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In this thesis, we classify generic coadjoint orbits for the action of

symplectic (equivalently, area-preserving) diffeomorphisms of compact

symplectic surfaces with or without boundary. This completes V. Arnold’s

program of studying Casimir invariants of incompressible fluids in 2D. To

obtain this classification, we first solve an auxiliary problem, which is of

interest by itself: classify generic Morse functions on surfaces with respect

to the action of area-preserving diffeomorphisms. As a technical tool, we

prove an analog of Morse-Darboux lemma in the case of a singular point

on the boundary. We also generalize all the results above to the case of

non-orientable surfaces without boundary. The new results in this thesis

are based on the following papers [23, 24, 18].
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1
I N T R O D U C T I O N

1.1 overview

The classification problem for coadjoint orbits for the action of symplec-
tic (or area-preserving) diffeomorphisms in two dimensions was known to
specialists in view of its application in fluid dynamics since the 1960s, and
it was explicitly formulated in [2, see Section I.5] in 1998. The same classi-
fication problem also arises in Poisson geometry since coadjoint orbits are
symplectic leaves of the Lie-Poisson bracket, and also in representation
theory in connection with the orbit method of A.Kirillov [22]. The classifi-
cation of generic coadjoint orbits was obtained in [17, 19] for the case of
closed surfaces. In this thesis we generalize the results of [17, 19] to the
case of surfaces with boundary, and to the case of closed non-orientable
surfaces.

Remark 1.1.1. Note that the classification of coadjoint orbits for diffeomor-
phisms of the circle was solved by A. Kirillov in [21].

The classification problem for coadjoint orbits for symplectomorphisms
of a surface is closely related to the classification of functions up to
symplectomorphism. Hence, we are going to address the following two
problems:

1. Classify generic smooth functions on symplectic surfaces up to sym-
plectomorphisms.

2. Classify generic coadjoint orbits of symplectomorphism groups of
surfaces.

Let us outline the structure of the thesis. In Chapter 2 we give a local
classification of functions on symplectic surfaces (see Theorem 2.4.1). Let
F : M → R be a smooth function, and let O be a critical point for the
restriction F|∂M. We describe a local normal form for a pair (F, ω) near a
point O, where F : M→ R is Morse function and ω is a symplectic form.
Next, in Chapter 3 we give a global classification of functions on sym-
plectic surfaces. Roughy speaking, the classification theorem for functions,
Theorem 3.4.1, states that there is a one-to-one correspondence between
functions up to a symplectomorphism and measured Reeb graphs up to an
isomorphism. In Chapter 4 we obtain a classification of generic coadjoint

1



1.2 motivation : the hamiltonian framework of the euler equation 2

orbits for the case of orientable surfaces with boundary. In Chapter 5 we
obtain a classification of generic function and orbits for the case of closed
non-orientable surfaces. The classification results for coadjoint orbits (The-
orems 4.5.1 and 5.3.12) are also given in terms of measured Reeb graphs
supplemented with some additional data.

It is worth noting that the classification of functions in [19] is based
on the classification of so-called simple Morse fibrations obtained in [13];
while, the proofs in the present thesis use a different method so it gives an
alternative proof for Theorem 3.11 from [19] (classification of functions in
the case of closed surfaces).

In the recent works [29, 12] the orbit method was applied to the sym-
plectomorphism group of the two-sphere.

Finally, we note that all objects in the present thesis are infinitely smooth.

1.2 motivation : the hamiltonian framework of the euler

equation

The main motivation for classification of functions and coadjoint orbits
is related to description of the first integrals for the Euler equation of ideal
hydrodynamics.

Consider a symplectic surface (M, ω) with boundary ∂M. We denote by
SDiff(M) the Lie group of all symplectomorphisms of M, and by svect(M)

the corresponding Lie algebra of divergence-free vector fields on M. A
linear functional I on svect(M) is called regular if there exists a smooth
1-form ξ I such that the value of I on a vector field v is the pairing between
ξ I and v :

I(v) =
∫

M
ξ I(v)ω.

The space svect∗(M) of regular functionals on svect(M) is a dense subset
in the space of all continuous linear functionals on svect(M) with respect
to the C2-topology. It turns out that the space of regular functionals
svect∗(M) can be identified with the space of cosets Ω1(M)/dΩ0(M),
since exact 1-forms give zero functionals on divergence-free vector fields.
Moreover, the natural action of the group SDiff(M) on the space of cosets
Ω1(M)/dΩ0(M) by means of pull-backs coincides with the coadjoint
action of the group of symplectomorphisms SDiff(M). The proof of this
fact can be found in [2] (see Section I.8). More information about infinite-
dimensional Lie groups can be found in [20].

Now let us fix a Riemannian metric (·, ·) on the surface M such that
the corresponding area form coincides with the symplectic form ω. The
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motion of an inviscid incompressible fluid on M is described by the Euler
equation

∂tv +∇vv = −∇p (1.1)

describing an evolution of a divergence-free velocity field v of a fluid flow
in M, where div v = 0 and the field v is tangent to the boundary ∂M.
The pressure function p entering the Euler equation is defined uniquely
modulo an additive constant by this equation along with the divergence-
free constraint on the velocity v.

The metric (·, ·) allows us to identify the Lie algebra and its dual by
means of the so-called inertia operator: given a vector field v on M one
defines the 1-form α = v♭ as the pointwise inner product with vectors of
the velocity field v: v♭(W) := (v, W) for all W ∈ Tx M. The Euler equation
(1.1) rewritten on 1-forms is

∂tα + Lvα = −dP

for the 1-form α = v♭ and an appropriate function P on M. In terms of
the cosets of 1-forms [α] = {α + d f | f ∈ C∞(M)} ∈ Ω1(M)/dΩ0(M), the
Euler equation looks as follows:

∂t[α] + Lv[α] = 0 (1.2)

on the dual space g∗, where Lv is the Lie derivative along the field v.
The Euler equation (1.2) shows that the coset of 1-forms [α] evolves

by an area-preserving change of coordinates, i.e. it remains in the same
coadjoint orbit in g∗. This is why invariants of coadjoint orbits of cosets
[α] describe first integrals, called Casimirs, of the Euler equation, and their
complete classification is important in many areas of ideal fluid dynamics.

Notice that the Euler equation is well-defined on any Rimannian man-
ifold, in particular, the manifold can be non-orientable. Hydrodynamics
on non-orientable surfaces, while being seemingly hypothetical, can be
observed in nature: for instance, soap films on a wire can have the shape
of a Möbius band, the simplest non-orientable surface with boundary. One
can see that the soapy fluid keeps moving, i.e. retains dynamics, inside
this 2D minimal surface. Dynamics of vortices on non-orientable surfaces
was considered e.g. in [3, 4, 33]. In chapter 5 we present the Hamiltonian
setting for non-orientable hydrodynamics, emphasizing its similarity with
and difference from the orientable framework.
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1.3 exposition of the main results

In this section we present the main results of this thesis. Each subsection
corresponds to the result from one of the chapters.

1.3.1 Local classification

In this subsection we present the results from Chapter 2. Let M be a
compact connected surface with boundary ∂M. Consider a pair (F, ω),
where F : M→ R is a Morse function, and ω is an area (symplectic) form.
Fix a point O ∈ M. If O ∈ M \ ∂M is a regular point for F, then there exist
a chart (p, q) such that locally near O we have F = p and ω = dp ∧ dq. On
the other hand, if O is non-degenerate point, then the local normal form
for a pair (F, ω) is provided by, so called, Morse-Darboux lemma.

Theorem 1.3.1. (=Theorem 2.2.1) Let (M, ω) be a symplectic surface, and
F : M → R be a Morse function. Let O ∈ M \ ∂M be a critical point for the
function F. Then there exists a coordinate chart (p, q) centered at O such that
ω = dp ∧ dq and F = λ ◦ S where S = pq or S = p2 + q2. Here λ is a smooth
function of one variable defined in some neighborhood of the origin 0 ∈ R and
λ′(0) ̸= 0. Moreover:

(i) In the case S = p2 + q2, and the function λ is uniquely determined by the
pair (F, ω).

(ii) In the case S = pq, only the Taylor series of the function λ is uniquely
determined by the pair (F, ω). In other words, if ( p̃, q̃) is another chart as
above then p̃q̃ = pq + ψ(pq) (for sufficiently small p, q, p̃, q̃), where ψ is
a function of one variable flat at the origin. Furthermore, every function of
one variable that is flat at the origin can be obtained in this way.

The first result of this thesis is an analog of Morse-Darboux lemma for
the case when O ∈ ∂M is regular point for F, but critical point for the
restriction F|∂M.

Theorem 1.3.2. (=Theorem 2.3.1) Let (M, ω) be a symplectic surface, and
F : M→ R be a Morse function. Let O ∈ ∂M be a regular point of F and a non-
degenerate critical point of its restriction F|∂M. Then there exists a coordinate chart
(p, q) centered at O such that ω = dp ∧ dq and F = λ ◦ S where S = q + p2

or S = q − p2. Here λ is a smooth function of one variable defined in some
neighborhood of the origin 0 ∈ R and λ′(0) ̸= 0. In this chart M is defined by
q ≥ 0 and the boundary ∂M is given by the equation {q = 0}, see Figure 2.1.
Moreover:
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(i) In the case S = q + p2, the function λ is uniquely determined by the pair
(F, ω).

(ii) In the case S = q− p2, only the Taylor series of the function λ is uniquely
determined by the pair (F, ω). In other words, if ( p̃, q̃) is another chart as
above then q̃− p̃2 = q− p2 + ψ(q− p2). Furthermore, every function of
one variable that is flat at the origin can be obtained in this way.

1.3.2 Global classification

In this subsection we present the results from Chapter 3. Let M be a
compact connected surface with boundary ∂M. Consider a pair (F, ω),
where F : M→ R is a simple Morse function, and ω is an area (symplectic)
form. Our goal is to classify generic (simple Morse) smooth functions on
the surface M up to symplectomorphisms. This problem was solved in [19]
for the case of a closed surface M. It turns out that invariants of this action
on functions are given by the Reeb graphs (see Figure 1.1) of functions
equipped with a measure on the graph. The corresponding measures on
Reeb graphs are not arbitrary but satisfy certain constraints in terms of
asymptotic expansions at all three-valent vertices of the graph.

In this thesis we generalize the notion of a measured Reeb graph to the
case of surfaces with boundary (see Figure 1.2). Then we formulate and
prove the classification theorem for simple Morse functions. The statement
of this theorem (given below) is almost identical to the case of closed
surfaces but almost all notions there required some modifications.

ΓFF

M

Figure 1.1: Reeb graph for a height function with two maxima on a torus.

Theorem 1.3.3. (=Theorem 3.4.1) Let M be a compact connected oriented surface
with boundary ∂M. Then there is a one-to-one correspondence between simple
Morse functions on M, considered up to symplectomorphism, and (isomorphism
classes of) measured Reeb graphs compatible with M. In other words, the following
statements hold.

i) Let F, G : M → R be two simple Morse functions. Then the following
conditions are equivalent:
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F ΓFM

Figure 1.2: A torus with one hole with the height function on it and the corre-
sponding Reeb graph

a) There exists a symplectomorphism Φ : M→ M such that Φ∗F = G.

b) Measured Reeb graphs of F and G are isomorphic.

Moreover, every isomorphism ϕ : (ΓF, f , µF)→ (ΓG, g, µG) can be lifted to
a symplectomorphism Φ : M→ M such that Φ∗F = G.

ii) For each measured Reeb graph (Γ, f , µ) compatible with (M, ω) there exists
a simple Morse function F : M→ R such that the corresponding measured
Reeb graph ΓF is isomorphic to (Γ, f , µ).

1.3.3 Coadjoint orbits

In this subsection we present the results from Chapter 5. Consider a
symplectic surface (M, ω) with boundary ∂M. We denote by SDiff(M)

the Lie group of all symplectomorphisms of M, and by svect(M) the
corresponding Lie algebra of divergence-free vector fields on M. As we
mentioned in the Section 1.2, the natural action of the group SDiff(M)

on the space of cosets Ω1(M)/dΩ0(M) by means of pull-backs coincides
with the coadjoint action of the group of symplectomorphisms SDiff(M).
Define the exterior derivative operator d on the space of cosets {α+d f | f ∈
C∞(M)} by the formula d[α] := dα. Consider the following mapping:

curl : Ω1(M)/dΩ0(M)→ C∞(M),

defined by taking a vorticity function dα/ω =: curl[α].
Suppose that cosets [α] and [β] belong to the same coadjoint orbit of

SDiff(M). Then by definition, there is a symplectomorphism Φ such that
[Φ∗β] = [α]. With every generic coset [α] ∈ Ω1(M)/dΩ0(M) one can
associate a measured Reeb graph Γcurl[α]. If two simple Morse cosets [α]

and [β] belong to the same coadjoint orbit, then the corresponding Reeb
graphs are isomorphic.

Suppose that cosets [α] and [β] have isomorphic Reeb graphs. Then it
follows from the classification result for functions (Theorem 3.4.1) that
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there exists a symplectomorphism Φ such that Φ∗curl[β] = curl[α]. There-
fore, the 1-form Φ∗[β]− [α] is closed. Since this 1-form is not necessarily
exact, the cosets [α] and [β] do not necessarily belong to the same coad-
joint orbit. Nevertheless, we conclude that the space of coadjoint orbits
corresponding to the same measured Reeb graph is finite-dimensional and
its dimension is at most dim H1(M). The classification result for coadjoint
orbits is given in terms of augmented circulation graphs (measured Reeb
graphs supplemented with some additional data).

Theorem 1.3.4. (=Theorem 4.5.1) Let (M, ω) be a connected symplectic surface
with or without boundary. Then generic coadjoint orbits of SDiff(M) are in
one-to-one correspondence with (isomorphism classes of) augmented circulation
graphs (Γ, f , µ, C) compatible with M. In other words, the following statements
hold:

i) For a symplectic surface M and generic cosets [α], [β] ∈ svect∗(M) the
following conditions are equivalent:

a) [α] and [β] lie in the same orbit of the SDiff(M) coadjoint action;

b) augmented circulation graphs Γ[α] and Γ[β] corresponding to the cosets
[α] and [β] are isomorphic.

ii) For each augmented circulation graph Γ which is compatible with M, there
exists a generic [α] ∈ svect∗(M) such that Γ[α] = (Γ, f , µ, C, ξ).

Corollary 1.3.5. (=Corollary 4.5.2) The space of coadjoint orbits of the group
SDiff(M) corresponding to the same measured Reeb graph (Γ, f , µ) is a finite-
dimensional affine space and its dimension is dim H1(Γ, Γd) + dim H1(Γd).

1.3.4 Non-orientable case

In this subsection we present the results from Chapter 4. Non-orientable
manifolds do not carry non-vanishing volume forms but allow densities
(also called pseudo-forms). Densities can be thought of as non-vanishing
top-degree forms whose sign changes after returning to the same point
along an orientation-reversing loop. Fix a density ρ on a non-orientable
manifold N and consider the infinite-dimensional group Diffρ(N) of
measure-preserving diffeomorphisms of N. In the present paper we study
the group Diffρ(N) in the case when N is a closed non-orientable surface.
Our first main result is a classification of generic pseudo-functions on
such surfaces with respect to the action of Diffρ(N). The second result is a
classification of generic coadjoint orbits of Diffρ(N).

A natural way to describe objects on a non-orientable manifold N is
to lift them to the double cover Ñ, which is an oriented manifold. This
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F

F = 0

K̃2

ΓFιI

Figure 1.3: Reeb graph for a height function on a torus inducing a pseudo-
function on the Klein bottle K2. The involution I on the torus and ι on
the graph are central symmetries.

double cover comes with a fixed-point-free orientation-reversing involution
I : Ñ → Ñ interchanging the points in each fiber of the natural projection
Ñ → N. Pseudo-functions F on a non-orientable manifold N are functions
on its double cover Ñ anti-invariant under the involution: F ◦ I = −F. One
can define simple Morse pseudo-functions on N in a natural way: their
lifts to Ñ have to be Morse with distinct critical values. Our first result is
the density of such pseudo-functions among all:

Theorem 1.3.6. (=Theorem 5.2.3) Simple Morse pseudo-functions on a compact
non-orientable manifold form an open and dense subset in the space of all smooth
pseudo-functions in C2-topology.

Our next result is a classification of simple Morse pseudo-functions in 2D.
Let N be a closed (i.e. compact and without boundary) non-orientable sur-
face equipped with density ρ. It turns out that invariants of the Diffρ(N)-
action on pseudo-functions are given by measured Reeb graphs of their
lifts to the orientation double cover Ñ, equipped with an involution.

Theorem 1.3.7. (=Theorem 5.2.11) Let N be a closed connected non-orientable
2D surface equipped with a density ρ. Then there is a one-to-one correspondence
between simple Morse pseudo-functions on N, considered up to area-preserving
diffeomorphisms, and isomorphism classes of measured Reeb graphs with involu-
tion compatible with (N, ρ).

Example 1.3.8. The height function F on a torus T2 = K̃2 is odd with
respect to the central symmetry I and hence induces a pseudo-function on
the Klein bottle K2 = T2 / I, see Figure 1.3. The measured Reeb graph ΓF

with an involution ι is a complete invariant of the corresponding pseudo-
function on the Klein bottle.
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The classification of coadjoint orbits of the group Diffρ(N) of area-
preserving diffeomorphisms of a non-orientable surface N requires a
more subtle set of data than the measured Reeb graph with an involution.
Namely, elements of the regular dual space Vect∗ρ(N) to the Lie algebra
Vectρ(N) are 1-form cosets [α] ∈ Ω1(N) / dΩ0(N). One associates to such
a coset the vorticity pseudo-function curl[α] := dα/ρ. This way the classi-
fication of such cosets with respect to area-preserving diffeomorphisms
can be seen as a refinement of the pseudo-function classification: one
needs to augment the measured Reeb graph of F = curl[α] by additional
information, carried by the so-called circulation function described below.
This allows one to formulate the full classification of generic coadjoint
orbits in terms of circulation graphs.

Theorem 1.3.9. (=Theorem 5.3.11) Let N be a closed connected non-orientable
surface equipped with a density ρ. Then simple Morse coadjoint orbits of Diffρ(N)

are in one-to-one correspondence with isomorphism classes of circulation graphs
compatible with (N, ρ).

Corollary 1.3.10. (=Corollary 5.3.13) Let N be a closed connected non-orientable
surface equipped with a density ρ. Then the space of coadjoint orbits of the group
Diffρ(N) corresponding to the same measured Reeb graph Γ with involution ι is
an affine space of dimension

d =
1
2
(#Fix(ι) + b1(N)− 1), (1.3)

where #Fix(ι) is the number of fixed points of the involution ι, and b1(N) =

dim H1(N; R) is the first Betti number of N. In particular,

1
2
(b1(N)− 1) ≤ d ≤ b1(N). (1.4)

Remark 1.3.11. Here we encounter a completely new phenomenon, not
observed for orientable surfaces. Namely, for an orientable surface M the
corresponding dimension d is always 1

2 b1(M), i.e. the genus of M. On
the other hand, for non-orientable surfaces the dimension of the space
of coadjoint orbits for a given vorticity is determined not only by the
topology of the surface, but also by more subtle information about the
involution action on the vorticity Reeb graph.

Example 1.3.12 ( for details see Example 5.3.15). Consider the height
function on a vertically standing torus shown in Figure 1.3, interpreted as
a pseudo-function on the Klein bottle K2. Since b1(K2) = 1 and #Fix(ι) =
0, the space of coadjoint obits corresponding to the given graph is 0-
dimensional, i.e. the graph completely determines the orbit.
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ι

Figure 1.4: A graph involution ι with two fixed points. It is given by symmetry
with respect to the dashed line.

On the other hand, consider the height function on the torus lying on a
slightly inclined table. It is again odd with respect to the central symmetry
and hence defines a pseudo-function on K2. The corresponding Reeb graph
is shown in Figure 1.4. Here one has #Fix(ι) = 2, so the space of coadjoint
orbits of Diffρ(K2) corresponding to such a function is 1-dimensional. Note
that b1(K2) = 1, so 0 and 1 are the only possible dimensions d of the orbit
space for the Klein bottle.

Note that in the present thesis we didn’t consider the case of non-
orientable surfaces with boundary e.g. a Möbius strip. This question is left
for future research.



2
L O C A L C L A S S I F I C AT I O N O F
F U N C T I O N S

The main result of this chapter is a local classification of generic (Morse)
functions on two-dimensional symplectic surfaces up to a symplectomor-
phism. Throughout this section, let M be a surface with boundary ∂M.

We remark on the case of a higher-dimensional manifold M at the end
of the chapter.

2.1 smooth classification

We start by discussing the local classification of Morse functions up to a
diffeomorphism.

For a regular point O ∈ M \ ∂M of a function F the implicit function
theorem says that there exists a coordinate chart (p, q) centered at O such
that F = F(O) + p.

For a regular point O ∈ ∂M of the restriction F|∂M there exists a coor-
dinate chart (p, q) in M centered at O such that F = F(O) + p and the
boundary ∂M is given by the equation {q = 0}.

Now, let O ∈ M \ ∂M be a non-degenerate critical point for F. The
classical Morse lemma implies that there exists a coordinate chart (p, q)
centered at O such that F = F(O) + p2 + q2 or F = F(O) + pq.

Finally, let O ∈ ∂M be a non-degenerate critical point for the restriction
F|∂M. The following result is called boundary Morse lemma.

Theorem 2.1.1 ([8]). Let O ∈ ∂M be a regular point for F and a nondegenerate
critical point for F|∂M. Then there exists a chart (p, q) centered at O such that we
have q ≥ 0 wherever q is defined, the boundary ∂M satisfies the equation q = 0,
and F = F(O) + q + p2 or F = F(O) + q− p2.

Together, the results above provide a complete list of local normal forms
for a Morse function on a two-dimensional surface.

11
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2.2 symplectic classification : the case of a singular point

inside the surface

Suppose now that M is a symplectic surface with a symplectic 2-form
ω. Then for a regular point O ∈ M \ ∂M of the function F there exists
a coordinate chart (p, q) centered at O such that F = F(O) + q and ω =

dp ∧ dq.
Now, let O ∈ M \ ∂M be a non-degenerate critical point for F. The next

result is called Morse-Darboux lemma and it provides a local normal form
for a pair (F, ω) near the point O.

Theorem 2.2.1 ([11, 32]). Let (M, ω) be a symplectic surface, and F : M→ R

be a Morse function. Let O ∈ M \ ∂M be a critical point for the function F.
Then there exists a coordinate chart (p, q) centered at O such that ω = dp ∧ dq
and F = λ ◦ S where S = pq or S = p2 + q2. Here λ is a smooth function of
one variable defined in some neighborhood of the origin 0 ∈ R and λ′(0) ̸= 0.
Moreover:

(i) In the case S = p2 + q2, and the function λ is uniquely determined by the
pair (F, ω).

(ii) In the case S = pq, only the Taylor series of the function λ is uniquely
determined by the pair (F, ω). In other words, if ( p̃, q̃) is another chart as
above then p̃q̃ = pq + ψ(pq) (for sufficiently small p, q, p̃, q̃), where ψ is
a function of one variable flat1 at the origin. Furthermore, every function of
one variable that is flat at the origin can be obtained in this way.

The Morse-Darboux lemma is a particular case of Le lemme de Morse
isochore, see [11], and also it is a particular case of Eliasson’s theorem on
the normal form for an integrable Hamiltonian system near a nondegener-
ate critical point, see [14, 7]. The Morse-Darboux lemma is an important
tool in topological hydrodynamics, see [19], and theory of integrable
systems, see [13].

Proof. All statements of this theorem but the last one are proved in [11, 32].
The last statement is proved in [32, see Lemma 3.2a].

2.3 symplectic classification : the case of a singular point

for the restriction to the boundary

For a regular point O ∈ ∂M of the restriction F|∂M there exists a coordi-
nate chart (p, q) in M centered at O such that

1 Here flat means that all derivatives of ψ vanish at the origin.
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(i) in this chart M is defined by q ≥ 0 and the boundary ∂M is given by
the equation {q = 0};

(ii) F = F(O) + p;

(iii) ω = dp ∧ dq.

Now, let O ∈ ∂M be a non-critical point for F and a non-degenerate
critical point for the restriction F|∂M. The next result is an analog of Morse-
Darboux lemma for a point on the boundary.

Theorem 2.3.1 ([23, 25]). Let (M, ω) be a symplectic surface, and F : M→ R

be a Morse function. Let O ∈ ∂M be a regular point of F and a non-degenerate
critical point of its restriction F|∂M. Then there exists a coordinate chart (p, q)
centered at O such that ω = dp ∧ dq and F = λ ◦ S where S = q + p2

or S = q − p2. Here λ is a smooth function of one variable defined in some
neighborhood of the origin 0 ∈ R and λ′(0) ̸= 0. In this chart M is defined by
q ≥ 0 and the boundary ∂M is given by the equation {q = 0}, see Figure 2.1.
Moreover:

(i) In the case S = q + p2, the function λ is uniquely determined by the pair
(F, ω).

(ii) In the case S = q− p2, only the Taylor series of the function λ is uniquely
determined by the pair (F, ω). In other words, if ( p̃, q̃) is another chart as
above then q̃− p̃2 = q− p2 + ψ(q− p2). Furthermore, every function of
one variable that is flat at the origin can be obtained in this way.

p

q

(i) Case S = q + p2.

p

q

(ii) Case S = q− p2.

Figure 2.1: Level sets of the function S. The horizontal axis corresponds to the
boundary ∂M.

2.4 existence of morse-darboux coordinates

In this section we prove the existence of Morse-Darboux coordinates
described in Theorem 2.3.1. The remaining statements of Theorem 2.3.1
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are shown in the next section. The existence of Morse-Darboux coordinates
is equivalent to the following statement:

Theorem 2.4.1. Let ω = ω(x, y)dx∧ dy be an area form on R2, and F = F(x, y)
be a smooth function such that F(0, 0) = 0, Fx(0, 0) = 0, Fy(0, 0) > 0 and
Fxx(0, 0) > 0. Then there exists a chart (p, q) centered at (0, 0) such that
ω = dp ∧ dq, F(p, q) = λ(p2 + q), and q = 0 if and only if y = 0 (i.e. the
boundary is given by the same equation). The function λ of one variable is smooth
in the neighborhood of the origin 0 ∈ R and λ′(0) > 0.

In the next subsection we formulate and prove several lemmas necessary
for the proof of Theorem 2.4.1.

2.4.1 Necessary lemmas

Lemma 2.4.2. Let

D(F, ε) := {(x, y) ∈ R2 | F(x, y) ≤ ε and y ≥ 0}.

Then the function

AF(ε) :=
∫

D(F,ε)

ω(x, y)dx ∧ dy

is well-defined. It can be expressed as

AF(ε) =

√
ε∫

−
√

ε

dx
ε−x2∫
0

ω(x, y)dy.

Remark 2.4.3. The function AF gives us an invariant of a pair (F, ω). It will
play a crucial role in the proof of Theorem 2.4.1

Remark 2.4.4. Consider the upper half-plane H with an area form ω =

dp ∧ dq and a function F = λ(p2 + q), where λ′(0) > 0. Then the function
AF can be expressed as

AF(λ(ε)) =
∫

D(λ(p2+q),λ(ε))

dp ∧ dq

=
∫

D(p2+q,ε)

dp ∧ dq =

√
ε∫

−
√

ε

dp

ε−p2∫
0

dq =

√
ε∫

−
√

ε

(ε− p2)dx =
4
3

ε
√

ε =
4
3

ε3/2,
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so
[AF ◦ λ](ε) = 4/3ε3/2

and
λ(ε) = A−1

F (4/3ε3/2)

or
λ−1(ε) = [3/4AF(ε)]

2/3.

So we know how to determine the function λ from Theorem 1′. Now we
want to prove that λ is a smooth function.

Lemma 2.4.5. The function Ã(ε) := AF(ε)
2/3 is smooth in some neighborhood

of zero.

Proof. Let

u(x, ε) :=
ε−x2∫
0

ω(x, y)dy.

Note that u is a smooth function of two variables. Further,

AF(ε) =

√
ε∫

−
√

ε

u(x, ε)dx.

Introducing a new variable δ =
√

ε we obtain

AF(δ) =

δ∫
−δ

u(x, δ2)dx.

This function is smooth and odd. Let us find the third order Taylor poly-
nomial of AF(δ) :

AF(δ) =

δ∫
−δ

dx
δ2−x2∫

0

ω(x, y)dy =

δ∫
−δ

dx
δ2−x2∫

0

[ω(0, 0) + O(x) + O(y)]dy

= ω(0, 0)
δ∫
−δ

dx
δ2−x2∫

0

dy +

δ∫
−δ

dx
δ2−x2∫

0

O(x)dy +

δ∫
−δ

dx
δ2−x2∫

0

O(y)dy

= ω(0, 0)
4
3
(δ2)3/2 + O(

δ∫
−δ

dx
δ2−x2∫

0

xdy) + O(

δ∫
−δ

dx
δ2−x2∫

0

ydy)

= ω(0, 0)
4
3

δ3 + O(δ4) + O(δ4) = ω(0, 0)
4
3

δ3 + O(δ4).
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It means, that AF(δ) = δ3B(δ), where the function B(δ) is smooth, even,
and B(0) ̸= 0. So, AF(ε) = ε3/2B(

√
ε) and Ã(ε) = ε[B(

√
ε)]2/3.

Remark 2.4.6. The function Ã is defined only if ε ⩾ 0. But it extends to a
smooth function on a neighborhood of zero.

Definition 2.4.7. Recall that one-forms on a surface M with a fixed area
form ω may be identified with vector fields, and every smooth function
F : M→ R determines a unique vector field XF, called the Hamiltonian
vector field with the Hamiltonian F, by requiring that for every vector field Y
on M the identity dF(Y) = ω(Y, XF) holds. Let PF be the flow (Hamiltonian
flow) corresponding to the vector field XF.

Definition 2.4.8. Recall that in the chart (x, y) we have F(x, y) = x2 + y.
Let tF(ε) be the time necessary to go from (−

√
ε, 0) to the point (

√
ε, 0)

under the action of PF, i.e. tF(ε) is defined by

PtF(ε)
F (−

√
ε, 0) = (

√
ε, 0).

Definition 2.4.9. The curve

γ(ε) := P
1
2 tF(ε)
F (−

√
ε, 0)

where ε ⩾ 0 is called a bisector.

Lemma 2.4.10. The bisector is smooth and transversal to the boundary {y = 0}.

x

y

x

z

Figure 2.2: Level sets of the function F in charts (x, y) and (x, z). The thick curve
is the boundary of M.

Proof. Let us introduce a new coordinate system (x, z), where

z(x, y) := F(x, y) = x2 + y
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(see Figure 2.2). Then in these new coordinates F(x, z) = z, ω = ω(x, z)dx∧
dz, while y = 0 if and only if z = x2, and XF = (− 1

ω(x,z) , 0). Let us compute
the function tF. Note that

−ω(x, z)dx = dt (2.1)

Integrating (2.1) over the horizontal segment between the points (−
√

z, z)
and (

√
z, z), we get

tF(z) = −

√
z∫

−
√

z

ω(τ, z)dτ.

In the same way we obtain equations for the bisector (s(z), z)

s(z)∫
−
√

z

ω(τ, z)dτ =
1
2

√
z∫

−
√

z

ω(τ, z)dτ. (2.2)

Introducing a new variable w =
√

z we obtain an equation for the
function ŝ(w) := s(w2):

ŝ(w)∫
−w

ω(τ, w2)dτ =
1
2

w∫
−w

ω(τ, w2)dτ, (2.3)

Equation (2.3) allows us to define ŝ(w) even if w < 0. We claim that ŝ is a
smooth function and ŝ(−w) = ŝ(w).

Partial derivative of (2.3) with respect to ŝ is ω(ŝ(w), w2). For any (x, z)
we have ω(x, z) ̸= 0. It follows from the implicit function theorem that ŝ(w)

depends smoothly on w. It is easy to see that Equation (2.3) defines ŝ as an
even function of w. It implies that s(z) = ŝ(

√
z) is a smooth function of z.

Now it is clear that the bisector is transversal to the boundary {z = x2}.

Remark 2.4.11. It follows from the proof of Lemma 2.4.10 that the bisector
curve can be smoothly extended to the lower half plane.

Definition 2.4.12. Let TF(x, y) be the time necessary to go from the bisector
to the point (x, y) under the action of PF.

Remark 2.4.13. In the chart (x, z), we have:

TF(x, z) =
x∫

s(z)

−ω(τ, z)dτ =

s(z)∫
x

ω(τ, z)dτ,

where the function s is defined in Lemma 2.4.10. Now it is clear that TF is
a smooth function.
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Also note that since PF is the flow of the vector field XF, it follows that
dTF(XF) = 1.

Lemma 2.4.14. ω = dF ∧ dTF.

Proof. Using that dTF(XF) = 1, we get

iXF dF ∧ dTF = dF(XF)dTF − dFdTF(XF) = −dTF(XF)dF = −dF = iXF ω,

so
iX f (dF ∧ dTF −ω) = 0,

and, since the ambient surface is 2-dimensional and XF ̸= 0, it follows that
ω = dF ∧ dTF.

Lemma 2.4.15. d
dε AF(ε) = |tF(ε)|.

Proof. To proof this, let us use the chart (x, z) from Lemma 2.4.10 Recall
that in this chart F(x, z) = z. Now it follows from the definition of A f and
from Lemma 4 that

AF(ε+ δ)−AF(ε) = |

√
ε∫

−
√

ε

ε+δ∫
ε

dz∧ dTF|+ o(δ) = |

√
ε∫

−
√

ε

dTF

ε+δ∫
ε

dz|+ o(δ) =

= δ|TF(
√

ε, 0)− TF(−
√

ε, 0)|+ o(δ) = δ|tF(ε)|+ o(δ).

So
d
dε

AF(ε) = |tF(ε)|.

Lemma 2.4.16. Suppose that after a coordinate transformation (x, y)→ (p, q)
the following conditions hold:

1. F(p, q) = p2 + q.

2. ω = dp ∧ dq.

3. The equation p = 0 describes the bisector.

4. AF(ε) =
4
3 ε
√

ε.

Then y(p, q) = 0 if and only if q = 0.

Proof. First of all, the Condition 4 states that AF(ε) = 4
3 ε
√

ε, hence the
function A′F(ε) can be written as:

d
dε

4/3ε
√

ε = 2
√

ε. (2.4)
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Let us check that y = 0 if and only if q = 0. It is follows from
Lemma 2.4.10 that the curve {y = 0} is transversal to the bisector {p = 0}.
So, the curve y = 0 is a graph of some function q = r(p) (see Figure 2.3).
It follows from the definition of bisector that r(x) = r(−x). Let us proof
that r(x) ≡ 0. Assume that there exists some p0 such that q0 := r(p0) > 0
(the case q0 < 0 is analogous).

A′F(q0 + p2
0) = [by equation (2.4)] = 2

√
q0 + p2

0 > |2p0|

= [by conditions (1),(2),(3) and the definition of tF] = |tF(q0 + p2
0)|

= [by Lemma 2.4.15] = A′F(q0 + p2
0).

This contradiction concludes the proof.

2.4.2 Proof of the Theorem 2.4.1

p0

q0
p

q r(p)

Figure 2.3: An illustration to the proof of Lemma 2.4.16.

Proof. Consider the function

λ(ε) := A−1
F (

4
3

ε
√

ε).

It follows from Lemma 2.4.5 that λ is a smooth function. Let also

H(x, y) := [λ−1 ◦ F](x, y)

p(x, y) := −TH(x, y)

q(x, y) := H − p2(x, y).
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Then

dp ∧ dq = −dTH ∧ d(H − T2
H) =

= −dTH ∧ dH + dTH ∧ 2THdTH = dH ∧ dTH = [by Lemma 2.4.14] = ω,

so dp and dq are linearly independent. Further, in the chart (p, q), we have

1. H(p, q) = p2 + q and F(p, q) = λ(p2 + q).

2. ω = dp ∧ dq.

3. The equation p = 0 describes the bisector, because p(x, y) = 0 if
and only if T(x, y) = 0, while the latter means that the point (x, y)
belongs to the bisector.

4. AH(ε) = AF(λ(ε)) = AF(A−1
F ( 4

3 ε
√

ε)) = 4
3 ε
√

ε.

So, the chart (p, q) fulfils all conditions of Lemma 2.4.16. Now it fol-
lows from Lemma 2.4.16 that the chart (p, q) satisfies all conditions of
Theorem 2.4.1.

2.5 finishing the proof of theorem 2 .3 .1

Before we proceed with the proof let us formulate and prove the follow-
ing.

Lemma 2.5.1. Let h1 and h2 be two smooth non-negative functions R+ → R+

such that hi(0) = 0 and h′i(0) > 0 for i = 1, 2. Then the following statements
are equivalent:

(i) The difference h1 − h2 is a function flat at the origin, i.e. the Taylor series
J∞
0 h1 and J∞

0 h2 are equal to each other.

(ii) The difference
√

h1 −
√

h2 is a smooth function R+ → R.

(iii) The difference
√

h1 −
√

h2 is a smooth function R+ → R flat at the origin.

Proof. The implication (iii) =⇒ (ii) is evident so it enough to show that
(i) =⇒ (iii) and (ii) =⇒ (i). Let us start with implication (i) =⇒ (iii).
It follows from Hadamard’s lemma that there exist smooth functions h̃1

and h̃2 such that hi = xh̃i and h̃i(0) > 0 for i = 1, 2. We have the following
formula for the difference

√
h1 −

√
h2 :√

h1(x)−
√

h2(x) =
1√
x

h1(x)− h2(x)√
h̃1(x) +

√
h̃2(x)

(2.5)
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for small enough x > 0. It follows from the formula (2.5) that the difference√
h1−

√
h2 is smooth and flat at the origin whenever the difference h1− h2

is flat the origin.
It remains to show that (ii) implies (i). Denote by g the smooth function√
h1 −

√
h2. Assume that the difference h1 − h2 is not flat at the origin.

Then there exists a number n ∈ N and a smooth non-zero function
f : R+ → R \ 0 such that h1(x)− h2(x) = xn f (x). It is useful to rewrite
formula (2.5) in the following form:

g(x)
√

x
(√

h̃1(x) +
√

h̃2(x)
)
= xn f (x). (2.6)

Formula (2.6) implies that the function f is flat at the origin whenever the
function g is flat at the origin. The function f is a non-zero function so
we conclude that the function g is not flat at the origin. Therefore there
exists a number m ∈ N and a smooth non-zero function g̃ : R+ → R \ 0
such that g(x) = xm g̃(x). Now we take the square of both sides of (2.6)
and obtain the following formula:

x1+2m g̃(x)2
(√

h̃1(x) +
√

h̃2(x)
)2

= x2n f (x)2. (2.7)

That gives us a contradiction since the Taylor series of the left hand side
starts with an odd power of x and the Taylor series of the right hand side
starts with an even power of x. We conclude that the function h1 − h2 is
flat at the origin.

Now we proceed with proving the remaining statements of Theo-
rem 2.3.1.

Proof of Theorem 2.3.1. Without loss of generality we can assume that F(O) =

0. Recall that the main part of this theorem on the existence of a coordinate
chart was proved in Theorem 2.4.1.

Let us prove statement (i) of this theorem. We need to prove the equality
p̃ + q̃2 = p + q2. In this case (see Figure 2.1, (a)) the region {F ≤ ε} is
diffeomorphic to a closed half ball provided that ε > 0 is sufficiently small.
Therefore, the area of this region

AF,ω(ε) :=
∫

F≤ε
ω
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is well-defined. Let (p, q) be a coordinate chart centered at O such that
F = λ(p2 + q) and ω = dp ∧ dq. Then we can write an explicit formula
for the function AF,ω(ε) :

AF,ω(ε) =
∫ √λ−1(ε)

−
√

λ−1(ε)
(λ−1(ε)− p2)dp =

4
3

λ−1(ε)3/2.

So we conclude that the function λ (and thus the function q + p2) is
uniquely determined by the pair (F, ω).

Now let us prove statement (ii) of this theorem. Consider the second
case where in some local chart centered at O we have F = λ(q− p2) and
ω = dp ∧ dq. Consider a smooth curve ℓ ⊂ M such that it is transversal
to the right half of the parabola {q = p2} and these two curves intersect
each other at exactly one point. In coordinates (p, q) the curve ℓ can be
described as a graph of some function g :

ℓ = {(p, q) : q = g(p)}.

We fix a number ε < 0, and consider the region Rε (see Figure 2.4) bounded
by the boundary curve ∂M = {q = 0}, the right half of the parabola {q =

p2} ∩ {p ≥ 0}, the right half of the parabola {q = p2 + λ−1(ε)} ∩ {p ≥ 0},
and the curve ℓ. Then the area of this region

{F = 0} = {q = p2}

{F = ε} = {q = p2 + λ−1(ε)}

ℓ = {q = g(p)}

F = λ(q− p2)

p0

Rε

p1 p2

ℓ

p

q

Figure 2.4: The area function AF,ω,ℓ =
∫

Rε
ω.
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AF,ω,ℓ(ε) :=
∫

Rε

ω

is well-defined. Denote by p0 the p-coordinate of the intersection {F =

ε} ∩ ∂M, by p1 the p-coordinate of the intersection {F = 0} ∩ ℓ, and by
p2 the p-coordinate of the intersection {F = ε} ∩ ℓ. The coordinates p0,
p1, and p2 depend on ℓ, and also the coordinates p0 and p2 depend on ε.
It follows from the implicit function theorem that the coordinate p2 is a
smooth function of ε. As for p0, it is explicitly given by

√
−λ−1(ε). Note

that p0(ε) < p1 < p2(ε) provided that |ε| is sufficiently small. We have the
following formula for the function AF,ω,ℓ(ε) :

AF,ω,ℓ(ε) =
∫ p0(ε)

0
p2dp−

∫ p1

p0(ε)
λ−1(ε)dp +

∫ p2(ε)

p1

(g(p)− p2 − λ−1(ε))dp

= p3
0(ε)/3− p0(ε)λ

−1(ε) + smooth function of ε

=
4
3
(−λ−1(ε))3/2 + smooth function of ε.

(2.8)
Now consider some other chart ( p̃, q̃) such that F = λ̃(q − p2), ω =

dp̃∧ dq̃, and the boundary ∂M is given by {q̃ = 0}. Then it is follows from
above that

4
3
(−λ−1(ε))3/2 − 4

3
(−λ̃−1(ε))3/2 = f (ε) (2.9)

where f is a smooth function of one variable. We want to prove that the
Taylor series J∞

0 λ is equal to the Taylor series of J∞
0 λ̃. It follows from

Lemma 2.5.1 that the Taylor series J∞
0 λ−1(ε)3 is equal to the Taylor series

J∞
0 λ̃−1(ε)3. From here we conclude that J∞

0 λ = J∞
0 λ̃.

It remains to prove the last part of statement (ii). Let ψ : R → R be a
function of one variable flat at the origin. The goal is to find a symplec-
tomorphism Φ defined in some neighbourhood of the origin such that O
is a fixed point for Φ, the symplectomorphism Φ preserves the boundary
∂M, and

Φ∗[q + ψ(q)] = q.

For this part of the proof we are going to use a different coordinate chart
(see Figure 2.5):

(P := p, Q := q− p2).

First of all, notice that after this “parabolic” change of coordinates the
symplectic form still has the standard form:

dP ∧ dQ = dp ∧ dq.
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Secondly, in the chart (P, Q)the function F “straightens” i.e. F(P, Q) =

Q + ψ(Q), and the boundary becomes a parabola ∂M = {(P + Q2 = 0}.

p

q

P

Q

Figure 2.5: The parabolic change of coordinates

Now let us proceed with the proof. Apply Moser’s path method and
consider the family of functions

f t := Q + tψ(Q)

for each t ∈ [0, 1]. Instead of looking for one symplectomorphism Φ, we
will be looking for a family of Hamiltonian symplectomorphisms Φt such
that

Φt∗ f t = Q, (2.10)

Φt(∂M) ⊂ ∂M for each t ∈ [0, 1], and Φt(O) = O for each t ∈ [0, 1]. Let vt

be the vector field corresponding to the flow Φt :

d
dt

Φt = vt ◦Φt.

Differentiating (2.10) with respect to t, we obtain the following differential
equation

Φt∗Lvt f t + Φt∗ d f t

dt
= 0,

which we rewrite as

Φt∗
(

Lvt f t +
d f t

dt

)
= 0.
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Since Φt is a diffeomorphism, it is equivalent to

Lvt f t + ψ(Q) = 0. (2.11)

Since the flow of the field vt has to preserve the symplectic structure ω,
we will be looking for the field vt in the Hamiltonian form

vt = Ht
Q

∂

∂P
− Ht

P
∂

∂Q
(2.12)

where Ht
Q := ∂Ht

∂Q and Ht
P := ∂Ht

∂P . Substitute the right-hand side of (2.12)
into (2.11) to obtain the following partial differential equation

ψ(Q)− Ht
P(1 + tψ̇(Q)) = 0.

Rewrite it as

Ht
P = − ψ(Q)

1 + tψ̇(Q)
.

Consider the family of functions

ψt(x) :=
ψ(x)

1 + tψ̇(x)

for each t ∈ [0, 1]. We have ψ̇(0) = 0 so the denominator 1 + tψ̇(x) is non-
zero in sufficiently small neighbourhood of the origin. Then our equation
assumes the form

Ht
P = ψt(Q). (2.13)

It is clear that the general solution to this equation has the form

Ht(P, Q) = Pψt(Q) + gt(Q)

where gt is a smooth function of one variable. Our goal is to find a
particular solution to (2.13) that is constant along the boundary ∂M =

{Q + P2 = 0}. That implies the following condition on the function gt :

Pψt(−P2) + gt(−P2) = 0.

Hence, for any non-positive x ∈ R we have

gt(x) = −
√
−xψt(x).
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Now define a function gt in the following way:gt(x) = −
√
−xψt(x) x ≤ 0

gt(x) = 0 x > 0

It follows from the flatness of ψt(·) that the function gt defined as above is
a smooth function flat at the origin. Now define the function H to be the
corresponding solution:

Ht(P, Q) = Pψt(Q) + gt(Q)

The family of symplectomorphisms Φt can be recovered as the flow of the
corresponding field vt = Ht

Q
∂

∂P − Ht
P

∂
∂Q . The condition Ht|∂M = 0 implies

that the field vt has a zero restriction on the boundary ∂M = {Q+ P2 = 0},
and we conclude that the corresponding family Φt preserves the boundary,
and Φt(O) = O for each t ∈ [0, 1]. Now applying the theorem on the
smooth dependence of the flow on initial data one can conclude that the
flow Φt is well-defined for t ∈ [0, 1]. Hence, the diffeomorphism Φ1 has
the desired properties.

2.6 the case of a higher-dimensional manifold

We mentioned in Section 2.2 that Morse-Darboux lemma 2.2.1 is partial
case of Le lemme de Morse isochore. Here we present the precise statement
of that lemma.

Theorem 2.6.1 ([11]). Let F : Rn → R be a smooth function such that 0 is
a non-degenerate critical point of F i.e. the quadratic form associated with the
Hessian

Q(x1, . . . xn) =
1
2 ∑

1≤i, j≤n

∂2F
∂xi∂xj

(0, . . . , 0)xixj

is a non-degenerate quadratic form. Let also ω ∈ Ωn(Rn) be a volume form.
Then there exits a diffeomorphism Φ : (Rn, 0) → (Rn, 0) such that Φ∗ω =

α(Q)dnx and Φ∗F = Q. Here α is a smooth single variable function. Moreover,
if Q is positive-definite or negative-definite form, then function α is determined
by the pair (F, ω). Otherwise, only Taylor series of α is determined by the pair
(F, ω).

It is a natural problem to generalize Le lemme de Morse isochore to the
case of a higher-dimensional manifold. We expect the following conjecture
to be true.
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Conjecture 2.6.2. Let F : Rn+1 → R be a smooth function, and let Γ be the
hyperplane {x0 = 0}. Assume that ∇F(0) ̸= 0 and 0 is non-degenerate critical
point for the restriction F|Γ i.e. the quadratic form associated with the Hessian for
the restriction F|Γ

Q(x1, . . . xn) =
1
2 ∑

1≤i, j≤n

∂2F
∂xi∂xj

(0, . . . , 0)xixj

is a non-degenerate quadratic form. Let also ω ∈ Ωn+1(Rn+1) be a volume form.
Then there exits a diffeomorphism Φ : (Rn+1, 0) → (Rn+1, 0) such that

Φ∗ω = α( ∂F
∂x0

(0, . . . , 0)x0 + Q)dy ∧ dnx, Φ∗F = ∂F
∂x0

(0, . . . , 0)x0 + Q, and
here α is a smooth single variable function. Moreover, the diffeomorphism Φ maps
the hyperplane Γ to itself.



3
G L O B A L C L A S S I F I C AT I O N
O F F U N C T I O N S

Smooth functions with non-degenerate singularities are a well-known
field of research. There is a number of papers devoted to the functions
with non-degenerate critical points on closed 2-dimensional manifolds
[30, 1, 6, 19].

In this chapter, we obtain a global classification of generic (simple Morse)
smooth functions on compact two-dimensional surfaces with boundary
with respect to the action of the group SDiff(M) of symplectomorphisms
of M.

3.1 the reeb graph of a function

Let M be a compact connected orientable surface (with or without
boundary), and let F : M→ R be a Morse function on M. In what follows,
by a level we mean a connected component of a level set of F. The graph
ΓF, called the Reeb graph1 is the set of levels of a function F on a surface
M, see Figure 1.1.

3.1.1 The case of a closed surface

Originally the notion of a Reeb graph was introduced for Morse func-
tions on closed orientable two-dimensional surfaces. In this case all non-
critical levels of a Morse function F : M → R are circles and the Reeb
graph is finite graph whose vertices correspond to critical points of F. In
particular, saddle points correspond to 3-valent vertices, and min/max
points correspond to 1-valent vertices, see Figure 1.1. The Reeb graph
determines the topological type of surface.

Theorem 3.1.1 ([6], Chapter 2, Theorem 2.1). Let F be a simple Morse function
on a closed two-dimensional orientable surface M. Then its Reeb graph determines
this surface uniquely up to a diffeomorphism.

1 This graph is also called the Kronrod graph of a function, see [30, 1].

28
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3.1.2 The case of a surface with boundary

The notion of a Reeb graph was generalized in [15] to the case of
surfaces with boundary. Let M be a compact connected orientable surface
with boundary ∂M, and let F : M → R be a Morse function on M. In
this case all non-critical levels are diffeomorphic to a circle or a line
segment. The surface M can be considered as a union of levels, and we
get a foliation with singularities. The base space of this foliation with the
quotient topology is homeomorphic to a finite connected graph ΓF (see
Figure 1.2) whose vertices correspond to critical values of F or F|∂M. We
view this graph as a topological object (rather than combinatorial). By
π we denote the projection M → ΓF. Let e be an (open) edge of ΓF. We
denote e by a solid line if π−1(e) is a cylinder and by a dashed line if π−1(e)
is a strip. We denote the closure of the union of solid (respectively, dashed)
edges in ΓF by Γs

F and Γd
F, respectively. We denote the preimages π−1(Γs

F)

and π−1(Γd
F) by Ms

F and Md
F. Thus ΓF = Γs

F ∪ Γd
F, and M = Ms

F ∪ Md
F.

There are 7 possible types of vertices in the graph ΓF (see Table 3.1). The
function F on M descends to a function f on the Reeb graph ΓF. It is
also convenient to assume that ΓF is oriented: edges are oriented in the
direction of increasing f .

Let v be a vertex of the Reeb graph ΓF. Let us fix a number ε > 0 such
that

f−1([ f (v)− ε, f (v) + ε]) ∩ e

is a proper subset of e for each edge e incident to v. The preimage Pε
v :=

π−1( f−1([ f (v)− ε, f (v) + ε])) ⊂ M. is connected oriented surface and its
boundary ∂Pε

v is a piecewise smooth closed oriented curve that in general
consists of some level curves and some boundary curves (see pictures in
the left column of Table 3.1). The curve ∂Pε

v is connected in the case where
the vertex v is incident only to dashed edges, and its image π[∂Pε

v] is a
closed oriented curve that passes edges incident to the vertex v in a certain
cyclic order. This construction is nontrivial only in the case when there are
at least three dashed edges incident to the vertex v (otherwise, there is only
one cyclic order at the set of edges incident to v). Thus for an arbitrary
II-vertex or IV-vertex (see Table 3.1) of the graph ΓF we have a natural
cyclic order for the edges incident to this vertex. The above properties of
the graph ΓF make it natural to introduce the following definition of an
abstract Reeb graph.

Definition 3.1.2. An (abstract) Reeb graph (Γ, f ) is an oriented connected
graph Γ with solid or dashed edges, and a continuous function f : Γ→ R,
with the following properties and additional data:

(i) Each vertex of Γ is of one of the 7 types from Table 3.1.
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(ii) There is a cyclic order on the set of edges incident to II- or IV-vertices
(see Table 3.1)

(iii) The function f is strictly monotonic on each edge of Γ, and the edges
of Γ are oriented towards the direction of increasing f .

Definition 3.1.3. Abstract Reeb graphs (Γ1, f ) and (Γ2, g) are said to be
equivalent by means of the isomorphism ϕ : Γ1 → Γ2 if the map ϕ :

(i) maps solid (respectively, dashed) edges to solid (respectively, dashed)
edges;

(ii) preserves the cyclic order on the set of edges incident to each I I- or
IV-vertex, i.e. if e2 follows e1 in the cyclic order, then ϕ(e2) follows
ϕ(e1);

(iii) takes the function g to the function f (i.e. f = g ◦ ϕ).

3.2 recovering the topology of a surface from the reeb

graph

In this subsection we follow [15, Section 5]. Let M be a compact con-
nected oriented surface with boundary ∂M, and let F : M→ R be a simple
Morse function. The restriction of the projection π to each boundary com-
ponent of M is a closed curve (a map from a circle to the graph) in the
graph ΓF. Informally speaking, the following definition describes those
closed curves for an abstract Reeb graph.

Definition 3.2.1. Let (Γ, f ) be an abstract Reeb graph. A non-empty se-
quence of edges (e1, e2, . . . , en) together with a sequence (v1, v2, . . . , vn, vn+1 =

v1) of vertices is called a boundary cycle if the following three conditions
hold:

(i) All edges in the sequence are dashed.

(ii) Each edge ei is incident to the vertices vi and vi+1 for every i ∈
{1, . . . , n}.

(iii) If the vertex vi has three or more adjacent dashed edges, then the
pair (ei−1, ei) of consecutive edges is also a consecutive pair of edges
with respect to the cyclic order on the set of edges incident to the
vertex vi for every i ∈ {1, . . . , n}.

We call two boundary cycles equivalent if they differ by the action of
a cyclic group, i.e. the sets of vertices v1 . . . vnv1 and vi . . . vnv1 . . . vi−1vi
define the same topological cycle for each i ∈ {1, . . . , n}. In addition, in
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the case when a boundary cycle consists only of 1 or 2-valent vertices
(i.e. of vertices of type III and IV) we also call two boundary cycles
v1v2 . . . vn−1vnv1 and vnvn−1 . . . v2v1vn equivalent. We denote by σ(Γ) the
number of (equivalence classes of) boundary cycles in Γ.

Example 3.2.2. Consider a disk with two holes and a torus with one hole,
and consider the height function on them (as shown in Figure 3.1). The
corresponding Reeb graphs are identical except for the cyclic orders at
the vertices C1 and C2. In case (a) of a disk with two holes there are
three boundary cycles: B1C1D1B1, C1E1D1C1, and A1B1D1E1F1E1C1B1A1.
In case (b) of a torus with one hole there is only one boundary cycle:
A2B2D2E2F2E2C2D2B2C2E2D2C2D2A2.

Proposition 3.2.3 ([15, Section 5]). Let M be a compact connected oriented
surface with boundary ∂M, and let F : M → R be a simple Morse function.
Then the number of boundary cycles σ(ΓF) is equal to the number of boundary
components dim H0(∂M) of the surface M.

Theorem 3.2.4 ([15, Theorem 5.3]). The genus g(M) of a surface M is given
by the following formula:

g(M) = −χ(Γs
F) +

−χ(Γd
F) + 5 dim H0(Γs

F ∩ Γd
F)− σ(ΓF)

2
− dim H0(Γs

F)− dim H0(Γd
F) + 3,

(3.1)

where χ(ΓF) = dim H0(ΓF)−dim H1(ΓF) is the Euler characteristic and σ(ΓF)

is the number of boundary cycles.

Theorem 3.2.4 motivates us to give the following definition.

Definition 3.2.5. Let (Γ, f ) be an abstract Reeb graph. Define the genus g(Γ)
as the number from the right-hand side of the formula in Theorem 3.2.4.

Now we can summarize the results from [15] as follows.

Theorem 3.2.6. Let (M, ∂M) be a compact oriented surface.

(i) Let F, G : M → R be two simple Morse functions. Then the following
conditions are equivalent:

a) There exists a diffeomorphism Φ : M→ M such that Φ∗F = G.

b) Reeb graphs are isomorphic.
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A1

B1

C1

D1

E1

F1

(i)

A2

B2

C2

D2

E2

F2

(ii)

Figure 3.1: An illustration to Definition 3.2.1: dashed Reeb graph with
dim H1(Γ) = 2 corresponding to both a disk with two holes (a) and
torus with one hole (b). Cutting the disk drawn here along the three
dashed levels and then restoring the gluings with opposite orien-
tations, one obtains a torus with one hole. This figure is based on
Figure 5 from [17].
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Moreover, every isomorphism ϕ : (ΓF, f ) → (ΓG, g) can be lifted to a
diffeomorphism Φ : M → M such that Φ∗F = G and the following
diagram is commutative:

M Φ //

p
��

M

p
��

ΓF
ϕ // ΓG

(ii) For each Reeb graph (Γ, f ) such that g(Γ) = g(M) there exists a simple
Morse function F : M→ R such that the corresponding Reeb graph ΓF is
isomorphic to (Γ, f ).

3.3 measured reeb graphs

Now, fix an area form ω on the surface M. Then the natural projection
map π : M→ ΓF induces a measure µ := π∗ω on the graph ΓF.

Definition 3.3.1. A measure µ on an abstract Reeb graph (Γ, f ) is called
quasi-smooth if the following conditions hold.

1. The measure µ has a C∞-smooth non-zero density dµ/d f in the
complement Γ \V(Γ).

2. In a neighbourhood of each vertex the measure µ can be expressed
by the corresponding formula from Table 3.1.

Proposition 3.3.2. Let (M, ω) be a compact connected symplectic surface with a
boundary ∂M, and let F : M→ R be a simple Morse function. Then the measure
µ := π∗ω is quasi-smooth.

Proof. For vertices of types VI and VII this was proved in [13, Subsection
I.1.2]. The proof is based on Theorem 2.2.1, the essence of the proof is the
study of the area between the non-singular level sets of the function F and
a singular F-level. The proof for other types follows the same lines, with
the only difference that it uses both Theorems 2.2.1 and 2.3.1. Note that
or vertices of types I and VII the function ψ is uniquely (and explicitly)
determined by the corresponding function λ (see Theorems 2.2.1 and 2.3.1).
In other cases ψ is determined by the corresponding function λ up to a
function flat at the origin, and there is no explicit expression for ψ in terms
of λ (see details in Toulet’s thesis [32, Subsection 2.2]).

The above properties of the measure µ make it natural to introduce the
following definition of an abstract measured Reeb graph.
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Type Level Sets Reeb Graph Asymptotics

I µ([v, x]) = ψ( f (x))
√
| f (x)|, where

ψ(0) = 0 and ψ′(0) ̸= 0.

II
e0 e1

e2 µ([v, x]) = ε iψ( f (x))
√
| f (x)|+ ηi( f (x)),

where ε0 = ε1 = −1, ε2 = 2, ψ(0) = 0,
ψ′(0) ̸= 0, and η0 + η1 + η2 = 0.

III
e0

e1 µ([v, x]) = ε iψ( f (x))
√
| f (x)|+ ηi( f (x)),

where ε0 = −1, ε1 = 0, ψ(0) = 0, ψ′(0) ̸=
0, and η0 + η1 = 0.

IV
e0 e1

e3 e2 µ([v, x]) = ε iψ( f (x)) ln | f (x)|+ ηi( f (x)),
where ε0 = ε1 = −1, ε2 = ε3 = 1, ψ(0) =
0, ψ′(0) ̸= 0, and η0 + η1 + η2 + η3 = 0.

V
e0 e1

e2 µ([v, x]) = ε iψ( f (x)) ln | f (x)|+ ηi( f (x)),
where ε0 = ε1 = −1, ε2 = 2, ψ(0) = 0,
ψ′(0) ̸= 0, and η0 + η1 + η2 = 0.

VI
e0 e1

e2 µ([v, x]) = ε iψ( f (x)) ln | f (x)|+ ηi( f (x)),
where ε0 = ε1 = −1, ε2 = 2, ψ(0) = 0,
ψ(0) ̸= 0, and η0 + η1 + η2 = 0.

VII
µ([v, x]) = η( f (x)), where η(0) = 0 and
η′(0) ̸= 0.

Table 3.1: 7 types of neighborhoods of singular points with corresponding Reeb
graphs and asymptotics for the measure on a Reeb graph (figures are
partially taken from [17]). The notation µ([v, x]) is a measure that is
introduced below in Definition 3.8. In order to simplify notation we
assume that f (v) = 0. If not, we replace f by f̃ (x) := f (x)− f (v).
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Definition 3.3.3. A measured Reeb graph (Γ, f , µ) is a Reeb graph (Γ, f )
equipped with a quasi-smooth measure µ.

Definition 3.3.4. Two measured Reeb graphs (Γ1, f , µ) and (Γ2, g, ν) are
said to be equivalent by means of the isomorphism ϕ : Γ1 → Γ2 if the map
ϕ :

(i) is an isomorphism between the Reeb graphs (Γ1, f ) and (Γ2, g);

(ii) pushes the measure µ to the measure ν.

Definition 3.3.5. A measured Reeb graph (Γ, f , µ) is compatible with (M, ω)

if the following conditions hold:

(i) The genus g(Γ) of the graph Γ is equal to the genus g(M) of the
surface M.

(ii) The number σ(Γ) of boundary cycles is equal to the number dim H0(∂M)

of boundary components of the surface M.

(iii) The volume of Γ with respect to the measure µ is equal to the area
of the surface M:

∫
Γ dµ =

∫
M ω.

We finish this section with the notion of a smooth measure on a Reeb
graph.

Definition 3.3.6. A measure µ on an abstract Reeb graph (Γ, f ) is called
smooth if the following conditions hold.

1. The measure µ has a C∞-smooth non-zero density dµ/d f in the
complement Γ \V(Γ).

2. In a neighbourhood of each vertex the measure µ can be expressed
by the corresponding formula from Table 3.1 where instead of ψ(·)
we plug in zero (i.e. all non-smooth terms disappear).

Proposition 3.3.7. Let M be a compact connected orientable surface with a
boundary ∂M, and let F : M → R be a simple Morse function. Let also θ ∈
Ω2(M) be a non-negative 2-form such that the push-forward measure µ := π∗θ

has a non-zero density on each edge (i.e. the form θ is never identically zero along
a level of F.)

+ Then the measure µ is smooth if and only the support of θ does not include
any critical points of the function F that correspond to the vertices of the following
types: II, III, IV, V, VI (see Table 3.1).

Proof. It follows from the proof of Proposition 3.3.2 that non-smooth terms
appear in the expression for the measure µ whenever we integrate the the
form θ in a neighbourhood of a singular point (except types I and VII).
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Remark 3.3.8. It is possible to drop the conditions imposed on θ in the
proposition above, but then the push-forward π∗θ is going to be a signed
measure on a Reeb graph which is something we don’t consider in this
thesis.

3.4 classification of simple morse functions up to a sym-
plectomorphism

Theorem 3.4.1 ([24]). Let M be a compact connected oriented surface with
boundary ∂M. Then there is a one-to-one correspondence between simple Morse
functions on M, considered up to symplectomorphism, and (isomorphism classes
of) measured Reeb graphs compatible with M. In other words, the following
statements hold.

i) Let F, G : M → R be two simple Morse functions. Then the following
conditions are equivalent:

a) There exists a symplectomorphism Φ : M→ M such that Φ∗F = G.

b) Measured Reeb graphs of F and G are isomorphic.

Moreover, every isomorphism ϕ : (ΓF, f , µF)→ (ΓG, g, µG) can be lifted to
a symplectomorphism Φ : M→ M such that Φ∗F = G.

ii) For each measured Reeb graph (Γ, f , µ) compatible with (M, ω) there exists
a simple Morse function F : M→ R such that the corresponding measured
Reeb graph ΓF is isomorphic to (Γ, f , µ).

Remark 3.4.2. Note that the formulation of this theorem is identical to the
formulation of Theorem 3.11 from [19]. The difference, of course, is that
all notions in the present paper are extended to cover the case of surfaces
with boundary.

Before we proceed with the proof of Theorem 3.4.1 let us formulate and
prove the following.

Lemma 3.4.3. Let M be a compact oriented surface (with or without boundary),
and let F : M→ R be a simple Morse function on M. Denote by (Γ, f ) the Reeb
graph associated with the pair (M, F). Fix a quasi-smooth measure µ on Γ. Let v
be a vertex of Γ. Then there exist a symplectic form ω ∈ Ω2(M) compatible with
the orientation of M such that the push-forward measure µF = π∗ω coincides
with µ in some neighborhood of v.

Proof. First of all, notice that we already proved this statement if v is a
vertex of type I or type VII. In this case the local classification near a
singular point is equivalent to the semi-local classification near a singular
level. Also this statement was proved in [19] provided v is a vertex of
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type VI. Now, assume that v is a vertex of type III. Denote by O the
singular point for F|∂M such that π(O) = v. It follows from the proof
of Theorem 2.3.1 that there exists a symplectic form ω1 ∈ Ω2(M) such
that µ− π∗ω1 is a smooth measure in some neighborhood U of the vertex
v. Indeed, near the point the point O we can use the chart (p, q) from
Theorem 2.3.1 and define ω as dp ∧ dq. Recall that in the previous chapter
we derived a formula 2.8 for the area bounded by a level curve:

AF,ω,ℓ(ε) =
4
3
(−λ−1(ε))3/2 + smooth function of ε.

We pick the function λ so that µ − π∗ω1 is a smooth measure i.e.
4
3 (λ

−1(ε))3/2 = ψ(ε)
√

ε for any ε > 0.
Fix a number ε > 0 that is small enough and consider two curves γ1

and γ2 given by the equations {p = ±ε} (see Figure 3.2). Denote by Rε the
part of M bounded by the curves γ1,2 together with levels {F = λ(−ε2}
and {F = λ(ε)}. The region Rε is diffeomorphic to a closed disk. Consider
a non-negative 2-form ω2 ∈ Ω2(M) such that its support is contained in
Rε and the push-forward measure π∗ω2 has a smooth non-zero density
dµ
d f near v (we need this assumption to exclude ω2 from being identically
zero). Now define a 2-form ω̃2 using the formula:

ω̃2 =

d(µ−π∗ω1)
d f ◦ π

dπ∗ω2
d f ◦ π

ω2.

Notice that the compositions d(µ−π∗ω1)
d f ◦π and dπ∗ω2

d f ◦π are not necessarily
smooth at the point O, but ω̃2 is smooth everywhere and its support is
contained in Rε.

It is clear that
π∗ω̃2 = µ− π∗ω1,

or, equivalently,
µ = π∗(ω1 + ω̃2).

Therefore, the form
ω := ω1 + ω̃2

satisfies the required properties.
For other types of vertices the proof is analogous, the only difference is

that instead of one region Rε we need to consider up to four of them (for
a vertex of type IV).

Proof. Let us prove the first statement. The implication (a) =⇒ (b) is
evident, so it suffices to prove the implication (b) =⇒ (a). Let ϕ : ΓF →
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Rε

{F = const}

11

p = −ε

γ1

p = ε

γ2

∂M

Figure 3.2: An illustration to the proof of lemma 3.4.3

ΓG be an isomorphism of measured Reeb graphs. By πF we denote the
natural projection M→ ΓF. We need to construct a symplectomorphism
Φ : M→ M such that Φ∗F = G and πG ◦Φ = ϕ ◦ πF.

Let ℓ ⊂ M be a smooth oriented curve which is transversal to the level
sets of the function F, does not intersect the singular levels of the function
F, and such that the function F is strictly increasing along the curve ℓ.
Consider the Hamiltonian flow Pt

F corresponding to the function F. We
denote by TF(Q) the time necessary to go from the curve ℓ to the point Q
under the action of Pt; see Figure 3.3(i). The pair of functions (F, TF) forms
a coordinate system in some neighborhood of ℓ such that ω = dF ∧ dTF

(we did this computation above, see 2.4.14). The range of the function TF

along the non-critical level of F is a segment [0, Π(F)] in the case when
the F-level is a segment, and it is a half-interval [0, Π(F)) in the case when
the F-level is a circle. The function Π is called a period. It follows from
Stokes’ theorem that Π(F) is equal to the derivative dµ

d f . In particular, this
construction works for the boundary curve ∂M if we exclude all singular
points for F|∂M; see Figure 3.3(ii).
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(F, 0)(F, TF)

ℓF

TF

(i)

(F, TF)
(F, 0)

∂M ∂MF

TF

(ii)

Figure 3.3: An illustration to the definition of the function TF. Level curves are
oriented by the Hamiltonian vector field vF.

Let e ⊂ Γd
F be a dashed edge. Let’s apply the above construction in

the of ℓ being the boundary curve. The formula (F, TF) 7→ (G, TG) de-
fines a symplectomorphism from the interior of π−1

F (e) to the interior
of π−1

G (ϕ(e)). The condition ϕ∗µF = µG guarantees that the periods of
the functions TF and TG coincide and hence the symplectomorphism is
well-defined. Now let e′ ⊂ Γs

F be a solid edge. Let ℓ ⊂ M be a smooth
oriented curve which is transversal to the level sets of the function F. We
also assume it does not intersect the singular levels of the function F; and
the function F is strictly increasing along the curve ℓ. Then, as above, we
obtain a symplectomorphism from the interior of π−1

F (e′) to the interior of
π−1

G (ϕ(e′)). By applying the same procedure to all edges of the graph ΓF

we obtain a symplectomorphism

Φ1 : π−1[ΓF \V(ΓF)]→ π−1[ΓG \V(ΓG)]
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such that Φ∗1 F = G and πG ◦Φ1 = ϕ ◦ πF.
Now let O be a singular point for the function F or its restriction F|∂M.

Then there is only one way to define the image of O:

Φ(O) := π−1
G (ϕ(πF(O))).

Let (pF, qF) (respectively, (pG, qG)) be a chart centered at the point O
(respectively, Φ(O)) as in Theorem 2.2.1 or 2.3.1. Then the condition ϕ∗µF =

µG guarantees that the corresponding functions λF and λG are the same or
they differ by a function flat at the origin. In the latter case it follows from
Theorem 2.2.1 or 2.3.1 that we can replace the chart (pF, qF) with a chart
( p̃F, q̃F) such that λ̃F = λG. So without loss of generality we may assume
that λF = λG. Therefore, one can define Φ in some neighbourhood UO of
O by the formula

Φ : (pF, qF) 7→ (pG, qG).

This local symplectomorphism Φ extends uniquely to a semi-local sym-
plectomorphism

Φ : π−1
F (πF(U))→ π−1

G ([ϕ ◦ πF](U)).

Indeed, without loss of generality we may assume that π−1
F (πF(UO)) is a

“standard” neighbourhood of the singular level π−1
F (πF(O)) (see Table 3.1),

i.e. it is a connected component of the set {P ∈ M :
∣∣F(P)− F(O)

∣∣ < ε}
containing the point O and the number ε > 0 is sufficiently small so
that these “standard” neighbourhoods for distinct O are pairwise disjoint.
Denote by UF,ε the union of all these neighbourhoods. By applying the
above procedure to all singular points of the function F or its restriction
F|∂M we obtain a symplectomorphism

Φ2 : UF,ε → UG,ε.

such that Φ∗2 F = G and πG ◦Φ2 = ϕ ◦ πF.
So the isomorphism ϕ : ΓF → ΓG is lifted to a symplectomorphism

Φ1 : π−1[ΓF \V(ΓF)]→ π−1[ΓG \V(ΓG)]

and to a symplectomorphism

Φ2 : UF,ε → UG,ε.

However, these two symplectomorphisms do not necessarily define a
global symplectomorphism of the surface M. Let e ⊂ Γd

F be a dashed edge.
Then the intersection UF,ε ∩π−1(e) is a disjoint union of two rectangles and
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the ratio Φ−1
2 ◦Φ1 is a symplectic automorphism of this union preserving

each component and also preserving the function F. The only symplectic
automorphism of a fibered rectangle is the identity. So Φ−1

2 ◦Φ1 = Id on
UF,ε ∩ π−1(e) i.e. the symplectomorphisms Φ2 and Φ1 agree with each
other on the preimage π−1

F (e) of the edge e. Now let e ⊂ Γs
F be a solid

edge. Then the intersection UF,ε ∩ π−1(e) is a disjoint union of two open
cylinders and the ratio Φ−1

2 ◦ Φ1 is a symplectic automorphism of this
union preserving each component and also preserving the function F. Any
symplectic automorphism of a fibered cylinder is a Hamiltonian automor-
phism. The same holds for their union. The corresponding Hamiltonian
function H extends (using a bump function) to a smooth function H̃ on
all of M in such a way that its support is in the preimage of the edge
e for all t ∈ [0, 1]. Let us denote by Θ the Hamiltonian automorphism
that corresponds to the function H̃. Notice that Θ is defined on all of M
since H̃ is defined on all of M. Symplectomorphisms Φ2 ◦Θ and Φ1 do
agree with each other on the preimage π−1

F (e) of the edge e. By applying
the same procedure to all solid edges of ΓF we obtain a globally defined
symplectomorphism Φ : M→ M such that Φ∗F = G and πG ◦Φ = ϕ ◦πF.
This completes the proof of part i).

Now let us prove the second statement of the theorem. Given a triple
(Γ, f , µ) we need to construct a quadruple (M̃, π̃, F̃, ω̃) such that F̃ = f ◦ π̃

and π̃∗ω̃ = µ. If this is done then∫
M̃

ω̃ =
∫

Γ
dµ =

∫
M

ω

and it follows from Moser’s theorem [27] that there is a diffeomorphism
Φ : M̃ → M such that Φ∗ω = ω̃ so that one can take F = F̃ ◦ Φ−1.
It follows from [15] that there exists a surface M̃ with a simple Morse
function F̃ and a projection π̃ : M̃→ Γ such that F̃ = f ◦ π̃. It remains to
construct a symplectic form ω̃ such that π̃∗ω̃ = µ.

First of all, this problem is trivial if we restrict ourself to the part of
the surface M̃ where the function F̃ has no critical points (e.g. a cylinder
bounded by two levels of F̃). Indeed, we can start with any symplectic
form, and then multiply it by the a ratio of two densities like we did in the
proof of Lemma 3.4.3. For example, this argument works for complement
of all singular levels since it is a union of cylinders and strips. Denote by
W1 the complement of all singular levels, and consider a symplectic form
ω1 defined in W1 such that π̃∗ω1 = µ|π(W1). It follows from Lemma 3.4.3
that there exists a form ω2 defined in a neighbourhood W2 of the union of
all singular levels such that π̃∗ω2 = µ|π(W2). Consider a partition of unity
(ρ1, ρ2) subordinate to the open cover {W1, W2} such that both functions
ρ1 and ρ2 are constant along each level of F̃ (i.e. ρ1 and ρ2 descend to the
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functions on a Reeb graph). The form ω̃ := ρ1ω1 + ρ2ω2 is defined on all
of M̃ and satisfies π̃∗ω̃ = µ.
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In the present chapter we obtain a classification of generic coadjoint
orbits for the group of generic coadjoint orbits for the action of symplectic
(area-preserving) diffeomorphisms of compact symplectic surfaces with or
without boundary.

4.1 from morse functions to coadjoint orbits

Throughout this section, let (M, ω) be a compact connected symplectic
surface with boundary ∂M. By SDiff(M) we denote the Lie group1 of all
symplectomorphisms of M. Note that all elements of SDiff(M) map the
boundary ∂M to itself, but do not necessarily preserve the boundary ∂M
pointwise. The group SDiff(M) has the Lie algebra svect(M) of divergence-
free vector fields on M tangent to the boundary ∂M. The regular dual
space svect∗(M) can be identified with the space of cosets Ω1(M)/dΩ0(M)

(see Appendix). Moreover, the natural action of the group SDiff(M) on the
space of cosets Ω1(M)/dΩ0(M) by means of pull-backs coincides with
the coadjoint action of the group of symplectomorphisms SDiff(M) :

Ad∗Φ[α] = [Φ∗α],

where Φ ∈ SDiff(M) is a symplectomorphism and α ∈ Ω1(M) is a 1-form.
Define the exterior derivative operator d on the space of cosets {α +

d f | f ∈ C∞(M)} by the formula d[α] := dα. (This operator is well defined
on cosets since d(α + d f ) = dα.) Consider the following mapping:

curl : Ω1(M)/dΩ0(M)→ C∞(M),

1 See [20, Chapter I, Section 1.1] for details on Lie groups and Lie algebras in an infinite-
dimensional setting.

43
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defined by taking a vorticity function dα/ω =: curl[α]. It is easy to see that
if the boundary ∂M of the surface M is not empty then the mapping curl
is a surjection. In the case of a closed surface M there is a relation:∫

M
curl[α]ω = 0

and the mapping curl is surjective onto the space of zero-mean functions.
Suppose that cosets [α] and [β] belong to the same coadjoint orbit of

SDiff(M). Then by definition, there is a symplectomorphism Φ such that
[Φ∗β] = [α] and the following diagram is commutative:

[β]
Φ∗ //

curl
��

[α]

curl
��

curl[β] Φ∗ // curl[α]

Definition 4.1.1. A coset [α] ∈ Ω1(M)/dΩ0(M) is called simple Morse if
curl[α] is a simple Morse functions. A coadjoint orbit O is called simple
Morse if some (and hence every) coset [α] ∈ O is simple Morse.

With every simple Morse coset [α] ∈ Ω1(M)/dΩ0(M) one can associate
a measured Reeb graph Γcurl[α]. If two simple Morse cosets [α] and [β]

belong to the same coadjoint orbit, then the corresponding Reeb graphs
are isomorphic.

Suppose that cosets [α] and [β] have isomorphic Reeb graphs. Then it
follows from Theorem 3.4.1 that there exists a symplectomorphism Φ such
that Φ∗curl[β] = curl[α]. Therefore, the 1-form Φ∗[β]− [α] is closed. Since
this 1-form is not necessarily exact, the cosets [α] and [β] do not necessarily
belong to the same coadjoint orbit. Nevertheless, we conclude that the
space of coadjoint orbits corresponding to the same measured Reeb graph
is finite-dimensional and its dimension is at most dim H1(M). Throughout
this section, unless otherwise stated, all (co)homology groups will be with
coefficients in R.

4.2 circulation functions on a reeb graph

In [19] the notion of a circulation function was introduced for the case
of closed surfaces. In the case of a surface with boundary, we need a
modification of that definition. Take a point x ∈ Γs

F which is not a vertex.
Then π−1(x) is a circle C. It is naturally oriented as the boundary of the
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set of smaller values of the function F. The integral of a coset [α] over C is
well-defined. Thus, we obtain a function

C[α] : Γs
F \V(Γs

F)→ R,

defined by C[α](x) =
∫

π−1(x) α.

Proposition 4.2.1 ([19]). The function C[α] =
∫

π−1(x) α has the following prop-
erties.

(i) Assume that x an y are two interior points of some edge e ⊂ Γs
F, and that

e is pointing from x towards y. Then C[α] satisfies the Newton-Leibniz
formula

C[α](y)− C[α](x) =
∫ y

x
f dµ

(ii) for all vertices of Γs which do not belong to Γd the function C[α] satisfies the
Kirchhoff rule at v:

∑
e→v

lim
x

e−→v
C[α](x) = ∑

e←v
lim

x
e−→v
C[α](x) , (4.1)

where the notation e→ v stands for the set of edges pointing at the vertex
v, and e← v stands for the set of solid edges pointing away from v.

Note that the function f on the subgraph Γs
F can be recovered from

the circulation function C by the formula: f = dC/dµ. It follows from
Proposition 4.2.1 that the difference C[α] − C[β] is as an element of the
relative homology group H1(ΓF, Γd

F).
The above properties of the circulation function C[α] make it natural to

introduce the following definition of an abstract circulation function.

Definition 4.2.2. Let (Γ, f , µ) be a measured Reeb graph. Any function
C : Γs \V(Γs) → R satisfying the properties listed in Proposition 4.2.1 is
called a circulation function (an antiderivative).

Proposition 4.2.3. Let (Γ, f , µ) be a measured Reeb graph.

i) If the subgraph Γd is not empty, then the pair ( f , µ) on Γ admits an
antiderivative.

ii) If the subgraph Γd is empty, then the pair ( f , µ) on Γ admits an antideriva-
tive if and only if

∫
Γ f dµ = 0.

iii) If the pair ( f , µ) admits an antiderivative, then the set of antiderivatives
of ( f , µ) is an affine space whose underlying vector space is the relative
homology group H1(Γ, Γd).
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4.3 auxiliary classification result

In this section we follow [16]. Let (M, ω) be a symplectic surface with
boundary ∂M. Denote by CB(M) ⊂ C∞(M) the space of Morse functions
on M constant on the boundary ∂M, and without critical points at the
boundary ∂M. Elements of CB(M) are called functions of CB−type.

Definition 4.3.1. A coset [α] ∈ Ω1(M)/dΩ0(M) is said to be of CB-type if
curl[α] ∈ CB(M). A coadjoint orbit O called to be of CB-type if some (and
hence every) coset [α] ∈ O is of CB-type.

All definitions from the present paper such as Reeb graph, compatibility
conditions, circulation graph, etc. can be modified for the case of functions
and cosets of CB−type, see details in [16]. The result we are interested in
can be formulated as follows.

Theorem 4.3.2 ([16]). Let M be a connected symplectic surface with or without
boundary. Then coadjoint orbits of SDiff(M) of CB−type are in one-to-one corre-
spondence with (isomorphism classes of) circulation graphs (Γ, f , µ, C) compatible
with M. In other words, the following statements hold:

i) For a symplectic surface M and cosets of CB−type [α], [β] ∈ svect∗(M)

the following conditions are equivalent:

a) [α] and [β] lie in the same orbit of the SDiff(M) coadjoint action;

b) circulation graphs Γ[α] and Γ[β] corresponding to the cosets [α] and
[β] are isomorphic.

ii) For each circulation graph Γ which is compatible with M, there exists a
generic [α] ∈ svect∗(M) such that Γ[α] = (Γ, f , µ, C).

4.4 augmented circulation graph

In the case of surfaces with boundary circulation functions do not form
a complete set of invariants for coadjoint orbits, i.e. the equality C[α] = C[β]

does not in general imply that cosets α and β belong to the same coadjoint
orbit.

Example 4.4.1. Consider the disk with two holes from Figure 3.1(a). In
this case there are no circulation functions since there are no solid edges
in the Reeb graph. On the other hand, in this case there are no nontrivial
symplectomorphisms preserving the function hence the dimension of the
space of coadjoint orbits is equal to the first Betti number of the surface,
i.e. it is equal to two.
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ΓF M Γ̃F

π i

Figure 4.1: An illustration to the definition of the graph Γ̃F.

It turns out that it is possible to define some additional invariants:
integrals of cosets over certain cycles associated with the pair (M, F) in an
invariant way.

There is a unique way to lift each edge e ⊂ Γd
F to a smooth oriented (and

diffeomorphic to a segment) curve ẽ ⊂ ∂M such that

i) π(ẽ) = e;

ii) for each x ∈ e \ ∂e the regular F-level π−1(x) is pointed in the
direction of the curve ẽ.

We define the subset ẼF ⊂ M to be the union

ẼF :=
⋃

e∈E(Γd
F)

ẽ.

We also define the subset ṼF ⊂ M to be

ṼF := π−1(V(Γd
F) \ ∂Γd

F)

where ∂Γd
F is the set of boundary vertices (i.e. vertices of types I, III, or V)

of the graph Γd
F. And, finally, define the subset Γ̃F to be the union of ẼF

and ṼF (see Figure 4.1). The set Γ̃F is a topological graph embedded into
the surface M. We denote by i the inclusion Γ̃F ↪−→ M.

Lemma 4.4.2. The map π ◦ i : Γ̃F → Γd
F is a homotopy equivalence.

Let [α] ∈ Ω1(M)/dΩ0(M) be a coset of a one-form. There is a natural
way to define the restriction i∗[α] ∈ H1(Γ̃F). First, we define the restriction
i∗α as a one-cochain such that i∗α(e) :=

∫
e α for each edge e ⊂ Γ̃F. Now we

take i∗[α] := [i∗α]. The cohomology class i∗[α] is well-defined since each
exact one-form d f restricts to the exact one-cochain i∗d f . It follows from
Lemma 4.4.2 that i∗ ◦ π∗ : H1(ΓF) → H1(Γ̃F) is an isomorphism. Hence
with each coset [α] ∈ Ω1(M)/dΩ0(M) we can also associate an element
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ξ[α] ∈ H1(ΓF) defined by the formula ξ[α] := (i∗ ◦ π∗)−1(i∗[α]). Next, we
generalize the notion of a circulation graph from [19].

Definition 4.4.3. A measured Reeb graph (Γ, f , µ) endowed with a circula-
tion function C and an element ξ ∈ H1(Γd) is called a augmented circulation
graph (Γ, f , µ, C, ξ).

We demonstrated above that with each coset [α] one can associate an
augmented circulation graph Γ[α]. Two augmented circulation graphs are
isomorphic if they are isomorphic as measured Reeb graphs, and the iso-
morphism between them preserves all additional data. An augmented cir-
culation graph (Γ, f , µ, C, ξ) is compatible with a symplectic surface (M, ω)

if the corresponding measured Reeb graph (Γ, f , µ) is compatible with
(M, ω) (see Definition 3.3.5).

4.5 coadjoint orbits of symplectomorphism groups

Theorem 4.5.1 ([24, 19]). Let (M, ω) be a connected symplectic surface with
or without boundary. Then generic coadjoint orbits of SDiff(M) are in one-to-
one correspondence with (isomorphism classes of) augmented circulation graphs
(Γ, f , µ, C) compatible with M. In other words, the following statements hold:

i) For a symplectic surface M and generic cosets [α], [β] ∈ svect∗(M) the
following conditions are equivalent:

a) [α] and [β] lie in the same orbit of the SDiff(M) coadjoint action;

b) augmented circulation graphs Γ[α] and Γ[β] corresponding to the cosets
[α] and [β] are isomorphic.

ii) For each augmented circulation graph Γ which is compatible with M, there
exists a generic [α] ∈ svect∗(M) such that Γ[α] = (Γ, f , µ, C, ξ).

Corollary 4.5.2. The space of coadjoint orbits of the group SDiff(M) correspond-
ing to the same measured Reeb graph (Γ, f , µ) is a finite-dimensional affine space
and its dimension is dim H1(Γ, Γd) + dim H1(Γd).

Remark 4.5.3. It follows from the long exact sequence for the pair (Γ, Γd)

that

dim H1(Γ, Γd) + dim H1(Γd) = dim H1(Γ)− dim H0(Γd) + 1.

Therefore, the space of coadjoint orbits of the group SDiff(M) correspond-
ing to the same measured Reeb graph (Γ, f , µ) has dimension dim H1(Γ)
in the case when the subgraph Γd is connected.
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Example 4.5.4. Consider the torus with one boundary component from
Figure 1.2 with the height function F on it, and the corresponding Reeb
graph ΓF. In this case H1(Γd

F) = 0 and H1(ΓF, Γd
F) = 1. Therefore, the

corresponding space of coadjoint orbits is one-dimensional.

Before we proceed with the proof of Theorem 4.5.1 let us formulate and
prove two lemmas.

Lemma 4.5.5. Let M be a connected oriented surface with non-empty boundary,
and let F be a simple Morse function on M. Then

dim H1(Md
F) = dim H1(Γd

F) + dim H0(Γs
F ∩ Γd

F).

Proof. Let M̃ be the smooth surface obtained from the surface Md
F by

contracting each circle in Md
F ∩Ms

F to a point. It is clear that

dim H1(Md
F) = dim H1(M̃) + dim H0(Γs

F ∩ Γd
F).

Let p be the canonical projection M → M̃. The function F descends to a
simple Morse function F̃ : M̃ → R such that F = F̃ ◦ p. The Reeb graph
ΓF̃ consists only of dashed edges, and it is coincides with Γd

F. Then the
surface M̃ is homotopy equivalent to graph ΓF̃. Therefore,

dim H1(Md
F) = dim H1(M̃) + dim H0(Γs

F ∩ Γd
F) =

dim H1(ΓF̃) + dim H0(Γs
F ∩ Γd

F) = dim H1(Γd
F) + dim H0(Γs

F ∩ Γd
F).

Lemma 4.5.6. Let M be a connected oriented surface possibly with boundary,
and let F be a simple Morse function on M. Assume that [γ] ∈ H1(M) is such
that the integral of γ over any F-level vanishes, and ξ[γ] is a zero element in
H1(Γd

F). Then there exists a C∞ function H : M → R (with zero restriction on
the surface Md

F) such that the one-form HdF is closed, and its cohomology class
is equal to [γ]. Moreover, H can be chosen in such a way that the ratio H/F is a
smooth function.

Proof. Denote by id the inclusion Md
F ∩ Ms

F ↪−→ Md
F, and denote by πd

the restriction of the projection π : M → ΓF on the surface Md
F. Note

that the homomorphism (πd)∗ : H1(Md
F) → H1(Γd

F) is a surjection, and
Im (id)∗ ⊂ Ker (πd)∗. It follows from Lemma 4.5.5 that

dim H1(Md
F) = dim H1(Γd

F) + dim H0(Γs
F ∩ Γd

F).
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Hence the image of the homomorphism (πd)∗ coincides with the kernel
of the homomorphism (πd)∗. From above we conclude that the homomor-
phism π∗ : H1(Γd

F)→ H1(Md
F) is an injection, and Im (πd)

∗ = Ker (id)
∗.

Denote by i the inclusion Md
F ↪−→ MF. Since the integral of [γ] over any

connected component of any closed F-level vanishes and ξ[γ] is a zero
element in H1(Γd

F), the cohomology class [i∗γ] is a zero element in H1(Md
F).

Consider the long exact cohomology sequence for the pair (MF, Md
F) :

0→ H0(Md
F)→ H0(MF)→ H1(MF, Md

F)→ H1(MF)→ H1(Md
F)→ 0.

The cohomology class [γ] on M belongs to the kernel of the homomor-
phism i∗ : H1(MF) → H1(Md

F). Hence it belongs to the image of the
homomorphism H1(MF, Md

F) → H1(MF), i.e. there exists a one-form γ̃

such that [γ̃] = [γ] and γ̃|Md
F
= 0.

Denote by πs the restriction of the projection π : M→ ΓF on the surface
Ms

F. The homomorphism (πs)∗ : H1(Ms
F) → H1(Γs

F) is a surjection, and
its kernel is generated by those homology classes which are homologous
to regular F-levels. From above we conclude that the homomorphism
(πs)∗ : H1(Γs

F) → H1(Ms
F) is an injection, and Im (πs)∗ = Ann Ker (πs)∗

where

Ann Ker (πs) :=
{

ω ∈ H1(Γs
F) | ω(c) = 0 ⇐⇒ c ∈ Ker (πs)∗

}
.

Therefore, there exists a one-cochain α ∈ H1(Γs
F) of the form α = ∑e∈E(Γs

F)
αee∗

such that [γ̃] = (πs)∗[α].
Recall that the function f is the pushforward of the function F to the

graph ΓF. Consider a continuous function h : ΓF → R such that

i) it is a smooth function of f in a neighborhood of each point x ∈ ΓF;

ii) it vanishes whenever x is sufficiently close to a vertex;

iii) h|Γd
F
= 0;

iv) for each edge e, we have

α(e) =
∫

e
hd f .

Obviously, such a function does exist. Now, lifting h to M, we obtain a
smooth function H with the desired properties.

Proof of Theorem 4.5.1. Let us prove the first statement. The implication (a)
⇒ (b) is immediate, so it suffices to prove the implication (b)⇒ (a). Let
ϕ : Γ[α] → Γ[β] be an isomorphism of augmented circulation graphs. By
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Theorem 3.4.1, ϕ can be lifted to a symplectomorphism Φ : M→ M that
maps the function F = Diff[α] to the function G = Diff[β]. Therefore, the
1-form γ defined by

γ = Φ∗β− α

is closed.
Assume that Ψ : M → M is a symplectomorphism which maps the

function F to itself and is isotopic to the identity. Then the composition
Φ̃ = Φ ◦Ψ−1 maps F to G, and

[Φ̃∗β− α] = [Φ∗β−Ψ∗α] = [γ]− [Ψ∗α− α].

We claim that Ψ can be chosen in such a way that Φ̃∗β− α is exact, i.e. one
has the equality of the cohomology classes

[Ψ∗α− α] = [γ].

Moreover, we show that there exists a time-independent symplectic vector
field X that preserves F and satisfies

[Ψ∗t α− α] = t[γ] , (4.2)

where Ψt is the flow of X. Differentiating (4.2) with respect to t, we get in
the left-hand side

[Ψ∗t LXα] = [LXα] = [iXdα] = [F · iXω] ,

since the form LXα is closed and Ψ∗t does not change its cohomology class.
Thus

[F · iXω] = [γ]. (4.3)

Since Φ preserves the circulation function, the integrals of γ over all con-
nected components of F-levels vanish. In addition, ξ[Φ∗α] = ξ[α]. Therefore,
by Lemma 4.5.6, there exists a smooth function H such that

[γ] = [HdF].

Now we set
X :=

H
F

ω−1dF.

It is easy to see that the vector field X is zero on Md, symplectic, preserves
the levels of F, and satisfies the equation (4.3). Therefore, its phase flow
map Ψ = Ψ1 has the required properties.
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Figure 4.2: The illustration to the construction of the graph Γ′. The vertex w
subdivides the edge e with endpoints {v, u} into the edges ev→w and
ew→u.

Now let us prove the second statement. It follows from Theorem 3.4.1
that there exists a symplectic surface (M, ω) and a simple Morse function
F : M→ R such that ΓF = Γ. Consider the surface Ms and the restriction
F|Ms of the function F to the surface Ms. The restriction F|Ms

F
is a Morse

function, and it is constant on the boundary ∂Ms
F since it is formed by

some of closed F-levels. However, it is not necessarily a function of CB-
type since it has hyperbolic critical points on the boundary whenever the
graph ΓF has vertices of type V. In order to apply the Theorem 4.3.2 we
need to ‘cut out’ from Ms these hyperbolic critical points. Let v ∈ ΓF be
a vertex of type V, let e ⊂ ΓF be the only solid edge incident to v, and
also let u ∈ Γs

F be the only other vertex adjacent to e. The edge e, with
endpoints {v, u} can be uniquely subdivided into two edges, say ev→w and
ew→u, connecting to a new vertex w such that µ(ev→w) = µ(ew→u). After
that we cut out the edge ev→w. Denote by Γ′ the (abstract) measured Reeb
graph obtained by applying the above procedure to all vertices of type V
in the graph ΓF (see Figure 4.2). Denote by M′ ⊂ Ms

F the preimage π−1(Γ′)
It is clear from the above that the restriction F|M̃ is a function of CB-type.
Therefore, it follows from Theorem 4.3.2 that there exists a one-form α0 on
M′ such that C[α0] = C|Γ′ . It is clear that the form α0 can be extended (along
the cylinders Ms \M′) on all of Ms in such a way that C[α0] = C|Γ. On the
other hand, there exists a one-form α1 on M such that [(id)

∗α1] = [(is)∗α0]

and ξ[α] = ξ since

dim H1(Md
F) = dim H1(Γd

F) + dim H1(Md
F ∩Ms

F).

Using an appropriate partition of unity we construct a one-form α (as
a combination of one-forms α0 and α1) such that C[α] = C[α0] = C and
ξ[α] = ξ[α1] = ξ. Hence the augmented circulation graph Γ[α] coincides with
Γ.
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4.6 remarks and open questions

In this chapter we classified generic coadjoint orbits of symplectomor-
phism groups of surfaces. One should mention two other relevant but not
overlapping with us classification results for symplectic surfaces:

1. Dufour, Molino, and Toulet classified in [13] simple Morse fibra-
tions on closed symplectic surfaces under the action of symplectic
diffeomorphisms.

2. Bolsinov [5] and Kruglikov [26] classified Hamiltonian vector fields
tangent to the boundary on surfaces up to the action of arbitrary
diffeomorphisms.

It would be interesting to extend those classifications for surfaces with
boundary. (Note that in [26] in the contrast with the present work Hamilto-
nian functions are assumed to be constant on the boundary.) It also would
be very interesting to classify Morse functions and Morse orbits for the
action of

1. the group Ham(M) of Hamiltonian diffeomorphisms of a surface
M;

2. the connected component SDiff0(M) of the identity in the group
SDiff(M) for the case of surfaces M with boundary.

This would generalise the corresponding results of [19] and the present
work to these important subgroups of the symplectomorphism groups.
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In the present chapter we generalize the results of Chapters 3 and 4 to
the case of non-orientable surfaces.

This chapter is organized as follows. In Section 5.1 we discuss certain
notions of differential geometry relevant for non-orientable manifolds. In
Section 5.2 we present a classification of simple Morse pseudo-functions
on non-orientable surfaces up to an area-preserving transformation. In
Section 5.3 we obtain a classification of generic coadjoint orbits for the
group of area-preserving diffeomorphisms of a non-orientable surface.

5.1 geometry of non-orientable manifolds

5.1.1 Orientation double cover and orientation bundle

Let N be a non-orientable manifold. We define its orientation double cover
Ñ as the space of pairs (x,O), where x ∈ N, and O is an orientation of
the tangent space Tx N. Clearly, Ñ is an orientable manifold. Moreover,
defined in this way, the orientation double cover Ñ is canonically oriented:
the orientation of T(x,O)Ñ is defined by pulling back the orientation O
from Tx N.

Let N be a non-orientable manifold, and Ñ be its double cover. Then
there is a fixed-point-free orientation-reversing involution I : Ñ → Ñ
which interchanges the points in each fiber of the projection Ñ → N.
Conversely, let M be an oriented connected manifold equipped with a
fixed-point-free orientation-reversing involution I. Then the quotient space
M / I is a non-orientable manifold whose orientation double cover is
canonically diffeomorphic to M. Thus, one can go back and forth between
connected non-orientable manifolds and connected oriented manifolds
equipped with a fixed-point-free orientation-reversing involution. We will
be using both models interchangeably throughout the paper. Note that

54
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while, in principle, everything can be done on the double cover, in some
cases we found it more convenient to directly work with the non-orientable
manifold.

Closely related to the orientation double cover is the concept of orienta-
tion bundle. Viewing the orientation double cover Ñ → N as a principal
Z2-bundle, define the orientation bundle as the associated line bundle.
In other words, given an atlas on N, the orientation bundle is given by
transition functions sign(J(ϕαβ)) where ϕαβ are transition maps between
charts, and J is the Jacobian determinant. We denote the orientation bundle
of N by o(N).

5.1.2 Differential forms of even and odd type

The language of even and odd differential forms was introduced by de
Rham [10]. Let N be a non-orientable manifold. Differential k-forms of even
type are just regular differential k-forms, i.e. sections of

∧k T∗N. Differential
k-forms of odd type, also called pseudo-forms, are regular differential forms
twisted by the orientation bundle o(N), i.e. sections of

∧k T∗N ⊗ o(N). In
more concrete terms, odd forms can be defined as follows:

Definition 5.1.1. An odd k-form α on a vector space V assigns to each
orientation O of V an exterior k-form αO such that if the orientation is
reversed the exterior form is replaced by its negative: α−O = −αO. An
odd differential k-form on a manifold N assigns an odd k-form α to each
tangent space Tx N in a smooth fashion. Non-vanishing odd forms of top
degree are called densities. Odd 0-forms are called pseudo-functions.

Denote the space of even (i.e. usual) k-forms on a manifold N by Ωk(N)

and odd k-forms by Ω̃k(N).

Example 5.1.2. Let (N, g) be a Riemannian manifold of dimension n
(orientable or not). Then we have an associated Riemannian density ρg ∈
Ω̃n(N), defined as the unique odd n-form that assigns to an orientation O
of the tangent space TpN and an orthonormal basis in TpN the value +1
if the orientation of the basis agrees with O and −1 otherwise. In terms of
local coordinates the density ρg has the following expression:

ρg =
√

det g dx1 ∧ · · · ∧ dxn.

(Note that locally we can always write odd forms as usual differential
forms, since local coordinates define a local trivialization of the orientation
bundle.)

Assuming N to be non-orientable, there is a one-to-one correspondence
between even (respectively, odd) differential forms on N and those differ-
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ential forms on the orientation double cover Ñ that are even (respectively,
odd) with respect the involution I : Ñ → Ñ:

Ωk(N) ≃ Ωk
even(Ñ) = {ω ∈ Ωk(Ñ) : I∗ω = ω}, (5.1)

Ω̃k(N) ≃ Ωk
odd(Ñ) = {ω ∈ Ωk(Ñ) : I∗ω = −ω}. (5.2)

These isomorphisms are provided by pull-backs via the projection Ñ →
N. Note that although the pull-back of a pseudo-form on N is a pseudo-
form on Ñ, i.e. a section of

∧k T∗Ñ ⊗ o(Ñ), the canonical orientation on Ñ
gives us a non-vanishing section 1 of o(Ñ) (given by assigning +1 to every
chart in a positively oriented atlas) and hence an identification between
forms and pseudo-forms given by ω 7→ ω ⊗ 1. Since the pull-back of a
pseudo-form (as well as any other object) on N to Ñ is even, and the
section 1 is odd, we get an identification of pseudo-forms on N with odd
forms on Ñ.

Example 5.1.3. Any homogeneous odd-degree polynomial P ∈ R[x, y, z] is
an odd function on the unit sphere S2 and hence defines a pseudo-function
on the projective plane RP2 = S2 / Z2. Likewise, any homogeneous even-
degree polynomial defines a regular function on RP2.

Note that both even and odd k-forms can be integrated over compact
k-dimensional submanifolds. To integrate an even form we need the sub-
manifold to be oriented. To integrate an odd form we need the submanifold
to be co-oriented. In particular, any density can always be integrated over
the whole manifold, assuming the manifold is compact (as opposed to a
volume form which can only be integrated over an oriented manifold).

Example 5.1.4. For any (orientable or not) compact Riemannian manifold
(N, g) the integral of the associated Riemannian density is well-defined
(i.e. it does not depend on the orientation of N or on whether such an
orientation even exists). This integral is the Riemannian volume of N and
is a positive number.

Since, locally, one can identify odd and even forms, all standard local
operations with even forms have odd counterparts. In particular, the
differential dα of an odd k-form α is an odd (k + 1)-form, so that we
have a map d : Ω̃k(N) → Ω̃k+1(N). Likewise, for any vector field v on
N we have the interior product operator iv : Ω̃k(N) → Ω̃k−1(N) and the
Lie derivative Lv = div + ivd : Ω̃k(N) → Ω̃k(N). The exterior product
of two forms of the same parity is an even form, while the product of
two forms of different parity is an odd form. The latter, in particular,
means that on any closed (i.e. compact without boundary) n-dimensional
manifold N one has a non-degenerate pairing Ω̃k(N)×Ωn−k(N) → R.
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The annihilator of the space of exact (respectively, closed) k-forms of any
given parity with respect to that pairing is the space of closed (respectively,
exact) (n− k)-forms of opposite parity. This gives twisted Poincaré duality

H̃k(N; R) ≃ Hn−k(N; R)∗,

where H̃•(N; R) is the cohomology of the cochain complex (Ω̃•(N), d).
One also has identifications

Hk(N; R) ≃ Hk
even(Ñ; R), H̃k(N; R) ≃ Hk

odd(Ñ; R),

where Hk
even(Ñ; R) and Hk

odd(Ñ; R) are, respectively +1 and−1 eigenspaces
for the action of the orientation-reversing involution on the cohomology
Hk(Ñ; R) of the orientation double cover. In those terms twisted Poincaré
duality rewrites as

Hk
even(Ñ; R) ≃ Hn−k

odd (Ñ; R)∗.

5.1.3 The group of measure-preserving diffeomorphisms, its Lie algebra, and the
dual of the Lie algebra

Let N be a closed (i.e. compact without boundary) non-orientable man-
ifold with density (i.e. a non-vanishing top-degree pseudo-form) ρ. The
group Diffρ(N) consists of measure-preserving diffeomorphisms:

Diffρ(N) := {Φ ∈ Diff(N) | Φ∗ρ = ρ}.

Let Ñ be the orientation double cover of N. Then Diffρ(N) can be iden-
tified with the subgroup of Diffµ(Ñ) consisting of volume-preserving
diffeomorphisms of the orientation double cover that commute with the
orientation-reversing involution (the volume form µ on Ñ is constructed
as a pull-back of the density ρ).

The Lie algebra Vectρ(N) of the group Diffρ(N) consists of divergence-
free vector fields:

Vectρ(N) := {v ∈ vect(N) | Lvρ = 0}.

With any (even) 1-form α ∈ Ω1(N) we can associate a linear functional ℓα

on the Lie algebra Vectρ(N) given by

ℓα(v) :=
∫

N
(ivα)ρ
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(recall that the integral of a density over the whole manifold is well-
defined).

Definition 5.1.5. A linear functional ℓ : Vectρ(N) → R is called regular
if there exists α ∈ Ω1(N) such that ℓ = ℓα. Denote the space of regular
functionals by Vect∗ρ(N).

Proposition 5.1.6. The space of regular functionals Vect∗ρ(N) is isomorphic to
the space of cosets Ω1(N) / dΩ0(N) of 1-forms modulo exact 1-forms.

Proof. By definition of a regular functional, we have a surjective vector
space homomorphism Ω1(N) → Vect∗ρ(N) given by α 7→ ℓα. We need
to show that its kernel is the space of exact (even) 1-forms. To that end,
rewrite ℓα(v) as

ℓα(v) =
∫

N
α ∧ ivρ.

Since v is an arbitrary divergence-free vector field, ivρ is an arbitrary closed
odd (n− 1)-form. So, the kernel of the map α 7→ ℓα is the annihilator of
closed odd (n− 1)-forms under the pairing Ω1(N)× Ω̃n−1(N) → R, i.e.
the space of exact even 1-forms, as needed.

The coadjoint action of the group Diffρ(N) on the regular dual Vectρ(N)∗ =

Ω1(N) / dΩ0(N) coincides with the natural action of diffeomorphisms on
(cosets of) 1-forms:

Ad∗Φ[α] = [Φ∗α],

where Φ ∈ Diffρ(N) is a measure-preserving diffeomorphism and α ∈
Ω1(N) is a 1-form. The focus of the present paper is on classifying all
generic orbits of that action. Note that those orbits can also be interpreted
as symplectic leaves of the Lie-Poisson structure on Vect∗ρ(N).

5.2 classification of generic pseudo-functions in 2d

5.2.1 Simple Morse pseudo-functions

We begin with recalling standard definitions of a Morse function and a
simple Morse function.

Definition 5.2.1. Let N be a smooth manifold. A smooth function F : N →
R is called a Morse function if all its critical points are non-degenerate. A
Morse function F : N → R is simple if all its critical values are distinct.

Below we formulate analogous notions for pseudo-functions.

Definition 5.2.2. Let N be a non-orientable manifold.
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• A pseudo-function F ∈ Ω̃0(N) is Morse if its lift F̃ ∈ Ω0
odd(Ñ) to the

orientation double cover Ñ is a Morse function.

• A pseudo-function F ∈ Ω̃0(N) is simple Morse if its lift F̃ ∈ Ω0
odd(Ñ)

is simple Morse. The latter in particular implies that 0 is not a
critical value of F̃ (if there was a critical point where F̃ = 0, then its
image under the orientation-reversing involution would give another
critical point at the same zero level).

The space of smooth pseudo-functions Ω̃0(N) can be identified with the
space Ω0

odd(Ñ) of odd smooth functions Ñ → R. Consider the C2-topology
on the space Ω̃0(N) ≃ Ω0

odd(Ñ) induced by C2-topology on the space
Ω0(Ñ) of all smooth functions on Ñ.

Theorem 5.2.3. Simple Morse pseudo-functions on N form an open and dense
subset in the space of smooth pseudo-functions in the C2-topology.

The proof is based on the following version of Whitney’s embedding
theorem:

Lemma 5.2.4 (On the realization of a fixed-point-free involution as the
antipodal map). Let M be a compact smooth n-dimensional manifold equipped
with a fixed-point-free involution I : M → M. Then there exists an embedding
Φ : M → V, where V is a vector space of dimension 2n(2n + 1), such that the
following diagram commutes:

M V

M V,

Φ

I −id

Φ

(5.3)

where −id : V → V is the antipodal map x 7→ −x. In other words, any fixed-
point-free involution of a compact manifold can be realized as restriction of the
antipodal map.

Remark 5.2.5. Although the exact dimension of the vector space V is
irrelevant for our purposes, we note that composing the embedding given
by Lemma 5.2.4 with a projection onto a suitable subspace, one can bring
down the dimension of V to 2n + 1 (as in weak Whitney’s theorem).

Proof of Lemma 5.2.4. By Whitney’s theorem there exists an embedding
Φ1 : M→W, where W is a vector space of dimension 2n. We extend it to
an embedding

Φ2 : M→W ⊕W, Φ2(x) := (Φ1(x), Φ1(I(x))).
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Then the following diagram commutes:

M W ⊕W

M W ⊕W

Φ2

I P
Φ2

(5.4)

where the involution P on W ⊕W is (x, y) 7→ (y, x). Furthermore, since
the involution I is fixed-point-free, the image Φ2(M) does not intersect
the diagonal ∆ ⊂W ⊕W. Now, consider the map

Ψ : W ⊕W →W ⊕ (W ⊗W), Ψ(x, y) := (x− y, (x− y)⊗ (x + y)).

It is easy to see that Ψ is an injective immersion away from the diagonal ∆.
Therefore, since M is compact, the map Ψ ◦Φ2 : M→W ⊕ (W ⊗W) is an
embedding. Furthermore, we have Ψ ◦ P = −Ψ, so the following diagram
commutes:

M W ⊕W W ⊕ (W ⊗W)

M W ⊕W W ⊕ (W ⊗W).

Φ2

I P

Ψ

−id

Φ2 Ψ

(5.5)

Taking V := W ⊕ (W ⊗W) and Φ := Ψ ◦Φ2 completes the proof.

Proof of Theorem 5.2.3. It is clear that simple Morse pseudo-functions on N
form an open subset in the space of all smooth pseudo-functions, so we
only need to show that it is dense. First we show that the set of all (not
necessarily simple) Morse pseudo-functions is dense. That is equivalent
to showing that any odd function f ∈ Ω0

odd(Ñ) can be approximated by
an odd Morse function. Thanks to Lemma 5.2.4, we can assume that Ñ is
embedded in a vector space V, with the orientation-reversing involution
given by the antipodal map x 7→ −x. Take an odd function f ∈ Ω0

odd(Ñ),
and consider the family of functions Fℓ := f + ℓ where ℓ ∈ V∗. Notice
that all functions in this family are odd with respect to the antipodal map.
Furthermore, almost all functions in such a family are Morse [31, Theorem
8.1.1], so one can indeed find an odd Morse function arbitrarily close to f .

The second step is to show that simple Morse pseudo-functions on N
are dense in the space of all Morse pseudo-functions. To that end, notice
that the corresponding argument for functions [28, Proposition 1.2.12]
is local: one can perturb a given Morse function in the neighborhood of
a critical point to slightly change its critical value. But locally one can
trivialize the orientation bundle o(N) and thus identify pseudo-functions
with functions. Therefore, the same argument works for pseudo-functions,
proving the theorem.
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5.2.2 Reeb graphs with involution

Below we classify simple Morse pseudo-functions on closed connected
non-orientable 2D surfaces up to area-preserving diffeomorphisms. This
is equivalent to symplectic classification of quadruples (M, I, ω, F) where

• M is a closed connected surface with symplectic form ω;

• I : M→ M is a fixed-point-free anti-symplectic involution;

• F ∈ Ω0
odd(M) is a simple Morse function anti-symmetric under the

action of I.

Consider for a moment an arbitrary simple Morse function F on a
closed connected orientable surface M. Define an F-level as a connected
component of a level set of F. Non-critical F-levels are diffeomorphic to
circles. The surface M is a union of F-levels, which form a foliation with
singularities. The base space of that foliation with the quotient topology is
homeomorphic to a finite connected graph ΓF (see Figure 1.1 for a Morse
function F on a torus) whose vertices correspond to critical values of F. This
graph ΓF is called the Reeb graph of the function F (also called the Kronrod
graph [30, 1]). By π we denote the projection M→ ΓF. The function F on
M descends to a function f on the Reeb graph ΓF. It is also convenient to
assume that ΓF is oriented: edges are oriented in the direction of increasing
f . One can recover the topology of a closed connected orientable surface
from its Reeb graph by the following formula: b1(M) = 2b1(ΓF), where
b1(.) := dim H1(.) is the first Betti number.

Now return to consideration of a simple Morse function F which is
anti-symmetric under the involution I. In that setting I descends to an
involution ι : ΓF → ΓF such that ι∗ f = − f (see Figure 1.3). Note that the
involution ι is not necessarily fixed-point-free.

Definition 5.2.6. A Reeb graph with involution (Γ, ι, f ) is an oriented con-
nected finite graph Γ equipped with an involution ι : Γ→ Γ and a continu-
ous function f : Γ→ R, with the following properties:

(i) Each vertex of Γ is either 1-valent or 3-valent;

(ii) The function f is anti-invariant under the action of ι i.e. ι∗ f = − f ;

(iii) f is strictly increasing along each edge of Γ;

(iv) f takes distinct non-zero values at vertices of Γ.
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5.2.3 Measured Reeb graphs with involution

In this section we discuss the notion of a measured Reeb graph with
involution. Recall that we consider quadruples (M, I, ω, F) where (M, ω)

is a closed connected symplectic surface, I : M→ M is a fixed-point-free
anti-symplectic involution, and F ∈ Ω0

odd(M) is a simple Morse function
anti-symmetric under the action of I.

The natural projection map π : M→ ΓF induces a measure µ := π∗ω on
the graph ΓF. According to [19, Proposition 3.4], measure µ is log-smooth in
the sense of [16, Definition 3.5] (in a nutshell, this means that the measure
is smooth at interior points of all edges as well as at 1-valent vertices,
while at 3-valent vertices it has logarithmic singularities). Furthermore,
this measure is invariant with respect to the involution ι : ΓF → ΓF.

Definition 5.2.7. A measured Reeb graph with involution (Γ, ι, f , µ) is a Reeb
graph (Γ, ι, f ) with involution equipped with a log-smooth measure µ

invariant under the involution ι.

Definition 5.2.8. A map ϕ : Γ1 → Γ2 between two measured Reeb graphs
with involution (Γ1, ι1, f1, µ1) and (Γ2, ι2, f2, µ2) is an isomorphism if it is an
isomorphism of topological graphs which maps all objects in Γ1 to the
corresponding objects in Γ2, i.e. ϕ ◦ ι1 = ι2 ◦ ϕ, ϕ∗ f2 = f1, and ϕ∗µ1 = µ2.

The following definition from [19] makes sense regardless of the pres-
ence of an involution:

Definition 5.2.9. A measured Reeb graph (Γ, ι, f , µ) is compatible with a
symplectic surface (M, ω) if

2b1(Γ) = b1(M),
∫

Γ
dµ =

∫
M

ω

(where b1(.) stands for the first Betti number).

For a non-orientable surface N with density ρ ∈ Ω̃2(N), we say that a
measured Reeb graph (Γ, ι, f , µ) is compatible with (N, ρ) if it is compatible
with (Ñ, I, ω), where Ñ is the orientation double cover of N, the symplectic
form ω ∈ Ω2(Ñ) is the pull-back of ρ, and I is involution on Ñ such that
Ñ / I = N. More explicitly, the compatibility conditions can be stated as
follows:

Definition 5.2.10. A measured Reeb graph (Γ, ι, f , µ) is compatible with a
non-orientable surface N equipped with a density ρ if

b1(Γ) = b1(N),
∫

Γ
dµ = 2

∫
N

ρ.
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5.2.4 Proof of the classification theorem for pseudo-functions

Here we prove the following classification result for pseudo-functions
on non-orientable surfaces:

Theorem 5.2.11. Let N be a closed connected non-orientable surface equipped
with a density (non-degenerate pseudo-form of top degree) ρ. Then there is a one-
to-one correspondence between simple Morse pseudo-functions on N, considered
up to area-preserving diffeomorphisms, and isomorphism classes of measured Reeb
graphs with involution compatible with (N, ρ).

Equivalently, and in more detail, this theorem can be formulated as
follows.

Theorem 5.2.12. Let (M, ω) be a closed connected symplectic surface together
with a fixed-point-free anti-symplectic involution I : M → M. Then there is a
one-to-one correspondence between odd (i.e. anti-symmetric under I) simple Morse
functions on M, considered up to symplectic diffeomorphisms which commute with
I, and isomorphism classes of measured Reeb graphs with involution compatible
with M. In other words, the following statements hold.

i) Let F, G ∈ Ω0
odd(M) be two odd simple Morse functions. Then the follow-

ing conditions are equivalent:

a) There exists a symplectic diffeomorphism Φ : M → M such that
Φ ◦ I = I ◦Φ and Φ∗F = G.

b) Measured Reeb graphs with involution associated with F and G are
isomorphic.

Moreover, any isomorphism between measured Reeb graphs with involution
associated with F and G can be lifted to a symplectic diffeomorphism
Φ : M→ M such that Φ ◦ I = I ◦Φ and Φ∗F = G.

ii) For each measured Reeb graph with involution (Γ, ι, f , µ) compatible with
(M, ω) there exists an odd simple Morse function F ∈ Ω0

odd(M) such that
the corresponding measured Reeb graph with involution is isomorphic to
(Γ, ι, f , µ).

Proof. We begin with part (i). The implication (a)⇒ (b) is immediate from
the definition of a measured Reeb graph of a function. To prove (b) ⇒
(a) we will show that any isomorphism between measured Reeb graphs
with involution associated with F and G can be lifted to a symplectic
diffeomorphism Φ : M → M such that Φ ◦ I = I ◦Φ and Φ∗F = G. Let
ϕ : ΓF → ΓG be an isomorphism of measured Reeb graphs with involution.
Then, by [19, Theorem 3.11(i)], it can be lifted to a symplectic diffeomor-
phism Φ : M → M such that Φ∗F = G. We need to show that Φ can be
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chosen so that it commutes with the involution I. The idea is to pick an
arbitrary Φ and then compose it on the right with a suitable “shear flow”.
The required shear flow on every level of F will be simply a shift along
the Hamiltonian vector field ω−1dF by an amount depending on the level.
To find the needed magnitude of the shift on every level, consider the
commutator

Ψ := [I, Φ−1] = I ◦Φ−1 ◦ I ◦Φ. (5.6)

This map Ψ is symplectic and preserves each F-level. Let E be the union
of open edges of ΓF containing points where f = 0. Let also π be the
projection M → ΓF. Then M0 := π−1(E) is a union of open cylinders
foliated into regular F-levels. For any smooth function ψ on E (where we
define charts of E by using the function f ) denote by Sψ : M0 → M0 a
symplectomorphism defined as follows: every point x ∈ M0 moves for
time ψ(π(x)) along trajectories of the Hamiltonian vector field ω−1dF.

Lemma 5.2.13. There exists a smooth function ψ : E → R which is odd (i.e.
ι∗ψ = −ψ) and satisfies Ψ|M0 = Sψ, where Ψ|M0 is the restriction of the
commutator map (5.6) to M0.

Proof. Since Ψ is symplectic and preserves each F-level, there exists some (a
priori not necessarily odd) smooth function ψ : E→ R such that Ψ|M0 = Sψ.
Further, observe that since the Hamiltonian vector field ω−1dF is even, we
have

Sψ ◦ I = I ◦ Sι∗ψ. (5.7)

Furthermore, from the definition of the map Ψ we get I ◦Ψ = Ψ−1 ◦ I, so,
since Ψ|M0 = Sψ, we obtain

I ◦ Sψ = S−ψ ◦ I = I ◦ S−ι∗ψ,

meaning that Sψ+ι∗ψ is the identity map. Now, let t : E→ R be a smooth
function defined as follows: for every x ∈ E, it is equal to the period
of the Hamiltonian vector field ω−1dF on the circle π−1(x). Then, since
Sψ+ι∗ψ = id, we have that

λ :=
ψ + ι∗ψ

t

is a continuous integer-valued function on E, i.e. an element of H0(E; Z).
Furthermore, since the period function t is even, the same is true for the
function λ, i.e. λ ∈ H0

even(E; Z). Consider the map H0(E; Z)→ H0
even(E; Z)

given by η 7→ η + ι∗η. The image of that map consists of those integral
cochains η ∈ H0

even(E; Z) which take even values on all edges in E fixed
by ι. We claim that λ has that property and hence belongs to the image.
Indeed, every edge e fixed by ι has a point xe whose preimage under the
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projection π : M→ ΓF is an F-level γe fixed by I (that xe is the unique point
on e where F = 0). Since I has no fixed points, the restriction of I to that
level must be a half-period shift along the vector field ω−1dF. Likewise,
the restriction of I to the corresponding G-level Φ(γe) is half-period shift
along ω−1dG. But since the diffeomorphism Φ maps the Hamiltonian
vector field ω−1dF to the Hamiltonian field ω−1dG, it follows that the
commutator Ψ on the F-level γe is the identity. Therefore, ψ(xe) must be
an integer multiple of T(xe), which forces λ(e) to be an even number. So
indeed we have λ = η + ι∗η for some η ∈ H0(E; Z), and replacing ψ with
ψ− ηt we get a function with desired properties.

Back to the proof of the theorem, let m < 0 be a real number such
that infx∈e f (x) < m for any edge e ∈ E. Let also ζ : R → R be an odd
smooth function which is equal to −1 for x < m. Define a smooth function
ξ : E→ R by ξ := 1

2 (1+ ζ ◦ f )ψ. Then ξ is equal to 0 near lower (i.e. where
f < 0) endpoints of edges in E and satisfies

ξ − ι∗ξ = ψ (5.8)

everywhere in E. Let Φ̃ := Φ ◦ S−ξ . That is a symplectomorphism M0 →
M0 pushing F to G. Moreover,

[I, Φ̃−1] = I ◦ Φ̃−1 ◦ I ◦ Φ̃ = I ◦ Sξ ◦Φ−1 ◦ I ◦Φ ◦ S−ξ (5.9)

= Sι∗ξ ◦ I ◦Φ−1 ◦ I ◦Φ ◦ S−ξ = Sι∗ξ ◦ Sψ ◦ S−ξ = id, (5.10)

where the third equality follows from (5.7) and the last one from (5.8). So,
Φ̃ commutes with I. Also, since ξ = 0 near lower endpoints of edges in
E, one can smoothly extend Φ̃ to M− := (M \M0) ∩ {F < 0} by setting
Φ̃ := Φ in M−. Furthermore, since Φ commutes with I in M0, it can be
smoothly extended to M+ := (M \M0) ∩ {F > 0} by setting Φ̃ := IΦ̃I
in M+. That way we get an extension of Φ̃ to all of M. It is symplectic,
commutes with I, and maps F to G, as needed. Thus, part (i) of the theorem
is proved.

Now, let us prove part (ii). The proof consists of four steps: (1) we
construct a function F on a symplectic surface which has a given measured
Reeb graph and is anti-invariant under an anti-symplectic map I1 (which
is not necessarily an involution); (2) we modify I1 so that it becomes
an involution, which we call I2; (3) by composing I2 with appropriate
Dehn twists we turn it into a fixed-point-free involution I3; (4) we find a
symplectomorphism conjugating I3 and I, which yields a function with
desired properties.
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Step 1. By [19, Theorem 3.11(ii)], there exists a (not necessarily odd)
simple Morse function F : M→ R whose measured Reeb graph (without
involution) is (Γ, f , µ). Consider also −F as a simple Morse function on
the symplectic surface (M,−ω). The measured Reeb graph of the latter
function is (Γ,− f , µ). So, the involution ι is an isomorphism of measured
Reeb graphs of F and −F and hence it lifts, by [19, Theorem 3.11(i)], to a
diffeomorphism I1 : M→ M such that I∗1 F = −F and I∗1 ω = −ω.

Step 2. Consider the restriction of I2
1 to the set M0 defined in the proof of

part (i). It is a symplectic diffeomorphism preserving F-levels and hence
can be written as Sj for a suitable smooth function j : E→ R. Furthermore,
we claim that j can be chosen to be even. The proof is similar to that of
Lemma 5.2.13: since the map I2

1 commutes with I1, which is a lift of ι, we
must have

λ :=
j− ι∗ j

t
∈ H0(E; Z).

Furthermore, λ is odd and hence can be written as η − ι∗η for some
η ∈ H0(E; Z) (in contrast to the map H0(E; Z) → H0

even(E; Z) given by
η 7→ η + ι∗η, the map H0(E; Z) → H0

odd(E; Z) given by η 7→ η − ι∗η is
surjective). So, one can make the function j even by replacing it with j− ηt.

Consider now the function ξ : E → R defined by ξ := 1
2 (1 + ζ ◦ f )j,

where ζ : R→ R is a function from the proof of part (i). Then ξ + ι∗ξ = ψ,
and thus I2 := I1 ◦ S−ξ is an involution M0 → M0:

I2
2 = I1 ◦ S−ξ ◦ I1 ◦ S−ξ = S−ι∗ξ ◦ I2

1 ◦ S−ξ = S−ι∗ξ ◦ Sψ ◦ S−ξ = id.

Furthermore, I2 is anti-symplectic and takes F to −F. Also observe that
I2 coincides with I1 near preimages of lower endpoints of edges in E and
thus can be extended to M− by setting I2 := I1 in that domain. Similarly,
in M+ we set I2 := I−1

1 . That way we get an anti-symplectic involution
I2 : M→ M which takes F to −F.

Step 3. The set of fixed points of I2 is a union of F-levels, each of which
projects to a fixed point of ι. So the fixed point set of I2 is a union of
finitely many circles. To show that such fixed points can be removed, it
suffices to prove that we can get rid of one fixed circle. This is done by
composing I2 with a Dehn twist about that circle. Specifically, to get rid of
a fixed circle π−1(x0), where x0 ∈ Γ is a fixed point of ι, and π : M→ Γ f
is the projection, consider the edge e of Γ containing x0. Let t : e → R

be the period function defined as in Lemma 5.2.13: for every x ∈ e, it is
equal to the period of the the Hamiltonian vector field ω−1dF on the circle
π−1(x). Since the involution I2 preserves the Hamiltonian vector field
ω−1dF, the period function t is even: ι∗t = t. Define a function η : e→ R
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by η := 1
2 (1 + ζ ◦ f )t, where ζ : R→ R is as above. Then η + ι∗η = t, and

so the map Ĩ2 := I2 ◦ Sη , extended to the whole M by setting Ĩ2 := id away
from π−1(e), is again an involution:

Ĩ2
2 = I2 ◦ Sη ◦ I2 ◦ Sη = Sι∗η+η = St = id.

Furthermore, just like I2, the involution Ĩ2 is anti-symplectic and maps F
to −F. In addition to that, it has less fixed circles than I2. Proceeding in
this fashion, we finally get an anti-symplectic fixed-point-free involution
I3 such that I∗3 F = −F.

Step 4. It follows from Moser’s theorem for non-orientable surfaces [9, p.
4894] that I3 = ΦIΦ−1 for some symplectic diffeomorphism Φ. But then
Φ∗F is a function anti–invariant under I whose measured Reeb graph with
involution is the given one. Thus, Theorem 5.2.12 (and hence Theorem
5.2.11) is proved.

Remark 5.2.14. The above description of invariants of pseudo-functions
under the action of area-preserving diffeomorphisms extends to the case
of non-orientable surfaces N with boundary, cf. [24]. Recall that in the
boundary case simple Morse functions F have to satisfy the following con-
ditions: a) all critical points of F are non-degenerate; b) F does not have
critical points on the boundary ∂N; c) the restriction of F to the boundary
∂N is a Morse function; and d) all critical values of F and of its restriction
F|∂N are distinct.

A pseudo-function F on a non-orientable surface N with boundary is
simple Morse if its lift F̃ to the orientation double cover Ñ is simple Morse.
The Reeb graph of such pseudo-function F (defined as the Reeb graph of
F̃) contains both solid edges (corresponding to F̃-levels diffeomorphic to
a circle) and dashed edges (corresponding to F̃-levels diffeomorphic to
a segment). That graph is equipped with an involution induced by the
involution of Ñ. The involution on the graph cannot have fixed points on
dashed edges, since the corresponding fixed-point-free involution on the
surface Ñ cannot map a segment to itself.

5.3 classification of coadjoint orbits in 2d

5.3.1 Coadjoint orbits and pseudo-functions

Let Diffρ(N) be the group of area-preserving diffeomorphisms of a non-
orientable surface N endowed with a density ρ. In this section we classify
generic orbits of the coadjoint action of Diffρ(N) on its regular dual space
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Vect∗ρ(N) = Ω1(N) / dΩ0(N). Recall that this action coincides with the
natural action by pull-backs.

Consider the mapping

curl : Ω1(N) / dΩ0(N)→ Ω̃0(N),

defined by taking the vorticity pseudo-function

curl[α] :=
dα

ρ
.

This mapping is well-defined on cosets since d(α+d f ) = dα. Furthermore,
the mapping curl is a surjection onto the space Ω̃0(N) of pseudo-functions,
since H2(N; R) = 0. Finally, observe that the mapping curl is Diffρ(N)-
equivariant. In other words, the following diagram commutes for any
Φ ∈ Diffρ(N):

Ω1(N) / dΩ0(N) Ω1(N) / dΩ0(N)

Ω̃0(N) Ω̃0(N).

Φ∗

curl curl

Φ∗

(5.11)

Definition 5.3.1. A coset [α] ∈ Ω1(N) / dΩ0(N) is called simple Morse if
curl[α] is a simple Morse function. A coadjoint orbit O is called simple
Morse if some (and hence every) coset [α] ∈ O is simple Morse.

With every simple Morse coset [α] ∈ Ω1(N) / dΩ0(N) one can associate
a measured Reeb graph Γcurl[α] with involution. If two simple Morse cosets
[α] and [β] belong to the same coadjoint orbit then the corresponding Reeb
graphs are isomorphic.

The converse statement is more subtle. Indeed, suppose that cosets
[α] and [β] have isomorphic Reeb graphs. Then it follows from Theo-
rem 5.2.11 that there exists an area-preserving diffeomorphism Φ such
that Φ∗curl[β] = curl[α]. Therefore, the 1-form Φ∗β− α is closed. Since
this 1-form is not necessarily exact, the cosets [α] and [β] do not neces-
sarily belong to the same coadjoint orbit. Nevertheless, we conclude that
the space of coadjoint orbits corresponding to the same measured Reeb
graph with involution is finite-dimensional and its dimension is at most
dim H1(N; R).
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5.3.2 Even circulation functions on Reeb graphs with involution

In order to obtain a complete set of invariants of simple coadjoint
orbits for the group Diffρ(N), we lift all objects discussed in the previous
section to the orientation double cover M = Ñ of N. That orientation
double cover is a symplectic surface with a symplectic form ω and a
fixed-point-free anti-symplectic involution I. Our aim is to classify simple
Morse cosets Ω1

even(M) / dΩ0
even(M) up to even (i.e. commuting with I)

symplectic diffeomorphisms. To that end we employ the notion of a
circulation function introduced in [19].

Consider a simple Morse coset [α] ∈ Ω1
even(M) / dΩ0

even(M). Then F :=
dα/ω is an odd simple Morse function on M. Let Γ be the set of F-
levels. Recall that this set has a structure of a measured Reeb graph
with involution ι, and such graphs classify pseudo-functions up to area-
preserving diffeomorphisms. To obtain classification of orbits, we define
an additional structure on Γ.

Let π : M → Γ be the natural projection. Take any point x lying in the
interior of some edge e of Γ. Then π−1(x) is a closed curve C in M. It is
naturally oriented by the Hamiltonian vector field ω−1dF. The integral of
α over C does not change if we change α by a function differential. Thus,
we obtain a function C : Γ \V(Γ)→ R given by

C(x) =
∮

π−1(x)

α

and defined outside of the set of vertices V(Γ) of the graph Γ.

Proposition 5.3.2. The function C has the following properties.

i) Assume that x, y are two interior points of an edge e of Γ. Then

C(y)− C(x) =

y∫
x

f dµ. (5.12)

ii) Let v be a vertex of Γ. Then C satisfies the Kirchhoff rule at v:

∑
e→v

lim
x

e−→v
C(x) = ∑

e←v
lim

x
e−→v
C(x) , (5.13)

where ∑e→v stands for summation over edges pointing at the vertex v,
∑e←v stands for summation over edges pointing away from v, and x e−→ v
means x ∈ Γ \V(Γ) tends to v along e.

iii) The function C is even with respect to the involution ι on Γ.
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Proof. The first two properties hold regardless of the presence of involution
[19]. The last property holds because the form α and the vector field ω−1dF
are both even.

Definition 5.3.3. Let (Γ, ι, f , µ) be a measured Reeb graph with involution.
Any function C : Γ \V(Γ)→ R satisfying properties listed in Proposition
5.3.2 is called an even circulation function. A measured Reeb graph with
involution endowed with an even circulation function is called a circulation
graph with involution (Γ, ι, f , µ, C).

Two circulation graphs with involution are isomorphic if they are iso-
morphic as measured Reeb graphs with involution, and the isomorphism
between them preserves the circulation function.

Above we associated a circulation graph with involution Γ[α] := (Γ, ι, f , µ, C)
to any simple Morse coset [α] ∈ Ω1

even(M) / dΩ0
even(M).

Remark 5.3.4. Note that the function f on a circulation graph can be
recovered from the circulation function C, as (5.12) implies f = dC/dµ.

The following result describes the space of even circulation functions on
a given measured Reeb graph with involution.

Proposition 5.3.5. The space of even circulation functions on a measured Reeb
graph with involution (Γ, ι, f , µ) is an affine space whose associated vector space
is Hodd

1 (Γ; R) := {λ ∈ H1(Γ; R) | ι∗λ = −λ}.

Proof. By definition, a function C : Γ \ V(Γ) → R is an even circulation
function if it satisfies certain inhomogeneous linear equations. So, the set
of even circulation functions on Γ is indeed an affine space. Let us first
show that it is non-empty. To that end, observe that since f is odd, we have∫

Γ f dµ = 0, so by [19, Propoisition 4.5(i)] the measured Reeb graph (Γ, f , µ)

admits a circulation function C. Furthermore, the latter can be made even
by considering the averaged function 1

2 (C + ι∗C). So, the space of even
circulation functions is a solution space of a consistent inhomogeneous
linear system, which means that the corresponding vector space is the
solution space of the associated homogeneous system. That solution space
consists of even functions ξ : Γ \ V(Γ) → R which are constant on each
edge and satisfy Kirchhoff’s rule at each vertex. For each element ξ of
that solution space, consider a 1-chain on Γ given by λ(ξ) := ∑ ξ|e · e,
where the sum is over all edges of Γ. Then Kirchhoff’s equations on ξ

are equivalent to λ(ξ) being a cycle, i.e. λ(ξ) ∈ H1(Γ; R). Furthermore,
since the involution ι reverses orientation of edges, ξ is even if and only if
λ(ξ) is odd. So, the vector space associated with the affine space of even
circulation functions on Γ is indeed Hodd

1 (Γ; R), as claimed.
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Corollary 5.3.6. The dimension d of the space of even circulation functions on a
measured Reeb graph with involution (Γ, ι, f , µ) is given by

d = dim Hodd
1 (Γ; R) =

1
2
(#Fix(ι) + b1(Γ)− 1), (5.14)

where #Fix(ι) is the number of fixed points of ι, and b1(Γ) = dim H1(Γ, R) is
the first Betti number of Γ. In particular,

1
2
(b1(Γ)− 1) ≤ d ≤ b1(Γ). (5.15)

Proof. By the Hopf trace formula we have

#Fix(ι) = 1− dim Heven
1 (Γ; R) + dim Hodd

1 (Γ; R) (5.16)

= 1− dim H1(Γ; R) + 2 dim Hodd
1 (Γ; R), (5.17)

hence the result.

Remark 5.3.7. Another way to express this dimension is d = b1(Γ)− b1(Γ/ι).
Indeed, this follows from the fact that odd classes form the kernel of the
projection H1(Γ; R)→ H1(Γ/ι, R).

Remark 5.3.8. The inequality d ≤ b1(Γ) holds since the space Hodd
1 (Γ; R)

is a subspace of H1(Γ; R). That inequality is also equivalent to #Fix(ι) ≤
b1(Γ)+ 1. The latter is true since the set { f = 0} splits Γ into two connected
components and hence consists of at most b1(Γ) + 1 points, while the fixed
point set Fix(ι) is a subset of { f = 0}.

It is easy to see that there are no other restrictions on the number #Fix(ι)
in addition to 0 ≤ #Fix(ι) ≤ b1(Γ) + 1 and #Fix(ι) ≡ b1(Γ) + 1 mod 2, so
that all integer dimensions d satisfying (5.15) can occur.

Example 5.3.9. Assume that the graph Γ is a tree. Then dim Hodd
1 (Γ; R) = 0,

so there is a unique even circulation function on Γ.

Example 5.3.10. Assume that b1(Γ) = 1. Then inequalities (5.15) imply
that the dimension d of the space of even circulation functions on Γ is 0
or 1. Furthermore, by formula (5.14) we have that d = 0 if and only if the
involution ι on Γ has no fixed points. An example of such an involution
is shown in Figure 1.3 in the introduction. As for the case d = 1, that
corresponds to two fixed points, see Figure 1.4.
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5.3.3 Proof of the classification theorem for orbits

The main result of this section is the following classification of generic
coadjoint orbits for the group of measure-preserving diffeomorphisms of
a non-orientable surface:

Theorem 5.3.11. Let N be a closed connected non-orientable surface equipped
with a density ρ. Then simple Morse coadjoint orbits of Diffρ(N) are in one-to-one
correspondence with isomorphism classes of circulation graphs compatible with
(N, ρ).

Compatibility of a graph and non-orientable surface is understood as in
Definition 5.2.10. Since a circulation graph is also a measured Reeb graph
(with an additional structure), the definition applies.

An equivalent and more detailed form of this classification, which we
are going to prove, can be formulated in terms of the corresponding
orientation double cover:

Theorem 5.3.12. Let (M, I, ω) be a closed connected symplectic surface equipped
with a fixed-point-free anti-symplectic involution I. Then generic orbits of the ac-
tion of even (i.e. commuting with I) symplectomorphisms of M on the coset space
[α] ∈ Ω1

even(M) / dΩ0
even(M) are in one-to-one correspondence with (isomor-

phism classes of) circulation graphs compatible with M (in the sense of Definition
5.2.10). In other words, the following statements hold:

i) For two simple Morse cosets [α], [β] ∈ Ω1
even(M) / dΩ0

even(M), the follow-
ing conditions are equivalent:

a) Φ∗[α] = [β] for some even symplectomorphism Φ;

b) circulation graphs Γ[α] and Γ[β] corresponding to the cosets [α] and
[β] are isomorphic.

ii) For each circulation graph (Γ, ι, f , µ, C) which is compatible with (M, ω),
there exists a simple Morse coset [α] ∈ Ω1

even(M) / dΩ0
even(M) such that

Γ[α] = (Γ, ι, f , µ, C).

Proof. We first prove part (i). The implication (a)⇒ (b) is by construction,
so we only need to prove (b)⇒ (a). In view of Theorem 5.2.12, it suffices
to consider the case d[α] = d[β] = Fω and prove that if the circulation
functions on the graph Γ of F given by cosets [α], [β] are the same, then
there is an even symplectic diffeomorphism Φ ∈ Diffω(M) such that
Φ∗[β] = [α]. Consider ξ := [α] − [β]. Then ξ ∈ H1

even(M). Furthermore,
since the circulation functions of [α] and [β] coincide, it follows that the
class ξ has zero periods over F-levels. Therefore, by [19, Lemma 4.8], there
exists a smooth function G ∈ Ω0(M) such that the 1-form GFdF is closed
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and its cohomology class is ξ. (The lemma says that there is H ∈ Ω0(M)

such that HdF is closed and its class is ξ. Furthermore, that H is divisible
by F in Ω0(M), so we just set G := H/F.) Furthermore, since the class ξ is
even, without loss of generality we can assume that G is even as well, i.e.
G ∈ Ω0

even(M) (if not, we replace G with 1
2 (G + I∗G)).

Consider even symplectic vector field X := Gω−1dF. Then, for the flow
Φt of X, we have

d
dt

Φ∗t [β] = Φ∗t LX[β] = Φ∗t [iX Fω] = [GFdF] = ξ.

In particular, the time-1 flow Φ1 of V takes [β] to [α], as needed.

We now prove part (ii). By Theorem 5.2.12, there exists an odd simple
Morse function F ∈ Ω0

odd(M) whose measured Reeb graph with involution
is (Γ, ι, f , µ). We need to show that the map from the affine space of
cosets [α] ∈ Ω1

even(M) / dΩ0
even(M) such that dα = Fω to the space of

even circulation functions on Γ, given by mapping a coset [α] to the
associated circulation function C[α], is surjective. To that end consider the
associated map of vector spaces H1

even(M; R)→ Hodd
1 (Γ; R) which takes a

class [β] ∈ H1
even(M; R) to a chain ∑ β(e)e where β(e) is the integral of β

over the preimage of any interior point of e under the projection π : M→ Γ.
Upon identification H1

even(M; R) ≃ Hodd
1 (M; R) given by (twisted) Poincaré

duality, that vector space map becomes the projection π∗ : Hodd
1 (M; R)→

Hodd
1 (Γ; R), which is surjective. Therefore, the map [α] 7→ C[α] between

affine spaces is surjective as well. Thus, the theorem is proved.

Corollary 5.3.13. Let N be a closed connected non-orientable surface equipped
with a density ρ. Then the space of coadjoint orbits of the group Diffρ(N) cor-
responding to the same measured Reeb graph (Γ, ι, f , µ) is an affine space of
dimension

d = dim Hodd
1 (Γ; R) =

1
2
(#Fix(ι) + b1(N)− 1),

where #Fix(ι) is the number of fixed points of ι, and b1(N) = dim H1(N, R) is
the first Betti number of N. In particular,

1
2
(b1(N)− 1) ≤ d ≤ b1(N). (5.18)

Note that for an orientable surface M the corresponding dimension d is
always 1

2 b1(M), i.e. the genus of M.

Example 5.3.14. Consider the projective plane RP2. The first homology
group H1(RP2; R) is trivial. Therefore, in this case there is a one-to one
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correspondence between generic coadjoint orbits and measured Reeb
graphs with involution, in agreement with Example 5.3.9.

Example 5.3.15. Here we elaborate on Example 1.3.12 from the introduc-
tion. The function on a torus shown in Figure 1.3 defines a pseudo-function
on the Klein bottle K2. One has b1(K2) = 1, while the involution ι has no
fixed points. Therefore, in this case the space of coadjoint obits correspond-
ing to the given measured Reeb graphs with involution is 0-dimensional,
i.e. the graph completely determines the orbit, just like in Example 5.3.14.

Now consider a donut lying on a horizontal table, and let F be the height
function on its surface, normalized so that the center of symmetry of the
donut is at height 0. Then F is odd with respect to the central symmetry.
Furthermore, even though F is not a Morse function (its critical points are
degenerate and form two circles), we can still consider the corresponding
graph ΓF defined as the set of F-levels with quotient topology, and that
graph is equipped with an involution ι induced by central symmetry of
the donut. Topologically, the graph ΓF is a circle, while the involution ι is
given by axial symmetry and has two fixed points. Now consider a small
odd Morse perturbation of F (e.g. consider the height function for a donut
on a slightly inclined table). Then each critical circle of F will fall apart
into two Morse critical points, and the resulting graph with involution will
be as shown in Figure 1.4: by continuity the involution on the graph still
has two fixed points. The so-obtained function on the torus can again be
thought as a pseudo-function on the Klein bottle K2. By Corollary 5.3.13,
the space of coadjoint orbits of Diffρ(K2) corresponding to such a function
is 1-dimensional, as opposed to the height function on a “standing torus”
where the dimension of the orbit space is 0. Note that 0 and 1 are the only
possible dimensions of the orbit space for the Klein bottle, see Example
5.3.10.



6
C A S I M I R I N VA R I A N T S O F
T H E 2 D E U L E R E Q UAT I O N S

6.1 moments of functions

Having classified coadjoint orbits of the group SDiff(N) in terms of
graphs with involution and certain additional structures, now one can
extract the following list of numerical invariants of the coadjoint action,
i.e., Casimir functions. Recall first the description of such invariants for
functions on symplectic surfaces.

Let (M, µ) be a closed connected oriented symplectic surface, and let F
be a simple Morse function on M. As invariants of the coadjoint action of
SDiff(M), one usually considers total moments

mi(F) =
∫

M
Fi µ =

∫
Γ

f i dρ , i = 0, 1, 2, . . .

for the vorticity function F = Diff[α], where (Γ, f , ρ) is the measured Reeb
graph of F. However, the latter moments do not form a complete set of
invariants even in the case of a sphere.

Remark 6.1.1. Consider, for example, the measured Reeb graph (Γ, f , ρ)

depicted in Figure 6.1. Define a new measure ρ̃ on Γ by “moving some
density from one branch to another", from I1 to I2. Then (Γ, f , ρ̃) is again
a measured Reeb graph. Moreover, for all i we have the equality of total
moments: ∫

Γ
f i dρ =

∫
Γ

f i dρ̃ .

However, the measured graphs (Γ, f , µ) and (Γ, f , µ̃) are not isomorphic
and thus correspond to two different coadjoint orbits of SDiff(S2).

This is why one needs to refine the measure to each edge of the measured
Reeb graph. With each edge e of the graph ΓF = (Γ, f , ρ), one can associate
an infinite sequence of moments

mi,e(F) =
∫

e
f i dρ =

∫
Me

Fi µ ,
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Γ

f

a
bI1 I2

Figure 6.1: Modifying the measure on the edges.

where i = 0, 1, 2, . . . , and Me = π−1(e) for the natural projection π : M→
Γ. (The corresponding moments mi,e(F) for vorticity F are natural to
call generalized enstrophies.) Obviously, the moments mi,e(F) are invariant
under the action of SDiff(M) on simple Morse functions. Moreover, they
form a complete set of invariants in the sense that an isomorphism of
abstract directed graphs which preserves moments of two functions on all
edges implies that the measured Reeb graphs of those functions are also
isomorphic, and hence the corresponding functions on the surface lie in
the same coadjoint SDiff(M)-orbit, see [17].

6.2 moments of pseudo-functions

For pseudo-functions on a non-oriented surface N one has to consider
the Reeb graphs ΓF of their lifts to the oriented double cover M = Ñ
together with involution.

Theorem 6.2.1 ([18]). Given a graph ΓF with involution ι, the set of moments
mi,e(F) for all edges is a complete set of invariants for the SDiff(N)-action on a
pseudo-function F. Namely, an isomorphism of abstract directed graphs preserving
moments of two pseudo-functions on all edges implies that the corresponding
pseudo-functions on N lie in the same SDiff(N)-orbit.

Proof. The first part of the argument repeats that in the orientable case.
Namely, for any edge e = [v, w] ∈ ΓF pushing forward the measure ρ on
e by means of the homeomorphism f : e → [ f (v), f (w)] ⊂ R, we obtain
a measure ρ f on the interval I f = [ f (v), f (w)], whose moments coincide
with the moments of ρ at e. All the moments of ρ f define the measure
ρ f on I f uniquely by the uniqueness theorem for the Hausdorff moment
problem (see Remark 6.2.2).

Taking into account the involution ι on the graph ΓF, one can consider
the moments for only “half" of the edges, mapped to each other by the
involution. For the edges that are anti-invariant under the involution one
can confine to only even moments ρ f . This gives a complete (although not
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necessarily minimal) set of the SDiff(N)-invariants for pseudo-functions.

Remark 6.2.2. The Hausdorff moment problem gives the following nec-
essary and sufficient condition: a sequence of numbers mk can be the
set of moments mk(λ) =

∫ 1
0 λk dρ(λ) of some Borel measure ρ sup-

ported on the interval [0, 1] if and only if it satisfies the so-called mono-
tonicity conditions. The latter are linear inequalities on mk, which can
be derived from the relations

∫ 1
0 λk(1 − λ)n dρ(λ) ≥ 0 for all integer

k, n ≥ 0, where the left-hand side is expressed in terms of mk. (For in-
stance, m5 − 2m6 + m7 =

∫ 1
0 λ5(1− λ)2 dρ(λ) ≥ 0.) In our case, replacing

λ by the parameter f we only employ the statement that the measure ρ( f )
is fully determined by the set {mk, k = 0, 1, 2, . . . }. Note that under certain
regularity conditions the measure ρ can be found in a constructive way
from the moment sequence {mk}, as a normalized jump across the cut in
the real axis for a function defined by the Laurent series ∑k≥0 mk/λk+1.

6.3 generalized enstrophies and circulations

The above Theorem 6.2.1 allows one to describe Casimirs of the 2D Euler
equation on a sphere and projective plane, where the corresponding Reeb
graph is a tree. In those cases the vorticity (pseudo-)function fully describes
the corresponding fluid velocity u and hence the corresponding coadjoint
orbit. The full set of Casimirs is formed by the corresponding generalized
enstrophies, i.e. moments mi,e(F) for the Morse vorticity function F.

For the surfaces of higher genus (or the Reeb graphs Γ with nontrivial
H1(Γ, R)) the above Casimirs must be supplemented by several circula-
tions. For instance, for a torus one needs to fix the value of one circulation
(and, more generally, one value for each handle of an orientable surface).
In the example in Figure 1.1, one can fix a value of the circulation function,
e.g., at the lower boundary of domain Me, corresponding to the bottom
of edge e. (In particular, one can set circulations over all critical levels of
F, which contain the one above, and several other circulations which are
dependent on it.) Overall, one needs to fix d independent circulations,
where the value of d is given by Corollary 5.3.13.

Theorem 6.3.1 ([18]). A complete set of Casimirs for the 2D Euler equation on
a non-orientable surface N in a neighborhood of a Morse-type coadjoint orbit is
given by the moments mi,e for each edge e ∈ Γ of the graph Γ with involution, and
by circulations of the velocity v over certain d independent cycles on N, where
d = 1

2 (#Fix(ι) + dim H1(N; R)− 1). Here #Fix(ι) is the number of fixed points
of the involution ι on the Reeb graph Γ and i = 0, 1, 2, . . . .
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Similarly to the above discussion, the set of all generalized enstro-
phies and circulations described in this theorem is not a “minimal set" of
Casimirs, as the Hausdorff moment problem does not claim the minimality.
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