ containing x and y. Define:

pNγ
x,yq‚ :“ V ‚ X pNγ

x,y, γ‚ :“ tz P V ‚ : distpz, γq ď εu

By the maximum principle for discrete harmonic functions,

max
zPpNγ

x,yq‚
hpzq ď max

zPγ‚
hpzq

Let v be a vertex of γ‚ so that hpvq “ max
zPγ‚

hpzq and for some neighboring vertex u of v in V ‚,

hpuq ă hpvq. Since x, y P pNγ
x,yq‚, we have that:

phpyq ´ hpxqq ă hpvq

Similar to our argument in case 1, let H be the suborthodiagonal map of G formed by gluing

together all of the quadrilaterals of G that are tangent to a vertex z of V ‚ such that 0 ď hpzq ă

hpvq. By the maximum principle, H is simply connected with a unique, distinguished exterior

face. Furthermore, let:

O‚ :“ rA‚, B‚s, W ‚ :“ tz P V ‚ : hpzq ě hpvqu X BV ‚
H

Then O‚ and W ‚ are primal boundary arcs of H with corresponding dual arcs:

N˝ :“ rB˝, C˝s X BV ˝
H , S˝ :“ rD˝, A˝s X BV ˝

H

With these pairs of distinguished primal and dual arcs, H is an orthodiagonal rectangle. By the

same argument as in case 1, almost verbatim, we have that:

|hpyq ´ hpxq| ď hpvq ď λ‚pO‚ Ø W ‚;H‚q `
2K

log
`

d1

ε

˘ (2.2.5)

By duality:

λpN˝ Ø S˝;H˝q ¨ λpO‚ Ø W ‚;H‚q “ 1

Thus, to bound λpO‚ Ø W ‚;H‚q and therefore |hpyq ´hpxq| from above, it suffices to bound the

dual extremal length λpN˝ Ø S˝;H˝q from below. We will do this by picking a good metric to

plug into the variational formula for λpN˝ Ø S˝;H˝q.

Observe that γ is a crosscut of pG that starts and ends at a point of rA‚, B‚s
B pG and, by the

definition of γ‚, v lies within ε of γ. Since v has a neighboring vertex u with the property that

hpuq ă hpvq, we also have that v P W ‚. Since the edges of G have length at most ε, putting all
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this together, it follows that there exists a crosscut γ1 of pH of length at most 1
2 pd

pG
ccpx, yq ` 5εq

joining W ‚ and O‚ in pH, thereby separating N˝ and S˝ in pH. Pick a point x1 in γ1 and consider

the annulus:

rA “ tu P C :
1

2
pd

pG
ccpx, yq ` 5εq ă |u´ x1| ă

d1

2
u

Since any path in pG from rB˝, C˝s
B pG to rA˝, D˝s

B pG has diameter greater than or equal to d1, the

same is true of any path in pH from N˝ to S˝. On the other hand, since γ1 separates N˝ and

S˝ in pH, any such path must intersect γ1 and therefore Bpx1, 12 pd
pG
ccpx, yq ` 5εqq. Putting all this

together, we conclude that any path from N˝ to S˝ in pH must cross the annulus rA. Hence, if we

define the metric ρ : E˝
H Ñ p0,8q by the formula:

ρpe˝q “

$

&

%

ş

e˝

|dz|

|z´x1|
for edges e˝ P E˝

H contained in the annulus rA

0 otherwise

by the same argument as in case 1, almost verbatim, plugging ρ into the variational formula for

λpN˝ Ø S˝;H˝q, we have that:

λpN˝ Ø S˝;H˝q Á log
´ d1

d pG
ccpx, yq

¯

By duality:

λpO‚ Ø W ‚;H‚q À
1

log
´

d1

dxG
ccpx,yq

¯

Plugging this into Equation 2.2.5, the desired result follows.

Case 2.2: γ joins x and y to one of the Neumann arcs and separates them from the oppo-

site Neumann arc.

WLOG, suppose γ joins x and y to rB‚, C‚s
B pG and separates them from rD‚, A‚s

B pG. Similar

to case 2.1, let pNγ
x,y be the connected component of pGzγ containing x and y and define:

pNγ
x,yq‚ :“ V ‚ X pNγ

x,y, γ‚ :“ tz P V ‚ : distpz, γq ď εu

By the maximum principle for harmonic functions, since h‚ is harmonic on the part of the

boundary of pNγ
x,yq‚ that intersects rB‚, C‚s, we have that:

min
zPγ‚

hpzq ď min
zPpxNγ

x,yq‚

hpzq, max
zPpxNγ

x,yq‚

hpzq ď max
zPγ‚

hpzq

Let v1 and v2 be vertices of γ‚ so that hpv1q “ minzPγ‚ hpzq, hpv2q “ maxzPγ‚ hpzq and v1

and v2 have neighboring vertices u1 and u2 so that hpv1q ă hpu1q and hpv2q ą hpu2q. Since
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x, y P pNx,y
γ q‚, we have that:

`

hpyq ´ hpxq
˘

ď
`

hpv2q ´ hpv1q
˘

Similar to our argument in case 1, let H be the suborthodiagonal map of G formed by gluing

together all of the quadrilaterals of G that are tangent to a vertex z of V ‚ such that hpv1q ď

hpzq ă hpv2q. By the maximum principle, H is simply connected with a unique, distinguished

exterior face. Furthermore, let:

O‚ :“ tz P V ‚ : hpzq ě hpv1qu X BV ‚
H , W ‚ :“ tz P V ‚ : hpzq ď hpv2qu X BV ‚

H

Then O‚ and W ‚ are primal boundary arcs of H with corresponding dual arcs:

N˝ :“ rD˝, A˝s X BV ˝
H , S˝ :“ rB˝, C˝s X BV ˝

H

With these pairs of distinguished primal and dual arcs, H is an orthodiagonal rectangle. By the

same argument as in case 1, almost verbatim, we have that:

|hpyq ´ hpxq| ď hpv2q ´ hpv1q ď λ‚pO‚ Ø W ‚;H‚q `
2K

log
`

d1

ε

˘ (2.2.6)

where K ą 0 is an absolute constant. By duality:

λpN˝ Ø S˝;H˝q ¨ λpO‚ Ø W ‚;H‚q “ 1

Thus, to bound λpO‚ Ø W ‚;H‚q and therefore |hpyq ´hpxq| from above, it suffices to bound the

dual extremal length λpN˝ Ø S˝;H˝q from below.

Since v1 P W ‚, v2 P O‚ and each of these points lies within ε of γ, there exists a crosscut

γ1 of pH of length at most d
pG
ccpx, yq ` 3ε joining O‚ and W ‚ in pH and thereby separating N˝ and

S˝ in pH. Hence, by the same argument we used in cases 1 and 2.1, we have that:

λpN˝ Ø S˝;H˝q Á log
´ d1

d pG
ccpx, yq

¯

By duality:

λpO‚ Ø W ‚;H‚q À
1

log
´

d1

dxG
ccpx,yq

¯

Plugging this into Equation 2.2.6, the desired result follows.

Having shown that h has the prescribed modulus of continuity, observe that the analogous esti-

mate for h̃ follows by the same argument. This completes our proof.
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2.2.3 Two-Sided Estimates for Extremal Length on Orthodiagonal

Maps

In this section, we prove two- sided estimates for the discrete extremal length of an orthodiagonal

rectangle that is a pδ, εq- good approximation of some conformal rectangle pΩ, A,B,C,Dq. This

gives us uniform boundedness of the tiling maps pϕnq8
n“1 in Theorem 2.1.2.

Proposition 2.2.5. Suppose pΩ, A,B,C,Dq is a conformal rectangle and pG,A‚, B‚, C‚, D‚q is

a pδ, εq- good interior approximation of pΩ, A,B,C,Dq. Suppose δ ă ℓ^ℓ1

2 where:

ℓ “ inftlengthpγq : γ is a curve in Ω joining rA,BsBΩ˚ and rC,DsBΩ˚ u,

ℓ1 “ inftlengthpγq : γ is a curve in Ω joining rB,CsBΩ˚ and rD,AsBΩ˚ u

Then:
pℓ´ 2δq2

2 ¨ AreapΩq
ď λprA‚, B‚s Ø rC‚, D‚s;G‚q ď

2 ¨ AreapΩq

pℓ1 ´ 2δq2

Proof. Let:

λ‚ “ λprA‚, B‚s Ø rC‚, D‚s;G‚q, λ˝ “ λprB˝, C˝s Ø rD˝, A˝s;G˝q

Plugging the metric ρpe‚q “ |e‚| into the variational problem for λ‚, we have that:

λ‚ ě

´

inft
ř

e‚Pγ
|e‚| : γ is a path from rA‚, B‚s to rC‚, D‚s in G‚u

¯2

ř

e‚PE‚

|e˝|

|e‚|
|e‚|2

“

´

inftlengthpγq : γ is a path from rA‚, B‚s to rC‚, D‚s in G‚u

¯2

2 ¨ Areap pGq

ě
pℓ´ 2δq2

2 ¨ AreapΩq

The equality on the second line follows from the fact that if Q is an inner face of G with primal

diagonal e‚ and dual diagonal e˝, then AreapQq “ 1
2 |e‚||e˝|. Thus:

ÿ

e‚PE‚

|e‚||e˝| “ 2
ÿ

QPFin

AreapQq “ 2 ¨ Areap pGq

In the inequality on the third line, two things are going on. On the one hand, since G is an interior

approximation of Ω, Areap pGq ď AreapΩq. On the other hand, suppose γ is a path from rA‚, B‚s

to rC‚, D‚s in G‚. Since pG,A‚, B‚, C‚, D‚q is a pδ, εq- good approximation of pΩ, A,B,C,Dq

(the “δ” is really the relevant part here), we can modify any such path to get a path of length at

most lengthpγq ` 2δ from rA,BsBΩ˚ to rC,DsBΩ˚ in Ω. By the definition of ℓ:

lengthpγq ` 2δ ě ℓ
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Since this is true of any curve γ from rA‚, B‚s to rC‚, D‚s in G‚, the desired result follows.

Similarly, plugging the metric ρpe˝q “ |e˝| into the variational problem for λ˝ we have that:

λ˝ ě

´

inft
ř

e˝Pγ
|e˝| : γ is a path from rB˝, C˝s to rD˝, A˝s in G˝u

¯2

ř

e‚PE˝

|e‚|

|e˝|
|e˝|2

“

´

inftlengthpγq : γ is a path from rB˝, C˝s to rD˝, A˝s in G˝u

¯2

2 ¨ Areap pGq

ě
pℓ1 ´ 2δq2

2 ¨ AreapΩq

By Ford- Fulkerson duality for discrete rectangles (Corollary 1.2.1):

λ‚ “
1

λ˝
ď

2 ¨ AreapΩq

pℓ1 ´ 2δq2

The two- sided estimate in Proposition 2.2.5 is very coarse, but it is sufficient for our purposes. It

is however worth noting that, as a consequence of our estimates for the modulus of continuity of

rectangle tiling maps as well as the corresponding limiting conformal map, we can do significantly

better if we are dealing with continuous approximations of a continuous domain or discrete

approximations of a discrete domain.

Proposition 2.2.6. If pΩ1, A1, B1, C 1, D1q is a δ- good approximation of the conformal rectangle

pΩ, A,B,C,Dq, L is the extremal length between rA,BsBΩ˚ and rC,DsBΩ˚ in Ω, L1 is the extremal

length between rA1, B1sBΩ1 and rC 1, D1sBΩ1 in Ω1, and δ ą 0 satisfies δ ď d1

2 e
´ 4π

L and δ ď d
2e

´16πL,

where:

d “ inftdiameterpγq : γ is a curve in Ω joining rA,BsBΩ˚ and rC,DsBΩ˚ u

d1 “ inftdiameterpγq : γ is a curve in Ω joining rB,CsBΩ˚ and rD,AsBΩ˚ u

Then:

´
8π

log
`

d1

2δ

˘ ď L1 ´ L ď
16πL2

log
`

d
2δ

˘

Proof. Let ϕ : Ω Ñ RL be the conformal map from Ω to the rectangle RL so that the prime

ends A,B,C,D of Ω are mapped to the four corners of RL and in particular, ϕpAq “ i. We write

ϕ “ h ` irh where h is the real part and rh is the imaginary part of ϕ. Then }∇h} “ }∇rh} is

the extremal metric giving us the extremal length between rA,BsBΩ˚ and rC,DsBΩ˚ in Ω. By
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Theorem 2.2.1,

hpzq ď
2π

log
`

d1

2δ

˘ for z P rA1, B1sBΩ1 hpzq ě L´
2π

log
`

d1

2δ

˘ for z P rC 1, D1sBΩ1

rhpzq ď
2πL

log
`

d
2δ

˘ for z P rB1, C 1sBΩ1 rhpzq ě 1 ´
2πL

log
`

d
2δ

˘ for z P rD1, A1sBΩ1

The condition that δ ď d1

2 e
´ 4π

L ensures that the values of h on rC 1, D1sBΩ1 are larger than the

values of h on rA1, B1sBΩ1 . Analogously, the condition that δ ď d1

2 e
´16πL ensures that the values

of rh on rD1, A1sBΩ1 are larger than the values of rh on rB1, C 1sBΩ1 . Plugging the metric }∇h} into

the variational formula for L1, we have that:

L1 ě

ˆ

L´ 4π

log
`

d1

2δ

˘

˙2

L
ě L´

8π

log
`

d1

2δ

˘ (2.2.7)

Similarly, plugging }∇rh} into the variational formula for the dual problem, we have that:

1

L1
ě

ˆ

1 ´ 4πL

log
`

d
2δ

˘

˙2

L
ùñ L1 ď

L
ˆ

1 ´ 8πL

log
`

d
2δ

˘

˙ ď L`
16πL2

log
`

d
2δ

˘ (2.2.8)

Combining Equations 2.2.7 and 2.2.8, we arrive at the desired result.

Proposition 2.2.7. Suppose pH,W ‚, X‚, Y ‚, Z‚q is a suborthodiagonal rectangle of pG,A‚, B‚, C‚, D‚q

so that

p pH,W ‚, X‚, Y ‚, Z‚q is a δ- good interior approximation of p pG,A‚, B‚, C‚, D‚q and G “ pV ‚ \

V ˝, Eq is an orthodiagonal map with edges of length at most ε. Let L denote the extremal length

between rA‚, B‚s and rC‚, D‚s in G‚ and let L1 denote the extremal length between rW ‚, X‚s

and rY ‚, Z‚s in H‚. Suppose also that δ and ε satisfy pδ _ εq ď d1e´ 2K
L and pδ _ εq ď de´8KL,

where:

d “ inftdiameterpγq : γ is a curve in Ω joining rA‚, B‚s
B pG and rC‚, D‚s

B pGu

d1 “ inftdiameterpγq : γ is a curve in Ω joining rB‚, C‚s
B pG and rD‚, A‚s

B pGu

and K ą 0 is the absolute constant from Theorem 2.2.3. Then:

´
4K

log
`

d1

δ_ε

˘ ď L1 ´ L ď
8KL2

log
`

d
δ_ε

˘

Proof. Let h : V ‚ Ñ R and rh : V ˝ Ñ R be the real and imaginary parts of the tiling map

associated to the orthodiagonal rectangle pG,A‚, B‚, C‚, D‚q. Then the metric ρ‚ on G‚ given

by the formula ρ‚pu, vq “ |hpuq ´ hpvq| for any edge tu, vu P E‚ is the extremal metric giving us
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the extremal length between rA‚, B‚s and rC‚, D‚s in G‚. Similarly, the metric ρ˝ on G˝ given

by the formula ρ˝pu, vq “ |rhpuq ´ rhpvq| for any edge tu, vu P E˝ is the extremal metric giving us

the extremal length between rB˝, C˝s and rD˝, A˝s in G˝. By Theorem 2.2.3,

hpzq ď
K

log
`

d1

δ_ε

˘ for z P rW ‚, X‚s hpzq ě L´
K

log
`

d1

δ_ε

˘ for z P rY ‚, Z‚s

rhpzq ď
KL

log
`

d
δ_ε

˘ for z P rX˝, Y ˝s rhpzq ě 1 ´
KL

log
`

d
δ_ε

˘ for z P rZ˝,W ˝s

The condition that pδ _ εq ď d1e´ 2K
L ensures that the values of h on rY ‚, Z‚s are larger than the

values of h on rW ‚, X‚s. Similarly, the condition that pδ _ εq ď de´8KL ensures that the values

of rh on rZ˝,W ˝s are larger than the values of rh on rX˝, Y ˝s. Plugging the metric ρ‚ into the

variational formula for L1, we have that:

L1 ě

ˆ

L´ 2K

log
`

d1

δ_ε

˘

˙2

L
ě L´

4K

log
`

d1

δ_ε

˘ (2.2.9)

Similarly, plugging ρ˝ into the variational formula for the dual problem, we have that:

1

L1
ě

ˆ

1 ´ 2KL

log
`

d
δ^ε

˘

˙2

L
ùñ L1 ď

L
ˆ

1 ´ 4KL

log
`

d
δ^ε

˘

˙ ď L`
8KL2

log
`

d
δ_ε

˘ (2.2.10)

Combining Equations 2.2.9 and 2.2.10, we arrive at the desired result.

2.3 Limits of Discrete Holomorphic Functions are

Holomorphic

Given an orthodiagonal map G “ pV ‚ \V ˝, Eq recall that a function F : pV ‚ \V ˝ Ñ C is discrete

holomorphic on G if for any interior face Q of G with primal diagonal e‚ “ tu1, u2u and dual

diagonal e˝ “ tv1, v2u we have that:

F pu2q ´ F pu1q

u2 ´ u1
“
F pv2q ´ F pv1q

v2 ´ v1

In particular, notice that if F |V ‚ is strictly real then F |V ˝ is strictly imaginary up to an additive

constant. This situation is typical of applications of discrete complex analysis. That is, the real

part of our discrete holomorphic function typically lives on the primal graph G‚ “ pV ‚, E‚q and

the imaginary part lives on the dual graph G˝ “ pV ˝, E˝q.

In this section, we prove the following result of independent interest:
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Theorem 2.3.1. Let Ω be a subdomain of C and let Ωn “ pV ‚
n \ V ˝

n , Enq be a sequence of

orthodiagonal maps so that the edges of Ωn are of length at most εn and εn Ñ 0 as n Ñ 8.

Suppose that for any compact set K Ď Ω there exists N P N such that for all n ě N , K Ď pΩn.

For each n P N, let Fn : V ‚
n \ V ˝

n Ñ C be a discrete holomorphic function on Ωn so that:

RepFnpzqq “ 0 for all z P V ˝, ImpFnpzqq “ 0 for all z P V ‚

That is, the real part of Fn lives on the primal graph Ω‚
n and the imaginary part of Fn lives on

the dual graph Ω˝
n. Suppose also that the Dirichlet energies of the Fn’s are uniformly bounded

on compacts. That is, for any compact set K Ď Ω and N P N such that K Ď Ωn for all n ě N

we have that:

sup
něN

E‚
KpRepFnqq “

1

2
sup
něN

´

ÿ

QPFinpΩnq

QĎK

|e˝
Q|

|e‚
Q|

´

RepFnppe‚
Qq`qq ´ RepFnppe‚

Qq´qq

¯2¯

ă 8

Or equivalently, since RepFnq and ImpFnq are conjugate harmonic functions:

sup
něN

E˝
KpImpFnqq “

1

2
sup
něN

´

ÿ

QPFinpΩnq

QĎK

|e‚
Q|

|e˝
Q|

´

ImpFnppe˝
Qq`qq ´ ImpFnppe˝

Qq´qq

¯2¯

ă 8

Let pFn : pΩn Ñ C be a sequence of continuous functions on pΩn so that:

Rep pFnpzqq “ Fnpzq for all z P V ‚
n , Imp pFnpzqq “ Fnpzq for all z P V ˝

n

That is, for each n P N, pFn is some sort of sensible extension of Fn to a continuous function on

pΩn. If:

pFn Ñ F uniformly on compacts in Ω

Then F : Ω Ñ C is holomorphic.

In Section 2.4 we will use this result to show that any subsequential limit of our tiling maps is

holomorphic. This is crucial to showing that our tiling maps converge to the relevant conformal

map.

Remark 2.3.1. Note that while Theorem 2.3.1 is sufficient for our purposes, stronger results

already exist in the literature. Namely, in [14], Chelkak, Laslier, and Russkikh prove that local

uniform limits of discrete holomorphic functions on t- embeddings are holomorphic (see Propo-

sition 6.15 of [14]). Since every orthodiagonal map is a t-embedding (see Section 8.1 of [14]), it

follows that the same is true of discrete holomorphic functions on orthodiagonal maps.

Having been initially unfamiliar with their work, we found an independent proof of this re-

sult in the more restrictive orthodiagonal setting, with the additional condition that the Dirichlet

energies of your discrete holomorphic functions must be uniformly bounded on compacts. While
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this is a strictly weaker result in a less general setting, we still think it is worthwhile to present

the proof. The reasons for this are twofold:

1. The proof is elementary and takes place in a simpler setting.

2. It gives us an excuse to introduce Lemma 2.3.2 which tells us that we can approximate

continuous contours by discrete contours in our orthodiagonal map, that are close to the

corresponding continuous contour in Hausdorff distance and have comparable length. This

will be important in the proof of Proposition 3.4.1 which is the key technical estimate in

the proof of Theorem 3.1.1 and Theorem 4.0.1, which are the main results of Chapters 3

and 4.

As per the discussion above, to prove Theorem 2.3.1, we first need the following lemma:

Lemma 2.3.2. Suppose G “ pV ‚ \V ˝, Eq is an orthodiagonal map with mesh at most ε, and δ is

a positive real number so that δ ě 4ε. Suppose ℓ is a line segment in C so that L “ lengthpℓq ě 8ε

and pG contains a δ- neighborhood of ℓ. Then there exist nearest- neighbor paths γ‚ in G‚ and

γ˝ in G˝ that are δ- close to ℓ in Hausdorff distance, and:

lengthpγ‚q, lengthpγ˝q ď 2L
´

1 `
4ε

δ

¯

Furthermore, the endpoints of γ‚ and γ˝ both lie within δ of the endpoints of ℓ.

Proof. Let G “ pV ‚ \V ˝, Eq be an orthodiagonal map with edges of length at most ε. It follows

that the edges of G‚ and G˝, which correspond to diagonals of inner faces of G, have length at

most 2ε. Let ℓ be a line segment in C so that pG contains a δ- neighborhood of ℓ. Without loss of

generality, suppose ℓ “ r0, Ls, the line segment between 0 and L in C. Let R “ r0, Ls ˆ r´δ, δs.

Since pG contains a δ- neighborhood of ℓ, R Ď pG.

Let H “ pV ‚
H \ V ˝

H , EHq be the suborthodiagonal map of G formed by taking the union of

all the inner faces of G contained in R. Since R is convex, H is simply- connected with a

unique, distinguished boundary face. Moreover, observe that any pair of neighboring vertices

along the boundary of H, must be part of an inner face of G that intersects the boundary of

the rectangle R. Thus, the vertices and edges on the boundary of H all lie within ε of BR. Let

A‚, B‚, C‚, D‚ be the points of BV ‚
H closest to the four corners p0,´δq, p0, δq, pL, δq, pL,´δq of R.

Then pH,A‚, B‚, C‚, D‚q is a p2ε, εq- good interior approximation of R.

By Proposition 2.2.5:

pL´ 4εq2

4δL
ď λprA‚, B‚s Ø rC‚, D‚s;H‚q ď

4δL

p2δ ´ 4εq2

Plugging the metric ρpe‚q “ |e‚| into the variational problem for λprA‚, B‚s Ø rC‚, D‚s;H‚q we
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have that:

4δL

p2δ ´ 4εq2
ě λprA‚, B‚s Ø rC‚, D‚s;G‚q (2.3.1)

ě

`

inftlengthpγ‚q : γ‚ is a curve in H‚ joining rA‚, B‚s and rC‚, D‚su
˘2

Apρq
(2.3.2)

where:

Apρq “
ÿ

e‚PE‚

|e˝|

|e‚|
|e‚|2

p˚q
“ 2

ÿ

QPFinpHq

AreapQq “ 2Areap pHq ď 4δL

Equality “p˚q” follows from the fact that if Q is an inner face of G with primal diagonal e‚ and

dual diagonal e˝, then AreapQq “ 1
2 |e‚||e˝|. Plugging our estimate for Apρq into Equation 2.3.2,

we have that:

inftlengthpγ‚q : γ‚ is a curve in H‚ joining rA‚, B‚s and rC‚, D‚su ď
2L

`

1 ´ 2ε
δ

˘ ď 2L
´

1 `
4ε

δ

¯

Since any curve in H‚ joining rA‚, B‚s and rC‚, D‚s is δ- close to ℓ in Hausdorff distance, this

completes our proof. The proof that we can find a curve γ˝ in G˝ with the desired properties

follows by the same argument, verbatim, with G˝ in place of G‚.

Armed with this lemma, we are now ready to prove Theorem 2.3.1:

Proof. Since F is the local uniform limit of continuous functions, F must be continuous. Hence,

to prove that F is holomorphic, by problem 3 of chapter 2 of [51], it suffices to check that:

¿

γ

F pzqdz “ 0

for every simple closed curve γ in Ω that traces out the boundary of a rectangle.

With this in mind, let γ be a simple closed curve in Ω, oriented counterclockwise, that traces

out the boundary of a rectangle R with length l and width w. Let d be the distance between

the rectangle R and the boundary of Ω. Let K be a compact subset of Ω that contains a d{2-

neighborhood of R and let N be a natural number so that K Ď pΩn for all n ě N .

Since p pFnq8
n“1 is a sequence of continuous functions that converges to F uniformly on compacts,

by Arzela-Ascoli, it follows that the functions pFn are equicontinuous and uniformly bounded on

compacts. With this in mind, for any δ ą 0, let ωpδq denote the modulus of continuity of the

family of functions p pFnq8
n“N on K. That is, for any n ě N and any points x, y P K we have that:

|Fnpyq ´ Fnpxq| ď ωp|x´ y|q
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where:

lim
δÑ0`

ωpδq “ 0

Recall that by discrete Morera’s theorem, for each n P N, the fact that Fn is discrete holomorphic

on Ωn tells us that for any simple closed directed curve ηn in Ωn:

ÿ

e⃗Pηn

e⃗“pe´,e`
q

`

Fnpe´q ` Fnpe`q
˘

pe` ´ e´q “ 0

By Lemma 2.3.2, for n ě N sufficiently large, we can pick simple closed contours γn and ηn in

Ωn so that:

1. γn and ηn are both oriented counterclockwise.

2. γn lies outside of the rectangle R and dHauspγn, BRq “ Opεnq.

3. ηn lies inside the rectangle R and dHauspηn, BRq “ Opεnq.

4. If γn “ pw1, x1, w2, x2, ..., wkn
, xkn

, w1q where w1, w2, ..., wkn
P V ‚

n and x1, x2, ..., xkn
P

V ˝
n , then wi „ wi`1 for all i, where our indices i are viewed modulo kn, so that γ‚

n “

pw1, w2, ..., wkn , w1q is a simple closed contour in Ω‚
n. Furthermore:

lengthpγ‚
nq “

kn
ÿ

i“1

|wi`1 ´ wi| “ Opl ` wq

5. If ηn “ py1, z1, y2, z2, .., ymn
, zmn

, y1q where y1, y2, ..., ymn
P V ‚

n , z1, z2, ..., zmn
P V ˝

n , then

zi „ zi`1 for all i, where our indices are viewed modulo mn, so that η˝
n “ pz1, z2, ..., zmn , z1q

is a simple closed contour in Ω˝
n. Furthermore:

lengthpη˝
nq “

mn
ÿ

i“1

|zi`1 ´ zi| “ Opl ` wq

Consider the discrete contour integral of Fn over γn:

ÿ

e⃗Pγn

e⃗“pe´,e`
q

`

Fnpe´q`Fnpe`q
˘

pe` ´e´q “

kn
ÿ

i“1

Fnpxiqpwi`1´wiq`

kn
ÿ

i“1

Fnpwiqpxi´xi´1q “ 0 (2.3.3)

Th first equality follows by rewriting the original sum over directed edges as a sum over vertices.

The second equality is just discrete Morera. Since Imp pFnq agrees with Fn on V ˝, for each directed

edge pwi, wi`1q, we have that:

ˇ

ˇ

ż wi`1

wi

Imp pFnpzqqdz ´ Fnpxiqpwi`1 ´ wiq
ˇ

ˇ ď ωpεnq ¨ |wi`1 ´ wi|

provided that n is large enough so that the contour γn is contained in K. Summing over directed
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Figure 2.3: The contours γ, γn, γ
‚
n, ηn and η‚

n for some orthodiagonal map.

edges we have that:

ˇ

ˇ

ˇ

¿

γ‚
n

Imp pFnpzqqdz ´

kn
ÿ

i“1

Fnpxiqpwi`1 ´ wiq

ˇ

ˇ

ˇ
“ Opωpεnq ¨ pl ` wqq (2.3.4)

In other words, we see that the discrete contour integral of ImpFnq over γn is close to the contin-

uous contour integral of Imp pFnq over γ‚
n. In contrast, since the xi’s don’t form a simple closed

contour in Ω˝
n and we don’t have any control over the quantity:

kn
ÿ

i“1

|xi`1 ´ xi|

it is not clear that we have a similar result comparing the discrete contour integral of RepFnq over

γn to some continuous contour integral of Rep pFnq. This is where our second contour ηn comes in.

By the same argument we used to handle the behavior of ImpFnq on γn, since Rep pFnq agrees
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with Fn on V ‚, for any directed edge pzi´1, ziq we have that:

ˇ

ˇ

ż zi

zi´1

Rep pFnpzqqdz ´ Fnpyiqpzi ´ zi´1q
ˇ

ˇ ď ωpεnq ¨ |zi ´ zi´1|

Summing over directed edges we have that:

ˇ

ˇ

ˇ

¿

η˝
n

Rep pFnpzqqdz ´

mn
ÿ

i“1

Fnpyiqpzi ´ zi´1q

ˇ

ˇ

ˇ
“ Opωpεnq ¨ pl ` wqq (2.3.5)

Let H be the suborthodiagonal map of G bounded by the curves ηn and γn. By discrete Green’s

theorem applied to the function RepFnq on H, we have that:

kn
ÿ

i“1

Fnpwiqpxi ´ xi´1q ´

mn
ÿ

i“1

Fnpyiqpzi ´ zi´1q “
ÿ

QPFinpHq

Q“ru1,v1,u2,v2s

`

Fnpu2q ´ Fnpu1q
˘

pv2 ´ v1q

Applying the Cauchy-Schwarz inequality, we have that:

ˇ

ˇ

ˇ

ÿ

QPFinpHq

Q“ru1,v1,u2,v2s

`

Fnpu2q ´ Fnpu1q
˘

pv2 ´ v1q

ˇ

ˇ

ˇ

ď

´

ÿ

QPFinpHq

Q“ru1,v1,u2,v2s

|v2 ´ v1|

|u2 ´ u1|

`

Fnpu2q ´ Fnpu1q
˘2

¯1{2´

ÿ

QPFinpHq

Q“ru1,v1,u2,v2s

|u2 ´ u1|

|v2 ´ v1|
|v2 ´ v1|2

¯1{2

ď E‚
KpRepFnqq1{2

´

ÿ

QPFinpHq

Q“ru1,v1,u2,v2s

|u2 ´ u1||v2 ´ v1|

¯1{2

“
?
2 E‚

KpRepFnqq1{2pAreap pHqq1{2

“ E‚
KpRepFnqq1{2pl ` wq1{2 ¨Opε1{2

n q ď
`

sup
něN

E‚
KpRepFnqq

˘1{2
pl ` wq1{2 ¨Opε1{2

n q

Thus:

ˇ

ˇ

ˇ

kn
ÿ

i“1

Fnpwiqpxi ´xi´1q ´

mn
ÿ

i“1

Fnpyiqpzi ´zi´1q
ˇ

ˇ ď
`

sup
něN

E‚
KpRepFnqq

¯1{2

pl`wq1{2 ¨Opε1{2
n q (2.3.6)

By 2.3.4, we have that:

lim
nÑ8

´

¿

γ‚
n

Imp pFnpzqqdz ´

kn
ÿ

i“1

Fnpxiqpwi`1 ´ wiq

¯

“ 0 (2.3.7)

Similarly, since the Dirichlet energies of the Fn’s are uniformly bounded on compacts, combining

2.3.5 and 2.3.6, we have that:

lim
nÑ8

´

¿

η˝
n

Rep pFnpzqqdz ´

kn
ÿ

i“1

Fnpwiqpxi ´ xi´1q

¯

“ 0 (2.3.8)
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Combining 2.3.7 and 2.3.8, we have that:

lim
nÑ8

´

¿

η˝
n

Rep pFnpzqqdz `

¿

γ‚
n

Imp pFnpzqqdz
¯

“ 0

Thus, to prove that:
¿

γ

F pzqdz “

¿

γ

RepF pzqqdz `

¿

γ

ImpF pzqqdz “ 0

It suffices to show that:

lim
nÑ8

¿

η˝
n

Rep pFnpzqqdz “

¿

γ

RepF pzqqdz

and:

lim
nÑ8

¿

γ‚
n

Imp pFnpzqqdz “

¿

γ

ImpF pzqqdz

To this effect, let ψ be any smooth, real- valued function on Ω. By the triangle inequality:

ˇ

ˇ

ˇ

¿

η˝
n

Rep pFnpzqqdz ´

¿

γ

RepF pzqqdz
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

¿

η˝
n

Rep pFnpzqqdz ´

¿

η˝
n

RepF pzqqdz
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

¿

η˝
n

RepF pzqqdz ´

¿

η˝
n

ψpzqdz
ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

¿

η˝
n

ψpzqdz ´

¿

γ

ψpzqdz
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

¿

γ

ψpzqdz ´

¿

γ

RepF pzqqdz
ˇ

ˇ

ˇ

We bound the first term as follows:

ˇ

ˇ

ˇ

¿

η˝
n

Rep pFnpzqqdz ´

¿

η˝
n

RepF pzqqdz
ˇ

ˇ

ˇ
ď lengthpη˝

nq ¨ }Rep pFnq ´ RepF q} “ O
`

pl ` wq ¨ }Rep pFnq ´ RepF q}
˘

where }Rep pFnq ´ RepF q} is the sup norm of Rep pFnq ´ RepF q on K. We can handle the second

and fourth terms analogously:

ˇ

ˇ

ˇ

¿

η˝
n

RepF pzqqdz ´

¿

η˝
n

ψpzqdz
ˇ

ˇ

ˇ
ď lengthpη˝

nq ¨ }RepF q ´ ψ} “ O
`

pl ` wq ¨ }RepF q ´ ψ}
˘

ˇ

ˇ

ˇ

¿

γ

ψpzqdz ´

¿

γ

RepF pzqqdz
ˇ

ˇ

ˇ
ď lengthpγq ¨ }ψ ´ RepF q} “ 2pl ` wq ¨ }ψ ´ RepF q}

To bound the third term, recall that if σ is a simple closed Lipschitz curve, oriented counterclock-

wise, and h is a complex- valued function whose real and imaginary part are both C2, Green’s

theorem tells us that:
¿

σ

hpzqdz “

ż

D

Bzhpx` iyqdxdy

where D is the region bounded by σ. We know that γ bounds the rectangle R. Let Rn denote
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the region bounded by η˝
n. By Green’s theorem,

ˇ

ˇ

ˇ

¿

γ

ψpzqdz ´

¿

η˝
n

ψpzqdz
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ż

R

Bzψpx` iyqdxdy ´

ż

Rn

Bzψpx` iyqdxdy
ˇ

ˇ

ˇ

“ O
`

pl ` wq ¨ }Bzψ} ¨ εn
˘

Letting n Ñ 8, the first and third terms vanish, leaving us with:

lim sup
nÑ8

ˇ

ˇ

ˇ

¿

η˝
n

Rep pFnpzqqdz ´

¿

γ

RepF pzqqdz
ˇ

ˇ

ˇ
“ O

`

pl ` wq ¨ }RepF q ´ ψ}
˘

Since smooth functions are dense in the space of continuous functions on a compact set with the

sup norm, we can choose ψ so that }RepF q ´ ψ} is arbitrarily small. Thus:

lim sup
nÑ8

ˇ

ˇ

ˇ

¿

η˝
n

Rep pFnpzqqdz ´

¿

γ

RepF pzqqdz
ˇ

ˇ

ˇ
“ 0

From which we conclude that:

lim
nÑ8

¿

η˝
n

Rep pFnpzqqdz “

¿

γ

RepF pzqqdz

Applying the same argument to
` ű

γ‚
n
Imp pFnpzqqdz ´

ű

γ
ImpF pzqqdz

˘

, we get that:

lim
nÑ8

¿

γ‚
n

Imp pFnpzqqdz “

¿

γ

ImpF pzqqdz

2.4 Convergence of Tilings to Conformal Maps

2.4.1 Proof of Theorem 2.1.2

Proof. Suppose Ω Ĺ C is a simply connected domain with distinguished prime ends A,B,C,D

listed in counterclockwise order and δn, εn ą 0 are sequences of positive reals so that:

pδn, εnq Ñ p0, 0q as n Ñ 8

For each n P N, let Ωn “ pV ‚
n \V ˝

n , Eq be an orthodiagonal map so that pΩn, A
‚
n, B

‚
n, C

‚
n, D

‚
nq is a

pδn, εnq- good interior approximation to pΩ, A,B,C,Dq for some choice of distinguished boundary

points A‚
n, B

‚
n, C

‚
n, D

‚
n P BV ‚

n . Let ϕn be the tiling map associated to the orthodiagonal rectangle

pΩn, A
‚
n, B

‚
n, C

‚
n, D

‚
nq with real part hn and imaginary part rhn. That is, rhn : V ˝

n Ñ R solves the
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following boundary value problem on Ω˝
n:

rhnpxq “ 1 for all x P rB˝
n, C

˝
ns

rhnpxq “ 0 for all x P rD˝
n, A

˝
ns

∆˝
rhnpxq “ 0 for all x P V ˝

n z
`

rB˝
n, C

˝
ns Y rD˝

n, A
˝
ns

˘

and hn : V ‚ Ñ R is the harmonic conjugate of rhn which solves the following boundary value

problem on Ω‚
n:

hnpxq “ 0 for all x P rA‚
n, B

‚
ns

hnpxq “ Ln for all x P rC‚
n, D

‚
ns

∆‚hnpxq “ 0 for all x P V ‚
n z

`

rA‚
n, B

‚
ns Y rC‚

n, D
‚
ns

˘

where Ln is the extremal length from rA‚
n, B

‚
ns to rC‚

n, D
‚
ns in Ω‚

n. Let Fn be the discrete holo-

morphic function on Ωn that agrees with hn on V ‚
n and agrees with irhn on V ˝

n . Let pFn be any

sensible extension of Fn to a continuous function on pΩn so that:

Rep pFnpzqq “ hnpzq for all z P V ‚
n Imp pFnpzqq “ rhnpzq for all z P V ˝

n

One natural way to do this is to triangulate the faces of Ω‚
n and define the real part of pFn on

each triangle by interpolating linearly between the values of hn at the corner vertices. Analo-

gously, triangulating each face of Ω˝
n, we can define the imaginary part of pFn on each triangle

by interpolating linearly between the values of rhn at the corner vertices. If ϕn is the tiling map

associated with the orthodiagonal rectangle pΩ‚
n, A

‚
n, B

‚
n, C

‚
n, D

‚
nq, our estimates for the modulus

of continuity of hn and rhn in Theorem 2.2.3 tell us that for any n P N and any z P pΩn, we have

that:

|ϕnpzq ´ pFnpzq| ď
KpLn _ 1q

log
`dn^d1

n

εn

˘
(2.4.1)

where:

dn “ inftdiameterpγq : γ is a curve in pΩn joining rA‚
n, B

‚
ns

ByΩ‚
n‚
nn

and rC‚
n, D

‚
ns

B pΩn
u

d1
n “ inftdiameterpγq : γ is a curve in pΩn joining rB‚

n, C
‚
ns

B pΩn
and rD‚

n, A
‚
ns

B pΩn
u

and K ą 0 is an absolute constant. Suppose γ is a curve in pΩn joining rA‚
n, B

‚
ns

B pΩn
and

rC‚
n, D

‚
ns

B pΩn
. Since the endpoint of γ on rA‚

n, B
‚
ns

B pΩn
is δn- close to rA,BsBΩ in crosscut dis-

tance and the endpoint of γ on rCn, Dns
B pΩn

is δn- close to rC,DsBΩ in crosscut distance it follows

that:

d ď dn ` 2δn ðñ dn ě d´ 2δn (2.4.2)
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By the same reasoning:

d1 ď d1
n ` 2δn ðñ d1

n ě d1 ´ 2δn (2.4.3)

As long as n is sufficiently large so that δn ă d^d1

2 , plugging Equations 2.4.2 and 2.4.3 into

Equation 2.4.1, we have that:

|ϕnpzq ´ pFnpzq| ď
KpLn _ 1q

log
`

pd^d1q´2δn
εn

˘

By Proposition 2.2.5, the sequence pLnq8
n“1 is uniformly bounded. Hence, the quantity on the

RHS of this inequality tends to 0 uniformly in z as n Ñ 8. Thus, to show that the tiling maps

ϕn converge to the relevant conformal map ϕ, it suffices to show this is true of the functions pFn.

The uniform boundedness of the Ln’s also tells us that the functions pFn are uniformly bounded.

By Theorem 2.2.3, these functions are also equicontinuous on compacts. Hence, by Arzela-Ascoli,

the functions pFn are precompact with respect to the topology of uniform convergence on com-

pacts in Ω. Since Ln is precisely the discrete Dirichlet energy of pFn and the sequence pLnq8
n“1 is

uniformly bounded, Theorem 2.3.1 tells us that any subsequential limit of our discrete holomor-

phic functions pFn is holomorphic.

As per our discussion in Section 0.1, in 2D statistical physics, if you have a holomorphic ob-

servable that arises as the limit of some discrete holomorphic observables, you can typically

recover the identity of the limiting object from the boundary conditions. This is what we will

do here. Suppose p pFnk
qkě1 is a subsequence of p pFnqně1 such that pFnk

converges uniformly on

compacts to some holomorphic function F and Lnk
converges to some L ą 0 as k Ñ 8. We can

always pick such a subsequence because the sequence p pFnqně1 is precompact and the sequence

pLnqně1 is uniformly bounded away from 0 and 8. By Theorem 2.2.3:

| pFnk
pyq ´ pFnk

pxq| ď
KpLnk

_ 1q

log
´

dnk
^d1

nk

pd
{Ωnk

px,yq^d
{Ωnk
cc px,yqq_εnk

¯

for any x, y P Ω, provided that k is sufficiently large so that x, y Ď pΩnk
. Taking a limit as k Ñ 8

for fixed x and y, we have that:

| pF pyq ´ pF pxq| ď
KpL_ 1q

log
´

d^d1

pdΩpx,yq^dΩ
ccpx,yqq

¯

Hence, our limiting function F extends continuously to Ω˚. Furthermore, RepF q “ 0 on rA,BsBΩ˚ ,

RepF q “ L on rC,DsBΩ˚ , ImpF q “ 0 on rB,CsBΩ˚ , and ImpF q “ 1 on rD,AsBΩ˚ . This follows

from the boundary conditions for the pFnk
’s and the fact that our estimates in Theorem 2.2.3 hold

right up to the boundary. By the argument principle, we conclude that our limiting function F
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is conformal and so F “ ϕ, where ϕ is the conformal map from Ω to the rectangle p0, Lq ˆ p0, 1q

so that the prime ends A,B,C,D are mapped to the four corners of the rectangle and ϕpAq “ i.

In particular, L must be the extremal length between rA,BsBΩ˚ and rC,DsBΩ˚ in Ω. Since all

convergence subsequences converge uniformly on compacts to ϕ, it follows that the functions pFn

converge to ϕ, uniformly on compacts, as desired.
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Chapter 3

A Polynomial Rate of

Convergence for the Dirichlet

Problem on Orthodiagonal Maps

3.1 The Result and an Outline of the Proof

As we alluded to in Section 0.3, in this Chapter, we will prove the following:

Theorem 3.1.1. Suppose Ω Ď R2 is a bounded simply connected domain, g : R2 Ñ R is a

α-Hölder, and G “ pV ‚ \ V ˝, Eq is an orthodiagonal map with edges of length at most ε so that

for each point z P B pV , distpz, BΩq ď ε. Let h be the solution to the continuous Dirichlet problem

on Ω with boundary data given by g:

∆hpxq “ 0 for all x P Ω

hpxq “ gpxq for all x P BΩ

Let h‚ be the solution to the discrete Dirichlet problem on G‚ with boundary data given by g:

∆‚h‚pvq “ 0 for all v P IntpV ‚q

h‚pvq “ gpvq for all v P BV ‚

59



Let β P p0, 1q be the absolute constant from Lemma 3.1.4. Then for any v P V ‚, we have that:

|h‚pvq ´ hpvq| ď

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

`

C1}g} ` C2
β

β´α}g}αdiampΩqα
˘`

ε
diampΩq

˘λ1pα,βq
if α P p0, βq

`

C1}g} ` C2}g}αdiampΩqα
˘`

log
`diampΩq

ε

˘˘`

ε
diampΩq

˘λ2pβq
if α “ β

`

C1}g} ` C2
α

β´α}g}αdiampΩqα
˘`

ε
diampΩq

˘λ2pβq
if α P pβ, 1q

where C1, C2 ą 0 are absolute constants, }g}α is the α-Hölder norm of g:

}g}α “ sup
x,yPR2

x‰y

|gpyq ´ gpxq|

|x´ y|α

and the functions λ1, λ2 are given by:

λ1pα, βq “ min
rPr0,1s

max
sPpr,1q

Ξ1pα, β, r, sq, λ2pβq “ min
rPr0,1s

max
sPpr,1q

Ξ2pβ, r, sq

where:

Ξ1pα, β, r, sq “

$

’

’

’

&

’

’

’

%

maxtrα,mintβps´ rq, 12 ´ 5s
2 ` r

2 , sαuu if s ď
1´β
1`β

maxtrα,mintβps´ rq, β
1`β ´ p2 `

β
1`β qs` r

2 , sαuu otherwise

Ξ2pβ, r, sq “

$

’

’

’

&

’

’

’

%

maxtrβ,mintβps´ rq, 12 ´ 5s
2 ` r

2uu if s ď
1´β
1`β

maxtrβ,mintβps´ rq, β
1`β ´ p2 `

β
1`β qs` r

2uu otherwise

The idea behind the proof is as follows. Fix a point z P V ‚. Our goal is to show that hpzq and

h‚pzq are close. To do this, we will consider two cases.

3.1.1 Proof Outline: z Near the Boundary

If z is close to the boundary of Ω (and therefore the boundary of pG), the Hölder regularity of g

tells us that, near the boundary, the value of hpzq is close to the value of the boundary data g at

nearby points of BΩ. Similarly, the Hölder regularity of g tells us that the value of h‚pzq is close

to the value of the boundary data g at nearby points of BV ‚. Since BV ‚ is close to BΩ and g is

Hölder, we conclude that hpzq and h‚pzq are close. Thus, for z near the boundary, the fact that

hpzq and h‚pzq are close follows from estimates for the modulus of continuity of solutions to the

discrete and continuous Dirichlet problems with Hölder boundary data.
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The key ingredient in the proof of these modulus of continuity estimates for solutions to the

continuous Dirichlet problem is the following estimate for planar Brownian motion:

Theorem 3.1.2. (Beurling’s Estimate) Let Bp0, Rq Ď R2 be the ball of radius R about the origin

in R2, z P Bp0, Rq and K Ď R2 is a connected, compact subset of the plane so that 0 P K and

K X BBp0, Rq ‰ H. Let pBtqtě0 be a planar Brownian motion and let TBBp0,Rq and TK be the

hitting times of BBp0, Rq and K by this Brownian motion. Then:

PzpBr0, TBBp0,Rqs XK “ Hq ď C
´

|z|

R

¯1{2

where C ą 0 is an absolute constant.

For a proof of Theorem 3.1.2, see Section 3.8 of [38]. In plain language, Theorem 3.1.2 gives us

an upper bound for the probability that a planar Brownian motion, started at z, escapes the ball

Bp0, Rq without hitting K. This is known as the strong Beurling estimate. The word “strong”

here alludes to the fact that the exponent of 1{2 in this theorem is sharp. This can be seen by

evaluating the probability that Brownian motion started at r P p0, 1q exits the unit disk before

hitting the line segment r´1, 0s. In fact, Theorem 3.1.2 is a direct consequence of a stronger

result, known as the Beurling projection theorem (see Theorem 9.2 in Chapter III of [22]), which

tells us that given a Brownian motion started at a point z P Bp0, Rq, a line segment stretching

from 0 to Re´iargpzq is the connected, compact set containing 0 and intersecting BBp0, Rq, that

maximizes the probability that a planar Brownian motion, started at z, escapes the ball Bp0, Rq

without hitting K. An equivalent reformulation of the strong Beurling estimate is as follows:

Proposition 3.1.3. Suppose Ω Ĺ C is a simply connected domain, pBtqtě0 is a planar Brownian

motion and TBΩ is the hitting of BΩ by this planar Brownian motion. Then for any positive real

number r ą 0 and any z P Ω we have that:

Pzp|BTBΩ
´ z| ě rq ď C

´dz
r

¯1{2

where C ą 0 is an absolute constant and dz “ distpz, BΩq.

It is not hard to show that the statement of Proposition 3.1.3 is equivalent to Theorem 3.1.2.

Writing the strong Beurling estimate in this way will make it clearer how it is we are applying

this result, when we use it to prove Theorem 3.1.1.

Insofar as orthodiagonal maps are good approximations of continuous 2D space, an analogous

estimate should be true for simple random walks on orthodiagonal maps. Indeed, in [35], Kesten

proves an analogue of the strong Beurling estimate for simple random walks on the square grid.

For a nice exposition of this result, see Section 2.5 of [37]. Later, in [39], Lawler and Limic prove

an analogue of the strong Beurling estimate for a large class of random walks on periodic lattices.

Establishing a strong Beurling estimate for general orthodiagonal maps, or even for the more
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restricted setting of isoradial graphs, is currently an open problem. However, in this work, we

will show that simple random walks on orthodiagonal maps satisfy a weak Beurling estimate:

Lemma 3.1.4. (Weak Beurling Estimate) There exist absolute constants β,C ą 0 such that if

G “ pV ‚ \ V ˝, Eq is an orthodiagonal map with edges of length at most ε, u P IntpV ‚q, r ą 0 is

a real number, pSnqně0 is a simple random walk on G‚, and TBV ‚ is the hitting time of BV ‚ by

this random walk, then:

Pup|STBV ‚ ´ u| ě rq ď C 1
´du _ Cε

r

¯β

where du “ distpu, BV ‚q.

Just as in the continuous setting, this weak Beurling estimate gives us estimates for the modulus

of continuity of solutions to the Dirichlet problem on orthodiagonal maps. The word “weak” here

refers to the fact that the exponent β in this estimate is not sharp. As a consequence, we have

the following weak Harnack-type estimate:

Lemma 3.1.5. There exist absolute constants β,C,C 1 ą 0 so that if G “ pV ‚ \ V ˝, Eq is an

orthodiagonal map with edges of length at most ε, h : V ‚ Ñ R is a harmonic function on G‚ and

d “ dx ^ dy “ distpx, BV ‚q ^ distpy, BV ‚q for some vertices x, y P V ‚, then:

|hpyq ´ hpxq| ď C 1 }h}8

´

|y ´ x| _ Cε

d

¯β

The standard Harnack estimate for continuous harmonic functions can be interpreted as telling

us that bounded harmonic functions are Lipschitz in the bulk (away from the boundary of our

domain). Hence, our weak Harnack estimate in Lemma 3.1.5 can be interpreted as saying that

discrete harmonic functions on orthodiagonal maps are β-Hölder in the bulk.

To our knowledge, Lemma 3.1.4 is not stated explicitly in this level of generality anywhere in

the literature. However, it follows readily from Lemma 6.7 of [14]. Namely, as per our discussion

in Section 2.2.2, the t- embeddings of [14] are a strict generalization of the setting we are work-

ing in. Namely, every orthodiagonal map is a t-embedding (for details, see Section 8.1 of [14]).

Furthermore, it is not difficult to show that for any κ P p0, 1q, there exists an absolute constant

c “ cpκq ą 1 so that if G is an orthodiagonal map with edges of length at most ε, then G satisfies

the assumption “Lippκ, cεq” of [14] (see Assumption 1.1 of [14]). Hence, all of the results of

[14] that are proven for t-embeddings satisfying the assumption Lippκ, δq for some κ P p0, 1q and

δ ą 0 transfer over immediately to the orthodiagonal setting. In particular, Lemma 3.1.5 follows

immediately from Proposition 6.13 of [14].

Having only been made aware that the t-embeddings of [14] are a strict generalization of or-

thodiagonal maps after having completed this work, we had to prove Lemmas 3.1.4 and 3.1.5

independently. In Section 3.3, using the terminology of [9], we prove “microscale” properties (S)

and (T) for simple random walks on orthodiagonal maps. As a consequence, by arguments of
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Chelkak (see the Appendix of [9]), a variety of estimates for simple random walks and discrete

harmonic functions on orthodiagonal maps immediately follow. In particular, Lemmas 3.1.4 and

3.1.5 follow from Property (S).

Remark 3.1.1. The proof of Lemma 6.13 of [14], which is the generalization of Lemma 3.1.5

for random walks on t-embeddings, follows from an analogue of property (S) (see Lemma 6.7 of

[14]), by the exact same argument as the one we use in Section 3.3.3. What is distinct here is

our approach to proving property (S), in the more restricted orthodiagonal setting.

3.1.2 Proof Outline: z Away from the Boundary

Away from the boundary, we use the same strategy used by Chelkak to prove Theorem 4.1 of

[10]. This theorem establishes gives a polynomial rate of convergence, mesoscopically far away

from the boundary, for certain observables on s-embeddings satisfying the regularity conditions

“Unif(δ)” and “Flat(δ)” (see Section 1.3 of [10] for details). To see this same argument, written

out in the simpler setting of isoradial graphs, see Proposition 4.4.14 of [46]. The idea is that if a

function f is almost harmonic in the sense that ∆f « 0, then f is close to the harmonic function

with the same boundary data. More precisely, suppose Ω Ď R2 is a bounded, simply connected

domain, g P C0pR2q, and h is the solution to the Dirichlet problem on Ω with boundary data

given by g. That is:

∆hpxq “ 0 for all x P Ω

hpxq “ gpxq for all x P BΩ

If f is any other function in C2
b pΩq X CpΩq with the same boundary data,

|fpxq ´ hpxq| “
ˇ

ˇ

ż

Ω

∆fpyqGΩpy, xqdApyq
ˇ

ˇ (3.1.1)

for any x P Ω, where GΩp¨, xq is the Green function on Ω centered at x, and “dApyq” is integra-

tion with respect to area on Ω. As an immediate consequence of this formula, if f has the same

boundary behavior as h and ∆f is small, f must be close to h.

To apply the formula in Equation 3.1.1 to the problem of estimating the difference between

hpzq and h‚pzq, we need to replace h‚ with a smooth function. To this effect:

1. We convolve h‚ with a smooth mollifier ϕδ, supported on a ball of radius δ about 0, where

δ is small.

2. As long as δ ! dz, Lemma 3.1.5 tells us that h‚pzq is close to ϕδ ˚ h‚pzq.

3. Since h‚ is discrete harmonic, the convolution ϕδ ˚ h‚ is almost harmonic in the sense that

∆pϕδ ˚ h‚q « 0. Verifying this is the most subtle part of the whole argument. This is the

subject of Section 3.4.
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4. From here, we are in a position to apply our formula in Equation 3.1.1 to show that the

solution to our continuous Dirichlet problem, h, is close to ϕδ ˚ h‚ and therefore h‚.

There is a minor technicality that ϕδ ˚ h‚ is not defined on all of Ω, so this argument actually

plays out on some smaller subdomain of Ω. Furthermore, the boundary behavior of ϕ˚h‚ doesn’t

quite agree with the boundary behavior of h, but morally, this is what’s going on.

3.2 A Few Comments on Notation

• If v P Rn,

|v| :“
b

v21 ` v22 ` ...` v2n

• If f : Ω Ñ Rm, where Ω is a subdomain of Rn, then:

}f} :“ supt|fpxq| : x P Ωu

• Given a 2 ˆ 2 matrix A “

«

a1,1 a1,2

a2,1 a2,2

ff

, }A}2 is the Frobenius norm of A:

}A}2 “

b

a21,1 ` a21,2 ` a22,1 ` a22,2

• In particular, if f : Ω Ñ R is C2, where Ω is a subdomain of R2, then:

}D2fpxq}2 “

b

pB2
1fpxqq2 ` 2pB1B2fpxqq2 ` pB2

2fpxqq2

and:

}D2f} :“ supt}D2fpxq}2 : x P Ωu

If f

• Similarly, if f : Ω Ñ R is C3, where Ω is a subdomain of R2, then:

}D3fpxq}2 “

b

pB3
1fpxqq2 ` pB2

1B2fpxqq2 ` pB1B2
2fpxqq2 ` pB3

2fpxqq2

and:

}D3f} :“ supt}D2fpxq}2 : x P Ωu

• Recall that for any matrix, its Frobenius norm is an upper bound for its operator norm. In

particular, if v, w P R2 and A is a 2 ˆ 2 matrix,

|vTAw| ď |v| ¨ }A}2 ¨ |w|
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3.3 Random Walks and A Priori Regularity Estimates for

Harmonic Functions on Orthodiagonal Maps

In [9], Chelkak considers locally finite embeddings of a weighted graph Γ “ pV,E, cq in the plane

such that:

• neighboring edges have comparable weight.

• neighboring edges have comparable lengths.

• angles are uniformly bounded away from 0 and π.

Keeping our notation consistent with [9], if u is a vertex of Γ, let BΓ
r puq “ pVBΓ

r puq, EBΓ
r puqq be

the subgraph of Γ induced by the vertex set Bpu, rq X V . The boundary of this graph, denoted

by BVBΓ
r puq, is the set of vertices of V zVBΓ

r puq that are adjacent to some vertex of BΓ
r puq. In other

words,

BVBΓ
r puq “ ty P V zVBΓ

r puq : y „ v for some v P VBΓ
r puqu

In addition to the aforementioned regularity assumptions on the lattice Γ, Chelkak assumes that

simple random walks on Γ satisfy properties (S) and (T):

• Property (S): Let pSnqně0 be simple random walk on Γ and let T be the first time at which

this random walk exits the ball Bpu, rq:

T :“ inftn P N0 : Sn R Bpu, rqu

Then there exist constants η0 P p0, πq and c0 ą 0 independent of u P Γ and r ą 0 such that:

Pu
`

argpST ´ uq P I
˘

ě c0 (3.3.1)

For any interval I Ď S1 with lengthpIq ě η0.

• Property (T): There exists an absolute constant C0 ą 1 independent of u P Γ, r ą 0 such

that:

C´1
0 r2 ď

ÿ

vPBΓ
r puq

r2vGBΓ
r puqpv, uq ď C0r

2 (3.3.2)

Where rv “ mint|v ´ u| : v „ uu and GBΓ
r puqp¨, uq : VBΓ

r puq \ BVBΓ
r puq Ñ R is the Green’s

function of BΓ
r puq centered at u, which is the unique solution to the following boundary

value problem:

∆vGBΓ
r puqpv, uq “

ÿ

yPΓ
y„v

cpv, yq
`

GBΓ
r puqpy, uq ´GBΓ

r puqpv, uq
˘

“ ´δupvq for v P BΓ
r puq

GBΓ
r

pu, vq “ 0 for v P BBΓ
r puq
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(The subscript of v in “∆v” is there to emphasize that we are taking the discrete Laplacian

with repect to the variable v, not u.)

Informally, property (T) says that it takes roughly r2 steps for a simple random walk on Γ to

travel distance r away from its starting point. Similarly, property (S) tells us that a simple

random walk started at the center of the disk Bpu, rq has probability at least c0 of exiting this

disk through a discrete arc of length η0. Assuming properties (S) and (T), in addition to the

aforementioned regularity assumptions on our weighted plane graph Γ, Chelkak proves a number

of estimates for random walks, harmonic functions and extremal length. In particular, he shows

that:

• we have a weak Beurling estimate for the simple random walk on our embedding (Lemma

2.11 of [9]). This tells us that discrete harmonic functions on our embedding are Hölder in

the bulk. If we assume our boundary data is also Hölder, this gives us Hölder regularity up

to the boundary.

• discrete and continuous extremal lengths of conformal rectangles are comparable (Proposi-

tion 6.2 of [9]).

• a discrete analogue of the Ahlfors-Beurling-Carlemann estimate holds, giving us two- sided

estimates for harmonic measure in terms of extremal length (Theorem 7.8 of [9]).

In [4] Angel, Barlow, Gurel- Gurevich and Nachmias prove that if Γ “ pV,E, cq is a weighted

plane graph satisfying Chelkak’s regularity assumptions, simple random walks on Γ satisfy prop-

erties (S) and (T). Hence, in Chelkak’s context, one does not actually need to assume properties

(S) and (T): these properties of simple random walk follow from the regularity assumptions on

our lattice Γ.

Intuitively, orthodiagonal maps are good approximations of continuous 2D space, so it is rea-

sonable to assume that simple random walks on orthodiagonal maps should satisfy properties

(S) and (T) along with the rest of the estimates in Chelkak’s toolbox paper. However, while

orthodiagonal maps provide us with a notion of discrete complex analysis, they can have arbi-

trarily small angles, arbitrarily small ratios between lengths of neighboring edges, and arbitrarily

large vertex degrees. In short, they may fail to satisfy the assumptions of Chelkak’s toolbox paper.

In this section, we show that properties (S) and (T) hold for simple random walks on ortho-

diagonal maps. As a result, we are able to recover at least some of the results of [9] for general

orthodiagonal maps, where we have a notion of discrete complex structure, but no additional

constraints on the geometry of our embedding.

3.3.1 Microscale Property (S) on Orthodiagonal Maps

Theorem 1.1 of [25] says the following:

66



Theorem 3.3.1. (Theorem 1.1 of [25]) Suppose Ω is a bounded simply connected domain,

g : R2 Ñ R is a C2 function. Given δ, ε P p0,diampΩqq, let G “ pV ‚ \ V ˝, Eq be a simply

connected orthodiagonal map, with edges of length at most ε, such that the Hausdorff distance

between BV ‚ and BΩ is at most δ. Let hc be the solution to the continuous Dirichlet problem on

Ω with boundary data g, and let hd : V ‚ Ñ R be the solution to the discrete Dirichlet problem

on G‚ with boundary data g|BV ‚ . Set:

C1 :“ sup
xP rΩ

|∇gpxq|, C2 :“ sup
xP rΩ

}D2gpxq}2

where rΩ “ convpΩ Y pGq. Then there exists an absolute constant C ą 0 such that for all

x P V ‚ X Ω,

|hdpxq ´ hcpxq| ď
CdiampΩqpC1 ` C2εq

log1{2
pdiampΩq{pδ _ εqq

Property (S) for simple random walks on orthodiagonal maps follows from Theorem 3.3.1 via an

elementary argument.

Lemma 3.3.2. (Microscale Property (S)) Suppose G “ pV ‚ \ V ˝, Eq is an orthodiagonal map

with edges of length at most ε, u P V ‚ is a primal vertex of G, and R ą 0 is a positive real

number so that Bpu,Rq Ď pG. Let pSnq8
n“0 be a simple random walk on G‚ and let TBBpu,Rq be

the first time at which our random walk exits the open ball Bpu,Rq:

TBBpu,Rq :“ inftn P N0 : Sn R Bpu,Rqu

Then there exist absolute constants c, C ą 0, η P p0, πq so that:

Pu
`

argpSTBBpu,Rq
´ uq P I

˘

ě c

for any interval I Ă S1 with lengthpIq ě η, provided that R ě Cε.

We call this a microscale estimate because it holds for all balls whose radius is at least a constant

multiple of the mesh of our orthodiagonal map.

Proof. Suppose G “ pV ‚ \ V ˝, Eq is an orthodiagonal map with edges of length at most ε,

u P V ‚ is a primal vertex of G, and R ą 0 is a positive real number so that Bpu,Rq Ď pG. Let

BGpu,Rq “ pV ‚
BGpu,Rq

\V ˝
BGpu,Rq

, EBGpu,Rqq be the suborthodiagonal map of G formed by taking

the union of all the inner faces Q of G whose corresponding primal diagonal e‚
Q intersects the

open ball Bpu,Rq. Having defined BGpu,Rq in this way, we see that a simple random walk on

BGpu,Rq‚ run until it hits BV ‚
BGpu,Rq

is the same thing as a simple random walk on G‚, run until

it leaves the open ball Bpu,Rq. Since the edges of G all have length at most ε, the edges of G‚

have length at most 2ε. Hence, the boundary vertices of BGpu,Rq‚ all lie within 2ε of BBpu,Rq.

Let φ : R2 Ñ R be a smooth function with compact support such that:

• φpxq “ 1 if }x} ď 1
2
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• φpxq P p0, 1q if 1
2 ă }x} ă 1.

• φpxq “ 0 if }x} ě 1

Suppose v P BBpu,Rq. Consider the function g : R2 Ñ R defined as follows:

gpxq “ φ
´x´ v

R

¯

Observe that:

• gpxq “ 1 for x P BBpu,Rq such that |argpx´ uq| ď arccos p 7
8 q.

• gpxq P p0, 1q for x P BBpu,Rq such that arccos p 7
8 q ă |argpx´ uq| ă arccos p 1

2 q.

• gpxq “ 0 for x P BBpu,Rq if |argpx´ uq| ě arccos p 1
2 q.

Here arccospxq takes values in r0, πs for x P r´1, 1s. Let hd : V ‚
BGpu,Rq

Ñ R denote the solution

to the following boundary value problem on BGpu,Rq‚:

∆‚hdpxq “ 0 for all x P IntpV ‚
BGpu,Rqq

hdpxq “ gpxq for all x P BV ‚
BGpu,Rq

If pSnq8
n“1 is a simple random walk on G‚ and TBBpu,Rq “ inftn P N0 : Sn R Bpu,Rqu is the time

at which our random walk exits Bpu,Rq, then by the maximum principle for discrete harmonic

functions:

Pu
`

|argpSTBBpu,Rq
´ uq| ď arccos p1{2q

˘

ě hdpuq

provided that R ě 2ε. Notice that:

}∇g}8 “ R´1}∇ϕ}8, }D2g}8 “ R´2}D2ϕ}8

Let hc : Bpu,Rq Ñ R be the solution to the corresponding continuous boundary value problem

on Bpu,Rq:

∆hcpxq “ 0 for all x P Bpu,Rq

hcpxq “ gpxq for all x P BBpu,Rq

Since g ” 1 on a boundary arc along BBpu,Rq of length 2R ¨ arccos p7{8q,

hcpuq ě
arccosp7{8q

π

Applying Theorem 3.3.1 with Ω “ Bpu,Rq, G “ BGpu,Rq and g as above, we have that:

|hdpuq ´ hcpuq| ď
Cp2RqpR´1}∇φ}8 `R´2}D2φ}8εq

log1{2
p2R{εq

“
2Cp}∇φ}8 ` }D2φ}8εR

´1q

log1{2
p2R{εq
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Notice that if we take R ě C 1ε for some absolute constant C 1 ą 0 sufficiently large, we can ensure

that:
2Cp}∇φ}8 ` }D2φ}8εR

´1q

log1{2
p2R{εq

ď
arccosp7{8q

2π

Putting all this together, we get that:

Pu
`

|argpSTBBpu,Rq
´ uq| ď arccos p1{2q

˘

ě hdpuq ě hcpuq ´ |hcpuq ´ hdpuq| ě
arccosp7{8q

2π

provided that R ě C 1ε for some absolute constant C 1 ą 0.

3.3.2 Microscale Property (T) for Orthodiagonal Maps

Suppose G “ pV ‚ \ V ˝, Eq is an orthodiagonal map, H “ pV ‚
H \ V ˝

H , EHq is a suborthodiagonal

map of G, and u P IntpV ‚
Hq . Then GH‚ p¨, uq : V ‚

H Ñ R is the analyst’s Green’s function on H‚

centered at u. This is the unique solution to the boundary value problem:

∆‚
vGH‚ pv, uq “ ´δupvq for all v P IntpV ‚

Hq

GH‚ pv, uq “ 0 for all v P BV ‚
H

The subscript of v in “∆‚
v” is there to make it clear that we are looking at the discrete Laplacian

on G‚ with respect to the variable v, not u. The Green’s function also has a probabilistic

interpretation. Let pSnqně0 be a simple random walk on H‚. For any nonempty subset A Ď V ‚
H ,

let TA denote the hitting time of A by this random walk:

TA “ inftn P N0 : Sn P Au

Then:

GH‚ pv, uq “
Eu|t0 ď n ď TBV ‚

H
: Sn “ vu|

πu

where πu “
ř

w:w„u
cpu,wq is the sum of the weights of the edges of H‚ incident to u. Using this

probabilistic interpretation, since a simple random walk on G‚ is a reversible Markov process,

the Green’s function is symmetric. Namely, if u, v P IntpV ‚
Hq, then:

GH‚ pu, vq “ GH‚ pv, uq

If x P IntpV ‚q, define:

Ax :“
ÿ

yPV ‚
H

y„x

AreapQtx,yuq

where Qtx,yu is the inner face of G with primal diagonal tx, yu. Having made these prelimi-

nary observations, we are ready to state and prove the analogue of Chelkak’s property (T) for

orthodiagonal maps:
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Lemma 3.3.3. (Microscale Property (T)) Suppose G “ pV ‚ \ V ˝, Eq is an orthodiagonal map

with edges of length at most ε, u P V ‚ is a primal vertex of G and R ą 0 is a positive real number

so that Bpu,Rq Ď pG. Let BGpu,Rq “ pV ‚
BGpu,Rq

\ V ˝
BGpu,Rq

, EBGpu,Rqq be the suborthodiagonal

map of G formed by taking the union of all the inner faces Q of G whose corresponding primal

diagonal e‚
Q intersects the open ball Bpu,Rq. Having defined BGpu,Rq in this way, notice that

IntpV ‚
BGpu,Rq

q “ V ‚ XBpu,Rq, BV ‚
BGpu,Rq

“ V ‚ X tz : |z ´ u| ě Ru. Then:

1

2
R2 ď

ÿ

vPV ‚XBpu,Rq

AvGBGpu,Rq‚ pv, uq ď
1

2
pR ` 2εq2

In particular, if R ě 2ε:

1

2
R2 ď

ÿ

vPV ‚XBpu,Rq

AvGBGpu,Rq‚ pv, uq ď 2R2

Proof. To prove property (T) for orthodiagonal maps, we first need to make some preliminary

observations. Given an orthodiagonal map G “ pV ‚ \ V ˝, Eq, let ru1, v1, u2, v2s denote the inner

face of G with incident vertices u1, v1, u2, v2 listed in counterclockwise order where u1, u2 P V ‚,

v1, v2 P V ˝. Using this notation, ru1, v1, u2, v2s “ ru2, v2, u1, v1s. Suppose x P IntpV ‚q and

x1, x2, ..., xm are the neighbours of x in G‚, listed in counterclockwise order. Let y1, y2, y3, ..., ym

be vertices of G˝ so that for each i, rx, yi, xi, yi`1s is a face of G, where our indices i are considered

modulo m.

Figure 3.1: A vertex x and its neighbors in an orthodiagonal map.
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Then for any z0 P C:

∆‚
`

z ÞÑ |z ´ z0|2
˘
ˇ

ˇ

z“x
“

ÿ

yPV ‚:y„x

cpx, yq

´

|y ´ z0|2 ´ |x´ z0|2
¯

“

m
ÿ

i“1

|yi`1 ´ yi|

|xi ´ x|

´

|xi ´ z0|2 ´ |x´ z0|2
¯

“

m
ÿ

i“1

|yi`1 ´ yi|

|xi ´ x|

´

|xi ´ x|2 ` 2Re
`

pxi ´ xqpx´ z0q
˘

¯

“

m
ÿ

i“1

|yi`1 ´ yi||xi ´ x| ` 2Re
´

px´ z0q

m
ÿ

i“1

|yi`1 ´ yi|

|x´ xi|
pxi ´ xq

¯

Since rx, yi, xi, yi`1s is a quadrilateral with orthogonal diagonals for each index i, we have that:

Areaprx, yi, xi, yi`1sq “
1

2
|yi`1 ´ yi||xi ´ x| and pxi ´ xq “ i

|yi`1 ´ yi|

|xi ´ x|
pyi`1 ´ yiq

Plugging these into our formula for ∆‚
`

z ÞÑ |z ´ z0|2
˘
ˇ

ˇ

z“x
we have that:

∆‚
`

z ÞÑ |z ´ z0|2
˘
ˇ

ˇ

z“x
“ 2

m
ÿ

i“1

Areaprx, yi, xi, yi`1sq ` 2Re
´

ipx´ z0q

m
ÿ

i“1

pyi`1 ´ yiq
¯

“ 2Ax

Suppose u P IntpV ‚q is an interior vertex of G and R ą 0 is a real number so that Bpu,Rq Ď pG.

Let BGpu,Rq “ pV ‚
BGpu,Rq

\ V ˝
BGpu,Rq

, EBGpu,Rqq be the suborthodiagonal map of G described in

the statement of Lemma 3.3.3. Notice that a simple random walk on BGpu,Rq‚ run until it hits

BV ‚
BGpu,Rq

is the same thing as a simple random walk on G‚, run until it leaves the open ball

Bpu,Rq. Furthermore, IntpV ‚
BGpu,Rq

q “ V ‚ XBpu,Rq.

If pSnqně0 is a simple random walk on G‚ with canonical filtration pFnqně0, for any z0 P C:

Ep|Sn^TBV ‚ ´ z0|2 |Fn´1q “ |Spn´1q^TBV ‚ ´ z0|2 `

∆‚
`

z ÞÑ |z ´ z0|2
˘
ˇ

ˇ

z“Spn´1q^TBV ‚

πSpn´1q^TBV ‚

“ |Spn´1q^TBV ‚ ´ z0|2 `
2ASpn´1q^TBV ‚

πSpn´1q^TBV ‚

It follows that the process:

|Sn^TBBpu,Rq
´ u|2 ´ 2

n^pTBBpu,Rq´1q
ÿ

k“0

ASk^TBBpu,Rq

πSk^TBBpu,Rq

is a martingale. By the optional stopping theorem:

Eu|STBBpu,Rq
´ u|2 “ 2Eu

´

n^pTBBpu,Rq´1q
ÿ

k“0

ASu
k^TBBpu,Rq

πSu
k^TBBpu,Rq

¯

“ 2
ÿ

vPV ‚XBpu,Rq

Av

πv
E|t0 ď k ď TBBpu,Rq : S

u
k “ vu|

“ 2
ÿ

vPV ‚XBpu,Rq

AvGBGpu,Rq‚ pu, vq
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On the other hand, since the edges of G have length at most ε, edges of G‚ have length at most

2ε from which we infer that:

R2 ď Eu|STBBpu,Rq
´ u|2 ď pR ` 2εq2

Putting all this together, we have that:

1

2
R2 ď

ÿ

vPV ‚XBpu,Rq

AvGBGpu,Rq‚ pu, vq ď
1

2
pR ` 2εq2

If R ě 2ε it follows that:

1

2
R2 ď

ÿ

vPV ‚XBpu,Rq

AvGBGpu,Rq‚ pv, uq ď 2R2

3.3.3 The Toolbox

Our goal in this section is to establish analogues of the estimates for random walks and harmonic

functions found in the Appendix of [9], including Lemmas 3.1.4 and 3.1.5. The proofs of these

results only require properties (S) and (T) as input and so they follow by the same argument as

in [9], verbatim. Nevertheless, for the convenience of the reader and for the sake of completeness,

we will include proofs or at the very least sketches of proofs herein.

The following result is an analogue of Lemma A.1 of [9]:

Lemma 3.3.4. There exist absolute constants c, C ą 0 such that if G “ pV ‚ \ V ˝, Eq is an

orthodiagonal map with maximal edge length at most ε, r ą Cε and u P V ‚ is a primal vertex of

G so that Bpu, rq Ď pG, then the probability that a simple random walk on G started at w P V ‚,

where 2
3r ď |w ´ u| ď 5

6r, makes a whole turn inside the annulus Bpu, rqzBpu, 12rq and then

crosses its own trajectory afterwards, is uniformly bounded below by c ą 0.

The idea behind the proof is to set up a network of Op1q balls inside our annulus so that:

• by property (S), the probability of travelling from one ball to the next is bounded below by

some absolute constant.

• having exhausted all of the Op1q balls, our random walk must have made a loop and thereby

crossed its own trajectory.

The only technicality is that we need the radius of our annulus to be sufficiently large so that all

of the balls in our network are large enough to ensure that property (S) holds.

Lemma 3.3.5. (Harnack Inequality) There exist absolute constants c P p0, 1q, C ą 0 so that

if G “ pV ‚ \ V ˝, Eq is an orthodiagonal map with edges of length at most ε, h : V ‚ Ñ r0,8q
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is a nonnegative discrete harmonic function on G‚ and u P V ‚ is a vertex such that du “

distpu, BV ‚q ě Cε, then:

chpvq ď hpv1q ď c´1hpvq for all v, v1 P Bpu, du{2q

Proof. By the maximum principle for harmonic functions, there exists a nearest- neighbour path

γ “ pw0, w1, w2, ...., wmq of vertices in G‚ such that w0 “ v, wm P BV ‚, and hpwiq ě hpvq for all

i. By Lemma 3.3.4, we have that hpwq ě chpvq for all vertices w such that 2
3du ď |w ´ u| ď 5

6du

(any simple random walk path that forms a loop in the annulus tz : 1
2du ă |z ´ u| ă duu must

intersect γ). By the maximum principle, we conclude that Hpv1q ě cHpvq. The proof of the

reverse inequality is analogous.

By an analogous argument, we have the boundary Harnack principle:

Lemma 3.3.6. (Boundary Harnack Principle) There exists an absolute constant C ą 0 so that

if G “ pV ‚ \ V ˝, Eq is an orthodiagonal map with edges of length at most ε, x P BV ‚, r ą 0 is

a number so that r ě Cε and h : V ‚ Ñ r0,8q is a nonnegative discrete harmonic function on G

that vanishes on Bpx, rq X BV ‚, it follows that:

hpvq — hpv1q uniformly for all v, v1 P Bpx, rq X V ‚ such that
2

3
r ď |v ´ v1| ď

5

6
r

Now we are ready to prove the weak Beurling estimate for simple random walks on orthodiagonal

maps, Lemma 3.1.4:

Proof. (of Lemma 3.1.4) Let c, C ą 0 be the absolute constants in the statement of Lemma 3.3.4.

Suppose du “ distpu, BV ‚q ě Cε. Then we can build a network of tlog2
`

du

r

˘

u annuli with disjoint

interiors, so that each annulus separates u from BBpu, rq and the ratio between the outer radius

and inner radius of each annulus is 2. By Lemma 3.3.4, the probability of a simple random walk

on G‚ crossing each annulus without first forming a loop separating the inside and outside of the

annulus, is bounded above by p1 ´ cq. Of course, if our random walk does form such a loop, it

must intersect BV ‚ in the process. Thus:

Pup|STBV ‚ ´ u| ě rq ď p1 ´ cqtlog2p
du
r qu ď p1 ´ cq´1

´du
r

¯log2p 1
1´c q

To apply Lemma 3.3.4, we needed the inner radius of each annulus to be at least Cε. This

is where the requirement that du ą Cε came in. Otherwise, the best we can do is to use the

maximum principle to conclude that:

Pup|STBV ‚ ´ u| ě rq ď p1 ´ cq´1
´Cε

r

¯log2p 1
1´c q

Having established Lemma 3.1.4, Lemma 3.1.5, which tells us that discrete harmonic functions
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on orthodiagonal maps are β- Hölder in the bulk for some absolute constant β P p0, 1q, follows as

an immediate corollary:

Proof. (of Lemma 3.1.5) Let C ą 0 be the absolute constant with the same name in Lemma 3.1.4.

Observe that if |x´ y| _Cε ą 1
2d, the desired result holds trivially, since |hpyq ´ hpxq| ď 2}h}8.

With this in mind, suppose that |y´x|_Cε ď 1
2d and WLOG, hpyq ě hpxq. Additionally, suppose

that |x´ y| ą Cε. By the maximum principle, there exists a path γ “ pw0, w1, ..., wmq of vertices

in G‚ so that w0 “ y, wm P BV ‚ and hpwiq ě hpyq. By Lemma 3.1.4, with high probability, a

simple random walk started at x will hit γ before exiting the ball of radius d centred at y. Thus:

hpxq ě

ˆ

1 ´ C 1
´

|y ´ x|

d´ |y ´ x|

¯β
˙

hpyq ´ C 1
´

|y ´ x|

d´ |y ´ x|

¯β

}h}8

ě

´

1 ´ C 1
´2|y ´ x|

d

¯β¯

hpyq ´ C 1
´2|y ´ x|

d

¯β

}h}8

Since hpyq ě hpxq, it follows that:

|hpyq ´ hpxq| ď K}h}8

´

|y ´ x|

d

¯β

where K ą 0 is an absolute constant. If on the other hand |x ´ y| ď Cε, where Cε ď 1
2d, the

maximum principle tells us that:

|hpyq ´ hpxq| ď K}h}8

´Cε

d

¯β

This completes our proof.

While we will not need them for the proof of Theorem 3.1.1, the main result of this chapter,

the following two lemmas establish estimates for the Green’s function on orthodiagonal maps,

analogous to estimates that exist in the continuum. Lemma 3.3.7 is the analogue of Lemma 2.13

of [9] for orthodiagonal maps, and follows by the same argument, verbatim. While an analogue

of Lemma 3.3.8 is not explicitly stated in [9], it follows readily from an analogue of Lemma 2.9

of [9] and the weak Beurling estimate. For the corresponding Green’s function estimates in the

continuum, see Sections 2.4 and 2.5 of [36].

Lemma 3.3.7. Suppose G “ pV ‚ \V ˝, Eq is an orthodiagonal map with maximal edge length at

most ε, Ω “ pV ‚
Ω \ V ˝

Ω , EΩq is a suborthodiagonal map of G, u P V ‚
Ω , r “ distpu, BV ‚

Ωq, and R ą 0

is a real number so that Bpx,Rq Ď pG. Then there exist absolute constants A,C ą 0, c P p0, 1q so

that if r ě Cε and 2kr ď R, where k P N, we have that:

GBGpu,rq‚ pv, uq ď GΩ‚ pv, uq ď

´

1 `
A

p1 ´ cq´k ´ 1

¯

GBGpu,2krq‚ px, uq

Proof. Suppose H “ pU‚ \ U˝, F q is a suborthodiagonal map of G “ pV ‚ \ V ˝, Eq. Recall that
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we have the following probabilistic interpretation for the Green’s function:

GH‚ px, yq “
Ex|tn ă τBU‚ : Sn “ yu|

πx

where x P U‚, pSnqně1 is a simple random walk on G‚, τBU‚ is the hitting time of BU‚ by this

random walk, and:

πx “
ÿ

y:y„x

cpx, yq

With this in mind, the left-hand inequality in Lemma 3.3.7 is trivial: it just follows from the fact

that τBBGpu,rq‚ ď τBΩ‚ .Regarding the right-hand inequality, by the strong Markov property for

simple random walk on G‚, we have that:

GΩ‚ px, uq ď GBGpu,2krq‚ px, uq ` max
yPBV ‚

BGpu,2krq

PpSRW started at y hits BV ‚
BGpu,rq before BV ‚

Ωq ¨ max
zPBV ‚

BGpu,rq

GΩ‚ pz, uq

As far as handling the second term, observe that if our random walk starts at a point of BV ‚
BGpu,2krq

and hits BV ‚
BGpu,rq

before BV ‚
Ω , it must have crossed a series of annuli Apu, 2jr, 2j`1rq for j “

0, 1, 2, ..., k´1 without making a whole turn and then crossing its trajectory, thereby hitting BV ‚
Ω .

By Lemma 3.3.4, as long as r ě Cε for some absolute constant C ą 0,

max
yPBV ‚

BGpu,2krq

PpSRW started at y hits BV ‚
BGpu,rq before BV ‚

Ωq ď p1 ´ cqk

where c P p0, 1q is a constant, independent of the geometry of our orthodiagonal map. Thus, we

have that:

GΩ‚ px, uq ď GBGpu,2krq‚ px, uq ` p1 ´ cqk max
zPBV ‚

BGpu,rq

GΩ‚ pz, uq

Applying this estimate to GΩ‚ pz, uq, where z P BV ‚
BGpu,rq

, in the expression above and then

iterating this process, we have that:

GΩ‚ px, uq ď GBGpu,2krq‚ px, uq ` p1 ´ cqk max
zPBV ‚

BGpu,rq

GΩ‚ pz, uq

ď GBGpu,2krq‚ px, uq ` p1 ´ cqk max
zPBV ‚

BGpu,rq

`

GBGpu,2krq‚ pz, uq ` p1 ´ cqk max
wPBV ‚

BGpu,rq

GΩ‚ pw, uq
˘

“ GBGpu,2krq‚ px, uq ` p1 ´ cqk max
zPBV ‚

BGpu,rq

GBGpu,2krq‚ pz, uq ` p1 ´ cq2k max
wPBV ‚

BGpu,rq

GΩ‚ pw, uq

ď ...

ď GBGpu,2krq‚ px, uq `
p1 ´ cqk

1 ´ p1 ´ cqk

´

max
zPBV ‚

BGpu,rq

GBGpu,2krq‚ pz, uq

¯

Observe that GBGpu,2krq‚ p¨, uq is harmonic in BGpu, 2krq‚ away from u, and we can cover BV ‚
BGpu,rq

with Op1q balls of radius r{2, centered at points of BV ‚
BGpu,rq

. Applying the elliptic Harnack
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inequality (Lemma 3.3.5) on each ball and chaining these estimates together, we have that:

min
zPBV ‚

BGpu,rq

GBGpu,2krq‚ pz, uq — max
zPBV ‚

BGpu,rq

GBGpu,2krq‚ pz, uq

Since GBGpu,2krq‚ p¨, uq is superharmonic on BGpu, rq‚,

min
zPBV ‚

BGpu,rq

GBGpu,2krq‚ pz, uq ď GBGpu,2krq‚ px, uq

for any x P V ‚
BGpu,rq

. Thus, we have absolute constants c P p0, 1q, A ą 0 so that:

GΩ‚ px, uq ď

´

1 `
A

p1 ´ cq´k ´ 1

¯

GBGpu,2krq‚ px, uq

for any x P V ‚
BGpu,rq

, provided that r “ distpu, BV ‚
Ωq ě Cε for some absolute constant C ą 0 and

Bpu, 2krq Ď pG.

Lemma 3.3.8. Suppose G “ pV ‚ \ V ˝, Eq is an orthodiagonal map with maximal edge length

at most ε, Ω “ pV ‚
Ω \ V ˝

Ω , EΩq is a suborthodiagonal map of G, u P V ‚
Ω , r “ distpu, BV ‚

Ωq and

x P V ‚
Ω satisfies |x ´ u| “ R ą ppKεq _ p2rqq where Bpu,R ` εq Ď pG and K ą 0 is an absolute

constant. Then there exist absolute constants β,B ą 0 such that:

GΩ‚ px, uq ď B
´r _ ε

R

¯β

Proof. Without loss of generality, assume that r ě Cε where C ą 0 is the absolute constant from

lemma 4.1. We can do this because if r ă Cε, adding the vertices and edges of GXBpu,Cεq to Ω

gives us an orthodiagonal map that satisfies r ě Cε whose Green function at u is strictly larger

than that of Ω.

By the optional stopping theorem applied to our random walk, stopped upon hitting BV ‚
Ω or

BV ‚
BGpu,rq

:

GΩ‚ px, uq ď PxpSRW started at x hits BV ‚
BGpu,rq before it hits BV ‚

Ωq max
zPBV ‚

BGpu,rq

G‚
Ωpz, uq

Just as in the proof of Lemma 3.3.7 above, for a simple random walk starting at x to hit

BV ‚
BGpu,rq

before BV ‚
Ω , our random walk must cross k “ tlog2pR{rqu annuli Apu, 2jr, 2j`1rq for

j “ 0, 1, 2, ..., k ´ 1 without making a whole turn and then crossing its trajectory in G‚. By

Lemma 3.3.4, it follows that:

PxpSRW started at x hits BV ‚
BGpu,rq before it hits BV ‚

Ωq ď p1 ´ cqk

where c P p0, 1q is an absolute constant. By Lemma 3.3.7, there exists an absolute constant C 1 ą 0
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such that:

GΩ‚ px, uq ď C 1GBGpu,2rq‚ px, uq

for any x P V ‚
BGpu,rq

. By property (T):

ÿ

xPBGpu,r{2q‚

AreapNvqGBGpu,2rq‚ px, uq ď
ÿ

xPBGpu,2rq‚

AreapNvqGBGpu,2rq‚ px, uq ď p2r ` εq2

Additionally, we have that:

ÿ

xPBGpu,r{2q‚

AreapNvq ě pr{2 ´ εq2

As long as C ą 2, it follows that there exists an absolute constant c0 ą 0 so that:

GΩ‚ px0, uq ď c0

for some x0 P Bpu, r{2q. However, as we discussed in the proof of Lemma 3.3.7, since GΩ‚ p¨, uq is

superharmonic on Ω‚ and harmonic away from u, we have that:

GΩ‚ px0, uq ě min
xPBV ‚

BGpu,r{2q

GΩ‚ px, uq — max
xPBV ‚

BGpu,r{2q

GΩ‚ px, uq ě max
xPBV ‚

BGpu,rq

GΩ‚ px, uq

Putting all this together, we have that:

GΩ‚ px, uq À p1 ´ cqtlog2pR{rqu À pr{Rq
log2p 1

1´c q

Observe that the exponent β P p0, 1q we get from this argument is the same exponent β P p0, 1q

in Lemmas 3.1.4 and 3.1.5.

3.4 The Convolution of a Discrete Harmonic Function

with a Smooth Mollifier is Almost Harmonic

In the section, we will show that the convolution of a discrete harmonic function with a smooth

mollifier has small Laplacian. This is the key estimate that will allow us to compare our mollified

discrete harmonic function to the corresponding continuous harmonic function. We will also use

this result in Chapter 4 to show that discrete harmonic functions are Lipschitz in the bulk on a

mesoscopic scale. To prove this, we’ll need the following analogue of Proposition 3.12 of [11]:

Proposition 3.4.1. Suppose S Ď R2 is a square with side length l, f P C3
b pSq and G “

pV ‚ \V ˝, Eq is an orthodiagonal map with edges of length at most ε such that S Ď pG and l Á ε.

Then:
ÿ

vPV ‚XS

∆‚fpvq “

ż

S

∆fpxqdApxq `Opε ¨ l ¨ }D2f}q `Opl3 ¨ }D3f}q
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For context, notice that if our orthodiagonal map G “ pV ‚ \ V ˝, Eq is isoradial, with edges of

length at most ε and f P C3
b p pGq, a straightforward computation (see Lemma 2.2 of [15]) tells us

that for any vertex x P IntpV ‚q we have that:

∆‚fpxq “ ∆fpxq ¨ AreapNxq `Opε ¨ AreapNxq ¨ }D3f}q (3.4.1)

“ ∆fpxq ¨ AreapNxq `Opε3 ¨ }D3f}q (3.4.2)

where for any vertex x P IntpV ‚q,

AreapNxq “
1

2

ÿ

yPV ‚

y„x

AreapQtx,yuq

where Qtx,yu is the face of G with primal diagonal tx, yu. The factor of 1
2 here, comes from the

fact that every inner face of G has two primal vertices, so it is natural that the area of this face

should be split evenly between them. Equation 3.4.2 tells us that on isoradial graphs, at any

vertex, the discrete Laplacian of a smooth function looks like the continuous Laplacian. In par-

ticular, any continuous harmonic function defined in a neighbourhood of pG is “almost” discrete

harmonic in that its discrete Laplacian is small.

Repeating this computation for a general orthodiagonal map, one finds that this result is no

longer true: at any fixed vertex, the discrete Laplacian does not look like the continuous Lapla-

cian. However, Proposition 3.4.1 tells us that, at least on average, the discrete Laplacian does

indeed look like the continuous Laplacian.

Proof. By Lemma 2.3.2 we can pick a suborthodiagonal map S1 of G so that:

• dHauspB pS1, BSq “ Opεq.

• if x1, x2, ..., xm are the vertices of BV ˝
S1 listed in counterclockwise order, then these vertices

form a contour. That is, txi, xi`1u is an edge of pS1q˝ for all i, where the indices i are being

considered modulo m. It follows that if x P BV ‚
S1 , then x has exactly one neighbouring

vertex y in pS1q‚, where y P IntpV ‚
S1 q.

• For x1, x2, ..., xm as above,
m
ř

i“1

|xi`1 ´ xi| — l.

In other words, S1 is an orthodiagonal approximation to S that is close in Hausdorff distance and

whose perimeter (at least in the dual lattice) is comparable to that of S. We will see why this is

important later. Then:

ÿ

vPV ‚XS

∆‚fpvq “
ÿ

vPV ‚XS

ÿ

u:u„v

cpu, vq
`

fpuq ´ fpvqq
˘

“
ÿ

vPV ‚XS

ÿ

u:u„v

cpu, vq
`

∇fpvqpu´ vq `
1

2
pu´ vqTD2fpvqpu´ vq `Op}D3f} ¨ |u´ v|3q

˘
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Since ∇fpvq ¨ u is a linear function of u for fixed v and linear functions are discrete harmonic,

ÿ

u:u„v

cpu, vq∇fpvq ¨ pu´ vq “ 0

for all v P IntpV ‚q. If tu, vu is a primal edge of our orthodiagonal map, let Q “ Qu,v denote the

quadrilateral in our orthodiagonal map that has tu, vu as its primal diagonal. Equivalently, we

write Q “ ru, r, v, ss, where u, r, v, s are the vertices of Q listed in counterclockwise order so that

u P V ‚. Notice that using this notation, ru, r, v, ss “ rv, s, u, rs. Since our quadrilaterals all have

orthogonal diagonals,

Areapru, r, v, ssq “
1

2
|u´ v||r ´ s| “

1

2
cpu, vq|u´ v|2

With this in mind,

ÿ

vPV ‚XS

ÿ

u:u„v

cpu, vqOp}D3f} ¨ |u´ v|3q “
ÿ

vPV ‚XS

ÿ

u:u„v

Op}D3f} ¨ AreapQu,vq ¨ |u´ v|q

“Op}D3f} ¨ ε
ÿ

vPV ‚XS

ÿ

u:u„v

AreapQu,vqq
p˚q
“ Op}D3f} ¨ ε ¨ AreapSqq “ Op}D3f} ¨ ε ¨ l2q

The equality, p˚q, follows from the fact that any quadrilateral of G that lies within ε of S has at

most two corresponding primal vertices in V ‚ X S and so is counted at most twice in our sum.

Thus:

ÿ

vPV ‚XS

∆‚fpvq “
1

2

ÿ

vPV ‚XS

ÿ

u:u„v

cpu, vq
`

pu´ vqTD2fpvqpu´ vq
˘

`Op}D3f} ¨ ε ¨ l2q

By the same reasoning,

ÿ

vPIntpV ‚
S1 q

∆‚fpvq “
1

2

ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vq
`

pu´ vqTD2fpvqpu´ vq
˘

`Op}D3f} ¨ ε ¨ l2q

Hence:

ˇ

ˇ

ÿ

vPV ‚XS

∆‚fpvq ´
ÿ

vPIntpV ‚
S1 q

∆‚fpvq
ˇ

ˇ “
1

2

ÿ

vPV ‚
XS

vRIntpV ‚
S1 q

ÿ

u:u„v

cpu, vq
`

pu´ vqTD2fpvqpu´ vq
˘

`Op}D3f} ¨ ε ¨ l2q

“ O
`

}D2f}
ÿ

vPV ‚
XS

vRIntpV ‚
S1 q

ÿ

u:u„v

cpu, vq|u´ v|2q
˘

`Op}D3f} ¨ ε ¨ AreapSqq

“ O
`

ε ¨ l ¨ }D2f}
˘

`Op}D3f} ¨ ε ¨ l2q

In other words, we see that we can approximate the sum of ∆‚f over V ‚ X S by the sum of ∆‚f
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over IntpV ‚
S1 q and the error we incur when we do this is small. In summa, we have that:

ÿ

vPV ‚XS

∆‚fpvq “
1

2

ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vq
`

pu´vqTD2fpvqpu´vq
˘

`O
`

ε¨l¨}D2f}
˘

`Opε¨l2 ¨}D3f}q

For any v P V ‚ X S, Taylor- expanding the second derivatives of f about zS , the center of the

square S, we have that:

B2
1fpvq “ B2

1fpzSq `Opl ¨ }D2f}q

B1B2fpvq “ B1B2fpzSq `Opl ¨ }D2f}q

B2
2fpvq “ B2

2fpzSq `Opl ¨ }D2f}q

Applying these estimates to the sum above (effectively, we are treating the second derivatives of

f as roughly constant on each square) we have that:

ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vq
`

pu´ vqTD2fpvqpu´ vq
˘

“

“
ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vq
`

B2
1fpvqpu1 ´ v1q2 ` 2B1B2fpvqpu1 ´ v1qpu2 ´ v2q ` B2

2fpvqpu2 ´ v2q2
˘

“

“
ÿ

vPIntpV ‚
S1 q

B2
1fpvq

ÿ

u:u„v

cpu, vqpu1 ´ v1q2 ` 2
ÿ

vPIntpV ‚
S1 q

B1B2fpvq
ÿ

u:u„v

cpu, vqpu1 ´ v1qpu2 ´ v2q

`
ÿ

vPIntpV ‚
S1 q

B2
2fpvq

ÿ

u:u„v

cpu, vqpu2 ´ v2q2 “

“ B2
1fpzSq

´

ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vqpu1 ´ v1q2
¯

`O
`

l ¨ }D3f}
ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vqpu1 ´ v1q2
˘

` 2B1B2fpzSq

´

ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vqpu1 ´ v1qpu2 ´ v2q

¯

`O
´

l ¨ }D3f}
ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vq|u1 ´ v1||u2 ´ v2|

¯

` B2
2fpzSq

´

ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vqpu2 ´ v2q2
¯

`O
`

l ¨ }D3f}
ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vqpu2 ´ v2q2
˘

Observe that pu1 ´ v1q2, pu2 ´ v2q2, |u1 ´ v1||u2 ´ v2| ď |u´ v|2. Furthermore, using the fact

that cpu, vq|u ´ v|2 “ 2AreapQu,vq and observing that every quadrilateral Q within Opεq of S

is counted at most twice in our sum, we have that each of our error terms is of size at most
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Opl3 ¨ }D3f}q. Thus:

ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vq
`

pu´ vqTD2fpvqpu´ vq
˘

“

“ B2
1fpzSq

´

ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vqpu1 ´ v1q2

looooooooooooooooooomooooooooooooooooooon

p1q

¯

` 2B1B2fpzSq

´

ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vqpu1 ´ v1qpu2 ´ v2q

looooooooooooooooooooooooomooooooooooooooooooooooooon

p2q

¯

` B2
2fpzSq

´

ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vqpu2 ´ v2q2

looooooooooooooooooomooooooooooooooooooon

p3q

¯

`Opl3 ¨ }D3f}q

To complete the proof of Proposition 3.4.1, we need to understand the behavior of terms (1), (2)

and (3). The idea is to use discrete integration by parts to show that each of (1), (2), (3) is equal

to the discretization of a certain contour integral. The fact that the perimeter of S1 in the dual

lattice is comparable to that of S will allow us to show that this discrete contour integral is close

to the corresponding continuous contour integral. Consider term (1). Rewriting this as a sum

over directed edges we have that:

ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vqpu1 ´ v1q2 “
ÿ

e⃗PE⃗‚
S1

e´
PIntpV ‚

S1 q

cpeqpe`
1 ´ e´

1 q2 “

“
ÿ

e⃗PE⃗‚
S1

cpeqpe`
1 ´ e´

1 q2

loooooooooooomoooooooooooon

p1aq

`
ÿ

e⃗PE⃗
e´

PBV ‚
S1

cpeqpe`
1 ´ e´

1 q2

looooooooooooomooooooooooooon

p1bq

Term (1a) is just the discrete Dirichlet energy of the function z ÞÑ Repzq on S1. Since Repzq is
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discrete harmonic, applying discrete integration by parts we have that:

ÿ

e⃗PE⃗‚
S1

cpeqpe`
1 ´ e´

1 q2 “
ÿ

e⃗PE⃗‚
S1

cpeqe`
1 pe`

1 ´ e´
1 q ´

ÿ

e⃗PE⃗‚
S1

e´
1 pe`

1 ´ e´
1 q

“
ÿ

e⃗PE⃗‚
S1

cpeqe`
1 pe`

1 ´ e´
1 q ´

ÿ

e⃗PE⃗‚
S1

e`
1 pe´

1 ´ e`
1 q

“ 2
ÿ

e⃗PE⃗‚
S1

cpeqe`
1 pe`

1 ´ e´
1 q “ ´2

ÿ

e⃗PE⃗‚
S1

cpeqe´
1 pe`

1 ´ e´
1 q

“ ´2
ÿ

e⃗PE⃗‚
S1

e´
PIntpV ‚

S1 q

cpeqe´
1 pe`

1 ´ e´
1 q ´ 2

ÿ

e⃗PE⃗‚
S1

e´
PBV ‚

S1

cpeqe´
1 pe`

1 ´ e´
1 q

“ ´2
ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vqv1pu1 ´ v1q ´ 2
ÿ

e⃗PE⃗‚
S1

e´
PBV ‚

S1

cpeqe´
1 pe`

1 ´ e´
1 q

“ ´2
ÿ

vPIntpV ‚
S1 q

Repvq∆‚pRep¨qqpvq ´ 2
ÿ

e⃗PE⃗‚
S1

e´
PBV ‚

S1

cpeqRepe´qpRepe`q ´ Repe´qq

“ ´2
ÿ

e⃗PE⃗‚
S1

e´
PBV ‚

S1

cpeqe´
1 pe`

1 ´ e´
1 q

Suppose Q “ re´, f´, e`, f`s is a quadrilateral face of G, where the vertices e´, f´, e`, f´ are

listed in counterclockwise order. Since Impzq is the discrete harmonic conjugate of Repzq (up to

an additive constant), we have that:

cpeqpe`
1 ´ e´

1 q “ pf`
2 ´ f´

2 q

More simply, since the diagonals of Q are orthogonal,

e` ´ e´

|e` ´ e´|
“ ´i

f` ´ f´

|f` ´ f´|
ðñ

e`
1 ´ e´

1

|e` ´ e´|
“

f`
2 ´ f´

2

|f` ´ f´|
,

e`
2 ´ e´

2

|e` ´ e´|
“ ´

f`
1 ´ f´

1

|f` ´ f´|

Since cpeq “
|f`

´f´
|

|e`´e´|
, f`

1 ´ f´
1 “ ´cpeqpe`

2 ´ e´
2 q, f`

2 ´ f´
2 “ cpeqpe`

1 ´ e´
1 q. Applying this to the

problem at hand, we have that:

´2
ÿ

e⃗PE⃗‚
S1

e´
PBV ‚

S1

cpeqe´
1 pe`

1 ´ e´
1 q “ ´2

ÿ

e⃗PE⃗‚
S1

e´
PBV ‚

S1

Qe´,e` “re´,f´,e`,f`
s

e´
1 pf`

2 ´ f´
2 q

Let BE⃗‚
S1 denote the set of directed edges of S1 that go from a vertex of BV ‚

S1 to a vertex of

IntpV ‚
S1 q. Because of how we defined S1, for all directed edges e⃗ “ pe´, e`q under consideration

in the sum above, e´ P BV ‚
S1 , e` P IntpV ‚

S1 q and f´, f` P BV ˝
S1 where Qe´,e` “ re´, f´, e`, f`s.

Furthermore, the directed edges f⃗ “ pf´, f`q dual to directed edges e⃗ P BE‚
S1 , form a closed
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contour in pS1q˝, oriented clockwise, with length is comparable to l. We use BœE˝
S1 to denote the

set of directed edges in this contour. Intuitively, the sum above is a discretization of the integral

of xdy over the contour BœE˝
S1 . We will now make this intuition precise.

Suppose f⃗ P BœE˝
S1 and Qf´,f` “ re´, f´, e`, f`s. Then:

|e´
1 pf`

2 ´ f´
2 q ´

f`
¿

f´

xdy| ď ε|f` ´ f´|

Summing over directed edges f⃗ P BœE˝
S1 ,

ˇ

ˇ

ÿ

e⃗PE⃗‚
S1

e´
PBV ‚

S1

Qe´,e` “re´,f´,e`,f`
s

e`
1 pf`

2 ´ f´
2 q ´

¿

BœE˝
S1

xdy
ˇ

ˇ ď ε ¨ lengthpBœE˝
S1 q À ε ¨ l

Thus, we see that term (1a) is close to the contour integral
ű

BœE˝
S1
xdy. By Green’s theorem,

¿

BœE˝
S1

xdy “ ´l2 `Opε ¨ lq

Thus:

p1aq “ 2l2 `Opε ¨ lq

Term (1b) can be dealt with the same way as all the error terms we saw previously:

ÿ

e⃗PE⃗
e´

PBV ‚
S1

cpeqpe`
1 ´ e´

1 q2 ď
ÿ

e⃗PE⃗
e´

PBV ‚
S1

cpeq|e` ´ e´|2 “ 2
ÿ

e⃗PE⃗
e´

PBV ‚
S1

AreapQeq “ Opε ¨ lq

Putting all this together, we get that:

p1q “ 2l2 `Opε ¨ lq

A similar story plays out in the case of terms (2) and (3). Rewriting terms (2) and (3) as sums

over directed edges we have that:

p2q “
ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vqpu1 ´ v1qpu2 ´ v2q “
ÿ

e⃗PE⃗‚
S1

e´
PIntpV ‚

S1 q

cpeqpe`
1 ´ e´

1 qpe`
2 ´ e´

2 q “

“
ÿ

e⃗PE⃗‚
S1

cpeqpe`
1 ´ e´

1 qpe`
2 ´ e´

2 q

loooooooooooooooooomoooooooooooooooooon

p2aq

`
ÿ

e⃗PE⃗
e´

PBV ‚
S1

cpeqpe`
1 ´ e´

1 qpe`
2 ´ e´

2 q

looooooooooooooooooomooooooooooooooooooon

p2bq
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p3q “
ÿ

vPIntpV ‚
S1 q

ÿ

u:u„v

cpu, vqpu2 ´ v2q2 “
ÿ

e⃗PE⃗‚
S1

e´
PIntpV ‚

S1 q

cpeqpe`
2 ´ e´

2 q2 “

“
ÿ

e⃗PE⃗‚
S1

cpeqpe`
2 ´ e´

2 q2

loooooooooooomoooooooooooon

p3aq

`
ÿ

e⃗PE⃗
e´

PBV ‚
S1

cpeqpe`
2 ´ e´

2 q2

looooooooooooomooooooooooooon

p3bq

By the same argument we used to handle term (1b), terms (2b) and (3b) are of size Opε ¨ lq.

Applying discrete integration by parts to terms (2a) and (3a) and using the fact that f`
1 ´ f´

1 “

´cpeqpe`
2 ´ e´

2 q and f`
2 ´ f´

2 “ cpeqpe`
1 ´ e´

1 q for any quadrilateral Q “ re´, f´, e`, f`s in G, we

have that:

p2aq “
ÿ

e⃗PE⃗‚
S1

cpeqpe`
1 ´ e´

1 qpe`
2 ´ e´

2 q “ ´2
ÿ

vPIntpV ‚
S1 q

Repvq∆‚pImp¨qqpvq ´ 2
ÿ

e⃗PE⃗‚
S1

e´
PBV ‚

S1

cpeqe´
1 pe`

2 ´ e´
2 q

“ ´2
ÿ

e⃗PE⃗‚
S1

e´
PBV ‚

S1

cpeqe´
1 pe`

2 ´ e´
2 q “ 2

ÿ

f⃗PB
œE˝

S1

Qf´,f` “re´,f´,e`,f`
s

e´
1 pf`

1 ´ f´
1 q

p3aq “
ÿ

e⃗PE⃗‚
S1

cpeqpe`
2 ´ e´

2 q2 “ ´2
ÿ

vPIntpV ‚
S1 q

Impvq∆‚pImp¨qqpvq ´ 2
ÿ

e⃗PE⃗‚
S1

cpeqe´
2 pe`

2 ´ e´
2 q

“ ´2
ÿ

e⃗PE⃗‚
S1

cpeqe´
2 pe`

2 ´ e´
2 q “ 2

ÿ

f⃗PB
œE˝

S1

Qf´,f` “re´,f´,e`,f`
s

e´
2 pf`

1 ´ f´
1 q

where:
ˇ

ˇ

ÿ

f⃗PB
œE˝

S1

Qf´,f` “re´,f´,e`,f`
s

e´
1 pf`

1 ´ f´
1 q ´

¿

BœE˝
S1

xdx
ˇ

ˇ À ε ¨ l

ˇ

ˇ

ÿ

f⃗PB
œE˝

S1

Qf´,f` “re´,f´,e`,f`
s

e´
2 pf`

1 ´ f´
1 q ´

¿

BœE˝
S1

ydx
ˇ

ˇ À ε ¨ l

By Green’s theorem:
¿

BœE˝
S1

xdx “ 0

¿

BœE˝
S1

ydx “ l2 `Opε ¨ lq

And so:

p2q “ Opε ¨ lq, p3q “ 2l2 `Opε ¨ lq
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Armed with these estimates for terms (1), (2) and (3) in our sum from earlier, we have that:

ÿ

V ‚XS

∆‚fpvq “ B2
1fpzSq

`

l2 `Opε ¨ lq
˘

` B1B2fpzSq ¨Opε ¨ lq ` B2
2fpzSqpl2 `Opε ¨ lqq `Opl3}D3f}q

“ ∆fpzSq ¨ l2 `Opε ¨ l ¨ }D2f}q `Opl3 ¨ }D3f}q

“

ż

S

∆fpxqdApxq `Opε ¨ l ¨ }D2f}q `Opl3 ¨ }D3f}q

Having shown that for a smooth function, the continuous Laplacian agrees with the discrete

Laplacian, on average, we are ready to prove the main result of this section:

Proposition 3.4.2. Suppose G “ pV ‚ \V ˝, Eq is an orthodiagonal map with edges of length at

most ε, h‚ : V ‚ Ñ R is harmonic on IntpV ‚q and φ is a smooth mollifier supported on the unit

ball Bp0, 1q Ď R2. We can think of h‚ as a function on pG by extending h‚ to pG in any sort of

sensible way. For instance, we could triangulate the faces of G‚ and then define h‚ on each face

of G‚ by linear interpolation. By our a priori regularity estimates for discrete harmonic functions

on orthodiagonal maps (see Lemma 3.1.5), the exact details of how we choose to extend h‚ to pG

don’t matter.

For any δ ą 0, define φδpzq :“ δ´2φpδ´1zq. Then φδ is a smooth mollifier supported on the

ball Bp0, δq Ď R2. Fix δ ą 0, z P pG so that ε À δ ď d
2 where d “ dz “ distpz, B pGq. Then:

∆pφδ ˚h‚qpzq “ Opε
1
2 ¨δ´ 5

2 ¨ p}D2φ}`}D3φ}q ¨}h‚}q`Opε
β

1`β ¨δ´2 ¨d´
β

1`β ¨ p}D2φ}`}D3φ}q ¨}h‚}q

In particular, if δ ě ε
1´β
1`β d

2β
1`β , we have that:

∆pφδ ˚ h‚qpzq “ Opε
1
2 ¨ δ´ 5

2 ¨ p}D2φ} ` }D3φ}q ¨ }h‚}q

Otherwise:

∆pφδ ˚ h‚qpzq “ Opε
β

1`β ¨ δ´2 ¨ d´
β

1`β ¨ p}D2φ} ` }D3φ}q ¨ }h‚}q

Proof. We compute:

∆pφδ ˚ h‚qpzq “

ż

R2

∆zφδpz ´ wqh‚pwqdApwq “

ż

R2

∆wφδpz ´ wqh‚pwqdApwq

“

ż

Bpz,δq

∆wφδpz ´ wqh‚pwqdApwq

Let S be a family of pairwise disjoint squares of side length ℓ that cover Bpz, δq up to a region

of area Opδℓq. Here ℓ is a real parameter such that ε ! ℓ ! δ, whose exact value will be specified
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later. Since each square has area ℓ2, S consists of Oppδ{ℓq2q squares of side length ℓ. Then:

∆pφδ ˚ h‚qpzq “

ż

Bpz,δq

∆wφδpz ´ wqh‚pwqdApwq

“
ÿ

SPS

´

ż

S

∆wφδpz ´ wqh‚pwqdApwq

¯

looooooooooooooooooooooomooooooooooooooooooooooon

p1q

´

ż

pYSPSSqzBpz,δq

∆wφδpz ´ wqh‚pwqdApwq

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

p2q

where:

|p2q| “ Opδ ¨ ℓ ¨ }D2φδ} ¨ }h‚}q “ Opℓ ¨ δ´3 ¨ }D2φ} ¨ }h‚}q

To handle term (1), fix S P S and select a point wS P S X V ‚. Then we write:

ż

S

∆wφδpz´wqh‚pwqdApwq “ h‚pwSq

ż

S

∆wφδpz ´ wqdApwq
looooooooooooooooooomooooooooooooooooooon

paq

`

ż

S

∆wφδpz ´ wq
`

h‚pwq ´ h‚pwSq
˘

dApwq
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

pbq

(3.4.3)

Since the square S has area ℓ2 and Lemma 3.1.5 tells us that |h‚pwq ´ h‚pwSq| “ Op}h‚}ℓβd´βq

for any w P S, it follows that:

pbq “

ż

S

∆wφδpz´wq
`

h‚pwq´h‚pwSq
˘

dApwq “ Opℓ2¨}D2φδ}¨}h‚}pℓ{δqβq “ Opℓ2`β ¨δ´4¨d´β}D2φ}¨}h‚}q

As far as handling term (a) in Equation 3.4.3:

paq “h‚pwSq

ż

S

∆wφδpz ´ wqdApwq

“h‚pwSq

´´

ÿ

wPV ‚XS

∆‚
wφδpz ´ wq

¯

`Opε ¨ ℓ ¨ }D2φδ}q `Opℓ3 ¨ }D3φδ}q

¯

“

´

ÿ

wPV ‚XS

∆‚
wφδpz ´ wqh‚pwq

¯

`

´

ÿ

wPV ‚XS

∆‚
wφδpz ´ wq

`

h‚pwS ´ h‚pwq
˘

¯

`Opε ¨ ℓ ¨ δ´4 ¨ }D2φ} ¨ }h‚}q `Opℓ3 ¨ δ´5 ¨ }D3φ} ¨ }h‚}q

“

´

ÿ

wPV ‚XS

∆‚
wφδpz ´ wqh‚pwq

¯

`Opℓ2`β ¨ δ´4d´β ¨ }D2φ} ¨ }h‚}q

`Opε ¨ ℓ ¨ δ´4 ¨ }D2φ} ¨ }h‚}q `Opℓ3 ¨ δ´5 ¨ }D3φ} ¨ }h‚}q

Briefly,

• the second equality follows by Proposition 3.4.1.

• the fourth equality follows by the following crude estimate:

ˇ

ˇ

ˇ

ÿ

wPV ‚XS

∆‚
wφδpz ´ wq

`

h‚pwS ´ h‚pwq
˘

ˇ

ˇ

ˇ
ď

ÿ

wPV ‚XS

|∆‚
wφδpz ´ wq| ¨ }h‚} ¨ ℓβ ¨ d´β
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where:

|∆‚
wφδpz ´ wq| “

ˇ

ˇ

ÿ

uPV ‚

u„w

cpu,wqpφδpz ´ uq ´ φδpz ´ wqq
ˇ

ˇ

“

ˇ

ˇ

ˇ

ÿ

uPV ‚

u„w

cpu,wq
`

´ ∇φδpz ´ wqpw ´ uq `Op}D2φδ} ¨ |u´ w|2q
˘

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ÿ

uPV ‚

u„w

cpu,wq∇φδpz ´ wqpw ´ uq

ˇ

ˇ

ˇ
`O

´

}D2φδ}
ÿ

uPV ‚

u„w

AreapQu,vq

¯

“ O
´

δ´4 ¨ }D2φ}
ÿ

uPV ‚

u„w

AreapQu,vq

¯

The first term on the third line above vanishes, since any linear function is discrete harmonic.

Summing over w P V ‚ X S, every quadrilateral face Q of G that lies within ε of S is counted

at most twice, where ε ! ℓ. Hence:

ÿ

wPV ‚XS

|∆‚
wφδpz ´ wq| “ Opℓ2 ¨ δ´4 ¨ }D2φ}q

Summing over S P S, since S consists of Opδ2 ¨ ℓ´2q squares, we have that:

p1q “
ÿ

SPS

´

ÿ

wPV ‚XS

∆‚
wφδpz ´ wqh‚pwq

¯

`Opε ¨ ℓ´1 ¨ δ´2 ¨ }D2φ} ¨ }h‚}q

`Opℓβ ¨ δ´2d´β ¨ }D2φ} ¨ }h‚}q `Opℓ ¨ δ´3 ¨ }D3φ} ¨ }h‚}q

Since the squares in S cover Bpz, δq and ϕδpz ´ wq is supported on Bpz, δq (as a function of w),

we have that:

ÿ

SPS

´

ÿ

wPV ‚XS

∆‚
wφδpz´wqh‚pwq

¯

“
ÿ

wPIntpV ‚q

∆‚
wφδpz´wqh‚pwq “

ÿ

wPIntpV ‚q

φδpz´wq∆‚h‚pwq
looomooon

“0

“ 0

Putting all this together, we get that:

∆pφδ˚h‚qpzq “ Opε¨ℓ´1¨δ´2¨}D2φ}¨}h‚}q`Opℓβ ¨δ´2d´β ¨}D2φ} ¨ }h‚}q`Opℓ¨δ´3p}D3φ} ` }D2φ}q}h‚}q

(3.4.4)

In the estimate above, d, δ and ε are given to us, whereas ℓ is just some parameter satisfying

ε ! ℓ ! δ. To complete our proof, the last thing we need to do is optimize in ℓ.

First observe that taking ℓ — δ or ℓ — ε doesn’t give us an effective estimate. Hence, the

optimal choice of ℓ must lie on some intermediate scale. In particular, the asymptotically optimal

choice of ℓ corresponds to a critical point of the function fpℓq “ ℓ´1ε` ℓβd´β ` ℓδ´1.

f 1pℓq “ δ´1 ` βℓβ´1d´β ´ ℓ´2ε “ 0 ðñ δε “ ℓ2 ` βℓ1`βδd´β
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When this equality holds, we either have:

ℓ2 — δε ðñ ℓ —
?
δε

or:

ℓ1`βδd´β — δε ðñ ℓ — d
β

1`β ε
1

1`β

which of these asymptotics holds at the critical point depends on which of the relevant quantities-
?
δε or d

β
1`β ε

1
1`β - is smaller. When

?
δε ď dβ{p1`βqε1{p1`βq ðñ δ ď d

2β
1`β ε

1´β
1`β , we have that

ℓ —
?
δε near the critical point, giving us the estimate:

∆pφδ ˚ h‚qpzq “ Opε
1
2 ¨ δ´ 5

2 ¨ p}D2φ} ` }D2φ}q ¨ }h‚}q `Opε
β
2 ¨ δp

β
2 ´2q ¨ d´β ¨ }D2φ} ¨ }h‚}q

“ Opε
1
2 ¨ δ´ 5

2 ¨ p}D2φ} ` }D3φ}q ¨ }h‚}q

The second equality follows from the fact that when δ ď d
2β

1`β ε
1´β
1`β , we have that ε

1
2 δ´ 5

2 ě

ε
β
2 δp

β
2 ´2qd´β . When δ ě d

2β
1`β ε

1´β
1`β , we have that ℓ — d

β
1`β ε

1
1`β at the critical point, giving us

the estimate:

∆pφδ ˚ h‚qpzq “ Opε
β

1`β ¨ δ´2 ¨ d´
β

1`β ¨ }D2φ} ¨ }h‚}q `Opε
1

1`β ¨ δ´3 ¨ d
β

1`β p}D2φ} ` }D3φ}q ¨ }h‚}q

“ Opε
β

1`β ¨ δ´2 ¨ d´
β

1`β ¨ p}D2φ} ` }D3φ}q ¨ }h‚}q

Again, the second equality follows from the fact that when δ ě d
2β

1`β ε
1´β
1`β , we have that ε

β
1`β δ´2d´

β
1`β ě

ε
1

1`β δ´3d
β

1`β . This completes our proof.

3.5 Proof of Theorem 3.1.1

Suppose Ω Ă R2 is a simply connected domain and g : R2 Ñ R is α- Hölder for some α P p0, 1q.

Let h be the solution to the continuous Dirichlet problem on Ω with boundary data given by g.

That is:

∆hpxq “ 0 for all x P Ω

hpxq “ gpxq for all x P BΩ

Fix z0 P Ω. This will be the point at which we compare the solutions to the continuous and

discrete Dirichlet problems. Let G “ pV ‚ \V ˝, Eq be an orthodiagonal map with edges of length

at most ε so that z0 P pG Ď Ω and distpx, BΩq ď ε for all x P BV ‚. Let h‚ : V ‚ Ñ R be the

solution to the discrete Dirichlet problem on G‚ with boundary data given by g. That is,

∆‚h‚pxq “ 0 for all x P IntpV ‚q

h‚pxq “ gpxq for all x P BV ‚
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Extend h‚ affinely to a continuous function on pG. For instance, we can triangulate each interior

face of G‚ and extend h‚ to each triangle by linear interpolation. Obviously this extension is

not unique, however, since discrete harmonic functions on orthodiagonal maps are Hölder in the

bulk (Lemma 3.1.5) and near the boundary (see our argument in Case 1 below), the choice of

affine extension won’t affect our rate of convergence. For any z P Ω, let dz “ distpz, BΩq. As

we discussed in Section 0.3, we will now estimate the difference, |hpz0q ´ h‚pz0q|, in two different

ways. One approach will give us a superior estimate when z0 is close to BΩ. The other will give

a superior estimate when z0 is far away from BΩ.

3.5.1 Case 1: z0 is close to BΩ

Let w be a point of BΩ so that d “ dz0 “ |z0 ´ w|. By considering the point of intersection

between B pG and the line segment from z0 to w, it follows that we can find a point w1 P BV ‚ so

that |z0 ´ w1| ď d` ε and |w ´ w1| ď 2ε. By the triangle inequality:

|hpz0q ´ h‚pz0q| ď |hpz0q ´ gpwq| ` |gpwq ´ gpw1q| ` |gpw1q ´ h‚pz0q|

Since g is α-Hölder:

|gpwq ´ gpw1q| ď 2α}g}αε
α

To estimate |hpz0q ´ gpwq|, we write this quantity as an expectation. Using the layer-cake rep-

resentation of this expectation along with the strong Beurling estimate (Proposition 3.1.3), we

have that:

|hpz0q ´ gpwq| “ |Ez0gpBTBΩ
q ´ gpwq| ď Ez0 |gpBTBΩ

q ´ gpwq| “

ż 8

0

Pz0p|gpBTBΩ
q ´ gpwq| ě λqdλ

ď

ż 8

0

Pz0p}g}α|BTBΩ
´ w|α ě λqdλ “ α}g}α

ż diampΩq

0

uα´1Pz0p|BTBΩ
´ w| ě uqdu

ď α}g}α

ż d

0

uαdu` α}g}α

ż diampΩq

d

uα´1C1

´d

u

¯1{2

du

“ }g}αd
α ` C1α}g}αd

1{2

ż diampΩq

d

uα´3{2du

where C1 ą 0 is an absolute constant, pBtqtě0 is a standard 2D Brownian motion, and TBΩ is the

hitting time of BΩ by this Brownian motion. Observe that:

ż diampΩq

d

uα´3{2du ď

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

2dα´1{2

p1´2αq
if α P p0, 1{2q

log
`diampΩq

d

˘

if α “ 1{2

2diampΩq
α´1{2

p2α´1q
if α P p1{2, 1s
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Hence:

|hpz0q ´ gpwq| À

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

α
1´2α}g}αd

α if α P p0, 1{2q

α}g}αd
α log

`diampΩq

d

˘

if α “ 1{2

α
2α´1}g}αdiampΩqα

`

d
diampΩq

˘1{2
if α P p1{2, 1s

Using the weak Beurling estimate for simple random walks on orthodiagonal maps (Lemma

3.1.4) in place of the strong Beurling estimate for planar Brownian motion, we can estimate

|gpw1q ´ h‚pz0q| by the same argument:

|h‚pz0q ´ gpw1q| “ |Ez0gpSTBV ‚ q ´ gpw1q| ď Ez0 |gpSTBV ‚ q ´ gpw1q| “

ż 8

0

Pz0p|gpSTBV ‚ q ´ gpw1q| ě λqdλ

ď

ż 8

0

Pz0p}g}α|STBV ‚ ´ w1|α ě λqdλ “ α}g}α

ż diampΩq

0

uα´1Pz0p|STBV ‚ ´ w1| ě uqdu

ď α}g}α

ż 2pd_εq

0

uα´1du` α}g}α

ż diampΩq

2pd_εq

uα´1C2

´d_ ε

u

¯β

du

À }g}αpd_ εqα ` α}g}αpd_ εqβ
ż diampΩq

2pd_εq

uα´β´1du

where C2 ą 0 is an absolute constant, pSnqně0 is a simple random walk on G‚, and TBV ‚ is the

hitting time of BV ‚ by this random walk. The appearance of “pd _ εq” in our estimates comes

from the fact that |z0 ´ w1| ď d` ε ď 2pd_ εq. Observe that:

ż diampΩq

2pd_εq

uα´β´1du À

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

pd_εq
α´β

β´α if α P p0, βq

log
`diampΩq

d_ε

˘

if α “ β

diampΩq
α´β

α´β if α P pβ, 1s

Hence:

|h‚pz0q ´ gpw1q| À

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

α
β´α}g}αpd_ εqα if α P p0, βq

}g}αpd_ εqα log
`diampΩq

d_ε

˘

if α “ β

α
α´β }g}αdiampΩqα

`

d_ε
diampΩq

˘β
if α P pβ, 1s

Since we used a strictly weaker version of the Beurling estimate, our estimate for |h‚pz0q ´hpw1q|

is necessarily worse than our estimate for |hpz0q´gpwq|. Hence, putting all this together, we have
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that:

|hpz0q ´ h‚pz0q| À

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

β
β´α}g}αpd_ εqα if α P p0, βq

}g}αpd_ εqα log
`diampΩq

d_ε

˘

if α “ β

α
α´β }g}αdiampΩqα

`

d_ε
diampΩq

˘β
if α P pβ, 1s

3.5.2 Case 2: z0 is far away from BΩ

Let δ ą 0 be some mesoscopic scale, whose exact value we will fix later. If ϕ is a radially

symmetric smooth mollifier supported on the unit ball Bp0, 1q Ď R2, then ϕδpxq “ δ´2ϕpδ´1xq is

a radially symmetric smooth mollifer, supported on Bp0, δq. Extend h‚ : V ‚ Ñ R to a function

on pG in any sort of sensible way. For instance, we could triangulate the faces of G‚ and define h‚

on each triangle by linear interpolation. In this way, we can think of h‚ as a function on pG. This

allows us to consider the convolution ϕδ ˚h‚. Notice that this is only well-defined for points of pG

that are at least δ far away from B pG. With this in mind, let Ωδ be a simply connected domain

so that:

• z0 P Ωδ

• Ωδ Ď pG Ď Ω

• every point of BΩδ is at least 2δ far away from B pG.

• every point of BΩδ lies within Opδq of BΩ and therefore B pG.

In this way, ϕδ ˚ h‚ is well-defined as a function on Ωδ. Let rh be the solution to the continuous

Dirichlet problem on Ωδ with boundary data given by ϕδ ˚ h‚. That is:

∆rhpzq “ 0 for all z P Ωδ

rhpzq “ pϕδ ˚ h‚qpzq for all z P BΩδ

By the triangle inequality:

|h‚pz0q ´ hpz0q| ď |h‚pz0q ´ pϕδ ˚ h‚qpz0q| ` |pϕδ ˚ h‚qpz0q ´ rhpz0q| ` |rhpzq ´ hpzq| (3.5.1)

By Lemma 3.1.5:

|h‚pz0q ´ pϕδ ˚ h‚qpz0q| À }g}

´ δ

d

¯β

To handle the second term in Equation 3.5.1, observe that pϕδ ˚ h‚q is a smooth function on Ωδ

that extends continuously to BΩδ and rh is the harmonic function on Ωδ that agrees with ϕδ ˚ h‚

on BΩδ. Hence:

|pϕδ ˚ h‚qpz0q ´ rhpz0q| “
ˇ

ˇ

ż

Ωδ

p∆pϕδ ˚ h‚qqpwqGΩδpw, z0qdApwq
ˇ

ˇ (3.5.2)
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Proposition 3.4.2 tells us that the convolution of a discrete harmonic function with a smooth

mollifier is almost harmonic. Namely, we have that:

|p∆pϕδ ˚ h‚qqpwq| À }g}ε
1
2 δ´ 5

2 (3.5.3)

if δ ě ε
1´β
1`β d

2β
1`β
w . Otherwise:

|p∆pϕδ ˚ h‚qqpwq| À }g}ε
β

1`β δ´2d
´

β
1`β

w (3.5.4)

where dw “ distpw, B pGq — distpw, BΩq. The fact that distpw, B pGq and distpw, BΩq are comparable

and therefore interchangeable here, follows from the fact that δ is mesoscopic and we are only

considering points w P Ωδ. Plugging our Laplacian estimate in Equation 3.5.3 into Equation

3.5.4, we have that:

|pϕδ ˚ h‚qpz0q ´ rhpz0q| À }g}ε
1
2 δ´ 5

2

ż

Ωδ

GΩδpw, z0qdApwq (3.5.5)

if δ ě ε
1´β
1`β diampΩq

2β
1`β . Otherwise:

|pϕδ ˚ h‚qpz0q ´ rhpz0q| À }g}ε
β

1`β δ´2

ż

Ωδ

d
´

β
1`β

w GΩδpw, z0qdApwq (3.5.6)

À }g}ε
β

1`β δ´2´
β

1`β

ż

Ωδ

GΩδpw, z0qdApwq (3.5.7)

Observe that the integral appearing on the RHS of both of the inequalities above can be inter-

preted probabilistically as the expected amount of time spent a planar Brownian motion started

at z0 spends in Ωδ, before hitting BΩδ. That is:

ż

Ωδ

GΩδpw, z0qdApwq “ Ez0TBΩδ ď Ez0TBΩ

where TBΩ and TBΩδ are the hitting times of BΩ and BΩδ by our planar Brownian motion. Let

pBtqtě0 be a planar Brownian motion. Then the process
`

|Bt^TBΩ
´ z0|2 ´ 2t ^ TBΩ

˘

tě0
is a

martingale. By the optional stopping theorem:

Ez0 |BTBΩ
´ z0|2 “ 2Ez0TBΩ

Using the layer-cake representation of the expectation on the LHS along with the strong Beurling

estimate (Proposition 3.1.3), we have that:

Ez0 |BTBΩ
´ z0|2 “

ż 8

0

Pz0p|BTBΩ
´ z0|2 ě λqdλ “ 2

ż 8

0

uPz0p|BTBΩ
´ z0| ě uqdu

“ 2

ż d

0

udu` 2

ż diampΩq

d

C
´d

u

¯1{2

udu À d1{2diampΩq3{2
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where C ą 0 is an absolute constant. Plugging this estimate for Ez0 |BTBΩ
´ z0|2 “ Ez0TBΩ

ě

Ez0TBΩδ into Equations 3.5.5 and 3.5.7, we have that:

|pϕδ ˚ h‚qpz0q ´ rhpz0q| À

$

’

’

’

&

’

’

’

%

}g}ε
1
2 δ´ 5

2 d1{2diampΩq3{2 if δ ě ε
1´β
1`β diampΩq

2β
1`β

}g}ε
β

1`β δ´2´
β

1`β d1{2diampΩq3{2 otherwise

To estimate the third term in Equation 3.5.1, |hpz0q ´ rhpz0q|, we use the maximum principle.

Suppose w P BΩδ. Then rhpwq “ pϕδ ˚ h‚qpwq, since the boundary data of rh on BΩδ is given by

ϕδ ˚ h‚. On the other hand, since h is harmonic on Ω, and the smooth mollifier ϕδ is radially

symmetric, pϕδ ˚ hqpwq “ hpwq. Hence:

|hpwq ´ rhpwq| “ |pϕδ ˚ hqpwq ´ pϕδ ˚ h‚qpwq| ď max
w1PBpw,δq

|hpw1q ´ h‚pw1q|

Since δ is small and the points w1 P Bpw, δq are δ-close to the boundary of Ω, by the same

argument as in Case 1, we have that:

|hpwq ´ rhpwq| À

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

β
β´α}g}αδ

α if α P p0, βq

}g}αδ
α log

`diampΩq

δ

˘

if α “ β

α
α´β }g}αdiampΩqα

`

δ
diampΩq

˘β
if α P pβ, 1s

Putting all this together, if α P p0, βq, we have that:

|hpz0q´h‚pz0q| “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Op}g}8δ
βd´βq `Op}g}ε

1
2 δ´ 5

2 d1{2diampΩq3{2q

`Op
β

β´α}g}αδ
αq if δ ě ε

1´β
1`β diampΩq

2β
1`β

Op}g}8δ
βd´βq `Op}g}ε

β
1`β δ´2´

β
1`β d1{2diampΩq3{2q

`Op
β

β´α}g}αδ
αq otherwise

If α “ β:

|hpz0q´h‚pz0q| “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Op}g}8δ
βd´βq `Op}g}ε

1
2 δ´ 5

2 d1{2diampΩq3{2q

`Op}g}αδ
α log

`diampΩq

δ

˘

q if δ ě ε
1´β
1`β diampΩq

2β
1`β

Op}g}8δ
βd´βq `Op}g}ε

β
1`β δ´2´

β
1`β d1{2diampΩq3{2q

`Op}g}αδ
α log

`diampΩq

δ

˘

q otherwise
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If α P pβ, 1q:

|hpz0q´h‚pz0q| “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Op}g}8δ
βd´βq ` }g}ε

1
2 δ´ 5

2 d1{2diampΩq3{2

`Op α
α´β }g}αdiampΩqα

`

δ
diampΩq

˘β
q if δ ě ε

1´β
1`β diampΩq

2β
1`β

Op}g}8δ
βd´βq `Op}g}ε

β
1`β δ´2´

β
1`β d1{2diampΩq3{2q

`Op α
α´β }g}αdiampΩqα

`

δ
diampΩq

˘β
q otherwise

3.5.3 Choosing an Optimal δ

In Section 3.5.1, we derived an estimate for |hpz0q ´ h‚pz0q| for z0 close to the boundary. In

Section 3.5.2, we derived an estimate for |hpz0q ´ h‚pz0q| for z0 far away from the boundary. To

complete our proof, we need to:

1. Find the optimal choice of δ for our estimate from Section 3.5.2.

2. Combine these estimates to get an estimate that works for all z0 P V ‚.

We will do this in detail for α P p0, βq. The corresponding estimates when α P rβ, 1s follow by the

same argument. Armed with the intuition that our rate of convergence should be polynomial in

ε, we take δ “ εsdiampΩq1´s, d “ εr diampΩq1´r, where 0 ă r ă s ă 1. By our estimates from

Sections 3.5.1 and 3.5.2 we have that:

|hpz0q ´ h‚pz0q| “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

mintOp
β

β´α}g}α ε
rαdiampΩqα´rαq, Op}g}εβps´rqdiampΩq´βps´rqq

`Op}g}ε
1
2 ´ 5s

2 ` r
2 qdiampΩq´ 1

2 ` 5s
2 ´ r

2 `Op
β

β´α q}g}αε
αsdiampΩqα´αsu if s ď

1´β
1`β

mintOp
β

β´α}g}α ε
rαdiampΩqα´rαq, Op}g}εβps´rqdiampΩq´βps´rqq

`Op}g}ε
β

1`β p1´sq´2s` r
2 qdiampΩq

´
β

1`β p1´sq`2s´ r
2 `Op

β
β´α q}g}αε

αsdiampΩqα´αsu otherwise

for α P p0, βq. We want to find the fixed choice of δ that minimizes our error for a point which

is distance d from the boundary of Ω. This amounts to finding a value of s that minimizes our

error for a fixed choice of r, in each of the cases above. In other words, we are interested in the

maximum of the function:

Ξ1pα, β, r, sq “

$

’

’

’

&

’

’

’

%

maxtrα,mintβps´ rq, 12 ´ 5s
2 ` r

2 , sαuu if s ď
1´β
1`β

maxtrα,mintβps´ rq, β
1`β ´ p2 `

β
1`β qs` r

2 , sαuu otherwise

in s, treating α, β and r as constants. From here, we take the minimum of the resulting function,

max
sPpr,1q

Ξ1pα, β, r, sq, in r, treating α and β as constants. This corresponds to finding an estimate
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that works for all d. In this way, we conclude that:

|hpz0q ´ h‚pz0q| ď
`

C1}g} ` C2
β

β ´ α
}g}αdiampΩqα

˘

ˆ

ε

diampΩq

˙λ1pα,βq

where:

λ1pα, βq “ min
rPr0,1s

max
sPpr,1q

Ξ1pα, β, r, sq

Note that λ1pα, βq ą 0 for any α P p0, βq and β P p0, 1{2s. To see this, observe that if we take

s “
β

4`6β and r P r
β

8`12β , 1s, clearly:

Ξ1pα, β, r,
β

4 ` 6β
q ě

βα

8 ` 12β

On the other hand, if r P r0, β
8`12β s:

Ξ1pα, β, r,
β

4 ` 6β
q ě mintβ

` β

4 ` 6β
´ r

˘

,
β

2 ` 2β
`
r

2
,

βα

4 ` 6β
u ě mint

β2

8 ` 12β
,

β

2 ` β
,

αβ

4 ` 6β
u

Hence:

λ1pα, βq ě
αβ

8 ` 12β
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Chapter 4

Lipschitz Regularity on a

Mesoscopic Scale for Harmonic

Functions on Orthodiagonal Maps

As we alluded to in Section 0.4, in this chapter, we will prove the following Harnack-type estimate

for discrete harmonic functions on orthodiagonal maps:

Theorem 4.0.1. If β P p0, 12 q is the absolute constant from Lemma 3.1.4, for any α P p0, β
1`3β q,

we have an absolute constant Cα ą 0 so that if G “ pV ‚ \ V ˝, Eq is an orthodiagonal map

with edges of length at most ε, h : V ‚ Ñ R is harmonic on IntpV ‚q and z, w P V ‚ satisfy

|z ´ w| ě d
`

ε
d

˘α
, where d “ distpz, B pGq ^ distpw, B pGq, then:

|hpzq ´ hpwq| ď Cα}h}8

´

|z ´ w|

d

¯

We say that this estimate holds on a mesoscopic scale because it requires that the points z, w P V ‚

we’re looking at are at least d
`

ε
d

˘α
apart, where α P p0, 1q, implying that ε ! d

`

ε
d

˘α
! 1. One

interpretation of this result is that it tells us that discrete harmonic functions on orthodiagonal

maps are Lipschitz in the bulk on a mesoscopic scale. We do not believe this result is sharp.

Namely, since orthodiagonal maps are good approximations of continuous 2D space, the Harnack

estimate should hold even on a microscopic scale. That is, for any pair of points z, w P V ‚ that

are at least Cε apart, for some absolute constant C ą 0. As we remarked in Section 0.4, this is

known to be true for any isoradial graph. This includes subsets of the triangular, the hexagonal,

and the square grid. Furthermore, in [14], Chelkak, Laslier and Russkikh show that we have a

Harnack estimate on microscopic scales for discrete harmonic functions on t-embeddings satisfying

the assumptions “Lippκ, δq” and “Exp-Fatpδq” for some κ P p0, 1q, δ ą 0 (see Corollary 6.18 of

[14]). For a precise definition of the assumptions “Lippκ, δq” and “Exp-Fatpδq,” see Section 1.2
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of [14]. As we discussed in Section 3.1.1, for any κ P p0, 1q, there exists c “ cpκq ą 0 so that any

orthodiagonal map of edge length at most ε, satisfies the assumption “Lippcε, εq.” In contrast, it

is not known whether an arbitrary orthodiagonal map satisfies the condition “Exp-Fatpδq” for

some δ ą 0 that only depends on the mesh of our orthodiagonal map. Thus, we do not have a

Harnack estimate on microscopic scales for discrete harmonic functions on orthodiagonal maps

as an immediate consequence of Corollary 6.18 of [14].

4.1 Lipschitz Regularity on a Mesoscopic Scale (Base

Case)

The key idea behind the proof of Theorem 4.0.1 is the following regularity estimate for C2

functions, in terms of their norm and Laplacian:

Proposition 4.1.1. Suppose Ω is a simply connected domain and h P C2
b pΩq X CpΩq. Then:

|hpx2q ´ hpx1q| À }h}8

´

|x2 ´ x1|

d

¯

` }∆h}8d|x2 ´ x1| (4.1.1)

for any x1, x2 P Ω, where d “ dx1 ^ dx2 “ distpx1, BΩq ^ distpx2, BΩq.

Proof. Suppose Bpx,Rq Ď Ω is a ball contained in Ω. By Green’s identity applied to h and

GBpx,Rqpy, xq “ ´ 1
2π log

´

|y´x|

R

¯

, we have that:

hpxq “
1

2πR

ż

BBpx,Rq

hpyqdσpyq ´
1

2π

ż

Bpx,Rq

∆hpyq log
´

|y ´ x|

R

¯

dApyq

where “dA(y)” denotes integration with respect to area in Ω. Similarly, applying Green’s identity

with h and R2 ´ |y ´ x|2, we have that:

1

2πR

ż

BBpx,Rq

hpyqdσpyq “
1

πR2

ż

Bpx,Rq

hpyqdApyq `
1

4πR2

ż

Bpx,Rq

∆hpyq
`

R2 ´ |y ´ x|2
˘

dApyq

Putting all this together, we have that:

hpxq “
1

πR2

ż

Bpx,Rq

hpyqdApyq`
1

4πR2

ż

Bpx,Rq

∆hpyq
`

R2´|y´x|2
˘

dApyq´
1

2π

ż

Bpx,Rq

∆hpyq log
´

|y ´ x|

R

¯

dApyq

Suppose x1, x2 are points of Ω. Observe that if |x2 ´ x1| ą d
2 , then trivially, |hpx2q ´ hpx1q| ď

4}h}8

`

|x2´x1|

d

˘

and so the desired result follows. With this in mind, suppose that |x2 ´ x1| ď d
2 .

Then:

hpx2q ´ hpx1q “ p1q ` p2q ` p3q
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where:

|p1q| “

ˇ

ˇ

ˇ

1

πd2

ż

Bpx1,dq∆Bpx2,dq

hpyqdApyq

ˇ

ˇ

ˇ
ď

5π|x2 ´ x1|d

πd2
}h}8 “ 5}h}8

´

|x2 ´ x1|

d

¯

|p2q| “
1

4π

ˇ

ˇ

ˇ

ż

Bpx1,dqXBpx2,dq

∆hpyq

´

|x2 ´ y|2 ´ |x1 ´ y|2

d2

¯

dApyq `

ż

Bpx2,dqzBpx1,dq

∆hpyq

´

1 ´
|x2 ´ y|2

d2

¯

dApyq

´

ż

Bpx1,dqzBpx2,dq

∆hpyq

´

1 ´
|x1 ´ y|2

d2

¯

dApyq

ˇ

ˇ

ˇ

ď
15}∆h}8d|x2 ´ x1|

8

|p3q| “
1

2π

ˇ

ˇ

ˇ

ż

Bpx1,dqXBpx2,dq

∆hpyq log
´

|y ´ x2|

|y ´ x1|

¯

dApyq `

ż

Bpx2,dqzBpx1,dq

∆hpyq log
´

|x2 ´ y|

d

¯

dApyq

´

ż

Bpx1,dqzBpx2,dq

∆hpyq log
´

|x1 ´ y|

d

¯

dApyq

ˇ

ˇ

ˇ

ď
}∆h}8

2π

´

ż

Bpx2,dq

log
´

1 `
|x2 ´ x1|

|y ´ x2|

¯

dApyq `

ż

Bpx2,dqzBpx2,d´|x2´x1|q

log
´ d

|x2 ´ y|

¯

dApyq

`

ż

Bpx1,dqzBpx1,d´|x2´x1|q

log
´ d

|x1 ´ y|

¯

dApyq

¯

“}∆h}8

´

ż d

0

r log
´

1 `
|x1 ´ x2|

r

¯

dr ` 2

ż d

d´|x2´x1|

r log
´d

r

¯

dr
¯

À }∆h}8d|x2 ´ x1|

Putting all this together, we have that:

|hpx2q ´ hpx1q| À }h}8

´

|x2 ´ x1|

d

¯

` }∆h}8d|x2 ´ x1|

Recall that Proposition 3.4.2 tells us that if h‚ is a discrete harmonic function, its convolution with

a smooth mollifier, ϕ˚h‚, is almost harmonic in that ∆pϕ ˚ h‚q « 0. Hence, taking h “ pϕ˚h‚q in

our estimate from Proposition 4.1.1, we have that the convolution of a discrete harmonic function

with a smooth mollifier, satisfies a Harnack-type estimate. As a consequence, we can recover a

Harnack-type estimate for discrete harmonic functions on orthodiagonal maps, on a mesoscopic

scale:

Proposition 4.1.2. There exists an absolute constant C ą 0 so that if G “ pV ‚ \ V ˝, Eq is

an orthodiagonal map with edges of length at most ε, h‚ : V ‚ Ñ R is harmonic on IntpV ‚q and

z, w P V ‚ are vertices of V ‚ so that |z ´ w| ě d
`

ε
d

˘

β2

2p1`βq where d “ distpz, B pGq ^ distpw, B pGq,

then:

|h‚pzq ´ h‚pwq| ď C}h‚}

´

|z ´ w|

d

¯

Proof. Let ϕ be a smooth mollifier supported on the unit ball Bp0, 1q Ď R2. Then for any δ ą 0,

ϕδpxq :“ δ´2ϕpδ´1xq is a smooth mollifier, supported on Bp0, δq. Suppose z and w are vertices
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of V ‚. By the triangle inequality:

|h‚pwq ´ h‚pzq| ď |h‚pwq ´ pϕδ ˚ h‚qpwq| ` |pϕδ ˚ h‚qpwq ´ pϕδ ˚ h‚qpzq| ` |pϕδ ˚ h‚qpzq ´ h‚pzq|

By Lemma 3.1.5:

|pϕδ ˚ h‚qpzq ´ h‚pzq|, |pϕδ ˚ h‚qpwq ´ h‚pwq| “ Opδβ ¨ d´β ¨ }h‚}q (4.1.2)

On the other hand, taking h “ pϕδ ˚ h‚q in our estimate from Proposition 4.1.1 and using our

estimate for the Laplacian of pϕδ ˚ h‚q from Proposition 3.4.2, we have that:

|pϕδ ˚ h‚qpwq ´ pϕδ ˚ h‚qpzq| “Op}h‚}

´

|z ´ w|

d

¯

q `Op}∆pφδ ˚ h‚q} ¨ d ¨ |z ´ w|q

“O
`

}h‚}

´

|z ´ w|

d

¯

˘

`O
`

ε
β

1`β δ´2d2´
β

1`β }h‚}

´

|z ´ w|

d

¯

˘

`O
`

ε
1
2 δ´ 5

2 d2}h‚}

´

|z ´ w|

d

¯

˘

(4.1.3)

Note that having chosen a particular smooth mollifer ϕ, we can disregard the }D2ϕ} and }D3ϕ}

terms in Proposition 3.4.2, since they are just some constants. Looking at the error term in

Equation 4.1.2, to get the kind of estimate for h‚ we are looking for, we need it to be the case

that δβd´β ď
`

|z´w|

d

˘

ðñ δ ď d
`

|z´w|

d

˘1{β
. On the other hand, looking at the estimate for

the modulus of continuity of pφδ ˚ h‚q in Equation 4.1.3, all of the powers of δ are negative.

Hence, to get the best estimate possible, we should take δ to be as large as possible. Namely,

δ “ d
`

|z´w|

d

˘1{β
. Plugging this choice of δ into Equations 4.1.2 and 4.1.3 and putting all this

together, we get that:

|h‚pwq ´ h‚pzq| “ O
`

}h‚}

´

|z ´ w|

d

¯

˘

`O
`

ε
β

1`β ¨ |z ´ w|
´ 2

β ¨ d
2
β ´

β
1`β ¨ }h‚}

´

|z ´ w|

d

¯

˘

`O
`

ε
1
2 ¨ |z ´ w|

´ 5
2β ¨ d

5
2β ´ 1

2 ¨ }h‚}

´

|z ´ w|

d

¯

˘

To get an effective estimate, we need it to be the case that:

ε
β

1`β ¨ |z ´ w|
´ 2

β ¨ d
2
β ´

β
1`β ď 1 ðñ |z ´ w| ě d

´ ε

d

¯

β2

2p1`βq

ε
1
2 ¨ |z ´ w|

´ 5
2β ¨ d

5
2β ´ 1

2 ď 1 ðñ |z ´ w| ě d
´ ε

d

¯

β
5

Thus, as long as |z ´ w| ě d
`

ε
d

˘

β
5 ^

β2

2p1`βq , we have that:

|h‚pzq ´ h‚pwq| ď C}h‚}

´

|z ´ w|

d

¯

where C ą 0 is some absolute constant. Since the absolute constant β ą 0 from Lemma 3.1.5 is

small, β2

2p1`βq
ă

β
5 .
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Notice that Proposition 4.1.2 is a weaker version of Theorem 4.0.1 that requires a larger meso-

scopic scale for our Harnack-type estimate to kick in. In Section 4.2, we will see how, using

Proposition 4.1.2 as a starting point, we can use a bootstrap argument to successively improve

the scale on which our Harnack estimate holds, giving us Theorem 4.0.1.

4.2 Refining our Mesoscopic Scale

In this section, we will refine our estimate in Proposition 4.1.2 by improving the mesoscopic scale

on which our Harnack-type estimate holds. To do this, we first observe that discrete harmonic

functions on orthodiagonal maps are β- Hölder in the bulk on small scales and Lipschitz in the

bulk on large scales. This gives us improved Hölder regularity in the bulk, on intermediate scales:

Proposition 4.2.1. (refined Hölder regularity on intermediate scales) Suppose that for any

orthodiagonal map G with edges of length at most ε and any function h : V ‚ Ñ R that is

harmonic on IntpV ‚q we have that:

• (Lipschitz regularity on large scales) if z, w P V ‚ satisfy |z ´ w| ě d
`

ε
d

˘α
for some fixed

α P p0, 1q, then:

|hpzq ´ hpwq| ď C}h}

´

|z ´ w|

d

¯

where C ą 0 is an absolute constant.

Then:

• (Improved Hölder regularity on intermediate scales) for any γ P pα, 1q, if G is an orthodiag-

onal map with edges of length at most ε, h : V ‚ Ñ R is harmonic on IntpV ‚q and z, w P V ‚

satisfy |z ´ w| “ d
`

ε
d

˘γ
where d “ distpz, B pGq ^ distpw, B pGq, then:

|hpzq ´ hpwq| ď C}h}

´

|z ´ w|

d

¯β` α
γ p1´βq

Proof. Suppose G is an orthodiagonal map with edges of length at most ε and z, w P V ‚ satisfy

|z´w| “ d
`

|z´w|

d

˘γ
for some γ P pα, 1q. Suppose h : V ‚ Ñ R is harmonic on IntpV ‚q and WLOG,

hpwq ď hpzq. Let B “ BGpw, d
`

|z´w|

d

˘α
q denote the discrete ball of radius d

`

|z´w|

d

˘α
centered at

w in G. By the maximum principle, we can find a nearest-neighbor path γ “ pw0, w1, ..., wmq of

vertices in G‚ so that w0 “ w, wm P BV ‚
B and hpwi`1q ď hpwiq for all i. In particular, it follows

that hpwiq ď hpwq for all i. If pSnqně0 is a simple random walk on G‚, and τγandτBV ‚
B

are the
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hitting times of γ and BV ‚
B by our random walk, by the optional stopping theorem, we have that:

hpzq ´ hpwq “ Ez
`

hpSτγ^τBV ‚
B

q ´ hpwq
˘

“ Ez
`

phpSτγ q ´ hpwqq
looooooooomooooooooon

ď0

1τγďτBV ‚
B

˘

` Ez
`

phpSτBB
q ´ hpwqq1τBV ‚

B
ăτγ

˘

ď max
uPBB

|hpuq ´ hpwq| ¨ PpτBV ‚
B

ă τγq À }h}

´d
`

ε
d

˘α

d

¯´d
`

ε
d

˘γ

d
`

ε
d

˘α

¯β

À }h}

´ ε

d

¯α`βpγ´αq

“ }h}

´d
`

ε
d

˘γ

d

¯β` α
γ p1´βq

“ }h}

´

|z ´ w|

d

¯β` α
γ p1´βq

From here. the story is as follows:

1. Observe that in our estimate for ∆pϕδ ˚ h‚qpzq in Proposition 3.4.2, the β
1`β exponents in

the second term come from the fact that harmonic functions are β- Hölder in the bulk on

scales — ℓ where ε ! ℓ ! δ ď d
2 .

2. Hence, if we use Proposition 4.2.1 in place of Lemma 3.1.5, we can improve our estimate

for ∆pϕδ ˚ h‚qpzq.

3. However, the scale on which we have that discrete harmonic functions on orthodiagonal

maps are Lipschitz in the bulk in Proposition 4.1.2, comes from:

(a) the fact that discrete harmonic functions on orthodiagonal maps are β-Hölder in the

bulk, which is used on the intermediate scale δ.

(b) our estimate for ∆pϕδ ˚ h‚qpzq in Proposition 3.4.2.

4. Thus, our improved Hölder regularity on intermediate scales in Proposition 4.2.1 can be

used to improve the scale at which we can ensure discrete harmonic functions are Lipschitz

in the bulk in Proposition 4.1.2.

5. But then we could use the fact that harmonic functions are Lipschitz on smaller scales to im-

prove our estimate for the Hölder regularity of discrete harmonic functions on intermediate

scales!

In short, we have a bootstrap argument for refining the scale at which we know that discrete

harmonic functions are Lipschitz in the bulk. This is encapsulated in the following result:

Proposition 4.2.2. (the bootstrap) Suppose we know that for some α P p0, 1q, there exists an

absolute constant C ą 0 so that for any orthodiagonal map G “ pV ‚ \ V ˝, Eq with edges of

length at most ε, any function h : V ‚ Ñ R that is harmonic on IntpV ‚q, and any z, w P V ‚

satisfying |z ´ w| ě d
`

ε
d

˘α
, where d “ distpz, B pGq ^ distpw, B pGq, we have that:

|hpzq ´ hpwq| ď C}h}

´

|z ´ w|

d

¯
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Then taking α1 “ p1 ´ βqα ` βmint 1
5 ,

β`α´βα
2p1`βq

u, there exists an absolute constant C 1 ą 0 so

that for any orthodiagonal map G “ pV ‚ \ V ˝, Eq with edges of length at most ε, any function

h : V ‚ Ñ R that is harmonic on IntpV ‚q and any z, w P V ‚ satisfying |z ´ w| ě d
`

ε
d

˘α1

, where

d “ distpz, B pGq ^ distpw, B pGq, we have that:

|hpzq ´ hpwq| ď C 1}h}

´

|z ´ w|

d

¯

Proof. Let ϕ be a smooth mollifier supported on the unit ball Bp0, 1q Ď R2. Then for any

δ ą 0, ϕδpxq “ δ´2ϕpδ´1xq is a smooth mollifier, supported on Bp0, δq. Just as in the proof

of Proposition 4.1.1, we will convolve our discrete harmonic function h with a smooth mollifier

ϕδ, where δ is mesoscopic. With this in mind, we write δ “ d
`

ε
d

˘c
and ℓ “ d

`

ε
d

˘γ
, where

0 ă c ă γ ă 1. Here, ℓ is some intermediate scale. Using Proposition 4.2.1 in place of Lemma

3.1.5, we have that:

|pϕδ ˚ hqpzq ´ hpzq|, |pϕδ ˚ hqpwq ´ hpwq| “ Op}h}

´ ε

d

¯βc`αp1´βq

q

if c ą α. If c ď α, we have that:

|pϕδ ˚ hqpzq ´ hpzq|, |pϕδ ˚ hqpwq ´ hpwq| “ Op}h}

´ ε

d

¯c

q

In particular, notice that if we repeat our argument in Proposition 4.1.2, picking a value of c that

is less than or equal to α will gives us, at best, Lipschitz regularity on scale d
`

ε
d

˘c
ě d

`

ε
d

˘α
. In

short, we end up with an estimate that is inferior to the one we started with. Thus, if we want

to improve on our initial estimate, we need to choose c and γ so that 0 ă α ă c ă γ ă 1.

Repeating our argument in Proposition 3.4.2 using Proposition 4.2.1 in place of Lemma 3.1.5, we

have the following analogue of Equation 3.4.4:

∆pϕδ ˚ hqpzq “ Op}h}

´ ε

d

¯1´γ´2c

d´2q `Op}h}

´ ε

d

¯βγ`αp1´βq´2c

d´2q `Op}h}

´ ε

d

¯γ´3c

d´2q

Optimizing in ℓ “ d
`

ε
d

˘γ
for fixed δ “ d

`

ε
d

˘c
, we get that:

∆pϕδ ˚ hqpzq “ Op}h}

´ ε

d

¯

1´5c
2

d´2q `Op}h}

´ ε

d

¯

β`α´αβ
p1`βq

´2c

d´2q (4.2.1)

Applying the estimate in Proposition 4.1.1 to ϕδ ˚ h with this Laplacian estimate, we have that:

|pϕδ ˚ hqpzq ´ pϕδ ˚ hqpwq| “ O
`

}h}

´

|z ´ w|

d

¯

˘

`O
`

}h}

´

|z ´ w|

d

¯´ ε

d

¯p
1´5c

2 q^p
β`α´αβ

p1`βq
´2cq

˘

Combining this with our estimate for the difference between h and ϕδ ˚ h from earlier, we have
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that:

|hpzq´hpwq| “ O
`

}h}

´

|z ´ w|

d

¯

˘

`O
`

}h}

´

|z ´ w|

d

¯´ ε

d

¯p
1´5c

2 q^p
β`α´αβ

p1`βq
´2cq

˘

`O
`

}h}

´ ε

d

¯βc`αp1´βq
˘

To find the scale on which we can ensure Lipschitz regularity of h, we want to pick c as large as

possible subject to the constraits:

1 ´ 5c ě 0,
β ` αp1 ´ βq

1 ` β
´ 2c ě 0

Thus, taking c “ mint 1
5 ,

β`α´αβ
2p1`βq

u, our estimate for |hpzq ´ hpwq| above tells us that there exists

an absolute constant C 1 ą 0 such that:

|hpzq ´ hpwq| ď C 1
´

|z ´ w|

d

¯

for any z, w P V ‚ such that |z ´ w| ě d
`

ε
d

˘βα1
`p1´βqα

, where α1 “ mint 1
5 ,

β`α´αβ
2p1`βq

u.

Theorem 4.0.1 now follows as a straightforward corollary of Proposition 4.1.2, which serves as

our base case, and Proposition 4.2.2, which tells us how we can successively refine our mesoscopic

scale:

Proof. (of Theorem 4.0.1) Consider the sequence pαnqně0 such that α0 “
β2

2p1`βq
, and αn`1 “

p1 ´ βqαn ` β ¨ mint 1
5 ,

β`αn´βαn

2p1`βq
u for all n ě 0. Combining our results in Proposition 4.1.2

and Proposition 4.2.2, we have that for all n P N0, if G “ pV ‚ \ V ˝, Eq is an orthodiagonal

map with edges of length at most ε, h : V ‚ Ñ R is harmonic on IntpV ‚q and z, w P V ‚ satisfy

|z ´ w| ě d
`

ε
d

˘αn
, where d “ distpz, BGq ^ distpw, BGq, then:

|hpzq ´ hpwq| ď Cn}h}

´

|z ´ w|

d

¯

where Cn ą 0 is some absolute constant. Hence, to prove the desired result, it suffices to show

that lim
nÑ8

αn “
β

1`3β .

Observe from our recursion that αn`1 is the weighted average of αn and the minimum of 1
5

and β`αn´βαn

2p1`βq
. Hence, if α0 ă 1

5 , it follows that αn ă 1
5 for all n P N0. Additionally, observe

that:
1

5
ă
β ` αn ´ βαn

2p1 ` βq
ðñ αn ą

2 ´ 3β

5p1 ´ βq

Since the function fpβq “
2´3β
5p1´βq

is strictly decreasing on p0, 1q, β P p0, 1{2s and fp1{2q “ 1{5,

we see that the minimum of 1
5 and β`αn´βαn

2p1`βq
being equal to 1

5 requires that αn ě 1
5 . Thus, for

α0 “
β2

2p1`βq
ă 1

5 , our recurrence simplifies to:

αn`1 “ p1 ´ βqαn ` β
´β ` αn ´ βαn

2p1 ` βq

¯
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Again, since αn`1 is a weighted average of αn and β`αn´βαn

2p1`βq
,

αn`1 ě αn ðñ
β ` αn ´ βαn

2p1 ` βq
ě αn ðñ αn ď

β

1 ` 3β

On the other hand, notice that if αn ă
β

1`3β then β`αn´βαn

2p1`βq
“

β`p1´βqαn

2p1`βq
ă

β`p1´βq
β

1`3β

2p1`βq
“

β
1`3β

which tells us that αn`1 ă
β

1`3β , since αn`1 is the weighted average of this quantity and αn.

Since β P p0, 1{2q, α0 “
β2

2p1`βq
ă

β
1`3β . Thus, in our case, the sequence pαnqně0 is strictly

increasing and bounded above by β
1`3β , and so converges to a limit λ as n tends to 8. This limit

satisfies:

λ “ p1 ´ βqλ` β
´β ` λ´ βλ

2p1 ` βq

¯

ðñ λ “
β

1 ` 3β

This completes our proof.
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