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A B S T R A C T

This thesis explores advanced optimization modeling techniques with

applications in three areas relevant to sustainable finance: dynamic portfo-

lio construction through market state classification, pair trading strategies

in financial markets, and carbon dioxide emission modeling. We develop

a clustering algorithm for Bayesian Markov Switching Models to classify

markets into volatility-based states, optimizing asset allocation strate-

gies by identifying distinct market regimes. This approach incorporates

equal-weighted investment, minimum variance, maximum diversification,

and equal risk contribution strategies, providing evidence of superior risk-

adjusted returns compared to static strategies. We introduce a Multi-modal

Temporal Relation Graph Learning (MTRGL) framework that integrates

time-series and categorical data through a dynamic graph and a memory-

enhanced dynamic graph neural network to identify time-dependent

correlations among financial instruments. This approach reframes pair

trading as a temporal graph link prediction problem, outperforming tradi-

tional methods in empirical tests. We conducted a convergence analysis of

the MTRGL framework to evaluate the convergence rate and complexity

of the model, ensuring that it efficiently reaches stable solutions while

demonstrating robustness in identifying optimal correlated pairs. Finally,

we establish an optimization framework incorporating Support Vector

Machine (SVM) regression and Principal Component Regression (PCR) to

analyze socioeconomic and environmental factors affecting carbon dioxide

emissions, refining emission models, and informing sustainability policies.
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Our findings underscore the effectiveness of optimization modeling in

forecasting carbon dioxide emissions, enhancing pair trading reliability,

and optimizing investment strategies, thereby advancing environmental

and quantitative finance.

Advanced Optimization Techniques in Dynamic Portfolio Strategies, Pair

Trading,and Carbon Dioxide Emission Modeling

Jinhui Li

Doctor of Philosophy

Graduate Department of Mathematics

University of Toronto

2024

iii



To my parents and my sister,
for their endless love and support.

iv



A C K N O W L E D G E M E N T S

I would like to express my deepest gratitude to those who have made
this thesis possible.I am profoundly grateful to Dr. Luis Seco for their
invaluable guidance, unwavering support, and mentorship throughout this
research journey.I would like to extend my thanks to Prof. Vardan Papyan,
Prof.Almut Burchard and Dr.Hamid Arian for their critical feedback and
constructive suggestions. I would also like to thank University of Toronto
for its supporting and financial assistance. I owe a debt of gratitude to my
friends Clarence Su and Jack Ma for their encouragement and unwavering
belief in me. To my family, especially my mom Liangzhen Ji and my dad
Xudong Li, thank you for your love, patience, and understanding.To all
those mentioned above and those who remain unnamed, your support has
made this journey both possible and worthwhile.

v



P U B L I C AT I O N S

Chapter 4 is based on my publication [1]

vi



C O N T E N T S

1 Introduction with literature review 1

1.1 Market Classification and Dynamic Portfolio Management . 1

1.2 Pair Trading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Carbon Dioxide Emission Forecast Models . . . . . . . . . . 7

2 Preliminaries 10

2.1 Support Vector Regression . . . . . . . . . . . . . . . . . . . . 10

2.2 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . 12

2.3 Permutation Importance . . . . . . . . . . . . . . . . . . . . . 13

2.4 Principal Component Analysis (PCA) . . . . . . . . . . . . . 14

2.5 Markov Models and Convergence . . . . . . . . . . . . . . . 17

3 Dynamic Investment Strategies through Market Classification and
Volatility Analysis using Bayesian Markov Transitional Matrices 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Empirical Implementation and Results . . . . . . . . . . . . . 33

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Dynamic Graph-Based Temporal Correlation Analysis for Pair
Trading 50

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Model Training and Inference . . . . . . . . . . . . . . . . . . 59

4.5 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . 69

4.7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Optimization and Permutation Analysis of Carbon Dioxide Emis-
sion Models Using Advanced Regression Techniques 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vii



5.6 Performance Metrics of Regression Models . . . . . . . . . . 83

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

viii



1
I N T R O D U C T I O N W I T H
L I T E R AT U R E R E V I E W

1.1 market classification and dynamic portfolio manage-
ment

The dynamic nature of financial markets poses significant challenges
for investors. Traditional static asset allocation strategies often fail to
adapt to changing market conditions, leading to suboptimal performance.
Recent advances in financial research emphasize market classification and
dynamic portfolio management to address this issue.

Market classification involves segmenting the market into distinct states
based on characteristics such as volatility and returns. Methods such as
K-means clustering and Markov switching models are commonly used
for this purpose [2]. These models help identify different market regimes,
enabling investors to adjust their strategies accordingly.

Markov switching models assume that the market can be in one of sev-
eral states, with transitions governed by a Markov process. This framework
allows estimating transition probabilities and forecasting future market
states, providing valuable information for investment decisions [3].

Dynamic portfolio management leverages market classification to adjust
asset allocations in real-time. Techniques such as mean variance optimiza-
tion [4], equal risk contribution [5], minimum variance [6], and maximum
diversification [7] have been extended to dynamic contexts, demonstrating
improved performance.

This study focuses on dynamic investment strategies that use machine
learning and statistical modeling to optimize portfolio management under
varying market conditions. At the core of this research is the integration
of Bayesian Markov Switching Models (BMSM) with traditional portfolio
optimization techniques to adaptively allocate assets in response to market
volatility.

K-Means Clustering for Market Segmentation

K-means clustering is utilized to classify the market into ten distinct
volatility-based states. This unsupervised learning algorithm partitions a

1



1.1 market classification and dynamic portfolio management 2

set of n observations into k clusters by minimizing the within-cluster sum
of squares (WCSS). Mathematically, WCSS is defined as:

WCSS =
k

∑
i=1

∑
x∈Ci

∥x− µi∥2, (1.1)

where Ci is the set of observations in cluster i, and µi is the centroid
of cluster i. The algorithm iteratively refines the cluster centroids un-
til convergence, optimizing the segmentation of market states based on
volatility.

Portfolio Optimization Methods

The study evaluates four classical portfolio optimization strategies:

equally-weighted investment : Allocates equal weights to all as-
sets. The weight wi for each asset i is:

wi =
1
n

, (1.2)

where n is the total number of assets.

minimum variance portfolio : Minimizes the portfolio’s variance,
defined as:

σ2
p = wTΣw, (1.3)

subject to ∑n
i=1 wi = 1 and wi ≥ 0.

maximum diversification : Maximizes the diversification ratio:

DR(w) =
∑N

i=1 wiσi√
wTΣw

, (1.4)

where σi is the volatility of asset i.

equal risk contribution (erc): Balances the risk contributions of
assets:

TRCi = wi(Σw)i, (1.5)

with the goal of equalizing total risk contributions across assets.
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Dynamic Portfolio Strategy

The dynamic portfolio strategy leverages the Bayesian Markov transition
matrix to optimize asset allocations by predicting market state transitions.
The transition matrix P is constructed using Bayesian inference, where
each element Pij represents the probability of transitioning from state i to
state j.

bayesian estimation of transition probabilities : The transi-
tion probabilities are estimated using a Bayesian approach, which incor-
porates prior beliefs about the state transitions and updates these beliefs
based on observed data. The Dirichlet distribution is used as the conjugate
prior for the multinomial transition probabilities, allowing the estima-
tion process to incorporate both prior information and new observations
effectively.

Pij ∼ Dirichlet(αij + Nij), (1.6)

where αij are hyperparameters representing prior beliefs about the
transitions, and Nij are the observed counts of transitions from state i to
state j.

gibbs sampling for posterior inference : Gibbs sampling is
employed to generate samples from the posterior distribution of the tran-
sition probabilities. This iterative process allows for the estimation of the
transition matrix by sequentially sampling each element Pij conditioned
on the current values of the other elements:

P(t+1)
ij | · · · ∼ Dirichlet(αij + Nij + ∑

k ̸=i,j
P(t)

ik ), (1.7)

ensuring convergence to the true posterior distribution over iterations.

dynamic asset allocation : The dynamic asset allocation process
involves using the estimated transition matrix to adjust portfolio weights
based on the predicted probabilities of market state transitions. The asset
allocation vector w(t) at time t is determined by:

w(t) = P(t) ·wprevious, (1.8)

where wprevious is the asset allocation from the previous time period
and p(t) is the transition matrix. This process allows the portfolio to adapt
dynamically to changing market conditions, optimizing the expected
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returns and risk profile based on the probabilistic forecasts provided by
the Bayesian Markov model.

By incorporating Bayesian inference, the dynamic portfolio strategy
achieves a more responsive and informed approach to asset allocation,
leveraging probabilistic insights into market dynamics to enhance invest-
ment performance.

1.2 pair trading

Pair trading is a market-neutral trading strategy that aims to capitalize
on the relationship between two related financial instruments, such as
stocks, commodities, or currencies. The basic premise is to go long on one
asset and short on another, assuming that the relationship between the two
will revert to its historical mean over time. In recent years, the integration
of Artificial Intelligence (AI) into the financial sector has revolutionized
traditional trading strategies, including pair trading. Using machine learn-
ing algorithms, traders and financial institutions can now more accurately
identify and execute pair trading opportunities with improved precision
and efficiency.

The first meaningful academic paper on pair trading was written by
Evan Gatev, William N. Goetzmann, and K. Geert Rouwenhorst. [8] In their
paper "Pairs Trading: Performance of a Relative Value Arbitrage Rule", the
authors test the profitability of a Wall Street investment strategy called
pairs trading, which involves matching stocks into pairs based on their
historical price movements and trading them based on the expectation
that prices will converge. The authors find that pair trading yields average
annualized excess returns of up to 11 percent for self-financing portfolios
of pairs, which exceed conservative transaction cost estimates. Profits are
attributed to temporary mispricing of close substitutes and are not caused
by simple mean reversion. The paper also explores the risk characteristics
of pairs trading and finds that the strategy is low exposed to systematic
risk factors. The results suggest that pair trading is a profitable investment
strategy that can be used to exploit temporary mispricing in the market.

Daniel Herlemont in his well-known paper "Pairs Trading, Convergence
Trading, Cointegration" discusses pairs trading and cointegration in finan-
cial assets [9] It introduces the concept of mean reversion and explains
how pairs trading can be used to take advantage of deviations from the
historical mean. This paper also discusses optimal convergence trading
and the use of the Ornstein-Uhlenbeck process to model mean reversion.
This explains the Dickey Fuller test and its variants for testing the station-
arity of variables. The document also mentions the variance ratio test and
the concept of error correction models. In general, the document provides
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an overview of the different techniques and tests used in pairs trading and
cointegration analysis.

Lastly, since artificial intelligence is significantly changing the financial
industry, pair trading with machine learning is very popular nowadays.
Han et al. [10] introduce CREDIT, a novel reinforcement learning-based
approach to pair trading, a financial strategy aimed at mitigating market
risks by trading two correlated assets. Traditional reinforcement learning
methods face challenges in this domain due to the complexity of the trad-
ing environment and the need for long-term reasoning. CREDIT addresses
these issues by incorporating a bidirectional Gated Recurrent Unit (GRU)
and a temporal attention mechanism, enabling the model to capture long-
term asset price patterns effectively. In addition, the method features a
unique risk-aware reward system that balances both profit and associated
trading risks. Empirical tests reveal that CREDIT outperforms existing
methods, demonstrating significant profits over a five-year period using
US stock data.

Temporal Graph Neural Networks (TGNN)

Temporal Graph Neural Networks (TGNNs) are advanced neural net-
work architectures designed to manage dynamic graphs where both the
structure and features evolve over time. This makes them particularly
effective for applications in financial markets, such as pair trading, where
temporal dependencies and the evolution of relationships are crucial.

memory-based tgnns (mtgnns) incorporate a memory module
to maintain the historical context of node interactions. This is achieved
through components like the encoder, which processes event-based mes-
sages and updates memory states using a Gated Recurrent Unit (GRU),
and the decoder, which predicts temporal links. The message module
computes messages for nodes in an event eij(t) as follows:

mi(t) = msg(si(t−), sj(t−), eij(t), ψ(t− t′i)), (1.9)

mj(t) = msg(sj(t−), si(t−), eij(t), ψ(t− t′j)), (1.10)

where ψ(·) is a time encoding function. The memory update is given by:

si(t) = mem(mi(t), si(t−)). (1.11)

The embedding module aggregates neighborhood information through:

z(l)i = mlp(l)(z(l−1)
i || z̃(l)k ), (1.12)
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z̃(l)k = mha(l)(q(l)i , K(l)
i , V(l)

i ). (1.13)

Temporal link prediction is performed by the decoder:

p̂ij(t) = σ(MLP(zi(t−) || zj(t−))). (1.14)

Training employs a binary cross-entropy loss combined with contrastive
learning:

L = − ∑
eij(t)∈E

[
log p̂ij(t) + log(1− p̂ik(t))

]
. (1.15)

Contrastive Learning

Contrastive learning is a self-supervised approach that enhances the
extraction of meaningful representations by contrasting positive and nega-
tive samples. The core idea is to learn an embedding space where positive
pairs (similar samples) are closer together and negative pairs (dissimilar
samples) are further apart.

Mathematically, given a set of samples, we define positive pairs (x, x+)
and negative pairs (x, x−). The goal is to minimize the distance between
positive pairs and maximize the distance between negative pairs in the
embedding space. This can be formulated using a contrastive loss function,
such as the InfoNCE loss:

L = − log
exp(sim(hx, hx+)/τ)

∑x− exp(sim(hx, hx−)/τ)
, (1.16)

where sim(hx, hx′) is a similarity function (e.g., cosine similarity) between
embeddings hx and hx′ , and τ is a temperature parameter that controls the
smoothness of the distribution.

The objective is to optimize the encoder to produce embeddings that
maintain these relationships, which helps in capturing the intrinsic struc-
tures of the data. In TGNN, this is particularly useful for learning robust
node representations that capture temporal dependencies.

Contrastive learning enhances the robustness and generalization of the
learned embeddings, providing superior feature extraction capabilities. By
contrasting samples, the model becomes more adept at identifying subtle
but significant features that distinguish different states or behaviors in the
data.
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Introduction of Our Model

The proposed Multi-modal Temporal Relation Graph Learning (MTRGL)
framework integrates high-dimensional feature data with time series data
to identify temporal correlations among financial entities. Key features
include dynamic graph construction, which constructs graphs by seg-
menting time series into intervals, with entities represented as nodes. The
memory-based dynamic graph neural network captures historical interac-
tions through a memory module, while contrastive learning distinguishes
meaningful patterns using positive and negative samples.

MTRGL adapts to changing market conditions and improves the pre-
diction accuracy of pair-trading opportunities, utilizing both feature and
temporal data. The integration of TGNNs and contrastive learning within
this framework provides a powerful tool for understanding and exploit-
ing temporal correlations in financial markets. A detailed convergence
analysis of the MTRGL framework was conducted to assess its conver-
gence rate and computational complexity. The analysis confirms that the
model efficiently stabilizes to optimal solutions, even in high-dimensional
and dynamic environments, ensuring reliable identification of trading
opportunities.

1.3 carbon dioxide emission forecast models

In the battle against climate change, accurately modeling carbon dioxide
emissions is crucial for shaping effective policies and advancing sustainable
development. This study leverages the analytical capabilities of Support
Vector Regression (SVR) and Principal Component Regression (PCR) to
examine the impact of key socioeconomic and environmental factors on
carbon dioxide emissions using a dataset spanning from 1992 to 2019

across 62 countries. Our data, sourced from the World Bank [11] and
NationMaster [12], provides a comprehensive basis for investigating the
dynamics of global emissions.

Previous studies have explored a variety of machine learning techniques
for carbon emission modeling. Kavoosi et al. [13] utilized a genetic algo-
rithm (GA) for forecasting emissions. Sun [14] employed an optimized
grey forecasting model for China’s emissions, while Abdel [15] developed
an artificial neural network (ANN) model to predict carbon emissions.
Additionally, Kaboli et al. [16] estimated energy usage using adaptive
neuro-fuzzy inference systems (ANFIS), support vector regression (SVR),
and other methods. These studies highlight the diverse approaches avail-
able for tackling the complexities of emission forecasting.
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Our methodology begins with extensive data preprocessing to ensure
the integrity and compatibility of the dataset with the SVR and PCR
algorithms. This involves standardizing the data to a uniform scale and
verifying the stationarity of each component, thereby setting the stage for
accurate analysis.

A critical aspect of our methodology is the hyperparameter tuning
of the SVR model, which involves selecting the optimal kernel function,
regularization parameter C, and kernel-specific parameters to enhance
model accuracy and adaptability. Mathematically, SVR aims to minimize
the following objective function:

1
2
∥w∥2 + C

n

∑
i=1

max(0, |yi − (w · xi + b)| − ϵ), (1.17)

where w is the weight vector, b is the bias term, ϵ is the margin of
tolerance, and C is the regularization parameter.

Principal Component Regression (PCR) is employed to reduce dimen-
sionality and multicollinearity among predictor variables. PCR utilizes
Principal Component Analysis (PCA) to transform the original variables
into a set of uncorrelated principal components. The PCA process involves
solving the eigenvalue problem for the covariance matrix Σ of the data:

Σvi = λivi, (1.18)

where vi are the eigenvectors (principal components) and λi are the
eigenvalues. The principal components are ordered by the magnitude of
their eigenvalues, with larger eigenvalues corresponding to components
that explain more variance. The PCR model is constructed as:

Y = Z · β + ϵ, (1.19)

where Y is the dependent variable, Z represents the principal compo-
nents, β is the coefficient vector, and ϵ is the error term.

To evaluate the models, we utilize Permutation Importance, a technique
that quantifies the impact of each feature on model predictions. The
permutation importance PIj of a feature j is calculated as:

PIj =
1
N

N

∑
i=1

(
errori,original − errori,permuted

)
, (1.20)

where errori,original is the model’s prediction error using the original
dataset, and errori,permuted is the error after randomly permuting the values
of feature j. This technique helps identify the most influential factors
affecting emissions.



1.3 carbon dioxide emission forecast models 9

Our study assesses the precision of SVR and PCR models by comparing
predicted emissions with actual figures and provides insights into the
relative influence of various factors. This approach not only refines carbon
dioxide volume predictions but also equips policymakers with actionable
insights for designing effective emission reduction strategies.

In the context of machine learning applications for carbon emission
modeling, studies such as those by Mehdizadeh and Movagharnejad
[17] have demonstrated the accuracy of SVR compared to semi-empirical
models. Lu et al. [18] applied neural networks for transportation-related
emissions, while Wang et al. [19] highlighted SVM’s efficacy in time-series
predictions. Our study contributes to this growing body of literature by
demonstrating the effectiveness of SVR and PCR in providing stable and
reliable forecasts.

By blending sophisticated SVR and PCR techniques with an in-depth
analysis of a broad spectrum of influencing factors, this research aims
to illuminate the intricacies of carbon emissions, fostering an enriched
understanding that supports the journey toward global sustainability.



2
P R E L I M I N A R I E S

In all of my work, many machine learning algorithms have been used.
The core mathematics of these algorithms are linear optimization and
probability theory, for example, support vector regression, stochastic gra-
dient descent, Markov chain, etc. I will elaborate on these concepts and
the mathematics behind them.

2.1 support vector regression

Support Vector Machine (SVM) is a powerful supervised learning al-
gorithm that aims to find the optimal hyperplane in a high-dimensional
feature space. It can be used for classification, regression, and outlier
detection.

Training points beyond the margin contribute little to the cost function
for Support Vector Classification (SVC), while samples whose prediction
is close to their target are ignored by the cost function for Support Vector
Regression (SVR). Although the logic is different, they lead to a similar
result: the prediction results depend only on a subset of the training data.

SVR can handle both linear and non-linear relationships, making it
well suited for predicting carbon volume based on multiple factors. By
maximizing the margin between the hyperplane and the support vectors,
SVR seeks to find the best fit for the data, ensuring accurate predictions.

The primary objective of SVR is to find a function f (x) that approximates
the target variable y as closely as possible. The function f (x) is defined as

f (x) = ⟨w, x⟩+ b, (2.1)

where ⟨w, x⟩ is the dot product between the weight vector w and the
feature vector x, and b is the bias term.

SVR uses an ϵ-insensitive loss function, which means the errors within
a certain margin are ignored. The loss function L is defined as:

L(y, f (x)) = max(0, |y− f (x)| − ϵ). (2.2)

10



2.1 support vector regression 11

The optimization problem in SVR is to minimize the following objective
function:

min
w,b,ξ,ξ∗

1
2
||w||2 + C

n

∑
i=1

(ξi + ξ∗i ), (2.3)

subject to the constraints:

yi − ⟨w, xi⟩ − b ≤ ϵ + ξi, (2.4)

⟨w, xi⟩+ b− yi ≤ ϵ + ξ∗i , (2.5)

ξi, ξ∗i ≥ 0. (2.6)

SVR can also be extended to solve nonlinear problems by applying the
"kernel trick," which involves mapping the input features into a higher-
dimensional space. The kernel function K(x, x′) replaces the dot product
⟨x, x′⟩ in the optimization problem.

Commonly used kernel functions include:

• Linear: K(x, x′) = ⟨x, x′⟩,

• Polynomial: K(x, x′) = (1 + ⟨x, x′⟩)d,

• Radial Basis Function (RBF): K(x, x′) = exp(−γ||x− x′||2).

To solve this constrained optimization problem, we introduce Lagrange
multipliers αi, α∗i , βi, β∗i and form the Lagrangian:

L(w, b, ξ, ξ∗, α, α∗, β, β∗) =
1
2
||w||2 + C

n

∑
i=1

(ξi + ξ∗i )

−
n

∑
i=1

αi(ϵ + ξi − yi + ⟨w, xi⟩+ b)

−
n

∑
i=1

α∗i (ϵ + ξ∗i + yi − ⟨w, xi⟩ − b)

−
n

∑
i=1

βiξi −
n

∑
i=1

β∗i ξ∗i . (2.7)

To find the optimal w and b, we set the derivatives of the Lagrangian
with respect to w, b, ξ, and ξ∗ to zero:

∂L
∂w

= 0⇒ w =
n

∑
i=1

(αi − α∗i )xi, (2.8)

∂L
∂b

= 0⇒
n

∑
i=1

(αi − α∗i ) = 0, (2.9)
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∂L
∂ξi

= 0⇒ C− αi − βi = 0, (2.10)

∂L
∂ξ∗i

= 0⇒ C− α∗i − β∗i = 0. (2.11)

Thus in the dual form, particularly when using kernel methods, the
formula can be expressed as:

f (x) =
n

∑
i=1

(αi − α∗i )K(xi, x) + b, (2.12)

where one can solve the bias term b by any support vector xi with

b = yi −
n

∑
j=1

(αj − α∗j )K(xi, xj). (2.13)

2.2 stochastic gradient descent

Stochastic Gradient Descent (SGD) is an optimization algorithm com-
monly used in machine learning and deep learning to minimize the loss
function. Unlike traditional Gradient Descent, which uses the entire dataset
to compute the gradient at each iteration, SGD randomly selects a subset
of the data at each step. This makes SGD faster and more suitable for
large-scale datasets.

Let J(θ) be the objective function (often called the loss function in
machine learning) that we want to minimize. The function is defined as:

J(θ) =
1
N

N

∑
i=1

L(yi, f (xi; θ)), (2.14)

where N is the number of data points, L is the loss for a single data point,
yi is the true label, xi is the feature vector, and θ are the parameters we
want to optimize.

Gradient Descent Update Rule

In traditional Gradient Descent, the update rule for the parameters θ is:

θnew = θold − α∇J(θ), (2.15)

where α is the learning rate, and ∇J(θ) is the gradient of the loss function
with respect to θ.
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Stochastic Gradient Descent Update Rule

In Stochastic Gradient Descent, instead of using the entire dataset to
compute ∇J(θ), we randomly select a single data point (xi, yi) or a mini-
batch of data points to estimate the gradient. The update rule becomes:

θnew = θold − α∇L(yi, f (xi; θ)). (2.16)

Advantages and Disadvantages

• Advantages: Faster convergence per iteration, ability to escape lo-
cal minima for nonconvex functions, and suitability for large-scale
datasets.

• Disadvantages: More noise in the gradient estimation, which may
lead to oscillations and instability.

Hyperparameters

• Learning Rate (α): Controls the step size in the parameter space.

• Batch Size: The number of samples used to estimate the gradient in
each iteration.

2.3 permutation importance

To determine the relative importance of factors, we employ the im-
portance of permutation as a feature selection technique. Permutation
Importance measures the impact of permuting the values of each feature
on the model’s performance. By ranking the features through this process,
we gain insights into the factors that have the most significant impact
on the volume of carbon dioxide. This combined approach of SVR and
Permutation Importance allows us to make accurate predictions while
identifying the key drivers behind carbon emissions.

Given a predictive model M trained on tabular data D consisting of n
features, and the performance score S of model M evaluated on dataset D.

Theorem 2.1. For each feature j in the dataset D, the importance value Ij is
determined by the difference in the performance of the model when the feature j
is used normally versus when the values of the feature j are randomly permuted.
This importance value is calculated as follows:

Ij = S− 1
L

L

∑
l=1

Sl
j, (2.17)
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where Sl
j is the performance score of model M on dataset Dl

j , which is derived by
randomly shuffling the values of feature j in D for the l-th permutation, and L is
the total number of permutations.

Interpretation: The importance value Ij quantifies the contribution of
feature j to the predictive accuracy of model M. A positive value of Ij
indicates that the predictive accuracy decreases when the values of feature
j are permuted, suggesting that feature j holds predictive power within
model M. Conversely, a non-positive Ij suggests that feature j does not
contribute meaningfully to the model’s performance, or the model is
insensitive to the order of data points in feature j.

2.4 principal component analysis (pca)

Principal Component Analysis (PCA) is a foundational technique in
statistical analysis, introduced by Karl Pearson in 1901, and later developed
independently by Harold Hotelling in the 1930s. PCA serves as a powerful
tool for dimensionality reduction, data compression, and feature extraction.
By transforming a set of possibly correlated variables into a set of linearly
uncorrelated variables called principal components, PCA simplifies the
complexity of high-dimensional datasets while preserving their essential
structures.

Objectives of PCA

1. Dimensionality Reduction: PCA reduces the number of variables
in a dataset while retaining the maximum amount of variability
present in the original data. This is achieved by identifying the main
components that capture the most significant patterns in the data.

2. Data Compression: By transforming the data into a smaller set of
principal components, PCA effectively compresses the data, reducing
storage requirements, and enhancing computational efficiency.

3. Feature Extraction: PCA identifies the most informative features
(principal components) that explain the largest variance in the data,
facilitating better insights and more effective modeling.

Mathematical Foundation

PCA is rooted in linear algebra and involves several key mathematical
steps:
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1. Standardization: Given a dataset X with n observations and p vari-
ables, the data is standardized to have a mean of zero and a standard
deviation of one:

Xscaled =
X− µX

σX
, (2.18)

where µX is the mean vector and σX is the standard deviation vector
of X.

2. Covariance Matrix Calculation: The covariance matrix C of the
standardized data is computed:

C =
1

n− 1
X⊤scaledXscaled, (2.19)

The covariance matrix captures the pairwise covariances between
the variables, reflecting how each variable varies with respect to the
others.

3. Eigen Decomposition: The covariance matrix C is decomposed into
its eigenvalues λi and eigenvectors ei:

Cei = λiei, (2.20)

The eigenvectors ei (principal components) represent the directions
of maximum variance in the data, while the eigenvalues λi indicate
the magnitude of the variance along these directions.

4. Principal Components: The original data is projected onto the prin-
cipal components to form the principal component scores Z:

Z = XscaledE, (2.21)

where E = [e1, e2, . . . , ep] is the matrix of eigenvectors. Each row of
Z represents the coordinates of the original data point in the new
principal component space.

5. Selection of Principal Components: To achieve dimensionality re-
duction, a subset of the principal components is selected based on the
explained variance. The explained cumulative variance ∑k

i=1 λi/ ∑
p
i=1 λi

is used to determine the number of principal components k that cap-
ture a specified proportion (for example, 90%) of the total variance.
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Interpretation of Principal Components

Each principal component is a linear combination of the original vari-
ables, with coefficients known as loadings:

PCi = ai1X1 + ai2X2 + · · ·+ aipXp, (2.22)

where aij are the elements of the eigenvector ei. The loadings indicate the
contribution of each original variable to the principal component. A high
absolute value of a loading implies a strong influence of the corresponding
variable on the principal component. Positive loadings indicate a direct
relationship, while negative loadings indicate an inverse relationship.

Applications of PCA

PCA is utilized in various domains, including:

• Finance: For portfolio optimization, risk management, and asset
pricing by identifying uncorrelated factors that influence market
movements.

• Biology: For analyzing gene expression data, image processing,
and ecological studies to uncover patterns and structures in high-
dimensional biological data.

• Engineering: For fault detection, signal processing, and control sys-
tems to simplify complex system behavior.

• Social Sciences: For survey data analysis, psychology, and market
research to identify underlying factors that explain responses and
behaviors.

Advantages of PCA

• Reduction of Overfitting: By reducing the number of dimensions,
PCA helps mitigate overfitting in predictive models, leading to more
robust and generalizable results.

• Improved Visualization: PCA enables the visualization of high-
dimensional data in two or three dimensions, making it easier to
identify patterns, clusters, and outliers.

• Enhanced Computational Efficiency: Reducing the number of di-
mensions decreases the computational complexity of subsequent
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analyses, making PCA a valuable preprocessing step for machine
learning algorithms.

• Reduction of Collinearity: PCA transforms correlated variables into
uncorrelated principal components as the eigenvectors are orthogo-
nal, effectively reducing multicollinearity in the data.

In summary, PCA is a fundamental technique for simplifying complex
datasets while preserving their essential characteristics. By transforming
correlated variables into a set of uncorrelated principal components, PCA
provides a clear and concise representation of the data, facilitating deeper
insights and more effective modeling. Incorporating PCA into your re-
search methodology can significantly enhance the interpretability and
performance of your analyses.

2.5 markov models and convergence

Markov models are fundamental tools in stochastic processes, widely
used for modeling systems that transition between states probabilistically.
These models are characterized by the memoryless property, where the
future state depends only on the current state, not on the sequence of
events that preceded it.

Markov Chains and Markov Matrices

A Markov chain is a sequence of random variables {Xt} that transition
between states in a state space {1, 2, . . . , K} with the Markov property:

Pr(Xt+1 = j | Xt = i, Xt−1, . . . , X0) = Pr(Xt+1 = j | Xt = i). (2.23)

The transitions are governed by a Markov matrix P = [Pij], where Pij
represents the probability of transitioning from state i to state j:

Pij = Pr(Xt+1 = j | Xt = i). (2.24)

The state distribution vector π(t) evolves as:

π(t + 1) = π(t)P. (2.25)

A steady-state distribution π satisfies:

π = πP, (2.26)

which means π is the eigenvector of P corresponding to the eigenvalue 1.
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Markov Switching Models

Markov switching models (MSMs) extend Markov chains by allow-
ing the observed process to switch between different regimes or states.
Each state has its own distinct characteristics, often modeled by different
statistical distributions.

An MSM consists of an observed time series {yt} and an unobserved
state variable {st} that follows a Markov chain. The state variable st takes
values in {1, 2, . . . , K}, where K is the number of regimes. The observed
series yt depends on the state st:

yt | st = k ∼ f (yt | θk), (2.27)

where θk are the parameters associated with state k.
The transition probabilities of the state variable are given by the Markov

matrix:
Pr(st+1 = j | st = i) = Pij. (2.28)

In mathematical terms, the joint distribution of the observed data and
the state sequence is:

Pr(y1, . . . , yT, s1, . . . , sT) = Pr(s1)
T

∏
t=2

Pr(st | st−1)
T

∏
t=1

Pr(yt | st). (2.29)

Bayesian Markov Switching Models

Bayesian Markov Switching Models (BMSMs) integrate Bayesian in-
ference into the Markov Switching framework, providing a probabilistic
approach to parameter estimation and state prediction. The BMSM is
defined by the following components:

prior distributions : Prior distributions are assigned to the model
parameters, capturing our initial beliefs before observing the data. For
example, the transition probabilities Pij can be assigned a Dirichlet prior,
and the state-specific parameters θk can be given appropriate prior distri-
butions:

Pij ∼ Dirichlet(αij), θk ∼ p(θk | ηk), (2.30)

where Pij represents the probability of transitioning from state i to state j,
and Dirichlet(αij) reflects our prior belief about these probabilities with
parameters αij. The state-specific parameters θk, which may define charac-
teristics like means and variances in each state, have prior distributions
conditioned on hyperparameters ηk.
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The Dirichlet distribution is parameterized by α = (α1, . . . , αK) and has
the following mean and variance:

Mean:
αi

∑K
k=1 αk

, (2.31)

Variance:
αi(∑K

k=1 αk − αi)

(∑K
k=1 αk)2(∑K

k=1 αk + 1)
. (2.32)

likelihood : The likelihood function captures the probability of the
observed data given the states and model parameters. For a given state
sequence {st}, the likelihood is:

Pr(y1, . . . , yT | s1, . . . , sT, θ) =
T

∏
t=1

f (yt | θst), (2.33)

where yt is the observed data at time t, and f (yt | θst) is the likelihood of
observing yt given the state-specific parameters θst .

posterior distribution : Using Bayes’ theorem, the posterior distri-
bution of the parameters and states is obtained by combining the priors
and the likelihood:

Pr(θ, s1, . . . , sT | y1, . . . , yT) ∝ Pr(y1, . . . , yT | s1, . . . , sT, θ)

× Pr(s1, . . . , sT | P)Pr(P)Pr(θ), (2.34)

where Pr(P) is the prior probability of the transition matrix P, reflecting
beliefs about state transitions, and Pr(θ) is the prior distribution over state-
specific parameters θ, encoding prior knowledge about these parameters.

gibbs sampling : Gibbs sampling, a Markov Chain Monte Carlo (MCMC)
method, is commonly used to sample from the posterior distribution. This
involves iteratively sampling the state sequence and model parameters
from their conditional posterior distributions.

• Sample the state sequence st given the data and parameters:

Pr(st | y1, . . . , yT, θ, P) ∝ Pr(yt | θst)Pr(st | st−1, P). (2.35)

• Sample the parameters θk given the states and data:

Pr(θk | st = k, y1, . . . , yT) ∝ ∏
t:st=k

f (yt | θk)p(θk | ηk). (2.36)
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• Sample the transition probabilities Pij given the state sequence:

Pij | s1, . . . , sT ∼ Dirichlet(αij + nij), (2.37)

where nij is the number of transitions from state i to state j.

Gibbs sampling effectively generates samples from the posterior dis-
tribution, particularly when the full posterior is complex. The samples
can then be used to approximate the posterior mean, variance, and other
statistical properties.

advantages of bayesian markov switching models : Bayesian
Markov Switching Models offer several significant advantages over tradi-
tional approaches. Firstly, they facilitate the incorporation of prior knowl-
edge through prior distributions, allowing researchers to integrate existing
expertise or empirical evidence into the model. This integration can sub-
stantially enhance estimation accuracy, particularly in scenarios where
data is sparse or limited.

Moreover, Bayesian inference provides a comprehensive framework
for quantifying parameter uncertainty. By generating credible intervals
for model parameters, Bayesian methods offer a nuanced measure of
uncertainty, which is often absent in frequentist approaches. This aspect of
Bayesian analysis ensures that estimates are accompanied by a quantifiable
level of confidence, thereby enhancing the robustness of the conclusions
drawn from the model.

Additionally, Bayesian Markov Switching Models assign non-zero prob-
abilities to rare events, even when such events have low prior likelihoods.
This feature ensures that all potential events are considered in the analysis,
providing a more holistic and thorough exploration of possible outcomes.

Finally, Bayesian methods are inherently robust and flexible and are
capable of adapting to complex models that may involve intricate relation-
ships or dependencies. They are particularly effective in handling missing
data and mitigating the effects of model misspecification, making them a
versatile tool in the arsenal of modern statistical modeling and inference.
These attributes collectively underscore the strength of Bayesian Markov
Switching Models in delivering reliable and insightful analyses in various
applied contexts.

Convergence of Markov Models

For a Markov chain with transition matrix P, convergence to a steady-
state distribution occurs under certain conditions. If the Markov chain
is irreducible (i.e., it is possible to get from any state to any other state)
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and aperiodic (i.e., the system does not cycle in a regular pattern), it has a
unique steady-state distribution π, and the chain converges to π as t→ ∞:

lim
t→∞

π(t) = π. (2.38)

In the Bayesian context, the convergence of the Gibbs sampler to the
posterior distribution is ensured if the Markov chain induced by the sam-
pling procedure is ergodic. This means that the chain must be irreducible
and aperiodic, ensuring that the sampler explores the entire parameter
space and converges to the true posterior distribution.

The incorporation of Bayesian inference into Markov Switching Models
enhances the model’s flexibility and robustness, allowing for more accu-
rate state estimation and uncertainty quantification. Using the Bayesian
framework, analysts can incorporate prior knowledge, update beliefs with
new data, and derive more reliable predictions for portfolio optimization
and risk management. This approach is particularly beneficial in financial
markets, where conditions are dynamic and the ability to adapt to new
information is crucial for achieving optimal investment strategies.



3
D Y N A M I C I N V E S T M E N T
S T R AT E G I E S T H R O U G H
M A R K E T C L A S S I F I C AT I O N
A N D V O L AT I L I T Y A N A LY S I S
U S I N G B AY E S I A N M A R K O V
T R A N S I T I O N A L M AT R I C E S

This study evaluates four investment strategies: equal weighted, mini-
mum variance, maximum diversification, and equal risk contribution un-
der dynamic market conditions. By clustering the market into ten volatility-
based states and predicting transitions with a Bayesian Markov switching
model, we dynamically adjust asset allocation. Our analysis demonstrates
that the dynamic portfolio consistently achieves superior risk-adjusted
returns and competitive overall performance compared to static strategies.
This research integrates classical optimization with advanced machine
learning and Bayesian Markov models to improve portfolio management
in volatile markets.

3.1 introduction

The seminal work of Markowitz (1952) [4] established the foundation
for modern portfolio theory, emphasizing the importance of diversification
and optimizing asset allocation to enhance returns and manage risks. How-
ever, financial markets are inherently volatile and constantly changing,
making static portfolio strategies less effective over time. The problem we
are tackling is how to optimally adjust portfolio allocations in response
to these dynamic market conditions. This problem is important because
failure to adapt to market volatility can result in suboptimal returns and
increased risk exposure. Recent developments in machine learning and
statistical modeling have opened new avenues for advancing these strate-
gies, particularly through more sophisticated analysis of market states
and volatility. We aim to solve the optimal portfolio selection problem by

22
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addressing it within different volatile states, thus enhancing the robustness
and performance of investment strategies.

Traditional asset allocation strategies, such as equally-weighted invest-
ment, minimum variance, equal risk contribution, and maximum diversifi-
cation, have shown varying degrees of effectiveness in managing portfolio
risks and returns [5,6]. For example, DeMiguel et al. (2009) [6] showed that
simple allocation strategies often outperform more complex optimization-
based strategies, while Maillard et al. (2010) [5] proposed the concept of
risk parity to balance the risk contribution of each asset in a portfolio.
However, these strategies often assume static market conditions or rely
on retrospective data, limiting their adaptability to sudden changes in
market volatility. More recent approaches, such as those of Kritzman et al.
(2010) [20], have begun to explore dynamic strategies that adapt to chang-
ing market conditions. This research introduces a dynamic approach to
investment strategy, utilizing a machine learning-based clustering method
to categorize market states into distinct segments based on historical
market returns and volatilities.

Traditional methods often fail to adapt quickly to sudden market
changes, as they are typically based on historical data without considera-
tion for evolving market conditions. For instance, strategies like minimum
variance or equally-weighted investment assume that past data can reli-
ably predict future risks and returns, which is not always the case during
market upheavals. This limitation is crucial, as it can lead to suboptimal
asset allocation and increased risk during periods of market turbulence.
As highlighted by Kritzman et al. (2010) [20], dynamic strategies that
account for changing market states can provide better risk management
and return optimization. Similarly, Escobar et al. (2013) [21] emphasize
the limitations of static allocation strategies such as the 1/N approach,
which equally weights assets regardless of their risk-return profiles, poten-
tially leading to inefficiencies during market crises. Dynamic strategies,
therefore, offer a more responsive approach to asset allocation, adapting
to market conditions, and reducing risk more effectively than traditional
static methods.

In this study, we address the limitations of traditional asset allocation
strategies by introducing a dynamic approach to investment. The market
is initially divided into ten states using the K-means clustering algorithm,
which allows for a detailed exploration of the interaction between market
states and investment performance. This segmentation helps us to under-
stand how different market conditions affect the efficacy of various portfo-
lio strategies. Following the classification, we test four traditional portfolio
methods—equally weighted investment, minimum variance, equal risk
contribution, and maximum diversification—along with a dynamic portfo-
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lio method across these ten states. Our goal is to identify which portfolio
method yields the highest return, lowest volatility, and best risk-adjusted
return (Sharpe ratio) in each state. The best-performing portfolio method
for each state is then used to construct a dynamic portfolio that adapts to
changing market conditions.

To ensure the robustness of this approach, we thoroughly address data
quality and preprocessing. Comprehensive performance metrics are incor-
porated into the analysis, including annual return, annualized volatility,
and the Sharpe ratio. The accuracy of the clustering and the correctness
of the state assignments are validated through rigorous statistical tech-
niques. This validation process ensures that the results are reliable and
can be generalized to various market conditions, thereby increasing the
applicability and trustworthiness of the findings. Subsequently, a Bayesian
Markov switching model is employed to navigate and capitalize on the
dynamic nature of these states. The transition probabilities between states
are calculated using Dirichlet prior and Bayesian Markov Chain Monte
Carlo (MCMC) methods, specifically Gibbs sampling. This facilitates a
more robust analysis of state transitions and probabilistic forecasting of
market conditions. These probabilities are used to dynamically adjust
asset allocation strategies, building a final portfolio method that adapts to
real-time market conditions.

The ultimate goal of this research is to identify the optimal investment
strategy for each volatility-defined market state and dynamically adjust
the portfolio based on the Markov transition probabilities, thus optimizing
the decision-making process in real-time market conditions. This analysis
reveals that the dynamic portfolio strategy, based on return weights, sig-
nificantly improves risk-adjusted returns and reduces volatility compared
to static strategies. For the first asset, the dynamic portfolio consistently
outperforms all other methods except for the ERC strategy in terms of
return and Sharpe ratio. For the second asset, the dynamic portfolio out-
performs all methods, including ERC. This paper extends the existing body
of knowledge by integrating classical financial theories with cutting-edge
machine learning techniques to create a more responsive and effective
portfolio management framework. Through empirical analysis and model
testing, this study demonstrates that a more granular understanding of
volatility-driven market states can significantly enhance the robustness
and performance of investment strategies [20].

The remainder of the paper is organized as follows. In Sect.3.2, we
discuss and present our proposed methodology, including the market
state classification using K-means clustering and the construction of the
Bayesian Markov transition matrix. Sect.3.3 details the empirical implemen-
tation and results, showcasing the performance of the dynamic portfolio
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strategy compared to static methods. In Sect.3.4, we provide a discussion
on the findings and their implications. Finally, Sect.3.5 concludes the ar-
ticle, highlighting key contributions and suggesting avenues for future
research.

3.2 methodology

K-Means Clustering for Market Segmentation

In this study, the K-means clustering algorithm is employed to divide
the market into ten states based on volatility. The goal is to classify market
conditions into different volatility regimes, which can be used to analyze
and optimize portfolio performance.

The K-means algorithm partitions n observations into k clusters, where
each observation belongs to the cluster with the nearest mean. The objective
is to minimize the within-cluster sum of squares (WCSS), defined as:

WCSS =
k

∑
i=1

∑
x∈Ci

∥x− µi∥2, (3.1)

where Ci is the set of observations in cluster i and µi is the mean of the
observations in cluster i.

The K-means clustering procedure involves the following steps:
1. Initialization: Randomly select k initial cluster centroids.
2. Assignment: Assign each observation to the nearest centroid based

on the Euclidean distance.
3. Update: Calculate the new centroids as the mean of the observations

assigned to each cluster.
4. Repeat: Repeat the assignment and update steps until the centroids

converge (i.e. their positions no longer change).
Mathematically, the assignment step can be represented as:

Ci = {xp : ∥xp − µi∥2 ≤ ∥xp − µj∥2 for all j, 1 ≤ j ≤ k}, (3.2)

The update step is then:

µi =
1
|Ci| ∑

xj∈Ci

xj. (3.3)
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Bayesian Markov Switching Model Using Bayesian Transition Matrix

To model the transitions between the identified states, we employed a
Bayesian approach to estimate the transition probabilities. This method
incorporates prior knowledge through the use of a Dirichlet prior and
leverages Markov Chain Monte Carlo (MCMC) methods, specifically Gibbs
sampling, to derive the transition probabilities. This approach provides a
robust probabilistic framework that can adapt to the uncertainty inherent
in the data.

In constructing the Bayesian transition matrix P, we begin by initializing
the Dirichlet prior, chosen for its conjugate properties with the categorical
distribution. The concentration parameter (or prior counts) for the Dirichlet
distribution is denoted as:

α = (α1, α2, . . . , α10) (3.4)

where αi > 0 for all states i.
Next, we count the number of transitions from each state i to every other

state j:

Nij = Number of transitions from state i to state j (3.5)

The posterior distribution for the transition probabilities is given by
the Dirichlet distribution, which is the conjugate prior of the categorical
distribution:

Pij ∼ Dirichlet(αij + Nij) (3.6)

Here, Pij represents the probability of transitioning from state i to state
j.

Gibbs sampling is employed to iteratively sample from the posterior
distribution. The steps involve initializing the transition probability matrix
P, and for each state i, sampling the transition probabilities from the
Dirichlet distribution:

Pi ∼ Dirichlet(αi1 + Ni1, αi2 + Ni2, . . . , αi10 + Ni10) (3.7)

This process is repeated for a sufficiently large number of iterations to
ensure convergence.

After obtaining samples from the Gibbs sampling procedure, the transi-
tion probabilities are normalized as follows:

P̂ij =
∑S

s=1 P(s)
ij

S
(3.8)
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where S is the number of samples and P(s)
ij is the s-th sample for the

transition probability from state i to state j.
This Bayesian approach, leveraging the Dirichlet prior and Gibbs sam-

pling, provides a flexible and robust method for estimating transition
probabilities, accommodating the inherent uncertainty and variability in
the data. The use of Bayesian Markov switching models with Dirichlet
prior and Gibbs sampling enables the incorporation of prior knowledge
and accounts for uncertainty in the estimation of transition probabilities.
This method is particularly advantageous in financial applications where
market conditions are volatile and unpredictable.

Mixing Time

Mixing time is a crucial concept in the analysis of Markov chains,
particularly when using MCMC methods like Gibbs sampling to estimate
transition matrices.

The mixing time of a Markov chain is the time it takes for the chain to
converge to its stationary distribution. Mathematically, it is defined as the
smallest t such that the total variation distance between the distribution at
time t and the stationary distribution π is less than a threshold ϵ:

tmix(ϵ) = min
{

t | max
x
∥Pt(x, ·)− π(·)∥TV ≤ ϵ

}
, (3.9)

where ∥ · ∥TV denotes the total variation distance and Pt(x, ·) is the
distribution of the chain at time t starting from state x.

To calculate the mixing time of a Markov chain, we often use bounds
based on the eigenvalues of the transition matrix P. For an irreducible,
reversible and aperiodic Markov chain, the mixing time can be bounded
using the second-largest eigenvalue modulus (SLEM), as follows [22]:

(trel − 1) log
(

1
2ϵ

)
≤ tmix(ϵ) ≤ trel

(
1
2

log
(

1
πmin

)
+ log

(
1
2ϵ

))
(3.10)

where trel =
1

1−λ2
is the relaxation time, λ2 is the second-largest eigen-

value modulus of the transition matrix P, and πmin = minx∈X π(x) is
the minimum probability in the stationary distribution. Note that for a
reversible Markov transition matrix, the largest eigenvalue is always 1,
and all eigenvalues are real numbers bounded between −1 and 1.

These bounds indicate that the convergence rate of the Markov chain
depends on how close λ2 is to 1. A smaller spectral gap (1− λ2) implies
slower convergence, as the chain takes longer to mix. The parameter πmin
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also affects the upper bound, reflecting the influence of the least probable
state in the stationary distribution on the mixing time. In our model, we
assume that the transition matrix of stock volatility is typically aperiodic,
reversible, and irreducible, as these properties are commonly observed in
real-world financial markets.

Pairwise Correlations

The concept of pairwise correlations among assets is a cornerstone
of modern portfolio theory, initially formalized by Harry Markowitz in
1952 [4]. Pairwise correlations provide a quantitative measure of how two
assets move in relation to each other, which is crucial for understand-
ing the benefits of diversification within a portfolio. Mathematically, the
correlation coefficient ρij between two assets i and j is defined as:

ρij =
Cov(ri, rj)

σiσj
, (3.11)

where Cov(ri, rj) is the covariance between the returns ri and rj of the
assets i and j, and σi and σj are the standard deviations of these returns.
The correlation coefficient ρij ranges from -1 to 1, where ρij = 1 indicates
perfect positive correlation, ρij = −1 indicates perfect negative correlation,
and ρij = 0 indicates no correlation.

In the context of portfolio management, the average pairwise correlation
ρ̄ of a portfolio consisting of N assets can be calculated as:

ρ̄ =
2

N(N − 1)

N−1

∑
i=1

N

∑
j=i+1

ρij. (3.12)

This metric provides a holistic view of the diversification benefits within
a portfolio. Lower average pairwise correlations indicate greater diversi-
fication, as assets are less likely to move in tandem, thus reducing the
overall risk of the portfolio. Diversification is a fundamental principle in
portfolio construction that aims to minimize risk while maintaining or
enhancing expected returns. By spreading investments across assets with
low or negative correlations, investors can reduce the impact of individual
asset volatility on overall portfolio performance.

Understanding and managing pairwise correlations is particularly im-
portant in dynamic market conditions. Traditional static portfolio allo-
cation methods often fail to adapt quickly to changing correlations and
market regimes. Incorporating dynamic strategies that adjust for evolving
correlations can significantly enhance portfolio performance. Advanced
techniques, such as machine learning and clustering algorithms, enable
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the segmentation of market states and the dynamic adjustment of asset
weights based on current correlations and expected market movements.

Portfolio Methods

This study evaluates four distinct portfolio allocation strategies: equally-
weighted investment, minimum variance, equal risk contribution, and
maximum diversification. Each method is mathematically defined and
applied to the ten market states identified through the K-means clustering
process.

Equally-Weighted Investment

The equally-weighted investment strategy allocates an equal proportion
of the total investment to each asset in the portfolio. Mathematically, if
there are n assets in the portfolio, the weight wi for each asset i is given
by:

wi =
1
n

for i = 1, 2, . . . , n. (3.13)

This strategy does not require any estimation of parameters and is
simple to implement.

Minimum Variance Portfolio

The Minimum Variance Portfolio aims to minimize the overall variance
of the portfolio, thereby reducing risk. This approach is particularly useful
in creating a portfolio with the lowest possible volatility given a set of
assets and their respective covariances.

Let w be the vector of portfolio weights and Σ be the covariance matrix
of asset returns. The variance of the portfolio σ2

p can be expressed as:

σ2
p = wTΣw. (3.14)

The objective of the Minimum Variance Portfolio is to find the weight
vector w that minimizes σ2

p subject to the constraint that the weights sum
up to one. This can be formulated as the following optimization problem:



3.2 methodology 30

min
w

wTΣw, (3.15)

subject to
n

∑
i=1

wi = 1, (3.16)

wi ≥ 0 ∀i. (3.17)

where n is the number of assets in the portfolio.
To solve this optimization problem, we can use quadratic programming

techniques. The Lagrangian function for this problem is the following:

L(w, λ) = wTΣw + λ

(
n

∑
i=1

wi − 1

)
. (3.18)

where λ is the Lagrange multiplier associated with the equality con-
straint.

Taking the partial derivative of the Lagrangian with respect to w and
setting it to zero gives:

∂L
∂w

= 2Σw + λ1 = 0. (3.19)

Solving for w yields the following:

w = −λ

2
Σ−11. (3.20)

To satisfy the constraint ∑n
i=1 wi = 1, we multiply both sides by 1T:

1Tw = 1T
(
−λ

2
Σ−11

)
= 1. (3.21)

Solving for λ:

λ = − 2
1TΣ−11

. (3.22)

Substituting λ back into the expression for w:

w =
Σ−11

1TΣ−11
. (3.23)

This gives the optimal weights for the Minimum-Variance Portfolio.
In practical applications, numerical optimization techniques such as Se-
quential Least Squares Programming (SLSQP) are often used to solve this
problem, particularly when dealing with large numbers of assets and more
complex constraints.
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Maximum Diversification

The Maximum Diversification strategy aims to maximize the diversifi-
cation ratio of a portfolio. The diversification ratio (DR) is defined as the
ratio of the weighted average of the volatilities of individual assets to the
volatility of the portfolio. Mathematically, the diversification ratio is given
by:

DR(w) =
∑N

i=1 wiσi√
wTΣw

, (3.24)

where w is the weight vector of the portfolio, N is the number of assets,
wi is the weight of the asset i in the portfolio, σi is the volatility of the asset
i and Σ is the covariance matrix of asset returns.

The objective of this strategy is to find the portfolio weights w that
maximize DR(w):

max
w

{
∑N

i=1 wiσi√
wTΣw

}
, (3.25)

subject to the constraints:

N

∑
i=1

wi = 1, (3.26)

wi ≥ 0 ∀i. (3.27)

This optimization problem can be solved using numerical optimization
techniques such as Sequential Least Squares Programming (SLSQP).

Equal Risk Contribution (ERC) Portfolio

The Equal Risk Contribution (ERC) portfolio, often referred to as Risk
Parity, aims to allocate portfolio weights so that each asset contributes
equally to the overall portfolio risk. The goal is to balance the risk contri-
butions of all assets to achieve a well-diversified portfolio.

The total risk contribution of an asset i to the portfolio is given by:

TRCi = wi(Σw)i. (3.28)

where TRCi is the total risk contribution of asset i, w is the vector of
portfolio weights, Σ is the covariance matrix of asset returns, and (Σw)i
is the i-th element of the vector obtained by multiplying the covariance
matrix Σ by the weight vector w.
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The objective of ERC is to equalize the total risk contributions across all
assets:

TRCi = TRCj ∀i, j. (3.29)

This can be formulated as an optimization problem where the objective
is to minimize the sum of squared differences between the total risk
contributions and the average risk contribution:

min
w

n

∑
i=1

(
TRCi −

1
n

n

∑
j=1

TRCj

)2

, (3.30)

subject to the constraints:

n

∑
i=1

wi = 1, (3.31)

wi ≥ 0 ∀i. (3.32)

The target total risk contribution for each asset in an ERC portfolio is σp
n

of the total portfolio risk, where σp is the portfolio standard deviation.
The ERC portfolio can be implemented using numerical optimization

techniques such as Sequential Least Squares Programming (SLSQP). The
steps involved include: 1. Calculating the covariance matrix Σ, 2. Defining
the objective function to minimize the differences in total risk contributions,
3. Applying constraints to ensure the weights sum to one and are non-
negative.

Performance Evaluation Methods

To determine the results of the final test, we employed several perfor-
mance evaluation criteria. Firstly, we calculate the daily return and the
investment value of an initial investment $1, allowing us to graph the
performance of the portfolio over time.

Next, we calculate the annual return of the portfolio over the test period,
with higher values indicating better performance. This metric provided
insight into the portfolio’s ability to generate returns on an annual basis.

Secondly, we assessed the volatility of the portfolio, measured as the
standard deviation of portfolio returns. Lower volatility values indicated
greater stability, highlighting the portfolio’s ability to maintain consistent
performance without significant fluctuations.

In addition, we evaluated the Sharpe ratio, which measures the risk-
adjusted return of the portfolio. A higher Sharpe ratio signifies better
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performance relative to the amount of risk taken, making it a crucial
metric to compare different investment strategies.

Lastly, we examine the total return, volatility, and Sharpe ratio of the
portfolio over the entire period. These comprehensive metrics provided
an overall assessment of portfolio performance, allowing us to gauge its
effectiveness in generating returns, maintaining stability, and optimizing
risk-adjusted performance throughout the study.

In the following section, we will empirically implement the described
methodology by first applying the K-means clustering algorithm to seg-
ment the market into ten distinct volatility-based states for two different
assets. We will then construct a Bayesian Markov transition matrix to cap-
ture the transition probabilities between these states for each asset. Each
state will be analyzed to determine the best-performing portfolio method:
equally-weighted investment, minimum variance, equal risk contribution,
or maximum diversification. The dynamic portfolio strategy will be con-
structed using these state-specific methods and the transition probabilities.
Its performance will be evaluated in terms of annual return, annualized
volatility, and Sharpe ratio, both annually and over the respective total
periods for the two assets: 19 years for the first asset and 9 years for the
second asset.

3.3 empirical implementation and results

For our empirical analysis, we used daily adjusted closing prices from
11 major companies spanning from June 20, 2005, to June 20, 2024. These
companies represent the top stocks of 11 sectors of the S&P 500 as of
June 20, 2024. The tickers of these companies include Apple Inc. (AAPL),
Eli Lilly and Co. (LLY), JPMorgan Chase & Co. (JPM), Amazon.com Inc.
(AMZN), Alphabet Inc. (GOOGL), United Parcel Service, Inc. (UPS), Proc-
ter & Gamble Co. (PG), Exxon Mobil Corp. (XOM), NextEra Energy Inc.
(NEE), American Tower Corp. (AMT), and Linde PLC (LIN).

For the second asset set, we used the adjusted closing prices of NASDAQ,
SPY, Bitcoin, Gold, and the iShares 20+ Year Treasury Bond ETF (TLT)
spanning from January 6, 2015, to June 20, 2024, as Bitcoin was listed on
the market later in 2014.

We selected the first set of assets because these 11 companies collectively
represent the market while maintaining simplicity. The second set of assets
was chosen to represent five different types of investments, providing a
diverse portfolio for our analysis.
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Implementation

Market State Classification

We employed the K-means clustering algorithm to divide the market
into 10 distinct states based on the portfolio data for each asset set. Each
state was evaluated to determine the best investment method using various
portfolio optimization strategies: Equal Risk Contribution (ERC), Mini-
mum Variance (Min_Var), Maximum Diversification (Max_Div), and Equal
Investment.

Figure 3.1: K-means Clustering of 22-Day Volatility into 10 States for SPY Top 11

Portfolio

Figure 3.2: K-means Clustering of 22-Day Volatility into 10 States for Second
Asset Portfolio
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Investment Strategies

The investment strategies in our study were implemented using four
distinct methods: equal risk contribution (ERC), minimum variance (Min
Var), maximum diversification (Max Div), and equal investment. The ERC
strategy allocated portfolio weights so that each asset contributed equally
to the overall portfolio risk, ensuring a balanced risk distribution. The Min
Var strategy focused on minimizing the overall variance of the portfolio by
carefully adjusting the weights of each asset to achieve the lowest possible
volatility. The Max Div strategy aimed to maximize the diversification
ratio, allocating weights to enhance the diversification benefits within the
portfolio. Lastly, the Equal Investment strategy allocated equal weights to
all assets in the portfolio, based solely on the number of assets, regardless
of their individual characteristics.

In our analysis, we calculated the total return, volatility, and Sharpe
ratio for each method in different market states. Portfolio weights for the
ERC, Min Var, Max Div, and Equal Investment strategies were determined
using data from the entire analysis period, ensuring consistency in the
application of each strategy. However, the final weights in the dynamic
portfolio were adjusted based on the Bayesian Markov switching model,
which provided different probabilities for each market state. Each state had
a designated best-performing method, and the dynamic portfolio adjusted
its weights accordingly to reflect these state-dependent probabilities. This
comprehensive evaluation allowed us to understand the performance of
each investment strategy under varying market conditions and identify
the most effective approaches for different volatility regimes. In practice,
the weights can be adjusted every 3-5 years to account for changes in
market conditions and maintain optimal performance.

Bayesian Markov Transition Matrix

To model the dynamic nature of the market states, we employed a
Bayesian Markov transition matrix. This transition matrix was constructed
using Bayesian estimation techniques, incorporating frequency counts of
state transitions to estimate the probabilities of moving from one state to
another based on historical state sequences. This method enables us to
predict the probability distribution of future states given the current state,
ensuring that the states never have a probability of zero. For more details
on Markov models, please refer to Section 2.5 of the preliminaries.

As an example, the transition matrix for the first asset set is shown
below.
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State 1 2 3 4 5 6 7 8 9 10

1 0.901227 0.082535 0.004582 0.002922 0.001539 0.001453 0.001407 0.001503 0.001421 0.001412

2 0.051824 0.881939 0.057589 0.003450 0.000896 0.000824 0.000859 0.000853 0.000861 0.000906

3 0.000995 0.064860 0.878248 0.049259 0.001931 0.000945 0.000924 0.000939 0.000965 0.000934

4 0.001344 0.005662 0.075556 0.851285 0.057849 0.002762 0.001353 0.001405 0.001404 0.001380

5 0.002061 0.002198 0.004406 0.086078 0.822895 0.071468 0.004461 0.002148 0.002155 0.002128

6 0.002859 0.002837 0.002624 0.005663 0.089236 0.815854 0.072525 0.002801 0.002848 0.002753

7 0.004482 0.004512 0.004702 0.008663 0.008616 0.109151 0.829669 0.021640 0.004222 0.004344

8 0.010154 0.011033 0.010089 0.010173 0.009721 0.010809 0.051897 0.825123 0.051001 0.009999

9 0.016267 0.018014 0.016584 0.018268 0.017042 0.015767 0.017334 0.086261 0.741515 0.052949

10 0.012331 0.012320 0.012675 0.012442 0.012099 0.011640 0.012236 0.012242 0.036882 0.865132

Figure 3.3: Bayesian Markov Transition Matrix for the First Asset Set

The trend observed in this transition matrix indicates that the states tend
to stick together around the diagonal. This suggests a high probability of
the market remaining in the same state or transitioning to adjacent states.
This behavior reflects the persistence of volatility regimes, in which the
market is likely to stay in a particular volatility state or move to a state
with similar characteristics rather than making abrupt transitions to vastly
different states. This insight is crucial to predict future market conditions
and adjust portfolio strategies accordingly.

Total Return Weights Calculation

To compute the total return weights for each investment method in
each state, we employed the Bayesian Markov transition matrix in con-
junction with vectors representing the optimal return methods in terms of
cumulative return for each state.

For the first asset set, the optimal return methods for each state were
identified as follows: Min_Var, Min_Var, Min_Var, Equal, ERC, Min_Var,
Min_Var, Equal, Max_Div, and ERC. The binary vectors for each method
were defined as:

pERC = [0, 0, 0, 0, 1, 0, 0, 0, 0, 1]⊤

pMin_Var = [1, 1, 1, 0, 0, 0, 1, 1, 0, 0]⊤

pMax_Div = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]⊤

pEqual = [0, 0, 0, 1, 0, 0, 0, 1, 0, 0]⊤

The total return weights for each method were then calculated by multi-
plying the transition matrix by the corresponding vector:

total_return_weightsmethod = transition_matrix× pmethod (3.33)
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This approach ensures that the portfolio dynamically adapts to changing
market conditions by leveraging the most effective investment strategy
for each state. The computed total return weights reflect the probability-
weighted allocation based on state transitions, allowing the portfolio to
optimize returns by using the best-performing strategy in each market
state.

The total return weights calculated for each method for the first asset
set were as follows:

Table 3.1: Total Return Weights for Each Method for the First Asset Set
State ERC Min_Var Max_Div Equal

1 0.002951 0.991204 0.001421 0.004425

2 0.001802 0.993035 0.000861 0.004303

3 0.002865 0.945972 0.000965 0.050198

4 0.059229 0.086677 0.001404 0.852690

5 0.825023 0.084594 0.002155 0.088226

6 0.091989 0.896699 0.002848 0.008464

7 0.012960 0.952516 0.004222 0.030303

8 0.019720 0.093982 0.051001 0.835296

9 0.069991 0.083966 0.741515 0.104529

10 0.877231 0.061202 0.036882 0.024684

For the second asset set:

Table 3.2: Total Return Weights for Each Method for the Second Asset Set
State ERC Min_Var Max_Div Equal

1 0.111107 0.875728 0.013165 0.0
2 0.934646 0.060181 0.005174 0.0
3 0.880202 0.115055 0.004745 0.0
4 0.113108 0.882302 0.004588 0.0
5 0.097631 0.896719 0.005650 0.0
6 0.824267 0.162231 0.013502 0.0
7 0.078170 0.873327 0.048503 0.0
8 0.045580 0.098265 0.856155 0.0
9 0.173494 0.356993 0.469512 0.0
10 0.110810 0.780146 0.109044 0.0

Dynamic Portfolio Construction and Performance Testing

The dynamic portfolio strategy was constructed by dynamically allocat-
ing weights to different investment methods based on the state probabil-
ities of the Markov transition matrix. We applied the dynamic portfolio
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strategy to predict performance at t + 1, rather than at t. This approach
leverages the Markov transition probabilities to better predict future states
and thus optimize the portfolio’s performance.

The dynamic portfolio metrics were calculated by iterating through the
portfolio data to determine the state at each time point and then computing
the returns for the next day based on the total return weights and the best
return methods for each state. For each method (ERC, Min_Var, Max_Div,
Equal Investment, and Dynamic), the daily returns were calculated, which
were then used to compute the annualized return, volatility, and Sharpe
ratio.

The cumulative return was derived using the compounded return
method over the entire period: 2005 to 2024 for the first asset set and
2015 to 2024 for the second asset set. Annualized volatility was calculated
from the standard deviation of daily returns, and the Sharpe ratio was
computed by dividing the annualized return by the annualized volatility.

For the entire period, an initial investment of 1 dollar in each method
would grow according to the cumulative return, providing a clear com-
parison of the growth potential and the effectiveness of risk management
of each portfolio strategy. This concise approach highlights the superior
performance of the dynamic portfolio in both return and risk-adjusted
metrics compared to static methods.

Average Pairwise Correlation Calculation

To further understand the relationship between asset pairs in each
portfolio, we calculated the average pairwise correlation. The average
pairwise correlation ρ̄ is calculated as follows:

ρ̄ =
2

N(N − 1)

N−1

∑
i=1

N

∑
j=i+1

ρij, (3.34)

where N is the number of assets and ρij is the correlation between assets
i and j.

Results

First Asset Set: SPY Top 11 Portfolio

The annual performance metrics for the first asset set, SPY Top 11

Portfolio, using four static methods and our dynamic portfolio strategy
over the period from 2005 to 2024 are presented in Table 3.3.
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Table 3.3: Annual Return for the First Asset Set
Year ERC_Returns Min_Var_Returns Max_Div_Returns Equal_Investment_Returns Dynamic_Returns
2005 0.097404 0.139311 0.077847 0.111806 0.143028

2006 0.477485 0.513948 0.453308 0.450023 0.524057

2007 0.064272 0.169116 0.104562 0.125696 0.045541

2008 -0.178923 -0.220533 -0.179316 -0.195571 -0.209268

2009 0.331363 0.531398 0.361124 0.369131 0.502767

2010 0.211862 0.169395 0.204967 0.193348 0.210507

2011 0.336085 0.534892 0.360398 0.352385 0.524274

2012 0.071344 -0.093848 0.048998 0.048365 -0.017343

2013 0.269388 0.378619 0.286913 0.282343 0.352813

2014 0.234083 0.289384 0.242142 0.214865 0.233322

2015 0.130046 -0.082844 0.112979 0.080021 0.021170

2016 0.355798 0.418460 0.362301 0.370539 0.413142

2017 0.399157 0.280449 0.394685 0.362975 0.281191

2018 0.153207 0.146165 0.138449 0.137082 0.167848

2019 0.401882 0.560431 0.435387 0.423579 0.523706

2020 0.341909 0.418695 0.365222 0.380000 0.390837

2021 -0.163447 -0.031648 -0.151327 -0.137441 -0.076421

2022 0.263803 0.346837 0.283570 0.278146 0.241115

2023 0.331852 0.234892 0.310649 0.274987 0.243776

2024 0.188998 0.150970 0.187157 0.162500 0.172882

Table 3.4: Annual Volatilities for the First Asset Set
Year ERC_Volatility Min_Var_Volatility Max_Div_Volatility Equal_Investment_Volatility Dynamic_Volatility
2005 0.008678 0.009843 0.008418 0.008792 0.009049

2006 0.008148 0.008800 0.007946 0.008079 0.008623

2007 0.014764 0.015922 0.014096 0.014523 0.015809

2008 0.030253 0.028161 0.027483 0.028709 0.029433

2009 0.012370 0.012768 0.011853 0.011984 0.012506

2010 0.010000 0.010068 0.009791 0.009729 0.009863

2011 0.014466 0.014884 0.014024 0.014107 0.014271

2012 0.009284 0.012403 0.009653 0.009484 0.010242

2013 0.008576 0.009296 0.008567 0.008189 0.009261

2014 0.009129 0.010147 0.009267 0.009040 0.009535

2015 0.012978 0.013571 0.012957 0.012662 0.012833

2016 0.007526 0.008252 0.007639 0.007466 0.008066

2017 0.010241 0.010411 0.010429 0.010192 0.010120

2018 0.014733 0.014825 0.015228 0.014706 0.014696

2019 0.019179 0.021943 0.019238 0.019601 0.019901

2020 0.015477 0.017768 0.015972 0.015724 0.016265

2021 0.016397 0.016295 0.016556 0.016202 0.015927

2022 0.016339 0.016668 0.016573 0.016558 0.016472

2023 0.009606 0.010732 0.009817 0.009619 0.010819

2024 0.009062 0.011413 0.009473 0.009475 0.011190
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Table 3.5: Annual Sharpe Ratios for the First Asset Set
Year ERC_Sharpe Min_Var_Sharpe Max_Div_Sharpe Equal_Investment_Sharpe Dynamic_Sharpe
2005 10.071659 13.136902 8.059649 11.579434 14.701396

2006 57.371268 57.268745 55.791419 54.463425 59.615340

2007 3.675928 9.993527 6.708491 7.966557 2.248091

2008 -6.244808 -8.186372 -6.888429 -7.160476 -7.449646

2009 25.978954 40.837342 29.623158 29.966843 39.403275

2010 20.185768 15.832373 19.912697 18.846316 20.329096

2011 22.541652 35.265132 24.984848 24.270206 36.035022

2012 6.607280 -8.372604 4.040191 4.045298 -2.669597

2013 30.245351 39.651365 32.324376 33.255147 37.014991

2014 24.546323 27.533208 25.051527 22.660968 23.421162

2015 9.249900 -6.841128 7.947653 5.529975 0.870386

2016 45.946363 49.500429 46.118205 48.292406 49.978826

2017 38.001602 25.977030 36.885520 34.631776 26.797764

2018 9.720275 9.185143 8.435208 8.641735 10.740829

2019 20.432342 25.084362 22.111615 21.099962 25.813070

2020 21.445968 23.001997 22.240529 23.530656 23.414087

2021 -10.577873 -2.555923 -9.744541 -9.100121 -5.426010

2022 15.534028 20.209031 16.507346 16.194424 14.030823

2023 33.504022 20.955654 30.625165 27.547785 21.607655

2024 19.752018 12.351733 18.702068 16.094777 14.555834

Table 3.6: Total Performance Metrics for the First Asset Set (2005-2024)
Method Total Return (%) Total Volatility Total Sharpe Ratio
ERC_Returns 38.910 0.1715 226.77

Min_Var_Returns 53.527 0.2221 240.98

Max_Div_Returns 41.481 0.1745 237.65

Equal_Investment_Returns 37.797 0.1723 219.36

Dynamic_Returns 49.097 0.2063 237.90

The dynamic portfolio strategy for the first asset set achieved a total
return of 4910%, significantly outperforming the ERC, Maximum Diver-
sification, and Equal Investment methods. The total Sharpe ratio for the
dynamic portfolio was 237.90, also outperforming the static methods ex-
cept minimum variance and highlighting its effectiveness in providing
a superior risk-adjusted return. Furthermore, the total volatility for the
dynamic portfolio was 0.2063, which, while higher than some static meth-
ods, demonstrates the ability of the strategy to manage risk effectively
through its dynamic adjustments, balancing higher returns with manage-
able volatility.

To illustrate the performance of the dynamic portfolio strategy, Figure 3.4
shows the investment value over time, assuming an initial investment of $1.
Figure 3.5 presents the yearly Sharpe ratio, highlighting the risk-adjusted
returns achieved each year.
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Figure 3.4: Investment Value Over Time for the First Asset Set with an Initial
Investment of $1

Figure 3.5: Yearly Sharpe Ratio for the First Asset Set

Second Asset Set: NASDAQ, SPY, Bitcoin, Gold, and TLT

The annual performance metrics for the second set of assets, including
NASDAQ, SPY, Bitcoin, Gold, and TLT, over the period from 2015 to 2024

are presented in Table 3.7.
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Table 3.7: Annual Return for the Second Asset Set
Year ERC_Returns Min_Var_Returns Max_Div_Returns Equal_Returns Dynamic_Returns
2015 0.095424 0.156005 0.003615 0.096053 0.165819

2016 0.715028 0.694940 0.229584 0.657711 0.740228

2017 3.757674 4.218529 1.566528 3.646736 3.105162

2018 -0.493545 -0.512475 -0.370067 -0.490234 -0.522470

2019 1.359878 1.437888 0.909038 1.347256 1.476886

2020 3.321972 3.436156 2.539782 3.303192 3.168629

2021 -0.041365 -0.044339 -0.035539 -0.042263 -0.043820

2022 -0.465868 -0.471685 -0.437422 -0.466479 -0.451370

2023 0.926852 0.942041 0.817809 0.926322 0.942852

2024 0.454248 0.460317 0.426420 0.454143 0.455735

Table 3.8: Annual Volatilities for the Second Asset Set
Year ERC_Volatility Min_Var_Volatility Max_Div_Volatility Equal_Volatility Dynamic_Volatility
2015 0.011259 0.012643 0.005481 0.010446 0.011539

2016 0.015559 0.017942 0.007091 0.014989 0.015931

2017 0.050969 0.053268 0.036969 0.050492 0.047811

2018 0.036275 0.037914 0.026272 0.036004 0.035413

2019 0.038888 0.040510 0.029309 0.038624 0.039072

2020 0.046747 0.047361 0.037694 0.046303 0.045266

2021 0.043846 0.044400 0.040480 0.043771 0.043295

2022 0.037742 0.038301 0.033877 0.037723 0.036999

2023 0.028875 0.029511 0.025913 0.028876 0.029304

2024 0.036194 0.036666 0.034194 0.036202 0.036460

Table 3.9: Annual Sharpe Ratios for the Second Asset Set
Year ERC_Sharpe Min_Var_Sharpe Max_Div_Sharpe Equal_Sharpe Dynamic_Sharpe
2015 7.587189 11.548392 -1.164784 8.238009 13.503713

2016 45.312471 38.175456 30.967458 43.211571 45.836624

2017 73.528922 79.006286 42.103345 72.026459 64.737642

2018 -13.881292 -13.780565 -14.466792 -13.893789 -15.036143

2019 34.711795 35.248085 30.674567 34.622671 37.542921

2020 70.848309 72.340964 67.114508 71.123187 69.778508

2021 -1.171490 -1.223840 -1.124962 -1.194022 -1.243096

2022 -12.608595 -12.576385 -13.207237 -12.630917 -12.469772

2023 31.752973 31.583360 31.173779 31.732846 31.833518

2024 12.274081 12.281510 12.178239 12.268299 12.225351

Table 3.10: Total Performance Metrics for the Second Asset Set (2015-2024)
Method Total Return (%) Total Volatility Total Sharpe Ratio
ERC_Returns 65.244458 1.406368 46.385049

Min_Var_Returns 76.193627 1.520511 50.103948

Max_Div_Returns 17.967954 0.881578 20.370232

Equal_Returns 61.222029 1.381796 44.298875

Dynamic_Returns 59.926835 1.258819 47.597665

The dynamic portfolio strategy for the second set of assets achieved a no-
table total return of 5992.7%, outperforming the maximum diversification
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method. The total Sharpe ratio for the dynamic portfolio was 47.60, indi-
cating superior risk-adjusted performance compared to all static methods
except the minimum-variance method. Furthermore, the total volatility for
the dynamic portfolio was 1.2588, which is less than the volatility of the
methods of equal investment, minimum variance, and equal risk contri-
bution. This shows the effectiveness of the dynamic strategy in managing
risk and adapting to market changes, providing a balanced approach to
optimizing returns while maintaining lower volatility.

To illustrate the performance of the dynamic portfolio strategy for the
second set of assets, Figure 3.6 shows the investment value over time,
assuming an initial investment of $1. Figure 3.7 presents the yearly Sharpe
ratio, highlighting the risk-adjusted returns achieved each year.

Figure 3.6: Investment Value Over Time for the Second Asset Set with an Initial
Investment of $1
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Figure 3.7: Yearly Sharpe Ratio for the Second Asset Set

Mixing Time of Two Assets

In our analysis of the dynamic behavior of financial assets, we focus
on computing the mixing time for two distinct assets to understand their
convergence properties within a Bayesian Markov Switching framework.

mixing time calculation The mixing time of a Markov chain
is an important metric that indicates the number of steps required for
the chain to approach its steady-state distribution. For each asset, we
calculate the Second-Largest Eigenvalue Modulus (SLEM) of the transition
matrix, which plays a crucial role in determining the mixing time. The key
parameter used in our calculations is ϵ = 0.01, which is the threshold for
proximity to the steady state.

first asset results For the first asset, the calculated SLEM was
0.9584, resulting in an estimated mixing time of 109 steps. This indicates
that the asset’s dynamics require significant iterations to stabilize, reflect-
ing a more complex convergence process.

second asset results In contrast, the second asset exhibited a SLEM
of 0.9277, corresponding to a shorter mixing time of 62 steps. This suggests
that the second asset’s state transitions stabilize more rapidly, indicating a
more straightforward convergence behavior.
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Average Pairwise Correlation

To further analyze the diversification potential of the portfolios, we
calculated the average pairwise correlations for both asset sets. The average
pairwise correlation for the SPY Top 11 portfolio was 0.4057, indicating
moderate correlations between the assets. For the second asset set, the
average pairwise correlation was significantly lower at 0.1400, suggesting
a greater potential for diversification. The dynamic portfolio seems to
perform better in more correlated asset sets, thus further research and
empirical studies are needed in the future to explore this observation.

Table 3.11: Average Pairwise Correlations
Asset Set Average Pairwise Correlation
SPY Top 11 Portfolio 0.4057

Second Asset Set 0.1400

3.4 discussion

In this study, we explore the efficacy of various portfolio optimization
methods, including Equal Risk Contribution (ERC), Minimum Variance
(Min_Var), Maximum Diversification (Max_Div), and Equal Investment,
across different market states. Utilizing a Bayesian approach to construct
the Markov transition matrix, our objective was to dynamically allocate
portfolio weights based on the probabilities of transitioning between these
states. This approach aims to enhance future performance prediction and
overall portfolio optimization by incorporating probabilistic reasoning and
updating beliefs about market states as new data become available.

Empirical Findings

The empirical results demonstrated that the dynamic portfolio strategy,
which incorporates state transitions and selects the best return methods for
each state, achieved competitive performance relative to static investment
strategies. Specifically, the dynamic strategy not only achieved comparable
returns, but also excelled in achieving higher Sharpe ratios, particularly
for more correlated asset sets. This highlights its effectiveness in managing
risk and optimizing returns in a dynamic market environment.
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Portfolio 1: SPY Top 11 Portfolio

The first asset set consisted of daily adjusted closing prices of 11 major
companies from June 20, 2005, to June 20, 2024. The companies included
Apple Inc. (AAPL), Eli Lilly and Co. (LLY), JPMorgan Chase & Co. (JPM),
Amazon.com Inc. (AMZN), Alphabet Inc. (GOOGL), United Parcel Service,
Inc. (UPS), Procter & Gamble Co. (PG), Exxon Mobil Corp. (XOM), NextEra
Energy Inc. (NEE), American Tower Corp. (AMT), and Linde PLC (LIN).

The dynamic portfolio strategy for this asset set achieved a total return
of 4910%, significantly outperforming the methods of equal risk contri-
bution (3891%), maximum diversification (4148%) and equal investment
(3780%), while being competitive with the Minimum Variance (5353%).
The annual performance comparison revealed that the dynamic portfolio
outperformed the ERC in terms of returns in 10 years, Min_Var in 10 years,
Max_Div in 11 years and Equal Investment in 13 years. This indicates the
robustness and adaptability of the dynamic strategy in various market
conditions.

Furthermore, the average pairwise correlation for the SPY Top 11 port-
folio was calculated to be 0.4057, suggesting a moderate level of interde-
pendence among the assets. This moderate correlation level indicates a
decent potential for diversification, which the dynamic strategy effectively
capitalized on to enhance portfolio performance.

Portfolio 2: Second Asset Set

The second asset set included daily adjusted closing prices of a diversi-
fied mix of assets: Nasdaq, SPY, Bitcoin, Gold, and the iShares 20+ Year
Treasury Bond ETF (TLT), spanning from 2015 to 2024.

The dynamic portfolio strategy for this set of assets achieved a notable
total return of 5993%, which is higher than the maximum diversification
method (1796. 79%) but lower than the equal investment (6122%), equal
risk contribution (6524. 45%) and minimum variation (7619. 36%) methods.
However, the dynamic portfolio’s Sharpe ratio of 47.60 outperformed all
static methods except for Minimum Variance, indicating superior risk-
adjusted performance. The annual performance comparison highlighted
that the dynamic portfolio outperformed ERC in terms of returns in 6

years, Min_Var in 6 years, Max_Div in 7 years, and Equal Investment in 6

years. This demonstrates the robustness and adaptability of the dynamic
strategy in various market conditions.
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Analysis of Dynamic Portfolio Results

The superior performance of the dynamic portfolio strategy can be at-
tributed to its ability to adapt to changing market conditions by leveraging
the Bayesian Markov transition matrix and dynamically allocating weights
based on the best return methods for each state. This approach allows the
portfolio to optimize its allocation in anticipation of future market states,
rather than reacting to past performance alone.

For the first set of assets, the dynamic portfolio achieved the second-
best total return of 4910% and the second-highest Sharpe ratio of 237.90

throughout the period. This indicates that the dynamic strategy was able
to deliver strong returns while maintaining superior risk-adjusted perfor-
mance compared to most static methods.

For the second set of assets, the dynamic portfolio achieved a notable
total return of 5993%, outperforming the Maximum Diversification method.
The total Sharpe ratio for the dynamic portfolio was 48.24, indicating
superior risk-adjusted performance compared to all static methods except
the minimum variance method. Furthermore, the total volatility for the
dynamic portfolio was 1.2590, which is lower than the volatility of the
equal investment,ERC, and equal risk contribution methods. This shows
the effectiveness of the dynamic strategy in managing risk and adapting
to market changes, providing a balanced approach to optimizing returns
while maintaining lower volatility. Despite the dynamic portfolio’s total
return being the second-to-last among the methods, its Sharpe ratio was
the second-best, underscoring its strong risk-adjusted performance.

The higher Sharpe ratio of the dynamic portfolio indicates that it is
better prepared for state changes, thus managing risk more effectively.
This strategy ensures that the best return method is maintained as much
as possible while considering the state changes, providing a balanced
approach to optimizing returns and managing risk.

The relatively high mixing times for both assets underscore the intricate
dynamics present in their transition behaviors. A higher SLEM indicates
that both assets experience slower convergence to their steady-state dis-
tributions. This necessitates a substantial volume of data to accurately
capture and model the transition dynamics within a Bayesian Markov
Switching framework.

These findings suggest that significant data collection and robust mod-
eling techniques are required to effectively handle the complexity inherent
in financial market transitions. The ability to accurately model these tran-
sitions is crucial for understanding the nuanced behavior of assets and
making informed investment decisions in dynamic market environments.
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By understanding the high data demands and convergence character-
istics of these assets, we can better strategize resource allocation for data
acquisition and processing, ultimately enhancing the fidelity and reliability
of model outputs. This insight is crucial for optimizing the application of
Bayesian Markov Switching models in financial market analysis.

Furthermore, a higher correlation among assets in the first set of assets
was found to lead to better performance results, highlighting the impor-
tance of asset selection in the construction of a diversified portfolio that
can achieve higher returns and better risk management.

3.5 conclusion

This study explored the efficacy of a dynamic portfolio optimization
approach utilizing a Bayesian Markov transition matrix. The key findings
of our analysis provide several important insights into portfolio manage-
ment strategies. By dynamically allocating portfolio weights based on the
probabilities of transitioning between market states, our approach aims to
enhance future performance prediction and overall portfolio optimization.

The dynamic portfolio strategy demonstrated robust performance across
both asset sets. For the first set of assets, it achieved a total return of 4910%,
significantly outperforming several static methods. For the second set of
assets, the dynamic strategy achieved a total return of 5993%, showing
superior performance compared to the maximum diversification method,
although it was slightly less than the equal investment, equal risk con-
tribution and minimum variance methods. These results highlight the
effectiveness of the dynamic strategy in adapting to market changes and
optimizing returns.

In addition, the dynamic strategy consistently delivered the second
highest Sharpe ratio compared to static methods for the first set of assets,
indicating better risk-adjusted performance. For the second set of assets,
the dynamic strategy achieved the second highest Sharpe ratio, under-
scoring its robustness in managing risk and adapting to state changes.
Although its return was second to last.

Although promising, our study identifies several areas for future re-
search and improvement. Incorporating additional macroeconomic and
financial factors could refine state classification and enhance the predic-
tive power of the Bayesian Markov transition matrix, improving portfolio
diversification and performance.

Exploring alternative models, such as Hidden Markov Models (HMM)
or Regime-Switching Models, might capture market dynamics more ac-
curately, leading to better investment strategies. Expanding the analysis
to include a broader range of assets, such as European bonds, commodi-
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ties, and other cryptocurrencies, could further diversify the portfolio and
improve risk management. Furthermore, incorporating more portfolio
methods could help build a more sophisticated and robust dynamic port-
folio, enhancing its ability to adapt to varying market conditions and
optimize performance.

Developing more real-time implementation and testing frameworks is
crucial to assess the practical applicability of the dynamic portfolio strategy
in live trading environments. This would help evaluate the strategy’s
performance under actual market conditions and its responsiveness to
market changes.

Several limitations should be acknowledged. The study’s reliance on
historical data assumes that past market behavior will repeat, which
may not always hold true. The Bayesian Markov transition matrix and
portfolio optimization methods are based on specific assumptions that
may not capture all market dynamics and investor behavior. Additionally,
the computational intensity of the dynamic strategy and the exclusion of
transaction costs and other practical constraints may impact real-world
performance.

In conclusion, while our study demonstrates the potential benefits of
a dynamic portfolio approach, addressing its limitations and exploring
the identified areas for future research could further enhance its effective-
ness and applicability. The dynamic portfolio strategy shows significant
promise in improving returns and sharpe ratios through better future state
prediction and adaptation, but further research and refinement are needed
to enhance its practical applicability across diverse market conditions.



4
D Y N A M I C G R A P H - B A S E D
T E M P O R A L C O R R E L AT I O N
A N A LY S I S F O R PA I R
T R A D I N G

In our research, we explore the confluence of deep learning technologies
and their applications in financial markets, focusing particularly on pair
trading strategies. Pair trading is a cornerstone in the field of quantita-
tive finance and offers an ideal setting to implement cutting-edge deep
learning methods. One of the key challenges in pair trading is identifying
time-dependent correlations among different financial instruments, which
requires the effective amalgamation of various types of data, also known
as modalities. To address this complexity, we introduce a new framework
called Multi-modal Temporal Relation Graph Learning (MTRGL). This
framework consists of two primary elements: a dynamic graph that inte-
grates both time series data such as price movements and categorical data
such as industry sectors. It also employs a memory-enhanced dynamic
graph neural network for its neural architecture. This setup reframes the
issue of identifying temporal correlations as a temporal graph link predic-
tion problem, an approach that has shown empirical benefits. Real-world
data tests confirm that MTRGL consistently outperforms existing meth-
ods, highlighting its potential to improve the reliability and precision of
automated pair trading systems.

4.1 introduction

Pair trading is a fundamental investment tactic that capitalizes on cor-
recting pricing imbalances between closely linked assets or financial mar-
kets. As noted by Gatev et al. (2006), this strategy focuses on identifying
transient discrepancies in prices, allowing traders to strategically position
themselves to profit from an anticipated price convergence. This method
involves simultaneously taking long and short positions in correlated
assets or markets. A long position occurs when an investor purchases an
asset and anticipates an increase in its value. In contrast, a short position is

50
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adopted when an investor sells an asset they have borrowed, predicting a
drop in its price, with the intention of repurchasing it at a lower cost later.
This dual strategy enables traders to benefit from expected price adjust-
ments over time. A graphical representation of the pair trading strategy
is shown in Figure [4.1]. Pair trading plays a significant role in financial
investments, as it capitalizes on market inefficiencies and erroneous asset
pricing. Using these fleeting price variances, traders have the potential to
make profits while the inherent value of the assets reverts to normal. In
addition, pair trading contributes to market efficiency by narrowing price
gaps and enhancing price discovery mechanisms. The skilled identification
and exploitation of these price differences can lead to better returns and
more effective risk management in investment portfolios.

Entity A
Entity B

Short

Long

Close short trade

Close long 
trade

Time

Pr
ic

e

Figure 4.1: An illustration showing the Pair Trading Strategy involves two corre-
lated entities, labeled A and B, whose prices generally move in tandem.
The highlighted section marks a brief phase where the prices of A and
B diverge, possibly due to market volatility or inefficiencies. In this
phase of divergence, a trader can exploit the situation by taking a long
position on entity B (betting its price will rise) and a short position on
entity A (betting its price will fall). The strategy aims to profit from
this divergence when the price movements of A and B realign.

The efficacy of a pair trading strategy fundamentally hinges on the
accurate identification of temporal correlations between varied financial
entities, such as assets or markets. This strategy aims to identify pairs
that exhibit a high degree of correlation, often demonstrated by synchro-
nized price movements that periodically converge or diverge. However,
discerning these temporal correlations within the dynamic landscape of
financial markets is a complex task, given the market’s ever-changing
nature and the vast array of potential pairs. This complexity requires
the use of advanced quantitative analysis, data mining techniques, and
sophisticated statistical methods to uncover patterns, correlations, and
complex interdependencies. The transient nature of these relationships,
which can evolve due to changing market conditions, regulatory changes,
and macroeconomic factors, adds to the challenge.

Traditionally, the identification of temporal correlations among financial
entities was a manual process, conducted by teams of experts in finan-
cial institutions who closely analyzed market behaviors. These traditional
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methods focused on developing statistical techniques to identify temporal
correlations, but such methods are static and limited to basic data analysis
such as price trends. The rise of machine learning has ushered in a new era,
highlighting its potential in identifying crucial temporal correlations for
pair trading strategies. Machine learning algorithms have shown superior-
ity in processing large datasets, identifying nonlinear relationships, and
detecting complex dependencies, often outperforming traditional statisti-
cal methods and human capabilities. Despite the promising potential of
machine learning to identify correlated assets and markets for pair trading,
the field remains underexplored, which calls for thorough research and
development to fully harness its capabilities.

The application of machine learning to identify temporal correlations
in pair trading presents significant challenges. The first challenge is the
reliance of machine learning models on high-quality, diverse feature-rich
data. Although the financial sector provides ample data like stock prices,
the simplicity of such time series data may limit the effectiveness of ad-
vanced machine learning models, which thrive on processing complex,
multidimensional inputs. To effectively leverage machine learning in pair
trading, it is crucial to develop innovative methods that integrate addi-
tional information from various sources, enriching the learning process.
The second challenge is the dynamic, ever-changing nature of financial
markets, influenced by factors like economic policies, geopolitical events,
and market sentiment. These changes can significantly alter asset pair
relationships, making them volatile and time sensitive. Machine learning
models must therefore be designed to continuously adapt and learn from
these changes, which requires sophisticated algorithms and models.

In this study, we explore machine learning applications in the context
of pair trading. We introduce a new framework, the Multi-Modal Tem-
poral Relation Graph Learning (MMTRGL), which uniquely combines
high-dimensional feature data and time-series data to identify tempo-
ral correlations among financial entities. This approach utilizes temporal
graph learning, a method that has recently shown promising results. The
contributions of this paper are threefold:

We examine the challenges and requirements of applying machine
learning to identify temporal correlations in pair trading, emphasizing the
importance of integrating information from various sources.

We present MMTRGL, a novel framework that seamlessly assimilates
information from different modalities, bridging the gap between temporal
correlation identification and temporal graph learning. This framework
includes a mechanism for constructing a dynamic graph that incorporates
both time series data (like price trends) and discrete feature informa-
tion (such as sector classifications), and a neural model equipped with a
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memory-based dynamic graph neural network, effective in temporal graph
learning. MMTRGL adeptly tackles the challenges of applying machine
learning in pair trading.

Through empirical analysis using real-world data, we show that MMTRGL
consistently outperforms existing benchmark methods in identifying and
inferring temporal correlations. This highlights its potential in detecting
pair trading opportunities and exploiting pricing anomalies. In addition,
an ablation study assesses the impact of excluding feature information on
entities and their higher-order structural relationships. The results validate
the significance of this information in inferring temporal correlations, con-
firming MMTRGL’s effectiveness, and offering insights for future machine
learning applications in finance.

4.2 related work

The field of machine learning, particularly neural network-based mod-
els, has significantly benefited from advances in computational resources.
These models have demonstrated remarkable proficiency in deriving in-
sights from complex datasets, including those involving images, languages,
and networks. The financial markets, with their intricate and dynamic
characteristics, are particularly well suited for the application of machine
learning techniques. The potential for financial benefits and growth has
attracted considerable attention from the research community to this area.
For further details on this topic, the reader is directed to the work of
Ozbayoglu (2020) [ozbayoglu2020deep].

Much of the existing research in this domain has focused on stock price
data, which represents a relatively simplistic form of time-series data.
This focus has limited the ability to fully exploit the potential of machine
learning in uncovering significant patterns within these markets.

In more recent developments, large language models like ChatGPT
[chen2023chatgpt] have been used to extract features from financial news,
which aids the learning process. However, the integration of these features
with stock price data often involves a basic concatenation approach, which
presents challenges in effectively combining different types of information
for financial market analysis. This paper addresses such challenges by
focusing on the identification of temporal correlations for pair trading. We
introduce MTRGL, a novel approach that provides a more sophisticated
method for merging multimodal data, thereby revealing deeper structural
insights into financial markets.
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Figure 4.2: Depiction of Temporal Graph Construction and Training Methodology
in MTRGL. Figure 4.2(a) illustrates the segmentation of time series
data from [0, T] into segments ∆1, ..., ∆n and their integration with
feature data to form a series of temporal investment graphs G1, ..., Gn.
In contrast, Figure 4.2(b) visualizes the training mechanics of MTRGL,
where the graphs are processed in batches for model refinement. The
event batch losses Bi, represented as L(Bi, θ

(j)
k ), are computed using

parameters θ
(j)
k , derived from the k-th epoch and j-th iteration. The

parameters obtained from the last iteration of an epoch are used as
starting points for the next epoch, indicated by θ

(K−1)
k = θ

(0)
k+1.
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Figure 4.3: Depiction of Memory Update Mechanics in MTRGL. Each graph,
labeled as Gi, undergoes processing as an event batch. This process
not only updates the model but also rejuvenates the memory for
subsequent batches.
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4.3 methodology

Let us define A = A1, A2, ..., An as a set of n entities under scrutiny,
representing companies, assets, or markets. Each entity Ai is associated
with a dynamic feature vector Xi(t) = (x(1)(t), x(2)(t), ..., x(m)(t)), where
x(j)(t) denotes the j-th feature of entity Ai at time t. X (t) symbolizes the
aggregate of feature vectors for A at time t. Furthermore, Pi(t) : t 7→
R represents the trading price time series for entity Ai, with Pi([0, t])
denoting the time series information for entity Ai within the interval [0, t].
The set P = Pi(t) symbolizes the time series associated with the entities
in A. Additionally, P([0, t]) = Pi([0, t])|Pi(.) ∈ P denotes the collection of
time series information for all entities within the interval [0, t].

A key element in pair trading is the identification of temporal cor-
relations among entities based on their historical and feature data. To
formalize, let S(Pi(t), Pj(t)) represent a predefined measure of correla-
tion between two time series, such as the normalized historical differ-
ence (NHD) according to [23], and let γ be a predetermined thresh-
old. The objective is to identify pairs of entities Ai, Aj within the set
A, with their feature vectors X and time series data P([0, T]), such that
S(pi([T, T + δ]), pj([T, T + δ])) ≥ γ for a certain δ > 0.

Overview

This document introduces MTRGL, a novel framework designed to
pinpoint correlated pairs as a temporal graph prediction challenge. This
method integrates both time series data and specific features of companies
into a cohesive graph structure. Initially, MTRGL assembled a sequence of
graphs, representing each entity as a node, and temporal information as
dynamic links. This methodology offers an elaborate sequential portrayal
of each entity’s historical and current data. Moreover, MTRGL utilize a
custom-designed memory-based dynamic graph neural network model,
proven effective in temporal graph inference tasks. The primary aspect of
MTRGL is its graph training phase, which uses a contrastive learning tech-
nique for model training via the prediction of future inter-company edges.
This training strategy enhances the model’s forecast accuracy for potential
inter-company relations through an evolving sequence of temporal graphs,
resulting in precise and durable future projections. The design of the
MTRGL framework amalgamates time series and feature data, presenting
a distinct model capable of handling the dynamic nature of the involved
data. Further sections elaborate on each algorithmic element in detail.
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Temporal Graph Construction

Given data within the time frame [0, T], it is initially partitioned into K
smaller intervals, Ω = ∆i i=1,...,K. We postulate that each interval ∆i is uni-
form in size, |∆i| = δ = T

K , simplifying Ω as [0, δ), [δ, 2δ), ..., [(K− 1)δ, Kδ).
Assuming S(Pi(t), Pj(t)) 7→ [0, 1] as a measure function (for simplicity,

we use the NHD) for correlating two time series, and γ as a preset thresh-
old, we construct the k-th temporal graph Gk corresponding to the interval
∆k as follows.

• For each entity Ai, we introduce a vertex vi into the graph.

• An edge eij(t) is formed between vertices vi and vj if S(Pi(∆k), Pj(∆k)) ≥
γ.

• We assign a timestamp t = (k− 1
2 )δ to the aforementioned edge.

The entire process for constructing the temporal graph is encapsulated
in Algorithm ??. The sequence of temporal graphs thus formed is denoted
as G = Gi i=1,...,K, and the vertex set (entities) within G is represented as
V = 1, ..., n. In alignment with dynamic graph learning conventions, we
refer to each edge in G as an event.

Advantage: Transforming temporal correlation analysis into a temporal
graph learning framework offers substantial benefits, as supported by
extensive research and literature. The temporal graph prediction issue has
been extensively explored, providing a solid base for our approach. Recent
developments, especially in temporal graph neural networks, have shown
significant efficacy in temporal graph learning challenges. By translating
the task of identifying correlated pairs into the domain of temporal graph
learning, we achieve seamless integration of both time series and feature
data for each trading entity, while also leveraging their interrelations. This
dual advantage allows for more comprehensive and accurate interpreta-
tions of dynamic market data, thereby enhancing our ability to make more
effective and precise predictions in pair trading contexts.

Temporal Graph Neural Networks

Temporal graph neural networks (TGNNs) have demonstrated their
strength as neural models, particularly in predicting temporal graph
behavior. A specific category, Memory-based TGNNs (MTGNNs), has
outperformed their memory-less counterparts [24]. A notable characteristic
of MTGNNs is their incorporation of a memory module, which acts as
a filter, continuously refining data from both new and historical graph
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events. Consequently, MTGNNs efficiently grasp extensive dependencies
and deliver superior performance across various dynamic graph tasks [25].

In our research, we adopt and customize MTGNNs as our neural model.
Following the guidelines in [25] [26], our MTGNN is structured with an
encoder-decoder configuration. The encoder in MTGNN consists of three
key modules: msg (message), mem (memory), and emb (embedding). The
encoder’s output is then inputted into a decoder (here, a basic two-layer
MLP) to perform the inference task. The subsequent sections provide
detailed descriptions of each module within the MTGNN.

Encoder

The MTGNN encoder contains three modules: message, memory, and
embedding, each described separately for clarity. Figure 4.3 shows the
interaction of data among these modules.

message Each node i involved in an event (edge) generates a message
to update its memory state. For an interaction event eij(t) between a source
node i and a target node j at time t, two messages are formulated:

mi(t) = msg(si(t−), sj(t−), eij(t), ψ(t− t′i)),

mj(t) = msg(sj(t−), si(t−), eij(t), ψ(t− t′j)).
(4.1)

Here, si(t−) and sj(t−) represent the memory states of nodes i and j just
before the event at time t. msg(.) is the message function and t′j signifies
the timestamp of the last event involving node j. The time encoding
function ψ(.) [27] transforms the time interval into a d-dimensional vector.
We opt for the widely used identity message function that outputs the
concatenation of input vectors [25] [26].

memory The memory state of a node is refreshed with each event
involving that node:

si(t) = mem(mi(t), si(t−)). (4.2)

In scenarios where interaction events include two nodes i and j, the
memories of both nodes are updated following the event. mem denotes
a learnable memory update function. In our implementation, we utilize
the gated recurrent unit (GRU) [28]. The memory module serves as an
iterative filter, assimilating information from both new and historical
temporal graph data. Hence, it capably captures long-range dependencies.
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embedding The objective of the embedding module in the temporal
domain is to produce representations z(t−) right before the occurrence of
the subsequent event at any given time t. For this purpose, we utilize a
temporal graph attention network with L layers to accumulate information
about the neighborhood.

The enhancement of the memory vector of a specific entity, say Ai, is
carried out by combining it with the corresponding node feature to form
z(0)i (t) = si(t) + Xi(t). This fusion allows the model to benefit from the
up-to-date memory state si(t) and the feature of the time-variant nodes
Xi(t). Following this, for every layer in the range 1 ≤ l ≤ L, neighborhood
data is consolidated using multi-head attention [27], as detailed in the
following equation:

z(l)i = mlp(l)(z(l−1)||z̃k(l)),

z̃k(l) = mha(l)(q(l)i(t), K(l)i(t), V(l)i(t)),

q(l)(t) = zi(l−1)||ψ(0),

K(l)
i (t) = V(l)i(t) =

 z(l−1)
i ||eπi(1)(tπi(1))||ψ(t− tπi(1))

...
z(l−1)

i ||eπi(N)(tπi(N))||ψ(t− tπi(N))

 .

(4.3)

In these formulas, || represents the operation of vector concatenation,
mlp(.) are single-layer feedforward networks with a dimensionality of d,
and mha(.) stands for multi-head attention functions with queries q(.),
keys K(.), and values V(.). The receptive field of each node i is confined to
its most recent N events, denoted as πi = eπi(1)(tπi(1)), eπi(1)(tπi(2)), ..., eπi(N)(tπi(N)),
where π indicates a permutation, and πi(.) symbolizes the temporal neigh-
bors of node i.

Decoder

Our approach simplifies the identification of temporal correlations to a
task of predicting temporal links. The decoder calculates the probability
of an event eij(t) based on the pre-event representations zi(t−) and zj(t−)
generated by the encoder. This computation is performed using a two-layer
MLP followed by the sigmoid function σ(.) as shown below:

p̂ij(t) = σ(MLP(zi(t−)||zj(t−))). (4.4)
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4.4 model training and inference

For training the model, we utilize binary cross-entropy as the loss
function and apply a contrastive learning approach:

L = − ∑
eij(t)∈E

[log p̂ij(t) + log(1− p̂ik(t))], (4.5)

wherein a random negative destination node is selected as k, and p̂ik(t) is
computed in a similar fashion using zi(t−) and zk(t−). This method helps
the neural model in assimilating contrastive signals extracted from the
graphs formed.

In addition, a batch temporal training technique is adopted for effi-
ciency. Consecutive events are grouped into a temporal batch, allowing
simultaneous processing of events within that batch. For nodes involved
in numerous events in a single batch, we apply the most recent message
aggregator, which retains only the latest message for each node in the
batch, according to the practices of [25]. To prevent information leakage,
where the data of a batch might influence its own event prediction, we
employ a lag-one scheme, using the temporal batch Bi−1 to update the
memory state and create embeddings to predict Bi.

Theorem 4.1 (Multi-modal Temporal Relation Graph Construction). Given
a set of entities A = {A1, ..., An}, a number of time intervals K, a threshold γ for
correlation and a measure of covariance S(., .), there exists a sequence of temporal
graphs G = {G1, ..., GK} that represent the relationships between entities over
time.

Proof. 1. Initialization:

• Define an empty list G to store the constructed graphs.

• Divide the set A into K intervals {∆1, ..., ∆K}.

2. Graph Construction:

• For each interval ∆i ∈ {∆1, ..., ∆K}:
– Initialize graph Gi.

– Create a vertex vj for each entity Aj ∈ A with feature Xj.

– Create an edge eij(t) between vertices vi and vj if and only
if S(Pi(∆k), Pj(∆k)) ≥ γ.

– Assign t = (k− 1
2 )δ and append Gi to G.

3. Return:
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• The sequence of temporal graphs G represents the multi-modal
temporal relation graph constructed over the specified intervals
and correlation threshold.

*Q.E.D.*

Theorem 4.2 (Training Procedure for Temporal Graph-based Model). Given
a temporal graph sequence G = {G1, ..., GK}, a number of epochs T, and initial
memory state S0 and model parameter θ

(0)
0 , a neural model can be trained using

contrastive learning.

Proof. 1. Initialization:

• Initialize memory vectors S0 ← 0.

• Initialize model parameters θ
(0)
0 ← 0.

2. Epoch Iteration:

• For each epoch t = 1 to T:

– For each graph Gi ∈ {G2, ..., GK}:

* Define positive batch B+
i ← Ei.

* Sample negative events to create negative batch B−i .

* Combine batches to form B̄i = B−i ∪ B+
i .

* Use the temporal batch from the previous iteration to
update the memory and embedding:

· B̄i−1 ← Temporal batch from last iteration.

· Mi = msg(Si−1, B̄i−1) (Compute messages for the events in the batch).

· Si = mem(Si−1, Mi) (Update memory with the computed message).

· Hi = emb(Si, Ai) (Compute the embedding).

* Compute the loss L(Hi, Bi) as defined in Equation (4.5)
and update the model parameter using a training algo-
rithm (e.g., backpropagation and Adam).

3. Return:

• The trained neural model captures the temporal dynamics and
relationships encoded in the sequence of temporal graphs G.

*Q.E.D.*

4.5 convergence analysis

In this section, we analyze the convergence properties of the minibatch
stochastic gradient descent (SGD) algorithm applied to our model. We
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utilize a temporal graph neural network model, which involves layers
of graph attention and a two-layer MLP for decoding. Our analysis as-
sumes that the model’s loss function can be expressed as a sum of convex
functions and is Lmax-smooth. Most lemmas and theorems were adapted
from [29], and we have revised and tailored them for this thesis.

Minibatch SGD Algorithm

Minibatch SGD is a variant of the gradient descent algorithm that
balances the benefits of stochastic and batch gradient descent by using
small, random subsets of the data for each parameter update. Here is the
basic algorithm:

Algorithm 1 Minibatch Stochastic Gradient Descent

1: Initialize parameters x0.
2: for each iteration t = 0, 1, 2, . . . , T − 1 do
3: Sample a minibatch Bt from the data.
4: Compute the gradient estimate: ∇ fBt(xt) = 1

|Bt| ∑i∈Bt
∇ fi(xt).

5: Update the parameters: xt+1 = xt − ηt∇ fBt(xt).
6: end for
7: return xT.

Assumptions

To analyze the convergence of minibatch SGD, we make the following
assumptions:

Definition 4.3 (Convexity). A function f (x) is convex if for all x, y and
θ ∈ [0, 1], the following holds:

f (θx + (1− θ)y) ≤ θ f (x) + (1− θ) f (y). (4.6)

This implies that the function lies below the line connecting any two points
on its graph, indicating that there are no local minima outside the global
minimum.

Definition 4.4 (Lmax-Smoothness). A function f (x) is Lmax-smooth if for
all x, y, the following holds:

∥∇ f (x)−∇ f (y)∥ ≤ Lmax∥x− y∥. (4.7)

This condition ensures that the gradient does not change too rapidly,
providing an upper bound on the Lipschitz constant of the gradient.
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Notice that while the binary cross-entropy loss function in equation (4.5)
is convex with respect to the model’s parameters in a simple single layer
setup, adding multiple layers and increasing the input dimensions of the
loss function result in a non-convex optimization landscape. Thus we need
the convex assumptions.

Remark 4.5 (Minibatch Distribution). We impose that the batches B are
sampled uniformly among all subsets of size b in {1, . . . , n}. This means
each batch is sampled with probability

1
(n

b)
=

(n− b)!b!
n!

. (4.8)

The expected minibatch gradient is given by

E[∇ fB(x)] =
1
(n

b)
∑

B⊂{1,...,n},|B|=b
∇ fB(x), (4.9)

where
∇ fB(x) =

1
b ∑

i∈B
∇ fi(x). (4.10)

Each sample i appears in (n−1
b−1) batches. Therefore, the expected gradient

is:

E[∇ fB(x)] =
1
(n

b)

n

∑
i=1
∇ fi(x) ·

(
n− 1
b− 1

)
· 1

b
(4.11)

=
1
b
·
(n−1

b−1)

(n
b)

n

∑
i=1
∇ fi(x) (4.12)

=
1
n

n

∑
i=1
∇ fi(x) = ∇ f (x). (4.13)

Thus, the expected minibatch gradient equals the full gradient, ∇ f (x).

Lemmas and Theorems

Definition 4.6 (Minibatch Gradient Noise). Let Assumption (Sum of Lmax-
Smooth) hold, and let b ∈ {1, . . . , n}. We define the minibatch gradient
noise as

σ∗b ≜ inf
x∗∈arg min f

Var[∇ fB(x∗)], (4.14)

where B is sampled according to the distribution specified in Remark 1 .

Lemma 4.7. If f : Rd → R is L-smooth, then for all x, y ∈ Rd,
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f (y) ≤ f (x) + ⟨∇ f (x), y− x⟩+ L
2
∥y− x∥2. (4.15)

Proof. Let x, y ∈ Rd be fixed. Define φ(t) := f (x + t(y− x)). Using the
Fundamental Theorem of Calculus, we have

f (y) = f (x) +
∫ 1

0
⟨∇ f (x + t(y− x)), y− x⟩ dt. (4.16)

This can be rewritten as

f (y) = f (x) + ⟨∇ f (x), y− x⟩

+
∫ 1

0
⟨∇ f (x + t(y− x))−∇ f (x), y− x⟩ dt. (4.17)

Applying the Cauchy-Schwarz inequality to the integrand gives

f (y) ≤ f (x) + ⟨∇ f (x), y− x⟩

+
∫ 1

0
∥∇ f (x + t(y− x))−∇ f (x)∥∥y− x∥ dt. (4.18)

Using the L-smoothness condition ∥∇ f (x+ t(y− x))−∇ f (x)∥ ≤ Lt∥y−
x∥, we have

f (y) ≤ f (x) + ⟨∇ f (x), y− x⟩

+
∫ 1

0
Lt∥y− x∥2 dt. (4.19)

Evaluating the integral, we get

f (y) ≤ f (x) + ⟨∇ f (x), y− x⟩+ L
2
∥y− x∥2. (4.20)

Lemma 4.8 (Convex and L-Smooth Function Property). Let f : Rd → R be
a convex and L-smooth function. Then, for all x, y ∈ Rd, we have

1
2L
∥∇ f (y)−∇ f (x)∥2 ≤ f (y)− f (x)− ⟨∇ f (x), y− x⟩.

Proof. To prove the inequality, fix x, y ∈ Rd and start by using the convexity
and smoothness of f to write, for every z ∈ Rd,
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f (x)− f (y) = f (x)− f (z) + f (z)− f (y). (4.21)

Using the first-order condition for convexity and lemma 4.7, we have:

f (x)− f (z) ≤ ⟨∇ f (x), x− z⟩, (4.22)

and
f (z)− f (y) ≤ ⟨∇ f (y), z− y⟩+ L

2
∥z− y∥2. (4.23)

Substituting these into the equation gives:

f (x)− f (y) ≤ ⟨∇ f (x), x− z⟩+ ⟨∇ f (y), z− y⟩+ L
2
∥z− y∥2. (4.24)

To obtain the tightest upper bound, minimize the right-hand side with
respect to z, by differentiating and setting the gradient to zero, which
gives:

z = y− 1
L
(∇ f (y)−∇ f (x)). (4.25)

Substituting this z back, we have:

f (x)− f (y) ≤ ⟨∇ f (x), x− z⟩+ ⟨∇ f (y), z− y⟩+ L
2
∥z− y∥2. (4.26)

This simplifies to:

= ⟨∇ f (x), x− y⟩ − 1
L
∥∇ f (y)−∇ f (x)∥2 +

1
2L
∥∇ f (y)−∇ f (x)∥2, (4.27)

which further simplifies to:

= ⟨∇ f (x), x− y⟩ − 1
2L
∥∇ f (y)−∇ f (x)∥2. (4.28)

Thus, the inequality is proved.

Definition 4.9. Let Assumption (Sum of Lmax–Smooth) hold, and let b ∈
{1, . . . , n}. We say that f is Lb-smooth in expectation if for all x, y ∈ Rd,

1
2Lb

E
[
∥∇ fB(y)−∇ fB(x)∥2] ≤ f (y)− f (x)− ⟨∇ f (x), y− x⟩,

where B is sampled according to Remark 1.
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Lemma 4.10. Let Assumptions (Sum of Lmax-Smooth) and (Sum of Convex)
hold. Then for all x, y ∈ Rd, the function f is Lb-smooth in expectation over
minibatches, such that

1
2Lb

EBt

[
∥∇ fBt(y)−∇ fBt(x)∥2] ≤ f (y)− f (x)− ⟨∇ f (x), y− x⟩, (4.29)

where Bt is a minibatch sampled uniformly from the dataset and

Lb =
n(b− 1)
b(n− 1)

L +
n− b

b(n− 1)
Lmax. (4.30)

Proof. See Proposition 3.8 in [30].

Lemma 4.11. If Assumptions (Sum of Lmax-Smooth) and (Sum of Convex) hold,
then for every x ∈ Rd and every x∗ ∈ arg min f , we have

1
2Lb

E
[
∥∇ fBt(x)−∇ fBt(x∗)∥2] ≤ f (x)− inf f ,

where Lb is the smoothness constant, and Bt represents a minibatch sampled from
the dataset.

Proof. To prove the lemma, apply the Lb-smoothness condition for the
function f using minibatches. Let y = x∗, where x∗ is a minimizer of f , so
that f (x∗) = inf f and ∇ f (x∗) = 0. By the lemma 4.10, we have:

1
2Lb

EBt

[
∥∇ fBt(y)−∇ fBt(x)∥2] ≤ f (y)− f (x)− ⟨∇ f (x), y− x⟩. (4.31)

Substituting y = x∗, we get:

1
2Lb

EBt

[
∥∇ fBt(x∗)−∇ fBt(x)∥2] ≤ f (x∗)− f (x)− ⟨∇ f (x), x∗ − x⟩.

(4.32)
Since ∇ f (x∗) = 0, the inner product ⟨∇ f (x), x∗ − x⟩ becomes zero:

1
2Lb

EBt

[
∥∇ fBt(x∗)−∇ fBt(x)∥2] ≤ f (x∗)− f (x). (4.33)

Recognizing that f (x∗) = inf f , this simplifies to:

1
2Lb

E
[
∥∇ fBt(x)−∇ fBt(x∗)∥2] ≤ f (x)− inf f . (4.34)
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Thus, the expected squared norm of the gradient difference over a
minibatch is bounded by the difference between the function value at x
and its minimum.

Lemma 4.12. Let Assumptions (Sum of Lmax-Smooth) and (Sum of Convex)
hold. Then

E
[
∥∇ fB(x)∥2] ≤ 4Lb( f (x)− inf f ) + 2σ∗b , (4.35)

where B is a minibatch sampled uniformly from the dataset.

Proof. Start by expressing the squared norm of the minibatch gradient as:

∥∇ fB(x)∥2 = ∥∇ fB(x)−∇ fB(x∗) +∇ fB(x∗)∥2 . (4.36)

Applying the inequality (a + b)2 ≤ 2a2 + 2b2, this becomes:

∥∇ fB(x)∥2 ≤ 2 ∥∇ fB(x)−∇ fB(x∗)∥2 + 2 ∥∇ fB(x∗)∥2 . (4.37)

Taking the expectation over the minibatch B, we obtain:

EB
[
∥∇ fB(x)∥2] ≤ 2EB

[
∥∇ fB(x)−∇ fB(x∗)∥2

]
+ 2EB

[
∥∇ fB(x∗)∥2

]
.

(4.38)
Using lemma 4.11 for minibatches, we have:

EB

[
∥∇ fB(x)−∇ fB(x∗)∥2

]
≤ 2Lb( f (x)− inf f ). (4.39)

The second term EB

[
∥∇ fB(x∗)∥2

]
represents the variance of the gradi-

ent noise at the minimizer, which is σ∗b .
Thus, substituting these back gives:

EB
[
∥∇ fB(x)∥2] ≤ 4Lb( f (x)− inf f ) + 2σ∗b . (4.40)

This completes the proof.

Theorem 4.13. Let Assumptions (Sum of Lmax-Smooth) and (Sum of Convex)
hold. Consider (xt)t∈N a sequence generated by the (MiniSGD) algorithm, with
a sequence of step sizes satisfying 0 < γt ≤ 1

4Lb
. It follows that for every T ≥ 1,

x∗ ∈ arg min f , and x̄T
def
= 1

∑T−1
t=0 γt

∑T−1
t=0 γtxt,

E [ f (x̄T)− inf f ] ≤ ∥x0 − x∗∥2

∑T−1
t=0 γt

+
2σ∗b ∑T−1

t=0 γ2
t

∑T−1
t=0 γt

. (4.41)
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Proof. Let x∗ ∈ arg min f , so we have σ∗b = V[∇ fB(x∗)]. Start by analyzing
the behavior of ∥xt+1 − x∗∥2. By developing the squares, we obtain

∥xt+1 − x∗∥2 = ∥xt − x∗∥2 − 2γt⟨∇ fBt(xt), xt − x∗⟩+ γ2
t ∥∇ fBt(xt)∥2.

(4.42)
Taking the expectation conditioned on xt, using the convexity of f and

lemma 4.12, we can write

E
[
∥xt+1 − x∗∥2 | xt

]
= ∥xt − x∗∥2 + 2γt⟨∇ f (xt), x∗ − xt⟩
+ γ2

t E
[
∥∇ fBt(xt)∥2 | xt

]
.

(4.43)

Using the first order condition of convexity of f , this becomes

≤ ∥xt − x∗∥2 − 2γt( f (xt)− inf f ) + γ2
t E
[
∥∇ fBt(xt)∥2 | xt

]
. (4.44)

Applying Lemma 4.12, we have

≤ ∥xt − x∗∥2 + 2γt(2γtLb − 1)( f (xt)− inf f ) + 2γ2
t σ∗b . (4.45)

Given that γt ≤ 1
4Lb

, it follows

≤ ∥xt − x∗∥2 − γt( f (xt)− inf f ) + 2γ2
t σ∗b . (4.46)

Rearranging and taking the expectation, we get

γtE [ f (xt)− inf f ] ≤ E
[
∥xt − x∗∥2]

−E
[
∥xt+1 − x∗∥2]+ 2γ2

t σ∗b .
(4.47)

Summing over t = 0, . . . , T − 1 and using telescopic cancellation gives

T−1

∑
t=0

γtE [ f (xt)− inf f ] ≤ ∥x0− x∗∥2−E
[
∥xT − x∗∥2]+ 2σ∗b

T−1

∑
t=0

γ2
t . (4.48)

Since E
[
∥xT − x∗∥2] ≥ 0, dividing both sides by ∑T−1

t=0 γt gives:

1

∑T−1
t=0 γt

T−1

∑
t=0

γtE [ f (xt)− inf f ] ≤ ∥x0 − x∗∥2

∑T−1
t=0 γt

+
2σ∗b ∑T−1

t=0 γ2
t

∑T−1
t=0 γt

. (4.49)
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Finally, define x̄T
def
= 1

∑T−1
t=0 γt

∑T−1
t=0 γtxt and use the convexity of f together

with Jensen’s inequality to conclude

E [ f (x̄T)− inf f ] ≤ E

[
1

∑T−1
t=0 γt

T−1

∑
t=0

γt( f (xt)− inf f )

]

≤ ∥x0 − x∗∥2

∑T−1
t=0 γt

+
2σ∗b ∑T−1

t=0 γ2
t

∑T−1
t=0 γt

.

(4.50)

Theorem 4.14. Let Assumptions (Sum of Lmax-Smooth) and (Sum of Convex)
hold. Consider (xt)t∈N a sequence generated by the (MiniSGD) algorithm, with
a sequence of constant step sizes γt ≡ γ ≤ 1

4Lb
. It follows that for every T ≥ 1,

x∗ ∈ arg min f and x̄T
def
= 1

T ∑T−1
t=0 xt,

E [ f (x̄T)− inf f ] ≤ ∥x0 − x∗∥2

γT
+ 2γσ∗b . (4.51)

In particular, if for a fixed horizon T ≥ 1 we set γ = γ0√
T

for some γ0 ≤ 1
4Lb

, then

E [ f (x̄T)− inf f ] ≤ ∥x0 − x∗∥2

γ0
√

T
+

2γ0σ∗b√
T

= O
(

1√
T

)
. (4.52)

Proof. This result is a direct consequence of Theorem 4.13. By setting the
step size γt = γ, the summations become:

T−1

∑
t=0

γt = γT and
T−1

∑
t=0

γ2
t = γ2T. (4.53)

Substituting these into the bound from Theorem 4.13:

E [ f (x̄T)− inf f ] ≤ ∥x0 − x∗∥2

γT
+

2σ∗b γ2T
γT

=
∥x0 − x∗∥2

γT
+ 2γσ∗b . (4.54)

Now, consider setting γ = γ0√
T

. Then the bound becomes:

E [ f (x̄T)− inf f ] ≤ ∥x0 − x∗∥2

γ0
√

T
+

2γ0σ∗b√
T

. (4.55)

This shows that the expected difference between the function value at
x̄T and the infimum decreases at a rate of O

(
1√
T

)
. This means that as the

number of iterations T increases, the expected error reduces proportionally
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to 1/
√

T, implying that to halve the error, the number of iterations needs
to be quadrupled.

Corollary 4.15. (O(1/ε2) Complexity). Consider the setting of Theorem 6.9. For
every ε > 0, we can guarantee that

E [ f (x̄T)− inf f ] ≤ ε (4.56)

provided that

γ =
γ0√

T
, γ0 = min

(
1

4Lb
,
∥x0 − x∗∥√

2σ∗b

)
, (4.57)

and

T ≥
(
∥x0 − x∗∥√

σ∗b
+ ∥x0 − x∗∥2Lb

)2
1

16ε2 . (4.58)

Proof. This result is a direct consequence of Theorem 6.9 and Lemma A.1
from [29], with A = ∥x0 − x∗∥2, B = 2σ∗b , and C = 4Lb.

The O(1/ε2) complexity indicates that the number of iterations T re-
quired for the algorithm to reach an expected error less than ε in the
function value is inversely proportional to the square of ε. This implies
that as the desired accuracy ε decreases, the number of iterations needed
increases quadratically.

4.6 experimental analysis

This section provides a detailed examination of the method we have
proposed, addressing primarily two essential research questions. Q1: What
is the comparative performance of our method compared to existing bench-
marks to automatically identify temporal correlations between entities?
Q2: Does the inclusion of multimodal data contribute to an improved
solution?

Dataset and Preparation

We conducted our evaluation using financial data available from Yahoo
Finance and Naver Finance. Our focus was on three specific indices: the
Korea Composite Stock Price Index (KOSPI), the Standard & Poor’s 500

Index (S&P 500), and the Heng Seng Index (HSI), which provided a varied
analysis in different markets. The study intentionally concentrates on
the period before the pandemic, precisely the daily closing prices from
2015 to 2019, to avoid the unpredictable impacts caused by the COVID-19
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pandemic. Variables such as market capitalization and sector data were
included in the feature vectors for each entity.

The data were segregated into training, validation, and testing sets in a
chronological manner to ensure a thorough evaluation. The division was
in a 60/20/20 (%) ratio. The first three years were utilized for training,
the subsequent year for validation, and the last year as a test set. This
arrangement simulates the sequential nature of financial data in a realistic
evaluation setting.

Comparative Methods

We compared our method with four distinct approaches, which served
as our experimental benchmarks. The first uses a basic 2-layer Multi-Layer
Perceptron (MLP), relying exclusively on static features of entities. The
second employs long-short-term memory (LSTM) [31], using historical
pricing data to detect correlations. The third transforms time-series data
into a time-frequency domain, applying a Convolutional Neural Network
(CNN) for learning processes [32]. Furthermore, a conventional statistical
approach based on cointegration (COINT) [31] is included for comparison.
All machine learning techniques (ours included) were trained until they
converged or reached a maximum of 50 epochs, using Adam optimizer
with a learning rate of 0.01 and a weight decay of 0.0001.

Evaluation Metrics

We utilized two primary metrics for performance evaluation: average
precision (AP) and mean absolute percentage error (MAPE). AP is com-
monly used for models that predict categorical outcomes, indicating the
accuracy of correctly identified correlated pairs in our scenario. However,
MAPE assesses the accuracy in predicting the actual value of the correla-
tion, providing insights into the model’s effectiveness in predicting the
degree of correlation between identified pairs.

Findings

Effectiveness Evaluation

We initially assessed the effectiveness of our proposed method, MTRGL.
We opted for a one-month interval for both training and analysis phases,
which allowed us to capture both short-term fluctuations and long-term
trends. The findings of this evaluation are shown in Table 4.1, with values
averaged from five separate runs. The entries in bold represent the highest
performance levels. The symbol ↑ indicates that higher values indicate
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Table 4.1: Performance comparison of MTRGL with baselines.
KOSPI S&P 500 HSI

AP(%) ↑ MAPE ↓ AP(%) ↑ MAPE ↓ AP(%) ↑ MAPE ↓
COINT 55.8 ± 0.5 43.6 ± 1.2 56.6 ± 0.9 40.2 ± 1.3 51.4 ± 0.7 32.8 ± 1.2

MLP 48.2 ± 0.4 45.2 ± 1.6 46.8 ± 0.3 43.2 ± 1.4 44.2 ± 0.4 34.4 ± 1.3
CNN 62.7 ± 0.4 32.8 ± 1.3 64.8 ± 0.3 37.2 ± 1.5 64.2 ± 0.8 25.8 ± 1.4
LSTM 61.4 ± 0.3 30.6 ± 1.5 65.6 ± 0.5 34.8 ± 1.3 61.5 ± 0.5 23.3 ± 1.2

MTRGL (ours) 72.8 ± 0.4 24.2 ± 1.0 74.2 ± 0.4 27.8 ± 1.3 69.8 ± 0.7 16.8 ± 1.4

Table 4.2: Performance of MTRGL w./w.o feature information
KOSPI S&P 500 HSI

AP(%) ↑ MAPE ↓ AP(%) ↑ MAPE ↓ AP(%) ↑ MAPE ↓
MTRGL-one-hot 63.2 ± 0.9 32.2 ± 1.2 64.3 ± 0.2 34.6 ± 1.5 60.8 ± 0.5 21.6 ± 1.9

MTRGL 72.8 ± 0.4 24.2 ± 1.0 74.2 ± 0.4 27.8 ± 1.3 69.8 ± 0.7 16.8 ± 1.4

better results, while ↓ indicates that lower values are preferable. As de-
picted in Table 4.1, MTRGL significantly surpasses existing benchmarks in
forecasting future correlations among entities.

Component Analysis

An ablation study was conducted to confirm the design choices of
MTRGL, focusing on the use of feature data and structural details of the
constructed graph. The influence of feature data is detailed in Table 4.2. In
the MTRGL-one-hot variant, feature vectors are substituted with unique
one-hot identifiers for each entity. The outcomes indicate a considerable
decline in performance when feature data are omitted. The impact of
structural details is summarized in Table 4.3. In the MTRGL-edgeless
variant, the memory module is excluded, relying solely on the memory
vector of each entity for the decoder input. This eliminates the concept
of temporal neighborhood and, consequently, the structural details. As
shown in Table 4.3, removing structural details also results in a reduced
performance for MTRGL.

Table 4.3: Performance of MTRGL w./w.o structural information
KOSPI S&P 500 HSI

AP(%) ↑ MAPE ↓ AP(%) ↑ MAPE ↓ AP(%) ↑ MAPE ↓
MTRGL-edgeless 57.2 ± 1.1 36.2 ± 2.4 58.0 ± 0.9 38.2 ± 2.1 53.6 ± 0.8 26.2 ± 1.4

MTRGL 72.8 ± 0.4 24.2 ± 1.0 74.2 ± 0.4 27.8 ± 1.3 69.8 ± 0.7 16.8 ± 1.4

4.7 conclusion

In this paper, we embark on an exploration of the application of deep
learning in the realm of pair trading, a well-regarded quantitative invest-
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ment strategy. This journey has led to the creation of a unique approach
MTRGL, explicitly designed to amalgamate descriptive and time series
data, thus optimizing the process of discerning temporal correlations in
pair trading. Our empirical evidence shows that MTRGL is highly effective
in automatically identifying correlated pairs, exceeding the performance
of traditional baselines that rely exclusively on descriptive or time-series
data.

A crucial aspect of our approach is the convergence analysis of the deep
learning model. By analyzing the convergence behavior, we ensure that
the model reliably finds optimal solutions and is robust against variations
in input data. The convergence rate indicates how quickly our model can
reach a stable solution, providing insights into its efficiency and reliability
in identifying trading opportunities.

However, a caveat of our work is that it focuses solely on discerning
temporal correlation among entities, without considering the strategy to
position the identified correlated pair. This leaves room for future research,
where we aim to extend our findings and build a comprehensive machine
learning system for pair trading.

Moreover, the novel integration of multi-modal information in our ap-
proach extends beyond the scope of this study and pair trading. Its poten-
tial impact is significant for other quantitative finance-related problems,
and we look forward to seeing how this innovation could transform these
areas in the future.
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O P T I M I Z AT I O N A N D
P E R M U TAT I O N A N A LY S I S
O F C A R B O N D I O X I D E
E M I S S I O N M O D E L S U S I N G
A D VA N C E D R E G R E S S I O N
T E C H N I Q U E S

This paper presents a comprehensive study leveraging Support Vector
Machine (SVM) regression and Principal Component Regression (PCR)
to predict carbon dioxide emissions in a global data set of 62 countries.
Our objective is to understand the factors that contribute to carbon diox-
ide emissions employing permutation importance to identify the most
predictive elements. The analysis provides country-specific emission es-
timates, highlighting diverse national trajectories and pinpointing areas
for targeted interventions in climate change mitigation and sustainable
development.

The study aims to support policy making with accurate predictions of
carbon dioxide emissions, providing nuanced information for formulat-
ing effective strategies to address climate change. By combining detailed
country-level emission estimates with a broader analysis of contributing
factors, this research improves the precision and relevance of policy inter-
ventions, contributing significantly to global environmental sustainability
efforts.

5.1 introduction

Accurate prediction of carbon dioxide emissions is crucial for shaping
effective policies and advancing sustainable development. This study uti-
lizes Support Vector Machine (SVM) regression and Principal Component
Regression (PCR) on a dataset spanning from 1992 to 2019 across 62 coun-
tries to analyze the impact of ten socioeconomic and environmental factors
on carbon dioxide emissions. These factors include population, surface
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area, total consumption of fossil fuel, electricity production, GDP, urban
population, construction value, manufacturing, number of livestock and
agricultural gross production.

Extensive data preprocessing was undertaken to standardize the data
and ensure their stationarity, preparing them for accurate analysis. Hy-
perparameter tuning was performed on the SVM regression model to
optimize its predictive performance. The PCR method was used to ad-
dress multicollinearity among predictor variables, which improved the
robustness of our regression analysis.

The core of this study lies in the evaluation of the predictive accuracy
of both the SVM and PCR models. By comparing predicted emissions
against actual figures, we assess the models’ precision and use Permutation
Importance to determine the relative influence of the examined factors.
This approach not only refines the predictions of the emission, but also
provides policymakers with essential insights to devise effective emission
reduction strategies.

In addition to SVM, PCR serves as a complementary technique that
transforms correlated variables into uncorrelated principal components,
reducing multicollinearity and providing stable estimates of regression
coefficients. This dual approach enhances the reliability of our findings
and offers a comprehensive understanding of the factors that influence
carbon dioxide emissions.

By integrating advanced SVM regression techniques, PCR, and Permu-
tation Importance analysis, this research aims to illuminate the complex
dynamics of carbon emissions. The goal is to support global sustainability
efforts by providing policymakers with informed and actionable insights
into the determinants of carbon dioxide emissions and the effectiveness of
potential mitigation strategies.

5.2 literature review

In recent years, carbon dioxide estimation and prediction have seen a
large increase in the use of machine learning techniques.

Kavoosi et al. [13] forecasted carbon dioxide emissions using a genetic
algorithm (GA). To predict carbon dioxide emissions in China, Sun [14]
employed an optimized grey forecasting model based on Harmony Search.
Abdel [15] presented an Artificial Neural Network model (ANN) to fore-
cast time series of carbon dioxide emissions.

The adaptive neuro-fuzzy inference system (ANFIS), ANN, support
vector regression (SVR), gene expression programming (GEP), particle
swarm optimization (PSO) and backtracking search algorithm (BSA) were
used by Kaboli et al. [16] to estimate electrical energy usage. Lu et al. [18]
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applied a three-layer perceptron neural network to predict transportation-
related CO2 emissions. Gholizadeh and Sabzi [33] estimated the sorption
of CO2 emissions using ANFIS and ANN techniques. Norhayati and
Rashid [34] used real data from a facility involved in the burning of
medical waste to use the ANFIS model to assess CO2 emissions. The CO2

emissions of expanding megacities have also been predicted by Zhang et
al. [35] using the XGBoost model.

When predicting the solubility of various solutes in supercritical carbon
dioxide, Mehdizadeh and Movagharnejad [17] claimed that SVM is more
accurate than semi-empirical models. De Paz [36] suggested that the
prediction of the carbon dioxide exchange rate has been effectively resolved
due to the structural risk minimization principle of SVM [37]. Wang et
al. [19] indicated that SVM is an effective time series prediction method in
machine learning. High-accuracy predictions using SVM were achieved
by Saleh et al. [36], which can provide information on carbon dioxide
emissions.

Mardani et al. [38] reviewed related works on the nexus between carbon
dioxide emissions and economic growth from 1995 to 2017. Subsequently,
Zheng et al. [39] used the logarithmic mean Divisia index (LMDI) to assess
seven socioeconomic factors that have changed CO2 emissions. The ex-
panded STIRPAT decomposition model, the Tapio decoupling model, and
the grey relation analysis were all used by Dong et al. [40] to examine the
connections between CO2 emissions, industrial structure, and economic
growth.

Using a quantile regression model and path analysis of inter-provincial
panel data from 2008 to 2017, Zheng et al. [41] examined the impact
of renewable energy generation on CO2 emissions. According to the
findings, CO2 emissions are less directly impacted by renewable energy,
but are reduced by energy intensity and GDP per capita. Abbasi et al. [42]
used frequency domain causality (FDC) models and unique dynamic
ARDL simulations to examine environmental factors affecting China’s
CO2 emissions from 1980 to 2018.

Siqin et al. [43] explored the relationship between CO2 emissions, ur-
banization, and industrial structure using panel econometric approaches.
Zhang et al. [35] found that population, land area, and GDP continue to be
the main drivers of CO2 emissions when many factors work synergistically.

Furthermore, Wang et al. [44] discussed the influence factors and forecast
of carbon emission in China, emphasizing the importance of structural
adjustments to achieve emission peak. This study highlights the role of
regional industrial structure, energy intensity, and economic development
in shaping emission trajectories.
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Although various machine learning models have been extensively used
in carbon dioxide prediction, the application of Principal Component
Regression (PCR) has also gained traction for its ability to handle mul-
ticollinearity among predictors. PCR transforms the correlated variables
into uncorrelated principal components, which are then used in regression
analysis. This method provides stable and reliable regression coefficients,
which improves the precision of carbon dioxide emission forecasts.

5.3 features

Features play a pivotal role in predictive modeling, especially when
the goal is to understand complex phenomena such as carbon volume.
In this section, we discuss the significance of each feature in relation to
carbon volume, detail the quantification methods, and specify the range of
values. All data were sourced from the World Bank [11] and NationMaster
database. [12]

1. Total Fossil Fuel Consumption (GWh)

• Importance: Critical for assessing a nation’s carbon dioxide
emissions footprint.

• Quantification: Combined fossil fuel energy consumption across
all sectors annually.

• Range: From hundreds to hundreds of thousands of GWh.

• Unit: Gigawatt-hours (GWh).

2. GDP (US $)

• Importance: Indicates economic activity level, correlating with
carbon dioxide emissions.

• Quantification: Annual GDP in purchasing power parity or
nominal values.

• Range: From billions to trillions.

• Unit: US Dollars (USD).

3. Population

• Importance: Directly influences carbon dioxide emissions through
increased demand for energy and services.

• Quantification: Annual population figures.

• Range: From thousands to billions.

• Unit: Individuals.
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4. Urban Population

• Importance: Urbanization increases energy consumption and
carbon dioxide emissions.

• Quantification: Number of individuals living in urban areas.

• Range: From thousands to hundreds of millions.

• Unit: Individuals.

5. Electricity Production (GWh)

• Importance: Source and scale of electricity production impact
carbon dioxide volumes.

• Quantification: Total annual electricity production.

• Range: From thousands to billions of GWh.

• Unit: Gigawatt-hours (GWh).

6. Surface Area (Square KM)

• Importance: Land use and size of a country influence carbon
dioxide emissions.

• Quantification: Total land area.

• Range: From small areas to vast expanses.

• Unit: Square kilometers (km2).

7. Construction Value (US $)

• Importance: Reflects construction activity levels, tied to urban
development and emissions.

• Quantification: Annual financial value of construction.

• Range: Varied, dependent on development stage.

• Unit: US Dollars (USD).

8. Manufacturing (US $)

• Importance: Measures industrial production, a significant factor
in energy use and emissions.

• Quantification: Monetary value of manufactured goods annu-
ally.

• Range: Reflects industrial capacity.

• Unit: US Dollars (USD).

9. Number of Livestock (Heads)
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• Importance: Agricultural activity level indicator, contributing
to methane and carbon dioxide emissions.

• Quantification: Total count of livestock.

• Range: Varies widely.

• Unit: Heads.

10. Agriculture Gross Production (million US $)

• Importance: Economic output of agriculture, influencing land
use and emissions.

• Quantification: Economic value of agricultural production.

• Range: Based on productivity and market value.

• Unit: Million US Dollars (USD).

Before implementing any procedures on our dataset, it is crucial to
pre-process the raw feature data. The first step in this process is standard-
ization, in which we rescale each feature so that it has a mean of 0 and a
standard deviation of 1. This is performed irrespective of the country or
year to which the data pertain. Following standardization, our initial plan
was to apply differencing to achieve stationarity in the data for more reli-
able forecasting. However, upon conducting the Augmented Dickey-Fuller
(ADF) test, we ascertained that our data are already stationary, rendering
the differencing step unnecessary.

In detail, data stationarity implies a constant mean and variance over
time, alongside a consistent covariance between different time intervals
within the time series. This property of stationarity ensures the inde-
pendence of data, a pivotal assumption for many statistical models. The
Augmented Dickey-Fuller (ADF) test is a well-established statistical test
for determining the stationarity of a given time series. It extends the
Dickey-Fuller test by incorporating lagged differences to account for auto-
correlation in the data.

The mathematical representation of the ADF test is as follows:

∆yt = α + βt + γyt−1 + δ1∆yt−1 + δ2∆yt−2 + . . . + δp∆yt−p + εt,

where yt represents the time series data, α is a constant, βt is the coefficient
for a time trend, γ is the coefficient for yt−1, the lagged value of the time
series, δi are the coefficients for the lagged differences, p is the number of
lags included in the model, and εt is the error term.

The coefficient γ is the focus of the test because it is associated with the
lagged value of the time series yt−1. The null hypothesis H0 posits that if
γ = 0, it indicates that the time series has a unit root and is nonstationary.
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The alternative hypothesis posits that if γ < 0, it suggests that the time
series does not have a unit root and is stationary.

5.4 methodology

In this section, we outline the methodology employed to predict car-
bon volume and investigate the importance of factors that contribute to
the prediction. We utilize a support vector machine (SVM) as the pri-
mary machine learning technique and apply Permutation Importance
as a feature selection method to identify the most important factors. To
address multicollinearity in our data, we incorporate Principal Component
Analysis (PCA) and Principal Component Regression (PCR) to reduce
dimensionality and ensure stable estimates of regression coefficients.

Support Vector Regression (SVR)

Support Vector Machine (SVM) is a powerful supervised learning al-
gorithm that aims to find the optimal hyperplane in a high-dimensional
feature space. For predicting carbon dioxide volume based on multiple
factors, we employ support vector regression (SVR), which handles both
linear and non-linear relationships. The primary objective of SVR is to
find a function f (x) that approximates the target variable y as closely as
possible, defined by f (x) = ⟨w, x⟩+ b.

SVR uses a ϵ insensitive loss function, L(y, f (x)) = max(0, |y− f (x)| −
ϵ), to minimize the impact of errors within a certain margin. The optimiza-
tion problem involves minimizing the following.

min
w,b,ξ,ξ∗

1
2
∥w∥2 + C

n

∑
i=1

(ξi + ξ∗i )

subject to the constraints outlined in Chapter 2, Section 2.1.
The SVR can also be extended to solve non-linear problems using kernel

functions, with common choices being Linear, Polynomial, and Radial
Basis Function (RBF) kernels. For more details, please refer to Chapter 2,
Section 2.1 of the Preliminaries.

Permutation Importance

To determine the relative importance of factors, we employ Permutation
Importance as a feature selection technique. Permutation Importance
measures the impact of permuting the values of each feature on the model’s
performance. By ranking the features through this process, we gain insights
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into the factors that have the most significant impact on the volume
of carbon dioxide. This combined approach of SVR and Permutation
Importance allows us to make accurate predictions while identifying the
key drivers behind carbon emissions.

The process of calculating permutation importance and its interpretation
is shown in Theorem 2.1 in the Preliminaries.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a dimensionality reduction
technique that transforms a large set of correlated variables into a smaller
set of uncorrelated variables known as principal components. The primary
goal of PCA is to capture as much variance as possible with the fewest
number of principal components. This process involves the following
steps:

1. Standardization: The data is standardized to have a mean of zero
and a standard deviation of one. 2. Covariance Matrix Computation:
The covariance matrix of the standardized data is computed. 3. Eigen
Decomposition: The eigenvalues and eigenvectors of the covariance matrix
are calculated. The eigenvalues represent the variance captured by each
principal component, while the eigenvectors represent the directions of the
principal components. 4. Principal Components Selection: The principal
components are selected based on their eigenvalues, typically retaining
enough components to explain a desired percentage of the total variance
(e.g., 90%).

Mathematically, if X is the standardized data matrix, then the covariance
matrix C is given by:

C =
1

n− 1
XTX,

The eigenvalues λi and eigenvectors vi are obtained by solving:

Cvi = λivi.

The principal components are then given by:

Z = XV,

where V is the matrix of selected eigenvectors.
PCA transforms correlated variables into uncorrelated principal compo-

nents, effectively reducing multicollinearity in the data. This transforma-
tion is particularly useful in regression analysis, where multicollinearity
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can lead to unstable estimates of regression coefficients. For more details
on the methodology, see Section 2.4 in the preliminaries.

Principal Component Regression (PCR)

Principal Component Regression (PCR) combines PCA and multiple
linear regression. The steps involved in PCR are:

1. PCA on Predictor Variables: Perform PCA on the predictor variables
to obtain the principal components. 2. Selection of Principal Components:
Select a subset of principal components that explain a sufficient amount of
variance. 3. Regression Analysis: Use the principal components selected
as predictors in a multiple linear regression model to predict the response
variable.

The mathematical formulation of PCR is as follows:
1. Let X be the matrix of predictor variables and Y be the response

variable. 2. Perform PCA on X to obtain the principal components Z. 3.
Select the first k principal components Zk that explain a significant portion
of the variance. 4. Fit a linear regression model:

Y = ZkB + E,

where B is the vector of regression coefficients and E is the error term.
PCR effectively addresses multicollinearity by using principal com-

ponents, which are orthogonal to each other, thereby providing stable
estimates of the regression coefficients.

5.5 implementation

In this section, we outline the implementation details of Principal Com-
ponent Regression (PCR) and compare its performance with the Support
Vector Machine (SVM) regression model.

Principal Component Regression (PCR)

To implement PCR, we first perform PCA on the predictor variables to
reduce their dimensionality. The principal components are then used as
predictors in a linear regression model.
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Model’s Fine-Tuning

Hyperparameter tuning is a critical step in the machine learning pipeline,
ensuring that the model is optimized for the given data, thereby improv-
ing generalization on unseen datasets. To fine-tune our Support Vector
Regressor (SVR) model, we embarked on a systematic exploration of
the hyperparameter space using Grid Search coupled with 5-fold cross-
validation.

Hyperparameter Space

The following hyperparameters were considered:

• Kernel: Determines the type of hyperplane used to separate the data.
We experimented with linear, poly, and rbf.

• C (Regularization Parameter): This parameter trades off correct clas-
sification of training examples against maximization of the decision
function’s margin. We tested values in the range [0.1,1,10,100,1000,2000,3000,4000,5000].

• Gamma: Defines how far the influence of a single training example
reaches. We tried both scale and auto.

• Degree: The degree of the polynomial kernel function (poly). Evalu-
ated degrees included 2, 3, and 4, although this parameter is disre-
garded if the kernel isn’t polynomial.

Results

The Grid Search, combined with 5-fold cross-validation, revealed the
optimal hyperparameters for our dataset as:

• Kernel: poly

• C: 2000

• Gamma: auto

• Degree: 2

This configuration was determined to offer the most promising perfor-
mance, balancing the bias-variance trade-off and potentially delivering
superior results on unseen data.
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Principal Component Regression (PCR) Performance

After performing PCA on the predictor variables and selecting the first
three principal components, we used these components as predictors in a
linear regression model. The results of the PCR model are as follows:

• Mean Squared Error: 0.08226991002545095

• R-squared: 0.9431715925806526

• Regression Coefficients: [[0.36246693 -0.00369905 0.05123607]]

The explained variance ratios for the selected principal components are:

• PC1: 0.68652744

• PC2: 0.15766246

• PC3: 0.08149733

The principal component loadings for the first three principal compo-
nents are:

Feature PC1 PC2 PC3

Population 0.288659 -0.469154 0.090625

Surface Area 0.230376 -0.082302 -0.825116

GDP 0.321209 0.391463 0.141022

Total Fossil Fuel Consumption 0.363920 0.075377 -0.016215

Urban Population 0.344907 -0.313251 0.084428

Electricity Production 0.259688 0.438979 -0.340387

Agriculture Gross Production 0.325330 -0.231430 0.242083

Manufacturing 0.345919 0.227373 0.260098

Construction Value 0.339340 0.306241 0.161256

Number of Livestock 0.317710 -0.352596 -0.124784

Table 5.1: Principal Component Loadings

Principal component regression (PCR) effectively addresses the issue
of multicollinearity by transforming the original predictor variables into
orthogonal principal components, thereby providing stable and reliable
regression coefficients.

5.6 performance metrics of regression models

In this section, we present the performance metrics of our regression
models, trained and tested with data from numerous countries to explore
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the dynamics between carbon dioxide emissions and a variety of socioeco-
nomic indicators. We have scrutinized two critical metrics for assessing
model performance: R-squared and mean squared error (MSE) for an
80/20 training/testing split, along with cross-validated scores to ensure
robustness.

Support Vector Regression (SVR) Model

Table 5.2: Performance Metrics for SVR Model (80/20 Training and
Testing Ratio)

Metric/Training-Testing Split 80%/20%
R-squared Score 0.9895

Mean Squared Error 0.0152

Observations from the metrics reveal exceptionally high R-squared
values for the 80/20 split, averaging at 0.9895. Such strong R-squared
values demonstrate the excellent fit of the model to the data set, indicating
that the socioeconomic factors considered possess significant predictive
power for carbon dioxide emissions. The uniformity of these high R-
squared scores in various splits further attests to the stability and reliability
of the model.

MSE scores, indicative of the average squared differences between the
observed and predicted values by the model, are comparatively low, reaf-
firming the precision of the model in forecasting carbon dioxide emissions
and highlighting its accuracy.

The SVR model demonstrates formidable predictive strength, as evi-
denced by high R-squared and low MSE scores, underscoring its utility in
capturing the complex interplay between carbon dioxide emissions and
socioeconomic factors. The performance metrics suggest areas for further
methodological refinement, particularly in exploring different data parti-
tioning strategies to enhance prediction accuracy and mitigate overfitting
risks.

To illustrate the prediction ability of the SVR model more clearly, Figure
1 shows the prediction results versus the actual value of the 80/20 training
and testing split.
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Figure 5.1: SVR Model prediction vs. actual value with 80% training and 20%
testing

From the graph, it is evident that, despite some outliers, most points are
closely aligned with the diagonal line, which represents the accuracy of
the prediction of 100%. Thus, the prediction power of the SVR model is
reliable.

Principal Component Regression (PCR) Model

To validate the robustness of our PCR model, we employed a k-fold
cross-validation. The cross-validated R-squared and MSE scores for the
PCR model are presented below:

Table 5.3: Cross-Validation Performance Metrics for PCR Model
Metric Score
Cross-Validated R-squared Scores [0.9428, 0.8421, 0.9174, 0.9215, 0.8827]
Mean R-squared 0.9013

Cross-Validated MSE Scores [-0.0828, -0.0858, -0.0981, -0.0927, -0.0711]
Mean MSE 0.0861

The cross-validation results indicate a strong average R-squared score of
0.9013, confirming the reliability of the PCR model across different folds of
the dataset. The consistent MSE values further underscore the predictive
accuracy and robustness of the model.
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To illustrate the prediction ability of the PCR model more clearly, Figure
2 shows the prediction results versus the actual value of the 80/20 training
and testing split.

Figure 5.2: PCR Model prediction vs. actual value with 80% training and 20%
testing

From the graph, it is evident that, despite some outliers, most points are
closely aligned with the diagonal line, which represents the accuracy of
the prediction of 100%. Thus, the prediction power of the PCR model is
reliable.

Next, we employ the permutation importance technique to assess the
importance of different factors in our SVR model. As mentioned previously,
permutation importance is a model-agnostic feature importance technique
that evaluates the impact of individual features on the model’s predictions.
It does so by comparing the performance of the model in the original
dataset with its performance in terms of the R-squared score after shuffling
each feature.
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Table 5.4: Feature Importance Ranking for 80%/20% Train-
ing/Testing Split

Rank Feature Importance Value (%)

1 Total Fossil Fuel Consumption (GWh) 36.8243

2 GDP (US $) 13.0691

3 Population 8.3565

4 Urban Population 6.8323

5 Electricity Production (GWh) 2.1137

6 Surface Area (Square KM) 1.7779

7 Construction Value (US $) 1.3473

8 Manufacturing (US $) 1.2966

9 Number of Livestock (Heads) 0.4121

10 Agriculture Gross Production (million US $) 0.2432

From the analysis of feature importances for the 80/20 training/testing
split in the SVR model, we observe the dominant influence of ’Total Fossil
Fuel Consumption (GWh),’, which highlights its pivotal role in predicting
carbon dioxide emissions. This consistency underscores the direct impact
of a nation’s total fossil fuel usage on its carbon dioxide footprint.

The terms ’population’ and ’GDP (US$)’ also consistently rank highly,
reinforcing the significant roles these factors play in the estimation of car-
bon dioxide emissions. The steadfast positions of these features illustrate
the undeniable correlation between population size, economic output, and
carbon dioxide emissions. These elements serve as fundamental drivers
in the models, emphasizing the interplay between demographic scale,
economic activity, and environmental impact.

Although the ’urban population’ consistently emerges as a crucial factor,
its ranking varies slightly, indicating its significant but fluctuating impact
on the predictions of carbon dioxide emissions. This fluctuation suggests
that while urbanization is a key determinant of carbon dioxide emissions,
its relative influence can be modulated by other socioeconomic factors.

’Electricity production (GWh)’ and ’Surface area (KM square)’ exhibit
variable importance, reflecting the nuanced relationship these factors have
with carbon dioxide emissions. Electricity production, in particular, show-
cases how energy generation methods and efficiency levels can significantly
influence a country’s carbon dioxide footprint.

Interestingly, “Construction Value (US $)” and “Manufacturing (US $)”
show a noteworthy presence, pointing to the considerable effect of the
industrial sector on carbon dioxide emissions. These factors highlight the
environmental cost of industrial and construction activities, underscoring
the need for sustainable practices in these areas.
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Less prominently ranked features such as “Number of Livestock (Heads)”
and “Agriculture Gross Production (million US $)” still contribute valu-
able information, suggesting the role of the agricultural sector in carbon
dioxide emissions. Although these factors are lower, they underscore the
broader spectrum of contributors to a nation’s carbon dioxide emissions,
from agriculture to industrial production.

The observed variations in feature importance shed light on the complex
interdependencies among socioeconomic, demographic, and environmen-
tal factors in the carbon dioxide emission dynamics. These insights call
for a deeper exploration into how these variables interact to shape global
carbon dioxide emission profiles, providing valuable guidance for targeted
policy and intervention strategies to mitigate environmental impact.
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Comparing Countries’ Performance

Figure 5.3: Difference of carbon dioxide emission by SVR between actual value
and model prediction results
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Figure 5.4: Percentage difference of carbon dioxide emission by SVR between
actual value and model prediction results
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Figure 5.5: Difference of carbon dioxide emission by PCR between actual value
and model prediction results
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Figure 5.6: Difference of carbon dioxide emission by PCR between actual value
and model prediction results

In our quest to create a predictive model with wide applicability, we
dedicated 80% of a comprehensive dataset from 1992 to 2019, covering 62

countries, to training. This decision was instrumental in enhancing the
model’s ability to predict carbon dioxide emissions globally. Our focus on
16 major economies yielded two series of graphs that not only displayed
the raw differences between predicted and actual carbon dioxide emissions
but also contextualized these differences relative to actual emissions.

Training the model with a comprehensive global dataset allows us to
project the world’s carbon emission expectations onto individual countries.
This approach enables us to assess whether a country’s performance aligns
with global standards, providing a benchmark for evaluating national
efforts in emission reduction.
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Principal Component Regression (PCR) Analysis

Graphical analyses, encapsulated in Figures 5.5 and 5.6, reveal a spec-
trum of accuracy across countries, reflected in underestimations and over-
estimations by the model. This granularity uncovers trends and deviations,
highlighting the distinct environmental trajectories of each nation.

In the UK, the model’s predictions shift from negative to positive differ-
ences, indicating a trend from overestimation to underestimation in recent
years. This suggests evolving emission factors not fully captured by the
model.

Canada exhibits a distinctive pattern of prediction differences. The
early years show an overestimation, followed by a notable downward
spike, a subsequent upward spike, and another decline. This fluctuation
indicates significant variability in emission factors and the impact of
environmental policies. The early overestimations may suggest an initial
overestimation of emission levels, while the downward and upward spikes
reflect periods of effective policy implementation and possible lapses or
changes in industrial activity.

In the USA, the predictions show a general increasing trend with sig-
nificant positive spikes, indicating a consistent underestimation. Notable
years like 2009 and 2016 highlight possible optimistic evaluations of envi-
ronmental efforts or technological advancements.

China presents a mixed picture. The early years show large positive
differences, followed by a decline and recent negative differences. This
reflects the complexities of forecasting in an evolving industrial landscape
with rapid industrialization periods and successful emissions reduction
initiatives.

Support Vector Regression (SVR) Analysis

Similar to the PCR approach, we employed SVR to predict carbon
dioxide emissions using the same comprehensive dataset. This method
provided another perspective on the prediction accuracy in different coun-
tries. By analyzing the differences and percentage differences between the
actual and predicted emissions, we can evaluate the performance of the
model and the specific nuances it captures for each country.

The graphical analyses in Figures 5.3 and 5.4 highlight the prediction
discrepancies for the 16 major economies. For example, the SVR model
tends to consistently underestimate emissions in the USA, indicating
potential gaps in capturing the complexities of its emissions profile. For
China and Canada, the model starts with an underestimation, but the
trend shows a decline in the differences, suggesting that these countries’
environmental policies are progressively improving their emission profiles.
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In Australia, the differences show a clear downward trend from positive
to negative, indicating that the SVR model increasingly overestimates
emissions over time. Conversely, Germany exhibits an upward trend
in differences, suggesting that the model increasingly underestimates
emissions, indicating potential issues in capturing recent increases in
emissions or changes in industrial activity.

The performance of the SVR model varies significantly across different
countries, reflecting the diverse environmental and industrial landscapes.
These insights underscore the importance of using multiple models to
accurately capture the complexities of global carbon dioxide emissions.

Conclusion

The results of the PCR and SVR analyses provide valuable insights
into the accuracy and nuances of the carbon dioxide emission predictions
for major economies. Both models show a mix of underestimations and
overestimations, highlighting the complexities of forecasting emissions on
a global scale.

Both PCR and SVR analyses reveal consistent underestimations in the
USA, indicating that the country is producing more carbon dioxide than
the models predict. In China, both models show early underestimations fol-
lowed by overestimations, reflecting the country’s rapid industrialization
and subsequent emission reduction initiatives.

The PCR model shows a shift from overestimation to underestimation
in the UK, whereas the SVR model does not capture this trend as clearly.
Canada’s distinctive pattern of early overestimations and later fluctuations
is more pronounced in the PCR analysis compared to the SVR analysis.

The differences between PCR and SVR predictions may stem from the
inherent nature of each model. PCR, which reduces dimensionality, might
miss some nuanced variations captured by SVR’s flexibility in handling
non-linear relationships. The varying economic and environmental policies
across countries also contribute to the differences observed in the model
predictions.

In general, using both PCR and SVR provides a more comprehensive
understanding of carbon dioxide emission trends, helping to identify
areas where models need adjustment and where policy impacts are most
significant. Using world data, these models allow for benchmarking a
country’s carbon performance against global standards, thus offering a
clear perspective on how each country measures up on a global scale. This
is the most significant aspect of the research, as it highlights the relative
success or shortcomings of national policies in the context of worldwide
emission trends.
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5.7 discussion

This research aimed to develop a comprehensive model for predicting
carbon dioxide emissions by leveraging advanced machine learning tech-
niques and a broad range of socioeconomic and environmental variables.
By integrating Support Vector Regression (SVR), Principal Component
Regression (PCR), and Permutation Importance, we sought to capture the
intricate relationships between these factors and carbon dioxide emissions.

The SVR model demonstrated robust predictive capabilities, achieving
an exceptionally high R-squared value of 0.9895 and a low Mean Squared
Error (MSE) of 0.0152. These metrics indicate the model’s excellent fit to
the dataset, suggesting that the selected socioeconomic factors possess
significant predictive power for carbon dioxide emissions. The consistent
performance across different data splits further attests to the stability and
reliability of the model.

In parallel, the PCR model effectively addressed the issue of multi-
collinearity by transforming correlated variables into orthogonal principal
components. This approach yielded stable and reliable regression coef-
ficients, with a strong mean R-squared of 0.9013 across cross-validation
folds. The performance of the PCR model reinforces the findings from
the SVR model, providing complementary insights into the dynamics of
carbon dioxide emissions.

Hyperparameter tuning using Grid Search and 5-fold cross-validation
played a critical role in optimizing the SVR model. The optimal config-
uration, a polynomial kernel with specific parameters, struck a balance
between bias and variance, ensuring the generalization of the model in
unseen data. This rigorous approach underscores the importance of sys-
tematic hyperparameter optimization in machine learning workflows.

The permutation importance analysis highlighted the most significant
predictors of carbon dioxide emissions, with "Total Fossil Fuel Consump-
tion (GWh)," GDP, and population size emerging as key factors. This
model-agnostic technique validated our choice of predictors and provided
a detailed map of leverage points for targeted and effective environmental
strategies.

Training on a global dataset allowed us to benchmark countries’ car-
bon emission performances against world standards. Graphical analyses
revealed varied trends: the UK consistently underestimated emissions,
possibly due to evolving emission factors, while Canada showed over-
estimations, suggesting effective environmental policies. The consistent
underestimations of the USA indicate higher emissions than predicted,
while China’s mixed results reflect its rapid industrialization and emission
reduction efforts.
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Overall, using both PCR and SVR provides a comprehensive understand-
ing of carbon dioxide emission trends, helping to identify areas for model
adjustment and significant policy impacts. These models offer valuable
insights for benchmarking national carbon performance against global
standards, highlighting the importance of continuous data enhancement
for improved accuracy and reliability. This multifaceted approach is crucial
for the development of effective and informed environmental strategies
that contribute to global sustainability efforts.

5.8 conclusion

This study explores the global dynamics of carbon dioxide emissions
using a dataset from 62 countries, highlighting the impact of socioeco-
nomic and environmental variables such as Electricity Production and
Urban Population. The comprehensive dataset and advanced machine
learning techniques demonstrate the potential for adaptive and evolving
environmental studies.

The Support Vector Regression (SVR) model achieved high predictive
accuracy with an R-squared value of 0.9895 and a low Mean Squared Error
(MSE) of 0.0152, affirming the robustness of our methodology through
rigorous data preprocessing and hyperparameter tuning. The Principal
Component Regression (PCR) model addressed multicollinearity and
provided stable and reliable regression coefficients, complementing the
SVR findings.

Country-specific analyses revealed unique emission trajectories. The
consistent underestimations of the USA indicate higher-than-expected
emissions, suggesting potential gaps in capturing the complexities of its
emission profile. In contrast, China’s early underestimations followed by
overestimations reflect the country’s rapid industrialization and subse-
quent emission reduction initiatives. Canada’s emission patterns showed
early overestimations followed by a decline, indicating the effectiveness of
its environmental policies over time.

The permutation importance analysis highlighted key predictors of
carbon dioxide emissions, such as Total Fossil Fuel Consumption, GDP,
and population size, validating our choice of predictors and providing a
detailed map of leverage points for targeted environmental strategies.

In general, this research underscores the necessity of a multifaceted
approach that combines SVR and PCR, offering a robust analytical frame-
work to understand the intricate relationships between socioeconomic
factors and carbon dioxide emissions. This comprehensive perspective is
crucial for developing more informed and effective strategies for global
environmental sustainability.
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