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Chapter 0

Introduction

0.1 Introduction and Motivation

Discrete complex analysis is the study of discrete holomorphic functions. These are functions
defined on planar graphs embedded in the plane, that satisfy a discrete analogue of the Cauchy-
Riemann equations. Given a graph embedded in the plane, there are many ways one could dis-
cretize the Cauchy- Riemann equations. As such, the focus is on classes of graphs embedded in
the plane and discretizations of the Cauchy- Riemann equations on these graphs so that discrete
holomorphic functions have many of the properties that are characteristic of holomorphic func-
tions in the plane: i.e. discrete holomorphic functions integrate to 0 over closed contours, the

real and imaginary parts of a discrete holomorphic function are discrete harmonic, etc.

The subject of discrete complex analysis is classical, going back to the work of Isaacs [31] and
Lelong-Ferrand [40]. However, in the past 20- 30 years there has been a renewed interest in
the subject as a result of the work of Kenyon [32, B3], Mercat [42] 43] and Smirnov [50] who
demonstrated the power of discrete complex analysis as a tool for understanding statistical me-
chanics in two dimensions, at criticality. Landmark results following from the application of
discrete complex analysis to 2D statistical physics include the proof of Cardy’s formula for criti-
cal percolation [50], the proof of the convergence of interfaces in the critical Ising model to SLE3
[12], and the convergence of critical percolation interfaces to SLEs [§]. Here, SLE, refers to
Schramm- Loewner evolution, a 1- parameter family of random curves parametrized by & > 0

that is uniquely characterized by conformal invariance and a certain Markov- type property.

For all of these results, the story is as follows:

1. Many important models in statistical physics are defined on a lattice, rather than in the
continuum. Thus, to understand the large- scale picture that comes out of the microscopic,

lattice- level interactions, we need to take the limit of our model as the mesh of the lattice



goes to 0.

2. Physicists have this intuition that, at criticality, 2D statistical physics should be conformally
invariant in the limit. As such, many of the limiting observables in these models are either

harmonic or holomorphic functions, depending on whether they take real or complex values.

3. This is where discrete complex analysis enters the picture. Provided our lattice accom-
modates a notion of discrete complex analysis, our first step in rigorously establishing the
limiting behavior of our statistical physics model is to identify a discrete holomorphic ob-
servable in the model. That is, we find some functional of the statistical physics model that

satisfies a discrete version of the Cauchy- Riemann equations.

4. A priori regularity estimates for discrete holomorphic functions tell us that discrete holo-
morphic observables are precompact with respect to the topology of uniform convergence on
compacts. This gives us subsequential limits for our observables as the mesh of our lattice
tends to 0. Discrete holomorphicity of the observables tells us that any subsequential limit

of our observables is a holomorphic function.

5. Since the limiting observable is holomorphic, we can uniquely identify it by its boundary
behavior. Since all the subsequential limits agree, we conclude that our discrete holomorphic

observables converge to the relevant continuum limit.

6. Convergence of this observable is then leveraged to prove convergence of the discrete random
objects of interest to their continuum limits: i.e. percolation interfaces to SLFg, interfaces
in the Ising model to SLE3, etc.

Isoradial graphs or rhombic lattices, first introduced by Duffin in [I9], are a natural setting for
discrete complex analysis. At this point, critical statistical physics on isoradial graphs is well-
understood. For instance, the conformal invariance of height functions in the dimer model [41],
universality of critical exponents for the random cluster model [20], and the convergence of mul-
tipoint spin correlations for the Ising model [I3] have all been established when the underlying
lattice is isoradial. For more on critical statistical physics on isoradial graphs, see the surveys
[10] and [26]. All this is in large part due to work of Chelkak and Smirnov who in [I5] prove
fundamental results for discrete harmonic and holomorphic functions on isoradial graphs. In
particular, they prove convergence of discrete harmonic measure, discrete Poisson kernels and
discrete Green’s functions on isoradial graphs to their continuous counterparts. This builds on
prior work of Kenyon [33], which establishes explicit formulas and asymptotics for the whole-

plane Green’s function on isoradial graphs.

Orthodiagonal maps are another class of graphs embedded in the plane, with edge weights coming
from the geometry of this embedding, that accommodate a notion of discrete complex analysis.
They are a strict generalization of isoradial graphs: every isoradial graph is orthodiagonal. Until
the recent introduction of ¢- embeddings by Chelkak, Laslier and Russkikh [I4] and independently



by Kenyon, Lam, Ramassamy and Russkikh [34] orthodiagonal maps were the most general set-
ting for discrete complex analysis. Most of the well-known planar lattices- i.e. the square lattice,
the triangular lattice, the hexagonal lattice- are orthodiagonal. More generally, as a consequence
of the double circle packing theorem, a wide variety of planar graphs admit an orthodiagonal em-
bedding (see Section 2 of [25]). In contrast to the isoradial setting, critical 2D statistical physics

on general orthodiagonal maps is still poorly understood.

In this thesis, the focus will be on proving convergence results for discrete harmonic and dis-
crete holomorphic functions on orthodiagonal maps. In Chapter [2] which is joint work with my
advisor Ilia Binder, we show that for finer and finer orthodiagonal approximations of a simply
connected domain ) with four distinguished boundary points, a certain discrete conformal map,
defined on the faces of our orthodiagonal map, converges uniformly on compacts to its continuum
analogue. In Chapter [3] we show that for Holder boundary data, solutions to the Dirichlet prob-
lem on orthodiagonal maps converge to the solution of the corresponding continuous Dirichlet
problem with a polynomial rate of convergence in the mesh of our orthodiagonal map. Finally,
in Chapter [4] we use our estimates for Laplacian of the convolution , we prove Along the way, we
prove fundamental results for random walks, discrete harmonic functions, discrete holomorphic
functions and discrete extremal length on orthodiagonal maps that are of independent interest.
These results constitute a toolbox for extending the results of critical 2D statistical physics on

isoradial graphs to the more general orthodiagonal setting.

Our motivation for extending the tools of discrete complex analysis to a wider class of discretiza-
tions of 2D space is twofold. On the one hand, it confirms our intuition that the underlying
physical phenomena are universal. That is, it shouldn’t matter whether we define our statistical
physics model on a triangular or on a square grid. As the mesh shrinks to 0, the limiting behavior

should be the same.

Perhaps more importantly, extending discrete complex analysis techniques to wider classes of
discretizations of the 2D space is expected to have applications to the understanding of statistical
physics on random surfaces, which is one of the big open problems in modern probability theory.

The story here is as follows:

1. sample a large planar graph uniformly at random in any sort of sensible way. For instance,
we could sample a p- angulation (planar map where all the faces are polygons with p sides)

with n faces uniformly at random.

2. “decorate” this random planar graph with a critical statistical physics model. For instance,
we can decorate our planar graph with a critical Ising model. The probability of seeing a
particular random graph is then proportional to the partition function of the critical Ising

model on that graph.

3. thinking of the resulting random graph as a compact metric space with the graph metric,



under appropriate rescaling, it should converge in Gromov- Hausdorff distance to some

limiting object.

4. the intuition from statistical physics is that the resulting random metric space is - Liouville

quantum gravity for some parameter . For details, see [48].

The trouble with this last step is that Liouville quantum gravity is typically defined as a random
metric on the sphere. Thus, to relate the object we got in step 3 to - Liouville quantum gravity
for some appropriate parameter v, we need to embed our family of random graphs in the Riemann
sphere, so that the complex structure of our embedding is somehow compatible with the complex
structure of our graph. The first rigorous results in this direction were recently proven for Cardy

embeddings of random triangulations by Holden and Sun [29].

Another approach to uniformizing discrete random geometry is circle packings. Namely, if our
planar graph is a triangulation, the Koebe-Andreev-Thurston theorem tells us that this graph has
a unique representation as the tangency graph of a circle packing, up to Mobius transformations
and reflections (see Chapter 3 of [44]). Thus, as long as our random graphs are triangulations,

circle packings give us a natural embedding of our random graphs in the Riemann sphere.

If we can extend discrete complex analysis techniques to planar graphs embedded in the plane
according to one of the aforementioned schema, we should be able to use the discrete complex
analysis techniques that have been so useful for understanding critical statistical physics in 2D Eu-
clidean space to say something about critical statistical physics on random surfaces. In particular,
if we embed a triangulation in the Riemann sphere via circle packing, the resulting embedding is
orthodiagonal (see Proposition 2.1 of [25]). Thus, extending discrete complex analysis techniques
to orthodiagonal maps should already be sufficient to apply these techniques to the understanding

of critical statistical physics on random triangulations.

0.2 Orthodiagonal Maps, Tilings of Rectangles, and their

Convergence to Conformal Maps

In Chapter |2l we use discrete complex analysis techniques to solve a purely deterministic problem
in the general orthodiagonal setting. Namely, a classic paper of Brooks, Smith, Stone and Tutte
describes how planar electrical networks give rise to tilings of rectangles by smaller subrectangles
[7]. Each subrectangle in the tiling corresponds to an edge of the network and its aspect ratio is
precisely the conductance of this corresponding edge. These tilings can be thought of as discrete
analogues of the uniformizing conformal map that maps a simply connected domain to a rectangle
so that four distinguished points on the boundary of our simply connected domain are mapped
to the four corners of the rectangle. We make this idea rigorous by showing that for any simply
connected domain, if we have an increasingly fine sequence of orthodiagonal approximations, the

associated tilings converge to the corresponding uniformizing conformal map. This significantly



improves on a previous result of Georgakopoulos and Panagiotis who prove this convergence in
the case where the approximating orthodiagonal map is just a chunk of the square grid [24].
Furthermore, our approach is significantly different from the one in [24] which relies heavily on
the fact that reflected random walks on dZ2 converge in law to reflected Brownian motion as

& — 0. To our knowledge, this result is not known for any other lattices.

In recent work, Albin, Lind and Pietro- Corradini provide an explicit rate of convergence for
these tilings to the limiting conformal map in the general orthodiagonal setting (this is effectively
Theorem 3 of [3]), subject to certain assumptions on the smoothness of the boundary of the
simply connected domain that is being approximated. They then use this to prove convergence
of the probabilistic interpretation of modulus as well as convergence of discrete extremal length
to continuous extremal length in this setting [3]. By employing a different approach, we manage
to avoid making any assumptions about the smoothness of the boundary of our simply connected

domain, at the expense of providing an explicit rate of convergence.

Our result can also be interpreted as the rectangle tiling analogue of similar results that are
known for circle packings. As we discussed earlier, the Koebe-Andreev-Thurston theorem tells
us that any finite triangulation can be realized as the tangency graph of a circle packing in the
plane. With this in mind, Bill Thurston made the observation that if you fill a simply connected
domain with circles packed together, the Koebe-Andreev-Thurston theorem gives you a natural
way to repack these circles in the unit disk in a way that preserves tangency. Since this “repack-
ing map” sends circles to circles, if we fill our simply connected domain with smaller and smaller
circles, the corresponding circles in the images should also get smaller and smaller. In the limit,
these repacking maps should converge to a function that sends infinitisimal circles to infinitisimal
circles. In other words, a conformal map. Thus, Thurston conjectured that circle packings should
give us a way to approximate the uniformizing conformal map from a simply connected domain to
the unit disk [63]. This was proven by Rodin and Sullivan when the circle packings in the simply
connected domain consist of circles, all having the same radii, packed together in a honeycomb
pattern [47]. This was later generalized to circle packings with arbitrary combinatorics by He

and Schramm [27]. For more on circle packings and their connection to complex analysis, see [52].

Finally, it is worth noting that the closely related tilings of cylinders have been the object of
recent study by Benjamini and Schramm [5], Georgakopoulos [23] and Hutchcroft and Peres [30]

in connection with the Poisson boundary of infinite planar graphs.



0.3 A Polynomial Rate of Convergence for the Dirichlet
Problem on Orthodiagonal Maps

Due to the ubiquity of diffusion phenomenon in the physical world, the Dirichlet problem is one
of the most important partial differential equations in mathematical physics. Recently, Gurel-
Gurevich, Jerison and Nachmias showed that solutions to the Dirichlet problem on orthodiagonal
maps converge to the solution of the corresponding continuous Dirichlet problem [25]. This
improves on prior work of Chelkak and Smirnov [I5], Skopenkov [49] and Werness [54], where
this result is proven for the Dirichlet problem on orthodiagonal maps, subject to various additional
regularity assumptions on the underlying lattice. In particular, Theorem 1.1 of [25] provides an
explicit rate of convergence for the Dirichlet problem on orthodiagonal maps to the corresponding
continuous Dirichlet problem for C? boundary data. In Chapter [3| we improve upon the rate of
convergence in Theorem 1.1 of [25], by showing that as long as our boundary data is Holder, we
have a polynomial rate of convergence for the Dirichlet problem on orthodiagonal maps to the

corresponding continuous Dirichlet problem.

0.4 Lipschitz Regularity on a Mesoscopic Scale for

Harmonic Functions on Orthodiagonal Maps

Suppose  is a subdomain of R? and A : 2 — R is harmonic. Then the classical Harnack estimate
says that for any z,y € Q so that |x — y| < d = dist(x, 0Q) A dist(y, 0Q), we have that:

h(w) — ()] < 20 oo (2 2) 0.41)

This result follows readily from the mean value property for harmonic functions. Namely, if x €
and r < dist(z, ), we have that:

hx) = — h(w)dA(u) (0.4.2)

= JB(w,r)

where “dA(u)” refers to integration with respect to area on 2. Insofar as orthodiagonal maps are
good approximations of continuous 2D space, we should expect that something like this is true
for discrete harmonic functions on orthodiagonal maps. Indeed, in the more restricted setting
of isoradial graphs with angles uniformly bounded away from 0 and mw, Chelkak and Smirnov
show that an anologue of the Harnack estimate holds (see Corollary 2.9 of [I5]). Just as in the
continuous setting, the result follows from an analogue of the integral mean value property in
Equation for discrete harmonic functions (see Proposition A.2 of [I5]). The proof of this
mean value property for discrete harmonic functions on isoradial graphs requires asymptotics for
the discrete Green’s function on isoradial graphs, proven by Kenyon (see Theorem 7.3 of [33]).

It is expected that these estimates should also hold for the discrete Green’s function on general



orthodiagonal maps, however, this has yet to be proven. In light of this, to prove Harnack-type

estimates for discrete harmonic functions on orthodiagonal maps, we will use a different approach.

Namely, in Chapter [3] we show that if you convolve a discrete harmonic function with a smooth
mollifier, the resulting continuous function is “almost” harmonic in that its Laplacian is small in
a precise quantitative sense. It turns out that to have a Harnack-type estimate like the one in
Equation [0.4.1] we do not need our function to be harmonic. Being almost harmonic is enough.
Thus, we have a Harnack-type estimate for the convolution of a discrete harmonic function with

a smooth mollifier.

Regularity estimates for discrete harmonic functions on orthodiagonal maps tell us that that our
original discrete harmonic function is close to its convolution with a smooth mollifier, provided
the support of this smooth mollifier is small. Since discrete harmonic functions on orthodiagonal
maps are close to continuous functions that satisfy a Harnack-type estimate, we conclude that
we also have a Harnack-type estimate for discrete harmonic functions on orthodiagonal maps, at

least on a mesoscopic scale.



Chapter 1

Preliminaries

1.1 The Theory of Electrical Networks

Following [25], a finite network is a finite graph G = (V, E) along with a weight function
¢: E — R.y. For any edge e € E we say that c(e) is the conductance of that edge. The

reciprocal r(e) = ﬁ is the resistance of that edge.

A function 6 : E — R is said to be antisymmetric if §(—¢) = —0(&) for all € € E. Intu-
itively, antisymmetric functions on a network G are the discrete analogues of vector fields. Let

2 (E) denote the space of antisymmetric functions on £ with the inner product:
1
B, = 5 3 (@)
éeE
The energy of 6 € (2 (E) is:
£(0) =017 = <€0,0)x

Given f:V — R its gradient cdf : E > Ris given by:

(cdf)(€) = e(e)(f(e™) — f(e))

For any function f : V — R, the gradient is antisymmetric. Thus, we can define the energy of a

function f : V' — R as the energy of its gradient:

E(F) = E(edf) = 5 3 (@) (f(e) — f(e7))?

écE

Given a function in £ (Eﬂ)7 we are often interested in the energy of its restriction to some subgraph

of G. To make it clear where it is we are computing the energy, if 6 € (2 (E) and G/ = (V', E')



is a subgraph of G = (V, E) with the same edge weights, then:

£0:6) = 3 3 r(e)6(e

ecE’

Similarly, if f:V — R,

It is not hard to see that 6 € ¢2 (E) satisfies the cycle law if and only if = cdf for some function
f:V —R. Given 0 € £2 (E), its divergence div(f) : V — R is given by:

(div()) (z) = ), 6(2)

=z
Similar to the continuous setting, the divergence of 6 at x measures the net flow out of x by 6.
Given distinct vertices a,z € V, a function 6 € £2 (E) is a flow from a to z if:

(div(8))(z) = 0 for all z € V\{a, z}.

Given a flow 0 from a to z its strength, denoted by |6, is defined as follows:

16] = >, 6(a,x) = (div(0))(a)

r:r~a

For every flow 6 from a to z,

0] =Y, 0(y,2) = —(div(6)) (=)
yy~z
This is because:
So@=0=3 Y by =Y ([div(e)() = (div(6))(a) + (div(6))(2)
éeE eV yiy~x zeV
The first equality follows from the antisymmetry of . Given f : V — R, its Laplacian Af :

V' — R is given by:

Af(z) = (div(edf))(z) = D] cle)(fleh) = fle7)) = Y| clz,y)(fy) — f(2))

—=z Yy~



If Af(z) =0, we say that f is harmonic at x. Equivalently, f is harmonic at z if:

@) =— Y ceu)f)

T yy~w

where:

Ty = Z c(a:,y)

Yy~

From this formula, it is immediate that harmonic functions satisfy the maximum principle:

Proposition 1.1.1. Suppose that G = (V, E,¢) is a finite network and h : V' — R is harmonic
on U < V. Define:
U ={we V\U : w ~ u for some ue U}

Then:

<
g ) < h ()

Following [44], a simple random walk on the network G = (V, E, ¢) is the discrete time Markov

process (X, )n>0 with transition probabilities:

c(z,y)
Ty

P(Iay) = 1(z~y)

Given a function f : V' — R and vertices a,z € V, it is clear that cdf is a flow from a to z if
and only if Af(z) =0 for all z € V\{a, z}. We call such a function a voltage. Since the discrete

boundary value problem:
h(a)

h(b)
Ah(zx)

Il Il
S ™ °

for all x € V\{a, z}

has a unique solution for any choice of a, 8 € R, voltages form a two-parameter family. The
flow cdh corresponding to any voltage h : V' — R is known as the corresponding current flow.
Given distinct vertices a,z € V, the effective resistance between a and z in G, denoted by
Rei(a < z;G), is given by: h2) — h(a)
z) — h(a
@ = 56) = e
where h is any nonconstant voltage. To see that this quantity is well- defined, just observed
that adding a constant doesn’t affect the voltage difference between a and z, h(z) — h(a), or the
current flow cdh. Similarly, multiplying h by a nonzero constant scales the voltage difference and
the strength of the corresponding current flow by the same factor, leaving the effective resistance

unchanged.

More generally, given disjoint sets of vertices A, Z € V, we can define a new network by iden-

10



tifying the vertices of A to a single vertex a and identifying the vertices of Z to a single vertex
z. Then the effective resistance Reg(A < Z; G) between A and Z in G, is given by the electrical

resistance between the vertices a and z in this new network.

In this paper, we will frequently need to bound effective resistances from above and below. To
do this, we will use the following pair of variational formulas. Dirichlet’s Principle allows us to

bound effective resistances from below by finding functions with small discrete Dirichlet energy:

Proposition 1.1.2 (Dirichlet’s Principle). If G = (V, E,c¢) is a finite network with distinct

vertices a, z € V then:

Resi(a < z;G) =Sup{5(1h) :h:V >R h(a) =0, h(z) = 1}

Thomson’s Principle allows us to bound effective resistances from above, by finding low- energy

flows:

Proposition 1.1.3 (Thomson’s Principle). If G = (V, E,c) is a finite network with distinct

vertices a, z € V then:
Regg(a © 2;G) = inf {£(0) : |0]| = 1, 0 is a flow from a to z}

Given f : V — R and A, B < V nonempty, disjoint sets of vertices, we define the quantity

gap 4 p(f) as follows:

gap a,p(f) = win f(b) — max f(a)

Recall Proposition 4.11 of [25] which tells us that:

Proposition 1.1.4. If G = (V, E, ¢) is a finite network, A, B € V are disjoint, nonempty sets of
vertices then for any flow 6 on G and any function f : V — R such that gap, z(f) = 0,

101 gapa 5 (f) < EO)2E(HY?

This inequality follows almost immediately from the Cauchy- Schwarz inequality on K%(E) Fur-
thermore, Dirichlet’s Principle and Thomson’s Principle can both be recovered cheaply as corol-

laries to this inequality.

1.2 Extremal Length and Planar Networks

Suppose G = (V, E, ¢) is a finite network and I' is a nonempty collection of paths in G. Then the

extremal length of the collection of paths I is given by the following variational formula:

2
AT, G) := sup o)

s (1.2.1)

11



where our supremum is taken over all nonzero metrics p: E — R3¢ and:

((p,T) :=min{) p(e) : v €T}, A(p) = Y ele)ple)?

eey eeE

Note that the quantity ¢2(p,T")/A(p) doesn’t change if we replace p by some scalar multiple \p
where A > 0. Thus:

2(p,T 1
AT, G) =supl (1) _ sup *(p,T)= sup —— =

-1
inf
» Alp) A(p)=1 z(p,r):1A(P) (l(pI):l

A(p))

The set of metrics p on G such that I(p,T") = 1 is referred to as the set of admissible metrics
and is denoted by A(T"). We say that a metric p on G is extremal for A(T',G) if A(T',G) =
I2(T,G)/A(p). Looking at the second equality above, we see that when we compute the extremal
length of the path family I', we are optimizing a continuous function, p ~— [%(p,T'), over the set
of p € RE such that A(p) = 1. This is a compact subset of R¥ with respect to the standard
topology on RE. Thus, in contrast to the continuous setting (see problem IV.9 of [22]), for a

finite network we always have an extremal metric.

This extremal metric is unique up to multiplication by a scalar. This follows by the same argu-
ment as the in the continuous setting: suppose that p; and ps are both extremal for A(T', G). First
we rescale so that A(py) = A(p2) = 1. Tt follows that I%(T, p1) = [*(T, p2) = AT, G). Consider
the metric v := £ (p1 + p2). Trivially,

(v, T) = = (Lp1,T) +1(p2, 1)) = /AT, G) = P*(I,v) = AT,G) (1.2.2)

N

On the other hand, by Cauchy- Schwartz, A(v) < 3 (A(p1) + A(p2)) = 1 with equality iff p; is a
scalar multiple of py. If A(v) < 1 then [?(v,T")/A(v) > A(T', G). This is not possible since \(T', G)
is the supremum of (?(p,T")/A(p) over all metrics p. Thus, ps is a scalar multiple of p;. Since

A(p1) = A(p2) = 1 we actually have that p; = po.

In all of the cases we're interested in, the path family I" will be the set of paths v in G that
start at a vertex of S and end at a vertex of T for S, T" nonempty disjoint subsets of V. We
denote the extremal length of this path family by A(S < T;G). It turns out that the quantity
A(S < T;@G) is precisely the effective resistance between S and T from the theory of electrical

networks:

Proposition 1.2.1. (Theorem 2 of [I8]) Suppose G = (V, E, ¢) is a finite network and S, T are
nonempty, disjoint subsets of V. Let I's 7 denote the set of nearest- neighbor paths in G that

start at a vertex of S and end at a vertex of T. Then:

AMDser, G) = Rea(S © T3 G)

12



One nice property of extremal length is blocking duality. Given, S, T nonempty, disjoint sets of
vertices in G, we say that a set F' < F is an S- T cut if F separates S from T in G. That is, if
we remove the edges of F' from G, there is no nearest- neighbor path in G starting at a vertex of

S and ending at a vertex of 7.

Let B(S,T;G) denote the set of S- T' cuts in G. Analogous to how we defined the extremal
length of a path family, we can talk about the extremal length of the set of S- T cuts in G. This
is denoted by A(S «» T'; G) and defined as follows:

A(S « T:G) = sup Elo, lil(fp’)T? G)

where our supremum is taken over all nonzero metrics p : E — R3¢, and:

(p, B(S,T;G)) = min{ } p(e) : F € B(S,T;G)}, A(p) = D] cle)ple)? (1.2.3)

eeF eeE
More generally, while we initially restricted our attention to path families so as to draw parallels
with the continuous theory, it is clear that if we let I' be any family of multisets of edges in G,
definition |1.2.1] still makes sense. Thus, we can actually talk about the extremal length of any
family of multisets of edges of G. For instance, the modulus of the set of spanning trees of a

network has been the subject of recent study [2].

A classic result of Ford and Fulkerson relates the extremal length of paths from S to T to
the extremal length of the set of S- T cuts:

Proposition 1.2.2. (Theorem 1 of [2I]) If G = (V, E, ¢) and H = (V, E,r) are finite networks so
that r : F — Ry is the resistance function corresponding to the conductance function ¢ : F —

R- and S, T are nonempty, disjoint sets of vertices in G, then:
AMS o T;G) - ANS<»T;H)=1

For a more modern treatment of this result as well as a generalization to the case of p- extremal
length, see [I]. This result is particularly useful in the case where our graph G is planar, in which

case we can identify the set of S- T cuts with path families in the dual graph.

A finite planar map is a finite planar graph (V, E) along with a proper embedding of this
graph into the Riemann sphere, viewed up to homeomorphism of the Riemann sphere. Specifying
a proper embedding of a graph in the Riemann sphere up to orientation- preserving homeomor-
phism is equivalent to assigning a coherent system of orientations to the edges about each vertex
(for details, see Section 1.1.2 of [I7]). Thus, despite the topology present in our initial definition,
planar maps can be viewed as purely combinatorial objects. Equivalently, we can think of finite

planar maps as gluings of polygons along edges so that the resulting topological manifold is a

13



sphere.

A quadrangulation with boundary is a bipartite planar map all of whose faces are quadrilat-
erals, with the possible exception of some finite number of distinguished faces which we think of
as “holes” in our planar map. Notice that requiring our planar map to be bipartite is equivalent
to asking that all of these “hole” faces have an even number of sides. Given a quadrangulation
with boundary G = (V, E), we refer to these distinguished faces as the exterior faces of G. The
remaining faces are called the interior faces of G. The edges and vertices tangent to the exterior
faces of G are known as the boundary vertices and edges of G. We denote these by ¢V and 0F.
A quadrangulation with boundary G = (V, E) is simply- connected if G has a unique exterior

face whose boundary is a simple, closed curve.

Since our quadrangulations are bipartite, we have a natural bipartition of the vertices V =
V* L Ve. The vertices of V* are known as the primal vertices of G and are typically colored
black. The vertices of V° are known as the dual vertices and are typically colored white. These
give rise to the primal and dual graphs G* = (V*,E*) and G° = (V°,E°). G* is formed by
connecting any pair of primal vertices that share an interior face in G. Similarly, G° is formed
by connecting any pair of dual vertices that share an interior face in G. Since the interior faces
of G are all quadrilaterals, each interior face corresponds to one primal and one dual edge. In

this way, there is a natural correspondence between the primal and dual edges.

Based on the paragraph above, it might seem that the setting we are working in is very re-
strictive. On the contrary, observe that this procedure of recovering a graph G* (and its dual
G°) from a quadrangulation G gives us a one- to- one correspondence between the set of quad-
rangulations with n faces and the set of planar maps with n edges (see Section 2.2.1 of [I7]). In
other words, restricting our attention to bipartite quadrangulations with k& holes is equivalent to
restricting our attention to embeddings of a graph and its dual in the Riemann sphere, up to
orientation- preserving homeomorphism, so that the resulting discrete object has the topology of

the Riemann sphere with k discs removed.

Given a quadrangulation with boundary G = (V* u V° E), a conformal metric on G is a
function ¢ : E* u E° — (0,0)) such that:

for e® € E°, e* € E*® so that e° is the dual edge corresponding to the primal edge e®. Let
¢* : E* - (0,00) and ¢® : E° — (0,0) denote the conductances on G* and G° produced by
restricting ¢ to £* and E° respectively. If 6 € ¢2 (E’) and f:V* —> R, we write:

£(0) = £(6;G*), ENf) = E(f:67)

14



to emphasize that these energies are being computed on the primal graph G*°. Similarly, given a

subgraph H of G*, we write:
E*0;H) = £(6; H), E(fiH)=E(f; H)

Given w € [2 (E_‘O)7 g:V° > R, and a subgraph H of G°, the quantities £°(w), £°(g), £°(w; H),
E°(g; H) are defined analogously.

A discrete conformal rectangle is a simply- connected, bipartite quadrangulation with bound-
ary endowed with a conformal metric ¢ : E* 1 E® — (0, 00) and four distinguished boundary points
A* B*,C*,D* € 0V*, listed in counterclockwise order: since our quadrangulation with bound-
ary is simply- connected, it has a unique exterior face f, so A®, B*,C*, D* must all lie along f.
Furthermore, having embedded our quadrangulation into the Riemann sphere, we can talk about

orientation.

The distinguished boundary points A®, B*,C*, D* € 0V* of our discrete conformal rectangle
give rise to primal boundary arcs [A®, B*],[C*, D*] < dV*. [A®, B*] refers to the set of pri-
mal vertices that lie along the counterclockwise path from A® to B*® along the boundary of f.
Similarly, [C®, D*] is the set of primal vertices that lie along the counterclockwise path from
C* to D* along the boundary of f. These primal boundary arcs have corresponding dual arcs
[B°,C°],[D°, A°] < dV° where [B°,C°] consists of the set of dual vertices that lie along the
counterclockwise path from B* to C* along the boundary of f. Similarly, [D°, A°] is the set of

dual vertices that lie along the counterclockwise path from D® to A® along the boundary of f.

We say that an S- T cut, F' € E, is minimal if for any edge e € F, F\{e} is no longer an
S- T cut.

Lemma 1.2.3. (Lemma VIII.1 of [I8]) If (G,c) is a discrete conformal rectangle with distin-
guished boundary points A®, B*,C*, D* € 0V* giving rise to primal boundary arcs [A®, B*],
[C*,D*] < 0V* with corresponding dual arcs [B°,C°],[D°, A°] < 0V°, then the set of minimal
[A®, B*]- [C*, D*] cuts in G* is in one- to- one correspondence with the set of simple paths from
[B°,C°] to [D°, A°] in G°.

When computing the extremal length of the family of paths between disjoint vertex sets S and

T in G, for a fixed metric p, we are interested in the quantity:
inf e
n {2 p( )}
eey

where our infimum is taken over all paths v in G between S and T'. Since any such path that isn’t
simple has a simple subpath of smaller p- weight, when taking this infimum, it actually suffices to

restrict our attention to simple paths v from S to T'. Similarly, when we compute the extremal
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length of the set of S- T' cuts in a network, rather than taking an infimum over all S- T cuts, it
suffices to restrict our attention only to minimal S- T cuts. Thus, as an immediate corollary of
Lemma [1.2.3] we have that:

Corollary 1.2.1. If (G, ¢) is a discrete rectangle with distinguished boundary points A*, B*,C*, D*® €
oV'* giving rise to primal boundary arcs [A®, B*],[C*,D*] < 0V* with corresponding dual arcs
[B°,C°],[D°, A°] < dV°, then:

(A", B*] « [C*, D*J; (G*,¢*)) = A([B°, C°] o [D°, A°J; (G°, )

Suppose G = (V* u V° FE) is a bipartite quadrangulation with boundary endowed with a con-
formal metric ¢: E®* 1 E° — R. We say that h: V* — R is harmonic on G* if h is harmonic on
Int(V*®) = V*\oVe°. I: V° = R is the harmonic conjugate of h on G if for any interior face f
of G, we have that:

(h(wa) — h(w1)) = ¢*(v1,v2) (h(v2) — h(v1)) (1.2.4)

where vy, w1, ve, wo are the vertices of f listed in counterclockwise order so that vi,vs € V'* and
wi,we € V°. Equation is a discrete analogue of the Cauchy- Riemann equations for a
quadrangulation with boundary G, endowed with a conformal metric. It is easy to check that the
conjugate of a harmonic function on G* is harmonic on G°. Additionally, since ¢ is a conformal
metric, if h is the harmonic conjugate of h, then h is the harmonic conjugate of h. The next two

propositions are well- known, though they are rarely stated in this generality:

Proposition 1.2.4. Suppose G = (V* 1 V° FE) is a bipartite quadrangulation with boundary
endowed with a conformal metric ¢: E®* u E° — R. If h: V* — R is harmonic on G*, then the

harmonic conjugate of h, if it exists, is unique up to an additive constant.

Proposition 1.2.5. Suppose G = (V* u V° FE) is a bipartite quadrangulation with boundary
endowed with a conformal metric ¢ : F* U E° — R and h : V* — R is harmonic on G*. Let
H = (VFuVg, Ey) be submap of G which is itself a simply- connected, bipartite quadrangulation

with boundary. Then A has a harmonic conjugate e Vg —Ron H.

Remark 1.2.2. Ford- Fulkerson duality is a general statement that holds for any finite network.
However, in the case of discrete rectangles, it has a particularly simple proof stemming from the
fact that if h is the function on V* that is equal to 0 on [A®, B*], 1 on [C*, D*] and is harmonic

elsewhere so that: .

A = \([4°,B*] < [C*,D*];G) = 0

, 3 on [D°, A°] and

is harmonic elsewhere. Furthermore, by the discrete Cauchy-Riemann equations, £°(h) = £°(h).

its harmonic conjugate / is (up to an additive constant) equal to 0 on [B°, C°]

Hence:
X2 (/X2 1

=M Ol D% AT 67) = (5o<%> S A
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1.3 Tilings of Rectangles

Suppose 2 < C is a Jordan domain with analytic boundary and distinguished boundary points
A, B,C, D listed in counterclockwise order. Let [A, B],[B,C],[C, D],[D, A] denote the closed
boundary arcs stretching counterclockwise from A to B, B to C, C' to D and D to A along 0.
Let (A, B),(B,C),(C, D), (D, A) be the corresponding open boundary arcs. Let T be the solution

to the following boundary value problem:

h(x) =0 for z € [B,C]
Ah(z) =0 for z € Q
h(z) = 1 for z € [A, D]
Onh(z) =0 for z € (B,C) u (D, A)

The existence and uniqueness of the solution to this problem is clear by conformal invariance.
Namely, if L is the extremal length from [A, B] to [C, D] in 2 and Ry := (0,L) x (0,1) then
there is a unique conformal map ¢ : Q — R, sending A, B, C, D to the corners of Ry. Since our
boundary value problem is conformally invariant, ?L(x) = Im(¢(z)). Furthermore, the conjugate

harmonic function h(z) = Re(¢(x)) satisfies:

h(z) =0 for x € [A, B]
h(z) = L for z € [C, D]
Onh(z) =0 for x € (B,C) u (D, A)

Thus, if we are presented with a Jordan domain Q with four distinguished boundary points
A, B,C, D listed in counterclockwise order and ¢ : Q — R is the conformal map that maps
A, B,C, D to the corners of Ry, we can intuitively think of the real and imaginary parts of this

conformal map as solving the aforementioned boundary value problems.

Suppose (G, ¢) is a discrete rectangle with distinguished boundary points A®, B*,C*, D* € dV*
listed in counterclockwise order, giving rise to primal boundary arcs [A®, B*],[C*,D*] < oV*
and corresponding dual boundary arcs [B°,C°],[D°, A°] € dV°. Let h be the solution to the

following boundary value problem on (G°,¢°):
() =0 for z € [B°,C°]

h
h(z)=1 forz e [D°, A°]
°h

A°h(xz) =0 for z € V°\([B°,C°] u [D°, A°])
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Let h be the solution to the following boundary value problem on (G*,c*):

h(z) =0 for z € [A®, B®]
h(z) =L for z € [C*,D"]
A*h(z) =0 for z € V°*\([A®, B*] u [C*®,D®)])

where L is the effective resistance between [A®, B*] and [C*®, D*] in (G*,¢*). Just as in the con-
tinuous setting, I is the harmonic conjugate of h. Since they are defined in terms of analogous
boundary value problems, the functions h and h on G are discrete analogues of the real and
imaginary parts of the uniformizing conformal map that takes a simply connected domain with
four distinguished prime ends to a rectangle so that the four distinguished prime ends are mapped

to the four corners of the rectangle.

Suppose (G, ¢) is a discrete rectangle with distinguished boundary points A®, B*,C*, D* € JV*
listed in counterclockwise order, giving rise to primal boundary arcs [A®, B*],[C*,D*] < oV*
and corresponding dual boundary arcs [B°, C°],[D°, A°] < éV°. Let h: V* - R, h: V° - R
be conjugate harmonic functions defined as above. For any interior face f of G with incident
vertices z,y, u,v where x,y € V*, u,v € V°, the image of f under the tiling map ¢ is defined as

follows:

$(f) = [h(), h(y)] x [7(w), h(v)]
where the order of x,y and u, v is chosen so that:

~

h(z) < h(y), h(u) < 7L(v)

As the name suggests, ¢ corresponds to a tiling of the rectangle R by smaller subrectangles:

Theorem 1.3.1. (Theorem 4.31 of [7]) Suppose ¢ is the tiling map associated with the discrete
rectangle (G, ¢) with distinguished boundary points A®, B®,C*®, D* € dV'* listed in counterclock-
wise order. Then for any pair of distinct inner faces f, f’ of G, the rectangles ¢(f) and ¢(f’) have

disjoint interiors. Furthermore, if Fj, is the set of interior faces of G,

U o) = [0.2] x [0.1]

f€Fin

Since h and h are conjugate, the aspect ratio of the rectangle ¢(f) corresponding to the face f
of G with incident vertices z,y € V* and u,v € V° is precisely the resistance of the primal edge

{x,y} € E* or equivalently, the conductance of the dual edge {u,v} € E°.
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1.4 Orthodiagonal Maps

Our reason for working in the level of generality that we did in Sections and was to
showcase the power of the theory of planar electrical networks. That said, if we want the discrete
harmonic and discrete holomorphic functions we're looking at to converge to the corresponding

continuous harmonic and holomorphic functions in the plane, we need to do two things:
1. Fix an embedding of our graph in the complex plane.
2. Pick a conformal metric that is tied to the geometry of this embedding.

With this in mind, an orthodiagonal map is a finite, bipartite quadrangulation with boundary
G = (V* uV°, E) with a fixed, proper embedding in the plane so that:

e Each edge is a straight line segment.
e Each interior face is a quadrilateral with orthogonal diagonals.

We allow non- convex quadrilaterals, whose diagonals do not intersect. We endow this with a

conformal metric ¢ : E* u E° — (0,00) defined as follows:

le
e

e(e*) = 1, (") =

for e® € E°, e* € E* so that e° is the dual edge corresponding to the primal edge e®*. For any
edge e € E* L E°, |e] is the length of the edge e in our embedding. Recall that E* and E° are the
edges of G* and G° respectively, not the edges of G. That is, they correspond to the diagonals

of interior faces of G.

To make it clear that the discussion that follows is not totally vacuous, observe that the square
lattice, the triangular lattice and the hexagonal lattice all have this property that primal and
dual edges are orthogonal. More generally, finite subdomains of isoradial lattices, which have
been widely studied in the context of critical statistical physics in 2D (i.e. see [33] and [15]), are
precisely orthodiagonal maps whose faces are all rhombii. Furthermore, as a consequence of the
double circle packing theorem, a wide variety of planar graphs admit an orthodiagonal embedding
(see Section 2 of [25]).

While our choice of conformal metric might seem strange at first, observe that if G is an or-
thodiagonal map with conformal metric ¢ as above:

e simple random walk on (G*,¢*) and (G°,¢°) is a martingale.

e as a Markov chain, simple random walk on (G*,¢*) and (G°,¢°) is reversible.

The orthogonality of edges and dual edges gives us a natural way to write down the Cauchy-

Riemann equations on an orthodiagonal map. Namely, a function F': V* u V° — C is said to be
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discrete holomorphic if for every interior face @) of G with primal diagonal e®* = {v;,vs} and

dual diagonal e® = {w;,wy} we have:

F(vy) — F(v1) _ F(wz) — F(w1)

(1.4.1)
V2 — V1 W2 — W1

From this definition it follows that:

e discrete contour integrals vanish if the integrand is discrete holomorphic. That is, if F is
discrete holomorphic on G and 7 is a simple, closed, directed curve in G so that the faces

of GG enclosed by + are all interior faces of G, then:

Z (Flem)+ F(e"))(et —e7) =0

e the real and imaginary parts of any discrete holomorphic function are harmonic with respect
to the edge weights ¢* and ¢°. That is, Re(F)|y-, Im(F)

Re(F)|ve, Im(F)|yo are harmonic on (G°,¢°). Moreover, Im(F)|y. is the conjugate har-

v+ are harmonic on (G*,¢*) and

monic function of Re(F)|y« and Re(F)|yo is the conjugate harmonic function of Im(F)|y-.

In short, orthodiagonal maps provide us with a notion of discrete complex analysis.
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Chapter 2

Orthodiagonal Maps, Tilings of
Rectangles and their Convergence

to Conformal Maps

In this Chapter, we’ll deliver on our promise in Section [0.2] and show that the tiling maps asso-
ciated with finer and finer orthodiagonal approximations of a simply connected domain 2 with
four distinguished boundary points, converge to the conformal map that sends 2 to a rectangle,
so that the four distinguished boundary points of 2 are mapped to the four corners of the rect-
angle. Our approach will follow the framework we laid out in Section for proving discrete
holomorphic observables converge to their continuous counterparts. Before we do this, however,
we first need to introduce the terminology to make this precise. In particular, we need to specify
what it means for an orthodiagonal map with four distinguished primal boundary vertices to be

close to a simply connected domain 2 with four distinguished boundary points.

2.1 Orthodiagonal Approximations of Planar Domains

An orthodiagonal rectangle is an orthodiagonal map G with a unique distinguished outer face
whose boundary is a simple, closed curve with four distinguished boundary points A®, B*,C*, D* <
0V'* listed in counterclockwise order. As in the case of discrete rectangles, these give rise to pri-
mal boundary arcs [A®, B*],[C*, D*] and corresponding dual arcs [B°,C°],[D°, A°]. Given an
orthodiagonal map G, let G denote the subdomain of C formed by taking the interior of the union
of the faces of G.

Suppose 2 is a connected, proper subdomain of C. v € Q is a crosscut of Q if v = 7([0, 1])
for some injective, continuous function 7 : [0,1] — Q such that 7(0,1) < Q and 7(0),7(1) € Q
where 7(0) # n(1). If v is a crosscut of Q, O\ has two connected components. By the Jordan
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Figure 2.1: An orthodiagonal rectangle with distinguished boundary arcs [A*, B*], [C*, D*] and
corresponding dual arcs [B°, C°], [D°, A°].

curve theorem, the same is true of Q\7y when ~v is a simple, closed curve in . Given disjoint
subsets A, B € ) we say that a simple closed curve or crosscut v separates A and B in  if

ynA=vnB=¢ and A and B lie in distinct connected components of Q\~.

Fix zo € Q. For any z,w € Q\{zp}, their Carathéodory distance with respect to the ref-

erence point zg is given by:

dg. oz, w) := inf{length(~) : v is a simple closed curve or crosscut that separates z and w from
dy... is a metric on Q\{z} that is locally equivalent to the usual Euclidean metric. The

Carathéodory compactification Q* of Q is the completion of Q\{z} with respect to dg,,.,
As a topological space, the Carathéodory compactification 2* is independent of our choice of
reference point zp € Q. 0Q* is known as the space of prime ends of 2. The prime ends of
can be interpretted geometrically as equivalence classes of chains of open sets in €2 converging to
a point on the boundary. For details, see Section 3.1 of [6] or Section 2.4 of [45]. Given disjoint
subsets A, B € 0Q*, we say that a crosscut « of  joins A and B in € if one of the endpoints of
~ lies in A and the other lies in B. If A € Q, B < 0Q*, we say that a crosscut v of Q joins A
and B in Q if An vy =, A is contained in one of the two connected components of Q*\~y, and

B intersects the connected component of Q*\~v containing A.

If Q1,Q- are proper, connected subdomains of C and ¢ : 3 — ()5 is conformal, then ¢ ex-
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tends to a homeomorphism ¢ : QFf — Q. This tells us that, from the standpoint of complex
analysis, the space of prime ends is the right notion of boundary for a proper, connected sub-
domain of C. In particular, if Q < C is simply connected, and ¢ : £ — D is the uniformizing
conformal map that maps €2 to the unit disk, we have the following estimates for the modulus of

continuity of ¢ and ¢~! with respect to the Carathéodory metric:

Proposition 2.1.1. Suppose 2 < C is a bounded simply connected domain, zy € 2 and ¢ : 2 —
D is a uniformizing conformal that maps € to the unit disk so that ¢(z9) = 0. Then there exists

an absolute constant C; > 0 such that for any x,y €

16(y) — 6()] < Cyy | Lara(®:)

9 (z0)] 21.1)

If additionally we know that 2 is bounded, there exists an absolute constant Cs > 0 such that

for any z,y € D, we have that:

Area(Q)

80 (07 (@), 07 (y)) log (=)
lz—y]

N

Cy (2.1.2)

The modulus of continuity for ¢ in Equation m is a consequence of Beurling’s estimate (see
Proposition 3.85 of [38]). The modulus of continuity for ¢—1 follows from Wolff’s lemma (see
Proposition 2.2 of [45]). As a consequence, if Q < C is simply connected, 2* is homeomorphic to
the closed unit disk D and the space of prime ends ¢Q2* is homeomorphic to S'. If x,y € 0Q* are

prime ends, let [z,y]sq+ denote the arc along 0Q* that travels from z to y, counterclockwise.

A conformal rectangle is a bounded, simply connected domain §2 along with four distin-
guished prime ends A, B,C, D, listed in counterclockwise order. Recalling our discussion in
Section given a conformal rectangle (2, A, B,C, D) and a sequence of orthodiagonal rect-
angles ((Gn, Ay, By, Cr, D,'L))f=1 that are better and better approximations of (2, 4, B, C, D),
we want to show that the associated tiling maps converge to the conformal map from € to a
rectangle Ry so that the prime ends A, B,C, D are mapped to the four corners of R, where
in particular, ¢(A) = i. This of course begs the question: what does it mean for an orthodiag-
onal rectangle (G, A*, B*,C*,D*) to be a good approximation of (2, A, B,C, D)? One natural
requirement is that the boundary arcs [A®, B*], [B°,C°], [C*, D*], [D°, A°] of G should be close
to the corresponding continuous boundary arcs [A, Blaax, [B,Cloax, [C, D]sax, [D, Aloq+ of
Q. To be precise, since the Carathéodory metric is the right notion of distance for a general
simply connected domain, a natural requirement is that the discrete boundary arcs are close to
the corresponding continuous boundary arcs in Carathéodory metric. However, to define the
Carathéodory metric, we need to introduce a reference point, which a priori isn’t part of our
setup. To avoid this, we will instead use a closely related quantity, whose definition doesn’t

require the introduction of a reference point.
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For any z € Q\v, let N2 denote the component of Q\y containing z. Let S,S" be disjoint
compact subsets of dQ*. Then for any z € Q*, we define the crosscut distance d'’(z, S, S’)

from z to S, away from S’ in Q, by:
de(2,5,8') := inf{length(y) : v is a crosscut of Q that separates z from S’ such that Nz n S # &5}

where /\Tj is the closure of N,f with respect to the Carathéodory metric. Similarly, for a compact

subset C of Q*, its crosscut distance to S, away from S’ is given by:

dL(C, S, 8" :=supdil(z,S,S")
zeC
The supremum on the right hand side is actually a maximum. To see this, observe that d*.(z, S, S’)
is locally Lipschitz as a function of z. Namely,

(2, 8,8") — dL(w, S,S")| < 2dq(z,w)

C

where:

dq(z,w) := inf{length(y) : 7 is a smooth curve from z to w in Q}

In particular, if the line segment from z to w is contained in 2, we have that:
|d?c(z> S> S/) - d?c(w’ S’ Sl)' < 2|Z - w'

Given a conformal rectangle (2, A, B, C, D), we say that the orthodiagonal rectangle (G, A*, B*,C*, D*®)
is a (J, €)- good interior approximation of (2, A, B,C, D) if G c Q, le| < ¢ for all edges

e€ F, and:

d?c([A., B‘], [A, B]aQ*, [C, D]ag*) < (5, d?c([C‘, D.], [C, D]aQ*, [A, B]gQ*) <9
d?c([Bo7 00]7 [B, C]ag*, [D7 A]ag*) < (57 d?c([Do, AO], [D, A]ag*7 [B, C]ag*) <4

In Section we defined the tiling map associated with a discrete rectangle. Without a fixed
embedding, the faces of a discrete rectangle are purely combinatorial objects. Having fixed an
embedding, the faces of an orthodiagonal rectangle are honest- to- goodness subsets of the plane.
Hence, we can think of the tiling map ¢ associated with an orthodiagonal rectangle G, as a func-
tion ¢ : G — C. We do this by choosing for each interior face f a homeomorphism that maps the
quadrilateral f to the corresponding rectangle ¢(f). Unfortunately, this means that the tiling
map ¢ : G—-C depends on our choice of homeomorphism. There is also some ambiguity as to
the definition of ¢ on the edges of GG, since each edge is shared by two distinct faces. That said,
by the regularity estimates in Section we’ll see that this isn’t a concern, since our choice of

homeomorphism doesn’t impact the convergence we are looking for.
Having established all the requisite terminology, we can now state precisely the main theorem we
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intend to prove:

Theorem 2.1.2. Suppose (2, A, B, C, D) is a conformal rectangle and ((Gn, AL, By, Cr, D'))ZO:1

n

is a sequence of orthodiagonal rectangles so that for each n € N, (G, A%, By, C*, D?) is a (0, &n)-

good interior approximation of €2, where:
(0ny€n) — (0,0) asn — o0

Let ¢, : G, — [0, L] x [0,1] be the corresponding tiling maps, where L,, is the discrete extremal
length between [A?, Br] and [Cr, Dp] in G?,. Then:

¢n — ¢ uniformly on compacts as n — o0

where ¢ is the conformal map from 2 to the rectangle (0,L) x (0,1) so that the prime ends
A, B,C, D are mapped to the four corners of the rectangle and in particular, ¢(A) = i. Here, L
is the extremal length between the arcs [A, Blaoa+ and [C, D)oo+ in . In particular, it follows
that:

L,—L asn— o

2.2 Precompactness of the Tiling Maps

To prove Theorem following the framework outlined in Section we need to show that
tiling maps corresponding to finer and finer orthodiagonal approximations of a conformal rectan-
gle (2, A, B,C, D) are equicontinuous and uniformly bounded on compacts in 2. In this section,

we address this by proving estimates for the norm and modulus of continuity of our tiling maps.

For both the norm and modulus of continuity, when doing this, we begin by proving the cor-
responding result in the continuous setting. The proof in the continuous setting motivates the
proof in the discrete setting. Furthermore, we will need the continuous analogues of our tiling

map estimates in the proof of Theorem ?? in Appendix ?7.

2.2.1 Modulus of Continuity for the Limiting Conformal Map

Suppose (2, A, B,C, D) is a conformal rectangle. Using the notation of Section if z,w € €,

d?c('z?w) = min{d?c({sz}7 [Av B](?Q*; [Cv D](‘J‘Q*)a d?c({z7w}7 [B7 C]f)Q*? [D7A]6Q*)7
d?c<{sz}’ [07 D](‘?Q*; [Av B](?Q*)a d?c({sz}v [DvA](')Q*; [Bv C]&Q*)}

In other words, d..(z,w) is the length of the shortest crosscut of € that joins z and w to one

boundary arc of (2, A, B, C, D) and separates them from the opposite boundary arc. Recall that
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for z,w € Q,
dq(z,w) = inf{length(y) : 7 is a smooth curve from z to w in Q}

That is, dg is the ambient metric on 2. Let ¢ : Q — R be the conformal map from 2 to the
rectangle R, such that the four prime ends A, B, C, D of , listed in counterclockwise order, are
mapped to the four corners of Ry, and in particular, ¢(A) = i. The following theorem gives us a

modulus of continuity for the real and imaginary parts of ¢ and therefore ¢ itself:

Theorem 2.2.1. Suppose (Q, A, B,C, D) is a conformal rectangle and ¢ : @ — Ry be the
conformal map from € to the rectangle Ry so that the four prime ends A, B,C,D of € are
mapped to the four corners of Ry and in particular, ¢(A) = i. Here, L is the extremal length
between the boundary arcs [A, B]sgx and [C, D]sqx in 2. Define:

d = inf{length(v) : v is a crosscut of Q joining [A, Blsqx and [C, D)o+ in Q}
d' = inf{length(v) : 7y is a crosscut of Q joining [B, Clsqx and [D, A]sqx in 0}

Let h and & be the real and imaginary parts of ¢, respectively. Then for any =,y € 2 we have
that:
27 ~ ~ 27 L
Ihy) — h()] < : N RO :
tog (e ) log (s )

Proof. As per the theorem statement, let h be the real part of ¢. Fix x,y € Q. If h(z) = h(y),
the desired result holds. Otherwise, suppose WLOG that h(z) < h(y). We now consider two cases:

Case 1: dq(,y) < dL(z,y).

Consider the region:
Qpy={2€Q:h(z) <h(z) <h(y)}

This is simply connected. Furthermore, since ¢ maps € to the rectangle (0, L) x (0,1), ¢ maps
Qg 4 to the rectangle (h(x), h(y)) x (0,1). Thus, if we think of €2 , as a conformal rectangle with

the distinguished boundary arcs:

N =02, A [D, Alsos, E={:c9:h(:) = h(y))
S =5, n|[D,Alsqx, W={2€Q:h(z)=h

Here N, E, S and W stand for “North,” “East,” “South,” and “West.” This is to emphasize that
our picture is as follows:

In summa:
AW < E;Q) = h(y) — h(z)
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h=L
h

u

B voo  C

Figure 2.2: The subrectangle €2, , associated with a pair of points x and y in the conformal
rectangle (2, A, B,C, D).

Having reinterpreted the quantity we’re interested in as an extremal length, we can bound it from

above by bounding the dual extremal length from below.

Fix € so that 0 < ¢ < %/ —dg(z,y). By the definition of dg(x,y), we can find a smooth curve
in Q from z to y so that length(v) < do(z,y) + . Since x and y lie on opposite boundary arcs
of Q ,, while v may not be a crosscut of €, ,, there must exist a subarc 4" of v with endpoints

' € W,y € E so that 7/ is a crosscut of €, ,. Consider the annulus:
d/
A={ueC:dg(z,y)+e<|u—21']< 5}
where:
d' = inf{diam(y) : v is a curve joining [B, C]sqx and [D, A]sqx in 2}
Observe that:

1. Since length(y’) < length(y) < do(z,y) + €, the diameter of 4’ is at most do(x,y) + €.
Hence, 7' < B(2',dq(x,y) + €). Since 7' separates the boundary arcs N and S in €, ,, any
path from N to S in €, , must intersect 7’ and therefore B(z', do(z,y) + ¢).

2. On the other hand, since any curve from N to S in €, , is a curve from [B, C] to [D, A] in
2, such a curve must have diameter > d’. Hence, any curve from N to S in €, , must at

some point lie outside the ball B(a’, %’)

Putting all this together, we see that any curve from N to S in €, , must cross the annulus A.
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Consider the metric:
1
= —— 14~
p(z) A ., (2)

on Q, ,. Observe that if n is a C! curve that crosses the annulus A at least once, then:

|dz| r'/“' dr d
l = J- = =log | ——
p(n) n |Z - 1./‘ do(z,y)+e T . <2(dﬂ($7y) + 5)>

Furthermore:

1 2m rd'/2 d
A = J ———dzdze < J dz dzg = J f fdrdG =2rlog | —+—
(p) AnQg y |Z - l‘/‘ e AnQg g |Z - Z‘ e (z,y)+e T 5 (Q(dﬂ(xay) + 5))

Hence, plugging p into the variational problem for A(N < S;€Q, ,) we have that:

it (0)° (1o ()

U
=—1o d

T st () 7 i 79

AN = 8;Q,,) =

By duality for continuous extremal extremal length:
AW - E;Qyy) - AN o S;Q,,) =1

Hence:
2T

d/
log (Z(dn(x,y)+e)>

Since € > 0 was arbitrary, letting ¢ tend to 0 in the above inequality, the desired result follows.

AN © 5;Q, ) <

Case 2: d'}(z,y) < do(z,y)-

Fix € so that 0 < e < %, — d2(x,y). By the definition of d..(,y) we can find a crosscut 7 of {2
that joins x and y to one of the four distinguished boundary arcs of (Q, A, B, C, D) and separates
it from the opposite boundary arc, such that length(y) < d%(x, ) +¢. We now split our problem
into two further cases, depending on whether the relevant boundary arcs of (2, A, B,C, D) are

Dirichlet arcs where h is constant, or Neumann arcs along which A is monotone.

Case 2.1: « joins = and y to one of the Dirichlet arcs and separates it from the opposite Dirichlet

arc.

WLOG, suppose that v joins z and y to [A, Bloa+ and separates z and y from [C, D]sqx. Let
N7, denote the connected component of Q*\~ containing z and w. By the maximum principle
for harmonic functions,

sup h(z) = maxh(z)

26NZ 2€Y

28



Let v be a point of v so that:
h(v) = max h(z)

zEY

Since 0 < h(z) < h(y) < h(v), it follows that:
h(y) = h(z) < h(v)

Consider the region:
Q, ={2€Q:0<h(z2) <h(v)}

¢ maps ), to the rectangle (0,h(v)) x (0,1). Thinking of €2, as a conformal rectangle with the

distinguished boundary arcs:

N = Q;’: (@) [D,A]ag* E= Qj N [A, B]ag*
S = Q% n[B,Claax W ={zeQ:h(z) =h(v)}

it follows that:
A(W < E; Qv) = h(’l})

Similar to case 1, having reinterpreted h(v) as an extremal length, we can bound it from above

by bounding the dual extremal length from below.

Since v € W and v lies along a crosscut v of Q that starts and ends along [A, B]sqx, there
must exist a subarc 7’ of 7 of length at most £ (d%(z,y) + ¢) travelling from E to W and thereby
separating N and S in €,. Let v’ be the endpoint of 4" that lies in W. Consider the annulus:

ds? d’
A:{uec;%qu—ukg}

Just as in case 1:

Q Q Q
e Since length(y') < w, the diameter of 7/ is at most %. Hence, v < B(v/, W)
Since v/ separates the boundary arcs N and S in Q,, any path from N to S in Q, must

Q
intersect 7" and therefore B(v’, %)

e Since any curve from N to S in Q, is a curve from [B, Claqx to [D, Alsa+ in ©,, such a
curve must have diameter > d’. In particular, any such curve must at some point lie outside
the ball B(v/, £).

Putting all this together, we conclude that any curve from N to S in £, must cross the annulus
A at least once. Hence, by the same argument as in case 1, plugging the metric:
1

—1
|Z _ ’U/| AnQ, (Z)

p(z) =
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into the variational problem for A(N < S;€,), we have that:

1 d
AN & 5;Q,) = —1 _—
( 55 $t) or 8 (dcc(at,y) + 5)

By duality for continuous extremal length:
AW o E; Q) - A(N < S;Q,) =1

Hence:
2

d’
IOg ( dcc(w7y)+5)

Since € > 0 was arbitrary, letting ¢ tend to 0 in the above inequality, the desired result follows.

h(y) — h(z) < h(v) <

Case 2.2: v joins z and w to one of the Neumann arcs and separates it from the opposite

Neumann arc.

WLOG, suppose that v joins z and y to [B, Csq+ and separates x and y from [C, D]sqx. Let
N7, denote the connected component of 2*\y containing z and y. By the maximum principle

for harmonic functions,

sup h(z) = maxh(z), inf h(z) = minh(z)

2eN z&y 2eN; , zEY
Let u, v be points of v so that:
h(u) = IglEI’Iyl h(z), h(v) = max h(z)
Since h(u) < h(z) < h(y) < h(v), it follows that:
h(y) = h(z) < h(v) = h(u)

Consider the region:
Qyo={2eC:h(u) <h(z) <h(v)}

¢ maps 2, , to the rectangle (h(u), h(v)) x (0,1). Thinking of €2, , as a conformal rectangle with

the distinguished boundary arcs:

N =Q5 , 0 [D, Alagx E={zeQ:h(z) =h(v)}
S=Qy , n|[B,Claox W ={2€Q:h(z) =h(u)}
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we have that:
AW — E; Q) = h(v) — h(u)

Thus, to get an upper bound for h(v) — h(u) and therefore h(y) — h(z), it suffices to bound the

dual extremal length A(N < 5;€Q,,) from below. Observe that:

e Since u and v both lie along a crosscut of Q of length at most dS%.(z,y) + ¢ and u € W,

w € E, we can join W and E by a crosscut of Q,,, of length at most d%(z,y) + ¢.

cc

e Since any curve from N to S in Q, , is a curve from [A, D]sox to [B, Clsqx in £, such a

curve will have diameter > d'.

Putting all this together, by the same argument as in case 1, verbatim, it follows that:

1 d’
AN o S§5Q,,) = —1 —_—
( 55 u) o 08 (2(d?c(a:,y) +5))

Hence:
2

d/
log (2(d?c(x,y)+5))

Letting € tend to 0 in the above inequality, the desired result follows. The analogous estimate for

h(y) — h(z) < h(v) — h(u) <K AW < E;Q,.,,) <

I follows by the same argument. O

2.2.2 Modulus of Continuity for Tiling Maps

Suppose (G, A*, B*,C*, D*) is an orthodiagonal rectangle and let % be the unique solution to the

following boundary value problem on G°:

h(z) =0 for all z € [D°, A°]
h(z) =1 for all z € [B°,C°]
AT(z) = 0 for all z € VO\([D°, A°] U [B°, C°])

Let A be the solution to the following boundary value problem on G*:

h(z) =0 for all x € [A®, B*]
h(z) =L for all z € [C*, D"]
A°h(z) =0 for all x € V*\([A®*,B*] U [C*,D°])

where L is the effective resistance between [A®, B*] and [C'*, D*] in G*. h and h are the conjugate
discrete harmonic functions that correspond to the real and imaginary parts of the tiling map
o : G — (0,L) x (0,1). In this section we will prove regularity estimates for h and h analogous
to the regularity estimates we proved for the corresponding conformal map in Section [2.2.1] We
do this by adapting our argument in Section to the discrete, orthodiagonal setting. To do
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this, we first need to establish the following lemma which gives us an estimate for the gradients

of h and h across an edge:

Lemma 2.2.2. Suppose (G, A*, B*,C*, D*) is an orthodiagonal rectangle so that the edges of G
all have length at most . Let I be the unique solution to the following boundary value problem

on G°:

h(z) =0 for all z € [D°, A°]
h(z) =1 for all z € [B°,C°]
A°h(z) = 0 for all z € V°\([D°, 4°] U [B°,C°))

Let i be the harmonic conjugate of T which solves the following boundary value problem on G*:

h(z) =0 for all x € [A®, B*]
h(z) = L for all x € [C*, D*]
A*h(z) =0 for all z € V*\([A®*,B*] v [C*,D*])

where L is the effective resistance between [A°®, B*] and [C*, D*] in G*. Define:

d = inf{diameter(7) : v is a curve in G from [A®, B®]a% to [C*, D*] a4}

d' = inf{diameter(y) : v is a curve in G from [B®, C®l g% to [D*, A%] au )

Ife < ddel, there exists an absolute constant K > 0 so that if z,y € V'* are neighboring edges in

G* and u,v € V° are neighboring edges in G°, then:

~ ~ KL
i)~ )l < 3

Proof. Suppose (G, A*, B*,C*,D*®) is a orthodiagonal rectangle with edges of length at most ¢

K
h(y) — h(z)] < log (Z)

and h : V* — R be the solution to the Dirichlet- Neumann problem on this orthodiagonal map
that is 0 on [A®, B*], L on [C*, D*] and harmonic elsewhere, where L is the discrete extremal

length from [A°®, B*] to [C*, D*] in G*. Define:

= max |h(y) — h(z
xi= masx |h(y) ~ h(a)

If x = 0, we're done. Otherwise, select neighboring vertices x,y € V* so that (h(y) — h(z)) = x.
Consider the sets S, and S, defined as follows:

Sy i ={2€V*:h(z) < h(z)} Sy i={2eV*:h(z) = h(y)}

By the maximum principle for harmonic functions, S, S, and V*\(S; u S,) are all connected
subsets of G*. Furthermore, [A*,B*] < S,, [C*,D*] < S,. Let H = (V3 u Vg, Ex) be the
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suborthodiagonal map of G formed by gluing together all the faces of G that are incident to
at least one vertex of V*\(S; u Sy). By the maximum principle, H is simply connected with a

unique, distinguished exterior face. Moreover, let:
0°* =5, ndVy, W?* =5, noVg
Then O® and W* are primal boundary arcs of H with corresponding dual arcs:
N°¢:=[B°,C°] ndVy, S :=[D°, A°] n Vg

Similar to the proof of Theorem N, O, S and W stand for ”North,” ”Orient,” ”South,”
and ”West.” We’d have used E for "East,” however in the discrete setting, F is already being
used to denote the edges of G. Proposition tells us that for any function ¢ : V3 — R with
gapos 1w+ (9) = 0 and any flow § from O® to W* in H*:

strength(6) - gapo. - (9) < €°(6; H)'/E° (g; H)?

Plugging g = h into the inequality above, we have that for any choice of flow 6 from O® to W*
in H*:
5-(97 H)1/2g.(h,, H)1/2

strength(6)

X = |h(y) = h(z)| <

By Thomson’s principle, taking the infimum over all flows 6 from O® to W* in H* in the expression
on the RHS, we have that:

X < E°(h; H)'2 - NO® & W H*)'/?

In Section we saw that £°(h) is the total area of rectangles in the tiling associated with
the orthodiagonal rectangle (G, A®, B*,C*, D*). Hence, by the definition of H, the restriction
E°(h; H) is the total area of rectangles in our tiling that intersect (h(z),h(y)) x (0,1). Since
|h(y) — h(z)| = x and any rectangle in our tiling has width at most Y, it follows that:

E°(h;H) < 3x

Hence:
X <3AO0°* - W* H®) (2.2.1)

By duality:
A(NO <> SO;HO) . A(O' > W.;H') — 1

Thus, to bound A(O® < W*; H*) and therefore y from above, it suffices to bound the dual ex-
tremal length A(V° < S°; H®) from below. We will do this by picking by picking a good metric
to plug into the variational problem for A\(N° < S°; H®).
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Consider the metric p : EY; — [0,0) defined as follows:
o |dz|
pler) = | %

e |2 — |

for e° € EY contained in the annulus A = {z : 4¢ < |z — 2| < %}, where we think of e as a
line segment in the plane. If e° is not contained in A, then p(e°) = 0. Let {u,v} € E% be the

dual edge corresponding to the primal edge {x,y}. Observe that:

1. By Lemma [1.2.3] minimal O°®- W* cuts in H® correspond to simple paths from N° to S°
in H° and vice versa. Since {z,y} joins O® and W*, this edge is part of any O°*- W* cut.
Hence, any path from N° to S° in H° must use the edge {u,v}.

2. Any path from N° to S° in H® is a path from [D°, A°] to [B°,C°] in G°. Using the notation
in the statement of Lemma [2.2.2] it follows that the diameter of any such path is at least
d.

By |1} since {u,v} < B(%’y,éls), any path in H° from N° to S° must at some point lie in the
bounded component of (C\VZ By |2} any path in H° from N° to S° must at some point lie in the
unbounded component of (C\/T Putting all this together, we conclude that any path from N°
to S° in H° crosses the annulus A at least once. If v is a piecewise C! curve that crosses the

annulus {z : 7 < |z — 29| < R} at least once, where zp € C, R > r > 0, then:

d R
L |z|z,|20 > log ()

If v is a path from N° to S° in H°, we know that 7 must cross the annulus A at least once.

However, when doing this, it is possible that v uses edges of EY, that are not entirely contained
in A and so have zero mass with respect to p. Since edges of G all have length at most ¢, edges

of G° all have length at most 2e. Thus, we can be sure that all of the edges e° € EY}; that we use

when crossing the slightly smaller annulus {z : 6 < ’z - % < %/ — 2¢} do indeed have positive
mass. Hence: ] g4
z —4e
) = | — s = 1og ( )
o(7) L BT A GT™

Let Fyn(H) denote the set of inner faces of H. Given an inner face Q € F;,(H), let eg) € B}y, eq, €
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L%, denote the primal and dual diagonals of (). Next, we estimate the area of the metric p:

e ldz|  \? le*] le°]? @ Area(Q)
Alp) = 2 |€o|< m) o o] minls — 2 <2 2 min|o — T2
e°eEy, e 2 e°cEY 2€e0 2 QEeF;,(H) 2eQ 2
p(e?)>0 p(e?)>0 p(eg)>0
(39) f (319 1
< 2 P ledZQ < QJ\ ledZQ
QGFZ - +"I 2¢)? se<le- < g 4o (|2 — Y] - 2¢)?
eQ >0

L e s L —¢ 1 4 ¢ 1
= 47TJ ——ds = 4’7TJ‘ —du + 87r5J —du
3e (S - 25)2 e U e U2

F—2 1 2
:47T10g(d - E)+87TE(€—(d,_25))

& —2
<47rlog( €>+87r
19

In the calculations above:

e (i) follows from the trivial observation that miél |z — 22| < min [z — ZFY], as well as the
z€E z€eg

fact that for any inner face @ of H, since @) is a quadrilateral with orthogonal diagonals,
Area(Q) = ey leg.

e (ii) follows from the fact that for any inner face Q of H, since the edges of @ all have length

at most €, Q has diameter at most 2¢. Hence, |z — Z%| — 2¢ < mig |z — Z5Y| for any z € Q.
z€E

e (iii) follows from the fact that if p(eg) > 0 for some inner face @ of H, this means that
the diagonal e, is contained in the annulus A. Since the corresponding primal diagonal
eg, has length at most €, any point of @ lies in an e- neighborhood of eg,. In particular,
any inner face @) of H such that p(e‘é) > 0 is contained in the slightly larger annulus
{z:3e<|z— Y| < ——I—E}

Since d’ > 16¢, it follows that:
U 4

A(p) < 4mlog (d ;2€> + 871 = log (d;)

If v is a path from N° to S° in H®, using the fact that d’ > 16¢:

o (2) = ()

Putting all this together, we have that:

() d
NO<—> O.Ho >~ f P > ] -
A( S H?) in A(p)wog(é_)
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where our infimum is over all paths v in H® from N° to S°. By duality,

L] L] L] 1 d/
MO™ = WHHY) = S o 5oy =18 (2)

Plugging this into Equation the desired result follows. The corresponding estimate for I3

follows by the same argument. O

Having established our estimate for the gradient of h and T across an edge, we are now ready to

state and prove the discrete analogue of Theorem 2.2}

Theorem 2.2.3. Suppose (G, A*, B*,C*, D*) is an orthodiagonal rectangle with edges of length
at most ¢ and let h and h be the real and imaginary parts of the associated tiling map. That is,

T is the unique solution to the following boundary value problem on G°:

h(z) =0 for all z € [D°, A°]
?L(CL‘) =1 for all z € [B°,C°]
A°h(z) = 0 for all z € V°\([D°, A°] U [B°,C°])

and h be the harmonic conjugate of h which solves the following boundary value problem on G*:

h(z) =0 for all z € [A®, B®]
h(z) = L for all x € [C*, D*]
A*h(xz) =0 for all z € V*\([A®*, B*] U [C*,D°])

where L is the effective resistance between [A°*, B*] and [C*, D*] in G*. Define:

d = inf{diameter(vy) : v is a curve in G joining [A*, B®],z and [C*, D*]

}
d' = inf{diameter(y) : v is a curve in G joining [B*, C*],g and [D*, A%]. 5}

D
(o)

O

Then there exists an absolute constant X > 0 so that:

- KL
h log( d )

(da(u,v) /\dcac(u,v)) Ve

K -
|h(y) - h(ﬁ?)‘ < o ( dL )7
& \(dz(@y) ndB (wy))ve

for any z,y € V*, u,v € V° such that . In particular, in the bulk (when |x—y| < dist(z, 6@), dist(y, 6@)
and |u — v| < dist(u, 0@), dist (v, 0@')), we have that:

K ~ ~ KL
h(y) — h(z)| € ————, h(u) —h(v)|] < —————
106) o) < s i) =R < o s

A slightly weaker estimate (with 4/log(-) in place of log(:)) is proven in [3] in the case where

our orthodiagonal rectangle (G, A®, B*,C*, D*) is a good approximation of a conformal rectangle
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(Q,A,B,C, D) where Q is a Jordan domain and [A, Blsq, [B, Claq, [C, D]oa, [D, Alsq are ana-
lytic arcs that don’t meet at cusps. In the context of [3], “good” means that the edges of G
have length at most € and discrete boundary arcs are d- close to the corresponding continuous

boundary arcs in Hausdorff distance for some small €, § > 0. For more details, see Theorem 3 of [3].

We should also point out that while the estimates for the modulus of continuity of h and n
in Theorem [2.2.3| are novel for points near the boundary of G, even when our orthodiagonal map
is just a chunk of the square grid, in the bulk we can do significantly better. Namely, in [I4],
Chelkak, Laslier and Russkikh show that bounded discrete harmonic and discrete holomorphic
functions on t- embeddings whose corresponding origami map is k- Lipschitz on large scales for
some « € (0,1), are S- Holder in the bulk for some absolute constant 3 € (0,1) (see Proposition
6.13 of [I4]). The condition on the origami map here is known as “Lip(k,d)” where § > 0 is the
scale on which our origami map is k- Lipschitz. ¢- embeddings are a more general class of graphs
embedded in the plane that accommodate a notion of discrete complex analysis. That is, every
orthodiagonal map is a t- embedding (see Section 8.1 of [14]). While it is not explicitly stated
in their paper, it is not hard to show that if G is an orthodiagonal map with edges of length at
most g, then for any x € (0,1) there exists an absolute constant ¢ = ¢(k) > 0 such that, as a
t -embedding, G satisfies the condition Lip(k,ce). While the estimates in the bulk provided by
Theorem [2.2.3| are sufficient for proving the main result of this Chapter, Theorem [2.1.2] as an

immediate consequence of Proposition 6.13 of [14] we have that:

Proposition 2.2.4. Suppose (G, A*, B*,C*, D*) is an orthodiagonal rectangle with edges of
length at most € and h and h are the real and imaginary parts of the corresponding tiling map. If
x €V, let d, denote the distance from x to 0G. Then there exists absolute constants C,C' >0,
B € (0,1) such that:

) =i < (7 )ﬂ b — ) < € (!zu;c))ﬂ

for z,y € V*, u,v € V° such that C'e < |z —y| < dy A dy, C'e < |u—v| <dy A dy.
All that having been said, we now turn to the proof of Theorem [2.2.3}

Proof. Suppose (G, A*, B*,C*, D*®) is a orthodiagonal rectangle with edges of length at most
and h is the real part of the corresponding tiling map. Fix z,y € V*. Since we are taking the
maximum of da(z,y) A d?c(ac,y) and ¢ in our estimate for |h(y) — h(z)| in Theorem we
can assume WLOG that dga(z,y) A dg(x,y) > ¢, since the relevant estimate in the case where
da(z,y) A dcéc(x, y) < ¢ follows from the case where dg(z,y) A dcéc(m, y) = e. If h(y) = h(x), we're
done. Otherwise, suppose WLOG that h(z) < h(y). We now consider two cases:

Case 1: dg(z,y) < dfi(x,y)

Similar to the proofs of Theorem and Lemma [2.2.2] we begin by reinterpreting the quantity
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we want to estimate, (h(y) — h(x)), as an extremal length. Consider the sets S, and S, defined

as follows:
Sy i={2€V*:h(z) < h(z)} Sy :={zeV*®:h(z) = h(y)}

By the maximum principle for harmonic functions, S,, S, and V*\(S; u S,) are all connected
subsets of G*. Furthermore, [A®,B*] < S, [C*,D*] < S,. Let H = (V5 u Vg, Ex) be the
suborthodiagonal map of G formed by gluing together all the faces of G that are incident to
at least one vertex of V*\(S; u S,). By the maximum principle, H is simply connected with a

unique, distinguished exterior face. Furthermore, let:
0°® =95, noVy, W?* =5, noVyg
Then O® and W* are primal boundary arcs of H with corresponding dual arcs:
N°¢:=[D° A°] n 0Vy, S°:=[B°,C°] ndVg

Proposition tells us that for any function g : Vj5 — R with gapge yy+(g) = 0 and any flow 6
from O® to W* in H*:

strength(6) - gapoe - (9) < €°(6; H)'/E° (g; H)"/?

Plugging g = h into the inequality above, we have that for any choice of flow 6 from O® to W*
in H*:
5'(0;H)1/25'(h;H)1/2

strength(6)

h(y) = h(z)] <

By Thomson’s principle, taking the infimum over all flows 6 from O® to W* in H* in the expression
on the RHS, we have that:

|h(y) — h(x)| < E°(h; H)'/2 - NO® > W*; H*)'/? (2.2.2)

In Section we saw that £°(h) is the total area of rectangles in the tiling associated with
the orthodiagonal rectangle (G, A*, B*,C*, D*). Hence, by the definition of H, the restriction
E*(h; H) is the total area of rectangles in our tiling that intersect (h(z),h(y)) x (0,1). Since the
edges of G have length at most e, Lemma [2:2.2] tells us that the width of any rectangle in our

tiling is at most K( log (d;l))fl7 where K > 0 is an absolute constant. Hence:

2K
log (%)

Using the shorthand A\* = A\(O® « W*; H*), plugging our estimate in Equation into Equa-

£ (h; H) < [h(y) — h(=z)] +

(2.2.3)
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tion and rearranging, we have that:

() — hz)] < %(/\ (A*) 1§gK(Ad’.)) L logQE( 7 A(O° o W H) + 105((”)
: (2.2.4)
By duality:

A(N® o S° H®) - A(O® > W H*) =1

Thus, to bound A(O* « W*; H*) and therefore |h(y) — h(z)| from above, it suffices to bound the
dual extremal length A(N° < S°; H°) from below. We will do this by picking by picking a good
metric to plug into the variational problem for A\(N° < S°; H®).

By the definition of dg(x,y) we can find a smooth curve ~ in G from z to y so that length(y) <
do(z,y) + €. By the maximum principle for discrete harmonic functions, C:‘\E[ consists of two
connected components € and Q9 so that WLOG, [A®, B*] € dQ; and [C*, D*] < 9. Thinking

of H as a conformal rectangle with the distinguished boundary arcs:

/\

=00 noH O =00y n0H
= [D*,A*),c n 0H S:=[B*,C*],q 0 0H

our curve v from z to y in G must have a subarc 4/ with endpoints 2’ € 171\/, y € O, so that + is a
crosscut of H. By the definition of H , every point of W lies within ¢ of a point of W* and every
point of O lies within ¢ of a point in O°. Thus, perturbing «' slightly, we can produce a crosscut
" of H with endpoints 2" € w, y" € O so that length(v") < dg(z,y) + 3e. Since 7" is a crosscut
of i joining O® and W*, ~” separates N° and S° in H. Hence, any path in H and therefore H°
from N° to S° must intersect 7”. Consider the annulus:

/

d
={ueC:dg(z,y) +3c <|u—2"| < 5}
Observe that:

1. Since length(y") < dga(z,y) + 3¢, it follows that v < B(2",dgs(x,y) + 3¢). Since any
path from N° to S° in H must intersect v”, such a path must also intersect the ball
B(z",dg(x,y) + 3¢).

2. On the other hand, since any path from N° to S° in H is a also path from [D*, A®] ~ to
[B*,C*],a in G, any such curve has diameter > d’. Hence, any curve from N° to S° in H

must at some point exit the ball B(z”, % 5 )-

Putting all this together, we have that any path from N° to S° in H° must cross the annulus A.
Having established this fact, consider the metric p : EY, — [0, 00) defined as follows:

o |d]
p(e ):Jo |Z_x//‘
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for e® € E}; contained in the annulus /T, where we think of e° as a line segment in the plane.
If €° is not contained in ./T, then p(e®) = 0. Suppose 7 is a path in H° from N° to S°. We
saw earlier that v must cross the annulus A at least once. However, when it does this, it is
possible that v uses edges e® € Y, that are not entirely contained in A and so have zero mass
with respect to p. Since edges of G have length at most €, edges of G° have length at most 2¢.
Thus, we can be sure that all of the edges we use when crossing the slightly smaller annulus

{ueC:dg(z,y) +5e < |lu—2"| < % — 2¢} do indeed have positive mass. Hence:

d —4
IZ ”\ (( alz, y)€+5€))

By the same argument as in the proof of Lemma [2.2.2

d — 2¢ 8me
A(p) < 4rlog +
(®) (2d@(l”, y)> dg(z,y)

By our assumption that € < dg(z,y) < —/ and € < £ we have that:

120

d — 2e 8me d
A(p) < 4rlo + Slog ( ———
(p) g(Qdé(x,y)) da(z,y) g<d@($,y))

Similarly, if v is a path from N° to S° in H°, we have that:

!

|dz] >log< d —4e )>log< )
w7 % gy 159/ < 8 \agey)

G

lp(7) =

Putting all this together, we have that:

() d
A(N® & S§° H°) > inf -2 2 log | ——
( =m0y 2 (i)

where our infimum is over all paths v in H® from N° to S°. By duality,

1 1
<
)\(NO HSO;HO) 10g<

AO® & W* H*) =

& )
dg(z,y)

Plugging this into Equation the desired result follows.

Case 2: dg(x,y) < dg(z,y) By the definition of dcc(x y), we can find a crosscut y of G that
joins z and y to one of the four distinguished boundary arcs of (é, A*,B*,C*, D*) and separates

it from the opposite boundary arc, such that length(vy) < df; (z,y) +e. We now split our problem
into two further cases, depending on whether the relevant boundary arcs of (C:', A*,B*,C*,D*)

are Dirichlet arcs where h is constant, or Neumann arcs along which A is monotone.

Case 2.1: v joins x and y to one of the Dirichlet arcs and separates them from the oppo-
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site Dirichlet arc.

WLOG, suppose 7 joins x and y to [A®, B*],5 and separates them from [C*, D*] ~. Let Z(fgy be

the connected component of @\*y containing x and y. Define:

(NJ,) =V*AN]

T,y

v i={z e V*® :dist(z,7) < ¢}
By the maximum principle for discrete harmonic functions,

h(z) < h
B M) < me i)

Let v be a vertex of v* so that h(v) = max h(z) and for some neighboring vertex u of v in V'*,
z€7y*

h(u) < h(v). Since z,y € (N7 ,)*, we have that:

(h(y) = h(z)) < h(v)

Similar to our argument in case 1, let H be the suborthodiagonal map of G formed by gluing
together all of the quadrilaterals of G that are tangent to a vertex z of V'* such that 0 < h(z) <
h(v). By the maximum principle, H is simply connected with a unique, distinguished exterior

face. Furthermore, let:
0* :=[A*,B*], We:={zeV*:h(z) = h(v)} n Vg
Then O® and W* are primal boundary arcs of H with corresponding dual arcs:
N°:=[B°,C°] n dVy, S°:=[D° A% n Vg

With these pairs of distinguished primal and dual arcs, H is an orthodiagonal rectangle. By the

same argument as in case 1, almost verbatim, we have that:

|h(y) — h(z)| < h(v) K A*(O° & W*; H®) +

(2.2.5)

By duality:
)\(NO <> SO;HO) . )\(O. <> W';H.) — 1

Thus, to bound A(O* « W*; H*) and therefore |h(y) — h(z)| from above, it suffices to bound the
dual extremal length A(N° < S°; H°) from below. We will do this by picking a good metric to
plug into the variational formula for A\(N° < S°; H°).

Observe that v is a crosscut of G that starts and ends at a point of [A*, B*],5 and, by the
definition of 4*, v lies within € of «. Since v has a neighboring vertex u with the property that

h(u) < h(v), we also have that v € W*. Since the edges of G have length at most ¢, putting all
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this together, it follows that there exists a crosscut 7/ of H of length at most %(dg(w,y) + 5e)
joining W* and O° in ﬁ, thereby separating N° and S° in H. Pick a point z’ in +" and consider
the annulus: L p

A={ueC: §(dCGC(:1:,y) +5¢) < Ju—a'| < 5}

Since any path in G from [B®, C°],a to [A°, D°],5 has diameter greater than or equal to d’, the
same is true of any path in H from N° to S°. On the other hand, since ' separates N° and
S° in H, any such path must intersect 7/ and therefore B(a/, %(df;(x, y) + 5¢)). Putting all this
together, we conclude that any path from N° to S° in H must cross the annulus A. Hence, if we
define the metric p : EY, — (0, 0) by the formula:

S R LZI, for edges e° € EY; contained in the annulus A
e° |z—a'| H

p(e?) =
0 otherwise

by the same argument as in case 1, almost verbatim, plugging p into the variational formula for
A(N° < 8°; H®), we have that:

/

A(N°® < 8° H®) = log (m)

By duality: .
AMO® & W*: H®) < —
log (dﬁ(wvy)>

Plugging this into Equation 2:2.5] the desired result follows.

Case 2.2: v joins x and y to one of the Neumann arcs and separates them from the oppo-

site Neumann arc.

WLOG, suppose v joins x and y to [B*,C*®],s and separates them from [D*®, A®],5. Similar

to case 2.1, let ﬁ;y be the connected component of CAT'\V containing = and y and define:

(N7,)*:=V*n Ny 7* = {z e V* :dist(z,7) < &}

T,y

By the maximum principle for harmonic functions, since h® is harmonic on the part of the
boundary of (N7 ,)* that intersects [B*,C*], we have that:

minh(z) < min h(z), max h(z) < maxh(z)
zey* 2€(NJ y)* 2€(NJ y)* z€*

Let v; and vy be vertices of v* so that h(vi) = min,e,» h(2), h(v2) = max.e s h(z) and v;

and vy have neighboring vertices u; and wus so that h(vy) < h(up) and h(ve) > h(uz). Since
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z,y € (NJ¥)*, we have that:

(h(y) = h(x)) < (h(v2) — h(v1))

Similar to our argument in case 1, let H be the suborthodiagonal map of G formed by gluing
together all of the quadrilaterals of G that are tangent to a vertex z of V* such that h(vy) <
h(z) < h(vz). By the maximum principle, H is simply connected with a unique, distinguished

exterior face. Furthermore, let:
O° :={zeV*:h(z) = h(v1)} ndVy, W*:={2eV*:h(z) <h(ve)} n Vg
Then O® and W* are primal boundary arcs of H with corresponding dual arcs:
N°:=[D° A°] n 0Vyg, S°:=[B°,C°l ndVg

With these pairs of distinguished primal and dual arcs, H is an orthodiagonal rectangle. By the

same argument as in case 1, almost verbatim, we have that:

|h(y) — h(z)| < h(ve) — h(vy) <K A°(O° - W*; H®) +

(2.2.6)

where K > 0 is an absolute constant. By duality:
)\(NO <> SO;HO) . )\(O. > W';H.) — 1

Thus, to bound A(O* < W*; H*) and therefore |h(y) — h(z)| from above, it suffices to bound the
dual extremal length A(N° < S°; H°) from below.

Since v1 € W*, vy € O° and each of these points lies within € of 7, there exists a crosscut
~" of H of length at most d%.(x,y) + 3¢ joining O* and W* in H and thereby separating N° and

cc

S°in H. Hence, by the same argument we used in cases 1 and 2.1, we have that:
!

AN® & 5% H®) 2 log (m)

By duality: .

d/
log (dc@c(myy) )

Plugging this into Equation the desired result follows.

AMO®* - W*: H®) <

Having shown that h has the prescribed modulus of continuity, observe that the analogous esti-

mate for h follows by the same argument. This completes our proof. O
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2.2.3 Two-Sided Estimates for Extremal Length on Orthodiagonal
Maps

In this section, we prove two- sided estimates for the discrete extremal length of an orthodiagonal

rectangle that is a (4, ¢)- good approximation of some conformal rectangle (2, A, B, C, D). This

gives us uniform boundedness of the tiling maps (¢5)%_; in Theorem m

Proposition 2.2.5. Suppose (2, A, B, C, D) is a conformal rectangle and (G, A*, B*,C*, D*®) is

a (4,¢)- good interior approximation of (2, A, B,C, D). Suppose § < “24/ where:

£ = inf{length(v) : v is a curve in  joining [A, B]sox and [C, D]sqx },
¢ = inf{length(7) : v is a curve in § joining [B, Claqx and [D, A]sqx }

Then:
(0 —26)2 . . el e 2 - Area(Q)
mg)\([/l ,B]H[C ,D],G)gm
Proof. Let:
A* = )\([A°,B*] < [C*,D*];G*), A° = A([B°,C°] & [D°, A°]; G°)

Plugging the metric p(e®) = |e*| into the variational problem for A*, we have that:

2
(inf{ > |e*| : v is a path from [A®, B*] to [C*, D°*] in G'})

A > e*ey
SREIEE
e*cE*
2
(inf{length('y) : 7y is a path from [A®, B*] to [C*, D*] in G’})
- 2. Area(G)
(€ —26)?

2 -
2 - Area(Q)

The equality on the second line follows from the fact that if @) is an inner face of G with primal

diagonal e® and dual diagonal e°, then Area(Q) = %|e*||e°|. Thus:

Z le®||e®] = 2 Z Area(Q) = 2 - Area(G)

e*cE* QEF;,

In the inequality on the third line, two things are going on. On the one hand, since G is an interior
approximation of Q, Area(G) < Area(f2). On the other hand, suppose 7 is a path from [A°, B*]
to [C*,D*] in G*. Since (G, A*, B*,C*,D*) is a (d,¢)- good approximation of (2, 4, B,C, D)
(the “4” is really the relevant part here), we can modify any such path to get a path of length at

most length(y) + 26 from [A, B]sox to [C, D]sqx in Q. By the definition of ¢:

length(~y) +26 = ¢
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Since this is true of any curve « from [A®*, B*] to [C*, D*] in G*, the desired result follows.

Similarly, plugging the metric p(e®) = |e°| into the variational problem for A° we have that:

2
(inf{ > |e°| : v is a path from [B°,C°] to [D°, A°] in GO})

2° > ecery
% Efler
e*cE°
2
(inf{length('y) : 7y is a path from [B°,C°] to [D°, A°] in Go})
; 2. Area(G)
(¢ —25)2

>~/
2 - Area(2)
By Ford- Fulkerson duality for discrete rectangles (Corollary [1.2.1)):

\e 1 < 2 - Area(Q)
A° (¢ —26)2

O

The two- sided estimate in Proposition [2.2.5|is very coarse, but it is sufficient for our purposes. It
is however worth noting that, as a consequence of our estimates for the modulus of continuity of
rectangle tiling maps as well as the corresponding limiting conformal map, we can do significantly
better if we are dealing with continuous approximations of a continuous domain or discrete

approximations of a discrete domain.

Proposition 2.2.6. If (', A, B, C’, D') is a - good approximation of the conformal rectangle
(Q, A, B,C, D), L is the extremal length between [A, B]sqx and [C, D)o in 2, L' is the extremal
length between [A’, B'|sqr and [C”, D)oo in €, and & > 0 satisfies § < Le~ 7 and § < de107L,

where:

d = inf{diameter(y) : y is a curve in Q joining [A, Blsq+ and [C, D]sqx*}
d' = inf{diameter(y) : 7 is a curve in  joining [B, Clsq+ and [D, A]sqx}

Then:
8 , 167 L2
<

o (F) T e (F)
Proof. Let ¢ : 0 — Ry be the conformal map from 2 to the rectangle Ry so that the prime
ends A, B,C, D of 2 are mapped to the four corners of R, and in particular, ¢(A) = i. We write
¢ = h + ih where h is the real part and h is the imaginary part of ¢. Then |Vh| = |VhA]| is
the extremal metric giving us the extremal length between [A, B]sgx and [C, D)oo+ in Q. By

45



Theorem [2.2.1

) 2
h(z) < —— for z € [A', B']aor h(z) > L= — for € [C', D']oay
o () e (3)
N onl i 2nL
()< e forze [B, oy h(2) 31— —oo for 2 e [D), A'louy
log () log (35)

The condition that § < %’e—% ensures that the values of h on [C’, D']sq are larger than the

values of h on [A’, B']aqs. Analogously, the condition that § < 4 e~167L

ensures that the values
of h on [D', A']aqy are larger than the values of i on [B’,C']s. Plugging the metric |VA| into

the variational formula for L', we have that:

> >

2
I — 4m
( log (f”)) 87
I'>—~ —12/7 > — 2.2.7
L log (%) ( )

Similarly, plugging |VA| into the variational formula for the dual problem, we have that:

2
(1 _ _4ArnL )
1 log (& L 167 L?
— > g(%) — L/ < <L+ 4 - (2.2.8)
L L (1 _ _8nL > log (ﬁ)
tog (£5)
Combining Equations and we arrive at the desired result. O]

Proposition 2.2.7. Suppose (H,W*, X* Y*, Z*) is asuborthodiagonal rectangle of (G, A*, B*,C*, D*)
so that

(ﬁ,W‘,X’,Y‘,Z’) is a d- good interior approximation of (CA?, A*,B*,C*,D*) and G = (V* u

Ve, E) is an orthodiagonal map with edges of length at most €. Let L denote the extremal length
between [A®, B*] and [C*,D*] in G* and let L’ denote the extremal length between [W*, X*]

and [Y*,Z*] in H*. Suppose also that § and ¢ satisfy (8 v &) < d'e” L and (6 v ) < de 8KE,

where:

d = inf{diameter(7) : 7 is a curve in  joining [A®, B*] 4 and [C*, D*],4}
d’ = inf{diameter(y) : v is a curve in Q joining [B*,C*] s and [D*®, A*] .5}

and K > 0 is the absolute constant from Theorem 2.2.31 Then:

2

log (577) log (557)
Proof. Let h : V* — R and h : V° = R be the real and imaginary parts of the tiling map
associated to the orthodiagonal rectangle (G, A®, B*,C*, D*). Then the metric p* on G* given
by the formula p®(u,v) = |h(u) — h(v)| for any edge {u,v} € E* is the extremal metric giving us
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the extremal length between [A®, B*] and [C*, D*] in G*. Similarly, the metric p° on G° given
by the formula p°(u,v) = |h(u) — h(v)| for any edge {u,v} € E° is the extremal metric giving us
the extremal length between [B°, C°] and [D°, A°] in G°. By Theorem [2.2.3]

K K
h(Z)gm fOI'ZE[W.,X.] h(Z)ZL—l(id,) fOI'ZE[Y.,Z.]
0g (5= 08 (5vz
h(z) < Ki{; for z € [X°,Y°] h(z)=1-— Kilzl for z € [Z°,W°]
log (577) log (5%2)

The condition that (§ v £) < d’e™ " ensures that the values of h on [Y'®, Z*] are larger than the
values of h on [W*, X*]. Similarly, the condition that (§ v ) < de 3K~ ensures that the values
of h on [Z°,W°] are larger than the values of h on [X°,Y*°]. Plugging the metric p*® into the

variational formula for I/, we have that:

2
L — 2K
( 105(5(19,5)) > T 4K

L'> >L— —— (2.2.9)
L log (577)
Similarly, plugging p° into the variational formula for the dual problem, we have that:
2
<1 _ 2K L )
1 log (54 L 8K L?
1. e () — U< <Lt —"r  (22.0)
L L 1_ _4KL 10g(6v€>
log %
Combining Equations 2:2.9] and 2.:2.10] we arrive at the desired result. O

2.3 Limits of Discrete Holomorphic Functions are

Holomorphic

Given an orthodiagonal map G = (V*uV®, E) recall that a function F : (V*0uV°® — C is discrete
holomorphic on G if for any interior face @ of G with primal diagonal e* = {u;,us} and dual

diagonal e® = {vy,v3} we have that:

Flug) = F(uy) _ F(vz) — F(v1)
Uz — U1 V2 — V1

In particular, notice that if F'|y. is strictly real then F|yo is strictly imaginary up to an additive
constant. This situation is typical of applications of discrete complex analysis. That is, the real
part of our discrete holomorphic function typically lives on the primal graph G* = (V*, E*) and
the imaginary part lives on the dual graph G° = (V°, E°).

In this section, we prove the following result of independent interest:
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Theorem 2.3.1. Let Q be a subdomain of C and let ,, = (V,* u V7, E,) be a sequence of
orthodiagonal maps so that the edges of €, are of length at most ¢, and &, — 0 as n — o0.
Suppose that for any compact set K < € there exists N € N such that for alln > N, K < fln

For each n e N, let F}, : V7 L V,? — C be a discrete holomorphic function on §2,, so that:
Re(Fp(z)) =0 for all ze V°, Im(F,(z)) =0 forall zeV*

That is, the real part of F), lives on the primal graph 27 and the imaginary part of F,, lives on
the dual graph 2. Suppose also that the Dirichlet energies of the F),’s are uniformly bounded
on compacts. That is, for any compact set K < 2 and N € N such that K € Q,, for alln > N
we have that:

1 e

sup Ex (Re(F,)) = 5 sup
n=N 2 n=N

(Re(Fu((eg) ")) — Re(Ful(e) ) ) < =

Qerm(an) €]
QCSK

Or equivalently, since Re(F),) and Im(F),) are conjugate harmonic functions:

1
sup Ex (Im(F,)) = = sup ( =
n=N 2n=N QE},;(Q”) €3]
QSK

2]

(In(Fu((e) )~ Im(Fal(ed) ) ) < o

Let Z?'n : ﬁn — C be a sequence of continuous functions on ﬁn so that:
Re(ﬁn(z)) =F,(z) forall ze V, Im(ﬁ’n(z)) = F,(z) for all ze V]

That is, for each n € N, F, is some sort of sensible extension of F;, to a continuous function on

Q,,. If:

}?'n — F uniformly on compacts in 2
Then F : Q — C is holomorphic.

In Section [2.4] we will use this result to show that any subsequential limit of our tiling maps is
holomorphic. This is crucial to showing that our tiling maps converge to the relevant conformal

map.

Remark 2.3.1. Note that while Theorem [2.3.1] is sufficient for our purposes, stronger results
already exist in the literature. Namely, in [14], Chelkak, Laslier, and Russkikh prove that local
uniform limits of discrete holomorphic functions on t- embeddings are holomorphic (see Propo-
sition 6.15 of [I4]). Since every orthodiagonal map is a t-embedding (see Section 8.1 of [I4]), it

follows that the same is true of discrete holomorphic functions on orthodiagonal maps.

Having been initially unfamiliar with their work, we found an independent proof of this re-
sult in the more restrictive orthodiagonal setting, with the additional condition that the Dirichlet

energies of your discrete holomorphic functions must be uniformly bounded on compacts. While
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this is a strictly weaker result in a less general setting, we still think it is worthwhile to present

the proof. The reasons for this are twofold:
1. The proof is elementary and takes place in a simpler setting.

2. It gives us an excuse to introduce Lemma which tells us that we can approximate
continuous contours by discrete contours in our orthodiagonal map, that are close to the
corresponding continuous contour in Hausdorff distance and have comparable length. This
will be important in the proof of Proposition [3.4.1] which is the key technical estimate in
the proof of Theorem [3.1.1] and Theorem [4.0.1} which are the main results of Chapters
and [

As per the discussion above, to prove Theorem we first need the following lemma:

Lemma 2.3.2. Suppose G = (V*uV?°, E) is an orthodiagonal map with mesh at most ¢, and ¢ is
a positive real number so that § > 4e. Suppose £ is a line segment in C so that L = length(¢) > 8¢
and G contains a §- neighborhood of ¢. Then there exist nearest- neighbor paths v* in G* and

~4° in G° that are §- close to £ in Hausdorff distance, and:
. o de
length(~*), length(7°) < 2L(1 + ?>

Furthermore, the endpoints of v* and ~° both lie within § of the endpoints of £.

Proof. Let G = (V* uV®°, E) be an orthodiagonal map with edges of length at most €. It follows
that the edges of G* and G°, which correspond to diagonals of inner faces of G, have length at
most 2¢. Let ¢ be a line segment in C so that G contains a - neighborhood of ¢. Without loss of
generality, suppose ¢ = [0, L], the line segment between 0 and L in C. Let R = [0, L] x [—§,4].
Since G contains a 6- neighborhood of ¢, R < G.

Let H = (V5 u V5, Eg) be the suborthodiagonal map of G formed by taking the union of
all the inner faces of G contained in R. Since R is convex, H is simply- connected with a
unique, distinguished boundary face. Moreover, observe that any pair of neighboring vertices
along the boundary of H, must be part of an inner face of G that intersects the boundary of
the rectangle R. Thus, the vertices and edges on the boundary of H all lie within ¢ of 0R. Let
A*,B*,C*, D* be the points of oV} closest to the four corners (0, —9), (0,9), (L,0d), (L, —0) of R.
Then (H, A*, B*,C*,D*) is a (2¢,¢)- good interior approximation of R.

By Proposition [2.2.5}
(L — 4e)? 461

L SMANB < [0 DY) < s

Plugging the metric p(e®) = |e*| into the variational problem for A\([A®*, B*] <« [C*,D*]; H*) we
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have that:

46L L] L] L] L] L]
(inf{length(y®) : v* is a curve in H* joining [A®, B*] and [C',D']})2
> (2.3.2)
A(p)
where:
Ap) = Y] |i.||e°|2 @ 3 Area(Q) = 2Area(H) < 45L
et el QeFi (H)

Equality “(#)” follows from the fact that if @ is an inner face of G with primal diagonal e® and
dual diagonal €°, then Area(Q) = i|e®||e°|. Plugging our estimate for A(p) into Equation m

we have that:

2L 4
inf{length(y*) : v* is a curve in H*® joining [A®, B*] and [C*,D*]} < W < 2L(1 + FE)
0
Since any curve in H*® joining [A®*, B*] and [C*, D*] is §- close to ¢ in Hausdorff distance, this
completes our proof. The proof that we can find a curve 4° in G° with the desired properties

follows by the same argument, verbatim, with G° in place of G*. O
Armed with this lemma, we are now ready to prove Theorem [2.3.1

Proof. Since F is the local uniform limit of continuous functions, F' must be continuous. Hence,

to prove that F' is holomorphic, by problem 3 of chapter 2 of [51], it suffices to check that:
ng (2)dz =0
5

for every simple closed curve 7 in 2 that traces out the boundary of a rectangle.

With this in mind, let v be a simple closed curve in €2, oriented counterclockwise, that traces
out the boundary of a rectangle R with length [ and width w. Let d be the distance between
the rectangle R and the boundary of 2. Let K be a compact subset of ) that contains a d/2-
neighborhood of R and let N be a natural number so that K < Qn for alln > N.

Since (ﬁ'n)ff:l is a sequence of continuous functions that converges to F' uniformly on compacts,
by Arzela-Ascoli, it follows that the functions ﬁn are equicontinuous and uniformly bounded on
compacts. With this in mind, for any § > 0, let w(d) denote the modulus of continuity of the

~

family of functions (F,,)_, on K. That is, for any n > N and any points =,y € K we have that:

[Fn(y) — Fu(2)] < w(|z —yl)
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where:
lim w(d) =0

§—0+
Recall that by discrete Morera’s theorem, for each n € N, the fact that Fj, is discrete holomorphic

on €, tells us that for any simple closed directed curve 7, in Q,:

Z (Fu(e™) + Fa(eh))(et —e7) =0
e=(e",e™)

By Lemma for n = N sufficiently large, we can pick simple closed contours v, and 7, in
Q,, so that:

1. =, and 7, are both oriented counterclockwise.
2. 7y lies outside of the rectangle R and dgqus(Vn, OR) = O(ey).
3. np lies inside the rectangle R and dyqus(nn, OR) = O(ey,).

4. If v, = (w1, 21,ws, T2, ..., Wk, , Tk, , w1) Where wy,ws,...,wg, € V.o and x1,za, ..., 2k

n n

V.2, then w; ~ w;y; for all 4, where our indices ¢ are viewed modulo k,, so that v, =

(w1, wa, ..., wg, ,w1) is a simple closed contour in Q! . Furthermore:
kn
length(yy) = 2 |wit1 —w;| = O + w)
i=1

5 If nn = (Y1, 21,Y2, 22, -, Y, » Zm,,» Y1) Where y1,ya, ., Ym,, € Vi, 21,22, ey Zm, € V.7, then
z; ~ z;4+1 for all i, where our indices are viewed modulo m,, so that 5, = (21, 22, ..., Zm,, , 21)

is a simple closed contour in 7. Furthermore:

Mnp

length(n;) = > |2i41 — 2| = O(l + w)
iz

Consider the discrete contour integral of F,, over ~,,:

kn kn
az (Fu(e™)+ Fu(e)) (et —e) = _ Fn(xi)(wi+1fwi)+z Fp(w;)(zi—xi-1) = 0 (2.3.3)
e=(ejjle+) 1=1 =1

Th first equality follows by rewriting the original sum over directed edges as a sum over vertices.

The second equality is just discrete Morera. Since Im(F),) agrees with F;, on V°, for each directed

edge (w;, w;+1), we have that:

Wi41 ~
| J Im(F,(2))dz — Fp(2:) (wizr — wi)| < w(en) - [wir — wi

wsq

provided that n is large enough so that the contour 7, is contained in K. Summing over directed
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Figure 2.3: The contours v, v, Y5, 7n and n;, for some orthodiagonal map.

edges we have that:
kn
‘ 5[>Im(ﬁ’n(z))dz — Z Fo(z)(wir1 —w;)| = Ow(ey,) - (1 + w)) (2.34)
. i=1

In other words, we see that the discrete contour integral of Im(F,,) over =, is close to the contin-

uous contour integral of Im(F},,) over 5. In contrast, since the x;’s don’t form a simple closed

contour in Q29 and we don’t have any control over the quantity:

K
Z |Ti41 — @i
=1

it is not clear that we have a similar result comparing the discrete contour integral of Re(F,,) over

~n to some continuous contour integral of Re(F,,). This is where our second contour 7,, comes in.

By the same argument we used to handle the behavior of Im(F),) on 7,, since Re(ﬁ’n) agrees
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with F,, on V*, for any directed edge (z;—1, 2;) we have that:
[ Relatods - Fulwn) s = 2] < wlen) - fo 21
Zi—1

Summing over directed edges we have that:

) fﬁ Re(E,(2))dz — 2 Fo(y:) (2 — ZH)( = O(w(en) - (1 +w)) (2.3.5)
i=1

ny,

Let H be the suborthodiagonal map of G bounded by the curves 7, and +,,. By discrete Green’s
theorem applied to the function Re(F,) on H, we have that:

kn Mo
D Fa(wi) (@i — 1) = Y, Fulyi)(zi — 2io1) = > (Fn(ug) — Fp(u1))(va — 1)
i1 i1 Qelm(H)

Q=[u1,v1,uz2,v2]
Applying the Cauchy-Schwarz inequality, we have that:
Y (Fulw) — Fa(u) (o = w)

QEF'ML(H)
Q=[u1,v1,u2,v2]

Vg — v o\ 1/2 U — 1 12
< fee =il (g — By () ) v luz ] o)
getny 1127l getny 1270
QR=[u1,v1,u2,v2] Q=lu1,01,uz,02]
1/2 R
< g;((Re(F”))l/Q( 2 lug — urfvs — U1|) = V2 & (Re(F,))"*(Area(H))"?

QGFin (H)
Q=[u1,v1,u2,v2]

= Ex(Re(Fu)) 2 (1 +w) "2 - O(e,/%) < ((sup €5 (Re(Fn)))

n=N

14 w)? . 0(Y?)

Thus:

n=N

kn Mn 1/2
|3 w1 = Y. Fa(y) 2| < (sup € Re(F)) - 14u) 2 O(1?) (2:3.6)

By we have that:
~ kn
T ( 3@ Im(F, ())dz — ;Fn(a:i)(wiH —w)) =0 (2.3.7)

k23

Similarly, since the Dirichlet energies of the F;,’s are uniformly bounded on compacts, combining

and we have that:

nh—r»%o ( EﬁRe(ﬁn(z))dz - % F,(w;)(x; — xi,1)> =0 (2.3.8)
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Combining [2.3.7 and 2.3.8] we have that:

lim Re(E,(2))dz + Efvlm(ﬁ (2 ))dz) -0

n—o0
Tn

Thus, to prove that:

jﬁF(z)dz _ jERe(F(z))dz + 3€1m(F(z))dz —0

It suffices to show that:

n—0o0
o

Mn,

lim ¢ Re(F,(z2))dz = nge(F(z))dz

and:

n—o0

lim ¢ Im(F,(2))dz = f}glm(F(z))dz

To this effect, let ¢ be any smooth, real- valued function on 2. By the triangle inequality:

‘fﬁRe(ﬁn fﬁRe dz ‘fﬁRe dz—fﬁ dz’+‘3€Re dz—3€¢ dz
” +H§¢ dz—§w dz)—k’ffw dz—igRe( ())dz’

We bound the first term as follows:

| ff)Re( P (2))dz — §>Re < length(n2) - [Re(F,) — Re(F)| = O((1 + w) - [Re(F,) — Re(F)])

where HRe(}AWn) — Re(F)| is the sup norm of Re(ﬁn) — Re(F) on K. We can handle the second

and fourth terms analogously:

]§rna dz—-ﬂlw )dz| < length(s) - [Re(F) ] = O((1 + w) - [Re(F) — )

o)z — PRe(F())ds] < length(s) - [0~ Re(F)| = 20+ w) - [~ Re()]
¥ v
To bound the third term, recall that if o is a simple closed Lipschitz curve, oriented counterclock-
wise, and h is a complex- valued function whose real and imaginary part are both C?, Green’s
theorem tells us that:
jgh(z)dz = J Ozh(x + iy)dzdy
D

where D is the region bounded by o. We know that v bounds the rectangle R. Let R, denote
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the region bounded by 7, . By Green’s theorem,
‘j@t/) )dz — %1/} dz ’f oz(x + iy)dedy — f oz (x + iy)dxdy

= O((l +w) - |0z9] - n)

Letting n — o0, the first and third terms vanish, leaving us with:

lim sup \ ff Re(Fy(2))dz — nge(F(z))dz‘ — O((1 +w) - |Re(F) — ¢])

Since smooth functions are dense in the space of continuous functions on a compact set with the

sup norm, we can choose v so that [|[Re(F) — 9| is arbitrarily small. Thus:

limsup’ ff;Re ))dz —4) e(F (z))dz‘ =0
n—o0
2!

From which we conclude that:

n—ao0

lim ¢ Re(F,(2))dz = 3@ Re(F(2))dz

~

Applying the same argument to (§ Im(Fy(2))dz — §, Im(F(z))dz), we get that:

n—oo

lim Im(ﬁ'n(z))dz = 3€Im(F(z))dz

Yo vy

2.4 Convergence of Tilings to Conformal Maps

2.4.1 Proof of Theorem [2.1.2

Proof. Suppose 2 < C is a simply connected domain with distinguished prime ends A, B,C, D

listed in counterclockwise order and d,,,&, > 0 are sequences of positive reals so that:
(0n,en) — (0,0) as n — oo

For each n € N, let Q,, = (V? uV,?, E) be an orthodiagonal map so that (Q,,, Ay, Bs,Cy, D?) is a
(0n, €n)- good interior approximation to (2, A, B, C, D) for some choice of distinguished boundary
points Ay, By, Cr, D? € 0V,r. Let ¢, be the tiling map associated to the orthodiagonal rectangle

n?

(Q,, As, By, Cr Dr) with real part h,, and imaginary part hy,. That is, [ V.2 — R solves the
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following boundary value problem on €2 :

hn(z) =1 for all z € [BS,C?]
hn(z) = 0 for all z € [DS, A%]
A°hy,(z) = 0 for all z € VO\([BS, C2] U [DS, A%))

and h, : V* — R is the harmonic conjugate of 7Ln which solves the following boundary value
problem on 2 :

hn(z) =0 for all x € [A}, B;]

n

hn(x) = L, for all x € [C), Dy ]

A*hy,(z) =0 for all z € Vo\([As, Ba] U [Cn, Dr))
where L, is the extremal length from [A}, B;] to [Cr, Dy] in Q3. Let F), be the discrete holo-
morphic function on {2, that agrees with h,, on V,? and agrees with iiwzn on V2. Let 13” be any

sensible extension of F;, to a continuous function on ﬁn so that:
Re(F),(2)) = hn(z) for all z€ V* Im(F,(2)) = hn(z) for all z € V2

One natural way to do this is to triangulate the faces of €27 and define the real part of ﬁn on

each triangle by interpolating linearly between the values of h, at the corner vertices. Analo-

o

>, we can define the imaginary part of ﬁ'n on each triangle

gously, triangulating each face of €

by interpolating linearly between the values of ;Ln at the corner vertices. If ¢, is the tiling map

associated with the orthodiagonal rectangle (25, A2, By, Cs, D?), our estimates for the modulus

of continuity of h,, and Iy, in Theorem tell us that for any n € N and any z € ﬁn, we have
that:

60(2) ~ Ful2)] < L v D

log (=2=)

En

(2.4.1)

where:

dy, = inf{diameter(y) : 7 is a curve in Q, joining [Ay,B;] and [Cy, D7) }

ar. n
on

d), = inf{diameter () : v is a curve in Q,, joining [Br.Crlag, and [D}, A7 55
and K > 0 is an absolute constant. Suppose 7 is a curve in Q. joining [Ar, By] o0, and
[Cn,Dr]sg - Since the endpoint of v on [A}, B}],s is d,- close to [A, Blaq in crosscut dis-

tance and the endpoint of v on [C,,, Dn]aﬁ, is §,,- close to [C, D]sq in crosscut distance it follows
that:

d <d, + 26, — dy > d— 26, (2.4.2)
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By the same reasoning;:

d <d, + 25, — d, =d — 26, (2.4.3)

As long as n is sufficiently large so that 4, < dgd/, plugging Equations and into
Equation [2:41] we have that:

. K(L, v 1
|pn(2) — Fu(2)] < log(EdAd:QZn)

En

By Proposition the sequence (Ly,)>_; is uniformly bounded. Hence, the quantity on the

RHS of this inequality tends to 0 uniformly in z as n — 00. Thus, to show that the tiling maps

¢y, converge to the relevant conformal map ¢, it suffices to show this is true of the functions ﬁn

The uniform boundedness of the L,,’s also tells us that the functions ﬁn are uniformly bounded.
By Theorem these functions are also equicontinuous on compacts. Hence, by Arzela-Ascoli,
the functions ﬁn are precompact with respect to the topology of uniform convergence on com-
pacts in 2. Since L,, is precisely the discrete Dirichlet energy of }A?n and the sequence (L, )*_; is
uniformly bounded, Theorem tells us that any subsequential limit of our discrete holomor-

phic functions ﬁn is holomorphic.

As per our discussion in Section [0.1] in 2D statistical physics, if you have a holomorphic ob-
servable that arises as the limit of some discrete holomorphic observables, you can typically
recover the identity of the limiting object from the boundary conditions. This is what we will
do here. Suppose (ﬁnk) k>1 is a subsequence of (ﬁn)n>1 such that PA’nk converges uniformly on
compacts to some holomorphic function F' and L,, converges to some L > 0 as k — c0. We can
always pick such a subsequence because the sequence (ﬁ'n)n>1 is precompact and the sequence
(Lp)n>1 is uniformly bounded away from 0 and co. By Theorem m

~ ~ K(Ly, v 1)

B ) — Fr ()] < o —

log ( Qn
(e (@y) Adec™ (z,y)) ven,

for any z,y € ), provided that k is sufficiently large so that x,y < (Alnk. Taking a limit as & — o

for fixed x and y, we have that:

~ ~ K(Lv1
Ply) - Pla)l < (Lv 1)
log ((d dnd’ )
a(z,y) Ade(z,y))

Hence, our limiting function F' extends continuously to Q*. Furthermore, Re(F) = 0 on [A, B]sqx*,
Re(F) = L on [C, D]sqx, Im(F) = 0 on [B,Cloqx, and Im(F) = 1 on [D, A]sqx. This follows
from the boundary conditions for the ﬁnk ’s and the fact that our estimates in Theorem hold

right up to the boundary. By the argument principle, we conclude that our limiting function F
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is conformal and so F' = ¢, where ¢ is the conformal map from € to the rectangle (0, L) x (0,1)
so that the prime ends A, B, C, D are mapped to the four corners of the rectangle and ¢(A4) = 1.
In particular, L must be the extremal length between [A, Blsq+ and [C, D]sq+ in Q. Since all
convergence subsequences converge uniformly on compacts to ¢, it follows that the functions Z?’n
converge to ¢, uniformly on compacts, as desired.

O
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Chapter 3

A Polynomial Rate of
Convergence for the Dirichlet

Problem on Orthodiagonal Maps

3.1 The Result and an Outline of the Proof

As we alluded to in Section [0.3] in this Chapter, we will prove the following:

Theorem 3.1.1. Suppose Q < R? is a bounded simply connected domain, g : R> — R is a
a-Holder, and G = (V* U V°, E) is an orthodiagonal map with edges of length at most € so that
for each point z € OV, dist(z, d§?) < e. Let h be the solution to the continuous Dirichlet problem
on ) with boundary data given by g:

0 for all x € Q
g(z) for all x € 09

>
= =
EE
[

Let h® be the solution to the discrete Dirichlet problem on G* with boundary data given by g:

A*h*(v) =0 for all v € Int(V'*)
h*(v) = g(v) forall ve dV*®
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Let 8 € (0,1) be the absolute constant from Lemma Then for any v € V*, we have that:

(Cullgl + Cags gl adiam()*) (gasey) ™ if ae (0,5
[h* () = h(v)] < § (Culg] + Calgladiam(e)*) (log (2D (i) ™ ia =5
(e} : [e% 15 )\Z(ﬂ) .
(Cl lgll + C2ﬂ‘|9”adlam(9) )(diam(g)) if ve(B,1)

where Cp,Cs > 0 are absolute constants, ||g|. is the a-Holder norm of g:

g\y) —g\x
lglo = sup W —9D]
z,yeR? |I - y‘
TF#Y
and the functions A1, A2 are given by:
A (« = min max Zq(a, 5,7, s A = min max Z5(5,7,s
1( 7ﬂ) re[0,1] se(r,>1() 1( 763 ) )a Q(ﬂ) re[0,1] se(r,}li) 2(ﬂ ) )
where:
i )l _5s 1 i 1-p
max{ro, min{f(s —r),5 — 5 + 5,sa}} if s < 175
El(a7ﬁaras) = <
max{ra, min{S(s —r), % -2+ %)S + 5,sa}}  otherwise

1-5

max{r3, min{B(s —r), 1 — 3£ + £}} ifs <175

2 2

EQ(BaTa 8) =

max {7, min{B(s —r), % -2+ %)s + 5}} otherwise

The idea behind the proof is as follows. Fix a point z € V*. Our goal is to show that h(z) and

h*(z) are close. To do this, we will consider two cases.

3.1.1 Proof Outline: 2z Near the Boundary

If z is close to the boundary of Q (and therefore the boundary of é’), the Holder regularity of g
tells us that, near the boundary, the value of h(z) is close to the value of the boundary data g at
nearby points of 0. Similarly, the Holder regularity of g tells us that the value of h*(z) is close
to the value of the boundary data g at nearby points of 0V*. Since dV* is close to 02 and g is
Holder, we conclude that h(z) and h*(z) are close. Thus, for z near the boundary, the fact that
h(z) and h®(z) are close follows from estimates for the modulus of continuity of solutions to the

discrete and continuous Dirichlet problems with Hélder boundary data.
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The key ingredient in the proof of these modulus of continuity estimates for solutions to the

continuous Dirichlet problem is the following estimate for planar Brownian motion:

Theorem 3.1.2. (Beurling’s Estimate) Let B(0, R) < R? be the ball of radius R about the origin
in R?, z € B(0,R) and K < R? is a connected, compact subset of the plane so that 0 € K and
K n0B(0,R) # &. Let (B;)¢=0 be a planar Brownian motion and let Tsp(o,z) and Tk be the
hitting times of dB(0, R) and K by this Brownian motion. Then:

M)UQ

P*(B[0, Top0,r)] N K = &) < C( -

where C' > 0 is an absolute constant.

For a proof of Theorem see Section 3.8 of [38]. In plain language, Theorem m gives us
an upper bound for the probability that a planar Brownian motion, started at z, escapes the ball
B(0, R) without hitting K. This is known as the strong Beurling estimate. The word “strong”
here alludes to the fact that the exponent of 1/2 in this theorem is sharp. This can be seen by
evaluating the probability that Brownian motion started at r € (0,1) exits the unit disk before
hitting the line segment [—1,0]. In fact, Theorem is a direct consequence of a stronger
result, known as the Beurling projection theorem (see Theorem 9.2 in Chapter III of [22]), which
tells us that given a Brownian motion started at a point z € B(0, R), a line segment stretching
from 0 to Re~"8(?) is the connected, compact set containing 0 and intersecting 0B(0, R), that
maximizes the probability that a planar Brownian motion, started at z, escapes the ball B(0, R)

without hitting K. An equivalent reformulation of the strong Beurling estimate is as follows:

Proposition 3.1.3. Suppose Q < C is a simply connected domain, (By):>0 is a planar Brownian
motion and Tpq is the hitting of Q2 by this planar Brownian motion. Then for any positive real

number r > 0 and any z € Q2 we have that:
1/2
P*(|Br., — 2l > 1) < C(2)

where C' > 0 is an absolute constant and d, = dist(z, 092).

It is not hard to show that the statement of Proposition [3:1.3] is equivalent to Theorem [3.1.2]
Writing the strong Beurling estimate in this way will make it clearer how it is we are applying

this result, when we use it to prove Theorem [3.1.1

Insofar as orthodiagonal maps are good approximations of continuous 2D space, an analogous
estimate should be true for simple random walks on orthodiagonal maps. Indeed, in [35], Kesten
proves an analogue of the strong Beurling estimate for simple random walks on the square grid.
For a nice exposition of this result, see Section 2.5 of [37]. Later, in [39], Lawler and Limic prove
an analogue of the strong Beurling estimate for a large class of random walks on periodic lattices.

Establishing a strong Beurling estimate for general orthodiagonal maps, or even for the more
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restricted setting of isoradial graphs, is currently an open problem. However, in this work, we

will show that simple random walks on orthodiagonal maps satisfy a weak Beurling estimate:

Lemma 3.1.4. (Weak Beurling Estimate) There exist absolute constants §,C > 0 such that if
G = (V* uV° E) is an orthodiagonal map with edges of length at most €, u € Int(V*), r > 0 is
a real number, (S,,)n>0 is a simple random walk on G*, and Tsy . is the hitting time of dV* by

this random walk, then:
dy B
P%wnw—uuwg<c(4%gk)
where d,, = dist(u, 0V*).

Just as in the continuous setting, this weak Beurling estimate gives us estimates for the modulus
of continuity of solutions to the Dirichlet problem on orthodiagonal maps. The word “weak” here
refers to the fact that the exponent S in this estimate is not sharp. As a consequence, we have

the following weak Harnack-type estimate:

Lemma 3.1.5. There exist absolute constants 8,C,C’ > 0 so that if G = (V* uV° FE) is an
orthodiagonal map with edges of length at most €, h: V* — R is a harmonic function on G* and
d=d; ~dy, = dist(z,0V*) A dist(y, dV'*) for some vertices x,y € V*, then:

ly — x| v Cs)ﬁ

1) = h()| < O [hllo (=

The standard Harnack estimate for continuous harmonic functions can be interpreted as telling
us that bounded harmonic functions are Lipschitz in the bulk (away from the boundary of our
domain). Hence, our weak Harnack estimate in Lemma can be interpreted as saying that

discrete harmonic functions on orthodiagonal maps are S-Holder in the bulk.

To our knowledge, Lemma is not stated explicitly in this level of generality anywhere in
the literature. However, it follows readily from Lemma 6.7 of [I4]. Namely, as per our discussion
in Section the t- embeddings of [14] are a strict generalization of the setting we are work-
ing in. Namely, every orthodiagonal map is a t-embedding (for details, see Section 8.1 of [14]).
Furthermore, it is not difficult to show that for any x € (0, 1), there exists an absolute constant
¢ = ¢(k) > 1 so that if G is an orthodiagonal map with edges of length at most ¢, then G satisfies
the assumption “Lip(k,ce)” of [I4] (see Assumption 1.1 of [I4]). Hence, all of the results of
[14] that are proven for t-embeddings satisfying the assumption Lip(k,d) for some x € (0,1) and
6 > 0 transfer over immediately to the orthodiagonal setting. In particular, Lemma follows
immediately from Proposition 6.13 of [14].

Having only been made aware that the t-embeddings of [I4] are a strict generalization of or-
thodiagonal maps after having completed this work, we had to prove Lemmas and
independently. In Section using the terminology of [9], we prove “microscale” properties (S)

and (T) for simple random walks on orthodiagonal maps. As a consequence, by arguments of
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Chelkak (see the Appendix of [9]), a variety of estimates for simple random walks and discrete

harmonic functions on orthodiagonal maps immediately follow. In particular, Lemmas [3.1.4] and

follow from Property (S).

Remark 3.1.1. The proof of Lemma 6.13 of [14], which is the generalization of Lemma
for random walks on t-embeddings, follows from an analogue of property (S) (see Lemma 6.7 of
[14]), by the exact same argument as the one we use in Section What is distinct here is

our approach to proving property (S), in the more restricted orthodiagonal setting.

3.1.2 Proof Outline: z Away from the Boundary

Away from the boundary, we use the same strategy used by Chelkak to prove Theorem 4.1 of
[I0]. This theorem establishes gives a polynomial rate of convergence, mesoscopically far away
from the boundary, for certain observables on s-embeddings satisfying the regularity conditions
“Unif(6)” and “Flat(d)” (see Section 1.3 of [I0] for details). To see this same argument, written
out in the simpler setting of isoradial graphs, see Proposition 4.4.14 of [46]. The idea is that if a
function f is almost harmonic in the sense that Af ~ 0, then f is close to the harmonic function
with the same boundary data. More precisely, suppose 2 < R? is a bounded, simply connected
domain, g € C°(R?), and h is the solution to the Dirichlet problem on Q with boundary data
given by g. That is:

Ah(z)=0 forallze
h(z) = g(x) for all z € 00

If f is any other function in CZ(£2) n C(Q) with the same boundary data,

(@) - h(z)| = | L Af(y)Caly, 2)dA(y)| (3.1.1)

”

for any x € Q, where Gq(+, ) is the Green function on Q centered at x, and “dA(y)” is integra-
tion with respect to area on 2. As an immediate consequence of this formula, if f has the same

boundary behavior as h and A f is small, f must be close to h.
To apply the formula in Equation [3.1.1] to the problem of estimating the difference between
h(z) and h*(z), we need to replace h*® with a smooth function. To this effect:

1. We convolve h* with a smooth mollifier ¢s, supported on a ball of radius § about 0, where

4 is small.
2. Aslong as § « d,, Lemma tells us that h*(z) is close to ¢s * h*(2).

3. Since h* is discrete harmonic, the convolution ¢s * h® is almost harmonic in the sense that
A(¢ps = h*) ~ 0. Verifying this is the most subtle part of the whole argument. This is the
subject of Section [3.4]
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4. From here, we are in a position to apply our formula in Equation to show that the

solution to our continuous Dirichlet problem, h, is close to ¢s * h® and therefore h®.

There is a minor technicality that ¢s * h® is not defined on all of €2, so this argument actually
plays out on some smaller subdomain of ). Furthermore, the boundary behavior of ¢ h® doesn’t

quite agree with the boundary behavior of h, but morally, this is what’s going on.

3.2 A Few Comments on Notation

e If v eR™,

lv| = \/v% + v+ . 402
o If f:Q — R™ where Q is a subdomain of R", then:

[£1:= sup{|f(x)] : = € Q}

a1l a12

e Given a 2 x 2 matrix A = l ], | All2 is the Frobenius norm of A:

a2,1 Aa22

[Af2 = \/a%,l + a%,z + a§,1 + a%,z

o In particular, if f: Q — R is C2, where Q is a subdomain of R?, then:

|D?f(@)]2 = \/(0%f(x))2 +2(0102f(2))* + (63 f (x))

and:
|D? | := sup{| D*f(x)]2 : x € Q}

If f

e Similarly, if f: Q — R is C2, where Q is a subdomain of R?, then:

|D*f (@)= = \/(a§f(g;))2 + (0102 (2))? + (0103 f (2))* + (03 f (x))?

and:
|D?f := sup{| D*f ()2 : = € 2}

e Recall that for any matrix, its Frobenius norm is an upper bound for its operator norm. In

particular, if v, w € R? and A is a 2 x 2 matrix,

0" Aw| < Jo] - [A]l2 - |wl
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3.3 Random Walks and A Priori Regularity Estimates for

Harmonic Functions on Orthodiagonal Maps

In [9], Chelkak considers locally finite embeddings of a weighted graph I' = (V| E, ¢) in the plane
such that:

e neighboring edges have comparable weight.
e neighboring edges have comparable lengths.
e angles are uniformly bounded away from 0 and 7.

Keeping our notation consistent with [9], if u is a vertex of T, let Bl (u) = (VBr(u), Epr()) be
the subgraph of I" induced by the vertex set B(u,r) n V. The boundary of this graph, denoted
by 0Vpr(y), is the set of vertices of V\Vpgr(,) that are adjacent to some vertex of BI'(u). In other
words,

Vprw) ={y € V\Vpr(,) : y ~ v for some v € Vpr(y)}

In addition to the aforementioned regularity assumptions on the lattice I'; Chelkak assumes that

simple random walks on I" satisfy properties (S) and (T):

e Property (S): Let (Sy)n>0 be simple random walk on I" and let 7" be the first time at which
this random walk exits the ball B(u,r):

T:=inf{neNy: S, ¢ B(u,r)}
Then there exist constants 1y € (0, 7) and ¢y > 0 independent of v € T and r > 0 such that:
P*(arg(Sr —u) e I) = ¢ (3.3.1)

For any interval I < S' with length(I) = np.

e Property (T): There exists an absolute constant Cy > 1 independent of w € I', » > 0 such
that:
Cytr? < Z r%GBg(u)(v,u) < Cor? (3.3.2)
veB](u)
Where 7, = min{|v — u[ : v ~ u} and Gpgr,)(,u) : Vpr 1 dVpr,) — R is the Green’s
function of BI (u) centered at u, which is the unique solution to the following boundary

value problem:

A’UGB,F(’M) (Uv U) = Z C(Ua y) (GB,F(u) (y7 ’LL) - GBF('U,) (’U, u)) = —(5u<’l)) for v e Bal:\(u)

yel’
y~v

Gpr(u,v) =0 forve OB (u)
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(The subscript of v in “A,” is there to emphasize that we are taking the discrete Laplacian

with repect to the variable v, not w.)

Informally, property (T) says that it takes roughly r? steps for a simple random walk on T to
travel distance r away from its starting point. Similarly, property (S) tells us that a simple
random walk started at the center of the disk B(u,r) has probability at least ¢y of exiting this
disk through a discrete arc of length 7. Assuming properties (S) and (T), in addition to the
aforementioned regularity assumptions on our weighted plane graph I', Chelkak proves a number
of estimates for random walks, harmonic functions and extremal length. In particular, he shows
that:

e we have a weak Beurling estimate for the simple random walk on our embedding (Lemma
2.11 of [9]). This tells us that discrete harmonic functions on our embedding are Holder in
the bulk. If we assume our boundary data is also Holder, this gives us Holder regularity up

to the boundary.

e discrete and continuous extremal lengths of conformal rectangles are comparable (Proposi-
tion 6.2 of [9]).

e a discrete analogue of the Ahlfors-Beurling-Carlemann estimate holds, giving us two- sided

estimates for harmonic measure in terms of extremal length (Theorem 7.8 of [9]).

In [4] Angel, Barlow, Gurel- Gurevich and Nachmias prove that if I' = (V| E,¢) is a weighted
plane graph satisfying Chelkak’s regularity assumptions, simple random walks on I' satisfy prop-
erties (S) and (T). Hence, in Chelkak’s context, one does not actually need to assume properties
(S) and (T): these properties of simple random walk follow from the regularity assumptions on

our lattice I.

Intuitively, orthodiagonal maps are good approximations of continuous 2D space, so it is rea-
sonable to assume that simple random walks on orthodiagonal maps should satisfy properties
(S) and (T) along with the rest of the estimates in Chelkak’s toolbox paper. However, while
orthodiagonal maps provide us with a notion of discrete complex analysis, they can have arbi-
trarily small angles, arbitrarily small ratios between lengths of neighboring edges, and arbitrarily

large vertex degrees. In short, they may fail to satisfy the assumptions of Chelkak’s toolbox paper.

In this section, we show that properties (S) and (T) hold for simple random walks on ortho-
diagonal maps. As a result, we are able to recover at least some of the results of [9] for general
orthodiagonal maps, where we have a notion of discrete complex structure, but no additional

constraints on the geometry of our embedding.

3.3.1 Microscale Property (S) on Orthodiagonal Maps

Theorem 1.1 of [25] says the following:
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Theorem 3.3.1. (Theorem 1.1 of [25]) Suppose Q is a bounded simply connected domain,
g : R? > Ris a C? function. Given §,e € (0,diam(Q)), let G = (V* u V°, E) be a simply
connected orthodiagonal map, with edges of length at most e, such that the Hausdorff distance
between 0V'* and 02 is at most 6. Let h. be the solution to the continuous Dirichlet problem on
Q) with boundary data g, and let hg : V* — R be the solution to the discrete Dirichlet problem
on G* with boundary data g|aye.. Set:

Cy :=sup |Vyg(x)], Cy := sup | D?g(z) |2
zeQ zeQ
where 0 = conv(Q U CAv’) Then there exists an absolute constant C' > 0 such that for all

zeV*nQ,

Cdiam(Q)(Cy + Cse)
|ha() = he(2)| <€ —5 —————"
log™“(diam(£2)/(0 v €))
Property (S) for simple random walks on orthodiagonal maps follows from Theorem via an

elementary argument.

Lemma 3.3.2. (Microscale Property (S)) Suppose G = (V* LU V° E) is an orthodiagonal map
with edges of length at most ¢, v € V* is a primal vertex of G, and R > 0 is a positive real
number so that B(u, R) € G. Let (Sn)p—o be a simple random walk on G* and let Tsp(,, r) be
the first time at which our random walk exits the open ball B(u, R):

TaB(u,R) = 1nf{n S NO : Sn ¢ B(’U/7 R)}
Then there exist absolute constants ¢, C' > 0, n € (0, 7) so that:
p (arg(STaBWR) —u)el)=c

for any interval I = S* with length(I) > 7, provided that R > Ce.

We call this a microscale estimate because it holds for all balls whose radius is at least a constant

multiple of the mesh of our orthodiagonal map.

Proof. Suppose G = (V* u V° E) is an orthodiagonal map with edges of length at most ¢,
u € V* is a primal vertex of G, and R > 0 is a positive real number so that B(u, R) < G. Let
Bg(u,R) = (Véc(uﬂ) U V;G(u,R), Epg(u,r)) be the suborthodiagonal map of G formed by taking
the union of all the inner faces @ of G whose corresponding primal diagonal eg, intersects the
open ball B(u, R). Having defined Bg(u, R) in this way, we see that a simple random walk on
Bg(u, R)® run until it hits 8V§G(u’ R) is the same thing as a simple random walk on G*, run until
it leaves the open ball B(u, R). Since the edges of G all have length at most ¢, the edges of G*
have length at most 2e. Hence, the boundary vertices of Bg(u, R)® all lie within 2¢ of 0B(u, R).
Let ¢ : R? — R be a smooth function with compact support such that:

o o) =1if 2] < 3
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e p(z) e (0,1)if 1 < |z <1.
o o(z)=0if |z| =1

Suppose v € dB(u, R). Consider the function g : R? — R defined as follows:

glw) = o (% I %)
Observe that:
e g(z) =1 for z € dB(u, R) such that |arg(z — u)| < arccos (Z).
e g(z) € (0,1) for x € dB(u, R) such that arccos (L) < |arg(z — u)| < arccos ().
e g(z) =0 for z € dB(u, R) if |arg(z — u)| = arccos (3).

Here arccos(z) takes values in [0, 7] for x € [—1,1]. Let hg: V3 (u,r) — R denote the solution

to the following boundary value problem on Bg(u, R)*:

A'hd((E)
ha(z)

0 forallze Int(VE, (, r)

g(z) for all x € VS, p)

If (Sp)y—; is a simple random walk on G* and Ty, gy = inf{n € Ny : S,, ¢ B(u, R)} is the time
at which our random walk exits B(u, R), then by the maximum principle for discrete harmonic
functions:

P (|arg (St ny — w)| < arccos (1/2)) = ha(u)

provided that R > 2¢. Notice that:
IVgleo = R7HV|ws  [D*gloo = R72|D?¢]0

Let h. : B(u, R) — R be the solution to the corresponding continuous boundary value problem
on B(u, R):

Ah.(z) =0  forall z € B(u, R)
he(z) = g(x) for all x € 0B(u, R)

Since g = 1 on a boundary arc along 0B(u, R) of length 2R - arccos (7/8),

arccos(7/8)

™

he(u) =
Applying Theorem with Q = B(u, R), G = Bg(u, R) and g as above, we have that:

) — o] < CERUE Vil + R21D%lce) _ 20( Tl +1D%plocR™)
‘ log'/?(2R/e) log'/?(2R/e)
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Notice that if we take R > C’e for some absolute constant ¢’ > 0 sufficiently large, we can ensure

that:
2C(|Ve|wo + [|D?*pl e R7Y) B arccos(7/8)

log"/2(2R/e) S 27

Putting all this together, we get that:

arccos(7/8)

Pu(|arg(STaB<1L7R) —u)| < arccos (1/2)) = hg(u) = he(u) — |he(u) — hg(u)| = .

provided that R > C’e for some absolute constant C’ > 0. O

3.3.2 Microscale Property (T) for Orthodiagonal Maps
Suppose G = (V* L V°, E) is an orthodiagonal map, H = (V5 u V§, Eg) is a suborthodiagonal

map of G, and u € Int(V}y) . Then Gy (-,u) : V5 — R is the analyst’s Green’s function on H*

centered at w. This is the unique solution to the boundary value problem:

AGpe(v,u) = —0,(v) for all v € Int(V5)
Gpe(v,u) =0 for all v e OV

The subscript of v in “A?” is there to make it clear that we are looking at the discrete Laplacian
on (G* with respect to the variable v, not u. The Green’s function also has a probabilistic
interpretation. Let (S),)n>0 be a simple random walk on H*. For any nonempty subset A € V3,
let T4 denote the hitting time of A by this random walk:

Ta=inf{neNy: S, € A}

Then:
E“\{O <n< TaVP.I 2 S, = U}‘

Ty

Gpye(v,u) =

where m, = > c(u,w) is the sum of the weights of the edges of H® incident to u. Using this
wiw~U

probabilistic interpretation, since a simple random walk on G* is a reversible Markov process,

the Green’s function is symmetric. Namely, if u, v € Int(V}y), then:
Gpe(u,v) = Gge(v,u)

If x € Int(V*), define:
A, = Z Area(Q{Ly})

yeVy
Y~z

where Q3 is the inner face of G with primal diagonal {z,y}. Having made these prelimi-

nary observations, we are ready to state and prove the analogue of Chelkak’s property (T) for

orthodiagonal maps:
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Lemma 3.3.3. (Microscale Property (T)) Suppose G = (V* u V°, E) is an orthodiagonal map
with edges of length at most €, w € V* is a primal vertex of G and R > 0 is a positive real number
so that B(u, R) < G. Let Ba(u, R) = (V5_(u.p)
map of G formed by taking the union of all the inner faces @) of G whose corresponding primal

] VB?G(UVR), EBG(u,R)) be the suborthodiagonal

diagonal eg, intersects the open ball B(u, R). Having defined Bg(u, R) in this way, notice that
Int(VE_ ur) = V"0 B(u,R), V5 _(, gy =V" 0N {z:|z —u| = R}. Then:

(R + 2¢)?

DN =

1
§R2 < Z AUGBG(U,R).(U7U) <
veVe*nB(u,R)

In particular, if R > 2e:

1
§R2 < Z A’UGBG(U,R)'(’Uvu) < 2R2
veV*nB(u,R)

Proof. To prove property (T) for orthodiagonal maps, we first need to make some preliminary
observations. Given an orthodiagonal map G = (V* uV°, E), let [u1, vy, us, v2] denote the inner
face of G with incident vertices w1, v1, us,vo listed in counterclockwise order where uy,us € V'°,
v1,v9 € V°. Using this notation, [u1,v1,us,va] = [ug,v2,us,v1]. Suppose z € Int(V*) and
Z1, T2, ..., T, are the neighbours of x in G*, listed in counterclockwise order. Let y1,v2, Y3, ..., Ym
be vertices of G° so that for each i, [z, y;, 2;, yi+1] is a face of G, where our indices i are considered

modulo m.

Figure 3.1: A vertex x and its neighbors in an orthodiagonal map.
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Then for any z, € C:

. |y 1=
A (Z'—’ |Z—Zo\2)|z:m Z C(xay)(|y_20|2_ |$—Zo|2) Z |;+Z (\331—20|2 |90—Zo|2)

yeVey~x
:Z'yﬁf 1w — 2 + 2Re (s~ )z — )

m
= Z lYi+1 — villzi — x| + 2Re((x — 2p) Z M(xz - z))
i=1 i=1

|x — ;]
Since [z, y;, ¥;, yi+1] is a quadrilateral with orthogonal diagonals for each index 4, we have that:

Nyivr — vil
Vi1 — Vil

|z; — |

Area([z, yi, Ti, yir1]) = 5|¥iv1 — yillvi — 2| and (v; —z) = (Yit1 — i)
2

Plugging these into our formula for A®(z — |z — zo|?) }sz we have that:

NgE

A® (Z = |Z_ZO‘ )|z T 22Area T yzuxzuthl]) +2Re( (1’—20)

=1 %

(Yir1 — yz)) =24,

I
—_

Suppose u € Int(V*) is an interior vertex of G and R > 0 is a real number so that B(u, R) < G.
Let Bg(u, R) = (VéG(u Ry Y VBG(u Ry’ s EBg(u,r)) be the suborthodiagonal map of G described in
the statement of Lemma m Notice that a simple random walk on Bg(u, R)® run until it hits
aVVB (u,R
B(u, R). Furthermore, Int(V}3 , ) = V* n B(u, R).

) is the same thing as a simple random walk on G*, run until it leaves the open ball

If (Spn)n>0 is a simple random walk on G* with canonical filtration (F,)n>0, for any zo € C:

A° (Z Land |Z - ZO|2) ‘Z:S(nfl)/\Tav.

E(|SnnTsye — 20/% |Fn-1) = [Stn-1)aTsye — 20> +
ﬂ-S(nfl)ATavg
2Ag
(n=1)ATsy e
= ‘S(n—l)/\TaV. — ZO|2 + &
S(n—1)aTsy e

It follows that the process:

nA(TcB(u R) ™ 1) AS
|S —u|2—2 ErTyB(u,R)
nATyB(u,R)

k=0 T(Sk"TaB(u,R)

is a martingale. By the optional stopping theorem:

nA(ToB(u,r)—1) AS}? ” A
E"[Stonm —ulf =2B*( ), B g N ZUEH0< k< Topum St = vl
k=0 S s r) veVenB(u,R) Y

=2 Z A’UGBG(U.,R)'(ua’U)
veV*nB(u,R)
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On the other hand, since the edges of G have length at most ¢, edges of G* have length at most

2¢ from which we infer that:
R < B[S, 5 — ul < (R +2¢)?
Putting all this together, we have that:

1 1
SR < S AG gy (u,0) < 5 (R +20)°
veV*nB(u,R)

If R > 2¢ it follows that:

1
FB< ) AGpiur»(v.u) < 2R

veV®*nB(u,R)

3.3.3 The Toolbox

Our goal in this section is to establish analogues of the estimates for random walks and harmonic
functions found in the Appendix of [9], including Lemmas and The proofs of these
results only require properties (S) and (T) as input and so they follow by the same argument as
in [9], verbatim. Nevertheless, for the convenience of the reader and for the sake of completeness,

we will include proofs or at the very least sketches of proofs herein.

The following result is an analogue of Lemma A.1 of [9]:

Lemma 3.3.4. There exist absolute constants ¢,C' > 0 such that if G = (V* u V°, FE) is an

orthodiagonal map with maximal edge length at most €, 7 > C'c and u € V'* is a primal vertex of

G so that B(u,r) < @, then the probability that a simple random walk on G started at w e V*,
2

where 27 < |w —u| < Zr, makes a whole turn inside the annulus B(u,r)\B(u, 37) and then

crosses its own trajectory afterwards, is uniformly bounded below by ¢ > 0.
The idea behind the proof is to set up a network of O(1) balls inside our annulus so that:

e by property (S), the probability of travelling from one ball to the next is bounded below by

some absolute constant.

e having exhausted all of the O(1) balls, our random walk must have made a loop and thereby

crossed its own trajectory.

The only technicality is that we need the radius of our annulus to be sufficiently large so that all

of the balls in our network are large enough to ensure that property (S) holds.

Lemma 3.3.5. (Harnack Inequality) There exist absolute constants ¢ € (0,1), C' > 0 so that
if G = (V*uV° E) is an orthodiagonal map with edges of length at most ¢, h : V* — [0, 00)
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is a nonnegative discrete harmonic function on G* and u € V* is a vertex such that d, =
dist(u, 0V'*) = Ce, then:

ch(v) < h(v") < ¢ th(v) for all v,v" € B(u,d,/2)

Proof. By the maximum principle for harmonic functions, there exists a nearest- neighbour path
v = (wo, w1, Wa, ....,wp,) of vertices in G* such that wy = v, wy,, € OV*, and h(w;) = h(v) for all
i. By Lemma we have that h(w) > ch(v) for all vertices w such that 2d, < |w —u| < 3d,
(any simple random walk path that forms a loop in the annulus {z : $d, < |z —u| < d,,} must
intersect ). By the maximum principle, we conclude that H(v') > ¢H(v). The proof of the

reverse inequality is analogous. O
By an analogous argument, we have the boundary Harnack principle:

Lemma 3.3.6. (Boundary Harnack Principle) There exists an absolute constant C' > 0 so that
if G = (V*uV?° E) is an orthodiagonal map with edges of length at most ¢, © € dV*, r > 0 is
a number so that 7 = Ce and h : V* — [0,00) is a nonnegative discrete harmonic function on G
that vanishes on B(z,r) n 0V'*, it follows that:

2
h(v) = h(v') uniformly for all v,v" € B(x,7) n V* such that FUR lv—v'| <

S| Ut

r

Now we are ready to prove the weak Beurling estimate for simple random walks on orthodiagonal
maps, Lemma [3.1.4}

Proof. (of Lemma Let ¢,C' > 0 be the absolute constants in the statement of Lemmam
Suppose d,, = dist(u, dV*) = Ce. Then we can build a network of |log, (%*)] annuli with disjoint
interiors, so that each annulus separates u from 0B(u,r) and the ratio between the outer radius
and inner radius of each annulus is 2. By Lemma [3.3:4] the probability of a simple random walk
on GG* crossing each annulus without first forming a loop separating the inside and outside of the
annulus, is bounded above by (1 — ¢). Of course, if our random walk does form such a loop, it

must intersect 0V'* in the process. Thus:

1

du>10g2( 1_C)

PH([Stye ] 2 7) < (1 — s3] < (1 — o)) (%

To apply Lemma we needed the inner radius of each annulus to be at least Ce. This
is where the requirement that d, > Ce came in. Otherwise, the best we can do is to use the

maximum principle to conclude that:

7 Ce loga(12)
PU(|ST,,. —ul =7) < (1—¢) 1(7) 2l1

O

Having established Lemma Lemma which tells us that discrete harmonic functions
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on orthodiagonal maps are - Holder in the bulk for some absolute constant 5 € (0, 1), follows as

an immediate corollary:

Proof. (of Lemma[3.1.5) Let C' > 0 be the absolute constant with the same name in Lemma [3.1.4]
Observe that if |z — y| v Ce > 3d, the desired result holds trivially, since |h(y) — h(z)| < 2|[ .
With this in mind, suppose that |[y—z|v Ce < +d and WLOG, h(y) > h(z). Additionally, suppose
that |z —y| > Ce. By the maximum principle, there exists a path v = (wq, w1, ..., wy,) of vertices
in G* so that wy = y, w,, € 0V* and h(w;) = h(y). By Lemma with high probability, a

simple random walk started at x will hit v before exiting the ball of radius d centred at y. Thus:

)= (1= (A Y ww - e (F2 )

> (1= 0 (DY ) - o ()

Since h(y) = h(z), it follows that:

Ih(y) — h(a)| < K[l (L=

d
where K > 0 is an absolute constant. If on the other hand |z — y| < Ce, where Ce < %d, the
maximum principle tells us that:
Ce\P
Ih(y) = h(@)] < K[l ()
This completes our proof. O

While we will not need them for the proof of Theorem the main result of this chapter,
the following two lemmas establish estimates for the Green’s function on orthodiagonal maps,
analogous to estimates that exist in the continuum. Lemma [3:3.7]is the analogue of Lemma 2.13
of [9] for orthodiagonal maps, and follows by the same argument, verbatim. While an analogue
of Lemma is not explicitly stated in [9], it follows readily from an analogue of Lemma 2.9
of [9] and the weak Beurling estimate. For the corresponding Green’s function estimates in the

continuum, see Sections 2.4 and 2.5 of [36].

Lemma 3.3.7. Suppose G = (V*uV*°, E) is an orthodiagonal map with maximal edge length at
most ¢, 2 = (V3 u Vs, Eq) is a suborthodiagonal map of G, u € V3§, r = dist(u, dV3), and R > 0
is a real number so that B(z, R)  G. Then there exist absolute constants A,C > 0, ¢ € (0,1) so
that if r > Ce and 2%r < R, where k € N, we have that:

GBg(u,r)'(vvu) < Gos (v,u) < (1 +

m)GBG(u,Z’W)' (z,u)

Proof. Suppose H = (U* 1 U°, F) is a suborthodiagonal map of G = (V* u V° E). Recall that
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we have the following probabilistic interpretation for the Green’s function:

E*|{n < 1oue : Sn =y}

Tx

GH’(xvy) =

where x € U®, (Sp,)n>1 is a simple random walk on G*®, 7oy is the hitting time of dU® by this
random walk, and:
= Y, cx,y)
yy~a
With this in mind, the left-hand inequality in Lemma [3.3.7]is trivial: it just follows from the fact
that 7op (ur)e < Tons-Regarding the right-hand inequality, by the strong Markov property for

simple random walk on G*, we have that:

Goe(z,u) < Gpg(uere(T,u) +  max  P(SRW started at y hits 0V, . before dV) - max  Gae(2,u)

yeaVBG(u,ri) zeaVBG(u,r)

As far as handling the second term, observe that if our random walk starts at a point of 0V 3
and hits 0V

Bg(u,r

0,1,2,...,k—1 without making a whole turn and then crossing its trajectory, thereby hitting 0V{3.

o (u,2kr)

) before 03, it must have crossed a series of annuli A(u, 277,271y for j =

By Lemma as long as r > Ce for some absolute constant C' > 0,

max  P(SRW started at y hits 0V, ) before oV7) < (1 — o)k

yeaVJ;G(u,zk'r)

where ¢ € (0,1) is a constant, independent of the geometry of our orthodiagonal map. Thus, we
have that:

Gas(7,u) < G (u2vr)e (T,u) + (1 = o)k max  Goe(z,u)
ZE(?VBG(%T)

Applying this estimate to Gqe(z,u), where z € (?V];G( in the expression above and then

w,r)’

iterating this process, we have that:

Gas(z,u) < Gpgu,2krys (T,u) + (1 — o)f  max Gg. (z,u)

zE(?Vj;G (urr)

< Ggu2irys (T,u) + (1 — o) Zea{/n.m? ) (GBguarry (z,u) + (1 — o) wear‘gl.ax( )GQ. (w,u))
B (u,r Bg (u,r

= GBg(u,Q’“r)‘(xa U) + (1 - C)k zea{/%i)({um) GBG(U72kT)‘ (Z7 u) + (1 - C)2k wea%aj((um) Gas (w7 U)

< ..

< GBg(u,ri)' ('Tv u) +

(1—o)F (

m max GBg(u,QkT)'(Z7u))

ze&VéG (u,r)

Observe that G g, (y,25r)e (-, u) is harmonic in Bg(u, 2Fr)* away from u, and we can cover ovy
with O(1) balls of radius r/2, centered at points of 0V}3_

c(u,r)

Applying the elliptic Harnack

(u,m)”
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inequality (Lemma [3.3.5)) on each ball and chaining these estimates together, we have that:

min - Gp,uorre(2,u) = max  Gpg ke (2, 1)
2e0V 2 X zeV2 .
Bg (u,r) Bg (u,r)

Since G, (u,2%r)e (+; u) is superharmonic on Bg(u,7)*,

zEé’\Ifr}in GBg(u,ri)‘(Zau) < GBc(u,2kT)‘(xau)
Bg (u,r)

for any z € V3 Thus, we have absolute constants ¢ € (0,1), A > 0 so that:

c(u,r)

Gaqe (Jf, u) < (1 + )GBG(U,QIC’I‘)' (Z‘, ’LL)

A
(1—c)"F -1

for any z € Véc(u e provided that r = dist(u, 0V3) = Ce for some absolute constant C' > 0 and

B(u,2%r) < G. 0O

Lemma 3.3.8. Suppose G = (V* 1 V° F) is an orthodiagonal map with maximal edge length
at most ¢, Q = (V3 u VS, Eq) is a suborthodiagonal map of G, v € V3, r = dist(u, V) and
x € V§ satisfies |z — u| = R > ((K¢) v (2r)) where B(u, R +¢) < G and K > 0 is an absolute

constant. Then there exist absolute constants 3, B > 0 such that:

rve)ﬁ

Gae(z,u) <B( I

Proof. Without loss of generality, assume that r > C'e where C > 0 is the absolute constant from
lemma 4.1. We can do this because if r < Ce, adding the vertices and edges of G n B(u, Ce) to
gives us an orthodiagonal map that satisfies r > Ce whose Green function at u is strictly larger
than that of Q.

By the optional stopping theorem applied to our random walk, stopped upon hitting 0V{3 or
ovy

c(u,r)’

G« (z,u) < P*(SRW started at @ hits oV, ) before it hits 0V(3) max  Gg(z,u)

zet?VL;G (um)

Just as in the proof of Lemma above, for a simple random walk starting at a to hit
A%

Bg(u,r
j =0,1,2,...,k — 1 without making a whole turn and then crossing its trajectory in G°. By

Lemma [3.3.4] it follows that:

) before Vg3, our random walk must cross k = |logy(R/r)] annuli A(u,2'r,2*'r) for

P*(SRW started at @ hits oV, ) before it hits 0V3) < (1 — o)k

where ¢ € (0, 1) is an absolute constant. By Lemma there exists an absolute constant C’ > 0
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such that:
Gos(2,u) < C'Gpgu2re (T, u)

for any x € V3 By property (T):

c(u,r)

Z Area(N,)G g (u,2r) (T, 1) < Z Area(N,)Gpg(u2r) (2, u) < (2r +€)°

z€Bg (u,r/2)* z€Bg (u,2r)®

Additionally, we have that:

Z Area(N,) = (r/2 —¢)?

z€Bg (u,r/2)®

As long as C' > 2, it follows that there exists an absolute constant ¢y > 0 so that:
Gas(z0,u) < o

for some ¢ € B(u,r/2). However, as we discussed in the proof of Lemma since Gqe (-, u) is

superharmonic on 2* and harmonic away from u, we have that:

Gae (zo,u) = min  Gge(z,u) = max Gge(z,u) = max Gq-(z,u)
we&Vé ) xedV 2 eV 2 R
alur/2) B (ur/2) Bg(u,r)

Putting all this together, we have that:
GQ' (l’,’U/) $ (1 — C)|-10g2(R/T)J S (T/R)logz(liic)

Observe that the exponent 8 € (0,1) we get from this argument is the same exponent 8 € (0, 1)

in Lemmas 3.1.4] and B. 1.5 O

3.4 The Convolution of a Discrete Harmonic Function

with a Smooth Mollifier is Almost Harmonic

In the section, we will show that the convolution of a discrete harmonic function with a smooth
mollifier has small Laplacian. This is the key estimate that will allow us to compare our mollified
discrete harmonic function to the corresponding continuous harmonic function. We will also use
this result in Chapter [4] to show that discrete harmonic functions are Lipschitz in the bulk on a

mesoscopic scale. To prove this, we’ll need the following analogue of Proposition 3.12 of [T1]:

Proposition 3.4.1. Suppose S < R? is a square with side length I, f € C3(S) and G =
(V*uV°, E) is an orthodiagonal map with edges of length at most € such that S < Gandl2e.
Then:

D ACf(v) = L Af(@)dA(x) + O(e - 1- | D*f]) + OC* - | D f]))

vevVensS

7



For context, notice that if our orthodiagonal map G = (V* u V° E) is isoradial, with edges of
length at most € and f e C’g’(é’)7 a straightforward computation (see Lemma 2.2 of [I5]) tells us

that for any vertex x € Int(V'*) we have that:

A*f(x) = Af(z) - Area(N,) + O(e - Area(N,) - | D3 f) (3.4.1)
= Af(z) - Area(N,) + O(e® - | D*f|) (3.4.2)

where for any vertex x € Int(V'*),

Area(N,) = é Z Area(Qyz.y3)

where Q,,,y is the face of G with primal diagonal {z,y}. The factor of % here, comes from the
fact that every inner face of G has two primal vertices, so it is natural that the area of this face
should be split evenly between them. Equation [3:4.2] tells us that on isoradial graphs, at any
vertex, the discrete Laplacian of a smooth function looks like the continuous Laplacian. In par-
ticular, any continuous harmonic function defined in a neighbourhood of G is “almost” discrete

harmonic in that its discrete Laplacian is small.

Repeating this computation for a general orthodiagonal map, one finds that this result is no
longer true: at any fixed vertex, the discrete Laplacian does not look like the continuous Lapla-
cian. However, Proposition tells us that, at least on average, the discrete Laplacian does

indeed look like the continuous Laplacian.
Proof. By Lemma we can pick a suborthodiagonal map S’ of G so that:
o di1ans(057,05) = O(e).

o if x1, 29, ..., 2y, are the vertices of 0V, listed in counterclockwise order, then these vertices
form a contour. That is, {z;, z;+1} is an edge of (S")° for all ¢, where the indices i are being
considered modulo m. It follows that if x € 0V§, then x has exactly one neighbouring
vertex y in (S')®, where y € Int(Vg,).

m
e For x1, 29, ..., 2y as above, Y |z;41 — x| =< 1.

=1
In other words, S’ is an orthodiagonal approximation to S that is close in Hausdorff distance and

whose perimeter (at least in the dual lattice) is comparable to that of S. We will see why this is

important later. Then:

DA = > D] elwv)(f(u) = f(v))

veVenS veVenS wu~v

Y 2 clw o) (V) (u—0)+ %(u —0)'D?*f(v)(u—v) + O(|D*f] - [u — v]*))

veVenS uu~v
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Since V f(v) - u is a linear function of u for fixed v and linear functions are discrete harmonic,

Z c(u,)VF(w)  (u—v) =0
wiu~
for all v € Int(V'*). If {u, v} is a primal edge of our orthodiagonal map, let @ = @, , denote the
quadrilateral in our orthodiagonal map that has {u,v} as its primal diagonal. Equivalently, we
write Q = [u,r,v, s], where u, r,v, s are the vertices of @ listed in counterclockwise order so that
u € V*. Notice that using this notation, [u,r,v,s] = [v, s,u,r]. Since our quadrilaterals all have

orthogonal diagonals,
1 1 )
Area([u,r,v, s]) = §|u —ollr —s| = ic(u, v)|u —v|
With this in mind,

Y 2 clww)O(I D -lu—vf)y = T > O(ID*f]- Area(Qu.) - Ju— )

veVenS uu~v veVenS uiu~v
*
—0(ID*fl-c Y, Y] Avea(Qua)) © O(ID*f| - < - Area(s)) = O(ID*f] - = - 1%)
veVenS uu~v
The equality, (*), follows from the fact that any quadrilateral of G that lies within e of S has at
most two corresponding primal vertices in V* n S and so is counted at most twice in our sum.
Thus:

D, ATf(v) = % >0 D cwo)((w=0)"D*f(v)(u—v)) + O(|D*f| - & - ?)
veVenS veEVenS uiu~v

By the same reasoning,

oAt =g XY ) ((u— ) D)) + 0D < 1)

velnt(Vg,) velnt(Vg,) uru~v

Hence:
Y AT - ), ATf()| = % > 2 cwv)((u=v)"D*f(v)(u—v)) + O(|D*f| - £ -1%)
veVensS vEInt(st,) veEV®NS wu~v

v¢Int (V)
=o(ID*f| >, D) clwv)u—v?) +O(|D*f| - & - Area(S))
veEV®NS uwu~v

vgInt(VS))

=O(e-1-|D*f]) + O(|D*f] - - %)

In other words, we see that we can approximate the sum of A®f over V* n S by the sum of A®f
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over Int(V3,) and the error we incur when we do this is small. In summa, we have that:

> A’f(v)=% Y Y el ) ((w=0)"D?f(v)(u=v)) +O(e-1-|Df]) +O(e-1*- | D* f)

veVenS velnt(Vg,) wu~v

For any v € V* n S, Taylor- expanding the second derivatives of f about zg, the center of the

square S, we have that:

31 f(v) = 8 f(z2s) + O(L- | D*f])
0102f (v) = d102f(2s) + O(L- [D*f)
% f(v) =03 f(zs) + O | D*f])

Applying these estimates to the sum above (effectively, we are treating the second derivatives of

f as roughly constant on each square) we have that:
> 2 cwo)((u—v)" D f(v)(u—v)) =
velnt(Vg,) uiu~v

= D1 D c(w,) (A (0)(ur — v1)? + 20102f (v) (w1 — 1) (ug — v2) + 3 F (V) (ug — v2)?) =

velnt(Vg,) uiu~v

= Z 2 f(v) Z c(u, v)(ug —v1)? +2 Z 0102f (v) Z c(u,v)(u; —v1)(ug — v)

vEInt(Vs',,) wu~v veInt(VS',) wU~Y
+ Z 5 f(v) Z c(u, v)(ug — v2)* =
velnt(Vy,) wu~v
- aff(zs)( NN elu ) - m?) LoD S Y eluyv)(ur —v)?)
veInt(st ) wiu~v yelnt(vs'/) wu~v

+2(71(72f(25)( Z 2 )(u1 — 1) (ug —02))

velnt(Vg,) wu~v

o101 Y X elw vl — vilfuz — val)

velnt(Vg,) uiu~v

+ 6§f(z5)< Z Z c(u,v)(ug — ’U2)2) +O(L-|D?f| Z Z )(uz — v2)?)

velnt(Vg,) uiu~v velnt(Vg,) wiu~v

Observe that (u; — v1)?, (ug — v2)?, |ug — v1||lug — ve| < |u —v|%. Furthermore, using the fact
that c(u,v)|u — v|* = 2Area(Q. ) and observing that every quadrilateral @ within O(g) of S

is counted at most twice in our sum, we have that each of our error terms is of size at most
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O(® - | D*f]). Thus:

DX clw o) (=) D f ) u—v)) =

velnt(Vg,) wu~v

= 6%f(z5)< Z Z c(u,v)(ug — 111)2) + 2(3’182f(zs)( Z c(u,v)(uy —v1)(ug — v2)>

velnt (V) wiu~v velnt(Vy,) wu~v

(1) (2)
3G Y elwu)ua —w)? ) + O - D)

velnt(Vg,) wu~v

(3)

To complete the proof of Proposition we need to understand the behavior of terms (1), (2)
and (3). The idea is to use discrete integration by parts to show that each of (1), (2), (3) is equal
to the discretization of a certain contour integral. The fact that the perimeter of S’ in the dual
lattice is comparable to that of S will allow us to show that this discrete contour integral is close
to the corresponding continuous contour integral. Consider term (1). Rewriting this as a sum

over directed edges we have that:

Y D cuwn)um—w)P= Y ele)(ef —ep)? =

veInt(VS',) uU~U e”eEé/
efeInt(st,)
= Y ce)el —er)?+ Y, cle)ef —er)?

éeE* écE
efef)st,

(10)

Term (1la) is just the discrete Dirichlet energy of the function z — Re(z) on S’. Since Re(z) is
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discrete harmonic, applying discrete integration by parts we have that:

D cle)er —er)?= Y cle)ef (ef —ex) = D] erlef —er)

ceE?, ce i}, SeE},
= Z cle)ef (e] —ey) — Z ef (ey —ef)
eeEy, eeE?,

I
B
o
A
o
N
<'o
A
—
o
A
|
o
=
S~—
|
|
N
AN
o
A
o
N
<'o
£
—
o
A
|
o
=
S~—

s’ s’
=2 ) ce)er(ef —er) =2 Y ele)ey (ef —ey)
é‘eE_;, é‘eEg,
e~ elnt(Vg,) e edVy,
=-2 Z Z c(u,v)vy (ug —vy) — 2 Z cle)ey (ef —e7)
'UEInt(VS',) UU~Y geEg/
e_eﬁvsf,
=—2 > Re(®)A*(Re())(v) =2 > c(e)Re(e”)(Re(e™) — Re(e™))
velnt(Vg,) é’eEg,
e eovy,

— 2 Y ce)er (el —ep)
é‘eE:,,
e*eavs'/
Suppose Q = [e™, f~,et, f1] is a quadrilateral face of G, where the vertices e™, f~,et, f~ are
listed in counterclockwise order. Since Im(z) is the discrete harmonic conjugate of Re(z) (up to

an additive constant), we have that:

cle)(ef —er) =(f3 = fz)
More simply, since the diagonals of () are orthogonal,

T A el _ -t e-e __fF-ff
e —e ] ]

— = s =
fr=r let —e | [ff =/ let —e =7

Since c(e) = ‘f+7f_|, i —fi = —cle)(ed —e3), fof —f5 =cle)(ef —e). Applying this to the

T fet—e]

problem at hand, we have that:

—2 > cle)ey (ef —e) = 2 > e (f — 1)
é‘eE:';, e“eE_;,
efeﬁVSf, efeﬁVSf,

Q.- +=[e” FTetT ]

Let aE;, denote the set of directed edges of S’ that go from a vertex of 0V, to a vertex of
Int(V¢,). Because of how we defined S’, for all directed edges € = (e~,e*) under consideration
in the sum above, e~ € 0V¢,, et € Int(V§,) and f~, f* € IVS, where Q.- .+ = [e™, f~,et, fT].

Furthermore, the directed edges f = (f7, f%) dual to directed edges € € JE?,, form a closed
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contour in (S)°, oriented clockwise, with length is comparable to I. We use 0°E¢, to denote the
set of directed edges in this contour. Intuitively, the sum above is a discretization of the integral

of xzdy over the contour 8DE§,. We will now make this intuition precise.

Suppose f € OFg and Qy- s+ =[e™, f~,e", fT]. Then:

f+
T (5 — ) = fadyl <elf* = 1|
-
Summing over directed edges f e I°FEY,
> TS~ 1) = i) < e lengh(PE5) 5 e 1
c?eEé, OB,

efeﬁvs',

Qe ot =[e™,f et f1]

Thus, we see that term (1a) is close to the contour integral §6OE° xdy. By Green’s theorem,
S/

§x@=—ﬂ+maw

VE?,

Thus:
(1a) = 21* + O(e - 1)

Term (1b) can be dealt with the same way as all the error terms we saw previously:

Z cle)(ef —er)? < Z cle)lem —e > =2 Z Area(Q.) = O(e - 1)
éeE éeE éeE
e_ec'?VSf, e_ean, e_eﬁst,

Putting all this together, we get that:
(1) =212 +0(-1)

A similar story plays out in the case of terms (2) and (3). Rewriting terms (2) and (3) as sums

over directed edges we have that:

@= 2 X cwv)m—u)uz—v)= Y ele)(ef —er)(e5 —ey) =
velnt(Vy,) uiu~v geEé/
e elnt(Vg,)

= T ot~ —e)+ Y et — el —e)
5€E__';, _ efieaE;/'/

~—

(2a)

(2b)
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—
w

~
Il

Y D un)up—w)P= Y cle)(es —ey)? =

velnt(Vy,) uiu~v geE“;/

e~ elnt (V)

D) cle)ed —ep) Y cle)(es —ep)?
e*eEé, écE
- e eovy,

(3a)

(3b)

By the same argument we used to handle term (1b), terms (2b) and (3b) are of size O(e - ).
Applying discrete integration by parts to terms (2a) and (3a) and using the fact that f;" — f; =

—c(e)(ef —ey ) and f,f — f; = c(e)(ef —ey) for any quadrilateral Q = [e™, f~,e™, fT] in G, we
have that:

(2a) = D) cle)ef —er)(es —e3)=—2 > Re(u)A"(Im()(v) =2 Y cle)ey(e3 —e;)

é‘eE_;, velnt(Vg,) é‘eE_g,
e edVy,
— - —( £+ —
=2 Z cle)er (e3 —ex) =2 Z e (fi = 1)
eeEy, fed®ESg,
e edavy, Qy— jr=le"fe™ 7]

(Ba)= D) cle)es —ez)=—2 D) Im(u)A(Im())(v) =2 ; e(e)e (€5 —e3)

é‘eEé, velnt(Vg,) é’eEg,

)y ey (f = f7)
é‘eEj‘s,, feaOEg,
fo,f+ :[677f7,€+,f+]

Il
|
I\
o
~~
9]
=
o
N
—~
o
[ V)

I

o
N
~—
\

Do

where:

D eT(ff - 1) - 35 vde| < e
feaOEg,

VES,
fo,f+ :[eivfiaeJraf#»]

3 e (fF — f7) - 3f> yde| <& -1
fed®Eg,

6OEZ,,
fo,er =[e_yf_ae+af+]

By Green’s theorem:

§ xdx =0

VB3,

jg ydr =12+ O(c - 1)
oVEY,

And so:
(2) = O(e - 1), (3) =22+ O(e - 1)
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Armed with these estimates for terms (1), (2) and (3) in our sum from earlier, we have that:

Y, ATf(w) =3 f(zs) (P + O 1) + 0102f(25) - O(e - 1) + 35 (25)(I° + O(e - 1)) + O(°| D f])

Vens
= Af(zs) - 1* + O(e - 1- | D*f]) + O - [ D* f])

= JS Af(x)dA(z) + O(e - 1-[D*f]) + O(* - | D f]))

O

Having shown that for a smooth function, the continuous Laplacian agrees with the discrete

Laplacian, on average, we are ready to prove the main result of this section:

Proposition 3.4.2. Suppose G = (V* L V?° E) is an orthodiagonal map with edges of length at
most €, h* : V* — R is harmonic on Int(V*) and ¢ is a smooth mollifier supported on the unit
ball B(0,1) € R%. We can think of 2* as a function on G by extending h® to G in any sort of
sensible way. For instance, we could triangulate the faces of G* and then define h* on each face
of G* by linear interpolation. By our a priori regularity estimates for discrete harmonic functions
on orthodiagonal maps (see Lemma, the exact details of how we choose to extend h® to G

don’t matter.

For any & > 0, define ¢s(2) := 6 2¢(6712). Then ¢s is a smooth mollifier supported on the
ball B(0,5) € R2. Fix § >0, z€ G so that £ <4 < 4 where d = d, = dist(z, 0G). Then:

. 1 s . B o B .
Apsh*)(z) = O(e2 -0~ % - (ID*¢| + ] D3¢l) - [A°[) + O(e ™7 -672-d~ 77 - (| D*p| + | D)) - [ 1*])

1— 28
In particular, if § = ¢7+6d7+5 | we have that:

sy

Alps * h*)(2) = O(e® - 572 - (|D?| + [ D3]) - |1*])

Otherwise:
_B

Alps h*)(z) = O™ - 57 -4 %55 - (|D%p] + | D) - [1°])
Proof. We compute:
Ao+ 1)) = | Augslz = w)h*(@dA(w) = | Az = w)h* (w)dA(w)

- J Awips(z — w)h* (w)dA(w)
B(z,8)

Let S be a family of pairwise disjoint squares of side length ¢ that cover B(z,d) up to a region

of area O(6f). Here / is a real parameter such that € « £ « §, whose exact value will be specified
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later. Since each square has area (2, S consists of O((5/¢)?) squares of side length £. Then:
A(ps = h®)(2) =J Aypps(z —w)h® (w)dA(w)
B(z,6)

=3 ([ Awnstemwmia) < | Augc -t @A)

SeS

v

(1) (2)

where:
()] = O(3- €| D?ps - |h*]) = O(¢- 672 - | D¢ - |h*])

To handle term (1), fix S € S and select a point wg € S n V*. Then we write:

Jchpg (z—w)h*(w)dA(w) = h*(wg) JAw<p5 (z —w)dA(w IAwgois (z —w)(h*(w) — h*(ws))dA(w)

(a) (b)

(3.4.3)
Since the square S has area ¢? and Lemmatells us that |h®(w) — h*(ws)| = O(|h*|¢Pd=F)

for any w € .9, it follows that:
(b) = L A5 (z—w) (h* (w)=h*(ws))dA(w) = O(¢*| D?ps|-|h*|(¢/6)7) = O(€**5.6=%-d~P | D2p|-|n*])
As far as handling term (a) in Equation

(a) =h*(ws) L Apips(z — w)dA(w)

s>(( > Ales(z —w)) +0(e - £+ |D?ps]) + O(E* - | DPs]))

wevVensS

(3 statm) s (3 st nes i)

weV'® wevVens
+0(e-£- 67" [ Do - [n*]) + O(€° - 67° - | D3¢ - | h*)
D, Alws(z - w)h'(w)) + 0767477 - | D2 - |n*])
weVens
+O0(e- - 074 | D2 - |h*]) + O(€® - 67° - | D3] - [n])
Briefly,

e the second equality follows by Proposition [3.4.1

e the fourth equality follows by the following crude estimate:

Y Angsz—w) (A (ws —h* )| < Y ALes(z —w)|- bt £ a~?

weVensS wevVensS
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where:

Alestz—ull =| 3 et ulpatz =) =gz =)
- | sz elu,w)( = Veps(z = w)(w — u) + O(1D%s] - u — w]?)|
- | zj el w) ¥z —w)w =] + O(IDesll T Area(@ur)
- Ou(~ ;4 | D%| ;/ Area(Qu,v)) -

The first term on the third line above vanishes, since any linear function is discrete harmonic.
Summing over w € V'* n S, every quadrilateral face Q) of GG that lies within ¢ of S is counted

at most twice, where ¢ « £. Hence:

D, ALes(z—w)| =057 D)
wevVensS

Summing over S € S, since S consists of O(62 - £72) squares, we have that:

“ (X Aeslz - wh(w)) + O£ 572 D] - A

SeS weVenS
+O(07- 67277 - | D*g| - |R°])) + O(¢- 672 - | D¢ - |h°])

Since the squares in S cover B(z,d) and ¢s(z — w) is supported on B(z,d) (as a function of w),

we have that:

(X Avewht@) = Y Alws—whtw) = Y gs(z—w) A (w) =0

SeS weVenS welnt(V'*) welnt(V'*)

Putting all this together, we get that:

A(ps#h®)(2) = O(eL~1-67 2| D2p||-|h*)+O(£%-672d 7| D2p|| - [h*|)+O (€0~ (| D]l + [ D) |1°)
(3.4.4)
In the estimate above, d,d and € are given to us, whereas { is just some parameter satisfying

€ « £ « §. To complete our proof, the last thing we need to do is optimize in £.

First observe that taking ¢ = § or £ = ¢ doesn’t give us an effective estimate. Hence, the
optimal choice of £ must lie on some intermediate scale. In particular, the asymptotically optimal

choice of £ corresponds to a critical point of the function f(¢) = ¢~1e + £8d=F + £5L.

fl)y =614+ B0PYa P — 12 =0 «— bc=10%+p0*PsdP
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When this equality holds, we either have:
2= — (=+be

or:

OH86d—P = e > (= dT5FeTP

which of thebe a&ymptotics holds at the critical point depends on which of the relevant quantities-
B 1-8

Vo or dTF e T~ is smaller. When vz < d/(1+8)c1/(148) s § < dfTﬁ‘s}TB, we have that

¢ = +/de near the critical point, giving us the estimate:

B =
2

Alps *h*)(2) = O(e* - 672 - (| D] + | D?¢]) - [h*]) + O(e7 - &€
= O0(2 - 6% - (|D%p| + |D3¢]) - |2*])

~d™7 [ D?g] - [he])

s ]

The second equality follows from the fact that when 6 < d %57, we have that €267 % >
28 1-8 B

£35(3-24=8. When § > dHﬂgHﬁ we have that £ = dTrFT#7 at the critical point, giving us

the estimate:

Alps xh*)(z) = O™ - 572 d" 755 - | D] - [A°]) + O™ - 57% - d

= O(e™7 - 672 d" 77 - (|D%¢| + | D) - |*])

13
+B8

(I1D%ell + [ D%l - [h°1])

28 1=8 B
B

8
Again, the second equality follows from the fact that when § > d7+8 ¢ T+7 , we have that e T#8 § ~2d~ 1+8 >

s
£T45 53145 . This completes our proof. O

3.5 Proof of Theorem |3.1.1

Suppose Q = R? is a simply connected domain and g : R? — R is a- Holder for some « € (0, 1).
Let h be the solution to the continuous Dirichlet problem on  with boundary data given by g.
That is:

Ah(z) =0 for all x € Q
g(z) for all x € 09

>
—~
&

I

Fix zg € €. This will be the point at which we compare the solutions to the continuous and
discrete Dirichlet problems. Let G = (V* L V°, E) be an orthodiagonal map with edges of length
at most ¢ so that 2o € G < Q and dist(z, 0Q) < € for all x € OV*. Let h* : V* — R be the
solution to the discrete Dirichlet problem on G* with boundary data given by g. That is,

A°R®(z) = for all x € Int(V'*)
h*(xz) = g(z) forall zedV*®
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Extend h® affinely to a continuous function on G. For instance, we can triangulate each interior
face of G* and extend h® to each triangle by linear interpolation. Obviously this extension is
not unique, however, since discrete harmonic functions on orthodiagonal maps are Holder in the
bulk (Lemma and near the boundary (see our argument in Case 1 below), the choice of
affine extension won’t affect our rate of convergence. For any z € Q, let d, = dist(z,00). As
we discussed in Section we will now estimate the difference, |h(z9) — h*(20)|, in two different
ways. One approach will give us a superior estimate when zq is close to d€2. The other will give

a superior estimate when zq is far away from 0€.

3.5.1 Case 1: 2z is close to 0f)

Let w be a point of 0 so that d = d,, = |20 — w|. By considering the point of intersection
between 0G and the line segment from zg to w, it follows that we can find a point w’ € dV* so

that |29 — w'| < d + € and |w — w’'| < 2e. By the triangle inequality:
[7(20) = h* (20)] < [1(20) — g(w)] + lg(w) — g(w")] + [g(w") = h*(z0)]
Since g is a-Holder:
lg(w) — g(w')] < 2| g]ac®

To estimate |h(zg) — g(w)|, we write this quantity as an expectation. Using the layer-cake rep-
resentation of this expectation along with the strong Beurling estimate (Proposition [3.1.3)), we
have that:

[h(z0) — g(w)| = [E*g(Br,q) — g(w)| < E*[g(Brsg) — g(w)| = L P (l9(Braq) — g(w)] = A)dA

00 diam(2)
< [ P glalBr —ul* = VA =algle [ wt P (B, —w] > w)d
0 0
d diam(£2) dN 1/2
< ozHg||aJ uo‘dquaHgHaJ uo‘*lCl(f) du
0 d U

diam(§2)
= |lglad® + C1a\|g”ad1/gf e
d

where C7 > 0 is an absolute constant, (B);>0 is a standard 2D Brownian motion, and Tpq is the

hitting time of 02 by this Brownian motion. Observe that:

a—1/2 .
T if a € (0,1/2)

diam () )
J w2 du < { log (B if o — 12
d

Wiam(@° it e (1/2,1]
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Hence:
=5 l9lad® if a € (0,1/2)

7(20) = g(w)| S { afg|ad® log (L2mE) if o =1/2

o . o 12 .
ﬁHgHadlam(Q) (ﬁ(ﬂ)) if e (1/2,1]

Using the weak Beurling estimate for simple random walks on orthodiagonal maps (Lemma
3.1.4) in place of the strong Beurling estimate for planar Brownian motion, we can estimate
|g(w’) — h*(z0)| by the same argument:

0
|h®(20) — g(w")| = [E*g(Srsy.) — g(w')| < E*[g(Srs.) — g(w')] = L P (|1g(Sr.,.) — g(w')] = A)dA
” diam(£2)
< Jo P (lglal ST,pe — w'[* = A)dA = ozHg“aL u PR (ST, . — w'| = u)du
2(dve) diam (Q2) d 5
< aHg”aJ u"_ldu+a‘|g”aj Ua_ng( v 5) du
0 2(dve) U
diam ()
< lgla(d v e)* + algla(d v a)ﬂf w1y
2(dve)

where Cy > 0 is an absolute constant, (S,)n>0 is a simple random walk on G*, and Tsy . is the

b2

hitting time of dV* by this random walk. The appearance of “(d v €)” in our estimates comes

from the fact that |z9 — w'| < d+e < 2(d v €). Observe that:

7“;32”3 if a e (0,0)

diam(€2) 51 @
u* P du < { log (T2 i o =
L(dve) 2 ( dve ) ﬁ

(@0 e (51]

Hence:
7oslglald v e)® if € (0, )

|7 (20) — g(w')]

A

lgla(d v £)log (L2m2)  if o = g

dve

o M V. B M
ﬁ\|g||ad1am(9)a(di:mfﬂ)) if a € (5,1]

Since we used a strictly weaker version of the Beurling estimate, our estimate for |h*(zg) — h(w’)|

is necessarily worse than our estimate for |h(z9) — g(w)|. Hence, putting all this together, we have
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that:
522 lgla(d v o) if o € (0, 8)

|h(20) — h*(20)| < 1 |glald v €)*log (di%(sm) ifa=p

(07 : (e} Vv B .
r_ﬁHgHadlam(Q) (di:m(sg)) if a e (6; 1]

3.5.2 Case 2: z; is far away from 02

Let 6 > 0 be some mesoscopic scale, whose exact value we will fix later. If ¢ is a radially
symmetric smooth mollifier supported on the unit ball B(0,1) < R?, then ¢s5(z) = §2¢(6 1) is
a radially symmetric smooth mollifer, supported on B(0,d). Extend h® : V* — R to a function
on G in any sort of sensible way. For instance, we could triangulate the faces of G* and define h*®
on each triangle by linear interpolation. In this way, we can think of hA*® as a function on G. This
allows us to consider the convolution ¢s * h®. Notice that this is only well-defined for points of G
that are at least § far away from 0G. With this in mind, let Q% be a simply connected domain
so that:

® 2p € Q(S
e PG
e every point of 900 is at least 26 far away from oG.

e every point of 9Q° lies within O(8) of dQ and therefore oG.

In this way, ¢s * h® is well-defined as a function on Q°. Let I be the solution to the continuous

Dirichlet problem on Q° with boundary data given by ¢s * h®. That is:

Ah(z) =0 for all z € Q°
h(z) = (¢s * h*)(2) for all z € 0Q°

By the triangle inequality:
|h* (20) — h(z0)| < |h*(20) = (¢ * h*)(20)| + |(65 * h*)(20) — hl(z0)| + [h(2) = h(2)|  (3.5.1)

By Lemma [3.1.5
L] L] 5 6
1 (20) = (65  h*) ()| < Il (3)
To handle the second term in Equation observe that (¢s * h*) is a smooth function on Q°
that extends continuously to 092° and h is the harmonic function on €9 that agrees with ¢s = h®

on 0Q%. Hence:

(5 h*)(20) — h(z0)| = | f (A(ds * h%))(w)Gas (w, 20)dA(w)] (3.5.2)

Qs
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Proposition tells us that the convolution of a discrete harmonic function with a smooth

mollifier is almost harmonic. Namely, we have that:

(A(¢5 % h%)) (w)] < g 263 (3.5.3)
. 1-8 28 .
if § = e™¥8d,™" . Otherwise:

__B_
(A(gs * B*)) ()] < [glle™7 62y ™7 (3.5.4)

where d,, = dist(w, 0G) = dist(w, #Q). The fact that dist(w, G) and dist(w, 3) are comparable
and therefore interchangeable here, follows from the fact that § is mesoscopic and we are only
considering points w € Q. Plugging our Laplacian estimate in Equation into Equation
we have that:

~

(65 B)(z0) = Fao)| < gl 367% | Gos(w, s)dA(w) (3:5.5)
Q
if § > T diam(2) 75 . Otherwise:

(95 % 1) (20) — h(z0)| < gl e757 572 jm 0™ Gigs (1, 20)dA(w) (3.5.6)

< lgleTim o245 f Gos (w, 20)dA(w) (3.5.7)
Qs

Observe that the integral appearing on the RHS of both of the inequalities above can be inter-
preted probabilistically as the expected amount of time spent a planar Brownian motion started
at zo spends in Q7 before hitting 6Q°. That is:

Gaqs (w, Zo)dA(w) =E*Ty0s < E*ThHq
0%
where Tso and Thqs are the hitting times of dQ and 0Q° by our planar Brownian motion. Let
(Bt)i=0 be a planar Brownian motion. Then the process (\BtATaQ — 2> =2t A T(’;‘Q)t>0 is a
martingale. By the optional stopping theorem:

E*|Br,, — 20|? = 2E*Thq

Using the layer-cake representation of the expectation on the LHS along with the strong Beurling
estimate (Proposition [3.1.3)), we have that:

0 0
IEZO|BTGQ — ZO|2 = J ]P)ZO(|BT{7Q - Z()|2 = /\)d/\ = QJ UEDZOOBTOQ - ZQ| = u)du
0 0

d diam(Q) d 1/2
= 2J udu+2j C(f) wdu < dY?diam(Q)>?
0 d u
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where C' > 0 is an absolute constant. Plugging this estimate for E*°|Br,, — zo|?> = E*T,, >
E*Tsns into Equations and [3.5.7] we have that:

“gH5%(S_%Cil/2diarn(ﬂ)3/2 lf (5 > E%dlam(ﬁ)%

|(ds * h*)(20) — h(20)| S

lgl e 5_2_%d1/2diam(§2)3/2 otherwise

To estimate the third term in Equation |h(z0) — h(z0)|, we use the maximum principle.
Suppose w € 992°. Then h(w) = (¢s * h*)(w), since the boundary data of i on 9Q° is given by
¢s * h®. On the other hand, since i is harmonic on €2, and the smooth mollifier ¢s is radially
symmetric, (¢s * h)(w) = h(w). Hence:
|h(w) = h(w)| = |(ds * h)(w) = (ds * h*)(w)| < max [h(w') = h* ()]
w’eB(w,d)
Since § is small and the points w’ € B(w,d) are d-close to the boundary of Q, by the same

argument as in Case 1, we have that:

522 l9llad” if a € (0,8)

|h(w) = h(w)] £ { [ gad® log (L2m) ifo=p

o . @ B .
{225 9ladiam(Q)* (gimy) if @€ (8,1]

Putting all this together, if « € (0, 3), we have that:

(O(lgle6°d7) + O(g] €26~ 3 d"*diam(2)/2)
+0(525]1918%) if § > e175 diam(Q) 77
|h(z0)—h* (20)] = 4
O(lgle6®d=") + O(ge ™7 5~ 77 d"/2diam (2)*/2)
+O(B%Hg\|a5a) otherwise
If a=4:
O(lgl6%d=?) + O(|lg|e%6~3 d"/2diam(2)*/2)
+0(|g] 00 log (L2202 if § > 175 diam(Q) 77
|h(z0)—h*(20)| =
O(lgle6®d?) + O(|g e ™7 52 77 d"/2diam (€2)*/2)
L +0(|| gl o0 log (dl%(m)) otherwise
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If ae(B,1):

O(lgl0”d=2) + g2 6 d"/2diam(€)*
o . o 8 . 1-8 . 28
+0 (52519 diam (@) () ) if § > &1 diam(Q) 1+
|h(20)*h'(20)| =
O(lgl8d=?) + (gl e ™7 572~ 757 d*/>diam(€2)*/2)
ey : o B .
+0(53%5 /9] adiam(€2) (ﬁ(ﬂ)) ) otherwise

3.5.3 Choosing an Optimal ¢

In Section we derived an estimate for |h(z9) — h*(z0)| for zo close to the boundary. In
Section we derived an estimate for |h(zg) — h*(z0)]| for zo far away from the boundary. To

complete our proof, we need to:
1. Find the optimal choice of § for our estimate from Section [3.5.2]
2. Combine these estimates to get an estimate that works for all zg € V°.

We will do this in detail for « € (0, 8). The corresponding estimates when « € [, 1] follow by the
same argument. Armed with the intuition that our rate of convergence should be polynomial in
g, we take § = e*diam(Q)17*, d = e"diam(Q)!~", where 0 < r < s < 1. By our estimates from
Sections B.5.1] and B.5.2 we have that:

min{O(525 gl e diam(2)*="*), O(| g €®~") diam(Q) ~#(==7)
+0(|ge2 =% +%)diam(Q) 72+ % =5 + O(52) ] g]lac™* diam(Q)> <}
|h(z0) — h*(20)] =
min{O(525 [ gla e diam(2)*="*), O(| g €%~ diam(Q) ~#(==7)

+0(llgle 787 497254 5 ) diam ()55 142575 1 O( 220 g)ae® diam(€2)7 %)

for a € (0,8). We want to find the fixed choice of ¢ that minimizes our error for a point which
is distance d from the boundary of €2. This amounts to finding a value of s that minimizes our
error for a fixed choice of r, in each of the cases above. In other words, we are interested in the

maximum of the function:

max{ra, min{8(s — r),% - 5*28 + 5, sa}} if s < %
El<aaﬁaTv S) =

max{ra, min{3(s —r), % -2+ %)s + §,sa}}  otherwise

in s, treating «, 8 and r as constants. From here, we take the minimum of the resulting function,

H%ax) Ei(a, B, 7, 8), in r, treating o and 3 as constants. This corresponds to finding an estimate
se(r,1
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that works for all d. In this way, we conclude that:

ﬁ c Ai(a,B)
[h(z0) = 1 (z0)| < (Culgl + Co gz llgladiam(©)°) (dlam(Q))

where:
)\1(04, ﬁ) = TIEI[I(l)ﬁ] Sg%??f) El(aa /65 T 8)

Note that Aj(a, 8) > 0 for any o € (0,5) and S € (0,1/2]. To see this, observe that if we take

s = ﬁ and r € [ﬁ, 1], clearly:

_ 8 Ba
Hl(a7ﬂvrv4+6ﬂ) = 8+12,8

On the other hand, if r € [0, ﬁ]z
B B af |

B B Ba .
* }>mln{8+12ﬁ’2+5’4+6ﬂ

_ 8 . r
S rnry:) me{ﬁ(uﬁﬁ _T)’2+2ﬂ 2°4+1 68

Hence: 5
a
=
)\1 (aa/B) ) + 126
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Chapter 4

Lipschitz Regularity on a
Mesoscopic Scale for Harmonic

Functions on Orthodiagonal Maps

As we alluded to in Section [0.4] in this chapter, we will prove the following Harnack-type estimate

for discrete harmonic functions on orthodiagonal maps:

Theorem 4.0.1. If 3 € (0, 3) is the absolute constant from Lemma for any « € (0, %),
we have an absolute constant C,, > 0 so that if G = (V* u V°, E) is an orthodiagonal map
with edges of length at most ¢, h : V* — R is harmonic on Int(V*) and z,w € V* satisfy
|z —w| = d(5)”, where d = dist(z, 0G) A dist(w, 0G), then:

0(2) — hw)| < Calil (E=11)
We say that this estimate holds on a mesoscopic scale because it requires that the points z,w e V'*
we’re looking at are at least d(%)a apart, where a € (0,1), implying that e « d(%)a « 1. One
interpretation of this result is that it tells us that discrete harmonic functions on orthodiagonal
maps are Lipschitz in the bulk on a mesoscopic scale. We do not believe this result is sharp.
Namely, since orthodiagonal maps are good approximations of continuous 2D space, the Harnack
estimate should hold even on a microscopic scale. That is, for any pair of points z,w € V* that
are at least Ce apart, for some absolute constant C' > 0. As we remarked in Section this is
known to be true for any isoradial graph. This includes subsets of the triangular, the hexagonal,
and the square grid. Furthermore, in [I4], Chelkak, Laslier and Russkikh show that we have a
Harnack estimate on microscopic scales for discrete harmonic functions on t-embeddings satisfying
the assumptions “Lip(k,d)” and “Exp-Fat(d)” for some x € (0,1), § > 0 (see Corollary 6.18 of

7

[I4]). For a precise definition of the assumptions “Lip(k,d)” and “Exp-Fat(d),” see Section 1.2
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of [I4]. As we discussed in Section for any x € (0,1), there exists ¢ = ¢(k) > 0 so that any
orthodiagonal map of edge length at most €, satisfies the assumption “Lip(ce,e).” In contrast, it
is not known whether an arbitrary orthodiagonal map satisfies the condition “Exp-Fat(§)” for
some § > 0 that only depends on the mesh of our orthodiagonal map. Thus, we do not have a
Harnack estimate on microscopic scales for discrete harmonic functions on orthodiagonal maps

as an immediate consequence of Corollary 6.18 of [14].

4.1 Lipschitz Regularity on a Mesoscopic Scale (Base
Case)

The key idea behind the proof of Theorem is the following regularity estimate for C?

functions, in terms of their norm and Laplacian:
Proposition 4.1.1. Suppose Q is a simply connected domain and h € CZ(Q) n C(2). Then:

|2 — 71|
d

h(s) = h(en)| < Al ( ) + 12kl cdlay — o (4.1.1)

for any x1,x9 € Q, where d = d,, A d,, = dist(x1,00) A dist(za, 0Q).

Proof. Suppose B(z, R) < Q is a ball contained in Q. By Green’s identity applied to h and

GB(e.r) (Y, T) = —% log (‘y_RII)7 we have that:

1 1

ly — =
= hydoyf—f Ah(y)log (Z—")dA(y
TR Jog MO =50 | ARG) (Y57 dAw)

h(z)

where “dA(y)” denotes integration with respect to area in . Similarly, applying Green’s identity
with h and R? — |y — z|?, we have that:

1 1

h(y)do(y) = h(y)dA(y) +

“ R lpon Ah(y)(R? — |y — z)dA(y)

2rR 0B(z,R) 41 R? JB(z,R)
Putting all this together, we have that:

1

h(z) = h(y)dA(y)+

1
T Lo Ah(y) (R~ [y-a])dA(y) -5 |

471'R2 fB(r,R)

2
4|k oo (M) and so the desired result follows. With this in mind, suppose that |z2 — 21| <

Suppose x1, 2y are points of Q. Observe that if |zo — 21| > ¢, then trivially, |h(zs) — h(z1)] <
d
d g.

Then:

h(zg) = h(z1) = (1) + (2) + (3)
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where:

1

57T|{)32 —.’L‘l|d
O] =|== < T

|z2 — $1|)
wd?

hy)dAW)| .

| Iile = 5l
B(x1,d)AB(z2,d)

o —yl? — |z —y|? To — |2
B(mg,d)\B(Il,d)

1(2)] =

1 ‘f
ATV B (2y,d)~ B(wa,d) d?

|$1 - y|2
- An(y) (1 ) day)|
JB(zl,d)\B(mz,d) ( d? )
15| AR o d]zs — 21|

8

<

ly — a2

l At tos (=2 )aat+ [ snog (P2 )aw

1
3 =5 f
T JB(z1,d)nB(z2,d)

o

— f Ah(y) log (%)dﬁl(y)}
B(Il,d)\B(aiz,d)

N

|{L‘2 — :I,'1| d
< log (1+ +— )dA(y) + log ( —— )dA(y)
27 (JB(azz,d) ( ly — 2| ) B(w2,d)\B(xa,d—|z2—21]) <|372 - y|>
d
+ J log dA(y)
B(z1,d)\B(z1,d—|z2—21]) <|»T1 - yl) )

=|Ah||oo(J0drlog (1 + M)dr + QJd rlog (g)dr) < |AR|wd|zs — 24

d—|zo—x1 |

Putting all this together, we have that:

|22 — 71|

[Ba2) = hlan)| < [l (2

) + 18 dlzz — 21

O

Recall that Proposition [3.4.2]tells us that if h*® is a discrete harmonic function, its convolution with
a smooth mollifier, ¢*h*, is almost harmonic in that A(¢ = h*) ~ 0. Hence, taking h = (¢ *h*®) in
our estimate from Proposition {.1.1} we have that the convolution of a discrete harmonic function
with a smooth mollifier, satisfies a Harnack-type estimate. As a consequence, we can recover a
Harnack-type estimate for discrete harmonic functions on orthodiagonal maps, on a mesoscopic

scale:

Proposition 4.1.2. There exists an absolute constant C' > 0 so that if G = (V* uV° E) is
an orthodiagonal map with edges of length at most e, h* : V* — R is harmonic on Int(V*) and

82 N ~
z,w € V* are vertices of V* so that |z — w| > d(5) > where d = dist(z, 0G) A dist(w, 0G),
then:

n*(2) — he ()] < e (224

Proof. Let ¢ be a smooth mollifier supported on the unit ball B(0,1) < R2. Then for any § > 0,
bs5(x) := 07 2¢(6 tx) is a smooth mollifier, supported on B(0,d). Suppose z and w are vertices
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of V*. By the triangle inequality:
|7 (w) = h*(2)] < [h*(w) = (¢5 % B*)(w)] + |(¢s * h*)(w) — (¢5 = h°)(2)| + (s * h*)(2) — h* ()]

By Lemma[3.1.5
(@5 % h*)(2) = h*(2)], (96 * h*) (w) — h*(w)| = O” - a7 - [n*])) (4.1.2)

On the other hand, taking h = (¢5 = h*) in our estimate from Proposition and using our
estimate for the Laplacian of (¢s * h*) from Proposition we have that:

|2 — wl

(65 % h*)(w) = (85  h*)(2)] =O(1h|(F—

=0(Hh‘H(‘Z%dw|)) + o(gﬁ(s*d%%uh'u('z’%ﬂ)) (4.1.3)

+ 0(5%6*%d2|\h'\\(|2;w|>)

)+ O(Aps * h*)] - d - |2 = w])

Note that having chosen a particular smooth mollifer ¢, we can disregard the |D?¢| and | D3¢|
terms in Proposition since they are just some constants. Looking at the error term in
Equation to get the kind of estimate for h® we are looking for, we need it to be the case
that 67d=P < (%) — < d(%)l/ﬂ. On the other hand, looking at the estimate for
the modulus of continuity of (ps * h®) in Equation all of the powers of § are negative.
Hence, to get the best estimate possible, we should take § to be as large as possible. Namely,

6 = d(@)lw. Plugging this choice of § into Equations and and putting all this
together, we get that:

|z —w )

1 (w) = b ()| = O Ik (=

+0(eh - F - adh ey (B2 1Y)

+O0(eT |z —w| 5 - dF T | (L ;“"))

cT+B |z—w| B dﬁ—%<1 ‘Z_w|>d<2>2(1+ﬁ)
1 € A
1 5 =
€2 |z—w|72 -d2 2 <1 — |z —w| >d g)

B B2
Thus, as long as |z — w| = d(%) 52205 we have that:

n*(2) — )] < e (224

where C' > 0 is some absolute constant. Since the absolute constant 8 > 0 from Lemma [3.1.5|is
. B2 B
bmall, m < 5" D
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Notice that Proposition 4.1.2|is a weaker version of Theorem that requires a larger meso-
scopic scale for our Harnack-type estimate to kick in. In Section we will see how, using
Proposition as a starting point, we can use a bootstrap argument to successively improve

the scale on which our Harnack estimate holds, giving us Theorem [£.0.1}

4.2 Refining our Mesoscopic Scale

In this section, we will refine our estimate in Proposition by improving the mesoscopic scale
on which our Harnack-type estimate holds. To do this, we first observe that discrete harmonic
functions on orthodiagonal maps are 8- Holder in the bulk on small scales and Lipschitz in the

bulk on large scales. This gives us improved Holder regularity in the bulk, on intermediate scales:

Proposition 4.2.1. (refined Hélder regularity on intermediate scales) Suppose that for any
orthodiagonal map G with edges of length at most ¢ and any function A : V* — R that is

harmonic on Int(V'*) we have that:

e (Lipschitz regularity on large scales) if z,w € V* satisfy |z — w| = d(%)a for some fixed
a € (0,1), then:

n(2) — n(w)| < el (E=11)

where C' > 0 is an absolute constant.
Then:

e (Improved Holder regularity on intermediate scales) for any v € (a, 1), if G is an orthodiag-
onal map with edges of length at most €, h : V* — R is harmonic on Int(V*) and z,w e V*
satisty |z —w| = d(%)v where d = dist(z, 0G) A dist(w, 0G), then:

‘z — w|)ﬁ+%(1*5)

[h(=) = h(w)] < Clh] (F=

Proof. Suppose G is an orthodiagonal map with edges of length at most € and z,w € V* satisfy
|z —w| = d(‘z%dw‘)v for some v € (o, 1). Suppose h : V* — R is harmonic on Int(V*) and WLOG,
h(w) < h(z). Let B = Bg(w, d(%)a) denote the discrete ball of radius d(%)a centered at
w in G. By the maximum principle, we can find a nearest-neighbor path v = (wq, w1, ..., w,,) of
vertices in G* so that wg = w, wy, € VS and h(w;1+1) < h(w;) for all 4. In particular, it follows

that h(w;) < h(w) for all 4. If (S,)n>0 is a simple random walk on G*, and 7,androy, are the
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hitting times of v and V3 by our random walk, by the optional stopping theorem, we have that:

h(z) — h(w) =E* (h(STWATaVB) - h(w)) =E* ( (h(s‘w) - h(w)) 17'7<7'5V5) + Ez((h(s'ras) - h(w))l'ravé <Tv)

| —
<0
LORYLORY
< max Ih(s) — k()] - Blrovg <) < 111 (=) (Gym)
a+f(y—a) d(5)\B+2(1-p) —w|\B+E(1-8)
<imi(5) — (k) = (B2

From here. the story is as follows:

1.

Observe that in our estimate for A(¢ps * h*)(z) in Proposition the % exponents in
the second term come from the fact that harmonic functions are - Holder in the bulk on

scales =< ¢ where e « £ € 6 < %.

Hence, if we use Proposition [{:2.1] in place of Lemma [3.1.5] we can improve our estimate

for A(gs = h®)(z).

However, the scale on which we have that discrete harmonic functions on orthodiagonal
maps are Lipschitz in the bulk in Proposition comes from:

(a) the fact that discrete harmonic functions on orthodiagonal maps are S-Holder in the

bulk, which is used on the intermediate scale §.

(b) our estimate for A(¢s * h*)(z) in Proposition [3.4.2]

. Thus, our improved Hélder regularity on intermediate scales in Proposition can be

used to improve the scale at which we can ensure discrete harmonic functions are Lipschitz
in the bulk in Proposition [1.1.2]

But then we could use the fact that harmonic functions are Lipschitz on smaller scales to im-
prove our estimate for the Holder regularity of discrete harmonic functions on intermediate

scales!

In short, we have a bootstrap argument for refining the scale at which we know that discrete

harmonic functions are Lipschitz in the bulk. This is encapsulated in the following result:

Proposition 4.2.2. (the bootstrap) Suppose we know that for some « € (0, 1), there exists an

absolute constant C' > 0 so that for any orthodiagonal map G = (V* u V° E) with edges of

length at most €, any function A : V* — R that is harmonic on Int(V*), and any z,w € V*
satisfying |2 — w| > d(§)®, where d = dist(2, 0G) A dist(w, 0G), we have that:

h(2) — h(w)] < o) (Z24)
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Then taking o/ = (1 — B)a + Smin{3, ﬂ;?‘f:g)‘x}, there exists an absolute constant C’ > 0 so

that for any orthodiagonal map G = (V* u V°, F) with edges of length at most e, any function

h:V* — R that is harmonic on Int(V*) and any z,w € V* satisfying [z — w| > d(5)" , where

d = dist(z, 0G) A dist(w, 0G), we have that:

h(2) — h(w)] < ) (E=11)

Proof. Let ¢ be a smooth mollifier supported on the unit ball B(0,1) € R2 Then for any
§ >0, ¢s(x) = 6 2¢(6 1w) is a smooth mollifier, supported on B(0,§). Just as in the proof
of Proposition we will convolve our discrete harmonic function i with a smooth mollifier
¢s, where § is mesoscopic. With this in mind, we write § = d(%)c and ¢ = d(%)w, where
0 < ¢ <y < 1. Here, ¢ is some intermediate scale. Using Proposition in place of Lemma

we have that:

5>Bc+a(1—ﬁ)

(5 % h)(2) = h(2)|,](¢s * h)(w) — h(w)| = O(|A]] (g )

if ¢> a. If ¢ < a, we have that:

(65 % h)(2) = h(=)], (95 * ) (w) = h(w)] = O] (5) )

In particular, notice that if we repeat our argument in Proposition picking a value of c that
. . . . . . (& [e3

is less than or equal to « will gives us, at best, Lipschitz regularity on scale d(%) > d(%) . In
short, we end up with an estimate that is inferior to the one we started with. Thus, if we want

to improve on our initial estimate, we need to choose c and vy sothat 0 < a <c <y < 1.

Repeating our argument in Proposition [3.4.2] using Proposition [£.2.1]in place of Lemma[3.1.5 we

have the following analogue of Equation [3.4.4

€ ) By+a(l—B)—2c

As e n)(2) = 0(nl (5) 7 a )+ ol (5 a2 o) (5)" )

Optimizing in ¢ = d(%)ﬂY for fixed § = d(%)c, we get that:

As +m):) = Ol (5) ™ ay+oqml(5) T a) (42.1)

Applying the estimate in Proposition to ¢s * h with this Laplacian estimate, we have that:

1-5¢ +a—af

(63 () = (05 + )| = 0l (E520)) + ol (BZ) (5) )

Combining this with our estimate for the difference between h and ¢s * h from earlier, we have
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that:

in(z)—hiw)| = (1 (=)o (uap (=11 (£) T o (ay (£) )

To find the scale on which we can ensure Lipschitz regularity of h, we want to pick c as large as

possible subject to the constraits:

1—
1—5¢=0, Bral=F) 4.5
145
Thus, taking ¢ = min{1, ’8;?7“?} our estimate for |h(z) — h(w)| above tells us that there exists

an absolute constant C’ > 0 such that:

in() — n(w)] < /(221

(%)BQ/JF(PB) where o/ =m1n{5, o O‘B} O

for any z,w € V* such that |z —w| = d 5055)

Theorem (.0.1] now follows as a straightforward corollary of Proposition @.1.2] which serves as
our base case, and Proposition which tells us how we can successively refine our mesoscopic

scale:

Proof. (of Theorem }4.0.1)) Consider the sequence (ay,)n=0 such that ag = ﬂfijﬂ), and qpiq =
(1-08)a, + - mln{1 %} for all n > 0. Combining our results in Proposition m
and Proposition 4.2.2] we have that for all n € Ny, if G = (V* u V° FE) is an orthodiagonal
map with edges of length at most €, h : V* — R is harmonic on Int(V*) and z,w € V* satisfy

|z —w| = d(%)a", where d = dist(z, 0G) A dist(w, 0G), then:

h(2) — h(w)] < Cul (E=11)

where C,, > 0 is some absolute constant. Hence, to prove the desired result, it suffices to show

B
14338

that lim «,, =
n—o0
Observe from our recursion that a, 11 is the weighted average of a,, and the minimum of %

and M. Hence, if ag < %, it follows that a, < % for all n € Ny. Additionally, observe

2(118) 5

that:

1 B+a,—Ba, 2-3p3

< ey > ————

5 201+ 8) 5(1-75)
Since the function f(38) = ﬁ is strictly decreasing on (0, 1) B e (0,1/2] and f(1/2) = 1/5,
we see that the minimum of é and % being equal to % = requires that o, > % Thus, for
ay = (fj 3y < }, our recurrence simplifies to:

B+ a, — Bay
NG e
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d Btan—PBan

Again, since o, 41 is a weighted average of «,, an SUTA)

5+an_/8an B
T+ S0 T S1i3p

Qp+1 = Qp

: : 8 Bran—Ban _ B+(1-Pa, _ B+U-B)fs _ 3
On the other hand, notice that if a,, < 435 then STE R I e e, s 2(1+,81)+ = 135
which tells us that a,+1 < %, since oy, 41 is the weighted average of this quantity and «,.
Since B € (0,1/2), g = Z(igij) < % Thus, in our case, the sequence (an)n>o is strictly

increasing and bounded above by %, and so converges to a limit A as n tends to co. This limit
satisfies:
p

A=
1+ 33

BJr)\—ﬂ)\)
21+ 5)

This completes our proof. O

A== B)A+8(
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