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General Introduction
This thesis is devoted to the study of 4 different problems for which the theory of optimal trans-
portation is well-suited:

1. The generalization of the Schrödinger Problem to synthetic Lorentzian geometries.

2. The small time existence for solutions for the aggregation equation on compact Riemannian
manifolds for non-regular interaction potentials via the minimizing movement scheme.

3. The technique of measure pre-conditioning general Machine-Learning tasks and Domain
Adaptation transfer learning.

4. The generalization of an economic model of Roy for partition of labor including occupational
choice as a constraint.

For the 4 problems we use the theory of optimal mass transportation which has been widely developed
in the last years.

Part 1: The Schrödinger problem in synthetic Lorentzian geometries

The Schrödinger problem refers to the minimization of relative entropy with respect to a reference
measure. The Schrödinger problem is usually analyzed in two related formulations: the static and
the dynamic Schrödinger problems. In this document we study both approaches. One of the main
questions of the Schrödinger problem is whether or not the solutions to the entropically regularized
optimal transport problem converges to solutions of the optimal transport problem. In the dynamical
setting, this property amounts to study the Large Deviation Principles of the reference measure.
In the Riemannian case, the law of Brownian motion is a Markov measure which satisfies a large
deviation principle directly related to geodesic flow. So far, there is no analogue of the Riemannian
Brownian motion in the Lorentzian setting. We study a Levy-like construction proposed by Dr.
McCann which emulates the behaviour of Brownian bridges. With this construction we recover a
partial version of the entropic convergence in the non-smooth Lorentzian case.

Main Take away 1. In the Lorentzian case bridges fail to be Markovian and satisfy large deviation
principles for geodesic flow. The absence of a heat kernel impedes us from using the elliptic
theory. A Levy-like construction allows us to prescribe large deviation principles to use in entropic
regularizations.

Part 2: The aggregation equation via the minimizng movement scheme in compact
Riemannian manifolds

The aggregation equation for non-regular potentials on Riemannian manifolds is a very active area of
research. In this work we study the small-time existence of solutions for non-smooth potentials via
the minimizing movement scheme. The theory of gradient flows in metric spaces does not consider
a potential non-regularity of potentials in the cut-locus. The presence of the cut-locus presents a
difficulty for the JKO scheme to choose a direction, nevertheless we show explicitly a time bound for
which we can flow the minimizing movement scheme. The minimizing movement scheme is essential
in numerical algorithms, so understanding it’s scope is fundamental.
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Main Take away 2. The minimizing movement scheme is shown to converge to a limiting path
measure satisfying the aggregation equation up to a time determined by the distance to the cut locus
from points in the support of the initial measure.

Part 3: Measure Pre-conditioning in Machine-Learning

We study a new technique to improve convergence of algorithms for specific ML-tasks. We show
that if the modifications of the problem at level n (sample size) is done in a specific way (full learner
recovery systems) we can show analytical convergence of subsequence to the original model. This
technique seems to be specifically important for Domain Adaptation in transfer learning as the
modifications can ensure existence of analytical tools otherwise unavailable.

Main Take away 3. Γ-convergence shows that small modifications (in uniform ways) yield good
approximations of machine-learning models. The hypothesis for this convergence amounts to checking
a double-sided Fatou Lemma.

Part 4: Generalizing an economic model of Roy for labor partition using occupational
choice as a constraint

We study the analytical properties of a generalization of the economic model for labor force partition
studied by Dr. Roy. The new model proposed by Dr. Siow, includes occupational choice as
a constraint rather than a consequence. This difference allows us to rewrite the problem in an
analytically useful way. We explain how this formulation relates to the identification problem and
compare it’s consequences to previous known conclusions from the linear model of Roy.

Main Take away 4. Roy’s model assumes a linear separation function for the partition of labor.
Taking away such assumption is technically difficult but the non-linear version is more realistic and
still allows economically interesting results.
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Chapter 1
The non-smooth relativistic Schrödinger
Problem

1.1 Introduction
In this paper we continue the investigation of C. Léonard on the Schrödinger problem as we adapt it
to the synthetic relativistic setting of [McCann2019] ([McCann2023], [Kunziger-Saemann],[Cavalletti-
Mondino],[Braun] and others). We manage the difficulty of bridges being non-timelike which is a
non-physical condition.
We extend the work of [Leonard2014], [Leonard2012], [Tamanini] to the framework of synthetic
Lorentz geometry of low regularity. Recent work [McCann2023], [Kunziger-Saemann], [Eckstein-
Miller], [Cavalletti-Mondino] has shown the synthetic approach to Lorentzian geometry in terms of
optimal transportation to be incredibly fruitful.
In [Leonard2014], the theory of the Schrödinger Problem in general polish spaces was developed
(see [Leonard2014], [Leonard2012] or [Tamanini]). We adapt this theory to the physically relevant
generalizations of Lorentzian manifolds on which the underlying topology generated by cones is
assumed to be only metrizable, so that the apparent dependence on the underlying metric is only
through the topology it generates and its set of rectifiable curves. Informally speaking, globally
hyperbolic chrono-regular Lorentzian length spaces are spaces with a chronological and causal
structure whose underlying chronological topology is assumed to only be metrizable, each causal
emerald is compact and ℓ-curves do not contain non-constant null subsegments (see [McCann2023]).
We study the Schrödinger problem in such spaces.
The Schrödinger Problem has been extensively studied in the context of Polish spaces in the seminal
work of C. Leonard, see [Leonard2014], [Leonard2012], [Leonard2001] and in the general case of
RCD(K,N) spaces see [Tamanini]. The Schrödinger problem can also be posed on euclidean
phase-space (see [Chiarini-Conforti-Greco]). In the study of general relativity (and more generally
non-smooth Lorentzian length and pre-length spaces) there is no underlying Hilbertian structure
nor a canonical heat semigroup. The absence of such semigroup is associated to the absence of a
canonical Brownian motion. The Wiener measure (law of the Brownian motion) is essential to the
study of the Schrödinger Problem (see for example [Leonard2014, Section 5]).
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The focus of this work is to study how the techniques on the Schrödinger Problem and the non-
smooth causality theory interact.
One of the main tools for studying the “classical” Schrödinger problem is a Brownian bridge measure.
Along our study, we find two types of problems when adapting the framework of Schrödinger
bridges to general spacetimes. The first type of problem is the inclusion of a physical constraint
for probability measures. These problems are typically resolved by a convexity property on the set
of feasible probability measures. The latter, somewhat more unsatisfactory is the problem of the
external parameter for curves and the underlying un-physicality of some intrinsic concepts of metric
spaces.
The static Schrödinger problem consists in finding among all probability measures on the product
space with fixed marginals, the one that minimizes relative entropy with respect to a reference
measure. To make the Schrödinger problem physical, we add the restriction of the support of the
measures being causal, meaning that they are concentrated on pairs of points on which one can
physically travel. This imposition turns out to be somewhat immaterial for the static problem. We
then consider the dynamical Schrödinger problem on which we study the paths travelled by particles
on the Schrödinger problem; travelled paths must be future d, adding a constraint to the problem.
In the context of [Leonard2014] and [Tamanini], some of the most important developments occur
when the reference measure on the dynamic problem is Markovian, meaning that the past and the
future are dependent only through the present. A subtlety here is presented, the Markov property
can be thought of in two different ways for the Schrödinger problem: i.) by physically considering past
and present with respect to the chronological and causal relations on the space or ii.) unphysically
by using the external time parametrization of curves. It turns out both approaches yield relatively
similar consequences. We study both methods and explain their differences.
In the Riemannian case, the Wiener measure in path space (the law of Brownian motion) satisfies a
large deviation principle which can be used to establish convergence of solutions for the dynamic
Schrödinger problem. Motivated by this program, we analyze a process defined originally by R.
Dudley in Minkowski space in the seminal work [Dudley1966]. This process behaves in several
ways as a Brownian Motion in phase space. We analyze the bridges of this process and relate it
to a new construction in globally hyperbolic chrono-regular Lorentzian length spaces similar in
nature to the Brownian bridge construction of Levy. This construction replicates the idea of bridges,
even in curved geometries (where Dudley’s process has also been generalized [Franchi-LeJan2007],
[Dunkel-Hanggi], [Chevalier-Debbasch]).

1.1.1 Organization of the paper
In section 1.2.1 we set the framework of the underlying space of study. We recall some results
on causality and the general framework of Lorentzian pre-length spaces developed by [Kunziger-
Saemann], [McCann2023], [McCann2019], [Eckstein-Miller] and others. We define the “ relativistic”
version of the Static Schrödinger problem (RSch). In section 1.3 we study bridge spaces. A bridge
space consists of curves (continuous/cadlag) with beginning and endpoint fixed. We start by recalling
some properties of the Brownian Bridge in Rn and Riemannian manifolds as studied in [Hsu]. In
1.3.1 we start a construction on Minkowski space that resembles Levy’s construction of Brownian
bridges. We also study the conditional version of the process of Dudley (1.3.2) and use his definition
of the Markov property. We formulate the apparently non-physical Markov Property in (74). In
section 1.4 we study the large deviations principle, it’s connections to this work and study the
convergence of bridges related to the dynamical Schrödinger problem.
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The adaptation of the Schrodinger Problem to the relativistic setting encounters the difficulty of the
absence of the canonical heat semigroup. This absence is dealt by studying it’s fundamental properties
separately. That is, we study bridge measures by Markovianity and by small time asymptotics. This
separation breaks the field in two interesting branches that we study in this document.

Schrödinger Problem (Polish/Riemannian case)

Static
[Leonard2014, Definition 2.2]

Dynamic
[Leonard2014, Definition 2.1]

Brownian Bridge Measures are Markov and satisfy LDP
[Hsu1990, Theorem 2.2]

Entropic Regularization with the Wiener measure
[Leonard2014, Theorem 5.2]

Figure 1.1: In the polish space case, the entropic regularization of optimal transport problem uses the
Wiener measure as reference measure. Weiner’s measure satisfies at the same time LDP properties and a
canonical Markov property.

Relativistic Schrödinger Problem

Static
RSch

Dynamic
RDSch

Bridge Measures
Section 1.3

Markovianity
Definition 74

Dudley’s Process
Section 1.3.2

Phase Space
RKSchP

Physical Topologies
Section 1.3.9

LDP
Section 1.4

Prescription
Proposition 143

Constructions
Section 1.3.1

Entropic dynamical Regularizations
Theorem 149

Figure 1.2: Outline of the document: Different to the Riemannian case, there seems to be no canonical
generalization of the Brownian bridge. Generalizations fail to be either completely causal, Markovian or
satisfy small time asymptotics. We study both the Markov property and the large deviation principle
separately and use the latter to study entropic regularizations of Lorentzian costs.
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1.2 Statement of the problem
1.2.1 Background: Lorentzian length spaces and fuzzy events
We mainly follow the conventions on [McCann2019] and [Kunziger-Saemann] different to [Mc-
Cann2023] where sign of the time separation is assumed to be negative towards the benefit of
using the more familiar notation of metric (and length) spaces. The first part of this introduction
replicates the introduction of [McCann2023] but with positive separation function. Even though
most of the concepts are well-known in non-smooth theory, each convention (inclusion of infinities,
signs and terms) is included here for the purpose of clarity and self-containment. A reader familiar
with [McCann2023] can easily skip this introductory section.

Definition 1. (Time separation function ℓ)
For a set M , a time separation function on M is a function ℓ : M ×M → {−∞} ∪ [0,∞] satisfying

1. ℓ(x, x) ≥ 0 for all x ∈M

2. ℓ(x, y) ≥ ℓ(x, z) + ℓ(z, y) for all x, y, z ∈M .

Observe that both conditions imply ℓ(x, x) ∈ {0,∞} and we will always assume (unless explicitly
stated) that ℓ−1({∞}) = ∅ is imposed in which case ℓ(x, x) = 0 is implied.

Definition 2. (Causal and Chronological relations)
Given a set M and a time separation function ℓ on M , the chronological and causal relations between
pairs of points in M are described via

1. x≪ y if and only if (x, y) ∈M2
≪ := ℓ−1((0,∞])

2. x ≤ y if and only if (x, y) ∈M2
≤ := ℓ−1([0,∞]).

In the first case we say x belongs to the timelike or chronological past of y and in the second that
x belongs to the causal past of y. As convention we say y belongs to the future of x in any of both
cases with the possibility of making the precision of causal or chronological case.

Causal and chronological relations are interpreted as the possibility to travel between spacetime
events.

Definition 3. (Causal and chronological pasts and futures)
Given a set M endowed with a time separation function ℓ we call the sets

I+(x) := ℓ(x, ·)−1((0,∞]) and J+(x) = ℓ(x, ·)−1([0,∞])

the timelike and causal futures of x respectively.
Similarly for y ∈M , the sets

I−(y) := ℓ(·, y)−1((0,∞]) and J−(y) = ℓ(·, y)−1([0,∞])

the timelike and causal pasts of y.

Following the notation of [McCann2019] and [McCann2023], a sufficient condition for M2
≪ and

M2
≤ to be antisymmetric relations is that min{ℓ(x, y), ℓ(y, x)} > −∞ if and only if x = y. This

antisymmetry, which is essentially the identity of indiscernibles, is shown to be satisfied for the
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spaces we will work on throughout this paper (see [McCann2023]).
The relations M2

≪ and M2
≤ induced by ℓ satisfy the so called push-up property: x≪ z and z ≤ y

imply x≪ y. Observe that antisymmetry can always be obtained by studying instead an appropriate
quotient space in terms of equivalence classes for the time separation function ℓ̃(x̃, ỹ) = sup

x∈x̃,y∈ỹ
ℓ(x, y),

see [McCann2023, Lemma 1] for details.
For this reason we will always assume the antisymmetry condition holds. One fundamental difference
between the work of [McCann2023] and previous descriptions of Lorentzian pre-length spaces is ability
to study rough paths. The idea is to explore all timelike and causal paths (without assumptions on
their continuity) and derive that the underlying topologies (to be described briefly) yield continuity
properties with respect to an assumed topology induced by a distance. The framework of Lorentzian
length spaces developed in [Kunziger-Saemann] allows us to relate the assumed underlying topology
to the ones induced by the structure of cones and diamonds.

Definition 4. ((Rough) Causal paths)
A path on M is just a function from an interval A ⊆ R onto M . A path σ : A→M is said to be
causal if s < t implies σ(s) ≤ σ(t).

Observe that we can not yet describe continuity in any way as we haven’t explored the topologies
on M . We will define continuous causal paths when we endow M with a topology. The word rough
used in [McCann2023] is used to emphasize this (a-priori) lack of continuity, the word curve will be
saved to emphasize the regularity of paths. The definition of a timelike path is that of Definition 4
using the timelike relation instead.

Definition 5. (ℓ-length)
For a causal path σ : A→M , we define it’s ℓ-length via

Lℓ(σ) = inf
{

N∑
k=0

ℓ(σ(tk), σ(tk+1))
}

(1.1)

where the infimum is taken over all finite partitions of A. If A is not compact, the Lℓ-length is
defined via exhaustion of A by compact sets. Note that by the reverse triangle inequality we have
Lℓ(σ) ∈ [0, ℓ(σ(0), σ(1)].

Definition 5 is somewhat unintuitive because of our sign convention. Towards making the work
as understandable as possible we define ℓ− := −ℓ and use ℓ and ℓ− depending on what we think
makes each result more understandable. With this notation (1.1) reads

Lℓ−(σ) = sup
{tk}

{
N∑
k=0

ℓ−(σ(tk), σ(tk+1))
}

which couples better with our notion of length and corresponds to the convention used in [Mc-
Cann2023].
In this notation we have Lℓ−(σ) ∈ [ℓ−(σ(0), σ(1)), 0].
Notice that with the previous conventions, the definition of Lℓ− resembles exactly the definition of
length we know (with the obvious difference of being negative).
The following definition generalizes the idea of straight-lines. The connection between geodesics,
geometry and transport are well-known so it is fundamental to have the correct definition of geodesics.
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Definition 6. (ℓ-paths and timelike ℓ-path spaces)
A timelike path σ : [0, 1]→M is called an ℓ-path if

1. ℓ(σ(0), σ(1)) ∈ (0,∞)

2. ℓ(σ(s), σ(t)) = (t− s)ℓ(σ(0), σ(1)) for all t ≥ s, t, s ∈ [0, 1].
and the convention is that ℓ-paths are parametrized proportional to proper time.

Remark 7. The parameter t ∈ [0, 1] will be relevant in the following sections, for now we just think
about it as defining the curves.

Definition 8. (Timelike path space)
(M, ℓ) is called a timelike path space if for every pair of points (x, y) ∈M2

≪ there exists a time-like
ℓ-path with σ(0) = x, σ(1) = y. (M, ℓ) is called timelike non-branching unless there exist two distinct
ℓ-paths that coincide in an open interval.

Definition 9. (Metric spacetime and Lorentzian pre-length spaces)
If (M,d) is a metric space and ℓ is a separation function on M , we call (M,d, ℓ) a metric spacetime.
A metric spacetime on which ℓ+ := max{ℓ, 0} is lower semicontinuous is called a Lorentzian Pre-
Lenth Space(LPS).
A Lorentizan Pre-length (LPL) space is called causally closed if M2

≤ is closed (with respect to the
topology induced by d).

Remark 10. Observe that in a LPL, ℓ−1([0,∞)) = M2
≪ is open by lower semi-continuity. Note

also that ℓ+(x, y) = ℓ(x, y) unless ℓ(x, y) = −∞ in which case ℓ+(x, y) = 0.

Definition 11. (Causal curve and ℓ-recifiability)
On (M,d, ℓ), a non-constant causal path which is locally-d-Lipschitz continuous is called a causal
curve. A timelike curve is a causal curve which is also a timelike path.
A causal curve σ satisfying Lℓ−(σ|[a,b]) < 0 for every a < b, a, b ∈ A is called ℓ-rectifiable.
A causal curve is called ℓ−-minimizing or (ℓ-maximizing) if it minimizes Lℓ− (resp. maximizes Lℓ)
among all causal curves sharing it’s endpoints.
An ℓ-curve is a causal curve σ : [0, 1]→M with Lℓ(σ) = ℓ(σ(0), σ(1)).

ℓ-rectifiability is usually called rectifiability and d-rectifiability and d-minimizing are defined as
in Defintion 11 mutandis mutatis. Clearly, every ℓ-curve is ℓ-maximizing by triangle inequality.
Definition 12. (Globally hyperbolic)
Given a metric spacetime (M, ℓ, d) we say it is globally hyperbolic if

1. It is non-totally imprisioning i.e for each compact set there exists a uniform upper-bound on
the d-lengths of causal curves contained in the set.

2. J+(x) ∩ J−(y) is compact for every x, y.

The set J+(x) ∩ J−(y) is denoted J(x, y) and called a causal diamond.

The definition of K-globally hyperbolic is similar to global hyperbolicity but requiring that
J+(X) ∩ J−(Y ) is compact for every pair of compact subsets X,Y of M instead of single points
where J+(X) is just the union over elements in X of the sets J+(x). In the above setting the space
is called causally curve connected if x ≤ y, x ̸= y implies the existence of a causal curve joining x
and y. It is called timelike curve-connected if x≪ y implies the existence of a timelike curve with x
and y as it’s endpoints.
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Definition 13. (Geodesic, Lorentzian geodesic space and regularity)
An M2

≪ geodesic space will be a metric spacetime where every pair of points in M2
≪ can be joined by

an ℓ-curve.
A Lorentzian geodesic space is a LPLS in which any distinct points on M2

≤ can be joined by an
ℓ-curve.
It is called regular if Lℓ(σ) = ℓ(σ(0), σ(1)) implies there are no non-constant subsegments B ⊂ A
for σ which are lightlike (Lℓ(σ|B) = 0).

In a regular metric spacetime, after reparametrization, ℓ-curves become timelike.

Lemma 14. (McCann’s automatic regularity of ℓ-paths )
In regular Lorentzian geodesic spaces on which ℓ+ is continuous and all causal diamonds are compact,
each ℓ-path is d-continuous.

See [McCann2023, Lemma 5]. Evidently, to obtain d-continuity it is essential for ℓ-paths to
not have non-constant null subsegments. Motivated by this Lemma, McCann made the folowing
definition.

Definition 15. (ℓ-geodesic)
In a metric spacetime (M,d, ℓ) an ℓ-geodesic is a d-continuous ℓ-path.

Lemma 14 says that under a continuity property of ℓ and compactness of causal diamonds, every
ℓ-path is an ℓ-geodesic.

Definition 16. (Timelike Geodesics and Affine Timelike Geodesics)
In a metric spacetime, we define the uniform metric on C([0, 1],M) to be

d∞(σ, σ̃) = sup
s∈[0,1]

d(σ(s), σ̃(s)). (1.2)

We define TGeoℓ(M) = {σ ∈ C([0, 1],M) : σ is an ℓ-path according to Definition 6} and by Geoℓ(M)
it’s closure under d∞.

A useful observation, needed for our study of the Markov property in section 1.12 is that the
definition of TGeoℓ(M) depends only on the topology induced by d. As a d∞-closure, Geoℓ(M)
does depend on d∞ and not only on the topology it induces.

Lemma 17. (Characterization of globally hyperbolic Lorentzian length spaces)
A globally hyperbolic metric spacetime (M,d, ℓ) is a Lorentzian length space if and only if

1. It is timelike curve-connected,

2. it is M2
≪- geodesic space (as in Definition 13)

3. I±(x) ̸= ∅ for every x ∈M ,

4. (ℓ)−1(−∞) is open,

5. ℓ+ is continuous and real-valued on M2.

See [McCann2023, Lemma 7].
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Lemma 18. (K-global hyperbolicity)
Any globally hyperbolic Lorentzian length space is K-globally hyperbolic.

See [Cavalletti-Mondino, Lemma 1.5] or [McCann2023, Remark 12].
The seminal work of [Kunziger-Saemann] studied continuity of paths on metric spacetimes. The
underlying topology induced by d seems a-priori an abstract imposition to the theory. It is reasonable
to try to understand topologies within the framework of physical dynamics, that is, topologies that
can be generated with only the knowledge of causal diamonds and time-separation functions. In
[Kunziger-Saemann] the following topologies were studied:

Definition 19. (Spacetime topologies)

1. The Alexandrov topology: Coarsest topology containing all diamonds I+(x)∩I−(y) for x, y ∈M

2. The chronological topology: Coarsest topology containing all cones I±(x) for x ∈M .

3. The metric topology: Topology generated by d.

As explained in [Kunziger-Saemann], the topologies in LPS are ordered. A LPS is called strongly
causal if the three topologies coincide. It has been shown that globally hyperbolic Lorentzian length
spaces are strongly causal. If two different metrics are given in a globally hyperbolic non-totally
imprisioning LLS, their topologies coincide by strong causality. As seen in [McCann2023], they
become equi-globally hyperbolic in the sense that either both spaces are g.h. or none of them is.
This means that the metrics are only relevant through the topology they generate and the set of
d-rectifiable curves. Motivated by this property on rough paths, McCann defined our final object of
interest.

Definition 20. (Globally hyperbolic chrono-regular Lorentzian length space)
A globally hyperbolic Lorentzian length-space (M,d, ℓ) on which (M,d) is complete and separable
is called chrono-regular if all rough paths which are continuous with respect to the chronological
topology and satisfy Lℓ(σ) = ℓ(σ(0), σ(1)) < 0 contain no non-constant null segments.

In [McCann2023], the author realized that chrono-regularity satisfies the same property as above:
given any two metrics on M the associated spacetimes are equi-chronoregular i.e. either both are
chrono-regular or none of them is. We aim to study these spaces being careful of studying which
properties correspond to the metric and which correspond to the topology they generate.

Remark 21. It is well known that completeness is not a topological property but separability is.
In the previous context, completeness is an assumption depending on the metric but separability is
shared among all the metrics that define the same topology.

Now let us recall the manifold structure from [McCann2019].

Definition 22. (Spacetime)
Let (M, g) be a smooth, connected, Hausdorff, time-oriented, Lorentzian manifold with signature
(+,−, ...,−), we know M is second countable and admits a Riemannian metric g̃. In this case we
call (M, g) a spacetime.

A tangent vector is called timelike if vagabvb > 0, spacelike if vagabvb < 0 and null if equality
holds. For q ∈ (0, 1] we use the convex Lagrangian L(x, v; q) = −(vagabvb)q/2/q with the convention
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that L(x, v; q) =∞ unless v is future-directed. Similarly we define the action of a curve A(σ, q) as
the integral (with respect to t) of L(σ(t), σ′(t); q), and finally the q-Lorentz distance as

ℓ(x, y) = − inf{A(σ; q) : σ ∈ C1([0, 1],M), σ(0) = x, σ(1) = y}. (1.3)

In [McCann2019] it is proved that ℓ is independent of q and satisfies a reverse triangle inequality (it
is a separation function). Global hyperbolicity ensure the infimum in (1.3) is attained.
We denote by P(M) the set of Borel measures on M and Pc(M) the subset of Borel measures with
compact support. Analogous to the Euclidean and Riemannian version we define the ℓq distance
between probability measures as

ℓq(µ, ν) = sup
π∈Γ≤(µ,ν)

(∫
ℓ(x, y)qdπ(x, y)

)1/q

where Γ≤(µ, ν) denotes the set of probability measures on M ×M which are positive π ≥ 0 and
spt(π) ⊆ ℓ−1([0,∞]). A joint measure π is called ℓq-optimal if it satisfies the equality. Further, ℓq
satisfies the reverse triangle inequality as proved in [McCann2019, Proposition 2.9].

Remark 23. (Rewriting conditions on causality)
By definition (x, y) ∈ ℓ−1([0,∞]) if and only if ℓ(x, y) ≥ 0 which means that y ∈ J+(x) or in other
words (x, y) ∈M2

≤, hence spt(π) ⊆ ℓ−1([0,∞]) can be written (if M2
≤ is Borel) as π(M2

≤) = 1

Lemma 24. In a ghcrlls (Definition 20), M2
≤ is d-Borel measurable.

Proof. By assumption max{ℓ, 0} is continuous on M2 and so M2
≤ = ℓ−1([0,∞)) is Borel.

Further M2
≤ would be closed in a causally closed space.

Given a metric space (X, d) we will always denote by P(X) the space of Borel probability measures
on X and by M+(X) the set of positive Borel measures on X. In the case where (X, τ) is just a
topological space, Pτ (X) denotes the set of Borel (with respect to τ) probability measures.
In the smooth spacetime case of above, where the manifold is time orientable, we say that a function
f : M → R is a causal functional if it is non-decreasing along any future-directed causal curve.
[Eckstein-Miller, Theorem 5] states that in the case of smooth spacetimes, (p, q) ∈M2

≤ if and only if
f(p) ≤ f(q) for every smooth bounded causal functional f . The set of continuous causal functionals
from (M,d, ℓ) is denoted C(M,R).

Definition 25. (Causal order or measures via smooth causal functionals)
If (M, ℓ, d) is a smooth spacetime, for µ, ν ∈ P(M) we say that µ ⪯ ν if for every smooth bounded
causal functional f we have ∫

M

fdµ ≤
∫
M

fdν.

Observe that functionals refer to maps from M to R and are different to causal curves and paths.
The reason behind defining causal functionals is to obtain a duality characterization of the ordering
⪯.
Following the conventions of [Leonard2014], we define entropy with respect to general measures and
not only probability measures. Let h : [0,∞)→ R be given by

h(x) = x log(x)− x+ 1, h(0) = 1

Observe that h(x) ≥ 0 ∀x ∈ [0,∞) and achieves it’s minimum uniquely at x = 1 with h(1) = 0.
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Definition 26. (Relative Entropy for probability measures)
In a metric space (M,d), given µ ∈ P(M) and ν absolutely continuous with respect to µ we define
the relative entropy of ν with respect to µ,

Ent(ν|µ) =
∫
M

h

(
dν

dµ

)
dµ

whenever the integral exists, we define Ent(ν|µ) =∞ in any other case.

One can also modify Definition 26 to be ∞ if spt(µ) is not compact (as in [McCann2023]). We
do not make this assumption with the idea of incorporating more general measures.

Remark 27. Note that by our use of the function h we obtain

Ent(ν|µ) = 0⇔ µ = ν

So far we have only defined Ent(ν|µ) in the case µ ∈ P(M), we aim to define it for general
positive measures M+(M). To this end, following [Leonard2014] we restrict the domain of definition
of entropy.

Definition 28. (Relative Entropy for positive measures)
Let µ be a σ−finite measure on M and let W : M → [0,∞) be such that

zW :=
∫
M

e−W (x)dµ(x) <∞

For any ν ∈ P(M) such that ∫
X

W (x)dν(x) <∞

we define the relative entropy of ν with respect to µ by the formula

Ent(ν|µ) = Ent(ν|z−1
W e−Wµ)−

∫
M

Wdν − log(zW )

In [Leonard2014, Appendix A] it is shown that such W always exists and the definition of entropy
is independent of the choice of W .
For simplicity, we will mostly focus on the case where the measures are in fact probability measures
but we will comment on the adaptations required to generalize to positive measures when necessary.
The case of positive measures is justified by the study of Wiener’s measure (see [Leonard2014],
[Tamanini]) although we will restrict to the simpler case of probabilities because of the nature of
the framework of Lorentzian spaces.

Lemma 29. (Leonard’s topological version of Gibb’s duality)
Let µ be a σ-finite measure on a topological space (Y, τ) endowed with it’s Borel σ-algebra, assume
there exists a Borel measurable function W : Y → [−∞,∞) such that∫

Y

e−W dµ <∞

13



then for every π Borel (w.r.t. τ) probability measure which is a.c. with respect to µ one has

Ent(π | µ) = sup
{∫

Y

fdπ − log
(∫

Y

efdµ

)
: f : Y → [−∞,∞),

∫
Y

efdµ <∞
}

= sup
u∈CW

{∫
Y

udπ − log
(∫

Y

efdµ

)}
where CW = {u ∈ C(Y,R) : sup|u|/W <∞}.

For a proof see [Leonard2014, A.5,A.6]. Observe that Lemma 29 immediately yields lower
semi-continuity of entropy with respect to the weak convergence of continuous bounded functions on
Y . This fact is essential to our study of the Schrödinger problem and it’s formulation in topological
spaces (rather than only Polish spaces) will be relevant in section 1.3.6.

Remark 30. The topological space in Lemma 29 not necessarily being a polish space will be
fundamental in problem (τ−RDSCH).

In most of the cases we will use µ as a probability measure on which the Lemma 29 simplifies
and recovers it’s more known form, set W = 1 in the previous case to get:

Lemma 31. (Leonard’s topological version of Gibb’s duality for probability measures)
Let µ be a probability measure on a topological space (Y, τ) endowed with it’s Borel σ-algebra, then
for every π Borel (w.r.t. τ) probability measure which is a.c. with respect to µ one has

Ent(π | µ) = sup
{∫

Y

fdπ − log
(∫

Y

efdµ

)
: f : Y → [−∞,∞),

∫
Y

efdµ <∞
}

= sup
u∈Cb

{∫
Y

udπ − log
(∫

Y

efdµ

)}
where Cb = {u ∈ C(Y,R) : sup|u| <∞} the set of continuous bounded functions from Y to R.

1.2.2 The Benamou-Brenier formula for Lorentzian Manifolds
In the context of [McCann2019] we can obtain an analogue of the Benamou-Brenier formula
[Benamou-Brenier] which in the euclidean case with respect to quadratic cost states that the
Wasserstein 2-distance can be alternatively computed as the minimization of kinetic or dissipation
energy among all solutions of the continuity equation.

Theorem 32. (Lorentzian Benamou-Brenier)
Consider a smooth spacetime M as in Definition 22. Take µ0, µ1 ∈ Pc(M) and assume that
spt(µ0 × µ) ⊆ {ℓ > 0} (or more generally (µ0, µ1) are q-separated [McCann2019, Definition 4.1]),
then

ℓ(µ0, µ1)q = sup
{∫ 1

0

∫
M

1
q

(gab(x)vat vbt )q/2dµt(x)dt
}

(1.4)

where the supremum is taken over all pairs (vt, µt) satisfying

1.
⋃

0≤t≤1
spt(µt) is bounded,
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2. (vt, µt) satisfy the continuity equation

∂tµt +∇M · (vtµt) = 0, (1.5)

where ∇M · denotes divergence with respect to the Lorentzian connection,

3. µt|t=0= µ0, µt|t=1= µ1,

4. v ∈ Lq(µtdt),

5. t→ µt is a.c.

6. vt(·) is future-directed and gabvat vbt > 0.

Proof. Given that (M,d, ℓ) is a smooth spacetime, by [DeLellis, Theorems 1.3,1.4,1.7] it costs no
generality to assume that vt, µt solves the continuity equation (1.5) and that

dTt
dt

= vt(Tt) (1.6)

can be solved in classical sense. In this case, let µt = Tt#µ0 and one can see that if Ṫt exists, it is
future-directed and gab(Ṫ a, Ṫ b) > 0, then

ℓq(µ0, µ1) ≥
∫
ℓq(x, y)d(Id× T1)µ0 = −

∫ 1

0

∫
L

(
dTt
dt

)
dµtdt

where L(v) = −(gabvavb)q/2/q if v is future directed, gabvavb > 0 and ∞ otherwise. Concluding
that

ℓq(µ0, µ1) ≥ sup
(vt,µt)∈Vsm

∫ 1

0

∫
M

1
q

(gabvat vbt )q/2dµtdt (1.7)

where Vsm correspond to the pairs (vt, µt) satisfying conditions (1.5) and (1.6). To obtain equality,
let T be the unique map of [McCann2019, Theorem 5.8], i.e.

Tt(x) = expx(tDH(Du(x), x, q)) (1.8)

define vt =
(
dTt
dt

)
◦ T−1

t then (vt, Tt#µ0) achieves the equality.

1.2.3 Static and dynamic problems
The main object of study of this work is an adaptation of the “Schrödinger problem” from Polish
spaces ([Leonard2014], [Leonard2001],[Leonard2012] and references therein) and RCD∗(K,N) spaces
([Tamanini],[Gigli-Tamanini]) to the framework of Lorentzian length spaces of [McCann2019],[McCann2023]
and [Kunziger-Saemann]. In this section we define the relativistic static Schrödinger problem
(RSch) in short, on which we think about the Schrödinger problem as in the static formulation of
[Leonard2014] but we add the constraint of the target/final measure being supported in the causal
future of the initial measure. This constraint makes the relativistic problem physical.
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Definition 33. (Relativistic Static Schrödinger Problem)
Let (M, ℓ, d) be a globally hyperbolic chrono-regular Lorentzian length space (as described in Definition
20), we define the Relativistic Schrödinger problem with respect to a fixed reference measure r ∈ P(M2)
as the minimization problem of entropy along causal transference plans, that is, given µ0, µ1 ∈ P(M),

min
π∈Γ≤(µ0,µ1)

Ent(π|r) (RSch)

where Γ≤(µ0, µ1) denotes the set of Borel probability measures π ∈ P(M2) with spt(π) ⊆M2
≤ and

whose marginals are µ0 and µ1 respectively i.e.

Γ≤(µ0, µ1) = {π ∈ P(M2) : π(M2
≤) = 1,Proj1 #π = µ0,Proj2 #π = µ1} (1.9)

where for (x, y) ∈M2, Proj1(x, y) = x and Proj2(x, y) = y.

Remark 34. Note that so far (RSch) is only defined for r ∈ P(M2) and that this problem only
differs from the case of polish spaces through the physical condition π ∈ Γ≤(µ0, µ1). We’ll see how
this condition is immaterial in terms of existence and uniqueness of the minimizers in Propositions
38, 41 and 44.

Definition 35. (Relativistic Dynamical Schrödinger Problem)
Let (M,d, ℓ) be a globally hyperbolic chrono-regular Lorentzian length space (as described in Definition
20), let Ω be the set of continuous causal paths, that is

Ω = {σ ∈ C([0, 1],M) : σ(s) ⪯ σ(t),∀t, s ∈ [0, 1], s ≤ t}

We define the dynamical relativistic Schrödinger problem associated to R ∈ P(Ω) as the minimization
problem

min
Π∈P(Ω)

e0#Π=µ0,e1#Π=µ1

Ent(Π|R) (RDSch)

where et denotes the evaluation map i.e. et(γ) = γ(t) and µ0, µ1 ∈ P(M) are given and P(Ω) is the
set of Borel-probability measures when Ω is endowed with d∞ (from (1.2)).

Remark 36. The choice of d∞ is natural in the context of abstract metric spaces (and the common
assumption on the polish space case) but does not incorporate our physical understanding of causal
curves for which we will discuss different topologies in section 1.3.6. Note that when Ω is endowed
with the topology of d∞ every evaluation map et is Borel and there is no parametrization restriction.

Remark 37. In (RDSch) we defined the relativistic Schrödinger problem for a reference probability
measure (R ∈ P(Ω)). This definition is simpler but disallows the familiar case of the Wiener measure
with respect to Lebegue, in the general case we want to consider

R̂(·) =
∫
Wx(·)dx

where Wx is the Wiener measure started at x. Because this expression is a positive measure in Ω
the seminal work of [Leonard2014] is based on the description of the problem in the set of positive
measures M+(Ω). Just as in Definition 28 we will work on the case of probability measures but
describe the modifications required for the M+(Ω) case.
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Proposition 38. (Uniqueness of solutions)
Problem(RSch) admits at most one minimizer.

Proof. If the existence of a minimizer is assumed, note that the objective function is strictly
convex by definition of entropy via integral of a strictly convex function and Γ≤(µ, ν) is convex as
tπ1(M2

≤) + (1− t)π2(M2
≤) = 1.

One of the main tools in optimal transportation is the push-forward of measures, naturally the
study of the Schrödinger problem uses extensively the following result.

Lemma 39. (Entropy and Push-forward)
Assume that µ, ν ∈ P(X) where X is a polish space, then for any measurable function f we have

Ent(f#µ|f#ν) ≤ Ent(µ|ν). (1.10)

This result is a consequence of convexity and Jensen’s inequality. We will have a detailed version
in Lemma 133.

Proposition 40. (Necessity)
In a ghcrLLS (definition 20) (M, ℓ) it is necessary that

max{Ent(µ0|Proj1 #r),Ent(µ1|Proj2 #r)} <∞ (1.11)

for RSch to have a solution.

Proof. Direct consequence of Lemma 39, as if the hypothesis were not true, then every plan in
Γ≤(µ0, µ1) has infinite entropy.

The following propositions are direct adaptations of the results of [Leonard2014].

Proposition 41. (Equi-existence)
If (e0, e1)#R = r then the minimization values of RSch and RDSch are equal i.e.

min
π∈Γ≤(µ0,µ1)

Ent(π|r) = min
Π∈P(Ω)

e0#Π=µ0,e1#Π=µ1

Ent(Π|R)

Furthermore, the problems have solutions if and only if either of the two values of minimization is
finite or equivalently if and only any of the problems is feasible with an element of finite entropy.

We delay the proof of Proposition 41.

Proposition 42. (Leonard’s sufficient conditions for existence for the static problem in ghcrLLS)
Let (M, ℓ) be a globally hyperbolic chrono-regular Lorentzian length space whose underlying metric
space (M,d) is Polish and suppose that µ0 ⪯ µ1 and r ∈ P(Ω) and Γ≤(µ0, µ1) ̸= ∅, if M2

≤ is
σ-compact then there exists a solution for RSch.

Proof. By strict convexity of the functional, it is enough to show that Γ≤(µ0, µ1) is uniformly tight.
By Polishness of (M,d) we know that {π ∈ P(M2) : π0 = µ0, π1 = µ1} is tight so it is enough
to show that Γ≤(µ0, µ1) is closed with respect to weak convergence but this is the assumption of
σ-compactness of M2

≤.
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Note that in the smooth spacetime case of condition 7 from [Eckstein-Miller, Theorem 8] ensures
that if µ0 ⪯ µ1 (as in Definition 25) then Γ≤(µ0, µ1) ̸= ∅ so the problem is feasible. Because the
function h is strictly convex, it is enough to verify that the set of constraints are closed (with
respect to weak convergence) and convex. Note also that from Remark 23 π1, π2 ∈ Γ≤(µ0, µ1) then
π1(M2

≤) = 1 = π2(M2
≤) from which convexity follows.

Remark 43. The assumption of σ-compactness is not too restrictive. In [Eckstein-Miller, Theorem
4] it is shown that every smooth spacetime satisfies this restriction.
Another approach to existence can be defining RSch only for chronological measures, i.e. π(M2

≪) = 1
as this set is always open by Remark 10 and so any weak limit of measures in the set satisfies
π(M2

≤) = 1 by Prokhorov’s Theorem.
Proposition 44. (Existence and Uniqueness for Dynamical problem)
Let (M, ℓ, d) be a ghcrll space (as in Definition 20) if µ0 ⪯ µ1 then RDSch admits a unique solution.
Proof. Convexity of the set of constraints is direct in this case, to observe that the set of constraints
is not empty, define for A in the Borel-σ-algebra of continuous paths,

Π(A) :=
∫
M×M

δγx,y
(A)dµ0 × µ1(x, y)

where γx,y denotes an ℓ-curve joining x and y (given that the space is timelike curve connected) and
δ(·) denotes the Dirac delta. It follows that Π has the correct marginals and belongs to P(Ω).

Remark 45. Recall that the assumption of curve-connectedness can be obtained directly from the ex-
istence of an ℓ-path as every ℓ-path becomes a ℓ-curve after a continuous increasing reparametrization
by [McCann2023, Lemma 7].
Proposition 46. (Relation between Static and Dynamic problems)
Given a solution π for RSch with reference measure r := (e0, e1)#R, we obtain a solution for RDSch
with reference measure R via the formula

Π(A) =
∫
M2

Rx,y(A)dπ(x, y) (1.12)

where Rx,y denotes the x − y bridge for R, defined by Rx,y(·) = R(·|e0 = x, e1 = y) the regular
conditional probability for R. Conversely, given a solution Π for (RDSch) with reference measure R
we obtain a solution for (RSch) with reference measure (e0, e1)#R by projecting into endpoints i.e.

π = (e0, e1)#Π
Proof. Following the proof in [Leonard2014], to show optimality, disintegrate π as follows, because
(M,d) is a Polish space, for any given Y polish and for any measurable function ϕ : M ×M → Y∫

M×M
f(x, y)dπ(x, y) =

∫
M×M

∫
ϕ−1(z)

f(z)dπz(x, y)dϕ#π(z)

then note that entropy is additive with respect to disintegration by (133) which combined with
Ent(ϕ#π | ϕ#R) ≤ Ent(π | R) yields the result.

Ent(Π|R) = Ent(π|r) +
∫
M2

Ent(Πx,y|Rx,y)dπ(x, y)

where Rx.y = R(·|X0 = x,X1 = y) the R bridge which means that Π and R share bridges as it was
shown by Léonard in [Leonard2014] and also in [Leonard2014b].
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1.2.4 Duality and convergence of the static relativistic Schrödinger prob-
lem

Proposition 47. (Causal duality of the static problem)
Let (M, ℓ) be a ghcrlls, suppose µ0 ⪯ µ1 with µ0, µ1 ∈ Pac(M) and r ∈ P(M2) is such that r(M2

≤) = 1
and Γ≤(µ0, µ1) ̸= ∅ then

min
π∈Γ≤(µ0,µ1)

Ent(π|r) = sup
(ϕ,ψ)∈Cb(M)2

ϕ≤rψ

{∫
M

ϕdµ0 +
∫
M

ψdµ1 − log
∫
M2

eϕ+ψdr(x, y)
}

where Cb(M) is the set of continuous bounded functions on M and ≤r denotes,

ϕ ≤r ψ ⇔ ϕ(x) + ψ(y) = 0 unless x ≤ y, r-a.e. (1.13)

In the general case where r ∈M+(M2), we replace the continuous bounded functions for

CB = {f ∈ C(M,R) : sup|f |/B <∞}

where B : M → R (assumed to exist for now) satisfies∫
Bdµ0 <∞,

∫
Bdµ1 <∞,

∫
e−(B⊕B)dr <∞ (1.14)

Proof. The constraint Γ≤(µ0, µ1) can be replaced by Π(µ0, µ1) the set of probability measures
on the product space with µ0 and µ1 as marginals because π ≪ r and r(M2

≤) = 1 imply that
π(M2

≤) = 1.The relative entropy is defined to be +∞ outside of Pac,r = {π : π ≪ r} ≠ ∅ (as µ0 × µ1
belongs to this set), so the infimum is finite and thus we can restrict to Pac,r. This observation
allows us to apply the duality result [Leonard2001b, Theorem 3.4], given that RSch depends only
on the topology of the spacetime and on the metric only through the reference measure r. The
condition (1.13) is forced by r(M2

≤) = 1, if not the right-handside would be ∞.

Remark 48. The statement of Proposition 47 is written for the case where r ∈ M+(M2). The
existence of such B is immaterial in the case where r ∈ P(M2) or has finite measure as in this case
any constant function satisfies (1.14) and hence CB is just continuous bounded functions. We prefer
this statement for Proposition 47 in accordance with Remark 37. In such case r(M2

≤) = 1 should be
replaced with r(M2 \M2

≤) = 0 where the measure could be infinite in M2
≤.

The following Lemma is a simple calculation that elucidates the general idea and approach of
section 1.4. In order to obtain a desired cost function in a limit of entropic regularizations, we must
construct measures converging in exponential rate to that cost.

Lemma 49. (Static computation for general cost)
Let (M,d, ℓ) be a ghcrlls, then for every lower-semicontinuous function c : M ×M → R for given
r ∈ P(M2), r(M2

≤) = 1 and ϵ > 0 we have

inf
π∈Γ≤(µ0,µ1)

{∫
M×M

c(x, y)dπ(x, y) + ϵEnt(π|r)
}

= ϵ inf
π∈Γ≤(µ0,µ1)

Ent(π|rϵc) (1.15)

where rϵc = e−c(x,y)/ϵr in the sense of measures.
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Proof. The proof is a direct computation,∫
M×M

c(x, y)dπ(x, y) + ϵ

∫
M×M

log
(
dπ

dr

)
dπ(x, y) = ϵ

∫
M×M

log
(
ec(x,y)/ϵ dπ

dr

)
dπ

= ϵ

∫
M×M

log
(
dπ

drϵc
dπ

)
,

as minimization on both sides yields the result.

Remark 50. Observe that the left hand side of (1.15) should converge to the solution of optimal
transport with respect to c as ϵ→ 0. On the other hand, the right hand-side of (1.15) corresponds to
a relativistic Schrödinger problem with respect to reference measure rϵc. Our goal will be to study the
features of the dynamical version of (1.15) together with the convergence of it’s minimizing arguments.
We will do so in Theorem 149. Note that, to obtain a Lorentzian cost as in [McCann2019], one
would set c(x, y) = −ℓq(x, y) which will motivate (1.137).

1.2.5 Low temperature entropic limit for the static problem
Proposition 51. (Static slow down and the limit as optimal transport)
Assume that r ∈ P(M2) is such that r(M2

≤) = 1, let µ0 ⪯ µ1 and that µ0×µ1 ≪ R, let c : M×M → R
be lower semi-continuous, bounded below and suppose µ0 × µ1 has finite total c-cost, i.e.∫

M×M
c(x, y)dµ0 × µ1(x, y) <∞.

Assume that M2
≤ is closed and let πϵ be the unique solution for the Schrödinger (RSch) problem with

respect to reference measure rϵc given by

drϵc(x, y) = e−c(x,y)/ϵdr(x, y),

then there exists a measure π and a sub-sequence ϵn → 0 such that as n→∞

πϵn
⇀ π.

where π ∈ P(Ω) solves the optimal transport problem

inf
π∈Γ≤(µ0,µ1)

∫
M×M

c(x, y)dπ(x, y)

Proof. By the assumption of σ-compactness of M2
≤, the family {πϵ}ϵ>0 is uniformly tight. Using

Prokhorov’s theorem there exist a weak sub-sequential limit π ∈ P(M2), by Remark 10 π(M2
≤) = 1.

Observe that by lower semi-continuity of entropy,

Ent(π|r) ≤ lim inf
ϵn→0

Ent(πϵ|r).

And so if π̃ ∈ Γ≤(µ0, µ1) ∩ {π : π ≪ r}, for every ϵ > 0 optimality of πϵ yields∫
M×M

c(x, y)dπϵ + ϵEnt(πϵ|r) ≤
∫
M×M

c(x, y)dπ̃ + ϵEnt(π̃|r),
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where we have used Lemma 49. As 0 ≤ Ent(πϵ|r) <∞,∫
M×M

c(x, y)dπϵ ≤
∫
M×M

c(x, y)dπ̃ + ϵ (Ent(π̃|r)− Ent(πϵ|r))

≤
∫
M×M

c(x, y)dπ̃ + ϵ (Ent(π̃|r)) .
(1.16)

Taking the limit as ϵ → 0 on both sides, due to lower-semicontinuity of c, weak convergences
establishes∫

M×M
c(x, y)dπ(x, y) ≤ lim inf

ϵ→0

∫
M×M

c(x, y)dπϵ(x, y) ≤
∫
M×M

c(x, y)dπ̃(x, y).

Remark 52. Proposition 51 is a relatively direct statement, nevertheless it captures the main ideas
of convergence of the Schrödinger problem (on the primal side). One can also study convergence
with careful analysis of the dual problem (see [Leonard2014], [Tamanini]). The main reason to study
(RDSch) on primal side only is the absence of a canonical elliptic heat semigroup. In the polish (and
RCD(K,N)) case, the study of the convergence of the dual side relies on regularity properties of the
Schrödinger potentials (maximizing arguments of the dual) inherited from the heat kernel.
Up to this point we have dealt with the static and the dynamic problem simultaneously but the
analogue of Proposition 51 for the dynamical setting corresponds to controlling probability of large
events (see section 1.4 on Large Deviation Principles) which will occupy most of the focus of the
present work.

1.3 Bridge spaces and Markovianity
So far in our analysis of the Relativistic Schrödinger problems (RSch and RDSch) the situation has
not been very different to the case where the underlying space is a Polish space, an RDC(K,N) space
or a Riemannian manifold. In this classical setting, one usually restricts to the case of a Markovian
reference measure. Markovianity and it’s known connections with diffusion semigroups allow one
to develop the theory of regularity and convergence of Schrödinger potentials (see [Tamanini]).
Furthermore, the large deviation principles satisfied by the laws of Brownian bridges ([Hsu1990])
and Brownian motion (see [Varadhan], [Hsu]) yield convergence in slowed-down limit to optimal
transference plans (with respect to cost induced by their rate function). With this in mind, we start
our exploration of Markov-like measures in pre-length spaces satisfying large deviation principles.
The natural measure to consider in Riemannian manifolds and RCD(K,N) spaces is the law
associated to the diffusion generated by the heat kernel. Ellipticity and regularity principles of
the heat semigroup imply convergence properties of Schrödinger potentials (see [Leonard2014],
[Tamanini]). The absence of an elliptic heat kernel in Lorentzian manifolds raises the question of
what the natural bridge-measure to use as reference in (RDSch) should be.
The study of generalizations of Brownian motion to Lorentzian manifolds is an active area of research.
Following the seminal paper of [Dudley1966] (and contemporaneous [Hakim]), many researchers have
successfully studied Brownian-like paths in Lorentzian manifolds (see [Franchi-LeJan2007], [Franchi],
[Chevalier-Debbasch], [Dunkel-Hanggi] and references therein). As we aim to find analogues of
bridge measures adapted to RSch and RDSch, our exploration starts a little differently. In section
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1.3.1 we first study a bridge construction proposed to the author by Dr. McCann in Minkowski
space with the property that we have enough control in “parameter” space to induce large deviation
principles. We observe that this bridge construction generalizes the idea of Levy’s first construction
of Brownian bridges.
In sections 1.3.2 and 1.3.3 we study the original construction of Dudley in Minkowski space and
compare it to this new construction. We explain the problems of the large deviation principles of
these processes. Dudley’s process exists naturally in phase-space which opens the questions for
investigation of the Schrödinger problem there. We address the phase-space problem in section
1.3.4 and show some connections to the original Schrodinger problem. Finally, Dudley’s theorem
on Lorentz-invariant Markov processes on Minkowski space is addressed by studying bridge spaces
taking into account the topology of causal curves in section 1.3.6.

1.3.1 Construction of Brownian-bridge-Like processes
Schilder’s original theorem on the large deviation principle satisfied by the laws of slowed-down
Brownian bridges is a fundamental result in the analysis of diffusions. In [Hsu1990], the author is
able to exploit reversibility and other properties of the heat semigroup on Riemannian manifolds to
obtain a large deviation principle for Riemannian Brownian bridges. The non-existence theorem of
Dudley (Theorem 71 below) relies on the non-compactness of the hyperboloid; in short, this lack
of compactness of the group prohibits the existence of a Lorentz-invariant finite Borel measure on
the group (see section 1.3.2 for details). The idea of this section is to create a specific process in
every causal diamond to exploit the compactness ensured by global hyperbolicity, i.e. given that
in a globally hyperbolic Lorentzian manifold every causal diamond is compact, we will use this
compactness to create path measures that allow us to control a parametric limit (resembling noise in
the usual Brownian diffusion and 1/b in the context of [Bismut]). We observe that this parametric
limit is not the slow-down parameter in the Riemannian case [Hsu1990] but we explain how to use
this construction to get deviation principles.

A Levy-like construction on Minkowski Space

In this section, we refer to R1,n with signature convention (+,−, · · · ,−) as Minkowski space Mn

following Dudley’s work ([Dudley1966],[Dudley1967],[Dudley1973]).
To begin we focus on the case n = 3 and we let ℓ : M3 ×M3 to be defined via

ℓ((t1, z1), (t2, z2)) =
(
(t2 − t1)2 − ||z2 − z1||22

)1/2 (1.17)

if the argument of the square root is positive, where ||·||2 refers to Euclidean norm in R3 matching
the conventions on [McCann2019].

Definition 53. (ℓ-mid set)
Let x, y ∈Mn chronologically ordered, i.e. x≪ y we define the ℓ-mid set between x and y via

MID(x, y) = {x ≤ z ≤ y : ℓ(x, z) = ℓ(z, y)}.

Notice that MID(x, y) consists only of points in the causal future of x and in the causal past
of y whose proper time is the same, physically it corresponds to achievable points z on which the
proper time elapsed from x to z equates the proper time from z to y. It takes the same (proper)
time to get from x to z than it takes to get from z to y.
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Figure 1.3: MID(x, y) in J+(x) ∩ J−(y).

Proposition 54. (Compactness of MID(x, y))
Let x≪ y be fixed, then MID(x, y) is compact.

Proof. Observe that MID(x, y) ⊆ J+(x) ∩ J−(y) so it is enough to show it is closed (by global
hyperbolicity). By Definition 53, MID(x, y) is closed when ℓ(x, ·) and ℓ(·, y) are both continuous.

Remark 55. Observe that we have written the previous proof using the general notation of the first
section. The aforementioned continuity is direct in M3 as seen from (1.17).

Proposition 56. (Distance from a MID(a, b))
Assume z ∈ MID(a, b) where a≪ b then

||z − a||2 ≤ ||a− b||2 (1.18)

where again ||·||2 refers to Euclidean distance in Mn.

Proof. In M1 the conclusion is an application of Cauchy-Schwartz inequality in equation (1.83)
below. Note that if s ∈ [0, 1] parametrizes the mid-set between (t1, x1) and (t2, x2), let s be such
that z = Ms in such parametrization, then

d(a,Ms) =
√

(1/2− s+ s2) d(a, b)2 + (1− 2s)(x2 − x1)(t1 − t2). (1.19)

Using Cauchy-Schwartz, since s ∈ [0, 1] we get that

d(a,Ms) ≤ d(a, b)
√

1− 2s+ s2 = d(a, b)|1− s| ≤ d(a, b). (1.20)

For the general case in Mn, the result follows from looking at a 2-dimensional plane and applying
the n = 2 case: consider a, b ∈Mn and z ∈ MID(a, b), the span of {z − a, b− a} is isometric to M2

(which can be seen by boosting) and ||b− a||2 corresponds to the diagonal in the rectangle so (1.18)
follows.

Construction 1. (Levy-like construction on Mn with deterministic restriction on MID(x, y))
Assume that x ≪ y have been fixed, consider for any points a ≤ b where a, b ∈ J+(x) ∩ J−(y) a
collection of measures σ(a, b) ∈ P(MID(a, b)).

i.) Define 0P0 = x and 0P1 = y.
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ii.) Let 1P0 = x, 1P1 ∼ σ(x, y) and 1P2 = y.

iii.) Let 2P0 = x, 2P1 ∼ σ(1P0, 1P1), 2P2 = 1P1, 2P3 ∼ σ(1P1, 1P2) and 2P4 = y,

and continue inductively, namely

nPm =
{
nP2k = n−1Pk if m = 2k
nP2k+1 ∼ σ(n−1Pk, n−1Pk+1) if m = 2k + 1.

(1.21)

The formula 1.21 indicates that we randomly chose a point in MID(x, y) and use it as base point of
a causal diamond at the next level. The prescript indicates the level, i.e. nPm is the m-the element
of the construction generated at level n. At level n we obtain 2n points including our original x and
y as endpoints, 0Pm = x, 2nPn = y for every level n.

We aim to find a probability measure on the space of continuous paths from [0, 1]→ J+(x)∩J−(y)
such that

X(i/2n) ∼ iPn.

We find general conditions for the collection of measures σ(a, b) in the following propositions, first
we depict the process (in n = 2 for simplicity) in Figure 1.4:

Figure 1.4: First 2 steps of the construction depicted in R1,1. Repeat the process in every new
causal diamond once elements in the mid-set have been randomly chosen.

Although the notation of (1.21) is not very enlightening, a good way to visualize the process is to
note the dependence of the random variables, similar to Levy’s construction of Brownian Bridge, we
are finding intermediate points at each level which will correspond to the dyadic times. Our goal
for the section is to generate a path-measure using Construction 1 from section 1.3.1 . Not every
collection of probabilities σ(a, b) where a, b ∈ J+(x) ∩ J−(y) would yield measures concentrated on
continuous paths. We start by making the simplified assumption of contracting every mid-set to
avoid giving positive mass to light-like related points. Observe that when J+(a) ∩ J−(b) consists on
a unique light-like geodesic, that is ℓ(a, b) = 0, then every point in the light-like segment between a
and b belongs to MID(a, b) because ℓ(a, γ(t)) = 0 = ℓ(γ(t), b) for all proper times t. This phenomena
of the light-like related points will stop us from having continuity of limiting paths with respect to
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Figure 1.5: Dependence structure for even m up to level 3, for odd m the element corresponds to
an element on the previous level. The edges in the drawing indicate from which mid-set we are
choosing the new element.

the underlying topology: the euclidean distance can be very big while the proper time is 0.
We depict this observation figure 1.6 in R1,1.

Figure 1.6: In the light-like case, the mid-set is all the points in the light-like geodesic

To start the analysis of collections of measures yielding path-measures concentrated on continuous
paths, we start by controlling uniformly the distances between sequential elements on Construction
1 from section 1.3.1 . We start by studying only measures which are completely concentrated on
contracting the mid sets by a uniform constant.
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Definition 57. (c-Contracted Mid set)
Let 0 < c < 1 be fixed and let a≪ b where a, b ∈ J+(x) ∩ J−(y), we define the c-contracted mid set
between a and b via

c−MID(a, b) =
{
a ≤ z ≤ b : z = c

(
z̃ −

(
b+ a

2

))
+ b+ a

2 for some z̃ ∈ MID(a, b)
}
. (1.22)

Definition 57 uses the specific nature of Mn as we are writing the contracted set by translating
to the origin, scaling by c and translating back. The fact that the contracting constant c is uniform,
allows us to control distances uniformly.

Proposition 58. (Uniform control on distances to MID(a, b))
Let 0 < c < 1, a≪ b and assume z ∈ c−MID(a, b) then we have

max{||z − a||2, ||b− z||2} ≤
(

1
2 + c

2

)
||b− a||2 (1.23)

Furthermore, with the notation of Construction 1 from section 1.3.1 , for any i ∈ {0, 1, . . . , 2n − 1}

||nPi − nPi+1||2 ≤
(

1 + c

2

)n
||x− y||2 (1.24)

Proof. By symmetry of c−MID(a, b) it is enough to show the inequality for the distance between z
and a. By definition of c−MID(a, b) let z̃ as in (57), then

||z − a||2 = ||c(z̃ − (b+ a)/2) + (b+ a)/2− a||2
= ||c(z̃ − a) + (1− c)((a+ b)/2− a)||2

≤ c||z̃ − a||2 + (1− c)
2 ||b− a||2

≤
(

1
2 + c

2

)
||b− a||2

(1.25)

where the last inequality is due to Proposition 56. In the notation of Construction 1 from section
1.3.1 if i is even then nPi ∈ c−MID(

n−1
Pi/2, n−1Pi/2+1) so the conclusion (1.24) follows by applying

the previous inequality recursively.

Lemma 59. (Uniform distance control on causal diamonds in Minkowski space)
Let x, y ∈Mn and x≪ y there exists Cx,y > 0 such that for all a, b ∈ J+(x) ∩ J−(y) with a≪ b we
have

sup
z1,z2∈J+(a)∩J−(b)

||z1 − z2||2 ≤ Cx,y||b− a||2 (1.26)

Proof. Consider x≪ y and a, b ∈ J+(x) ∩ J−(y) if z1, z2 ∈ J+(a) ∩ J−(b) in Minkowski space, let
us show that ||z1 − z2||2 ≤ 2 · ||b− a||2, so that Cx,y = 2 for all x, y ∈ Mn. Let us consider global
coordinates on Mn of the form (t, x) where x ∈ Rn. If z ∈ J+(a) ∩ J−(b), then

(tz − ta)2 ≥ ||xz − xa||22,
(tb − tz)2 ≥ ||xb − xz||22.

(1.27)
(1.28)
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Consequently,

||b− a||22 =(tb − ta)2 + ||xb − xa||22
= (tb − tz)2 + (tz − ta)2 + 2(tb − tz)(tz − ta)
+ ||xb − xz||22 + ||xz − xa||22 + 2(xb − xz) · (xz − xa)
= ||z − a||22
+ (tb − tz)2 + ||xb − xz||22 + 2 {(tb − tz)(tz − ta) + (xb − xa) · (xz − xa)} (1.29)

By Cauchy-Schwartz, the sum of terms in (1.29) is non-negative, from which we conclude that if
z ∈ J+(a) ∩ J−(b)

||z − a||2 ≤ ||b− a||2. (1.30)

Given any points z1, z2 ∈ J+(a) ∩ J−(b) we have

||z1 − z2||2 ≤ ||z1 − a||+ ||a− z2|| ≤ 2||b− a|| (1.31)

where we used (1.30) twice in the last step. Taking the supremumum yields (1.26).

Towards the developments in section 1.3.5, let us reformulate (1.26) with the notation of general
spacetimes, (M,d, ℓ).

Definition 60. (Uniform control on causal diamonds for general spacetimes)
Let (M, ℓ, d) be a ghcrlls (definition 20), we say (M,d, ℓ) satisfies uniform control on causal diamonds
if whenever x, y ∈M , x≪ y there exists Cx,y > 0 such that for all a, b ∈ J+(x) ∩ J−(y) with a≪ b
we have

sup
z1,z2∈J+(a)∩J−(b)

d(z1, z2) ≤ Cx,yd(a, b). (1.32)

Remark 61. Lemma 59 says Minkowski space satisfies uniform control on causal diamonds (Defi-
nition 60). It is not clear whether Definition 60 holds in all ghcrlls.

Proposition 62. (Existence for measures concentrated on contracted mid-sets)
The Levy-like construction from 1 yields a unique Borel (with respect to d∞) probability measure
on Ωx,y = {γ ∈ C([0, 1] ,M) : γ(0) = x, γ(1) = y} for every collection {σa,b}a≤b,a,b∈J+(x)∩J−(y).
satisfying that for fixed 0 < c < 1,

σa,b (MID(a, b) \ c−MID(a, b)) = 0 for all a, b ∈ J+(x) ∩ J−(y). (1.33)

Proof. We aim to define a Borel random variable X on the space (Ωx,y, d∞). We start by defining
X on dyadic times and argue the existence of a unique limit for every converging sequence of dyadic
times. If n ∈ N and k ∈ {0, 1, . . . , 2n} we set X(k/2n) = nPk from Construction 1 from section 1.3.1
, to ensure the existence of µ ∈ P(Ωx,y), for any sequence of dyadic times converging to t ∈ [0, 1],
define

X(t) =
∞⋂
n=1

J+(X(⌊2nt⌋)) ∩ J−(X(⌊2nt⌋+ 2−n)).
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which in our notation rewrites

X(t) =
∞⋂
n=1

J+(nPi) ∩ J−(nPi+1). (1.34)

Using first (1.26) and then (1.24) we see

diam(J+(X(⌊2nt⌋)) ∩ J−(X(⌊2nt⌋+ 2−n))) ≤ Cx,y||nPi − nPi+1||2

≤ Cx,y
(

1
2 + c

2

)n
||y − x||2

(1.35)

so that the diameters go uniformly to 0 and X(t) is unique and well-defined by Cantor’s the-
orem because every element in the intersection is compact by global hyperbolicity and nested
by causality. Using Kolmogorov’s theorem [Durrett, Chapter 7 Theorem 1.3] there exists a
law µ ∈ P(D, σ({{et}t∈Dn}n∈N) and (1.35) ensures it assigns measure 1 to uniformly continu-
ous curves, hence the extension via (1.34) is well-defined as the map is measurable with respect to
(C([0, 1],M), σ(et)) and so there exists µ ∈ P(Ωx,y) such that X ∼ µ as desired.

The equivalence on the σ-algebras generated by {et}t∈[0,1] and d∞ is explained in Theorem 125.
Condition (1.33) means that the probability measures on the mid-sets don’t give positive probability
to elements close to null futures and pasts of a, b respectively. We use the uniform bound c but will
argue that it is not necessary. We show a more general condition in Construction 2.

Remark 63. Although continuity and the existence of a path measure could be proved in simpler
ways (because of the linear structure on Mn), we choose this method as it relies only on the nestedness
and compactness of causal diamonds, together with the equalities (1.24) and (1.26) which can easily
be formulated in more general frameworks (like ghcrlls from Definition 20).

Remark 64. Note that always X(0) = x and X(1) = y. Consequently, X(1/2) ∼ σ(x, y) where
everything is deterministic as x and y are fixed. The realization of X(1/4) depends on the observed
value of X(1/2), so we know the conditional distribution

X(1/4) | (X(1/2) = z) ∼ σ(x, z) (1.36)

So far, we have used the notation σ(x, y) to describe a probability measure in MID(x, y). For
notational purpose, on the following formula we write σx,y instead of σ(x, y) so we can rewrite (1.36)
as

P(X(1/4) ∈ A) =
∫ ∫

A

dσx,zdσx,y(z)

where we have now used the parenthesis to indicate the variable of integration. Analogously, if m is
odd

P(X(m/2n) ∈ A | X((m− 1)/2n), X((m+ 1)/2n)) = σX((m−1)/2n),X((m−1)/2n)(A).

Remark 65. (Comparison with Levy’s construction of Brownian motion in [0, 1])
A famous construction of Levy for Brownian motion is to set Gaussian measures at dyadic times in
[0, 1] (see [Durrett, Section 7.1, Theorems 1.3,1.3]). By consistency and Kolmogorov’s theorem one
obtains a measure which is later shown to have almost surely continuous paths. We observe that
Construction 1 from section 1.3.1 exactly replicates this idea. Global hyperbolicity allows us to think
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of J+(x)∩ J−(y) as [0, 1] and the mid-sets in our construction correspond to vertical lines at dyadic
times. The weight of each Gaussian on Levy’s construction is proportional to the dyadic level which
is emulated here by σa,b being a probability measure on MID(a, b).

Remark 66. We haven’t assumed the existence of any temporal functions and we are parametrizing
curves on J+(x) ∩ J−(y) with a external parameter t. This parameter is not proper time and we
will discuss it’s unphysicality throughout the rest of the work.

The restriction (1.33) is not necessary. It was certainly helpful for the inequality (1.24) which
yielded the convergence to zero of diameters of causal diamonds.

Construction 2. (Levy-like construction with probabilistic restriction on MID(x, y))
Let as before {σ(a, b)}a,b∈J+(x)∩J−(y) be a collection of measures where σ(a, b) ∈ P(MID(a, b)).
Define nPk recursively as in Construction 1 from section 1.3.1 , assume further that

lim
sn,t∈D,sn→t

d(Xs, Xt) = 0 (1.37)

uniformly on t ∈ D where D denotes the set of endpoints of dyadic intervals on [0, 1] and

X(i/2n) ∼ iPn, (1.38)

then there exists a measure µ ∈ P(Ωx,y) such that if X ∼ µ then X(k/2n) ∼ nPk.

Remark 67. The uniformity condition is on t ∈ [0, 1] and the modulus of continuity may depend
on the randomness ω.

Construction 3. (Levy-like)
Let as before {σ(a, b)}a,b∈J+(x)∩J−(y) be a collection of measures where σ(a, b) ∈ P(MID(a, b)).
Define nPk recursively as in Construction 1 from section 1.3.1 , assume further that

lim
sn,t∈D,sn→t

d(Xs, Xt) = 0 (1.39)

for all t ∈ D where D denotes the set of endpoints of dyadic intervals on [0, 1] then there exists a
measure µ ∈ P(Ωx,y) such that if X ∼ µ then X(k/2n) ∼ nPk.

Construction 4. (Levy-like)
Let as before {σ(a, b)}a,b∈J+(x)∩J−(y) be a collection of measures where σ(a, b) ∈ P(MID(a, b)).
Define Xt recursively as in Construction 1 from section 1.3.1 for t ∈ D, assume further that there
exists α, β > 0

E[d(Xs, Xt)β ] ≤ K|t− s|1+α (1.40)
for all s, t ∈ D where D denotes the set of endpoints of dyadic intervals on [0, 1] then there exists a
measure µ ∈ P(Ωx,y) such that if X ∼ µ then X(k/2n) ∼ nPk.

Note that (1.40) ensures the hypothesis of Kolmogorov-Centsov and so the probability measure
on dyadics of Kolmogorov’s extension Theorem assigns probability 1 to uniformly continuous paths
and so can be extended to (Ωx,y, d∞) by the afore-mentioned measurability of the map that takes
uniformly continuous maps on D to Ωx,y (see [Durrett, Section 7.1, Theorem 1.4]).
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Note that the proof of Proposition 62 works for all of these constructions, as we have set the
hypothesis so that we can replicate it. As the construction is only done for uniformly (in time)
continuous functions, the probability measure lifts from the cylindrical σ-algebra (D, Cyl(D) to
(C[0, 1],B) where B is the σ-algebra generated by finite-dimensional evaluation maps. Further,
observe that we have changed notation in Construction 2 of ||·||2 to d(·, ·) as we are thinking of the
formulation in more general frameworks (see 1.3.5).

Remark 68. The condition of hypothesis (1.37) avoids the concentration of mass on light-like paths,
as it was first observed by Dudley on his seminal work [Dudley1966] mass on light-like related points
gives processes concentrated on lower-dimensional subsets (see Figure 1.6).

The constructions 1 and 2 are relatively simple as the collection of measures {σ(a, b)} is fairly
general. The main point is that this simple construction can be carried out in much more general
frameworks as we will detail in section 1.3.5. We will see that the constructions 1 and 2 are well
adapted to the study of the abstract Schrödinger problem. Before we study these properties we
need to study the known processes in Minkowski space Mn and general Lorentzian manifolds that
resemble the behaviour of Brownian Bridges. Constructions 1 and 2 are not completely satisfactory
as generalizations of Brownian Bridges (as we will see in the next chapters) but are suitable tools for
large deviations principles (see section 1.4) which are deeply connected to the Schrödinger problem.
The previous observation indicates one thing: to construct bridges in Lorentzian spaces we should
focus on satisfying the uniform continuity condition with respect to the underlying distance d as we
will do in Construction 1.3.5.

1.3.2 Dudley’s random motions in Minkowski space
The seminal work of Richard Dudley [Dudley1966] started the investigation of stochastic Markov
processes in Minkowski space M3. Dudley’s work [Dudley1966], [Dudley1967] and [Dudley1973]
started a fundamental area of research for mathematical physics. Dudley dealt with the concept of
random motions (stochastic processes) in special relativity invariant with respect to the Lorentz
group L. In this work, the author showed the non-existence of certain L-invariant stochastic
processes. In essence, Dudley showed causality in Minkowski space is just a Lipschitz condition
on space variables with respect to time variable which is incompatible with Markovianity. The
fact that motions must have “speed” bounded by the speed of light enforces an almost-everywhere
differentiability condition which is incompatible with the standard notion of strong Markovianity: if
the past and the future are to be independent, how could the process be differentiable?
This incompatibility lead the author to study random motions where instant velocities are Brownian-
like. In the next sections we study Dudley’s observations to relate them to our setting. We defer
the generalizations of Dudley’s work to more general curved geometries for section 1.3.4 where a
vast literature exists ([Franchi-LeJan2007],[Chevalier-Debbasch],[Dunkel-Hanggi]).
The reason to study Minkowskian space first is twofold: first, in order to study bridge constructions
in ghcrlls spaces, we should understand the case of special relativity, then generalize to manifolds
and only then to the non-smooth setting; second, just as Riemannian manifolds can be embedded in
high dimensional euclidean spaces, smooth Lorentzian manfiolds can be embedded in Minkowskian
spaces.
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Dudley’s observation in Minkowski Space and the physical Markov property

We start by presenting the details on [Dudley1966] on random motions on M3. It is important that
we clearly state the construction together with it’s assumptions (i.e. on choices of measurable spaces)
as these subtleties are where we can take advantage of the structure of more general frameworks.
Let us recall the construction on [Dudley1966].
Assume that a curve t ∈ [a, b]→ γ̃(t) is parametrized with respect to the time variable in M3, i.e.

γ(t) = (t, γ̃(t)).

Causality in M3 means that for t1 ≥ t2

(t1 − t2)2 − ||γ̃1(t1)− γ̃2(t2)||22 ≥ 0.

Equivalently, for every t1 ≥ t2
||γ̃(t1)− γ̃(t2)||2 ≤ |t1 − t2|. (1.41)

Equation (1.41) is Lipschitz continuity of the curve when parametrized with the time variable. From
this observation, set A to be the set of Lipschitz functions with constant 1, whose derivative is
strictly bounded by 1 whenever it’s defined,

A = {f : [0,∞)→ R3 : ||f(t)− f(s)||2 ≤ |t− s|, ||f ′(s)||2 < 1 when it exists}.

Definition 69. We say that a collection of measures {Px}x∈R3 on a σ-algebra S of subsets of A
are starting probabilities on M3 “itself” if for every x

Px({f ∈ A : f(0) = x}) = 1. (1.42)

Let H3 denote the hyperboloid, we say that a collection of measures {Pvx}x∈R3,v∈H3 are starting
probabilities (on phase-space) if

Pvx({f ∈ A : f(0) = x, f ′(0+) = v}) = 1 (1.43)

where f ′(0+) corresponds to the derivative from the right.

Given {Pvx} starting probabilities, a first Markov property can be formulated on M3. Observe that
the use of A (Lipschitz functions with speed strictly smaller than one) corresponds to restricting to
causal curves (t, f(t)) which do not have null segments of positive volume. The use of the parameter
t instead of proper-time is a choice made by the author and justified only after the analysis of strong
Markov properties (Markov property with respect to random time changes). The use of the domain
[0,∞) is justified through the existence of global coordinates on M3.
To follow Dudley’s notation, set et(f) = f(t) for t ∈ [0,∞) and

Bst = σ({{f ∈ A : f(r) ∈ A} where s ≤ r ≤ t, A ∈ B(R3)})
= σ({e−1

r (A)} where s ≤ r ≤ t, A ∈ B(R3)})
= σ({er}s≤r≤t)

(1.44)

Still following [Dudley1966], set the future-from s σ−algebra to be

Bs = σ({Bst }t>s) (1.45)

where σ(·) refers to the σ-algebra generated by that collection.
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Definition 70. (Markov Process with starting probabilities in Minkowski Space)
Let {Pvx} be starting probabilities (on phase-space) we say that the collection corresponds to a Markov
Process in M3 if for every t > 0, x ∈ R3, v ∈ H3

Pvx({f : f ′(t) exists }) = 1

and for any A ∈ Bt(A) we have

Pvx(A|B0
t (A)) = Pf

′(t)
f(t) (θtA)

where θt denotes translation by t, θt(f)(x) = f(x+ t).

We say that a process is trivial if it is concentrated in a single function f ∈ A. In [Dudley1966,
Theorem 11.1] the author proved the following theorem:

Theorem 71. (Dudley’s non-existence)
Let J = {f : [0,∞) → M3 : |f(t) − f(s)|M ≤ |t − s|}. There is no non-trivial process with
Lorentz-invariant with starting probabilities on Mn itself i.e. on (J ,M3,B(M3)), every process
satisfying

1. (Translation invariance)
For ti ≥ 0, z ∈M3, Ai ∈ B(M3)

P0({f : f(ti) ∈ Ai, i = 1, . . . , n}) = Pz({f : f(ti) ∈ Ai + z, i = 1, . . . , n}) (1.46)

2. (L-invariance)
For any L ∈ L and A ∈ B0(J )

P0(A) = P0(L(A)) (1.47)
must be concentrated on a single function on J .

For a proof see [Dudley1966, Theorem 11.3], intuitively, the existence of such a process would
yield a finite L-invariant Borel probability measure, which is impossible by non-compactness of L.

Corollary 72. No L-invariant Markov process (according to Definition 70) exists with starting
probabilities M3 itself (as in Definition 69).

Proof. The non-existence is independent of the Markov property, Definition 70 requires the existence
of starting probabilities on M itself according to Definition 69 but Theorem 71 prevents that.

Remark 73. Theorem 71 shows the non-existence of Markov processes whose starting probabilities
are L-invariant on M3. Because our focus is the study of the Schrödinger problem, our main goal is
to study stochastic processes whose small time equivalences we can control. In the Euclidean and
Riemannian settings, the Wiener measure (together with Brownian motion and Brownian Bridges)
satisfy both Markov properties and large deviation principles. A completely satisfactory generalization
to Lorentzian manifolds would correspond to a Markovian process with L-invariance and small time
asymptotics approximating those of geodesic flow. Theorem 71 shows such generalization is impossible
when the (strong) Markov property is interpreted in the classical sense of [Dudley1966]. We will
therefore explore the asymptotics of several bridge constructions (like 1 and 2), their application
to the Schrödinger problem and different ways to study the Markov property taking the physically
inherent properties of the underlying space into account.
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A look into Theorem 71 and Corollary 72 reveals it’s dependence on the choices of classes of
functions and σ-algebras chosen. Although these choices are well justified, they open the question
whether or not there are other possible ways to formulate Markov Properties well-adapted to the
study of RSch and RDSch. The seminal work of C. Léonard [Leonard2014] introduces an altervative
formulation of the Markov property than that of [Dudley1966] (Definition 70). In the next section
we present this definition and connect it to Dudley’s.

1.3.3 The extrinsic (un-physical) Markov Property
We aim to use tools from optimal transportation as in [Leonard2014] so it is important to make
the distinction that the external parameter we will use for causal curves is not (a priori) related to
the time variable in a space time. For example, in the definition of q-geodesics of [McCann2019],
if {µs}s∈[0,1] interpolates ℓq-optimally between causally related µ0 and µ1, the parameter s does
not represent physical time. We use this idea from transportation theory to adapt the definition of
Markovianity from [Leonard2014] and we call it the un-physical Markov property.
Definition 74. (Markov process on causal bridges)
On a complete, separable metric spacetime (M, ℓ, d), denote by

Ωx,y := {γ ∈ C([0, 1],M), γ(0) = x, γ(y) = 1}

let ν ∈ P(Ωx,y) the set of Borel probability measures on Ωx,y, with the topology induced by d∞.
Denote ν0 := e0#ν, following [Leonard2014] we say that ν is Markov in terms of causal bridges if ν
is conditionable with respect to {et} and for every t ∈ [0, 1] one has

ν(e[0,t] ∈ A, e[t,1] ∈ B | et) = ν(e[0,t] ∈ A | et)ν(e[t,1] | et), (1.48)

where et denotes the evaluation process, et(γ) = γ(t) and where A ∈ σ({es : 0 ≤ s ≤ t}) and
B ∈ σ({es : t ≤ s ≤ 1}).

If ν is conditionable then equation (1.48) is equivalent to

ν(e[t,1] ∈ A|e[0,t]) = ν(e[t,1] ∈ A|et). (1.49)

The Markov property aims to encapsulate the idea that past and future are independent given the
present.
Remark 75. Note that in order for equation (1.48) to make sense, one needs (e[0,t])−1(A) ∈ B(Ωx,y).
This measurability of t→ et is usually implicitly assumed in definitions of Markov properties and has
remarkable consequences (see section 1.3.9 for details). This implicit assumption is deeply connected
to the un-physicality of this definition as we will see in section 1.3.6.
Remark 76. In contrast to Definition 70, Definition 74 is not defined for functions parametrized in
[0,∞) but rather only [0, 1], this choice is natural as our intended application is for the Schrödinger
problem on which µ0 and µ1 are fixed. Curves satisfying γ(0) = x and γ(1) = y are called bridges
between x, y or (x, y, 1)−bridges.

Definition 74 depends on the Borel σ-algebra generated by d∞, we will show that even if this
is a natural way to lift d from M to Ωx,y it presents an (a-priori) seeming un-physicality that we
aim to resolve in section 1.3.6. Although the Markov property and it’s consequences have been
studied extensively, our particular interest towards the study of the Schrödinger problem in general
non-smooth Lorentzian spaces is the content of the following proposition:
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Proposition 77. (The Causal Markov property is also preserved)
Suppose the reference measure R ∈ P(Ωx,y) is Markov in terms of causal paths (Definition 74), then
the solution to (RDSch) with respect to R is also Markov in terms of causal paths.

We postpone the proof of Proposition 77 and delay it for section 1.3.6. The idea is to follow
[Leonard2014] and apply the disintegration theorem in the correct space (see section 1.3.10). We
aim to study Markovian bridges as object themselves rather than constructing them as conditioned
Markov processes. The theory of Markov Bridges as conditioned Markov Processes can be found in
[Fitzsimmon-Pitman-Yor] and some of it’s results are presented in section 1.3.8. Let us first study
the constructions 1 and 2 in terms of Markovianity.

Theorem 78. (Markov and Levy-like construction 1 )
The Levy-like bridge construction (Construction 1 from section 1.3.1 ) satisfies the following property:
let s, r, t ∈ D and n(s), n(r), n(t) their corresponding dyadic level, then if max{n(t), n(s)} < n(r)
then

P (et ∈ A, es ∈ B|er) = P (et ∈ A|er)P (es ∈ B|er)

But in general, the measure associated to the Construction 1 from section 1.3.1 may not be Markov
in the sense of Definition 74.

Proof. In Construction 1 from section 1.3.1 , observe that if s ∈ D then the law of Xs depends only
on X⌊2n−1s⌋ and X⌊2n−1s+1⌋, proceeding inductively we know Xs only depends on X0 and X1 which
are considered in the σ−algebra and (78) follows.
For the latter, observe that if s = 1/4, r = 3/8, t = 1/2 then independently of Xr we know
Xs ∼ σx,X1/2 ∈ P(MID(x,X1/2)) which depends on X1/2 independently of Xr so (1.48) may not
hold.

Remark 79. Although Constructions 1 and 2 may not be Markov, Theorem 78 indicates that they
are almost Markov. An idea to change the constructions to make them Markov is presented in section
1.5.2.

Theorem 71 is both intuitive and surprising: It is intuitive as the existence of velocities is
incompatible with the classical understanding of the Markov property but surprising as it is not
clear what the analogue of the standard objects should be anymore. Towards this end, Dudley
proposed the study of a process in phase-space (the space and it’s velocities) which arises naturally
as a generalization of the Brownian motion in M3. We will study this process (referred to as Dudley’s
process), it’s generalizations and properties. The fact that Dudley’s process “lives” in phase-space
rather than in the original space forces us to study a different version of the Schrödinger problem,
“the Relativistic Kinetic Schrödinger Problem” RKSchP whose Euclidean analogue has been studied
in [Chiarini-Conforti-Greco].

On the canonical relativistic Brownian Motion on Lorentzian Manifolds

On Riemannian manifolds Brownian motion can be defined as the unique diffusion process generated
by the Laplace-Beltrami operator (∆M ) via it’s horizontal lift ∆O(M) (see [Hsu, Chapters 3,4]). In
the case of Lorentzian manifolds there is no clear analogue as the Laplace-Beltrami operator is
hyperbolic and not elliptic.
The approach of [Dudley1966] in Minkowski Space and the extended in [Franchi-LeJan2007] is to
study a stochastic process in phase space (Xt, Ẋt), a subset of the tangent bundle on which velocities
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are constrained to be timelike in order to stay within the light cone, i.e. velocities are restricted to
not surpass the speed of light.
This approach is similar to the use of the vertical Laplacian as infinitesimal generator on Sub-
Riemannian manifolds.

There are many equivalent ways to define a diffusion process for an elliptic operator. We say that
a stochastic process Xt corresponds to the diffusion of an elliptic operator L if Xt is the solution
to the martingale problem for L, i.e. Xt is such that for every continuous bounded function f the
process

f(Xt)− f(X0)−
∫ t

0
Lf(Xs)ds (1.50)

is a local martingale. The idea of [Dudley1966] and [Franchi-LeJan2007] is to solve a s.d.e. on
the orthonormal frame after restricting velocities. In this section we study this approach and it’s
relation to Definition 74.

Construction of Dudley’s relativistic diffusion

Following [Franchi-LeJan2007] we define Dudley’s process in Mn via it’s infinitesimal generator.

Definition 80. (Dudley’s process in phase-space of Minkowski spacetime)
Let (Xσ

t , ξ
σ
t )t∈[0,∞) ∈Mn ×Hn be the solution of the martingale problem associated to the generator

Lσf(x, p) =
d∑
k=0

pi
∂f

∂xi
(x, p) + σ2

2 ∆Hd

(p)f(x, p) (1.51)

where ∆Hd

(p) denotes the hyperbolic Laplacian (on Hd). (Xσ
t , ξ

σ
t )t∈[0,∞) is called Dudley’s process.

Existence of the process was originally showed by Dudley in [Dudley1966, Section 6] and explained
by Hakim in [Hakim, 1]. The fact that the process described above corresponds to the solution
to the martingale problem in this definition is [Franchi-LeJan2012, Theorem VII.6]. The operator
on (1.51) is hypoelliptic on R1,n ×Hn and so by Hörmander’s theorem admits a smooth transition
kernel.
Further, ξt is a Riemannian Brownian motion (in Mallavin-Ells-Elworthy sense) in hyperbolic space

Hn and Xt =
∫ t

0
ξsds, i.e.

(Xt, ξt) =
(∫ t

0
ξtdt, ξt

)
. (1.52)

Even though ξt is a hyperbolic Brownian motion, it is not evident how many features of ξt are passed
on to (Xt, ξt). The construction of [Dudley1966] showed that the associated starting probabilities
are L-invariant and strongly Markov (as in Definition 70).
As a hypo-elliptic diffusion, Dudley’s diffusion admits a kernel p((x,w), (y, v), t) and by applying a
result of Tutubalin on the characterization of infinitely divisible laws in the radial case, Dudley was
able to obtain a explicit formula for the semigroup on one nappe of the hyperboloid (denoted U):

Pt = 1
(4πmt)3/2

(
ρ

sinh(ρ)

)
e−mt−ρ2/(4mt)dµH
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where µH is H3-invariant and given by

dµH3 = 4π(sinh(ρ))2dρdΩ

and dΩ is the normalized surface area on the sphere and ρ is the Riemannian distance in H3 (again
see [Dudley1966, Section 10] for details).
Given (x, v), (y, w) ∈Mn ×Hn with x≪ y it is natural to condition Dudley’s process to hit (y, w)
after “time” 1 being started at (x, v). We use quotations to express that the external parameter for
Dudley’s process is not the coordinate time but the arc-length parameter of Xt. This conditioning
is well-defined via the strong Markov property proved in [Dudley1966, Section 6], so the law of
(Xt, ξt)|((X0, ξ0) = (x, v1), (X1, v1) = (y, v2)) is a probability measure on Ω(x,v),(y,w). Because
Dudley’s process emulates the behaviour of Brownian motion, it’s conditioning is a natural measure
to use on Bridge space. As explained at the beginning in section 1.3.1, the law of Brownian bridges
is the canonical reference measure for the Dynamical Schrödinger problem on Riemannian manifolds,
this motivates the idea of using the conditioned law of Dudley’s process as a reference measure for a
Schrödinger problem. We should make sure to define the correct ambient space for this problem
before we relate it to RDSch. We will perform this conditioning carefully after we set up the correct
framework (see (1.63)). This process will lead to Definition 81. In the next chapter (Section 1.4.3)
we explain how to use Large deviation properties of such processes to obtain optimal transport plans
as weak limits of entropically regularized optimal transport plans.

1.3.4 Phase-space and the Schrödinger Problem
In Minkowski space Mn, we define relativistic phase-space as a subset of the tangent bundle, namely
PS = Mn × U where U is the upper nappe (sheet) of the hyperboloid Hn.
We aim to define the Schrödinger problem in phase space of Mn. In the case of M3 phase-space is a
7-dimensional sub-manifold of TM (8-dimensional). In [Chiarini-Conforti-Greco] the Schrödinger
problem on euclidean phase-space with partial information was introduced, we recall the definition
and one of their results before moving towards the case of special relativity.

Schrödinger problem on Euclidean phase-space with partial marginals

Given r a Borel probability measure on C([0, 1],R× R) assume that r is concentrated on paths of
the form t→ (x(t), v(t)) where t→ x(t) is almost everywhere differentiable and{

dx(t) = v(t)dt
dv(t) = dWt

(1.53)
(1.54)

where dWt refers to Ito-integration with respect to 1-dimensional Brownian motion Wt. Let us
analyze the analogue of RDSch with respect to this measure r, we aim to find

inf
P∈P(C([0,1],R×R))

Ent(P|r) (1.55)

over all measures satisfying Projx #(e0#P) = µ0,Projx(e1#P) = µ1.
By definition of entropy it is enough to consider measures concentrated on drifted Brownian motions{

dx = vdt

dv = adt+ dw.

(1.56)
(1.57)
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In the same document [Chiarini-Conforti-Greco], the authors show using Girsanov’s theorem and an
argument a la Benamou-Brenier that the problem is equivalent to the minimization

inf
a∈L2(µt×dt)

∫ 1

0

∫
||a||2dµt(x, v)dt (1.58)

where µt satisfies the Fokker-Planck equation
∂µ

∂t
+ v · ∇xµt +∇v(av)− 1

2∆vµt = 0. (1.59)

Equation (1.59) describes the evolution of the associated procees in phase-space R× R.
Two main difficulties arise when trying to adapt the same techniques to the Schrödinger problem
on phase space (or kinetic Schrödinger Problem) on globally hyperbolic chrono-regular Lorentzian
length-spaces.

1. The absence of a well-adapted Girsanov theorem.

2. The unphysicality of the external parameter.
We address these problems in the following sections. In the following section we define and analogue
of this idea in relativistic phase space for the case of special relativity and in section 1.3.4 we explain
the approach one could follow for general curved geometries.

The kinetic relativistic Minkowskian Schrödinger Problem

Let M3 be Minkowski space and denote by U one nappe (sheet) of the hyperboloid. We refer to
Mn × U as the Phase space for special relativity and denote it PS. Notice that this simple splitting
of the (co-)tangent bundle is a direct consequence of homogeneity of Minkowski space and is not
usually available in curved geometries. In general curved geometries, phase space is not so easily
described and we refer to [Franchi-LeJan2012] for a complete exposition.
Definition 81. (Dynamical Schrödinger problem on phase-space of Minkowski space).
Given µ̃0, µ̃1 ∈ P(PS) with and R ∈ P(C([0, 1],PS) we define the kinetic relativistic Schrödinger
problem as

inf
Π∈ΓP S(µ̃0,µ̃1)

Ent(Π|R) (RKSchP)

where ΓPS(µ̃0, µ̃1) is the set of Borel probability measures on PS whose marginals at endpoints are
µ̃0, µ̃1 i.e. e0#Π = µ̃0, e1#Π = µ̃1 and

spt(Π) ⊆ {(γ, v) : v(t) = γ̇(t) a.e. on t ∈ [0, 1]} (1.60)

Condition (1.60) ensure the probability measure is concentrated on differentiable curves (on
space-time) whose velocity is in the hyperboloid.
Definition 82. (Partial dynamical Schrödinger problem on phase-space of Minkowski space).
Given µ0, µ1 ∈ P(Mn) and R ∈ P(C([0, 1],PS) we define the external dynamical Schrödinger
problem as

inf
Π∈Γx(µ0,µ1)

Ent(Π|R) (1.61)

where Γx(µ0, µ1) is the set of Borel probability measures on PS whose Mn-projected marginals at
endpoints are µ0, µ1 i.e. e1# Projx #Π = µ0, e1# Projx #Π = µ1 and satisfy (1.60).
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Notice the difference between the problems is the specification of initial data. In the first problem
RKSchP initial data is prescribed as probability measures on phase-space meaning that momentum
is specified at beginning and end. In contrast, (1.61) specifies only the space-time data. It is clear
then that if µ0 = Projx µ̃0 and µ1 = Projx µ̃1 then any solution with (µ0, µ1, r) data for (1.61)
would yield a solution for RKSchP. Note that by Lemma 39 the same is true when comparing with
RKSchP. In the Kinetic version of the problem the causality condition is implicitly required through
equation (1.60), in contrast to the dynamic Relativistic Schrödinger Problem RDSch where the
requirement is explicit. We briefly review the analogue of Proposition 44. Existence: Note that for
P we are using the Borel σ-algebra and given the product structure of PS we are implicitly using

d((γ1, v1), (γ2, v2)) = sup
t∈[0,1]

||γ1(t)− γ2(t)||2 + dHn(v1(t), v2(t)) (1.62)

where ||·||2 is the Euclidean norm on Rn+1 and dHn is the hyperbolic distance. This implies that
the constraint (1.60) is again closed and existence is concluded similarly to that in Proposition 44.
If a solution exists, condition (1.60) is also convex so strict convexity of entropy yields uniqueness.
Fix x≪ y, x, y ∈M3 and v ∈ H3, by [Dudley1966, Theorem 6.2] there exists a L-invariant strongly
Markov process starting at (x, v). By the strong Markov property, we condition Dudley’s process
(Xt, Vt) to hit (y, w) at proper-time 1. Set PS(x,v),(y,w) to be the set

{γ : [0, 1]→M,γ ∈ C1([0, 1],M), (γ(0), γ′(0+)) = (x, v), (γ(1), γ′(1−)) = (y, w)}

where C1([0, 1],M) refers to differentiable causal curves from [0, 1] to M . Let W(x,v),(y,w) be the
law on PS(x,v),(y,w) of the process

(Xt, Yt) | (X0, v0) = (x, v), (X1, V1) = (y, w). (1.63)

Finally consider ν0, ν1 ∈ Pc(PS) such that Projx ν0 ⪯ Projx ν1 and define

WD(·) =
∫
W(x,v),(y,w)(·)dν0(x, v)dν1(y, w). (1.64)

For simplicity we have chosen ν0, ν1 to be probability measures with compact support in order to
have a reference probability measure instead of the general case of reference measures studied by
[Leonard2014] as mentioned in section 1.1. Existence of solutions to (RKSchP) and (1.61) then
follows from topological properties of the underlying space.

Notice that Xt is parametrized by arc-length and it describes the evolution of the particle
parametrized by proper time. By definition, t→ (Xt, Vt) is the martingale solution for the operator
Lσ. This conditioning allows us to exploit the theory of the Markov Semigroups (as in [Bakry-
Gentil-Ledoux]) and correspond to ((x, v), (y, w), 1)-Bridges in the sense of section 1.3.8. This means
that our conditioning correctly corresponds to our convention of affine parametrization of curves
σ : [0, 1]→M .
Assumption 1. There exists an invariant measure mσ, for Dudley’s process, in the semigroup
sense: if Pt denotes the associated Markov semigroup, then for every f ∈ Dom(Lσ) we have∫

Ptf(x, v)dmσ(x, v) =
∫
f(x, v)dmσ(x, v).

where Lσ is from (1.51).
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Although the invariant measure on Hn may not be reversible (see [Baudoin],[Baudoin-Gordina-
Mariano]), in the Euclidean analogue of Kolmogorov’s operator the associated measure is

dmσ(x, v) = 1√
2πσ

e−||v||2/2σdvdx.

as seen in [Baudoin].

Proposition 83. (Born’s formula for the Kinetic problem)
Under Assumption 1, let WD be the measure associated to Dudley’s process as in (1.64) and set

Rσ(·) :=
∫
W(x,v)(·)dmσ(x, v). (1.65)

where the condititioning is done via (1.63). Assume that µ0 and µ1 are absolutely continuous with
respect to mσ and there exist f0, g1 : PS → [0,∞)

f0(x, v)EWD [g1(X1, V1) | (X0, v0) = (x, v)] = dµ0

dmσ
(x, v)

g1(y, w)EWD [f0(X0, V0) | (X1, V1) = (y, w)] = dµ1

dmσ
(y, w).

(1.66)

Then any solution Π of (RKSchP) is an (f0, g1)-transform of mσ, i.e. for every t ∈ [0, 1] if
Πt := et#P then

dΠt = ftgtdmσ,

where ft, gt : PS → [0,∞) are given by

ft(z) = EWD [f0(e0)|et = z], gt(z) = ER[f1(e1)|et = z],

where et is again the evaluation map.

Remark 84. Note that Rσ is indeed an infinite measure and so care needs to be taken when
conditioning and entropy should be understood as the second definition in section 1.1 (Definition 28).

Proof. The result is a direct application of [Leonard2014, Theorem 3.4] as it’s hypothesis is exactly
Assumption 1 given that mσ is a reversible invariant measure for WD.

In the following propositions we use the notation of Full Markov triples developed for the Bakry-
Emery study of curvature dimension conditions. See [Bakry-Gentil-Ledoux] for a detailed exposition
or [J] for a more accessible version, for the specific of the associated semigroup for Dudley’s process
see [Baudoin-Gordina-Mariano]. Recall that given an operator L, one can define it’s associated
Carré Du Champ as a way to evaluate deviation from linear differentiation, that is for f, g ∈ D(L)

Γ(f, g) := 1
2 (L(fg)− fLg − gLf) (1.67)

and we often write Γ(f) := Γ(f, f). The operator Γ(·) is called the Carré du Champ associated to L.
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Lemma 85. (De Bruijn’s identity)
For a full-Markov triple (X,Γ, µ) (see [J, Section 1]) we have for dvt = Ptfdµ

d

dt
Ent(vt | µ) = −

∫ Γ(Ptf)
Ptf

dµ. (1.68)

where Ptf is the Markov semigroup associated to (X,Γ, µ) evaluated at f ∈ D(L).

For a proof see [Bakry-Gentil-Ledoux, Proposition 5.2.2] or the more accessible reference [J]. The
right-handside of (1.68) is nothing but the negative of Fisher’s information.

Corollary 86. (Relativistic phase-space analogue of (1.58) via Carré du Champ)
Let Wσ

D ∈ P(PS) be Dudley’s measure as in 1.3.3, define Rσ via (1.65) then for every f ∈ D(Lσ),

Ent(νf1 |mσ) = Ent(νf0 |mσ)− σ2

2

∫ 1

0

∫ ∣∣∣∣∣∣∣∣∇Hd

log at(x, v)
∣∣∣∣∣∣∣∣2dmσ(x, v)dt (1.69)

where
at(x, v) =

∫
f(z)det#W(x,v)(z), (1.70)

||·||2 refers to gv(·, ·) for the Riemannian metric on Hd, and

νft (A) =
∫
A

∫
Hd

f(z)det#W(x,v)(z)dmσ(x, v). (1.71)

Further, Ptf := dvft
dmσ

satisfies the Fökker-Planck equation with respect to Lσ i.e.

∂tPtf = LσPtf. (1.72)

Proof. By definition of Rσ (equation (1.65)) for any Borel set A ⊆Md,

et#Rσ(A) =
∫
Wx,v(e−1

t (A))dmσ(x, v) =
∫
et#W(x,v)(A)dmσ(x, v). (1.73)

Evaluating (1.67) with Lσ as in 1.3.3 we have for every f ∈ Dom(Lσ)

Γ(f) = σ2

2 ||∇
Hd

v f ||2. (1.74)

Substituting 1.74 in De Bruijn’s identity, (1.68)

Ent(e1#R | mσ)− Ent(e0#R | mσ) = −σ
2

2

∫ 1

0

∫ ∣∣∣∣∣∣∣∣∇Hd

log at(x, v)
∣∣∣∣∣∣∣∣2dmσ(x, v)dt

which yields the result.

Remark 87. Although Corollary 1.69 is not posed exactly as the Benamou-Brenier formula 1.4,
the Fökker-Planck equation (1.72) together with the explicit description of Γ are the essential tools
for an entropic Benamou-Brenier type formulation as shown in [Leonard2014, Proposition 4.1] or
[Leonard, Section 4] which motivated Corollary 86.
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Proposition 88. (Recovering Dudley’s process)
Denote by Rx,y the proyection onto Mn of the measure W(x,v),(y,w) associated to Dudley’s process
conditioned to proper time with fixed endpoints x ≪ y as described in 1.63, then there exists a
collection of measures on mid-sets in J+(x) ∩ J−(y) such that the construction 2 yields Rx,y.

Proof. Observe that W(x,v),(y,w) is proper-time parametrized and so for t = 1/2 set σ(A) = r({γ :
γ(1/2) ∈ A}) for A ∈ B(MID(x, y)). The parametrization ensures γ(1/2) is concentrated in
MID(x, y). It is then automatic for every dyadic time. The condition in 2 is satisfied by continuity
of the causal curves enforced by W(x,v),(y,w).

Remark 89. Section 1.3.3 dealt only in the case of no potential, but if we assume a drift on
velocities (as in the case of the process in [Dunkel-Hanggi]) then Theorem 83 would have an invariant
measure depending on this potential

dµV (x, v) ∝ e−V (x)−|v|2
dxdv

but the abstract framework of Markov Triples still works by setting

P̂t = eV tPf t,

see [Bakry-Gentil-Ledoux, Section 1.15.6] which yields a straight-forward generalization of section
1.3.4 to the framework of [Dunkel-Hanggi] and others.

Extensions to curved geometries

In [Franchi-LeJan2007] a process in general smooth Lorentzian manifolds was presented and shown
to be the only diffusion whose law is invariant under the group of isometries of the manifold. This
process is a generalization of Dudley’s process to curved geometries. In this section we briefly give
intuition for this process, following [Franchi], if M is a smooth Lorentzian manifold of signature
(+,−, . . . ,−) let T 1M denote the positive half of it’s pseudo-unit tangent bundle. Let G(M) be
the bundle of direct pseudo-orthonormal frames with first element in T 1M and with fibers modeled
on the Lorentz-Mobius group G. Let π1 denote the canonical projection from G(M) onto the unit
tangent bundle T 1M . The infinitesimal operator in terms of the Casimir operator (L0) can be
defined via

Lσ := L0 + σ2

2 ∆v

The process generated by Lσ is the generalization of Dudley’s process to completely general Lorentzian
manifolds. We note also that [Dunkel-Hanggi], [Chevalier-Debbasch] have other generalization of
Dudley’s process when one consider velocity fields. We do not study the Schrödinger problem with
respect to such laws on general manifolds and leave the question open for future research. We detail
this line of investigation in section 1.5.2 and it’s connection with Bismut’s hypo-elliptic Laplacian in
section 1.5.2.

1.3.5 The Levy-like Bridge construction in general frameworks
In this section we analyze constructions 1 and 2 in the general framework of globally hyperbolic
chrono-regular Lorentzian length spaces (Definition 20). We also study other techniques to create
measures for (x, y, 1)-bridges on (C[0, 1],M) or (Cad[0, 1],M) in which the set must be endowed
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with the induced Skohorod topology ([Billingsley, Theorem 12.1]). A first naive approach, could be
to take measures on C([0, 1],M) and ignore the physicality. Because the Borel σ-algebra generated
by d∞ does not depend on the separation function ℓ, the resulting paths may not be causal so one
could restrict the measure to only those paths which are causal. We will not follow this approach
although we observe that it could lead to interesting constructions.
Lemma 90. Let (M,d, ℓ) be a ghcrlls (Definition 20), let x≪ y where x, y ∈M , then

MID(x, y) = {x ≤ z ≤ y : ℓ(x, z) = ℓ(z, y)}

is compact.
Proof. The proof is the same as Proposition 54 as ℓ+ is assumed to be continuous.

Assumption 2. Given x ≪ y assume that {σ(a, b)}{a,b∈J+(x)∩J−(y)} is a collection of measures
such that

1. σ(a, b) ∈ P(MID(a, b))

2. For every i,
lim

s→t,s∈D
d(nPi, nPi+1)→ 0, uniformly

where nPi are chosen as in Construction 2 and n→∞ as s→ t in D.
Theorem 91. In a ghcrlls as in Definition 20, assume the space satisfies the uniform control
on distance (Definition 60), let {σ(a, b)}{a,b∈J+(x)∩J−(y)} satisfy Assumption 2, then there exists a
unique measure in P(Ωx,y) having {σ(a, b)}{a,b∈J+(x)∩J−(y)} as conditional prescribed measures at
dyadic times.
Proof. Due to Lemma 90 and definition 60, by global hyperbolicity diamonds are compact and
nested so the proof of Proposition 62 as 1.35 is now replaced by the second part of Assumption 2.

Remark 92. Note that the importance of constructions 1 and 2 is that they can be taken straight-
forwardly to ghcrlls and still satisfy important properties directly connected with the Schrödinger
problem that we will study in the next chapter (section 1.4).

Although the general assumption 2 is sufficient to replicate the proof of the c−contracted mid-sets
of Theorem 62, it is in general very hard to check. Indeed, most physically relevant processes depend
on ℓ-paths or ℓ-curves and not only on d. We will see in section 1.4 a different assumption which
will allow us to generalize the method to prescribe probability at dyadic intervals but not necessarily
uniformly bounded away from the boundary. We know that another way to generate measures in
{γ ∈ C([0, 1],M) : γ(0) = x, γ(1) = y} is to use the tightness criteria from [Billingsley, Theorem
7.3]: Given a sequence of measures µn in this space if for each ϵ > 0 we have

lim
δ→0

lim sup
n→∞

µn

({
γ : sup

|t−s|<δ
d(γ(t), γ(s)) ≥ ϵ

})
= 0. (1.75)

then there exists a weak-limiting measure for the sequence in the space endowed with the Skohorod
topology.
Under the uniform control on distances (Definition 60), one can instead require that for every ϵ > 0

lim
δ→0

lim sup
n→∞

µn

({
γ : sup

t∈[0,1−δ]
d(γ(t), γ(t+ δ)) ≥ ϵ

})
= 0.
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Furthermore, if we consider instead (Cad[0, 1],M), by [Billingsley, Theorem 13.6] together with
Kolmogorov consistency and right-continuity to prescribe measures with finite dimensional distri-
butions µt1,...,tk another sufficient condition is that there exist α > 1/2, β ≥ 0 and F continuous
non-decreasing such that for t1 ≥ t ≥ t2

µt1,t,t2({(u1, u, u2) : d(u1, u) ∧ d(u, u2) ≥ λ)}) ≤ 1
λ4β (F (t1)− F (t2))2α. (1.76)

We will focus on the continuous case and try to prove existence from further assumptions in the
underlying space. We observe that under milder assumptions on the underlying space the bridges
may fail to be d-continuous as the physical nature of (M, ℓ, d) is too general. In this case, equation
(1.76) may be the correct tool to generate measures useful in large deviation principles.
Following the ideas of Construction 2, we can ask ourselves whether or not considering the uniform
(Hausdorff) measure in (M, ℓ, d) as a probability measure on mid-sets replicates the convergence of
linear interpolations in Brownian bridges. It is then natural to ask whether or not joining mid-sets
at dyadic times via ℓ-paths yield a sequence of tight measures (in the sense of (1.75)).
Fix x≪ y and consider z ∈ MID(x, y), denote by P1 the measure in P(Ωx,y) given by

P1(A) =
∫

MID(x,y)
δγℓ

x,z,y
(A)dU(z)

where γℓx,z,y denotes the concatenation of the ℓ-path from x to z and that one from z to y parametrized
via proper time so that

γℓx,z,y(0) = x, γℓx,z,y(1/2) = z, γℓx,z,y(1) = y.

and U denotes the uniform measure on MID(a, b) (the normalized Hausdorff measure of non-trivial
dimension).
Proceed inductively by defining P2 to assign probability according to independent uniform measures
on mid-sets between x and z and z and y. We replicate the idea of the construction on section
1.3.1 with the difference that we know ask ourselves about the uniform tightness of this sequence of
measures as probabilities on the path-space. In the following theorem we show that this construction
is not uniformly tight in the sense of (1.75) even in the simplest Minkowskian case.

Theorem 93. Consider M2 and set σa,b = Ha,b then the sqeuence of measures prescribed by
considering ℓ-paths joining the points of construction in section 1.3.1 is not uniformly tight in the
sense of (1.75) i.e. there exists ϵ > 0 such that

lim
δ→0

lim sup
n→∞

Pn

({
sup
t∈[0,1]

d(γ(t+ δ), γ(t)) > ϵ

})
̸= 0. (1.77)

Indeed we will show the stronger result that for every ϵ > 0

lim
δ→0

lim sup
n→∞

Pn

({
sup
t∈[0,1]

d(γ(t+ δ), γ(t)) > ϵ

})
= 1 (1.78)

Lemma 94. Let a = (x1, t1), b = (x2, t2) ∈M2 and assume that (x1, t1)≪ (x2, t2), let z ∈ MID(a, b)
and

R := max
{
d(a, z)
d(a, b) ,

d(z, b)
d(a, b)

}
. (1.79)
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Denote
C = (x2 − x1)(t2 − t1)

d(a, b)2 . (1.80)

If z is distributed uniformly in MID(a, b) and 1/2 ≤ r ≤
√

1/2 + |C|

P(R ≥ r) = 1 + 2|C| −
√

4C2 + 4r2 − 1. (1.81)

Proof. The proof is a direct computation, without loss of generality we only show the case where
C > 0. In M2 we can explicitly describe MID(a, b):{(

x1 + x2

2 + s(t2 − t1) + t1 − t2
2 ,

t1 + t2
2 + s(x2 − x1) + x1 − x2

2

)
: s ∈ [0, 1]

}
. (1.82)

Write z = Ms if s ∈ [0, 1] is the parametrized description above, then the distances in (1.79) are
given by

d(a,Ms) =
√

(1/2− s+ s2) d(a, b)2 + (1− 2s)(x2 − x1)(t1 − t2),
d(Ms, b) =

√
(1/2− s+ s2) d(a, b)2 + (1− 2s)(x2 − x1)(t2 − t1).

(1.83)
(1.84)

The only difference between (1.83) and (1.84) is the sign change on the last term. Note also that
s ∈ [0, 1] so we can explicitly compute the maximum: in our case where C > 0, d(Ms, b) ≥ d(a,Ms)
if s ∈ [0, 1/2] and d(Ms, b) ≤ d(a,Ms) if s ∈ [1/2, 1].
Hence,

P(R ≥ r) = P
(
d(Ms, b)
d(a, b) ≥ r, s ∈ [0, 1/2]

)
+ P

(
d(a,Ms)
d(a, b) ≥ r, s ∈ [1/2, 1]

)
.

Computing this probabilities is finding the set of solutions of the following inequalities:√
1/2− s+ s2 + (1− 2s)C ≥ r, s ∈ [0, 1/2]√
1/2− s+ s2 − (1− 2s)C ≥ r, s ∈ [1/2, 1].

The set of solutions for this inequalities is given by [0, 1/2 + C −
√
C2 + r2 − 1/4] whose length is

1/2 +C −
√
C2 + r2 − 1/4. Both inequalities yield the same length and so finally, we obtain (1.81):

P (R ≥ r) = 2(1/2 + C −
√
C2 + r2 − 1/4) = 1 + 2C −

√
4C2 + 4R2 − 1. (1.85)

The case C < 0 is completely analogous, except the solutions to the respective inequalities give
1−C−

√
4r2 + 4C2 − 1. Putting both cases together we obtain that if 1/2 ≤ R ≤

√
1/2 + |C| then

P (R ≥ r) = 1 + 2|C| −
√

4R2 + 4C2 − 1.

Lemma 95. (Scales increase to infinity almost surely in M2)
Consider a = (x1, t1), b = (x2, t2) with a≪ b ∈M2. Choose uniformly z1 ∈ MID(a, b). Set

R1 := max
{
d(a, z)
d(a, b) ,

d(z, b)
d(a, b)

}
. (1.86)
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Proceed inductively, let zn ∈ MID(a, zn−1) and write

Rn := max
{

d(a, zn)
d(a, zn−1) ,

d(zn, zn−1)
d(a, zn−1)

}
, (1.87)

Then

2n
n∏
k=1

Rk ↗∞ almost surely. (1.88)

Proof. Observe that

2n
n∏
k=1

Rk =
n∏
k=1

(2Rk). (1.89)

As 2Rk ≤ 1 convergence of the second term in (1.89) is equivalent to the convergence of the following
series

∞∑
k=1

(Rk − 1/2) .

By Kolmogorov’s 3-series Theorem for dependent variables (see [Brown, Theorem 1]) we can show
the series does not converge almost surely to a finite random variable if we show that there exists
A > 0 such that

∞∑
k=1

P(Rk − 1/2 ≥ A) ̸<∞. (1.90)

Given any A ∈ (0, 1/
√

2− 1/2),
∞∑
k=1

P(Rk − 1/2 ≥ A) =
∞∑
k=1

1 + 2|Ck| −
√

4(A+ 1/2)2 + 4C2
k

≥
∞∑
k=1

(1−
√

4(A+ 1/2)2) =∞.

(1.91)

(1.92)

where the last equality is due to A ∈ (0, 1/
√

2− 1/2) which is an admissible value for every Rk− 1/2
as Rk ∈ [1/2,

√
1/2 + |Ck|].

Therefore the series does not converge almost surely and note that

2n+1
n+1∏
k=1

Rk = 2Rn+1 · 2n
n∏
k=1

Rk,

so the sequence 2n
n∏
k=1

Rk is non-decreasing (as Rk ≥ 1/2) and does not converge uniformly which

implies that it increases to infinity almost surely, as desired.

Proof. of Theorem 93: By Lemma 95 we have

2n
n∏
k=1

Rk ↗∞ almost surely.
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This implies also that for every ϵ, δ > 0 and d(x, y) > 0 fixed,

lim
n→∞

P
(

2nd(x, y)
n∏
k=1

Rk >
ϵ

δ

)
= 1.

Finally note that

lim sup
n→∞

P
(

sup
t∈[0,1]

d(σn(t), σn(t+ δ)) > ϵ

δ

)

= lim sup
n→∞

P
(

2nd(x, y) max
k∈{0,··· ,2n−1}

{d(σn(k/2n), σn((k + 1)/2n))} > ϵ

)
≥ lim
n→∞

P
(

2nd(x, y)
n∏
k=1

Rk ≥
ϵ

δ

)
= 1.

From which we obtain

lim
δ→0

lim sup
n→∞

Pn

(
sup
t∈[0,1]

d(σ(t+ δ), σ(t)) ≥ ϵ
)

= 1 ̸= 0 (1.93)

One could also wonder whether the observation above is a result of the choice of compact sets.
It is natural to think that the correct compact sets should be the ones associated to ℓ-length as
{Lℓ(·) < τ} is closed by upper continuity of ℓ. Nevertheless, the sequence is also not uniformly tight
with respect to these sets as demonstrated by the next Theorem.

Theorem 96. In M1,1 uniform measure on mid-sets family of ℓ-path joined dyadics is not tight
with respect to the family of sets

Kτ = {γ ∈ J(x, y) : Lℓ(γ) < τ}.

In other words, for every family of distributions in MID(a, b) we have

lim
τ→0+

lim sup
n→∞

P(Lnℓ (γ) < τ) ̸= 0 (1.94)

Proof. Indeed we will show that for any collection of distributions in mid sets, we have

lim
τ→0

lim sup
n→∞

P(Lnℓ (γ) < τ) = 1. (1.95)

Observe that if z1 ∼ U(x, z) and z2 ∼ U(z, y), let σ2 denote the concatenation of the ℓ-paths
x→ z1 → z → z2 → y, then

Lℓ(σ2) = ℓ(x, z1) + ℓ(z1, z) + ℓ(z, z2) + ℓ(z2, y)
= 2ℓ(z, z1) + 2ℓ(z2, z).

Therefore by the Tower property,

E[Lℓ(σ2)] = 2E[E[ℓ(Z1, Z) + ℓ(Z,Z2)|Z]].
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Observe that if a := (x1, t1)≪ (x2, t2) =: b and z ∈ MID(a, b), z = Ms as before, then it is easily
checked that

ℓ(a,Ms) =
(√

s− s2
)
ℓ(a, b)

Therefore,

E[Lℓ(σ2)] = 4 ·E[Lℓ(σ1)]
∫ 1

0

√
s− s2ds = E[Lℓ(σ1)]4π8 = 4

(π
8

)2
.

Inductively,
E[Lℓ(σn)] = 2 · π8 E[Lℓ(σn−1)] = 2n

(π
8

)n
=
(π

4

)n
, (1.96)

using Markov’s inequality for every fixed τ we have

P (Lℓ(σn) > τ) ≤ E[Lℓ(σn)]
τ

→ 0 as n→∞. (1.97)

Therefore, as desired we obtain
lim sup
n→∞

P(Lℓ(σn) < τ) = 1. (1.98)

These two observations show that the uniform measure on mid-sets is not automatically scaled
to obtain a limiting curve (as one may think). They also show an interesting phenomena which
reaffirms the ideas in section 1.3.1: In order to obtain a uniform limiting measure, the probability
measure on MID(a, b) needs to concentrate around the d-geodesic mid-point between a and b. It is
clear how to obtain sufficient (or necessary) conditions to obtain uniform tightness. For example, by
our construction above it is sufficient for the first case to have

∞∑
k=1

(Rk − 1/2) converging almost surely

which is the same as
2n

∞∏
k=1

Rk converging almost surely

and it is necessary for the second criteria that

E[Lℓ(σn)] ̸→ 0.

This conditions are met if we re-scale the measures further to concentrate around the d-geodesic
mid-point.

1.3.6 Relativistic bridge spaces, topologies of timelike curves and Marko-
vianity

In our definition of the relativistic dynamical Schrodinger problem RDSch and it’s kinetic version
in Mn there is an implicit assumption on the topology considered in the space of causal curves.
Although the topology on the space itself is fixed, many choices can be made for the topology on
C([0, 1],M). In this section we explore different topologies on C([0, 1],M) and the consequences that
this choice has in RDSch and the Markov property.
We start by studying the classical physical topology on the x, y-Bridge space Ωx,y = {γ ∈ C([0, 1],M) :
γ(0) = x, γ(1) = y}.
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Definition 97. (Standard equivalence)
Two curves are consider equivalent if there exists a continuous monotonic function such that
γ1(f(u)) = γ2(u) i.e. they are reparametrizations of each other.

Under this equivalence we can focus on considering only causal curves from [0, 1] to M .

Definition 98. (C0 topology on Ωx,y)
A neighborhood of γ in Ωx,y consists an all continuous functions in Ωx,y whose points in M lie in a
neighborhood W of the points on γ in M .

This definition can be found in [Hawking-Ellis, Chapter 6]. Equivalently, one can describe the
C0 topology on the equivalence classes of causal curves and say that [γn] C0

−−→ [γ] if the sequence of
future and past endpoints converge and for every open set U s.t. γ, one has [γn] ⊆ U for sufficiently
large n.
According to [Hawking-Ellis, Section 6.2], the topology on curves is the one whose convergence is
determined by limit curves. That is, every point on a limit curve is a subsequential limit point of
the sequence. The concept of this topology yields the following fundamental lemma:

Lemma 99. (Hawking-Ellis)
In the context of smooth Lorentzian manifolds under the C0 topology, every sequence of future
inextendible curves with a limit point p has a future inextendible limit curve passing through p.

For a proof see [Hawking-Ellis, Lemma 6.2.1]. This lemma is key to the development of the
theory as it is the main step to show characterizations of the achronal boundary. In [Hawking-Ellis]
it is shown that Ricci curvature bounds together with the generic chronology conditions and geodesic
completeness yield strong causality, characterizations of closed achronal sets and the Theorem of
Seifert-Geroch on global hyperbolicity. In this section we interpret Lemma 99 as a compactness
criterion on Ωx,y and define 2 topologies on the same space which are weaker but also inherit a
compactness criteria.

Proposition 100. (Seifert-Geroch)
In the smooth spacetime case (M,d, ℓ) is globally hyperbolic iff for all x≪ y the set Ωx,y is compact
under the standard topology described above.

The proof is based on Lemma 99 and can be found as [Hawking-Ellis, Proposition 6.6.2].

Remark 101. The standard topology is a C0 topology and length is not continuous but upper-
semicontinuous, if instead we had chosen a C1 topology length would be continuous but Ω1

x,y would
not be compact.

A temporal function and the associated polish Bridge space (Miller)

Consider (M,d, ℓ) a smooth spacetime (from section 1.1). Following [Eckstein-Miller], we make the
following definition.

Definition 102. (Time functions)
We say that a function T : M → R
is a generalized time function if it is increasing along any future-directed causal curve,
is a time function if it is a generalized time function but is also continuous,
is a temporal function if it is smooth and it’s gradient is past-directed.
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Any time or temporal function whose level sets are Cauchy hypersurfaces [Wald, Section 8.3] is
called Cauchy.
Definition 103. (Time function parametrization)
Given I ⊆ R, and a time function T : M → R, define

CIT = {γ ∈ C(I,M) : ∃ cγ > 0, T (γ(t))− T (γ(s)) = cγ(t− s)} (1.99)

where C(I,M) is the set of future directed causal curves from I to M .
We endow CIT with the compact-open topology (the sub-base B(K,U) = {f : f(K) ⊆ U} where K is
compact and U is open).

The main contributions from [Miller] are summarized in the following results:
Theorem 104. (Temporal re-parametrizations and the compact-open topology)
Let (M,d, ℓ) be a smooth spacetime and let T : R→M be a time function (in the sense of Definition
102), then CIT is a Polish space.
Theorem 105. (Causality and T )
In a globally hyperbolic smooth spacetime (M,d, ℓ), let T : M → R be a Cauchy temporal function,
let I ⊆ R be an interval and for t ∈ I let µt ∈ P(M) with spt(µt) ⊆ T −1(t), then the following are
equivalent

1. µs ⪯ µt, for all s ≤ t

2. There exists σ ∈ P(CIT ) s.t. et#σ = µt for all t ∈ I.
Theorem 106. (Causality and conditioning)
Let (M,d, ℓ) and T as above, define

IT = {γ ∈ CRT : T ◦ γ = IdR}

then the following statements are equivalent
1. µs ⪯ µt and spt(µt) ⊆ T −1(t)

2. There exists v ∈ P(IT ) s.t. (et | IT )#v = µt.
For the proofs see [Miller, Theorems 1,2]. The main use of IT is due to it’s bijection with the set

of future inextendible causal curves.
In the following section (1.3.9) we will see how to use this results in terms of Markovianity of
measures and their connection to the general Schrödinger problem. An immediate consequence of
Theorem 105 is the fact that the Schrödinger problem in P(CIT ) is solved by gluing solutions for all
intermediate times.
Proposition 107. (Push forward in P(CIT ))
Let R ∈ P(CIT ) and assume that spt(et#R) ⊆ T −1(t) and es#R ⪯ et#R if s ≤ t then the solution
to

min
Π∈P(CI

T )
e0#Π=µ0
e1#Π=µ1

Ent(Π | R)

is obtained by solving et#Π = µt which always has a solution where

µt ∈ arg min
µ∈P(CT I )

Ent(µ | et#R). (1.100)
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Proof. Note that if µt is a solution in (1.100) then if entropy is finite, we have by absolute continuity

spt(µt) ⊆ spt(et#R) ⊆ T −1(t)

and also µs ⪯ µt and so by Theorem 105 there exists Π ∈ P(CIT ) such that et#Π = R. By optimality,
for every µ

Ent(et#Π | et#R) ≤ Ent(µ | et#R)

and by (39)
Ent(et#Π | et#R) ≤ Ent(Π | R).

Proposition 107 shows that if we define the Schrödinger problem in the space of paths parametrized
by a Cauchy time function we are also able to recover the stander techniques from the classical
setting from [Leonard2014].

Pushing forward the Hausdorff measure via timelike curves

Suppose that we do not want to assume the existence of a temporal Cauchy function, in this section
we focus on giving a definition of a topology (via convergence) on the space of causal curves from
[0, 1] to M different to the C0 topology of definition 98. The objective is to define a topology
adapted to the underlying physical structure of spacetimes with enough properties to be useful in
terms of the Relativistic Schrödinger problem.

Definition 108. (H1-convergence)
Let (M,d, ℓ) be a ghcrlls (Definition 20), we define convergence on timelike paths of the form
γ : [0, 1] → M which are right-continuous, denoted ΩD

x,y. We say that {γn} ∈ ΩD
x,y converges to

γ ∈ ΩDx,y in H1 sense, and write

γn
H−→ γ iff γn#H1 ⇀ γ#H1

where ⇀ refers to weak convergence for probability measures on M and H1 is the 1-dimensional
Hausdorff measure on [0, 1].

In other words, γn
H−→ γ if for every f ∈ Cb((M,d), [0, 1]) we have

lim
n→∞

∫
f(γn(t))dH1(t)→

∫
f(γ(t))dH1(t).

Remark 109. (Uniqueness on Ωx,y)
Observe that γ1#H1 = γ2#H1 implies γ1 = γ2 H1-a.s. which implies γ1 = γ2 when they are
continuous.

Proposition 110. (H1 is weaker than point-wise)
In the ghcrlls context as above, assume that H1-a.e γn(t)→ γ(t) pointwise as n→∞, with respect
to d, then γn

H−→ γ.
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Proof. The result is an application of dominated convergence as for every f ∈ Cb(M, [0, 1]) we have

lim
n→∞

∫
fdγn#H1 = lim

n→∞

∫
f(γ(t))dH1(t) =

∫
f(γ(t))dH1(t) =

∫
fdγ#H1.

Proposition 111. (Tightness is inherited)
Every sequence {γn} of d-continuous paths in Ωx,y admits a measure µ ∈ P(M) as subsequential
limit and µ = γ#H for a path γ : [0, 1]→ M which is causal and continuous except on countably
many points.

Proof. The sequence of measures {γn#H1} ⊆ P(M) are all concentrated in the compact set J(x, y),
by Prokhorov’s theorem this tight sequence of measures is weakly-sequentially compact. Let nk be
the convergent subsequence, by diagonalization there exists a subsequence nkmof nk which converges
at all rational points in [0, 1]. Define for every rational tk ∈ [0, 1]

γ(tk) = lim
m→∞

γnkm
(tk). (1.101)

γ is d-rectifiable and hence extends to a curve which is continuous except at countably many
points. Let ϵ > 0, at every point s ∈ (0, 1) of continuity of γ there exist pϵ, qϵ rational points in
[0, 1] with J+(γ(pϵ)) ∩ J−(γ(qϵ)) ⊆ Bϵ(x(s)). By convergence, for m large enough J+(γnkm

(pϵ)) ∩
J−(γnkm

(qϵ)) ⊆ Bϵ(γ(s)) implying that µ = γ#H.

1.3.7 A transference-plan construction with the Hausdorff measure
Similar to section 1.3.6, motivated by the theory of mass transportation we define a mode of
convergence for causal curves from [0, 1] to M in terms of weak convergence of transference plans
concentrated on the image of the curves.

Definition 112. (Convergence with transference plans)
Let (M,d, ℓ) be a ghcrlls as in Definition 20, we say that a sequence of causal curves {γn} converges
to γ in terms of concentrated transference plans, denoted H⊗ via

γn
H⊗−−→ γ iff (Id× γn)#H⇀ (Id× γ)#H (1.102)

where again ⇀ denotes weak convergence and H is the 1-dimensional Hausdorff measure.

Proposition 113. (H1⊗ and pointwise convergence)
In the context of ghcrlls (M,d, ℓ) as above if {γn}n is a sequence such that as n → ∞ we have
γn → γ d-pointwise H1-a.e. then γn

H⊗−−→ γ.

Proof. Let f ∈ Cb([0, 1]×M) then

lim
n→∞

∫
f(x, y)d(Id× γn)#H = lim

n→∞

∫ 1

0
f(t, γn(t))dH1(t) =

∫ 1

0
f(t, γ(t))dHt(t)

again by Dominated convergence and continuity of f .

Proposition 114. (Relation between topologies)
If γn

H⊗−−→ γ then γn
H−→ γ.
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Proof. By definition every f ∈ Cb(M, [0, 1]) can be associated with (t, f(t)) ∈ Cb(([0, 1] × [0, 1]))
from which the convergence of integrals is concluded.

Proposition 115. (Tightness)
Every sequence of continuous causal curves {γn} is sub-sequentially ⊗H convergent to a measure µ
on [0, 1]×M . Furhtermore, there exists a d-rectifiable causal path γ such that (Id× γ)#H = µ.

The proof is the same as the tightness criteria in the previous section and hence omitted.

1.3.8 Bridges from Strong Markov processes
With our understanding of the different topologies on the space of causal curves and with Proposition
100 in mind we aim to study probability measures on the space of causal curves with fixed endpoints.
These measures are referred to as Bridge measures (as we did in Proposition 44). Bridge measures
have been long studied and our goal is to study different alternatives for Definition 74.
Let us start by recalling the classical approach to Markov Bridges. In this section we follow
[Fitzsimmon-Pitman-Yor].
Let (Ω,F , {Fs}s∈R,P) be a filtered probability space, any process {Xt}t∈[0,∞) such that for every
stopping time τ : Ω→ R

P(Xτ+t ∈ A|Fτ ) = P(X[t,∞] ∈ A|Xτ ) (1.103)
is called a strong Markov Process. The (x, y, t)-Bridge was defined in [Fitzsimmon-Pitman-Yor] on
Lusian spaces (homeomorphic to a Borel subset of a compact metric space) we look at a slightly less
general version:

Definition 116. ((x, y, t)− Bridge)
Let Xt be a right-continuous strongly Markov Process (as in (1.103)) taking values on a compact
metric space E, given x, y ∈ E and t ∈ R, and assume that {Ft} is the (uncompleted) natural
filtration from X. Assume the existence of a Borel semigroup Pt, a dual variable X̂ with associated
semigroup P̂t with respect to L2(m) of an invariant measure m, i.e.,∫

f(Ptg)dm =
∫

(P̂tf)gdm.

for all Borel functions f, g. Under these conditions there exists a well-defined kernel for the semigroup
pt(x, y) satisfying Chapman-Kolmogorov equation. Set for 0 ≤ s ≤ t

Hs = pt−s(Xs, y)

then the pre-measure Qtx,y given by

Q(A) = 1
pt(x, y)

∫
A

HtdPx

can be extended to a measure Ptx,y on the sigma-algebra G generated by ∪0≤s≤tFs. This probability
measure is called the law of the (x, y, t)-Bridge from X and the canonical process associated to Ptx,y
on G is called the (x, y, t)-bridge of X.

Theorem 117. (The strong Markov Property is inherited)
Let be a {Xt

x,y(s)}0≤s≤t be the (x, y, t)-Bridge (as in Definition 116) from a strongly Markov process
{Xt} then {Xt

x,y(s)}0≤s≤t is also strongly Markov.
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For a proof see [Fitzsimmon-Pitman-Yor, Proposition 1] where it is also shown that the (x, y, t)−
Markov Bridge has a transition kernel given by

py,t((z1, t1), (z2, t2)) = pt2−t1(x1, x2)pt−t2(x2, y)
pt−t1(x1, y) (1.104)

and that Ptx,y is a regular version of conditional probabilities Px(· | Xt = y).
The simple formula (1.104) is essential to the study of Large deviation principles for Bridge measures
and was the key element in [Hsu1990] to obtain the large deviation principle of Brownian bridges of
Riemannian manifolds.

1.3.9 The Markov property and filtrations
Our study on globally hyperbolic chrono-regular Lorentzian length-spaces (Definition 20) says that
the underlying topology to be considered should be the chronological topology, i.e. the coarsest
topology including all cones (Definition 19.2). Given a topology, there is no unique way to measure
distance between curves, if the topology is induced by a metric d̃, then it is common to endow
Ωx,y = {f ∈ C d̃([0, 1],M) : f(0) = x, f(1) = y} with the sup topology i.e. we recall (1.2)

d∞(σ, σ̃) = sup
s∈[0,1]

d̃(σ(s), σ̃(s)).

In the case of globally hyperbolic chrono-regular Lorentzian length-spaces, the only assumption
we have is that the chronological topology is metrizable (although the definition depends on d by
determining rectifiability of paths). If we aim to study properties of the underlying space M , we
should restrict ourselves to infer only topological properties from any metrization of the topology.
Properties like completeness are inherent to the distance and not the topology as two metrics giving
the same topology are not equivalent in the sense of metrics and a complete and an incomplete
metric can give the same topology.
For the study of RDSch, we need to study Borel probability measures on Ωx,y, but the Borel
σ-algebra depends on our definition of topology (as it is the smallest σ-field containing open sets).
This observation leads us to study bridge spaces Ωx,y endowed with different topologies.

Definition 118. (Causal bridge spaces and topologies)
Given a globally hyperbolic chrono-regular Lorentzian space (M,d, ℓ), let x≪ y, we have defined

Ωx,y = {σ ∈ C([0, 1],M) : σ(0) = x, σ(1) = y, σ is causal}
ΩDx,y = {σ ∈ Cad([0, 1],M) : σ(0) = x, σ(1) = y, σ is causal}

where C([0, 1],M) (Cad([0, 1],M)) correspond to the continuous (resp. cad-lag) functions from [0, 1]
onto M with the chronological topology.
Given any topology τ on Ωx,y (resp ΩDx,y) we call the topological spaces

Cτx,y := (Ωx,y, τ)
Cadτx,y := (ΩDx,y, τ).

(1.105)
(1.106)

the continuous (resp. cad-lag) Bridge space from x to y endowed with τ .
We write ΩA,B = {σ ∈ C([0, 1],M) : σ(0) ∈ A, σ(1) ∈ B, σ is causal} if J+(A) ⊆ B and J−(B) ⊆ A.
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Although the most general case of study corresponds to cad-lag functions Cadτx,y we will focus
mostly on continuous ones Cτx,y. We discuss this choice, it’s consequences and further explorations
on section 1.5.2

Proposition 119. (Passing causality)
In the framework of ghcrlls (M,d ℓ), if ℓ+ is τ -upper-semi-continuous in the following sense: if
{σn} ∈ Cτx,y

σn
τ−→ σ ⇒ ℓ+(σ(s), σ(t)) ≥ lim

n→∞
ℓ+(σn(s), σn(t)) for every s, t ∈ [0, 1], s ≤ t. (1.107)

then every τ -limit of causal curves inherits causality.

Proof. The proof of is immediate from the definition of Cτx,y as the inequality (1.107) gives
ℓ(σ(s), σ(t)) ≥ 0.

The condition is not enough for Cτx,y to be a closed set (needed so that we can study it’s properties
as a topological space). We need to ensure that limits of continuous causal curves stay continuous
and causal. In the case of Cadτx,y it is easier to be closed as τ -limits of cadlag curves are more likely
to be cadlag.

Definition 120. (Uniformity condition)
Let τ be a topology on Ωx,y we say τ satisfies a uniformity condition if the topology τ satisfies

σn
τ−→ σ ⇒ σn

d∞−−→ σ. (1.108)

where again d∞ is as in Definition 1.2.

Proposition 121. If τ satisfies the uniformity condition 120 and ℓ+ is upper semi-continuous with
respect to I, then Ωτx,y is closed.

Proof. By proposition 119 every τ -limit is also causal. Uniform condition 120 and closedness of Ωx,y
under d∞ norm yield the closedness of Cτx,y.

Clearly, if we describe I (the chronological topology from Definition 19.2) by a specified metric
d and τ denotes the supremum norm (1.2), then τ satisfies Definition 120. On the other hand,
propositions 110 and 114 say these topologies are weaker than pointwise convergence and so this
technique is not available for closedness of Cτx,y with these topologies.
In general, Cτx,y is only a topological space but we can study Bτ the Borel-σ with respect to τ .
Given any T ⊆ [0, 1] we denote by BτT the Borel σ-algebra associated to the restriction topology (of
τ to curves with domain T ). In Ωτx,y we can always define the evaluation map via

et : Ωτx,y →M, et(ω) = ω(t), (1.109)

which we have used (for Definition 74 and in section 1.3.8). In the general context, et may not
be adapted with the filtration generated by {Bτ[0,s]}{0≤s≤t}. The usual definition of the Markov
property for a measure requires conditionability with respect to the canonical filtration (i.e. the
minimal σ-algebra on which the evaluation map is measurable) and factorization with respect to
that σ-algebra.
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Definition 122. (Ball σ-algebra)
Let (X, d) be a metric space, the ball σ-algebra denoted Bd is the σ-algebra generated by open balls
in (X, d).

Denote by τd the topology generated by d in X, in general Bd ̸= Bτd , with Bd being smaller.
In the case where (X, d) is separable, Bd = Bτd but most path spaces are not separable so the
distinction is relevant for our purpose.

Proposition 123. (The Borel σ-algebra and the evaluation map)
If (M,d, ℓ) is a complete, metric spacetime and τ the Skorokhod topology [Billingsley, Chapter 12]
on Ωx,y (resp. ΩDx,y) then

Bτ = σ({et}t∈[0,1]). (1.110)

In the case of continuous curves (Ωx,y, τ) the topology is equivalent to that generated by d∞ from
(1.2).

For a proof see [Billingsley, Theorem 12.5]. The relevance of Proposition 123 is that one
can recover the ball σ-algebra via the evaluation map indicating what the correct topology and
sigma-algebra should be in the general case where we aim not to use the evaluation map.

The Schrödinger problem and different topologies

Similar to RDSch we now use the topology on Ωτx,y to describe a dynamical Schrödinger problem.

Definition 124. (τ -Schrödinger Problem)
Let (M,d, ℓ) be a ghcrlls let R ∈ Pτ (Ω) and assume µ0 ⪯ µ1, define the τ -Dynamical Schrödinger
problem for a reference τ -Borel measure R to be the minimization program

min
Π∈Pτ (Ω)
e0#Π=µ0
e1#Π=µ1

Ent(Π|R) (τ−RDSCH)

Analogously, in the case where τ is metrizable by some metric dτ , we can also define τ−RDSCH
over probabilities with respect to the σ−algebra Bdτ

instead. This subtlety may seem insignificant
at first but the difference between σ-algebras is not trivial.
By convexity of entropy (immediate from Lemma 29), the τ -Dynamical Schrödinger problem admits
a unique solution in the case where Pτ is also Polish. Such is the case of C(p, q), which is compact
as shown in [Wald, Theorem 8.3.9], it is second countable regular Hausdorff compact and hence
metrizable. Existence of solutions for τ−RDSCH depends on lower semi-continuity of entropy
with respect to τ . If (Ωx,y, τ) is a Polish space then (τ−RDSCH) almost corresponds to the
static Schrödinger problem in such space (whose existence and uniqueness is known [Leonard2014],
[Leonard2001] as in section 1.1) in the sense that almost every statement can be shown mutandis
mutatis. This is the case for example for the topology in [Miller] by Theorem 104, yielding a different
dynamical problem than (RDSch).
We notice that if the space of paths studied for (τ−RDSCH) is Polish, the topology only plays a
role through the τ -Borel-measurability of evaluation maps. The underlying features of (τ−RDSCH)
depend on the Polishness of the topology τ .
We aim to study other definitions of the Markov Property to avoid the unphysicality of the parameter
t ∈ [0, 1] parametrizing causal curves. The Markov property is one of the most studied concepts in
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mathematics, we will focus on extensions of the causal Markov Property (74) which are adapted for
our Schrödinger problem. A reasonable extension of the definition of Markovianity for our purposes
should satisfy the following:

1. Encapsulate “past and future are independent given the present”.

2. Take into account a“physical” topology on causal curves.

3. Be inherited by solutions of the Schrödinger Problem associated to the Borel measures of that
topology.

We study these vague properties in the following sections.

Any definition using the evaluation map reduces to Léonard’s

Standard assumptions on stochastic analysis are to consider only filtrations {Ft} for which the
evaluation map is adapted. It is common to call a measure in path space the law of a stochastic
process with respect to Ft if it’s canonical process et is Ft adapted. Under this assumption Léonard
noted that if one considers a different filtration and define an {Ft}-Markov property then the law will
be automatically Markov as in definition 74. In the following section we make no such assumption
aiming to understand only the image of causal curves and not use the external parameter t as a
time variable. Motivated by Proposition 123 let us formulate a slightly more general version on
which we modify the interval.

Theorem 125. (Skorohod)
Let C|[a,b] (respectively Cad|[a,b]) denote the continuous (cadlag) curves from [a, b] to M . If T is a
dense subset of [a, b], if τ is the Skohorod topology then

σ(et : t ∈ T ) = Bτ[a,b].

where Bτ[a,b] denotes the ball σ-algebra for the Skorohod topology.

This version with it’s proof can be found in [Billingsley, Theorem 12.5], for notational purposes
define also Bτt := ∩s>0Bτ[t,t+s] the right-completion.

Definition 126. (τ -Markov property)
We say that a τ -Borel measure ν ∈ P(Cτx,y) is τ -Markov if it is conditionable with respect to the Bτt
filtration and for every t ∈ [0, 1] and A ∈ Bτ[t,1]

ν(A|Bτ[0,t]) = ν(A|Bτt ) (1.111)

Definition 126 is unsatisfactory as the σ-algebras involved (Bτ[0,t], Bτt ) are in general too big. The
definition coincides with definition 74 only because of Theorem 125. The “size” of these topologies
lead us to analyze the physical topologies and a Markov definition in every case.

Definition 127. (p-Future, past and present of a causal curve)
Let [γ] be an equivalence class (with the Standard equivalence Definition 97)), let p ∈ J+(x) ∩ J−(y)
we define the section of [γ] in the future of p as a map

Fp : (Ωx,y/ ∼)→ Ω
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to be the mapping
Fp([γ]) = Im(γ) ∩ J+(p) (1.112)

similarly define Pp the past of [γ] via

Pp([γ]) = Im(γ) ∩ J−(p). (1.113)

Finally, define the p-present Prp := Fp ∩Pp.

Definition 128. (p-Markov C0 topology)
We say that ν is p-Markov in Fp-Pp sense if for every p ∈ J+(x) ∩ J−(y) the measure ν is
conditionable and

ν(Fp ∈ A | Pp) = ν(Fp ∈ A | Prp) (1.114)

Proposition 129. (Bτx,y − Bτp,y-measurability of Fp)
For every p ∈ J+(x) ∩ J−(y) the maps Fp,Pp and Prp are Bτx,y − Bτp,y-measurable.

Proof. Enough to show that Fp is actually continuous, for any γ consider U open set such that
Fp([γ]) ⊆ U then M \ (J+(p) \U) is closed and [γ] is compact so by the T3-property of the topology,
there exist Bϵi

where i = 1, . . . , n where Bϵi
∩M \ (J+(p) \ U) = ∅ and if

V :=
n⋃
i=1

Bϵi
(1.115)

then γ ∈ V and Fp(V ) ⊆ U showing continuity of Fp.

Measurability of Fp is necessary for the previous definition to make sense.
Let σ : [0, 1] be any [0, 1] parametrization of [γ], assume that p ∈ [γ] then there exists t∗ such that
σ(t∗) = p and observe that

Fp([γ]) = σ |[t∗,1]

Pp([γ]) = σ |[0,t∗]

and so (1.114) is exactly the one in Definition 74 (as it is required for every t and hence includes all
parametrizations) which means that there is nothing new to learn from this “apparently physical”
property.

Definition 130. (Transference Markov on Cadlag curves)
Let ν ∈ Pτ (Cadτx,y) we define the τ -Markov property with respect to ⊗H if it is conditionable and
for all t

ν(e[t,1] ∈ A | e[0,t] = ν(e[t,1] ∈ A | et) (1.116)

Note that this definition is almost exactly Definition 74 with the slight-difference of considering
only τ -Borel measures and henceforth we need to know the evaluation map is measurable there.
Note that this definition is essentially Definition 74 as soon as the evaluation map is measurable.

Definition 131. (T -Markov)
A measure ν ∈ P(CIT ) is called Markov with respect to the topology described in Theorem (104) if it
is conditionable with respect to et and

ν(e[t,1] ∈ A | et) = ν(e[t,1] ∈ A | e[0,t]) (1.117)
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Again the subtle difference with respect to Definition 74 is the set on which ν belongs to P(CIT ).
The measurability (in fact continuity) of the evaluation map with respect to the associated Borel
σ-algebra is shown in [Miller].

The definition of 1.111 allows us to incorporate other information of the “past” and the “future”
coming from τ . This means that τ -Markov is an analogue of the Markov property adapted to the
causality on a globally hyperbolic chrono-regular Lorentzian length space through the topology of
(causal) curves.
Note that we are setting as part of the definition that regular conditional probabilities must exist,
by saying that ν must be conditionable.
Observe that by proposition 123 in the case of the topology τ being the uniform topology induced
by a complete, separable metric, the τ Markov-Property is exactly the unphysical Markov Property
(1.48).
Motivated again by Proposition 123 we generalize a different version on which we make the
assumptions necessary for the τ -Markov property to be inherited in the Schrödinger problem.

Assumption 3. (Realizability of the τ -Borel topology)
Given τ a topology on Ωx,y assume the evaluation maps et, e[0,t], e[t,1] are Bτ − B(M) measurable
for every t ∈ [0, 1].

Remark 132. As shown in the previous section, Assumption 3 holds in all the topologies of interest
so far. The question of whether or not there exist physically relevant topologies for Cτx,y or Cadτx,y
for which Assumption 3 does not hold remains open. When assumption 3 holds, Leonard’s version
of the classical definition of Markovianity (Definition 74) should be used.

1.3.10 The consequence of Markovianity
In this section we follow the theory developed on [Leonard2014] and generalize them to our context.
The main motivation of this section is that the fundamental lemma for intermediate times on
[Leonard2014] is already general enough. The following lemma can be found in [Leonard2014] (A.8).

Lemma 133. Let ϕ : X → Y be a measurable map between polish spaces X,Y and let P,R be two
Borel probability measures then we have

Ent(P | R) = Ent(ϕ#P | ϕ#R) +
∫
Z

Ent(P (· | ϕ = z) | R(· | ϕ = z))d(ϕ#P )(z) (1.118)

where Z is the range of ϕ.

Proof. Apply directly the disintegration Theorem (eg. [Bogachev, Theorem 10.5.6]) which applies
as ϕ is measurable, P,R are Borel and the spaces are Polish.

Lemma 134. (Intermediate optimality)
Assume that Ωx,y is Polish, under Assumption 3, assume further that

σ({es : o ≤ s ≤ t}) = Bτ[0,t], σ({es : t ≤ s ≤ 1}) = Bτ[t,1]

the solution to the entropic problem

min
P∈Gt(µ,Q1,Q2)

Ent(P | R) (1.119)
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where Gt(µ,Q1, Q2) is the set of τ -Borel probability measures for which

ft#P = µ, gt#P = Q1, ht#P = Q1 (1.120)

is given by the measure

P ∗(·) =
∫
Q1 ⊗Q2(A)dµ(z) (1.121)

For a proof see [Leonard2014, Proposition 2.10].

Proposition 135. (τ -Markovianity is inherited)
Under assumption 3 and the hypothesis of the previous Lemma, if Π is a solution of τ−RDSCH,
where R is Markov as in definition 74, then Π is also Markov.

Proof. If Π is a solution of τ−RDSCH then at every t ∈ [0, 1] we apply Lemma 134 which yields
(1.111) as in the proof of Léonard in [Leonard2014].

1.3.11 Discussion of topologies and Markovianity
In this section we explored the consequences of different topological approaches to the definition of
Causal Markovianity. We first learnt the universality of Definition 74 used by C. Leonard in section
1.3.9. We also showed via Theorem 125 that it corresponds to the definition of R. Dudley (Definition
70). Consequently, it is reasonable to use this description to formulate the causal Markov property
and therefore obtain a non-existence (Corollary 72) result for Lorentz-invariant Markov Processes.
Nevertheless, we realize that we can write a definition of the Markov property even if the evaluation
maps are not measurable (Definition 1.111). This generalization is useful for the topologies of curves
in path space available in physics literature. In section 1.3.9 we considered a general version of the
Schrödinger problem which considers these topologies only to realize that the general techniques
of [Leonard2012] can still apply in most cases, demonstrating the significance of these tools in a
more general setting. We have described this technique in physically relevant frameworks in section
1.3.9 but the question of constructing a hierarchy and characterization for these generalized Markov
properties is left for future work as described in sections 1.5.2 and 1.5.2.

1.4 Large deviations
We arrive to the study of Large Deviation Principles and it’s connections with RDSch. Through-
out this work we have hinted (as it’s well known in the theory of the Schrödinger Problem (see
[Leonard2014], [Leonard2012], [Tamanini], [Gigli-Tamanini]) that in order to recover optimal trans-
ference plans through entropic regularizations, the reference measure for the entropic problem must
satisfy a large deviation principle on which the rate function is given by the Lagrangian of the
transport cost. In this section we make all these notions precise together with analyzing (if any) the
large deviation principles satisfied by the process involved in sections 1.1 - 1.3.
In essence a collection of measures satisfies a Large Deviation Principle when their logarithms have
a specific order of convergence, intuitively we say Xn satisfies a Large deviation principle with rate
function I when

Pr(Xn ∈ A) ≍ exp
(
−nmin

x∈A
I(x)

)
. (1.122)
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The informal equation 1.122 is interpreted by thinking that as n → ∞ the probability of Xn

belonging to A becomes exponentially small where the rate of this exponential is given by the
minumum of I. We proceed to describe rigorously Large Deviation Principles and we will do it in
an abstract Hausdorff space X as the keen reader will guess we aim to apply Large deviations for
the space-time (M) in RDSch but also for the phase-space version (PS) for RKSchP and the path
spaces Cτx,y,Cadτx,y, Ω.

Definition 136. (LDP in a Hausdorff space)
Let X be a Hausdorff space, we say that a collection of measures {µϵ}ϵ>0 satisfies a weak large
deviation principle with good rate function I : X → [0,∞] at rate {hϵ} if and only if

1. For every closed set F and every open set G,

lim sup
ϵ→0

hϵ log(µϵ(F )) ≤ − inf
x∈F

I(x),

lim inf
ϵ→0

hϵ log(µϵ(G)) ≥ − inf
x∈G

I(x).

(1.123)

(1.124)

2. {x ∈ X : I(x) ≤ c} is compact for every c ∈ R

In this case we say {µϵ} satisfies LDP (µϵ, hϵ, I).

Condition 136.2 is usually referred to as I being a good rate function. Goodness of rate functions
is often referred to as being coercive in the analysis literature.
Intuituively, Definition 136 should remind the reader of Portmanteau’s theorem in which the
characterization of weak convergence changes signs depending whether sets are close or open, this
is a consequence of the fact that considering the two-sided limit to exist is too restrictive (see
[Varadhan]) and justifies the term “weak”. Sometimes it is convenient to consider the parametrization
ϵ = 1/n and consider the limits in (1.123) and (1.124) as n→∞, in that case we write {µn} satisfies
LDP (µn, rn, I) and we make no distinction.
One of the fundamental results in the theory of Large Deviation Principles (LDP from now on)
is Varadhan’s Lemma whose content allows us to compute the limit of logarithms of integrals of
exponentials.

Remark 137. Before we state the general theorems from LDP let’s build intuition for the limiting
procedure. On C[0, 1] let P denote the Wiener measure, by definition we have,

P(γ(t1) ∈ dz1, · · · , γ(tn) ∈ dzn) ∝ exp
{
−1

2

n∑
i=1

|zi+1 − zi|2

ti+1 − ti

}
,

where ∝ means equal up to a normalizing constant.
If we were to only consider this limit, as the partition is refined we would get

−1
2

n∑
i=1

|zi+1 − zi|2

ti+1 − ti
= −1

2

n∑
i=1

(ti+1 − ti)
(
|zi+1 − zi|
ti+1 − ti

)2
n→∞−−−−→ −1

2

∫ 1

0
|γ̇(t)|2dt

This is exactly the rate function for LDP associated to the slowed-down Brownian motion (Schilder’s
Theorem). The idea of LDP theory is to generalize this concept i.e. to study the convergence of
the exponentially fast decrease in probability. It is of no surprise that if we can write a sequence of
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measures in terms of exponential functions, we will recover LDP principles, this observation was
made by Gibbs and we formulate it in Theorem 140.2.
Again informally, if L denotes a Lagrangian we aim to find P such that

P(γ(t1) ∈ dz1, · · · , γ(tn) ∈ dzn) ∝ exp
{

n∑
i=1

(ti+1 − ti)L
(
zi+1 − zi
ti+1 − ti

)}
. (1.125)

to obtain (rigorously using a LDP) convergence to an expresion of the type

I(σ) =
∫ 1

0
L(σ̇(t))dt.

when σ is absolutely continuous and ∞ otherwise.

1.4.1 Varadhan’s Theorem
Theorem 138. (Varadhan’s Theorem)
Suppose LDP (µn, rn, I) holds on X where I is a good rate function and f : X → [−∞,∞] is
continuous, if

lim
b→∞

lim sup
n→∞

1
rn

log
∫

{f≥b}
ernfdµn = −∞. (1.126)

Then
lim
n→∞

1
rn

log
∫
ernfdµn = sup

x:f(x)∧I(x)<∞
{f(x)− I(x)}. (1.127)

The proof can be found in [RassoulAgha-Seppäläinen, Section 3.2]. The reader should observe
that the terms for which we are taking the limit on (1.127) are of the form of logarithms of integrals
of exponentials, exactly like the ones appearing on Proposition 47.

Theorem 139. (Varadhan’s Theorem in the non-good case)
Suppose LDP (µn, rn, I) holds on X where I is a rate function (not necessarily good), X is regular
Hausdorff and f : X → R is continuous and bounded, then

lim
n→∞

1
rn

log
∫
ernfdµn = sup

x∈X
{f(x)− I(x)}. (1.128)

In the contest of Theorem 139, the bound condition 1.126 always holds by boundness of the
function f . The proof relies in using boundness of f to generate balls on which f is (almost) bounded
by integers [Kallenberg, Theorem 24.10].

1.4.2 The contraction Principle and Gibb’s measures
In this section we summarize results from Large deviation principles that we will use in the rest of
the chapter, these results are standard and can be found in [Varadhan], [RassoulAgha-Seppäläinen]
or any standard reference in LDP.

Theorem 140. Let X be a Hausdorff space and assume that {µϵn
} satisfies a large deviation

principle with rate ϵn and good rate function I, then
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1. (Contraction Principle)
Assume that f : X → X ′ is measurable and X ′ is a different Hausdorff space, then the sequence
of measures {f#µϵn

}n satisfies a large deviation principle with rate ϵn and rate function given
by

I ′(x′) = inf{I(x) : f(x) = x′} = inf
x∈f−1(x′)

I(x). (1.129)

2. (Gibb’s formula)
Let F : X → R be bounded and continuous, then the measures

µFϵn
(A) = 1

Z(F )

∫
A

e1/(ϵnF )dµϵn
(1.130)

where
Z(F ) =

∫
X

e1/(ϵnF )dµϵn

satisfy a LDP with rate function

IF (x) = I(x)− F (x) + sup
y∈X

(F (y)− I(y)) (1.131)

3. (Conditional Large Deviation Principle)
Let f : X → X ′ and x′ ∈ X ′ are such there exist regular conditional measures µϵn(· | f = x′),
if {µϵ} satisfies a LDP with rate function I then µϵn

(· | f = x′) satisfy a LDP with rate
function

If,x
′
(x) =

{
I(x)− I ′(x) if f(x) = x′

∞ o.c.
(1.132)

Again, the proof is standard in the theory of deviation principles and can be found in [Varadhan]
or [RassoulAgha-Seppäläinen].
The contraction principle Theorem 140.1 will be used together with (39), while Gibb’s measures
Theorem 140.2 are used to generate measures with specified rate functions. Note that if one starts
with a constant sequence of measures, Theorem 140.2 gives a way to generate a sequence of measures
of specified rate I(x) := sup

x′∈X
F (x′)− F (x).

Theorem 141. (Chaganti’s conditional LDP)
Assume that X1, X2 are polish spaces (endowed with their Borel σ-algebras) and that µ1

ϵ ∈ P(X1)
satisfies LDP at rate ϵ with good rate function I. Let µϵ be a sequence of probability measures on
X1 ×X2 with

µϵ(B1 ×B2) =
∫
B1

νϵ(y,B2)dµ1
ϵ(y) (1.133)

where {νϵ(x1, ·)} ∈ P(X2) satisfies LDP with rate Ix1(·) and

1. For every x1 ∈ X1 the rate function Ix1(·) is good on X2.

2. If x1
ϵ → x1 in X1 then νϵ(x1

ϵ , ·) satisfies LDP with rate Ix1 .

3. (x, z)→ Ix(z) is lower semi-continuous in X1 ×X2.
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Let I : X1 ×X2 be given by
I(x1, x2) = I(x1) + Ix1(x2). (1.134)

If I(x1, x2) is good on X1 ×X2, then µϵ satisfies LDP at rate ϵ with rate function I. In the case
where I is not good, one obtains the upper bound of LDP for all compact sets and the lower bound
still holds for every open set (i.e. the weak principle).

For a proof see [Chaganti, Theorem 2.3]. The main idea of the proof is to use Fϵ(·) = 1
ϵ
νϵ(·, B)

and apply Varadahn’s Theorem (Theorem 138) for which the continuity hypothesis allows us to
take the limit.

Theorem 142. (Dawson-Gartner finite dimensional principle)
If {Xn} is exponentially tight and for each t1, t2, . . . tm then (Xn(t1), . . . , Xn(tm)) satisfies a LDP in
Xm with rate function It1,t2,...,tm(x) then {Xn} satisfies a LDP on DX [0,∞) with good rate function

I(γ) = sup
{ti}⊆∆c

γ

It1,...,tm(γ(t1), . . . γ(tm))

where ∆c
γ is the complement of set of discontinuities of t→ γ(t).

For a proof on the product topology see [Kallenberg, Theorem 24.12]. We combine [Dembo-
Zeitouni, Theorem 4.6.1] and the strategy in [Dembo-Zeitouni, Section 5.1] to obtain our particular
formulation. Note that in Theorem 142 if we restrict to continuous functions on [0, 1] with the
sup-norm there are no discontinuities and we obtain the supremum over all possible partitions. This
formulation is also well-suited for the Cad-lag version when endowed with the Skorohod topology.

1.4.3 Large Deviation Principles for collections relevant to the Schrödinger
Problem

In this section we study the large deviation principles for the collections of measures we have used
along this document. We explain a technique to prescribe large deviation rates and use it towards
our goal of studying entropic convergence in ghchrlls. It is important to note that it is not the only
way to obtain small time asymptotics as we explain in section 1.5.2 another way (due to Ben Arous
et. al.) to obtain a sequence of measures with a prescribed rate working in very general frameworks
related to the theory of partial differential equations satisfying the condition of Hörmander. Due to
the absence of the heat semigroup we choose to avoid techniques involving elliptic operators.

LDPs for the intrinsic constructions of section 1.3

In the seminal work of Hsu [Hsu1990], it was shown that in Riemannian manifolds, bridge measures
associated to Brownian motion satisfy LDP with rate function

Jx,y(γ) = 1
2

(∫ 1

0
|γ̇s|2gds− d(x, y)2

)
+ ιΩac ,

where Ωac is the set of absolutely continuous curves in Ω and ι is the convex indicator (see (1.148)).
Following the ideas of [Hsu1990], we expect rate functions of Bridge measures to be of the form

Ix,y(γ) = L(γ)− c(x, y) (1.135)
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or similar where L : Ω→ (−∞,∞] represents a Lagrangian/action/minimizing principle. We also
know from the proof of Proposition 46 that any solution of a dynamic Schrodinger problem shares
its bridges with it’s reference measure, that is, if P is optimal in the Polish space case for Dynamical
Schrödinger then

P (·) =
∫
Rx,ydπ(x, y) (1.136)

where π is a solution for the static problem and R is the reference measure.
Using these observations set

Ix,y(γ) = ℓ(x, y)− Lℓ(γ) + ιΩx,y
(1.137)

where Lℓ stands for the ℓ-length defined in section 1.1. Observe that the choice is fully justified
in accordance to the strongly causal smooth spacetime case as the action of curves coincides with
ℓ-length [Kunziger-Saemann, Proposition 2.32].

Proposition 143. (A priori prescription of rate function for Construction 2)
Consider x≪ y in (M,d, ℓ) ghcrlls (Definition 20) and for any a, b ∈ J+(x) ∩ J−(y) define

σϵa,b(A) = C−1
a,b

∫
A

exp
{

+1
ϵ

(ℓ(a, z) + ℓ(z, b))
}
dHa,b(z) (1.138)

where A is a Borel subset of MID(a, b), Ca,b is the normalizing constant;

Ca,b =
∫

MID(a,b)
exp

{
+1
ϵ

(ℓ(a, z) + ℓ(z, b))
}
dHa,b(z),

and H is the non-trivial Hausdorff measure on each MID(a, b) from [McCann-Saemann].
Assume that there exists ϵ′ > 0 such that if ϵ < ϵ′, µϵ the probability measure on Ωx,y from
construction 2 associated to {σ(a, b)ϵ} is well-defined, then µϵ satisfies LDP on Ωx,y with rate
function Ix,y : Ωx,y → [0, ℓ(x, y)] given by

Ix,y(σ) = ℓ(x, y)− Lℓ(σ). (1.139)

Proof. By continuity of ℓ+ (Lemma 17), ℓ(a, ·), ℓ(·, b) are continuous on MID(a, b) and so by definition
of σϵa,b we can apply Gibb’s principle and obtain that {σϵa,b}ϵ>0 satisfies LDP at scale ϵ with rate
function

I(z) = sup
w∈MID(a,b)

{ℓ(a,w) + ℓ(w, b)} − ℓ(a, z)− ℓ(z, b) = ℓ(a, b)− ℓ(a, z)− ℓ(z, b),

where the equality occurs because the space is assumed to be curve-connected and hence there
always exists an ℓ-path between a and b which intersects MID(a, b) at a point z∗ ∈ MID(a, b) where
ℓ(a, z∗) = ℓ(z∗, b) = 1

2ℓ(a, b).
If Zϵ ∼ σϵx,y then we have shown LDP at rate ϵ with rate function

I(z) = ℓ(x, y)− ℓ(x, z)− ℓ(z, y).

Recall that in construction 2 the value of Xϵ(1/4) and Xϵ(3/4) are given conditionally on Xϵ(1/2).
That is,

(Xϵ(1/4) | Xϵ(1/2) = z) ∼ σϵx,z
(Xϵ(3/4) | Xϵ(1/2) = z) ∼ σϵz,y
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By Gibb’s principle again we know that these measures satisfy LDP at rate ϵ with rate functions
I1(x1) = ℓ(x, z)− ℓ(x, x1)− ℓ(x1, z) and I2(x2) = ℓ(z, y)− ℓ(z, x2)− ℓ(x2, y) respectively. Applying
Theorem 141 we learn that (Xϵ(1/4), Xϵ(1/2), Xϵ(3/4)) satisfy LDP at rate ϵ with rate function

I(x1, z, x2) = ℓ(x, y)− ℓ(x, z)− ℓ(z, y)
+ ℓ(x, z)− ℓ(x, x1)− ℓ(x1, z)
+ ℓ(z, y)− ℓ(z, x2)− ℓ(x2, z).

where we abuse the notation by using the same letter I.
Proceeding inductively, by Theorem 141, if (t1, t2, · · · , tn) ∈ D the joint measure of (Xϵ(t1), · · · , Xϵ(tn))
satisfies a LDP with rate function

I(x1, . . . , xn) = ℓ(x, y)−
n−1∑
i=1

ℓ(xi, xi+1)

We apply Theorem 142 (exponential tightness is inherited as in [Dembo-Zeitouni, Theorem 5.1.2]),
so the laws of the sequence {Xϵ} as probability measures in Ωx,y satisfy a LDP with rate function

I(γ) = sup
{tk}

I(γ(t1), . . . , γ(tk))

= ℓ(x, y) + sup
{tk}

{
−

n∑
k=1

ℓ(γ(tk−1), γ(tk))
}

= ℓ(x, y)− inf
{tk}

{
n∑
i=1

ℓ(γ(tk−1), γ(tk))
}

= ℓ(x, y)− Lℓ(σ)

where the last equation is just the definition of ℓ-length (5) as the supremum is taken over all
partitions {tk} of [0, 1].

Despite the intrinsically interesting properties of the construction, it is clear that it is not the
only way to obtain a sequence of measures with prescribed rate function. We can start with any
measure µ ∈ P(Ωx,y) and apply Gibbs principle directly, this is the content of the following Lemma.

Remark 144. The assumption on Proposition 143 can be replaced by the following: there exists
ϵ′ > 0 such that if ϵ < ϵ′ then there exist α(ϵ), β(ϵ) > 0 such that

E[d(Xs, Xt)β(ϵ)] ≤ K|t− s|1+α(ϵ)

where t ∈ D and Xt ∼ σϵ in their respective mid-set.

Even though this assumption is expected to hold, a strategy for it’s proof is not clear even in the
simplest cases.

Lemma 145. (A posteriori-prescription towards LDP)
Let {σ(a, b)} be any collection of measures for constructions 1 or 2 (or 1.3.5 in the general case).
Consider µ the associated Bridge measure according to Proposition 62, define for F : Ωx,y → R
continuous and bounded (where d∞ has been chosen for the topology on Ωx,y and define µFϵ via
Gibb’s principle. Then {µFϵ } satisfies a Large deviation principle with rate function

I(σ) = −F (σ) + sup
γ∈Ωx,y

F (γ). (1.140)
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In particular in the case where σ → Lℓ(σ) is d∞-continuous we obtain a sequence of measures
µϵ ∈ P(Ωx,y) satisfying a LDP with rate ϵ and rate function

Ix,y(σ) = ℓ(x, y)− Lℓ(σ). (1.141)

Proof. The hypothesis are written to satisfy those of Theorem 140.2 so the conclusion follows from
it. The form of the rate function follows from the assumption of curve-connectedness for which the
supremum is achieved by the ℓ-curve.

LDP and Dudley’s process

The general case for the small-time asymptotics of the kernel asociated to Dudley’s process is not
known. Although some progress has been made to establish an anlogue of [Hsu1990, Theorem
2.2] for Dudley’s process, the results aren’t yet satisfactory. The specific case of n = 1 for the
Kolmogorov operator is well known and we present it in the next section (section 1.4.3).
In an attempt to study the general behaviour of the hypoelliptic operator associated to Dudley’s

process, in [Franchi-LeJan2012] the author considers a simpler version of the problem (
∫ t

0
ω2
sds, ωs)

where ωs is a 1-dimensional Brownian motion in R. Even there, the author observes that there is no
preferred scaling and only the specific formula of the square in the second coordinate allows some
estimates contrary to the case of Brownian bridges where the time re-scaling t→ ϵt is canonical.
Dudley’s operator is intimately connected to the hypo-elliptic Laplacian of Bismut [Bismut] where
progress has been made in the case of general dimensions, nevertheless the approach of Bismut is of
completely different nature and out of the scope of this document. We briefly explain the approach
and discuss it in section 1.5.2.

Matsumoto Ikeda LDP for Dudley’s one-dimensional diffusion

Let us denote by A, the 1-dimensional analogue of the operator in section 1.3.3, that is: In R2 set

A = 1
2
∂2

∂p2 + p
∂

∂x
(1.142)

In this n = 1 case, Dudley’s process can be written in the form(
x0 +

∫ t

0
psds, p0 + ps

)
(1.143)

where ps is a Brownian motion on the line and x0, p0 are fixed. In [Matsumoto-Ikeda], the authors
computed the explicit formula for the kernel associated to (xt, pt), that is:

pt((x1, p1), (x2, p2)) =
√

3
πt2

exp
(
− (p2 − p1)2

2t − 6
t3

(
x2 − x1 −

(p2 + p1)
2 t

)2
)

(1.144)

Note that one can now get explicit formulation for the heat kernel with respect to RKSchP by using
equation (1.104) for the kernel (1.144).
In the n = 1 case, the authors decided to balance the “degeneracy” of the operator by adding the
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noise to the position variable. This approach differs from [Dudley1966] and [Bismut] but generates
a sequence of operators of the form:

Aϵ = 1
2
∂2

∂p2 + ϵ2
1
2
∂2

∂x2 + p
∂

∂x
(1.145)

for which the authors manage to prove that the Kernel pϵ(t, (x1, p1), (x2, p2)) can be written explicitly:
√

3
πt
√
t2 + 12ϵ2

exp
(
− (p2 − p1)2

2t − 6
t(t2 + 12ϵ2)

(
x2 − x1 −

(p2 + p1)
2 t

)2
)
, (1.146)

on which one can take the limit as ϵ→ 0 and corresponds to a Hamiltonian of the form

Hϵ(v, q) = ϵ2

2 |v|
2 + 1

2 |q|
2 + v · q. (1.147)

In the general case for Dudley’s process no perturbations with controlled Hamiltonian are yet known
but it is expected that the correct scaled diffusion will converge w.r.t. large deviation principles (as
in (1.146)) to geodesic flow (as (1.147)). This has been claimed to be proven in a general case in
[Bismut] which we discuss futher in section 1.5.2.

Use of Varadhan’s Lemma in entropic regularizations

The following proposition, based in the work [Leonard2014] explains how one can infer limiting
optimal transport problems form the Schrödinger problem if the set of measures satisfy a large
deviation principle. Denote by ιA the convex indicator of A,

ιA =
{

0 if x ∈ A
∞ otherwise

(1.148)

For the next theorem we say that f : X → [0,∞] is coercive if {f ≤ a} is compact for every a > inf f .
The following general result is due to Léonard [Leonard2012].

Theorem 146. (Convergence of entropic minimizers to (positive) cost minimizers in polish space
X)
Let (X, d) be a Polish space and furnish Ω = C([0, 1], X) with the sup-topology (1.2).
Assume {Rxϵ } satisfies a large deviation principle with rate 1/ϵ with a lower semi-continuous coercive
rate function

Cx = C + ι{X0=x} : Ω→ [0,∞] (1.149)

then as k →∞ , there exists a sequence of measures µk1 weakly converging to µ1 such that

lim
ϵ→0

min
Π∈Γ(µ0,µk

1 )
ϵEnt(Π | R)→ min

Π∈Γ(µ0,µ1)

∫
Ω
C(γ)dΠ(γ) (1.150)

And further, any limit point of the sequence of dynamical solutions {Π∗
k} is a solution of the dynamical

optimal transport problem with cost C (i.e. right hand-side of (1.150)).
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For a proof see [Leonard2012, Theorem 3.6]. To get back to our setting notice that the underlying
topology on (M,d, ℓ) is Hausdorff and the proof of Proposition 44 shows that the causality of R
is inherited by every Π ∈ Γ(µ0, µ1) so it costs nothing to add the causality restriction (as every
probability with finite entropy will satisfy it). Hence, Theorem 146 will hold as soon as we identify
the correct cost C and check it’s coerciveness (for every Cx). We first look at a slightly different
cost version of Proposition adapted to our constructions from sections 1.1-1.3.

Lemma 147. (x, y-Coerciveness)
Let (M,d, l) be a ghcrlls then for every x≪ y and every a ∈ R {σ ∈ Ω : Ix,y(σ) ≤ a} is d∞-compact.

Proof. Because of our sign convention, Ix,y ≥ 0 for every curve as Lℓ(γ) ∈ [0, ℓ(σ(0), σ(1))]. Further
as ℓ(x, y) is a constant, to show coerciveness it is enough to show {γ ∈ Ωx,y : −Lℓ(γ) ≤ c} is compact.
By global hyperbolicity (see [Braun, Lemma B.4]) it is enough to show the set is closed, but closedness
follows from Lℓ being upper-semi-continuous with respect to d∞ as shown in [Kunziger-Saemann,
Proposition 3.17].

Intuitively, if Rx,yϵ (A) → δσ(x,y)(A) as ϵ → 0 for every A, by dominated convergence (as
Rx,yϵ (A) ≤ 1),

P ϵ(·) =
∫
Rx,yϵ (·)dπ(x, y) ϵ→0−−−→

∫
δσx,y

(·)dπ(x, y) (1.151)

where σx,y is a geodesic from x to y. Equation (1.151) tell us that for fixed π the π-mixture of the Rϵ
bridges converges to the π-mixture of ℓ-maximizing curves. As we know from the relation between
(RDSch) and (RSch), solutions to the static problem with the Rϵ reference measure, depend on ϵ
and so the idea of above needs to be rigorously proved.

Lemma 148. Assume that R ∈ P(Ω) and that {Rx,yϵ } satisfies LDP with rate ϵ and rate function
Ix,y satisfying

Ix,y(γ) = 0⇔ Lℓ(γ) = ℓ(x, y) (1.152)

further assume uniqueness (up to reparametrization) of Lℓ-maximizing curves then

Rx,yϵ ⇀ δσ(x,y)

where σx,y is a ℓ-maximizing.

Proof. By Portmanteau’s theorem, it is enough to show that for every open set A w.r.t. (Ωx,y, d∞),
we have

lim inf
ϵ→0

Rx,yϵ (A) ≥ δσ(x,y)(A). (1.153)

By definition of the LDP satisfied by Rx,yϵ , for every A open and every F closed in (Ωx,y, d
∞) we

have
lim inf
ϵ→0

ϵ log(Rx,yϵ (A)) ≥ − inf
γ∈A

Ix,y(γ)

lim sup
ϵ→0

ϵ log(Rx,yϵ (F )) ≤ − inf
γ∈F

Ix,y(γ)
(1.154)

Fix an open set A, by definition of the limit inferior, there exists ϵ0 s.t. for every ϵ < ϵ0 we have

ϵ log(Rx,yϵ (A)) ≥ − inf
γ∈A

Ix,y(A),
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from which taking exponentials we get that for every ϵ < ϵ0,

Rx,yϵ (A) ≥ exp
(
−1
ϵ

inf
γ∈A

Ix,y(γ)
)
. (1.155)

We argue by cases: if σx,y ∈ A then by the minimizing property of σx,y and (1.152)

inf
γ∈A

Ix,y(γ) = I(σx,y) = 0

Plugging this value in (1.155) we obtain

Rx,yϵ (A) ≥ 1 = δσ(x,y)(A)

where the last equality holds becausae we are in the case σx,y ∈ A, yielding in this case (1.153).
Now if σx,y ̸∈ A,
Assume that 0 < CA <∞ where

CA = inf
γ∈A

Ix,y(γ).

By (1.155),

lim inf
ϵ→0

Rx,yϵ (A) ≥ lim inf
ϵ→0

exp
(
−1
ϵ
CA

)
= 0 = δσ(x,y)(A),

where the last equality holds as we are in the case σx,y ̸∈ A.
The case where CA = 0, then the bound (1.153) is trivial:

lim inf
ϵ→0

Rx,yϵ (A) ≥ 1 ≥ 0 = δσ(x,y)(A).

The case CA =∞ is impossible as A is open and curves in Ωx,y are ℓ-rectifiable so γ ∈ A implies
I(γ) <∞. Therefore (1.153) holds in both cases (σx,y ∈ A, σx,y ̸∈ A) concluding the proof.

Theorem 149. (Approximation via dynamic entropic regularizations)
Let (M,d, ℓ) a ghcrlls (as in Definition 20). Set Ω := C([0, 1],M) endowed with the supremum norm
d∞ from (1.2). If x ≪ y denote by Ωx,y the elements in Ω which are causal and have start-point
at x and endpoint at y. Let {Rx,yϵ }ϵ>0 ∈ P(Ωx,y) be constructed according to construction 2 and
satisfy a LDP at rate ϵ and good rate function given by Ix,y as in (1.137).
Let Q ∈ P(Ω), set π = (e0, e1)#Q be such that π(M2

≪) = 1 and∫
ℓ(x, y)dπ ∈ (−∞,∞).

Define C : Ω→ [0,∞] via

C(γ) =
{
ℓ(γ(0), γ(1))− Lℓ(γ) if γ ∈ C
∞ otherwise.

(1.156)

then there exists a sequence {Qϵ} ∈ P(Ω),Qϵ ⇀ Q w.r.t. weak convergence for measures on Ω such
that

lim
ϵ→0

ϵEnt(Qϵ|Rπϵ ) =
∫
ℓ(x, y)dπ(x, y)−

∫
Ω
LℓdQ. (1.157)
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where Rπϵ is the π-mixture of the bridges of Rx,yϵ .
Furthermore, for any sequence {Q̃ϵ} with Q̃ϵ ⇀ Q we have

lim inf
n→∞

Ent(Q̃ϵ | Rx,yϵ ) ≥
∫
CdQ

Remark 150. Theorem 149 is not completely satisfactory as generalization of [Leonard2012,
Theorem 3.7]. In the original work the author introduces an artificial time asymmetry that facilitates
the proof by considering Rµ0 instead of Rπ and so fixing only one of the projections of R. This
trick allows the author to find the solution to the static problem with reference R by evaluating a
Schrodinger problem with respect to Rµ0 . Namely, the x-projection is enough to obtain coercive
properties of Cx,

Cx = C +∞ · 1{e0(γ)̸=x}. (1.158)

The structure of causality theory (global hyperbolicity) impedes this coercivity because of the lack of
compactness of points proper-time close to x. Global hyperbolicity yields compactness of J+(x)∩J−(y)
so coercivity (necessary for the rate function to be good and so to have a full Varadahan-Laplace
principle) is available for a cost involving past and future points (Cx,y) and not only x (via Cx)
which explains why Theorem 149 depends on the M2 distributions rather that only on one of the
marginals (in contrast with [Leonard2012, Theorem 3.7]).

Proof. We follow closely the proof of [Leonard2012, Proposition 3.4] but we have to modify it. We
need to modify the strategy to use the fact that J+(x) ∩ J−(y) is compact and so Cx,y (defined
below) is coercive but the one-sided cost Cx is not. A reader familiar with the proof of [Leonard2014,
Theorem 3.7] may be able to skip most of this proof. Denote by Cb(Ω) the real-valued bounded
continuous functions on Ω endowed with the norm

||f || = sup
γ∈Ω
|f |. (1.159)

By (Cb(Ω))′ we denote the topological dual of Cb(Ω) and we use ⟨·, ·⟩ to describe the dual pairing.
Let π ∈ P(M2) such that π(M2

≤) = 1 and assume that P ∈ P(Ω) satisfies (e0, e1)#P = π and
P x,y ∈ P(Ωx,y) whenever x ≤ y. For any R ∈ P(Ω), define the π-mixture of it’s bridges via

Rπ(·) =
∫
M2

Rx,y(·)dπ(x, y). (1.160)

We will first show that for every Q ∈ (Cb(Ω))′

Ent(Q | Rπ)+ιQ∈P(Ω):(e0,e1)#Q=π

= sup
f∈Cb(Ω)

{∫
fdQ−

∫
M2

log
(
⟨ef , Rx,y⟩

)
dπ(x, y)

}
.

(1.161)

where ιA denotes the convex indicator from Definition (1.148). We show (1.161) by considering
Θ : Cb(Ω)→ R given by

Θ(f) =
∫
M2

log
(
⟨ef , Rx,y⟩

)
dπ(x, y) (1.162)
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and computing it’s Fenchel-transform (with respect to the ⟨·, ·⟩ pairing). For Q ∈ (Cb(Ω))′

Θ∗(Q) = sup
f∈Cb(Ω)

{⟨f,Q⟩ −Θ(f)}

= sup
f∈Cb(Ω)

{
⟨f,Q⟩ −

∫
M2

log
(
⟨ef , Rx,y⟩

)
dπ(x, y)

}
.

(1.163)

Let us show that {Q ∈ (Cb(Ω))′ : Θ∗(Q) <∞} ⊆ {Q ∈M+
b (Ω) : (e0, e1)#Q = π}.

Let Q ∈ (Cb(Ω))′ s.t. Θ∗(Q) < ∞ following [Leonard2012, Lemma 5.2] to show Q ∈ Mb(Ω) it is
necessary and sufficient to show that for every decreasing sequence fn ↓ 0 then lim

n→∞
⟨fn, Q⟩ = 0.

Still following the approach of [Leonard2014, Lemma 5.2], to show Q ≥ 0 assume f ≥ 0, if a ≤ 0
then Θ(af) ≤ 0 from which

Θ∗(Q) ≥ sup
a≤0
{a⟨f,Q⟩ −Θ(af)}

≥ sup
a≤0
{a⟨f,Q⟩} = ι⟨f,Q⟩<0.

Hence Θ∗(Q) < ∞ implies ⟨f,Q⟩ ≥ 0 for every f ≥ 0 yielding Q ≥ 0. If (fn) is a sequence of
positive functions decreasing to 0 by dominated convergence for every a ≥ 0,

lim
n→∞

Θ(afn) = lim
n→∞

∫
M2

log
(
⟨eafn , Rx,y⟩

)
= 0.

By definition of Θ∗ as a supremum,

Θ∗(Q) ≥ sup
a≥0

lim sup
n→∞

{a⟨fn, Q⟩ −Θ(afn)}

≥ sup
a≥0

lim sup
n→∞

⟨fn, Q⟩

Which again shows that if Θ∗(Q) <∞ then lim sup
n→∞

⟨fn, Q⟩ = 0.

Now we know that Θ∗(Q) <∞⇒ Q ∈M+
b (Ω). We continue to show that (e0, e1)#Q = π, let for

f ∈ Cb(Ω), and ϕ ∈ Cb(M2) via ϕ = f ◦ (e0, e1) as composition of continuous functions as (e0, e1) is
continuous in d∞ therefore

sup
ϕ∈Cb(M2)

{∫
ϕdQ−

∫
M2

log
(
⟨ef , Rx,y⟩

)
dπ(x, y)

}
= sup
ϕ∈Cb(M2)

∫
M2

{∫
M2

ϕd(e0, e1)#Q−
∫
M2

log
(∫

Ω
eϕ(x,y)dRx,y(γ)

)
dπ(x, y)

}
= sup
ϕ∈Cb(M2)

{∫
M2

ϕ(x, y)d((e0, e1)#Q− π)(x, y)
}

= ι(e0,e1)#Q̸=π,

from which we obtain that Θ∗(Q) < ∞ yields (e0, e1)#Q = π as desired. With this result we
desintegrate Q,

Q(·) =
∫
M2

Qx,ydπ(x, y). (1.164)
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By definition of Θ∗,

Θ∗(Q) = sup
f∈Cb(Ω)

{∫
M2
⟨f,Qx,y⟩ − log

(
⟨ef , Rx,y⟩

)
dπ(x, y)

}
≤
∫
M2

sup
f∈Cb(Ω)

{
⟨f,Qx,y⟩ − log⟨ef , Rx,y

}
dπ(x, y)

=
∫

Ent(Qx,y | Rx,y)dπ(x, y)

= Ent(Q | Rπ),

where the first equation is due to Fatou’s lemma, the second one to Gibb’s principle together with
(133) and the last one as π = (e0, e1)#Q = (e0, e1)#Rπ. To obtain the reverse inequality, note by
Jensen’s inequality, ∫

log⟨ef , Rx,y⟩dπ ≤ log
∫
⟨ef , Rx,y⟩dπ.

which gives Θ∗(Q) ≥ Ent(Q | Rπ).
Towards the proof of Theorem 149, we define

Cx,y(γ) =
{
ℓ(x, y)− Lℓ(γ) if γ ∈ Ωx,y is causal
∞ otherwise.

(1.165)

We also define the associated Λ-operator which we expect as Γ-limit:

Λ(f) : =
∫
M2

sup
γ∈Ω
{f(γ)− Cx,y(γ)} dπ(x, y)

=
∫
M2

sup
γ∈Ωx,y

{f(γ)− Cx,y(γ)} dπ(x, y)

where the equality holds because if γ is not causal or γ(0) ̸= x or γ(1) ̸= y then Cx,y(γ) =∞. We
now show that {Λ∗ < ∞} ⊆ M+

b (Ω). Consider as before fn ↓ 0 and by in [Leonard2012, Lemma
5.3] (sup

Ω
{fn − Cx,y})n is decreasing and

lim
n→∞

sup
Ω
{fn − Cx,y} = 0.

Observe that
|sup

Ω
{fn − Cx,y}| ≤ sup

Ω
|f | (1.166)

The bound (1.166) allows us to use dominated convergence and so Λ(afn) → 0. Because Cx,y is
coercive and [0,∞]-valued, sup

Ω
{fn−Cx,y} is decreasing by [Leonard2012, Lemma 5.3] and J = Cx,y

satisfies
lim
n→∞

sup
Ω
{fn − J} = sup

Ω
{f − J}. (1.167)

We set
Λϵ(f) := ϵ

∫
M2

log⟨e1/ϵf , Rx,yϵ ⟩dπ(x, y) (1.168)

By [Leonard2012, Corollary 6.4] to show Γ-convergence of Λ∗
ϵ to Λ∗ it is enough to show:
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1. lim
ϵ→0

Λϵ(f) = Λ(f) for every f ∈ Cb(Ω)

2. sup
0<ϵ<1

|Λϵ(f)| ≤ ||f ||, |Λ(f)| ≤ ||f ||.

3. Λϵ,Λ are convex.

Because Cx,y is coercive, Ix,y is a good rate function so Varadahn’s lemma (1.127) applies for
f ∈ Cb(ω) and we have by dominated convergence

lim
ϵ→0

Λϵ(f) = Λ(f), (1.169)

proving the first item. The second item follows from the point-wise bound of f and Rx,yϵ being a
probability measure and convexity is a consequence of Hölder’s inequality. Again using [Leonard2012,
Corollary 6.4] their convex conjugates Γ-converge. But we have computed the convex conjugates
and the Γ-convergence is exactly the statements on Theorem 149 finalizing the proof if we note that

Λ∗(Q) = sup
f∈Cb(Ω)

{∫
M2
⟨f,Qx,y⟩ − sup

γ∈Ωx,y

{f(γ)− Cx,y}dπ(x, y)
}

=
∫
ℓ(x, y)dπ(x, y)−

∫
Ω
Lℓ(γ)dQ(γ)

where the first equality holds because of (1.165) in the finite case as (e0, e1)#Q = π and both sides
are ∞ in any other case. The last equality is due to [Leonard2012, Lemma 5.5] as Lℓ is upper
semi-continuous making C in (1.156) lower semi-continuous as a sum of lower semi-continuous
functions satisfying that for every x≪ y we have

inf
γ∈Ω

Cx,y(Ω) = inf
γ∈Ωx,y

{ℓ(x, y)− Lℓ(γ)} = 0

due to the space being path-connected and Lemma 14 which is the condition π-a.e. of the hypothesis
of [Leonard2012, Lemma 5.5] because π(M2

≪) = 1.

Corollary 151. (An approximation result of entropy maximizers)
Let µ0, µ1 ∈ P(M) such that

Cℓ(µ0, µ1) := sup
π∈Γ≤(µ0,µ1)

∫
M2

≤

ℓ(x, y)dπ(x, y) <∞. (1.170)

Assume that for every sequence {πn} ∈ P(M2
≪) there is a sequence of probability measures {Qn}n ∈

P(Ω) with (e0, e1)#Qn = πn such that

lim
n→∞

∫
Lℓ(σ)dQn(σ) = 0. (H)

Then there exists a (double sequence) {Qϵn}n,ϵ ∈ P(Ω) such that

lim sup
n→∞

{
lim
ϵ→0+

ϵEnt (Qϵn | Rπϵ )
}

= Cℓ(µ0, µ1). (1.171)
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Proof. For every fixed π ∈ Γ≤(µ0, µ1) by Theorem 149 for every fixed Q ∈ P(Ω) there exists a
sequence Qϵ with Qϵ ⇀ Q as ϵ→ 0,

lim
ϵ→0

ϵEnt(Qϵ | Rπϵ ) =
∫
ℓ(x, y)dπ −

∫
Lℓ(γ)dQ(γ).

Assume πn is a maximizing sequence in 1.170, let Qnϵ be the sequence associated to Qn (of hypothesis
H) from Theorem 149, then

lim
ϵ→0

Ent(Qnϵ | Rπn
ϵ ) =

∫
ℓ(x, y)dπn −

∫
Lℓ(γ)dQn(γ).

Considering the limit superior on both sides yields (1.171).

As a last observation note that by joint lower-semicontinuity of entropy, we know that if Qϵ ⇀ Q
then

lim inf
ϵ→0+

Ent(Qϵ | Rπϵ ) ≥ Ent(Q | δπσ ),

which together with Corollary 151 yields∫
Ω
CdQ ≥ Ent(Q | δπσ ).

Open Question 1. Is it possible to improve Theorem 149 to obtain the actual limit as solution of a
true Schrödinger problems with respect to varying target measures µk1 as in [Leonard2012]? A natural
approach would be to enforce compactness by considering a sequence of compact rectangles K1

n ×K2
n

approximating in some way spt(µ0 × µ1) and not only Ωx,y but it is not clear if this procedure yields
any convergence properties.

Observe that in the context of section 1.3.6 one needs to ensure that an analogue of Theorem
1.150 holds which includes (in it’s proof) the use of the duality of (Cb(Ω), d∞) with the space of
measures which is unavailable in the general case.
In the case of M1 for RKSchP we can apply directly Theorem 1.150 and obtain a solution to the
optimal transport associated to the rate function of section 1.4.3 which corresponds to geodesic flow
according to 1.147.
In the case of the kinetic Schrödinger problem in Mn associated to Dudley’s process we do not know
the rate function (if any) to try to apply Theorem 1.150 unless the results of Dr. Bismut can be
adapted our framework (which we discuss in 1.5.2).

1.5 Conclusions and further work
1.5.1 Conclusions
We have generalized the Schrödinger problem to adapt to recent investigations of the theory of
optimal transportation on spaces endowed with causality features. This work adapts the problem
to physically relevant settings were we have studied existence, uniqueness and other properties.
The absence of a canonical heat semigroup in the Lorentzian and pre-Lorentzian case was resolved
through the construction of bridge measures which lacked enough properties to be considered a
satisfactory generalization of Brownian Bridges. In the known case of Minkowski space, the analogue
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of Brownian bridges was the conditioning of Dudley’s process whose intrinsic existence in phase-space
was addressed by formulating the relativistic kinetic Schrodinger problem. Although there seems to
be no straight-forward generalization of the Brownian Bridge, we dealt separately with each of it’s
fundamental features: Markovianity and it’s large deviation principle. This separation made the
theory of each feature interesting by itself. In the last chapter we showed a strategy to almost recover
the Lorentzian costs in the entropic limit, through the theory of Large deviation for different bridge
measures. The main impediment to applying the theory of [Leonard2014] in our context is not
the non-compactness of sub-level sets of ℓ but rather the interplay of the signs and suprema/infima;
one can’t seem to apply directly the theory of Γ-convergence as one is dealing with maximizers but
if one flips signs to deal with minimizers instead, the now non-positive cost is not ensured to be the
limit of Λn.

1.5.2 Future work and open problems
A physical digression and a second approach

We have studied the Schrödinger problem from the perspective of the abstract minimization of
entropy for space-time measures (RSch and RDSch). In the Euclidean version of the problem, the
Schrödinger potentials (ϕ, ψ) are intrinsically related to the Schrödinger equation, for example see
[Tamanini, Section 5.5] where it is shown that a transformation of Schrödinger potential solves

i
∂ψt
∂t

+ 1
2∆ψt −

∆√ρt
ρt

ψt = 0. (1.172)

This corresponds in physics literature to the study of the Schrödinger equation with Bohm’s
potential. This indicates that an alternative approach to the study of the Schrödinger equation in
space-times would be working backwards, i.e. to define first the analogue of (1.172) and aim to
recover connections with RSch and RDSch.

Open Question 2. Although some work [Mauri-Giona] exists on the space-time version of Bohm’s
potential and the Schrödinger equation is classical, it is not yet clear to the author if connections
described in [Tamanini, Section 5.5] still hold (even) in the Minkowskian case.

Bismut Laplacian, Molchanov’s work non-Markovian Semi-groups

The seminal work of [Dudley1966] and subsequent work of [Franchi-LeJan2007], [Dunkel-Hanggi],
[Chevalier-Debbasch] (and others see references therein) study the diffusion process generated by a
hypo-elliptic operator (see section 1.3.3). In the last years, Bismut has studied a general version
of this operator (see [Bismut]). The so-called Bismut’s hypo-elliptic Laplacian is an interpolation
between geodesic flow and the Laplacian by a noise parameter. This parameter is exactly σ (or
1/σ in our notation) on 1.3.3. It seems that the theory of Bismut’s hypo-elliptic Laplacian shows
the probabilistic convergence of the operators on general dimension n and not only in n = 1, 2
cases known to Kolmogorov, Matsumoto and Ikeda (see section 1.4.3). It is unknown to the author
whether this general framework indeed shows the Large Deviation Principle as required in section
1.4 for the general case in Mn for the Kinetic Schrödinger problem or (maybe) even in the case of
curved geometries (section 1.3.4).

Open Question 3. Whether one can take the results from [Bismut] and apply them directly to the
kinetic Schrödinger problem is a very promising line of investigation.
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The Carnot-Caratheodory distance and the time-like curvature dimension condition

In the study of Theorem 86 we encountered the generalized Markov semigroup for Kolmogorov
operator. By [Baudoin-Gordina-Mariano] this semigroup is related to the Carnot-Caratheodory
distance on sub-riemannian manifolds. This idea hints towards studying Dirichlet-like energies on
phase-space, whether or not this is a reasonable approach to improve on the theory of relativistic
kinetic Schrödinger problems is an interesting problem. Observe that the generalized Bakry-Emery
condition satisfied by the Kolmogorov operator in Mn is an alternative way of describing an
intrinsically causal curvature dimension condition. Although it’s apparent that it is not to be
compared to the CDT e(K,N) condition of [McCann2019], [Cavalletti-Mondino] [McCann2023]
as in the Riemannian case, it would be extremely relevant to relate both notions or to that of
[Rupert-Woolgar].

Limit of theory: Girsanov’s theorem

In the study of the Euclidean Schrödinger problem, it is often common to use a version of Girsanov’s
theorem (see [Leonard2014], [Chiarini-Conforti-Greco]). The idea is that via Girsanov’s theorem, we
can write entropy in a simple way using

1. Doob’s decomposition of semi-martingales

2. Riesz-representation theorem.

Although the second one is readily available on Hausdorff spaces the first one is not. The goal of
using Girsanov’s theorem is that the exponential martingale cancels out:∫

log
(
dP
dQ

)
dP =

∫ 1

0

∫
log
(
dP
dQ

∣∣∣∣
Ft

)
dPtdt =

∫ 1

0

∫
(Zt + 1

2[Z]t)dPtdt

=
∫ 1

0

∫ 1
2 [Z]tdPtdt

which corresponds to the functional to minimize/maximize in the analogue of Benamou-Brenier’s
formula (1.4) for entropy. Girsanov’s theorem requires an underlying Hilbertian structure so it is
likely that the proof of Léonard can be replicated in an abstract Wiener space but not in the general
Lorentzian case.

Modifying the bridge constructions

The constructions 1, 2 and their generalizations in section 1.3.5 lack a Markov property as shown
in Proposition 78. Nevertheless, we expect that one can modify the constructions by further
randomizations on conditional steps which would preserve control on large deviation principles. This
idea is intuitive and exciting although we expect the construction to be much more elaborate than
the the ones presented in this document (in terms of showing existence and studying kernels).

Topology-Markov and operators (hypo-ellipticity)

Section 1.3.6 is a mathematical approach to avoid the non-physicality of the Markov property
associated to measures on curves with external parameter. The theory of Markov processes is vast
in literature and it’s connection to elliptic operators and semigroups has been widely established.
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Open Question 4. The question whether the condition of 1.111 relates to semigroup theory remains
open.

Occupation measure and the result of G. Arous and G. Guionnett

A well-known general principle to find small time asymptotics and large deviation principles arising
from operators in Hörmander form was further studied by Arous and Guionnett in [Arous-Guionnet].
We briefly explain the technique as the approach to obtain measures in ghcrlls spaces is clearly not
unique, a generalization of the hypo-ellipticity technique now described would also be natural. In
the context when M is a m-dimensional differentiable manifold, assume Px is the law of a process
solving the martingale problem started at x ∈M , for an operator L in Hörmander form

L = X0 −
d∑
k=1

X∗
k ◦Xk

and satisfy the strong condition of Hörmander, i.e. for every x ∈M ,

Lie(X1(x), . . . , Xn(x)) = TxM (1.173)

Let L be a differential operator satisfying the strong Hörmander condition (1.173), the empirical
process Lt is the random variable that assigns to σ ∈ C([0,∞),M)

Lt(σ) = 1
t

∫ t

0
δes(σ)ds (1.174)

according to the measure associated to the diffusion process of L. In [Arous-Guionnet], it was shown
that the laws of Lt satisfies a Large deviation principle as t→∞ with rate function:

J(ν) = sup
u∈C∞

+ (M,R)

{
−
∫
Lu

u
dν

}
. (1.175)

The work of [Arous-Guionnet] showed that an alternative representation of the rate function is

J(ν) = 1
4 sup
φ∈C∞(M,R)

|X(φ)|L2(ν)̸=0

{
(
∫
Lφdν)2

|X(φ)|2L2(ν)

}

This idea gives us a direct way to form non-trivial and physically relevant measures satisfying a large
deviation principles in spacetime. Observe that the construction of the empirical process depends
only on differentiable manifolds and not Riemannian ones!. This observation makes the technique
relevant towards the study of Large deviation principles on spacetime. Arous’s construction is
intimitely related to the metric space version of Sanov’s theorem (see [Leonard2012]). We can focus
on trying to replicate Hörmander’s condition 1.173 in a more abstract framework.

Cadlag

Most of the work in chapter 1.3 was made on Cτx,y but many topologies don’t make Cτx,y closed but
make Cadτx,y closed (as pointwise convergence of continuous functions may not be continuous but
cad-lag limits are cad-lag). The development of more general bridge measures in abstract spacetimes
through cad-lag processes is a natural next step towards understanding Markov-like processes with
fixed underlying topology on causal curves. We expect (1.76) to be easy to verify in many cases.
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Notation
ℓ - time separation function
d - distance (Polish topology in most cases)
≪,≤ - chronological and causal relations
Lℓ - The ℓ-length (definition 5).
d∞ - Supremum norm (1.2).
Ent(µ|ν) - Relative Entropy of µ with respect to ν 26.
B - Borel σ-algebra.
Bτ - Borel σ-algebra for the topology τ .
Γ≤(µ, ν) - Causal couplings of µ0 and µ1 (1.9)
M+(X) - Positive Borel measures on X.
M+
b (X) - Positive bounded (finite) Borel measures on X.

Ωx,y - Causal continuous bridge space from x to y endowed with the supremum topology.
ΩDx,y - Causal cad-lag bridge space from x to y endowed with the Skorohod topology.
et - Evaluation map et(ω) = ω(t).
δx - Dirac delta at x.
C(X,Y ) - Continuous functions from X to Y
C(X,Y ) - Continuous and causal functions from X to Y .
MID(x, y) - Mid-set 53.
c−MID(x, y) - Mid-set contracted by c 57
||·||2 - Euclidean norm.
nPk - Notation for the inductive construction 1.21
Bst - Dudley’s notation for s− t Borel σ-algebra in R3

Mn - n+ 1-dimensional Minkowski space (R1,n)
Hn - Hyperboloid of dimension n.
U - Upper Sheet of the hyperboloid (dimension in the context)
H - Hausdorff measure.
U(S) - Uniform probability measure on the set S(normalization of the Hausdorff measure).
∆ - Laplace-Beltrami operator.
Pt Markov semigroup semigroup in a full Markov-Triple (see [J, Chapter 1])
Γ - Carré du Champ defined in 1.67
T - Temporal function (or time function Definition 102).
H−→ - H1-convergence Definition1.3.6.
⇀ Narrow convergence (against continuous bounded functions).
H⊗−−→ - Convergence with transference plans Definition 112.
L - Lorentz group.
PS Phase-Space defined in section 1.3.4
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Chapter 2
The minimizing movement scheme for the
aggregation equation on compact
Riemannian manifolds

2.1 Introduction
We consider an aggregation equation on (M, g), a smooth, connected, compact Riemannian manifold
without boundary, in which the evolution of the density µt of population (or particles) is described
by

∂tµt −∇M · ((∇M (W ∗ µt))µt) = 0 (2.1)

where W ∗ µt(x) =
∫
M

W (x, y)dµt(y) is the convolution operator for a potential function W :
M ×M → R. Further, we assume that the interaction depends only on intrinsic distance, i.e.
W (x, y) = h(d(x, y)2) where h : R→ R is twice continuously differentiable and d(x, y) denotes the
Riemannian distance between x and y. We assume h is non-decreasing for big enough distances.
Aggregation models of the form (2.1) have been recently used in many different applications. In a
wide sense, aggregation models describe the collective behaviour of groups of individual entities whose
movement is determined by simple rules. These simple rules are modeled through a potential. For
example, in [Mogilner-Edelstein.Keshet] they describe the swarming behaviour of biological entities
for which the different characteristics of the operator W determine the shapes at front and end of the
swarm. In [Ji-Egerstedt], the aggregation model is used to describe the behaviour of multiple agents
exploring a region while mantaining a coordinated goal (such as policing). The euclidean version of
model (2.1) has received a lot of attention in recent years, see [Bertozzi-Laurent-Rosado], [Carrillo-
Figalli2011], [Bonaschi-Carrillo-DiFrancesco-Peletier] or [Carrillo-James-Lagoutiere-Vauchelet]. In
[Carrillo-Figalli2011], the authors showed global in time existence of measure solutions and the
possibility of finite time concentration. The technique is similar to our approach, we aim to
compute the metric derivative of the interaction energy and use an optimality condition to pass
some properties from the potential to the flow. The minimizing movement scheme is also considered
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in [Carrillo-Figalli2011] with the main difference that the potentials uniquely determine the direction
of movement everywhere. In our case, the presence of the cut locus impedes us from knowing the
direction of movement. A model similar to ours has been considered in [Patacchini-Slepcev], where
the authors also used a technique motivated by the minimizing movement scheme. The difference
relies in using the euclidean distance of the ambient space into which the manifold is embedded.
The idea of using a generalization of the projection onto the tangent space allows the authors to use
the information from the Euclidean setting and allows them to conclude stability of the model.
The approach of using the euclidean distance of the ambient spaced (as in [Patacchini-Slepcev]) is
referred to as an extrinsic model. In this document we consider a completely intrinsic approach:
the dependence of the interaction potential on the agents position is only through the Riemannian
distance on the manifold between the agents. Another approach can be found in [Fetecau-Park-
Patacchini] and [Fetecau-Patacchini], there the authors solve the existence and uniqueness question
for weak solutions of model (2.1) using the theory of partial differential equations and Lipschitz-
coefficients theorems. This approach is very fruitful and motivated the work presented here. In
contrast we aim to obtain similar conclusions by only looking at the measures involved. Although
both approaches are completely intrinsic (in the sense that they depend only on Riemannian distance)
the goal of this document is to adapt the theory of Wasserstein gradient flows as presented in
[Ambrosio-Gigli-Savare].
In comparison with [Fetecau-Park-Patacchini] and [Fetecau-Patacchini] where the authors studied a
similar problem, our notions of solutions differ slightly. Their notion of solutions is well adapted
for an application of the Cauchy-Lipschitz theory, while in contrast our notion comes from a
generalization of the notion of solutions from the theory of gradient flows in metric spaces from
[Ambrosio-Gigli-Savare]. In [Fetecau-Patacchini] the authors assume Lipschitz regularity of the
coefficients of the ODE associated to the potential W . In our assumptions (W0)-(W1) we allow
slightly less regular potentials at the cost of obtaining only small time measure-valued solutions in
contrast with the global result [Fetecau-Patacchini, Theorem 2.6]. Our assumption (W2) describes
a situation on which after certain perceiving enough distance to the other agents, the individuals
are compelled to get closer.
The main technical difficulty for finding solutions of (2.1) in the manifold setting is that the presence
of the cut locus stops us from applying directly the theory of Wasserstein gradient flows as the
interaction can not be shown to be globally λ-convex. We overcome this problem by forcing a
regularizing Wasserstein term and noting that optimality conditions control the distance of transport
for every timestep τ .
An introductory treatment of the Wasserstein gradient flow for the interaction energy on Rn can be
found [Villani2003, Chapter 8].
One of the main problems of models of the form (2.1) in the manifold setting is the possible
non-differentiability of potentials on the cut locus (the Riemannian distance fails to be differentiable
there). The existence of the cut locus presents a significant challenge which impedes the use of
the techniques from the euclidean case. In essence, when agents happen to be in the cut locus of
each other, they don’t have a preferred direction to move. This can be seen through the failure of
differentiability of the terms involved in the optimization process. To overcome this difficulty we
first prove that the speed of propagation of the minimizing movement scheme is finite (Proposition
182), which intuitively says the spread of the particles is slow enough to not instantly fall into the
cut locus.
Our approach is specially interesting for applications, as it leads the way to different types of
numerical algorithms using the algorithms for optimal transportation (see [Peyre-Cuturi]). This
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could open a new line of investigation to compare the efficiency of algorithms derived from PDE-
approximation methods against optimal transport based methods. The methods in [Benoit et al.]
show the implementation of (upwind) discretizations for approximations to aggregation equations in
Rp. These methods rely on minimization schemes such as the JKO scheme from [Jordan-Kinderlehrer-
Otto]. There is no analogue of such results for intrinsic equations on Riemannian manifolds. This
document addresses the existence of measure valued solutions obtained by such discretizations. In
this document we generalize the use of this discretizations to the manifold case. After discovering
the limits of the theory in the Riemannian case (due to the presence of the cut locus) we can study
the performance of such methods up to a small time determined in this document. Whether or not
one can prove the same orders of convergence of the minimization schemes from [Benoit et al.] in
the Riemannian case remains an open question and interesting line of investigation.
To summarize the paper, we prove that for small times, solutions of the aggregation equation
(2.1) exist whenever the interaction is intrinsic and satisfies (W0)-(W2). To this end we use
the minimizing movement scheme in which the Euler-Lagrange conditions for optimality allow us
to upgrade the regularity properties of Kantorovich potentials (in the support of the measures)
via non-smooth analysis. This analysis shows that the minimizing movement scheme does not
immediately move to the cut locus from which one can deduce several properties of the limiting
measure.

2.2 Preliminaries and precise formulation of the problem
Let (M, g) be a smooth, connected, compact n-dimensional Riemannian manifold without boundary.
Let (x1, x2, · · · , xn) be local coordinates, we denote by TpM the tangent space at p ∈M and let gij
be the metric coordinates. For the canonical basis { ∂

∂x1 ,
∂

∂x2 , · · · ,
∂

∂xn
} the gradient of a scalar

function on M is given by
⟨∇Mf(p), v⟩p = dfp(v)

for every v ∈ TpM , where dfp is the differential of f at p ∈M and ⟨·, ·⟩p denotes the inner product
in TpM . Hence, by using the local coordinates,

∇Mf = gij
∂f

∂xi
∂

∂xj
.

For a tangent vector field F = F i
∂

∂xi
, we define the divergence,

div(F ) = 1√
det g

n∑
i=1

∂

∂xi

(√
det gF i

)
.

If f : M → R is differentiable, we define the Hessian, Hess f of f at p ∈M as the linear operator
Hess f : TpM → TpM via the formula

Hess f(Y ) = ∇Y (∇Mf)

for Y ∈ TpM and ∇Y denoting the covariant derivative along Y , see [Do Carmo]. The standard
volume in local coordinates is

dvol =
√

det gdx1 ∧ dx2 ∧ · · · ∧ dxn.
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For given p ∈M the cut locus at p, denoted Cut(p) denotes the set of points on M that can not be
linked to p by any extendable geodesic. The Cut locus is the subset of M ×M = {(x, y) ∈M ×M :
y ∈ Cut(x)}. We denote by tCut(x0) the time to cut locus from x0 and tinf the minimum of these
times (achieved by compactness).
For p ∈ [1,∞) denote by Pp(M) the set of probability measures with p-finite moment, and Ppac(M)
the subset of Pp(M) of measures absolutely continuous with respect to dvol. For µ, ν ∈ Pp(M) we
define the Wasserstein-p metric via

dp(µ, ν) =
(

inf
π∈Π(µ,ν)

∫
M×M

d(x, y)pdπ(x, y)
)1/p

, (2.2)

where Π(µ, ν) denotes the set of probability measures on M ×M whose marginals are µ and ν
respectively and again d(x, y) denotes the Riemannian distance between x and y. Because M is
assumed to be compact, d(x, y) ≤ diam(M) for every x, y and so Pp(M) = P(M). Throughout this
work we refer to weak convergence of measures to the convergence with respect to all continuous
(hence bounded as M is compact) functions from M to R. Recall:
Theorem 152. (Optimal Transportation on Riemannian manifolds)
In a smooth, connected Riemannian manifold, if µ, ν are compactly supported measures on M and
µ is absolutely continuous with respect to Riemannian volume, then considering the cost function
d(x, y)2/2, there exists an optimal transport map T , transporting µ onto ν determined uniquely µ
a.e. by

T (x) = expx(−∇ϕ(x)),
where ϕ is some d2/2-concave function.

The proof can be found in [McCann, Theorem 9] and it is very standard in optimal transport
literature, hence omitted. Finally, we recall that on a compact space the Wasserstein p-metrics are
ordered, if p1 ≥ p2 then dp2(µ, ν) ≤ dp1(µ, ν) whenever µ, ν ∈ P(M), see [Villani2003, Section 7.1.2].
We start setting up the problem by defining what we mean by a solution. We are interested in
measure-valued solutions to the aggregation model.
Definition 153. (Measure-valued solutions)
Given T ∈ (0,∞) we say that {µt}t∈[0,T ] is a measure-valued solution to the aggregation model (2.1)
with potential function W : M ×M → R if for every test function, ϕ ∈ C∞

c ([0, T )×M) we have∫ T

0

∫
M

∂tϕ(t, x) + ⟨∇Mϕ(t, x),∇M (W ∗ µt)(x)⟩xdµt(x)dt = 0, (2.3)

where C∞
c denotes smooth functions with compact support.

Remark 154. In a more general setting one prescribes the value of solutaions at t = 0 to be a given
measure ν ∈ P(Ω). One way to do this is to add to (2.3) the following term:∫

Ω
ϕ(0, x)dµ0 −

∫
Ω
ϕ(0, x)dν(x). (2.4)

Every construction in this work will have the same initial measure (denoted µ0 and it’s fixed
throughout the work) and hence we do not need to include the t = 0 boundary term, as the expression
(2.4) is always 0.
Note also that (2.3) does not include space boundary terms as we will always assume M is a manifold
without boundary.
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For self-containment, we recall the specific version of Arzela-Ascoli in topological spaces that we
will use in this document.

Proposition 155. (General version of Arzela-Ascoli)
Let X be a topological space and Y a metric space, let H be an equicontinuous family of functions
from X to Y such that for every x ∈ X, H(x) := {h(x) : h ∈ H} is relatively compact in Y . Then
H is relatively compact with respect to the compact topology.

For a proof see [Bourbaki, Corollary 1 to Theorem 2, section V].

2.2.1 Assumptions on the potential
Equation (2.1) may have no solutions if the potential function is not appropriate. Given that our
goal is to study measure-valued solutions of the equation, we are going to use the energy EW
associated to a potential function W : M ×M → R given by

EW (ρ) = 1
2

∫
M

∫
M

W (x, y)dρ(x)dρ(y). (2.5)

We first assume that the interaction depends only through the Riemannian distance between points
so

(W0) Without loss of generality, we assume h(0) = 0.

(W1) W (x, y) = h(d(x, y)2) where h : [0,∞)→ R is twice continuously differentiable on (0, diam(M)2),
further assume h′(0) exists (as the limit from the right). Namely, we assume h ∈ C1([0, diam(M)2])∩
C2
loc((0, diam(M)2).

(W2) There exists 0 < rh < diam(M)2 such that h is non-decreasing on [rh, diam(M)2).

Remark 156. Note that by triangle inequality x → d(x, p) is a Lipschitz function with constant
1 for all p ∈M . Because h′ is continuous on [0, diam(M)2], which is compact, h is Lipschitz and
hence, for every fixed y the interaction potential Wy(x) = W (x, y) = h(d(x, y)2) is also Lipschitz (as
a function of x). Denoting by Lip the Lipschitz constant, for every y ∈M , the potential W satisfies
Lip(Wy) ≤ 2 Lip(h)diam(M). For this reason we define L := 2 Lip(h)diam(M).
Further, Rademacher’s Theorem ensures that for every y ∈ M the function Wy is differentiable
dvol-almost everywhere. In general this conclusion will not be enough as some of the measures
involved may not be absolutely continuous.

2.2.2 Non-differentiability of the potential
In order to show that the limit of the minimizing movement scheme (2.6) solves the aggregation
equation, we will need the potential function to be differentiable. So far, our interaction potential
with assumptions (W0)-(W1) fails to be differentiable at the cut locus. We will use the finite
speed of propagation (Proposition 182) to ensure the potential is differentiable in the support of the
measures involved in the minimizing movement scheme.
Note that assumptions (W0)-(W1) guarantee:

• The energy EW is proper ({ρ ∈ P(M) : EW (ρ) <∞} = P(M) ̸= ∅).
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• The energy EW is lower semi-continuous with respect to weak (i.e. narrow) convergence.

Remark 157. As a consequence of compactness of M , W is bounded from below by a constant that
we will denote by k, that is

inf
(x,y)∈M×M

W (x, y) ≥ k.

The approach is to use the so called “Minimizing Movement Scheme” from [Jordan-Kinderlehrer-
Otto],[Ambrosio-Gigli-Savare],[De Giorgi],[Almgren-Taylor-Wang]. The scheme consists in taking a
time step of size τ > 0 to balance the contribution of the original energy (in our case EW ) and a
term that penalizes moving away from the previous configuration. The minimizer in this scheme
approximates a step in the direction of steepest descent, getting more accurate as τ approaches 0.

Main problem

Given an intrinsic potential W : M ×M → R satisfying assumptions (W0),(W1),(W2) does there
always exist a measure-valued solutios (Definition 2.3) to the aggregation equation (2.1) for all times
t ∈ [0,∞)? Can this solutions be numerically approximated by discretization schemes?
We will answer positively both questions (for small times) in Theorem 163 using the minimizing
movement scheme that we now define.

Definition 158. (Minimizing movement scheme on (P(M), d2) for EW )
Let µ0 ∈ P(M) be fixed, for τ > 0 if it is possible to define a sequence {µτk} of probability measures
such that

µτk+1 ∈ arg min
{
EW (ρ) + 1

2τ d
2
2(ρ, µτk) : ρ ∈ P(M)

}
; (2.6)

we call {µτk} a sequence of the minimizing movement scheme for EW at level τ .

Proposition 159. (Existence of minimizing movement scheme)
Let µ0 ∈ P(M) be fixed assume that W satisfies (W0)-(W1), for τ > 0 the minimizing movement
scheme µτk is well-defined.

Proof. Note that the functional in (2.6) is lower semi-continuous with the assumptions (W0)- (W1)
as the distance to any given measure is lower semi-continuous by triangle inequality. Hence, the
lower semi-continuous functional on a compact set achieves a minimum yielding existence of a
sequence {µτk}k∈N for every τ > 0.

Existence of minimizers of the scheme does not ensure the model (2.1) will be solved by any
time interpolation, the rest of the work is dedicated to interpolating the measures in a continuous
way and showing the limiting measure solves the aggregation equation.
Because our goal is to solve (2.3), we need time interpolation of the sequences in the minimizing
movement scheme. We denote by PC

τ
({µτk})(t) the piecewise constant interpolation such that

PC
τ

({µτk})(t) = µτk if t ∈ [kτ, (k+ 1)τ). Finally, we define the geodesic interpolation by the following
formula, for t ∈ [kτ, (k + 1)τ)

Geoτ ({µτk}) = expx
((

(k + 1)τ − t
τ

)
∇ϕck,k+1

)
#
µτk+1, (2.7)
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where ϕk,k+1 is the Kantorovich potential from µτk to µτk+1 and ϕck,k+1(x) is the c−transform (or
infimal convolution) of ϕk,k+1 given by

ϕck,k+1(x) = inf
z∈M

{
d(x, z)2

2 − ϕk,k+1(z)
}
.

As Kantorovich potentials with respect c always exist [McCann, Proposition 3] we will need to
show their differentiability. We obtain this condition in Lemma 180 and so for Geoτ ({µτk}) to be
well-defined we need the geodesic map to be uniquely defined for every point. Therefore to use
the geodesic interpolation there can be no points in spt(µτk+1) in the cut locus of spt(µτk). This
condition will be ensured by Proposition 182 for the time-interval specified in Theorem 163.

Remark 160. A function f is called c−concave if it is not −∞ and is the c−transform of another
function. The fundamental theorem of optimal transport says that optimal plans in (2.2) are supported
in c−subdifferentials of c−concave functions, see [Ambrosio-Gigli-Savare2, Theorem 1.13].
Given measures µ, ν ∈ P(M) it is not necessarily true that the Kantorovich potential ϕµ,ν from µ to
ν is differentiable in spt(µ). Some conditions are always necessary (e.g. absolute continuity of the
source measure) to ensure differentiability. The optimality criterion (Euler-Lagrange) of Lemma 181
will yield differentiability as we will see in Proposition 180.

Square estimates on the Wasserstein norms

Proposition 161. Let {µτk} be a minimizing movement scheme for EW as in (2.6), i.e. {µτk}
satisfies

µτk+1 ∈ arg min
µ∈P2(M)

{
EW (µ) + d2(µ, µk)2

2τ

}
.

Then there exists a constant C > 0 independent of τ such that
∞∑
k=0

d2(µτk, µτk+1)2

τ
≤ C. (2.8)

Proof. The proof is standard and can be found in [Villani2003, Section 8.4.1], presented here for
completeness. Note that the optimality condition of µτk+1 implies

EW (µτk+1) +
d2(µτk, µτk+1)2

2τ ≤ EW (µτk).

Hence, given that EW is proper, the sequence gives finite values for EW and so

d2(µτk, µτk+1)2

2τ ≤ EW (µτk)− EW (µτk+1).

By summing all the terms, we get a telescopic sum on the right hand side, and the fact that EW is
bounded from below by k (Remark 157) gives

∞∑
k=0

d2(µτk, µτk+1)2

2τ ≤ EW (µ0)− k,

where k is the lower bound of EW obtained by compactness (Remark 157), hence putting C :=
2(EW (µ0)− k) gives the claim as it is finite and independent of τ .
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2.2.3 Statement of small time existence of measure valued solutions
We aim to analyze measure-valued solutions to (2.1). The main technical difficulty is dealing with
the fact that an interaction potential W (x, y) = h(d(x, y)2) may not be differentiable at the cut
locus Cut ⊆ M ×M (see section 2.2.2). The aggregation equation together with the minimizing
movement scheme (2.6) will be shown to satisfy a finite-speed of propagation Proposition 182. This
means that if we start with a probability measure concentrated away from the cut locus, we can
apply the d2-gradient flow method to generate solutions to the equations for small times.
As we are going to use the gradient of the interaction potential, we must ensure W remains
differentiable. We are going to prove that if the initial measure µ0 is concentrated away from the cut
locus, solutions (for small time) exist in measure sense. The idea is that the minimizing movement
scheme will not instantly move to the cut locus, it needs time to spread.
Definition 162. (Distance to Cut)
Let (M, g) be smooth, compact, connected Riemannian manifold, for µ ∈ P(M) we define the distance
to cut locus, δµ, as the distance between every pair on the support to the cut locus, i.e.

δµ := inf
x,y∈spt(µ)
(x′,y′)∈Cut

{d(x, x′) + d(y, y′)}. (2.9)

Theorem 163. (Local existence of measure solutions to the aggregation equation)
Given µ0 ∈ P2

ac(M) let δµ be the distance to cut as in Definition 162, if δµ > 0 and L denotes the

Lipschitz constant of W (from (W1)); under (W0)-(W2), for every 0 < T <
δµ
2L there exists a

sequence from the minimizing movement scheme for EW at level τ > 0 starting at µ0 such that as
τ → 0 the geodesic interpolation Geoτ ({µτk})(t) converges in d2-metric to a path µ(t) which is a
measure valued solution (in the sense of (2.3)) to the aggregation equation on M (2.1) up to time T .

The proof of Theorem 163 is the main goal of this document and will occupy the rest of the
article. We will ensure the convergence of the minimizing movement scheme using a general version
of the Arzela-Ascoli (Proposition 155 that can be found in [Bourbaki, Corollary 1 to Theorem 2,
section V].

2.2.4 Continuity and optimality
Definition 164. (Absolute continuity in (P(M), d2))
We say that a curve t→ ρt mapping (a, b) to (P(M), d2) is absolutely continuous if there exists an
integrable (w.r.t Lebesgue) function g : (a, b)→ R such that

d2(ρt, ρs) ≤
∫ t

s

g(r)dr.

And we say it is p-absolutely continuous if g is Lp-integrable.

Definition 165. (Norm of metric derivative)
Let I be an interval and ρt ∈ P(M) for every t ∈ I, we call the metric derivative (or slope of metric
derivative or speed) the function

|ρ′
t| := lim

h→0

d2(ρt+h, ρt)
h

whenever it exists.
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Lemma 166. (Metric derivative for p-absolutely continuous curves)
Let {ρt}t∈[a,b] be p-absolutely continuous. Then |ρ′

s| exists Lebesgue a.e. and t → |ρ′
t| is also

p-integrable in (a, b).

Proof. As presented in [Ambrosio-Gigli-Savare, Theorem 1.1.2], letting {yn} be dense in {ρs}s∈(a,b)
one can check that

lim inf
t→s

d(ρs, ρt)
|t− s|

≥ sup
n

lim inf
t→s

|d(yn, ρs)− d(yn, ρt)|
|t− s|

from which the result follows.

Lemma 167. (1
2 -Hölder continuity of geodesic interpolation uniformly in τ)

For T > 0 if Geoτ ({µτk}(t) denotes the geodesic interpolation (as in equation (2.7)) on the interval
[0, T ], then {Geoτ ({µτk})(t)}t∈[0,T ] is 1

2 -Hölder uniformly continuous, i.e. there exists C̃ > 0
independent of τ such that

d2(Geoτ ({µτk})(t),Geoτ ({µτk})(s)) ≤ C̃(t− s)1/2. (2.10)

Proof. Let τ > 0 be fixed, if t1, t2 ∈ [kτ, (k + 1)τ) and t1 > t2 then the geodesic property of the
exponential map yields:

d2(Geoτ ({µτk})(t1),Geoτ ({µτk})(t2)) =
(∫
| t1 − t2

τ
∇ϕck,k+1|2dµτk+1

)1/2

=
(
t1 − t2
τ

)
d2(µτk, µτk+1).

(2.11)

(2.12)

Hence, by definition of the metric derivative we obtain

|Geoτ ({µτk})′(t)| = lim
h→0

(h/τ)d2(µτk, µτk+1)
h

=
d2(µτk, µτk+1)

τ
.

With this calculation in mind, we compute using Hölder’s inequality and Proposition 161,

d2(Geoτ ({µτk})(t),Geoτ ({µτk})(s))

=
∫ t

s

|Geoτ ({µτk})′(r)|dr ≤ (t− s)1/2

( ∞∑
k=1

d2(µτk, µτk+1)2

τ

)1/2

≤ C(t− s)1/2

Recall that by Corollary 169 we have ensured the existence of a limiting measure path (as τ → 0)
of the geodesic interpolation of the minimizing movement scheme for EW . We observe that uniform
(on τ) absolute continuity (Lemma 167) implies absolute continuity of the limiting path.

Corollary 168. (The limit shares the Hölder constant)
Let T > 0 and suppose that for every t ∈ [0, T ] we have that as τ → 0, Geoτ ({µτk})(t)

d2−→ µ(t), then
µ(t) is 1/2-Hölder continuous in [0, T ] with constant C.
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Proof. Given ϵ > 0, there exists τ = τ(ϵ) such that d2(µ(t),Geoτ ({µτk})(t)) <
ϵ

2 and d2(µ(s),Geoτ ({µτk})(s)) <
ϵ

2 from which applying the previous result (Lemma 167) and triangle inequality we obtain

d2(µ(t), µ(s)) ≤ ϵ+ C(t− s)1/2.

Because ϵ is arbitrary and C does not depend on τ we get the result.

Corollary 169. (Existence of a Limiting path)
Fix T > 0, suppose that Geoτ ({µτk)}(t) is defined for all τ ∈ (0, 1] and for all t ∈ [0, T ].Then there
exists a subsequence τn, with τn → 0 and a curve µ : [0, T ]→ (P2(M), d2) such that

sup
t∈[0,T ]

d2(Geoτ ({µτn

k )}(t), µ(t))→ 0 (as n→ 0). (2.13)

Proof. Note that Lemma 167 (proved in the next section) shows uniform equicontinuity of the family,
as the Hölder constant does not depend on τ . For every t ∈ [0, T ], the family {Geoτ ({µτk)}(t)} is
tight by Prokhorov’s theorem and because M is compact, it is also d2 relatively compact as the
d2-Lipschitz constant from Lemma 167 is independent of τ , H = {Geoτ ({µτk}) : [0, T ]→ P2(M)}τ
satisfy the hypothesis of Proposition 155 and the result follows.

Alternatively one can directly use [Ambrosio-Gigli-Savare, Proposition 3.3.1].

Remark 170. By Corollary 169 we know that as long as we can define the geodesic interpolation
up to time T , we obtain the existence of a limiting path µ(t). We have yet to show that this limiting
path µ(t) satisfies (2.1), for which we will work with the Euler-Lagrange conditions of the minimizing
movement scheme (2.6).

Recall that if vt is a Borel integrable velocity field and (µt, vt) satisfies the continuity equation
in the sense of distributions, then for every f ∈ C∞

c (M)

d

dt

∫
f(x)dµt = −

∫
⟨∇f(x), vt(x)⟩xdµt(x).

See for example [Santambrogio, Proposition 4.2].

Lemma 171. (Computation of the velocity field)
Letting (M, g) be a smooth, connected, compact manifold without boundary, the velocity field of
the geodesic interpolation of the minimizing movement scheme Geoτ ({µτk) is given by parallel
transporting the gradient of the c-transform of it’s Kantorovich potential on each interval.

Proof. Suppose that µt = expx(tv(x))#µ0 for some µ0 ∈ Pac(M) and a differentiable map v : M →
TM , then by compactness of M and dominated convergence,

d

dt

∫
f(x)dµt(x) =

∫
d

dt
f(expx(tv(x)))dµ0(x)

=
∫
⟨∇f(expx(tv(x))),Πt,v(x)(v(x))⟩expx(tv(x))dµ0(x),
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where Πt,v(x) denotes parallel transport along the geodesic t→ expx(tv).

Now denote T τt (x) = expx
(

( (k + 1)τ − t
τ

)∇ϕck,k+1(x)
)

and let vτt be such that

∂Tt
∂t

(x) = vτt (Tt(x)) = (d expx)
−t

∇ϕc
k,k+1
τ

(
−
∇ϕck,k+1

τ

)
.

Because the differential of the exponential map at 0 is the identity operator we get that by Taylor
expansion for t ∈ [kτ, (k + 1)τ)

vτt (x) = −
∇ϕck,k+1(x)

τ
+Rτt (x),

where Rτt (x) ∈ TxM and satisfies that as kτ → t (equivalently τ → 0) we have |Rτt |x → 0.

Remark 172. Replacing the differential of the exponential for parallel transport can only be done
because the evaluation is at the direction of the geodesic. If evaluated at a different vector, the
differential of the exponential and parallel transport do not coincide as maps (but the norm of their
difference is bounded see [Criscitiello-Boumal, Proposition 2.8] in our case s = ṡ in their notation).
Definition 173. (First variation of a functional in P(M))
Let F be a functional F : P(M)→ R, let ρ ∈ P(M) be fixed and ϵ > 0, for any ρ̃ ∈ Pac ∩ L∞(M),
define ν = ρ̃− ρ, we say that δF

δρ
(ρ) is the first variation of F evaluated at ρ if

d

dϵ

∣∣∣∣
ϵ=0

F (ρ+ ϵν) =
∫
δF

δρ
(ρ)dν.

Proposition 174. (Optimality criteria)
For a functional F : P(M)→ R suppose that µ ∈ arg min

ν∈P(M)
F (ν). Assume that for every ϵ > 0 and

for every ρ absolutely continuous with L∞(M) density

F ((1− ϵ)µ+ ϵρ) <∞

Let c̃ := essinf

{
δF

δρ
(µ)
}

. If δF
δρ

(µ) is continuous, then

δF

δρ
(µ)(x) ≥ c̃ ∀x ∈M, (2.14)

δF

δρ
(µ)(x) = c̃ ∀x ∈ spt(µ). (2.15)

The proof can be found [Santambrogio, Theorem 7.20].
Lemma 175. (Computation of first variations)
For each of the following cases let µ satisfy for each functional F the hypothesis of the last theorem,
then 

δF

δρ
(µ) = ϕµ,ν if F (µ) = d2

2(µ, ν)2

2 ,

δF

δρ
(µ) = 2(W ∗ µ) if F (µ) =

∫
M

∫
M

W (x, y)dµ(x)dµ(y),
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where as before ϕµ,ν is the Kantorovich potential whose negative gradient pushes µ to ν optimally
with respect to d2/2.

Proof. The first computation can be found in [Santambrogio, Proposition 7.16], while for the second
one, note that

F (ρ+ ϵν) =
∫
M

∫
M

W (x, y)d(ρ+ ϵν)(x)d(ρ+ ϵν)(y)

= F (ρ) + ϵ2F (ν) + ϵ

(∫
M

∫
M

W (x, y)dρ(x)dν(y) +
∫
M

∫
M

W (x, y)dρ(y)dν(x)
)
.

where the result is obvious by dividing by ϵ and taking the limit.
Clearly if W is symmetric, as in the case of assumptions (2.2.1),

δF

δρ
(µ) = 2

∫
M

W (x, y)dµ(y) = 2(W ∗ µ)(x).

The Kantorovich potentials are known to exist in general settings such as Polish spaces but
the question of their regularity is usually more subtle (e.g. [Villani2009, Theorem 10.8]). We
recall the concepts of semiconcavity/semiconvexity from non-smooth analysis for which we follow
[Cordero-Erausquin-McCann-Schmuckenschläger]. We will show in Lemmatta 179 and 180 semi-
concavity of both the Kantorovich potential and the convolution of the interaction which together
yield differentiability of the infimal convolution as well. For these proofs, compactness of M seems
essential.

Definition 176. (Locally semi-concave)
Let U ⊆ M be open, we say f : U → R is semi-concave at x0 if there exists a neighborhood of x0
and a constant C ∈ R such that for every x ∈ U and v ∈ TxM

lim sup
r→0

f(expx(rv)) + f(expx(−rv))− 2f(x)
r2 ≤ C, (2.16)

where expx denotes the exponential at x.

Remark 177. In [Cordero-Erausquin-McCann-Schmuckenschläger] it is shown that semi-concave
functions admit non-empty superdifferentials, which implies that semi-concavity together with semi-
convexity yields differentiability. It is also shown there that c-concave functions are semi-concave
([Cordero-Erausquin-McCann-Schmuckenschläger, Proposition 3.14]) and that x → d(x, y)2 is
everywhere semi-concave but fails to be semi-convex at the cut locus ([Cordero-Erausquin-McCann-
Schmuckenschläger, Proposition 2.5]). We refer to [Cordero-Erausquin-McCann-Schmuckenschläger]
for details and proofs, specifically see [Cordero-Erausquin-McCann-Schmuckenschläger, Lemma 3.11]

Lemma 178. (Joint smoothness or Riemannian distance squared away from cut locus)
In the context of our smooth, connected compact manifold (M, g), the square of Riemannian distance
is smooth away from the cut locus, i.e. if (x0, y0) ̸∈ Cut then (x, y) → d(x, y)2 is smooth in a
neighborhood of (x0, y0).
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Proof. This lemma can be understood as a particular case to [McCann2020, Theorem 3.6 c)], so we
follow the proof from there. Because Cut is closed, if (x0, y0) ̸∈ Cut there exists a ball around (x0, y0)
not intersecting Cut. Let (x, y) be an element of such a ball, we aim to show distance squared is
smooth at (x, y). Note that by the inverse function theorem the function (x, v)→ (x, expx(v)) acts as
a smooth diffeomorphism in such a neighborhood of (x0, exp−1

x (y0)). By symmetry, (y, w)→ expy(w)
acts as a smooth diffemorphism in a neighborhood of (y0, exp−1

y (x0)). Given z ∈ TxM denote by
z∗ = ⟨z, ·⟩x ∈ T ∗

xM (it’s dual covector) then by differentiating (which we can do as the function is
locally Lipschitz and semi-convex [McCann, Theorem 3.6 d)]) we get the formula for the gradient:

−∇M (d(x, y)) =
(

v∗

|v∗|x
,
w∗

|w∗|y

) ∣∣∣∣
(v,w)=(exp−1

x (y),exp−1
y (x))

(2.17)

as exp−1
x (y0), exp−1

y (x0) are the tangent vectors of the geodesic (that exists as (x0, y0) ̸∈ Cut) we
conclude from (2.17) that all components depend smoothly on (x, y) yielding the result (see [McCann,
Theorem 3.6] for more details).

Lemma 179. (Semiconcavity of convolution)
Let µ ∈ P(M) Borel, assume that W (x, y) satisfies assumptions (W0)-(W2) with rh ≤ tinf , i.e.
h is non-decreasing on [tinf , diam(M)2], then everywhere on M the function x → (W ∗ µ)(x) is
semiconcave.

Before we write the rigorous proof, let us outline the idea: the proof consists in looking at the
convolution as a sum of integrals on different regions where the regularity of x→ d(x, y)2 changes
significantly.
In the first region, h and d2 are of class C2 and we can use compactness and differentiability of these
functions to deduce semi-concavity. The second region requires a more subtle analysis, the non-
decreasing property of h from assumption (W2) allows us to use the Chain rule for super-gradients
[McCann, Lemma 5] from which (with some technical work) we can deduce semi-concavity.

Proof. Note that we can decompose the convolution:

W ∗ µ(x) =
∫

{y:d(x,y)≤√
rh}

W (x, y)dµ(y) +
∫

{y:d(x,y)>√
rh}

W (x, y)dµ(y). (2.18)

where rh is as in (W2).
For the first term, as in [Cordero-Erausquin-McCann-Schmuckenschläger, Proposition 2.5] if
d(x0, y) < tCut(x0) then x → d(x, y)2 is smooth at x0 and so h(d(x, y)2) is semiconcave as a
C2 function on a compact set has a bounded Hessian. Notice that the bound may depend on y but
(x, y)→ d(x, y)2 is jointly smooth away from the cut locus by Lemma 178 so y → HessxW (x, y) is
continuous and because M is complete, {y : d(x, y) ≤ √rh} is compact and hence the x-Hessian of
the first term in (2.18) is uniformly upper bounded.
For the second term of (2.18), we note that in the region {y : d(x, y) > √rh} the assumption
(W2) ensures the hypothesis of the chain rule for supergradients ([McCann, Lemma 5]) is satisfied
for x → h(d(x, y)2), as x → d(x, y)2 is everywhere semiconcave, h is twice differentiable there
and r → h(r) is non-decreasing on {r > rh}. The chain rule for supergradients together with
[Cordero-Erausquin-McCann-Schmuckenschläger, Corollary 3.13] imply there exists C > 0 such that
for every (x, y) ∈M and u ∈ TxM with d(x, y) ≥ rh,

lim sup
r→0+

W (expx(ru), y) +W (expx(−ru), y)− 2W (x, y)
r2 ≤ C. (2.19)
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Let us use the following notation:

fr(x, y, u) := W (expx(ru), y) +W (expx(−ru), y)− 2W (x, y)
r2 . (2.20)

To conclude semi-concavity of the second term in (2.18), we will use reverse Fatou’s Lemma. Because
the functions y → fr(x, y, u) are not necessarily positive, to apply reverse Fatou’s lemma we need to
show they are dominated by some L1(µ) function.
Observe that (2.19) is not enough to apply reverse Fatou’s lemma as a-priori the bound on the limit
superior does not yield a uniform bound on {y → fr(x, y, u)}r>0. To obtain this uniform bound,
note that (2.19) holds for every (x, y) in the region of integration for the first term in (2.18), by
[Cordero-Erausquin-McCann-Schmuckenschläger, Lemma 3.11] and the definition of semi-concavity
we obtain that for every x0 there exists r∗

x0
> 0 and a smooth function V : Br∗

x0
(x0)→ R such that

x→W (x, y) + V (x) is geodesically C-concave at x0 for every y ∈ {y : d(x0, y) ≥ rh}. Notice that
the condition on y is due because only in that region we can use the Chain rule for super-gradients
([McCann, Lemma 5]).
When r < r∗

x0
C-concavity (as x0 is the midpoint between expx0(ru) and expx0(−ru)), yields a

uniform bound for y → fr(x0, y, u). Hence, for all quadruples (r, x0, y, u) ∈ {(r, x0, y, u) : 0 <
r < r∗

x0
, d(x0, y) > rh, u ∈ Tx0M}, where x0 ∈ M is fixed, the functions y → fr(x0, y, u) satisfy a

uniform upper bound fr(x, y, u) and therefore using reverse Fatou’s Lemma:

lim sup
r→0

∫
{y:d(x,y)2>rh}

W (expx(ru), y) +W (expx(−ru), y)− 2W (x, y)
r2 dµ(y)

≤
∫

{y:d(x,y)2>rh}
Cdµ(y) ≤ C,

which is semi-concavity of the convolution (with the same constant) as desired.

Lemma 180. (Differentiability of Kantorovich potentials in the whole support)
Let ϕk,k+1 be the Kantorovich potential from µτk to µτk+1 from Definition 2.6 where W satisfies
(W0)-(W2), then its c-transform ϕck,k+1 is differentiable at x for every x ∈ spt(µτk+1).

Proof. By optimality (Proposition 174) we know that for every x ∈ spt(µτk+1)

ϕck,k+1

τ
(x) +W ∗ µτk+1(x) ≥ c̃ with equality on spt(µτk+1).

By definition of the infimal convolution ϕck,k+1 is c−concave and hence semiconcave as in [Cordero-
Erausquin-McCann-Schmuckenschläger, Proposition 3.14].
By assumptions (W0)-(W2) we apply Lemma 179 to conclude that W ∗ µτk+1(x) is semiconcave.
Hence, everywhere in spt(µτk+1), ϕck,k+1 = τ(c̃−W ∗ µτk+1) is also semiconvex meaning that ϕck,k+1
is both semiconcave and semiconvex and hence continuously differentiable at x ∈ spt(µτk+1).

Lemma 181. (First variations for the minimizing movement scheme)
Let {µτk}k∈N be the minimizing movement scheme with initial measure µ0 ∈ P2

ac(M), let ϕk,k+1 be
the Kantorovich potential for which the exponential of it’s negative gradient pushes µτk onto µτk+1,
then on the support of µτk+1

−
∇Mϕck,k+1

τ
= ∇M (W ∗ µτk+1).
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Proof. To agree with notation, let F (ν) = d2
2(ν, µτk)

2τ + E(ν). Theorem (174) says

ϕck,k+1

τ
+W ∗ µτk+1 = δF

δρ
(µτk+1) = c on spt(µτk+1).

Using the previous lemma taking the gradient on both sides gives the result.

2.3 Finite speed of propagation and proof of the main theo-
rem 163

In this section we take a look at a consequence of the Euler-Lagrange condition that will ensure
that the evolution of the measures is controlled. This proposition is key to ensure differentiability of
the interaction potential needed to conclude convergence in the continuity equation.

Proposition 182. (Finite speed of propagation in the minimizing movement scheme)
Given τ > 0 and µτk ∈ P(M), let L > 0 denote the Lipschitz constant of the potential from
(W0)-(W1), if

µτk+1 ∈ arg min
ρ∈P(M)

{
1
2

∫ ∫
W (x, y)dρdρ+ 1

2τ d2(µτk, ρ)2
}

we have
spt(µτk+1) ⊆ {x ∈M : d(x, spt(µτk)) ≤ Lτ}.

Proof. By Lemma 181 we know we can compute the gradient of ϕck,k+1, which is defined µτk+1
everywhere on spt(µτk+1) and hence the map x→ expx(∇ϕck,k+1(x)) is well defined and supported
in the subdifferential of a c−concave map (ϕck,k+1), by the converse as [Ambrosio-Gigli-Savare2,
Proposition 1.30] we get that this map is optimal and pushes µτk+1 to µτk meaning that

d2(µτk+1, µ
τ
k)2 =

∫
M

|∇ϕck,k+1|2dµτk+1. (2.21)

Now by assumptions (W0)-(W1) we know that (Remark 156) y →W (x, y) is Lipschitz for every
x ∈ spt(µτk+1), from which the convolution is Lipschitz with the same constant L, as µτk+1 is a
probability measure, i.e.

|W ∗ µτk+1(x1)−W ∗ µτk+1(x2)| ≤ Ld(x1, x2).

Consequently, because the norm of the gradient is bounded by the metric derivative ([Ambrosio-
Gigli-Savare, Theorem 1.1.2]), we obtain that for every x ∈ spt(µτk+1)

|∇M (W ∗ µτk+1)(x)|x ≤ L. (2.22)

By Lemma 181 this means that

d(x, expx(∇ϕck,k+1(x))) = |∇ϕck,k+1(x)| ≤ Lτ.

Note that L is the global Lipschitz constant of the interaction potential and hence independent of
τ . Consequently every point x ∈ spt(µτk+1) is transported at a distance of at most Lτ from which
triangle inequality yields the result.
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Corollary 183. (Small time differentiability of the potential)
Fix τ > 0, let µ0 ∈ Pac(M) with δµ0 > 0, where δµ0 is the distance to cut from Definition 162, then

for all t ∈ [0, ⌊ δµ2Lτ ⌋] the function x → W (x, y) is differentiable in the support of Geoτ ({µτk})(t)
where µτk is the minimizing movement scheme at level τ defined in (2.6).

Proof. Observe that the finite speed of propagation (Proposition 182) immediately ensures that if
µ0 ∈ Pac(M) with δµ0 > 0 then

spt(µτ1) ⊆ {x ∈M : d(x, spt(µ0)) ≤ Lτ}.

Consequently, as we have seen in Lemma 180 the map x→ expx(∇ϕck,k+1(x)) is well defined and is
an optimal transport map (with cost d2/2) which means that we can apply finite speed of propagation
(Proposition 182) at every k and hence,

spt(µτk) ⊆ {x ∈M : d(x, spt(µ0)) ≤ Lkτ}.

For k ∈ N, consider (x, y) ∈ spt(µ0)2, (xk, yk) ∈ spt(µτk)2 and (x′, y′) ∈ Cut. By definition of δµ0 ,

d(x, x′) + d(y, y′) ≥ δµ0

Using the triangle inequality twice,

d(xk, x′) + d(xk, x) + d(yk, y′) + d(yk, y) ≥ δµ0 . (2.23)

By finite speed of propagation 2k-times,

2kLτ + d(xk, x′) + d(yk, y′) ≥ δµ0 .

Now using definition 162, because δµτ
k

is an infimum, (xk, yk) and (x′, y′) are arbitrary,

δµτ
k
≥ δµ0 − 2kτL. (2.24)

Hence, as long as δµ0 − 2kτL > 0, the geodesic interpolation (2.7) guarantees that x→W (x, y) is
differentiable in the support of the measures up to µτk.
Notice that δµ0 − 2kτL > 0 occurs exactly when k < δµ0/(2Lτ) as desired.

Lemma 184. (Contraction of Wasserstein distances for product measures)
Let µ, ν ∈ P1(M), denote by µ⊗ µ and ν ⊗ ν the product measures on M ×M , then

d1(µ⊗ µ, ν ⊗ ν) ≤ 2d1(µ, ν)

Proof. Note that if π ∈ Π(µ, ν) then π ⊗ π ∈ Π(µ⊗ µ, ν ⊗ ν) and note that∫
M

d(x, y)dπ(x, y) +
∫
M

d(x̃, ỹ)dπ(x̃, ỹ) =
∫
M×M

dM×M ((x, x̃), (y, ỹ))dπ ⊗ π(x, x̃, y, ỹ)

from which taking infimum on both sides yields the result.
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2.3.1 Evaluation of the limt
In this section we prove Theorem 163, the goal is to show that the limiting measure path from
Corollary 169 satisfies the continuity equation. The idea is to use the d2-convergence together with
the finite speed of propagation to ensure x→W (x, y) is differentiable in the whole support of the
measures at level τ , in order to differentiate inside of the convolution term in (2.1).

2.3.2 Proof of Theorem 163
Proof. Assumptions 2.2.1 on EW ensure the hypothesis of Corollary 169 are satisfied in (P(M), d2)
which ensures the existence of a limiting path {µ(t)}t∈[0,∞) for the family of geodesic interpolations
Geoτ ({µτk})(t).
This interpolation satisfies the continuity equation with vτt given as in Lemma 171, by Proposition
174 we replace the vector field with ∇(W ∗ µτk+1) and finally for f ∈ C∞

c ((0, T ) ×M) we aim to
compute

lim
τ→0


∫ T

0

∫
M

∂tf(x, t)dGeoτ ({µτk})(t)dt︸ ︷︷ ︸
(i)

+
∫ T

0

∫
M

⟨∇f(x, t), vτt ⟩xdGeoτ ({µτk})(t)dt︸ ︷︷ ︸
(ii)


The limit of (i): notice that ∂tf(x, t) is continuous on x so by Geoτ ({µτk})(t)

d2−→ µ(t) as τ → 0:∫
M

∂tf(x, t)dGeoτ ({µτk})(t)
τ→0−−−→

∫
M

∂tf(x, t)dµ(t) ∀t ∈ [0, T ].

Because [0, T ] is compact, the Dominated Convergence Theorem yields∫ T

0

∫
M

∂tf(x, t)dGeoτ ({µτk})(t)dt
τ→0−−−→

∫ T

0

∫
M

∂tf(x, t)dµ(t)dt.

To analyze (ii), denote T τ,kt (x) = expx
(

((k + 1)τ − t)
τ

∇ϕck,k+1(x)
)

, with this notation (T τ,kt )#µ
τ
k+1 =

Geoτ ({µτk})(t) and so by definition and using the observation of Lemma 171, if Nτ = ⌊T/τ⌋,

(ii) =
∫ T

0

∫
M

⟨∇Mf(x, t), vτt (x)⟩xdGeoτ ({µk})(t)dt

=
Nτ∑
k=0

∫ (k+1)τ

kτ

∫
M

⟨∇Mf(T τ,kt (x), t),Πt,γk,τ

(
−
∇ϕck,k+1(x)

τ

)
⟩T τ,k

t (x)dµ
τ
k+1(x)dt

−
∫ Nτ +1

T

∫
M

⟨∇Mf(T τ,kt (x), t),Πt,γk,τ

(
−
∇ϕck,k+1(x)

τ

)
⟩T τ,k

t (x)dµ
τ
k+1(x)dt

= −
Nτ∑
k=0

∫ (k+1)τ

kτ

∫
M

⟨Π−1
t,γk,τ

(
∇Mf(T τ,kt (x), t)

)
,
∇ϕck,k+1(x)

τ
⟩xdµτk+1(x)dt

+
∫ Nτ +1

T

∫
M

⟨Π−1
t,γk,τ

(
∇Mf(T τ,kt (x), t)

)
,
∇ϕck,k+1(x)

τ
⟩xdµτk+1(x)dt,

(2.25)
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where Πt,γk,τ
is as in Lemma 171, and denotes parallel transport along the curve γk,τ : [τk, τ(k+1))→

M given by γk,τ (t) = T τ,kt which satisfies γk,τ ((k + 1)τ) = x. The second equality follows from the
fact that parallel transport is an isometry.

Focusing first in the inner most integral of the first term observe that by adding and subtracting
the same term we can write∫

M

⟨Π−1
t,γk,τ

(
∇Mf(T τ,kt (x), t)

)
,
∇ϕck,k+1(x)

τ
⟩xdµτk+1(x)

=
∫
M

⟨Π−1
t,γk,τ

(
∇Mf(T τ,kt (x), t)

)
−∇Mf(x, t),

∇ϕck,k+1(x)
τ

⟩xdµτk+1(x)︸ ︷︷ ︸
A

+
∫
M

⟨∇Mf(x, t),
∇ϕck,k+1(x)

τ
⟩xdµτk+1(x)︸ ︷︷ ︸

B

.

(2.26)

We start by obtaining uniform (on τ) bounds for A, note that by Cauchy-Schwarz, for every
x ∈ spt(µτk+1)

⟨Π−1
t,γk,τ

(
∇Mf(T τ,kt (x), t)

)
−∇Mf(x, t),

∇ϕck,k+1(x)
τ

⟩x

≤ |Π−1
t,γk,τ

(
∇Mf(T τ,kt (x), t)

)
−∇Mf(x, t)|x

∣∣∣∣∇ϕck,k+1(x)
τ

∣∣∣∣
x

.

But the time derivative of Π−1
t,γk,τ

along integral curves gives the covariant derivative along ˙γk,τ , so
by Mean Value Theorem and Proposition 182,

⟨Π−1
t,γk,τ

(
∇Mf(T τ,kt (x), t)

)
−∇Mf(x, t),

∇ϕck,k+1(x)
τ

⟩x

≤ sup
ξ∈M
|∇γ̇k,τ

(∇Mf(ξ, t))|ξ((k + 1)τ − t)
∣∣∣∣∇ϕck,k+1(x)

τ

∣∣∣∣
x

≤ sup
s∈[0,T ]

sup
ξ∈M
|Hess fs|ξ|γ̇τ,k(ξ)|ξ((k + 1)τ − t)

∣∣∣∣∇ϕck,k+1(x)
τ

∣∣∣∣
x

≤ ((k + 1)τ − t)L2 sup
s∈[0,T ]

sup
ξ∈M
|Hess fs|ξ,

where ft(·) = f(·, t) and in the last bound we used the fact that γkτ is a geodesic so the norm of it’s
tangent vector is constant, therefore bounded by Proposition 182.
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With this bound in hand, going back to (2.26) we find that

Nτ∑
k=0

∫ (k+1)τ

kτ

∫
M

⟨Π−1
t,γk,τ

(
∇Mf(T τ,kt (x), t)

)
−∇Mf(x, t),

∇ϕck,k+1(x)
τ

⟩xdµτk+1(x)dt

≤ sup
t∈[0,T ]

sup
ξ∈M
|Hess ft|ξ L2

Nτ∑
k=0

∫ (k+1)τ

kτ

((k + 1)τ − t)dt

≤ sup
t∈[0,T ]

sup
ξ∈M
|Hess ft|ξ L2

(
Nτ∑
k=0

(k + 1)τ2 − kτ2 − τ2

2

)

= 1
2 sup
t∈[0,T ]

sup
ξ∈M
|Hess ft|ξ L2 (Nτ + 1)τ2 = C (Nτ + 1)τ2.

Because Nττ → T as τ → 0, this upper bound goes to 0 as τ → 0, meaning that A vanishes in the
τ → 0 limit.
To study B from (2.26) note that using Lemma 181∫

M

⟨∇Mf(x, t),
∇ϕck,k+1(x)

τ
⟩xdµτk+1(x) =

∫
M

⟨∇Mf(x, t),∇(W ∗ µτk+1)⟩xdµτk+1(x).

Hence our goal to finish the proof is to show that

Nτ∑
k=0

∫ (k+1)τ

kτ

∫
M

⟨∇Mf(x, s),∇M (W ∗ µτk+1⟩xdµτk+1ds

τ→0−−−→
∫ T

0

∫
M

⟨∇Mf(x, t),∇M (W ∗ µ(s))⟩xdµ(s)ds. (2.27)

By density in the space of smooth functions we may assume without loss of generality that
f(x, t) = ϕ(x)a(t) from which we can change the order of integration in the left handside of (2.27)
and by mean value theorem for integrals to rewrite

Nτ∑
k=0

∫ (k+1)τ

kτ

∫
M

⟨∇Mf(x, s),∇M (W ∗ µτk+1)⟩xdµτk+1ds

=
Nτ∑
k=0

τa(t∗k)
∫
M

⟨∇Mϕ,∇M (W ∗ µτk+1)⟩xdµτk+1, (2.28)

where t∗k ∈ [kτ), (k + 1)τ ]. Observe that this limit concludes the proof as the extra term in (2.25)
vanishes in the τ → 0 limit.
By Riemann integrability together with (2.28), to establish the limit (2.27) it is enough to show that

Nτ∑
k=0

τa(t∗k)
(∫

M

⟨∇Mϕ,∇M (W ∗ µτk+1)⟩xdµτk+1 −∫
M

⟨∇Mϕ,∇M (W ∗ µ(t∗k))⟩xdµ(t∗k)
)
→ 0. (2.29)
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Observe that by Fubini’s theorem, the term in parenthesis can be recast as∫
M

⟨∇Mϕ,∇M (W ∗ µτk+1)⟩xdµτk+1 −
∫
M

⟨∇Mϕ,∇M (W ∗ µ(t∗k))⟩xdµ(t∗k)

=
∫
M

⟨∇Mϕ,∇MW (x, y)⟩xd(µτk+1 ⊗ µτk+1)− (µt∗
k
⊗ µt∗

k
)(x, y)

≤ d1(µτk+1 ⊗ µτk+1, µt∗k ⊗ µt∗k ) ≤ d1(µτk+1, µt∗k )) ≤ d2(µτk+1, µt∗k ),

where the first inequality follows from continuity of the integrand and the fact that M ×M is
compact together with the Kantorovich-Rubenstein Theorem (see [Cordero-Erausquin-McCann-
Schmuckenschläger]), the second inequality by Lemma 184. Coming back to showing (2.27), we
get

Nτ∑
k=0

a(t∗k)
(∫

M

⟨∇Mϕ,∇M (W ∗ µτk+1)⟩xdµτk+1 −∫
M

⟨∇Mϕ,∇M (W ∗ µ(t∗k))⟩xdµ(t∗k)
)

≤ C1||a||∞τ(Nτ + 1) sup
t∈[0,T ]

d2(µτk+1, µ(t))

≤ C2τ(Nτ + 1) sup
t∈[0,T ]

{d2(Geoτ ({µτk)}(t), µ(t))) + d2 Geoτ ({µτk})(t), µτk+1)},

where C1, C2 are positive constants, which shows that the sum in (2.27) converges in the limit
because τNτ → 1 together with the uniform limit from equation (2.13) and (167).

2.4 Conclusions and extensions
This work proved the existence of small time solutions for (2.1) via the minimizing movement
scheme under suitable conditions on the interaction potential. The assumption of dependence on
Riemannian distance make it completely intrinsic and suitably general. A first line of investigation
could be to derive long-time existence and geometry of solutions of the model for specific interaction
potentials like power laws, for example. In this context, is it possible to reproduce the aggregation
results from [McCann-Davies-Lim] in curved geometries?
Another interesting extension is the performance of numeric algorithms based on entropic optimal
transportation compared to the usual PDE approximation methods.
The idea of using the minimizing movement scheme motivated from the seminal work [Ambrosio-
Gigli-Savare] required an analysis of the optimality condition as there was no global λ-convexity of
the functional. One way to avoid this problem is to restrict the geometry of the manifold to satisfy a
non-negative cross-curvature condition which allows the set of optimal transport maps to be convex
yielding λ-convexity. This approach enables the machinery of [Ambrosio-Gigli-Savare] which not
only ensures existence and uniqueness but provides error bounds on the discrete approximation.
This work has shown that techniques from non-smooth analysis allow the Euler-Lagrange equation
to imply enough regularity to solve the aggregation equation in small times. Further work should
concentrate on the several possibilities beyond the specified time T . After time T , it is not clear if
one can use the minimizing movement scheme to obtain a relevant flow. The problem relies on the
fact that the cut locus does not allow the potential to indicate a unique trajectory. The existence of
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multiple geodesics stops us from using the geodesic interpolation, which as seen throughout this
work, is the most natural way to interpolate for the minimizing movement scheme. At time T it is
not clear whether the measures concentrate and a solution for the flow still exists or if it doesn’t
move after this time. The characterization of these possibilities is an open question in Riemannian
manifolds, resolved for power laws in Euclidean setting in [McCann-Davies-Lim].
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Chapter 3
Measure pre-conditioning in
Machine-Learning

3.1 Introduction
Recent progress in the use of optimal transportation techniques for machine learning in domain
adaptation [Courty-Flamary] and development of Wasserstein Generative adversarial networks
[Arjovsky et. al] have helped our understanding of potential learning derived from theoretic
properties of the underlying data. The topic of optimal transportation has grown significantly in
recent years (see [Villani2003], [Villani2009], [Santambrogio] and references therein).
Machine learning models aim to solve a task (to prescribed accuracy) using only the information
of known data (training set). In this context it is preferred to have non-parametric models over
parametric statistical families.
In this document we explore an idea that we call measure pre-conditioning the training data
which consists in modifying the statistical model in order to improve performance of algorithms
while preserving the limiting model. One can argue that measure pre-conditioning implicitly imposes
unjustified structure to a problem but the idea is that measure pre-conditioning will simplify
computations and ensure convergence to the original model. For example measure pre-conditioning
one of the measures may allow using optimal transportation techniques to adapt a domain which
would otherwise be very costly, this would yield a desired training in a task with little information.
We use the terminology “measure pre-conditioning” as the technique reminds us of pre-conditioning
matrices from linear algebra and optimization.

3.1.1 Organization of this document

3.1.2 Relation to literature
The authots of [Courty-Flamary] develop the idea of optimal transport domain adaptation on which
a linear approximation of the transport map is used to infer labels on target domain and [Courty et
al.] developed CO-OT, a technique on which optimal transport is not only done between source and
target domains of data but in the space of data and labels.
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Recently [Amos-Cohen-Luise-Redko] developed the META-optimal transport technique which by
pre-solving an optimization problem improves on the optimal transport efficiency. In this work, the
idea is similar: can we modify training sets to ensure properties of learning? The modifications
considered in this document, differ from the ones on [Amos-Cohen-Luise-Redko] as we only consider
measure pre-conditioning data without establishing a minimization purpose beforehand. These
techniques should remind the reader of the concept of preconditioning in optimization, on which one
modifies a matrix via a correct scaling to benefit the algorithm computations. In the same fashion,
here one modifies the measure associated to a training set to benefit statistical properties of the
learning agent.

3.1.3 Necessity of non-parametric measure pre-conditioning techniques
The need for non-parametric measure pre-conditioning techniques arises from the modeller’s attempt
to not intervene in the learning while improving it’s computational performance. Measure pre-
conditioning is posed in this document as a general technique and it is the modeller’s task to
determine which pre-conditioning is useful for their own goal. In section 3.4.1 we give several
examples with different goals in mind.

3.2 Measure pre-conditionings
In this section we introduce the main concept and discuss several possible “measure pre-conditionings”.
In this context a measure pre-conditioning will be a technique to manipulate data in order to obtain
a “nicer” measure. For example, we can regularize our problem to obtain a measure that is absolutely
continuous with respect to Lebesgue or a measure that has a different type of support.
Measure pre-conditioning is also similar to parameter fitting for curves. In the case of real variable
one attempts to infer information from isolated data points by first creating a continuous (typically
smooth) curve joining the points. Pre-conditioning between points in R has drawbacks (overfitting,
high-variation, etc) and so will measure pre-conditioning (see section 3.7). Measure pre-conditionining
will have the advantage of enabling stronger techniques to infer learning as we will see throughout
the paper. We start by defining several possible measure pre-conditioning techniques and analyzing
their properties.

Problem 1. (General measure pre-conditioning problem for independent identically distributed
data)
Let (X1, X2, . . . , Xn) be a sample, that is {Xi}ni=1 is a set of independent identically distributed data
such that X1 ∼ µ. Suppose that the sample will be used to train a machine learning model, the
measure pre-conditioning problem is to find a good way to obtain a measure µ̃n from the sample such
that µ̃n improves performance of the model or the computational cost of the algorithms while keeping
the most relevant features of the problem intact.

As such, this measure pre-conditioning problem is not mathematically well posed, as we haven’t
defined what “improves performance of the model” or “ keeping the most relevant features” mean.
Performance improvement can be done in several ways: simplification of algorithms, computational
cost, control on domain adaptation or even yielding mathematical properties for the learning agent.
All of these type of improvements are valid and impactful in machine learning research. The aim of
this paper is to analyze how different measure pre-conditionings impact model performance.
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3.3 A mathematical framework admitting pre-conditioning
Let us start with a basic framework from Machine Learning models in order to be able to define
measure-preconditioning and show it’s relevance. The simplest case is the minimization over all
fitting functions f within a class of fitters C minimizing the expected value of the loss function L
measuring the loss of fitting the random variable Y with the variable X via f(X).

3.3.1 Formulation of the problem
Problem 2. Let Ω ⊆ Rn be convex and compact. Assume we have data X ∼ µ ∈ P(Ω) and
we aim to do a Machine-learning model towards a dependent variable Y ∈ Y where (Y, dY ) is a
separable complete metric space, we denote by π ∈ P(Ω× Y) the joint distribution of (X,Y ). Given
L : Y × Y → R (called a loss function), let C ⊆ YΩ and assume d is a distance function on C, the
C− optimal model for L under π is the following non-linear program

arg min
f∈C

Eπ [L(f(x), y)] . (3.1)

Now assume we don’t know the full model π but we have a training sample, i.e. we have (X1, Y1), . . . , (Xn, Yn) ∼
π, statistically we know the values on the sample but not the full distribution. Assume we approximate
π using the sample via a probability measure πn, the associated C−model for L under πn reads

arg min
f∈C

Eπn [L(f(x), y)] . (3.2)

This formulation immediately give rise to the following questions
i If L and C are fixed, what conditions on πn ensure that the minimizer in (3.2) approaches

(3.1)? In what topology?

ii What properties could (3.2) have that (3.1) may lack?

iii Given a choosing of πn’s, could we find sequences Ln’s and Cn so that the computations on the
Cn− problem with loss function Ln associated to πn converge to (3.1)? Could these problems
improve the algorithmic performance?

Idea 1. (Measure pre-conditioning)
A measure pre-condition is a way to define πn from the sample (X1, Y1), . . . , (Xn, Yn) such that the
associated C-problem with loss function L has improved performance in any way while preserving the
convergence of minimizers of (3.2) to that of (3.1).

3.3.2 Convergence of the learning problem
Our main focus will be answering: when do minimizers of (3.2) converge to minimizers of 3.1 and in
which way?.

We first notice that in many situations it is possible to obtain the same total loss under
convergence of the measures (without necessarilly having convergence of minimizers), this situation
is rather general and known and is not the main question in the ML community but it gives a good
starting point for the techniques used in this document. For many applications it is enough to know
convergence of the total loss and so we exemplify conditions that yield such convergence.
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Proposition 185. (Standard convergence results on total loss (not minimizers))

1. If ||L||∞ <∞ or if spt(µ) is compact,

|Eπn
[L(f(X), Y )]−Eπ[L(f(X), Y )]| ≤ ||πn − π||TV .

2. Given f ∈ C if (x, y)→ L(f(x), y) is Lipschitz, then

|Eπn [L(f(X), Y )]−Eπ[L(f(X), Y )]| ≤ d1(πn, π).

3. If L is C2 and ||∂L
∂1 || <∞ then

|Eπn [L(f(X), Y )]−Eπ[L(f(X), Y )]| ≲ ||πn − π||TV + sup
x∈Ω

d(f∗(x), f∗
n(x))

4. If C is a compact class on C(Y), and πn → π in d1 then along a subsequence nk

Eπnk
[L(f∗

nk
(X), Y )]→ Eπ[L(f∗(X), Y )]

where f∗
nk

is the C−optimizing argument for πn and f∗ is the C−optimizing argument for π.

The proof of proposition 185 is direct and hence omitted.

3.3.3 The main question
Measure preconditioning modifies the minimization problem at level n, i.e. it changes the structure
of the measure used to evaluate loss with a sample of size n. If the model was unchanged we would
expect convergence of the learning agent trained with the sample of size n, i.e. f∗

n to the best fit
with respect to the loss for the parametric distribution f∗. If measure pre-conditioning modifies the
measure at level n, the true question is when and in which ways does f∗

n → f∗ ?.
To answer the convergence of minimizers, as it is usual in functional analysis and economics, we
introduce Γ-convergence.

Main Theorem

We present an informal version of the main theorem of the work. This informal version corresponds
to the rigorous statements answered in Theorem 193, Proposition 195 and section 3.5

Theorem 186. Full learner recovery system is a concept that allows us to show convergence of
learning agents to the ideal parametric agent in cases not covered previously in the literature. This
concept allows us to generalize stability arguments for less regular losses and a bigger class of
classification/regression problems. Full learner recovery systems are general enough to be applied to
several settings in Machine-Learning, including Domain Adaptation transfer learning. These systems
explain many phenomena in ML-research where convergence is improved. Full learner recovery
systems give a guideline on how and when to modify training data without disturbing the original
problem.

The formulation of Theorem 186 is not mathematically precise, we dedicate this work to make
the Theorem rigorous and prove it in the subsequent sections.
We start with the introduction of the main mathematical tool.
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3.3.4 A version of the envelope Theorem
Definition 187. (Γ-convergence on a metric space)
Let (X, d) be a metric space and let Fj , F : X → R ∪ {±∞},we say Fn Γ-converges to F , denoted
Fn

Γ−→ F if and only if the following two conditions hold

I For all sequences {xj} such that xj
d−→ x we have

lim inf
j→∞

Fj(xj) ≥ F (x).

II For every x ∈ X there exists a sequence xj
d−→ x such that

F (x) ≥ lim sup
j→∞

Fj(xj).

Remark 188. The most general definition for Γ-convergence is one where X is assumed to be a
topological space and not necessarily metric. The definition presented above (Definition 187) is the
sequential-definition. We have chosen the sequential definition as it simplifies the theory significantly,
knowing that some important examples that we have in mind are only topological spaces on which
the Γ-limit is defined via

Γ− lim
n→∞

Fn(x) = sup
U∈N(x)

lim inf
n→∞

inf
y∈U

fn(y). (3.3)

In some of the examples below the underlying convergence will not correspond to a metric space, on
which one must think of (3.3) instead of (I) and (II).

The motivation behind the definition of Γ-convergence is that minimizers converge to minimizers,
the content of the following theorem from [Braides]:

Theorem 189. (Γ-convergence and minima)
Let (X, d) and Fj , F be as in Definition 187, then

1. If I from definition 187 is satisfied for all x ∈ X and K is a compact subset of X then

inf
K
F ≤ lim inf

j→∞
inf
K
Fj (3.4)

2. Similarly, if II from definition 187 is satisfied and U is an open subset of X then

lim sup
j→∞

inf
U
Fj ≤ inf

U
F (3.5)

This Theorem can be found as [Braides, Proposition 1.18]. Finally we recall one more Theorem
from [Braides]. We say that a sequence {Fj} of functions on a metric space (X, d) is equi-mildly
coercive if there exists a non-empty compact set K such that

inf
X
Fj = inf

K
Fk for all j.
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Theorem 190. (Minimizers and Γ-limits)
In a metric space (X, d) if {Fj} is equi-mildly coercive and Fn

Γ−→ F then

min
X

F = lim
j→∞

inf
K
Fj (3.6)

Furthermore, every limit point of a sequence of minimizers of (3.6) is a minimizer of F .

For a proof see [Braides, Theorem 1.21]. With the theory in hand we take a general approach
to answer the questions (i) and (ii). Instead of a constructive proof to find the optimal topologies
(on C and P(X × Y )) we reformulate the convergence problem for it to satisfy the hypothesis of
Theorem 187. This way we can relate to classical problems by looking at the given topologies of
each framework and verifying the hypothesis.
Going back to the framework of Problems (3.1) and 3.2, we want to be able to recover minimizers
from our measure conditioning. We note the interaction of the class of fitters C, the loss function L
and the mode of convergence of the conditioners that we choose to evaluate, henceforth it is logical
to check conditions for them as a collective, rather than separately. This motivates the following
definition.

Definition 191. (Full learner recovery system)
In the context of Problem 2, we say that (C, d, L, m−→) forms a full learner recovery system if it holds
that

1. If πn
m−→ π for all d-converging sequences sequences fn

d−→ f , we have

lim inf
n→∞

Eπn [L(fn(X), Y )] ≥ Eπ[L(f(X), Y )]. (3.7)

2. If πj
m−→ π and for every f ∈ C there exists a sequence fj ∈ C, such that fj

d−→ f and

Eπ[L(f(X), Y )] ≥ lim sup
j→∞

Eπj
[L(fj(X), Y )] (3.8)

Remark 192. In analytical terms, these conditions ensure 2-sided Fatou-Lemmas for integration
with respect to L on the first coordinate.

Γ-convergence can be also used to address the existence of minimizers of the parametric model
but that is not the approach of this work, we assume existence of minimizers of the limiting problem
and study recovery sequences, from now on we assume the existence of a unique minimizers for (3.2).

Theorem 193. If (C, d, L, m−→) forms a full learner recovery system (Definition 191) where (C, d) is
a compact metric space, assume the limiting problem from 3.1 has a solution f ∈ C, then there exists
a sub-sequence {fnk

} of {fn} ∈ C such that

fnk
∈ arg min

f∈C
Eπnk

[L(f(X), Y )]

such that as k →∞, fnk

d−→ f and

Eπnk
[L(fnk

(X), Y )]→ Eπ[L(f(X), Y ))]. (3.9)
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Proof. The definition of (C, d, L, m−→) forming a full learner recovery system is such that EL
πn

Γ−→ EL
π ,

i.e. by taking the functional Fn(f) : C → R, defined via

Fn(f) := Eπn
[L(f(X), Y )],

the definition 191 is equivalent to Fn
Γ−→ F . By compactness of C we get the hypothesis for Theorem

190 so we get the thesis.

In many cases C is not necessarily compact. The assumption of compactness simplifies the
arguments but the argument above can be obtained without compactness of C if instead one
assumes equi-mild-coercivity of {Fn}, that is there exists a compact set K for which all Fn’s satisfy
inf
C
Fn = inf

K
Fn. See [Braides, Theorem 1.21], we instead assume compactness of C to avoid this

subtlety.

Remark 194. Evidently the statement of Theorem 193 is useless unless we explore examples and
explain the ideas and how to use it. So far, we have just re-written the problem so that we can
conclude (subsequential) convergence of learned agents by checking a modified version of Fatou’s
Lemma. This rewriting allows us to cover different cases at the same time, as we do in the following
examples.

The goal of this list is not to be exhaustive but to show the many different formulations that can
be included in Definition 191. Notice that checking Definition 191 involves only studying a two sided
version of Fatou’s Lemma that can be corroborated in every particular case. Once one establishes
that the given ML problem of the form (3.2) and (3.1) are indeed a full recovery system with
{πn}, π, C, L one has ensured convergence of minimizers (which amounts to perfect approximation
of the model).
In the following proposition we show the wide range of options one has for full recovery systems,
although the d-convergence in some items of the following proposition are not necessarily with
respect to a metric, we have in mind Remark 188.

Proposition 195. The following are full learner recovery systems

1. Let K ⊂ Rp be compact, C a compact subset of {f : Rp → R s.t. (x, y)→ L(f(x), y) ∈ L1(π)}
with respect to d, where d denotes point-wise convergence, L : Rp × R → R be any positive,
bounded, continuous function and let m−→ denote set-wise convergence i.e µn(A)→ µ(A) for
every Borel set A, where µn, µ ∈ P(K).

2. m−→:=⇀ (weak convergence of measures), C be compact such that {L(f(x), y)}f∈C uniformly
integrable with respect to {πn} and there exists g such that L(g(x), y) ∈ L1

π such that fn(x) ≤
g(x) holds π-a.e.

3. m−→:= d1−→, d point-wise convergence and (x, y)→ L(f(x), y) uniformly Lipschitz and uniformly
bounded for f ∈ C (compact metric space).

4. m−→:= TV−−→, L(x, y) is d-continuous on the first coordinate and uniformly bounded by some
constant M > 0 on a compact metric space (C, d).

Proof. In all of the cases above we only need to ensure a Fatou-like lemma (Definition 191).
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1. Here Γ-convergence must be thought as in Remark 188. This is a direct consequence of Fatou’s
lemma for varying measures (found in [Royden] or [Feinberg-Kasyanov-Liang, Theorem 1.1]).

2. See [Feinberg-Kasyanov-Liang, Theorem 2.2].

3. The uniform Lipschitz condition gives∣∣∣∣ ∫ L(fj(x), y)dπn − dπ(x) +
∣∣∣∣ ∫ L(fj(x), y)− L(f(x), y)dπ(x, y)

∣∣∣∣
≤ d1(πn, π) +

∣∣∣∣ ∫ L(fj(x), y)− L(f(x), y)dπ(x, y)
∣∣∣∣

where the first term comes from Kantorovich-Rubinstein [Villani2009, Particular Case 5.16]
and the second one vanishes by dominated convergece.

4. In this case we don’t only have the inequalities of definition 191 but the limits coincide:∣∣∣∣ ∫ L(fn(x), y)dπn(x, y)−
∫
L(f(x), y)dπ(x, y)

∣∣∣∣
≤
∣∣∣∣ ∫ L(fn(x), y)d(πn − π)

∣∣∣∣+
∣∣∣∣ ∫ L(fn(x), y)− L(f(x), y)dπ

∣∣∣∣
≤M ||πn − π||TV +

∣∣∣∣ ∫ L(fn(x), y)− L(f(x), y)dπ
∣∣∣∣

where the first one goes to zero by the assumption πn
TV−−→ π and the second one by the

assumed d-continuity and dominated convergence.

The goal of this list is not to be exhaustive but to show the many different formulations that can
be included in Definition 191. Notice that checking Definition 191 involves only studying a two sided
version of Fatou’s Lemma that can be corroborated in every particular case. Once one establishes
that the given ML problem of the form (3.2) and (3.1) are indeed a full recovery system with
{πn}, π, C, L one has ensured convergence of minimizers (which amounts to perfect approximation
of the model).

Remark 196. Observe that the conditions imposed for C and L on Proposition 195 case 4 are less
restrictive than the ones on 195 case 2. This is intuitively obvious as the total variation convergence
is stronger than weak convergence. This means that ensuring a stronger convergence in measure
is a degree of improvement for the ML-problem associated to fixed C and L. It is also evident that
regularity conditions usually assumed in ML-theory (like Lipschitz properties of L) yield strong
approximations in most types of convergence m−→, making this framework not only inclusive but rather
general.

One of the main advantages of measure pre-conditioning is the ability to change the training
sample. It is common to use the empirical measure in non-parametric statistics, nevertheless the
next section shows that the empirical measure is in general, not the best formulation for (3.2) as it
may happen that the conditions for convergence hold for a different sequence of measures and not
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the sequence of empirical measures. We will see this is the case of Proposition 195 case 4, where the
sequence of empirical measures would not ensure subsequential convergence but a different sequence
does, justifying completely the use of measure pre-conditioning as it improves the likelihood that
the algorithm gives a reasonable final learnt agent.
Remark 197. (Compactness)
Stronger conditions like compactness of the underlying sets yield a more elegant theory. Many of
the modes of convergence are equivalent under the assumption on compactness (see [Billingsley]
or [Villani2003, Chapter 7]). The assumption of compactness simplifyies most theorems as it will
automatically bound sequences and so Definition 191 is much easier to satisfy and verify which
automatically yields:
Proposition 198. If C ⊆ C(Y ), (x, y)→ L(x, y) is continuous and

sup
f∈C

sup
(x,y)
|L(f(x), y)| <∞

then (3.2) → (3.1) in the C uniform topology, i.e.

arg min
f∈C

Eπ [L(f(x), y)] C−→ arg min
f∈C

Eπ [L(f(x), y)] .

No Empirical Probability Measure can Converge in the Total Variation Sense for all
Distributions

Towards studying when to measure pre-condition we realize that it is important to know what types
of empirical measures converge and in which cases. In the seminal work [Devroye-Giorfi], the authors
proved the following theorem:
Theorem 199. (No Empirical Probability Measure can Converge in the Total Variation Sense for
all Distributions)
Let {πn} be a sequence of empirical distributions and δ > 0, then there exists a proability measure π
such that

inf
n

sup
A
|πn(A)− π(A)| > 1

2 − δ a.s.

For a proof see [Devroye-Giorfi].
Theorem 199 tells us that the class of measures approximated in total variation norm by the empirical
measure is not all measures. For different measures, other probability measures formed from data
can converge in total variation but the empirical measure does not converge to all measures.
Remark 200. In [Devroye-Giorfi] it is shown that the standard empirical measure does not converge
in total variation sense to absolutely continuous limits. Hence, Theorem 193 does not apply with
Proposition 195 case 4 if we use the standard empirical measure. Nevertheless, as shown in [Devroye],
the kernel-empirical measure given by

πn = 1
hn

∑
K(f/h)

does converge in total variation (see Definition 203 below). Hence, Theorem 193 via Proposition
195 case 4 applies to the sequence {πn} but not the sequence of standard empirical measures. This
shows that the model solution for ML-program 3.2 will converge to the best parametric C-model. This
argumentation explains why standard techniques in Machine-Learning, such as shifting and
adding noise give better results in practice, as convergence is ensured by this system.
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Example: Linear regression

Let us consider π ∈ Pac(R2), we consider the linear regression problem with square-loss function
with respect to target measure π:

min
(a,b)∈R2

Eπ[(Y − aX + b)2]. (TargetLR)

By differentiating with respect to a, b from first order conditions we know that the solutions to
(TargetLR) are

a =

∫
y · xdπ(x, y)−

∫
ydπ(x, y)

∫
xdπ(x, y)∫

x2dπ(x, y)−
(∫

xdπ(x, y)
)2

b =
∫
ydπ(x, y)−


∫
y · xdπ(x, y)−

∫
ydπ(x, y)

∫
xdπ(x, y)∫

x2dπ(x, y)−
(∫

xdπ(x, y)
)2


∫
xdπ(x, y)

(3.10)

(3.11)

If we consider a sequence of measures πn, obtained using the sample (X1, Y1), . . . , (Xn, Yn) then the
linear regression problem with square-loss function with respect to approximating measure πn is

min
(a,b)∈R2

Eπn [(Y − aX + b)2]. (AppxLR)

The solution (aπn
, bπn

) to (AppxLR) is given by

aπn =

∫
y · xdπn(x, y)−

∫
ydπn(x, y)

∫
xdπn(x, y)∫

x2dπn(x, y)−
(∫

xdπn(x, y)
)2

bπn
=
∫
ydπn(x, y)−


∫
y · xdπn(x, y)−

∫
ydπn(x, y)

∫
xdπn(x, y)∫

x2dπn(x, y)−
(∫

xdπn(x, y)
)2


∫
xdπn(x, y)

(3.12)

(3.13)

If πn corresponds to the empirical measure, then rate of convergence of aπn and bπn have been widely
studied. See [Bishop, Chapter 3] for example. We also know by Theorem 199 that πn ̸

TV−−→ π. By
[Devroye, Section 2] we can find a sequence of measures (Parzen windows) {π̃n} such that π̃n

TV−−→ π.
For simplicity, assume that∫

xdπn(x, y) = 0,
∫
x2dπn(x, y) = 1,

∫
xdπ(x, y) = 0 and

∫
x2dπ(x, y) = 1.

With this assumption we immediately obtain the following bound:

|aπn
− aπ| ≤

(
sup

(x,y)∈spt(πn)∪spt(π)
|x · y|

)
||πn − π||TV . (3.14)
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Which in the case where {πn}, π are uniformly compactly supported yields

|aπn − bπn | ≲ ||πn − π||TV . (3.15)
Equation (3.15) is a bound on the order of convergence on the coefficient of linear regression of
(AppxLR) to that of (TargetLR) which is not available in the case of the empirical measure, as
indicated by Theorem 199. The bound (3.15) different to the usual order of convergence bounds
for linear regression exemplifies the impact of measure pre-conditioning. Equation (3.15) shows
(uniform) stability of learning agents corresponding to the measure pre-conditioned problem, allowing
us to use more tools than the standard ones.

3.3.5 Measure pre-conditioning approaches
Measure pre-conditioning approaches impose certain structures to the original data. The idea is to
analyze how does this structure impacts final outcomes of the modelling. In some way, this process
resembles plain statistical inference.

3.3.6 Background and Notation
Let Ω ⊂ Rn be fixed. We denote by Pp(Ω) to be the set of probability measures with p-th finite
moment. That is Pp(Ω) = {µ ∈ P(Ω) :

∫
Ω
|x − x0|pdµ < ∞, for some x0 ∈ Ω}. We define the

Wasserstein p distance between µ, ν ∈ Pp(Ω)

dp(µ, ν) =
(

inf
π∈Γ(µ,ν)

∫
Ω×Ω
|x− y|pdπ(x, y)

)1/p

where Γ(µ, ν) denotes the set of probability measures on Ω× Ω having first marginal µ and second
marginal ν. We say a map T : Ω1 → Ω2 is a Monge map with respect to the cost function
c : Ω1 × Ω2 → R, between Borel measures µ and ν whenever

T ∈ arg min
T#µ=ν

{∫
Ω1

c(x, T (x))dµ(x)
}

(3.16)

where T#µ means that for every Borel set A, ν(A) = µ(T−1(A)).

3.4 Empirical measures and non-parametric estimation
In this section we discuss common non-parametric estimates and their relations to the structure of
the ML-problems (3.2) and (3.1). We aim to explain how each measure can be used to pre-condition
and the pros and cons coming with their use.

3.4.1 Non-exhausting list of non-parametric estimation techniques
Definition 201. (Empirical measure)
Given X1, . . . , Xn we define the standard empirical measure as the number of successes on the n
occurrences:

µn(A) = 1
n

n∑
k=1

δXk
(A).
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Definition 202. (Histogram)
Given X1, . . . , Xn we define the histogram measure associated to the sets B1, . . . , Bm

µn(A) = 1
n

n∑
k=1

m∑
l=1

1
ρ(Bl)

δXk
(A ∩Bl).

where ρ is a probability measure (usually taken to be normalized Lebesgue).
Definition 203. (Kernel estimation via Parzen windows)
Given X1, . . . , Xn, we define the n-th density estimation with kernel K via

fπn
(x) = 1

nHn

n∑
i=1

K

(
x−Xi

Hn

)
where K is fixed and {Hn} is any sequence of random variables, that (may) depend on the sample
X1, . . . , Xn that satisfy that Hn → 0 almost surely and nHn →∞ almost surely.

The idea of this formulation of the kernel estimation comes from [Parszen] and [Rosenblatt] and
it is fully justified by Theorem 223.

Wasserstein 2-Barycenter

Definition 204. (Wasserstein Barycenter)
Given a sample X1, X2, . . . , Xn random variables in Rp we define the 2-Wasserstein Barycenter of
the sample (also called Frechet mean) as any probability measure satisfying

µ∗ ∈ arg min
ρ∈P2(Rp)

{
n∑
k=1

d2(ρ, δXk
)2

}
(3.17)

where δXk
denotes the unit mass at Xk.

Remark 205. Note that ρ → d2(·, ν)2 is lower-semicontinuous for all ν and so Wasserstein
Barycenters exist. In general, Wassertein barycenters with respect to random Dirac measures are not
unique. If instead, one of the deltas is replaced by an absolutely continuous measure, uniqueness can
be shown. We don’t do this replacement in this document, instead we study the entropic regularization
of the minimization problem in Definition 210.

The theory of Wasserstein Barycenters has recently received attention from several fields of
applied mathematics, see for example [Panaretos-Zemel] for a more complete theory.
Remark 206. The barycenter can be defined given any distance function d : P(Rp)×P(Rp)→ R
and a sample (X1, . . . , Xn) the d-barycenter is any probability measure µ satisfying

µ∗ ∈ arg min
ρ

{
1
n

n∑
k=1

d(ρ, δXk
)
}

(3.18)

where the infimum is taken over all probability measures on Rp.. We have only chosen the Wasserstein
2-distance as we aim to focus on Domain Adaptation.
Remark 207. It is important to notice that efficient algorithms to compute Wasserstein Barycenters
have recently been developed (see [Cuturi-Doucet]) in the case of empirical measures. This efficient
computability is essential for the applications we have in mind.
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Uniform convex hull

Definition 208. (Convex Hull)
The convex hull of a set B ⊆ Rp is defined to be the smallest convex set on which B is contained,
equivalently

Conv(B) =
⋂

C convex
B⊆C

C.

We define the uniform convex hull of the sample (X1, X2, . . . Xn) to be the uniform measure on the
convex hull of {X1, X2, . . . , Xn}, i.e.

µconv = Lp |c
Lp(Conv({X1, X2, . . . , Xn}))

(3.19)

where Lp denotes the Lebesgue measure in Rp.

Remark 209. Note that µconv is the restriction of the Lebesgue measure to the convex hull of the
sample so it’s support is automatically convex. This particular property could be significant for future
applications as the theory of convex optimization unlocks several numerical techniques. Evidently,
it’s support also includes all points of the sample. Note that Definition 208 always gives a well
defined measure.

Entropically regularized barycenter

Definition 210. Given a sample X1, X2, . . . , Xn random variables in Rp and a reference probability
measure ν we define the ν-entropically regularized 2-Wasserstein Barycenter of the sample as any
probability measure satisfying

µ∗ ∈ arg min
ρ∈P2(Rp)

{
1
n

n∑
k=1

d2(ρ, δXk
)2 + Ent(ρ | ν)

}
(3.20)

where δXk
denotes the unit mass at Xk and Ent(µ | ν) denotes the relative entropy of ρ with respect

to ν given by

Ent(ρ | ν) =
∫

log
(
dρ

dν

)
dν (3.21)

whenever ρ≪ ν and Ent(ρ | ν) =∞ otherwise.

Remark 211. If ν ≪ Lp, the functional to minimize is lower semi-continuous and with the addition
of entropy a unique absolutely continuous minimizer of (3.20).

Class-regularized barycenter

Motivated from the work of [Courty-Flamary] we can also think of measure pre-conditioning in
terms of pre-established class based groups. The idea behind the next definition is that elements in
the same class may be very similar while elements from different classes could be very different from
each other.
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Definition 212. (Class barycenter)
Given a sample X1, X2, . . . , Xn random variables in Rp suppose that each Xi belongs to one and
only one of a finite collection of classes {Cl}ml=1, then we can define the class-based barycenter to be
any measure µ satisfying

µ∗ ∈ arg min
µ∈P2(Rp)

{
1
m

m∑
k=1

d2(ρ, νk)2 + Ent(ρ | ν)
}

(3.22)

where νk is a measure determined only from class Ck. For example, one would obtain a barycenter
of barycenters if one were to choose νk to be the 2-Wasserstein barycenter of {Xi : Xi ∈ Ck}.

MMD-regularized Conditional measures

Definition 213. Given a characteristic kernel function k (see [Sriperumbudur] for details), define
the maximum mean discrepancy between µ, ν with respect to k via

mmdk(µ, ν) = Eµ×µ[K(X, X̃)] + Eν×ν [k(Y, Y )]− 2Eµ×ν [k(X,Y )]

The empirical optimal transference plan between conditional distributions for a given lower-semicontinuous
cost function c, denoted π∗,c

n is defined in [Manupriya-Keerti-Biswas-Chandhok-Jagarlapudi] via the
minimization over Γ(µ.ν) of the following functional:∫

c(x, y)dπ + λ1
1
n

n∑
i=1

mmd2
k(Proj1#π, δYi) +

n∑
i=1

mmd2
k(Proj1#π′, δY ′

i
). (3.23)

Existence and uniqueness depends on the cost function and usual conditions (smoothness and
twist) are required, see [Sriperumbudur] for details.

3.4.2 Some properties of the measure pre-conditioners
Proposition 214. When they exist, the measures from definitions 210 and 212 are absolutely
continuous with respect to ν.

Proof. By definition, Ent(ρ|ν) = ∞ if ρ ̸≪ v, because ν is always feasible, the functional is not
infinity and hence the minimizer is a.c. with respect to ν.

Corollary 215. If ν = Lp in Definitions 210 or 212, the minimizer has a density (w.r.t. Lebesgue).

Although the proof is simple, the importance of Proposition 214 and Corollary 215 is fundamental
for practice. If we can estimate the density, we can use it to improve the convergence of algorithms
by numerical methods. See for example [Peyre-Cuturi] where the entropic regularization allows a
closed (and very simple) form of the density which then yields a dual-descent algorithm. Knowing
explicitly the density allows us to find minimizers of Problem 3.2 via formulae and so we can focus
our attention on estimating numerically these minimizers without carrying a second numerical error.
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3.4.3 Optimality (Euler-Lagrange)
Most of the measure pre-conditioners defined on section 3.3.5 require the minimization of a functional.
Let Ω ⊆ Rp, in this section we study the first order conditions for minimization in (P2(Ω), d2) which
can be found in [Santambrogio, Theorem 7.20].

Definition 216. (First variation of a functional in P(Ω))
Let F be a functional F : P2(Ω)→ R, let ρ ∈ P2(Ω) be fixed and ϵ > 0, for any ρ̃ ∈ P2

ac ∩ L∞(Ω),
define ν = ρ̃− ρ, we say that δF

δρ
(ρ) is the first variation of F evaluated at ρ if

d

dϵ

∣∣∣∣
ϵ=0

F (ρ+ ϵν) =
∫
δF

δρ
(ρ)dν.

Theorem 217. (Optimality criteria)
For a functional F : P2(Ω)→ R suppose that µ ∈ arg min

ν∈P2(Ω)
F (ν). Assume that for every ϵ > 0 and

for every ρ absolutely continuous with L∞(M) density

F ((1− ϵ)µ+ ϵρ) <∞

let c := essinf

{
δF

δρ
(µ)
}

. If δF
δρ

(µ) is continuous,

δF

δρ
(µ)(x) ≥ c ∀x ∈M, (3.24)

δF

δρ
(µ)(x) = c ∀x ∈ supp(µ). (3.25)

The proof can be found as Theorem 7.20 in [Santambrogio].
Just as in the remark after Corollary 215, the main use of this tool is to focus the algorithmic
implementation towards the computation of the first variation of the functional it minimizes.

3.4.4 Convergence
The objective of the reformulation of the general ML-problem in terms of Problem 3.2 and 3.1 is
that we can adapt every stage of the learning process by using a measure estimation that fits the
problem better. In order for us to know that we can recover the ML-problem in this process we
need to know the types of convergence on which the sequences of measures formulated with the data
converge to the underlying distribution. Many theorems and specific cases on density estimation
have been studied, we recollect some of them here in terms of the definitions of section 3.4.1.

Convergence of density estimations

Observe that Theorem 191 and Proposition 195 allow different systems of convergence, i.e. depending
on the ‘strength’ of the type of convergence m−→ of the probability measures, different requirements
on C, d, L are needed. In this section we give a non-exhaustive list of modes of convergence for
density estimation and the sequences in Section 3.4.1 that can be used as measure pre-conditioners.
In this section one should notice that every type of convergence should be coupled with hypothesis
that ensure the system is a full learner recovery system (Definition 191).

114



Theorem 218. (Glivenko Cantelli in R)
Let µ be any probability measure on R and µn be the standard empirical measure (Definition 201),
if F (t) = µ((−∞, t]) and Fn(t) = µn((−∞, t]) then Fn → F uniformly on R as n→∞

This theorem is well-known see for example [Durrett, Theorem 7.4] or [Dudley2002, Theormem
11.4.2.]. By account’s of Donsker’s theorem one can get the following improvement:

Proposition 219. (Rate of convergence for continuous F )
If µ is a law on R for which F is continuous, the order of convergence of Theorem 218 satisfies

n1/2 sup
t
|Fn(t)− F (t)|⇀ max

0≤s≤1
|Bs − sB1| (3.26)

where {Bs} is a Brownian motion, i.e. the rate of convergence approaches the law of the absolute
value of a Brownian bridge on [0, 1] and so it’s law can be computed explicitly:

P0

(
sup

0≤s≤1
|Bs − sB1| < b

)
=

∞∑
m=−∞

(−1)me−2m2b2
(3.27)

See [Durrett, Theorem 8.10] and the following proposition for the explicit formula of it’s law.

Remark 220. The theorem presented here as Theorem 218 is just a specific version. In general, one
refers to any theorem of this type as “a Glivenko-Cantelli type theorem” see for example [Dudley2002].

Theorem 221. (Varadarajan)
If π is any probability measure on X × Y and X × Y is a separable metric space then the standard
empirical measures (Definition 201) for (X,Y ) converge weakly in probability to π.

For a proof see [Dudley2002, 11.4.1]. It is important to notice that the convergence is almost
surely. In some cases, like the case of real numbers, the convergence can be upgraded.

Remark 222. Notice that from Theorem 218 one can infer the convergence of the Histogram
(Definition 202) weakly in Rp.

Theorem 223. (Devroye)
If H2

nn→∞ and µ≪ Leb, the empirical density estimate of Definition 203 converges uniformly in
measure to µ, i.e. for every ϵ > 0,

P

({
ω : sup

x∈R
|fn(x, ω)− f(x)| < ϵ

})
n→∞−−−−→ 1. (3.28)

For a proof see [Rosenblatt].
The following theorem is a specific case of the much more general convergence of Barycenters proved
in [Ahidar-Coutrix-Le Gouic], in the paper the authors prove the dp-convergence in metric measure
spaces satisfying a positive curvature condition.

Proposition 224. (Barycenters dp converge)
If µ has compact support and µn is the a p-Wasserstein Barycenter of Definition 204, then µn

dp−→ µ
as n→∞.
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For a proof see [Ahidar-Coutrix-Le Gouic] and apply it to the simple case where (Rp, |·|, µ)
is given as the initial measure space. In [Manupriya-Keerti-Biswas-Chandhok-Jagarlapudi] the
following proposition was shown:

Proposition 225. (Total variation)
The mmdk minimizer of Definition 213, πmmdk

n converges in total variation norm to the solution π∗

of unrestricted transport with respect to c (Definition 3.16), i.e.

πmmdk
n

||·||T V−−−−→ π∗.

See [Manupriya-Keerti-Biswas-Chandhok-Jagarlapudi, Theorem 1].

Convergence and full learner recovery systems

In the previous section 3.4.4 we have listed several convergence results for different types of empirical
measures. Empirical measures encompass our understanding of the sample. Theorems 218, 221
and 223, Propositions 219, 224 and 225 need to be coupled with regularity properties of L and
the underlying class of functions C as in Proposition 195. This list shows that given an underlying
model, it’s intrinsic features will determine the type of measure pre-conditioners needed to ensure
convergence on the specific convergence mode that the limiting measure admits.
For example, Proposition 225 involves convergence in Total Variation norm from which one can
infer that the measure pre-conditioning of Definition of 213 applies for a d-continuous (in the first
coordinate) loss function L as in Proposition 195. 4. In contrast, Theorem 199 shows that the
empirical (uniform) measure is not well-suited for every limiting distribution and so in the case of a
continuous density, preconditioning by 213 is proved to have better results (theoretically) than the
empirical measure.

Estimating the marginal instead

In the discussion of density estimation (Section 3.4.1) we haven’t done any specific distinction on
the particular form the data for Problems 3.2 and 3.1. Definitions 201-213 work for all kinds of
data. In the particular case of the ML Problems 3.1 and 3.2, our objective is to model in the class
C the dependence of Y on X penalized by the loss function L. We aim to study how good (with
respect to L) a C-model f(X) approximates Y . In this context the distribution π refers to that
of (X,Y ). Measure pre-conditioning amounts to approximating π using the sample in a way that
benefits computations. We note that this gives rise to two different approaches:

(a) We can estimate π directly via πn according to definitions 201 -213.

(b) We can make assumptions on the conditional distribution of Y |X and then use definitions
201-213 for approximations on the X-marginal of π.

Most of the study of this document has focused on approach (a). Let us give an example of the
approach (b) to show it’s interaction with measure pre-conditioning.

Theorem 226. Assume that Y |X = x ∼ νx and that we have estimated νx via νxn such that
νxn

dp−→ νx uniformly on x, i.e. given ϵ there exists N > 0 such that for every n ≥ N

dp(νx, νxn) < ϵ for every x
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assume also that µn
dp−→ µ, and L : Rp × R → R is continuous. Let f ∈ C and assume that there

exists g ∈ L1(µ) such that ∣∣∣∣ ∫ L(f(x), y)dνxn(y)
∣∣∣∣ ≤ g(y).

and that y →
∫
L(f(x), y)dνxn(y) is continuous and bounded, then

∫ ∫
L(f(x), y)dνxn(y)dµn(x) n→∞−−−−→ Eπ[L(f(X), Y )].

Proof. The proof is a direct consequence of dominated convergence applied twice, observe that∫ ∫
L(f(x), y)dνxndµn(x)−

∫
L(f(x), y)dπ =∫ ∫

L(f(x), y)dνxndµn(x)−
∫ ∫

L(f(x), y)dνxndµ(x)+∫ ∫
L(f(x), y)dνxndµ(x)−

∫
L(f(x), y)dπ.

the first term goes to zero if we ensure y →
∫
L(f(x), y)dνxn(y) is continuous and bounded, the

second term goes to zero by dominated convergence (using µ as reference measure).

Remark 227. (On the general approach and the restrictiveness of the hypothesis on Theorem 226).
Theorem 226 is only one example of the multiple approaches one can use to estimate π from µn
and assumptions on Y |X, even though the hypothesis of Theorem 226 are very difficult to meet in
practice, it is presented here to illustrate the general idea.
Measure pre-conditioning on the marginals νx allows the modeller to include the specific features of
each data class. It is clear the many lines of investigations one can explore to get similar results (with
less restrictive hypothesis), we choose not to develop any further and leave it for future research.

3.4.5 The recipe: How to choose a measure and how to implement the
algorithm

The general approach for this document is to put in a single, standard, theoretical background many
ideas that have come to light in ML-research. Namely, ML-reaserchers have realized that their
algorithms improve in performance or convergence properties after a small “tweak” to either data
or the loss function occurs. Stability of ML-algorithms has been widely known and is one of the
main focus of ML-research. The idea of measure pre-conditioning is that the standard empirical
distribution, though it may contain all the possible information in terms of inference (except for
order) may not be well adapted to the specific problem one aims to minimize. It is well-known
for example that if the functional to be minimized is convex, algorithms used for minimization
can take advantage of convexity. This encourages the solver to find an empirical estimation from
definitions 201-213 that makes their functional convex. Finding such a measure is what we call
pre-conditioning, if the preconditioning satisfies any of the assumptions of Proposition 195 then
one is ensured to have a full learner recovery system and hence have not lost anything on the process
while achieving improved performance. One could instead use a pre-conditioner based on many
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reasons (such as having a specific algorithm to compute already at hand for example), this work
explains how as soon as a condition like Proposition 195 is satisfied, one will end up with the same
classifier/regressor.

3.5 The problem of Domain Adaptation and the impact of
measure pre-conditioning

Domain Adaptation (DA) is a sub-problem of transfer learning on which one aims to infer the
parameters for a new learning agent in terms of an agent that learn in similar data.
Many of the DA adaptation formulations are well-suited for Optimal Transport (OT), our framework
of Problems 3.2 and 3.1 was motivated at first by the recent research in optimal transportation in
Machine Learning (see [Amos-Cohen-Luise-Redko], [Redko-Vayer-Flamary-Courty], [Courty et al.],
[Courty-Flamary]) and so in this section we explore the implications of measure-preconditioning in
the specific case of domain adaptation problems related to optimal transportation and the recent
research in the area (see [Courty et al.], [Courty-Flamary] and references therein for a more complete
exposition of the use of optimal transportation in machine learning).

Problem 3. (General domain adaptation problem)
Suppose that we have a sample (Xs

1 , X
s
2 , . . . , X

s
n) of features together with the a sample of the

dependent variable (Y s1 , Y s2 , . . . , Y sn ) and we use the learning agent to minimize a loss function
L : Rp × R→ R among a class of functions C. The learning problem is to obtain the best possible
parametric function f , among the class C explaining the data, i.e.

min
f∈C

{
n∑
k=1

E[L(f(Xs
i ), Y si )]

}
(3.29)

If f∗
s realizes the minimum in (3.29), we say that it is the learnt agent or that f∗

s correspond to the
learnt parameters.
Now suppose we have another sample (XT

1 , X
T
2 , . . . , X

T
n2

) which we believe is similar in some features
to the original sample. The domain adaptation problem is: How much can one learn from the
previous learning? That is, how can we transfer the learning from the source domain to target
domain?.

The research field which attempts to answer Problem 3 is known as Domain adaptation for
transfer learning. For a general introduction and approach see [Courty et al.], [Bishop] and references
therein.
The problem of domain adaptation 3 is different to Problems 3.1, 3.2 as it aims to transfer the
statistical knowledge obtained by a minimization on source-domain to a minimization on the
target-domain. The formulation of Problem on (3.29) has the implicit assumption of the empirical
distribution being imposed at level n.
In this section we aim to explain how measure pre-conditioners as defined in section 3.4.1 can be
used in the field of DA for transfer learning.

Problem 4. (Domain Adaptation and transfer learning with varying losses and classes)
Suppose that we have a sample (Xs

1 , X
s
2 , . . . , X

s
n) of features together with the a sample of the

dependent variable (Y s1 , Y s2 , . . . , Y sn ) and we use the learning agent to minimize a loss function
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Ls : Rp × R→ R among a class of functions C∫ . The learning problem is to obtain the best possible
parametric function f , among the class C explaining the data, i.e.

min
f∈C∫

{Eπn
[Ls(f(Xs), Y s)]} (3.30)

and compare it with the perfect learner on target domain with class Ct and loss function Lt : Rp×R→
R:

min
f∈Ct

{
Eπt [Lt(f(Xt), Y t)]

}
(3.31)

If f∗ denotes the minimizing argument for (3.30), the Domain Adaptation problem is: How can we
use f∗ to obtain good estimates for (3.31)?
What is the structure of such agent?
How does it compare to the actual minimizer of (3.31)?

Suppose that every Xs
i ∼ µs and Xt

i ∼ µt, under “similarity assumptions” on µs and µt, one
expects to be able to transfer learning to some accuracy. Of course “similarity assumptions” depends
on the context of the ML-task in hand.
For example, two measures might be considered similar in a classification problem that may not
be considered similar in a generative model. In the same fashion, suppose that µs and µt satisfy
that there exists a solution, T , for Problem (3.16) with a given cost function c : Rp × Rp → R.
A good candidate for a new learnt agent can be immediately obtained via f∗ ◦ T−1. As seen in
[Courty-Flamary], the error made by this agent relative to the total error obtained from training an
agent from scratch can be controlled as soon as µs and µt are d2-close and C is rich enough. In the
field of Domain Adpatation (DA) usually at least one of the following assumptions is made:

Assumption 4. (Conditional structure of learning task)
In the context of Problem 4, if (Xs, Y s) is the source variable and (Xt, Y t) the target variable, it is
common to ask that

(Y si | Xs
i ) ∼ (Y ti | Xt

i ), (3.32)
where Y | X denotes the random variable whose law is the regular conditional probability of Y given
X.

This assumption means that the probabilistic structure of the dependence of Y on X is the
same in both domains. We understand this assumption as a strong hypothesis of similarity in the
modellings.

Assumption 5. (Identical dependence)
In the context of Problem 4, if (Xs, Y s) is the source variable and (Xt, Y t) the target variable, it is
common to ask that

(Xs, Ys) ∼ (Xt, Yt)

The identical dependence assumption has been used extensively but is in general not a good
idea to pre-impose. The identical assumption implies that any sample of the source domain can be
considered a sample of the target domain so if Ls = Lt and Cs = Ct then the learning transfer is
perfect as we can identify the source data as target data in the empirical destimation of πs = πt
The following assumption can be found in recent papers in DA-ML, see [Courty et al.] for example.
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Assumption 6. (c-optimal map)
There exists an optimal transport map (with respect to a cost function c : Rp × Rp → R) Tc as in
(3.16) that satisfies

(Xs
i , Y

s
i ) ∼ (Tc(Xs

i ), Y ti ).

Remark 228. Though it is straightforward to use Assumption 6 (postulated in [Courty et al.]) in
the context of optimal transportation, it is of significant importance to understand the necessary
conditions that yield this assumption.

Remark 229. Note that these assumptions and the framework of DA is closely related to the line
of investigation proposed in Remark 227 below.

3.5.1 General Idea in the non-linear case
Domain Adaptation should be used when the target and source measures are believed to be similar.
If the source measure satisfies the assumptions of Brenier’s Theorem (see [Villani2003, Theorem
2.32]) and the loss function is quadratic (or strictly convex function of quadratic distance) the
optimal transport map T transporting µs onto µt can be used as an learning agent on the target
domain. We do this by first mapping onto the source domain using the optimal transport map
and only then evaluating the agent that has learnt paramters, i.e. define fad a candidate for the
minimization of loss for learning agents in the target domain by

fad = f∗(T−1).

The work in [Courty et al.] shows a convergence for this agent under Assumption 4.

3.5.2 Main question: What cost should we impose?
Note that Assumption 6 is an existence condition. If there exists a cost function for Assumption 6 one
would need to check that it satisfies the conditions for existence and uniqueness of optimal transport
maps like regularity and the twist condition (see [McCann-Guillen], [Villani2003],[Santambrogio]).
In the general approach for DA using transfer learning via optimal transport in the framework of
Problem 4, two problems seem to arise more often in practice:

P.i) When the conditions of the trainings are fixed and not to be chosen: study a learnt agent
when L1, L2, C1, C2 are given and fixed.

P.ii) When we are able to choose L1, C1 with the goal of maximizing (in any way) the transfer
learning for a given loss function L2 and class C2.

3.5.3 A measure of transferrability
In Problems 3.30 and 3.2, we start under a similarity assumption on the source measures. This
follows an intuitive statement: in order to be able to transfer any learning, the original measures
should share some features. We can’t expect to transfer any learning if the problems have nothing
in common.
We may expect to transfer the learning (classifier) differentiating between dogs and cats to a new
agent aiming to differentiate wolves and lions. In this case the distribution of dogs and cats is
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believed to be similar to that of wolves and lions.
How much could we transfer? Could we guess beforehand how much learning we can transfer?
As a thought experiment, let us study a way to measure the transfer of learning. There are many
ways to measure transferability, see [Courty-Flamary], [Courty et al.] or references therein. We
propose another one, assume that πs and πt are as in Problem 3, let h : R → R be any strictly
convex function with h(0) = 0, set

dh(πs, πt) = inf
Π∈Π(πs,πt)

∫
h(L1(f1(x1), y1)− L2(f2(x2), y2))dΠ((x1, y1), (x2, y2)). (3.33)

where f1 is the solution for the C1, L1-source problem and f2 the corresponding solution for the
C2, L2-target problem. Evidently, a-priori the value of dh(πs, πt) can not be computed as f1, f2
are unknown and the value of (3.33) depends on the choice of models (C1, L1) and (C2, L2). We
claim (3.33) is a reasonable way to measure transfer depending on C1, L1, C2, L2, in the sense that
the closest dh is to 0 the more likely it is that a learnt agent for the L1 problem with source data
(Xs, Y s) would perform decently in the L2 problem with data (Xt, Y t). This is to be expected as it
may be reasonable to transfer the learnt agent for certain loss functions but not with all of them.
Even though f1 and f2 are unknown, in some cases some estimates can be obtained. To the
knowledge of the author no measure of transferrability of the form (3.33) has been studied which
points to a promising line of investigation.

3.5.4 Problem 1
Let us first address problem P.i) where all the conditions (C1, C2, L1, L2) are fixed and we aim to
measure the efficiency of a solution to (3.1) and (3.2).

Measure pre-conditioning in the conditional average guess

Let us consider here a different approach to the general Problem 4, suppose that we have solved the
source problem i.e.

f∗ ∈ arg min
f∈C1

Eπs [L1(f(X), Y )]. (3.34)

Similar to the ideas in [Courty et al.] one can make assumptions like Assumption 6 in order
to benefit from the source sample by using conditional distributions. Given y ∈ spt(Proj2 #πs)
and f ∈ C1, assume we can find T f,y optimal transport map for the cost function cy(x, x̃) =
|L1(f∗(x), y) − L2(f∗(x̃), y)| between the conditional distributions πs(x|Y = y) and πt(x|Y = y).
The question is now how to generate an element in C2 from the learnt information on the conditional
distributions. The first immediate guess is to average with respect to the target distribution, that is
if

dπt(x, y) = dπt(x|Y = y)dνt(y)
a guess for a learnt agent would be

fad = f∗ ◦ (T f
∗
)−1, where T f

∗
(x) =

∫
Y

T f,y(x)dνt(y). (3.35)

In the general case, no estimates on the control of learning for agent (3.35) are known.
It is expected that if the measures satisfy that dh from (3.33) is small then the agent obtained using
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(3.35) is good although so far no precise statements have been shown. Formula (3.35) is a reasonable
guess because it takes into account the best agent at each y before averaging over all y ∈ Y .

Open Question 1. In the context of Problem 4, is it true that if dh(πs, πt) is small, then f∗
ad

performs well in (3.31) when constructed using (3.35) and pre-conditioning? Is this performance
quantifiable? Is it true that as n→∞,

Eπn [L2(f∗
n(X), Y )]− min

f∈C2
[L2(f(X), Y )]→ 0?.

Can such performance be studied by dh of (3.33) when h(r) = |r| ?.
How does (3.35) compare to

f∗ ◦ T2, where T2 =
∫
Y

(T f,y)−1(x)dνt(y)? (3.36)

This questions are relevant both in the field of transfer learning and to measure pre-conditioning.
The computation of T f,y may be difficult in practice and we expect measure-preconditioning for
every y to benefit the performance of the intermediate algorithms without disruption on convergence.
Numerical simulations are being performed to corrobate this idea and study the performance of
(3.35) and will appear in subsequent works.

Data-driven conditional OT

On [Trigila-Tabak] the authors studied the following problem given a cost function c in the product
space X × Z and a probability measure on X × Z:

min
T (·,z)

∀zT (·,z)#ρ(·|z)=µ(·|z)

∫
c(x, T (x, z))dρ(x, z) (3.37)

which they denoted the data-driven optimal transport problem. In the same work, the authors
showed that the minimization of (3.37) is equivalent to

min
T (·,z)

max
λ≥0

∫
c(x, T (x, z))dρ(x, z) + λEnt

(
µ(·|z)

∣∣∣∣12(T#ρ(, z) + µ(·, z))
)

(3.38)

The dual formulation of (3.37) via (3.38) already hints a connection with our work. As the
algorithm implemented in [Trigila-Tabak] is a sequential algorithm using gradient descent, it can be
interpreted in the sense of measure pre-conditioners that entropically regularize at every discrete
step n, just as Definition 210 in the framework of Wasserstein distance and problem 3.2. This means
that an algorithm to compute data-driven conditional optimal transport can benefit directly from
measure-preconditioning.

3.5.5 Control on optimal transport domain adapted learning
In this section we present different hypothesis and assumptions that yield stability results on
transferred learning. The results are not as strong as those conjectured in section 3.5.4 but directly
related to measure pre-conditioning.
It is evident that there are many options on C1, C2, L2, L2 that will ensure the transfer learning is
efficient. In this section we reduce to present the most straight-forward formulations.
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Proposition 230. Let T be any map with T#µ = ν and dπ1(x, y) = dπ2(T (x), y) if C1 ◦ T = C2
then

arg min
f∈C1

Eπs
[L(f(Xs), Y s)] = arg min

f∈C2

Eπt
[L(f(Xt), Y t)]

The proof is a direct consequence of the composition of classes C1 ◦ T = C2.

Proposition 231. If C1 = C2 = C and L1 = L2 and if C is so that (x, y)→ L1(f(x), y) is Lipschitz
and bounded then for every f

|Eπ1 [L1(f(x), y)]−Eπ2 [L1(f(x), y)]| ≤ d1(π1, π2)

and so the total loss of transfer learning when the learned agent is adapted is controlled by the
d1-distance between joint measures.

Proof. The proposition follows directly from the Kantorovich-Rubinstein representation of the d1
norm as d1 is the suprema over Lipschitz functions.

In [Courty-Flamary] the authors proved the following theorem:

Theorem 232. (Courty-Flamary)

If L(x, y) = |x− y|2 and µs = 1
n

n∑
k=1

δxs
i

where x1, x2, . . . , xn ∈ Rn and there exist A positive definite

matrix and a vector b such that µt = 1
n

n∑
k=1

δAxs
i
+b, set T (x) = Ax + b then f∗ ◦ T−1 is a perfect

learning agent in the sense that it minimizes (3.31).

See in [Courty-Flamary, Theorem 3.1]. We now generalize this idea before we continue.

Theorem 233. Let πs, πt be the joint measures for the the source (Xs, Y s) and (Xt, Y t) target
domains respectively. Denote µs and µt the projections into the X-coordinates of πs, πt and by µsx
and µtx the conditional distributions of Y s|Xs and Y t|Xt. Assume there exists a map T : Rp → Rp
such that

1. T#µs = µt

2. µtT (x) = µsx

3. C2 = T ◦ C1

if f is the solution for (3.30) then f ◦ T−1 is a perfect learner in the sense that it minimizers (3.31).

Proof. The proof relies only on the disintegration of measures, as

Eπt [L(f(Xt), Y t)] =
∫ (∫

L(f(x), y)dµtx(y)
)
dµt(x) =

∫ (∫
L(f(T (x), y)dµsx

)
dµs(x)

where we have used the condition dµtT (x) = dµs(x) in the last equality. Minimization over C2 and
the condition C2 = T ◦ C1 yields the result.
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Open Question 2. (Can learning error be totally controlled?)
Assume f∗ minimizes the target problem, under what conditions on µ, ν, L, C1, C2 does there exist
C > 0 such that ∣∣∣∣ 1n

n2∑
i=1

E[L(f∗(Xt
i ), Y ti )− L(fad(Xt

i ), Y ti )]
∣∣∣∣ ≤ Cd2(µs, µt)?

The previous theorems and the ideas of [Courty et al.] respond this question in very restricted
situations. Having a general context to answer this question similar to the one of 191 would be
essential for the theory of domain adaptation.

3.6 Outside of the framework
In this section we explain how the framework developed in this article can be extended to encompass
more general situations (whose formulation is not exactly represented by (3.1) and (3.2)) but benefit
from the same ideas.

3.6.1 Using pre-conditioners on WGANs
The Wasserstein Generative Adversarial Networks (WGAN) introduced in [Arjovsky et. al] is
a generalization of the generative adversarial networks (GAN) introduced in the seminal work
[Pouget-Abadie et al.]. The reason to consider the Wasserstein framework is due to the convergence
properties of the Wasserstein metric together with the representation of Kantorovich-Rubinstein.
The WGAN problem consists in computing

arg min
θ

arg max
w∈W

E[fw(X)]−E[fw(gθ(Z))] (3.39)

where X ∼ P1 is prescribed, Z ∼ P2 and {gθ}θ∈Θ is a parametric function space. Further work
would study the same principles applied in this document to the more general version of the
problem admitting (3.39) using maybe 2 parametric families C, C̃. The only difference between
our problem and (3.39) is the presence of an extra outer minimization problem. It is clear that
algorithms like TTC presented in [Milne] that take a dual approach can benefit from sequential
measure-pre-conditionining. In the original formulation, as in [Arjovsky et. al]

sup
f∈C

∫
fdµ−

∫
fdν +−λ

∫
(|∇f | − 1)2dσ

where Z ∼ σ iff Z = tX + (1− t)Y where t ∼ U [0, 1], note that we can replace µ and ν at level n
via the empirical measures or measure pre-conditioners. This means that measure-preconditioning
can be applied in more general circumstances than Problem 3.1 as the estimation of σ can be done
via tXn + (1− t)Yn where t ∼ U [0, 1] and the triangle inequality yields convergence.

3.6.2 Covariate shift domain adaptation problem
In general, the label-shift domain adaptation problem is usually written as

min
h,g

1
n

n∑
i=1

L(h(g(xsi )), ysi ) + λEnt(µgs |µ
g
t ) + Ω(h, g) (3.40)
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where h is the hypothesis, g is a representation mapping and Ω is a regularization term. The
first term corresponds to losses in approximation while the second and the third correspond to
regularizations. Compared to the framework used in Problems 3.30 and 3.31, (3.40) is a more
general version. Nevertheless, the idea of measure pre-conditiniong can substitute the entropy term
by using a sequence of entropic regularizations and Ω + L can be used as a modified loss function.
The difference in algorithmic performance of both approaches is an interesting project.

3.6.3 COOT and measure pre-conditioning
In [Redko-Vayer-Flamary-Courty], the following problem was introduced to handle at the same time
the disparity between correlated distributions and the data marginals. In the case where Xi ∈ Rp,
authors in [Redko-Vayer-Flamary-Courty] consider the matrix X = (X1, . . . , Xn) not only as a
sample where the randomness comes form a single distribution but as a doubly-random matrix
in the sense that each row is considered a sample and the columns are consider features, in this
context let µS denote the probability measure associated to samples and µF the associated feature
distribution one should perform optimal transport simultaneously in sampling and feature spaces.
We expect the techniques of the two previous sections to also work in this context mutandis mutatis.

3.7 Researcher’s criteria on measure pre-conditioning
In section 3.4.5 we explained what a ML-developer should consider as recipe for applying measure
pre-conditing. It explained that each modification of the n-level measure had different implications
which should be pointed towards some (algorithmic) benefit. In general, it may be difficult to know
a-priori exactly what to use and so this (and subsequent) work should be considered as a guideline.

3.7.1 Trade-offs
In low-dimensional regimes, absolutely continuous (w.r.t. Lebesgue) tend to behave better, while in
higher dimensions highly concentrated measures tend to have better properties, see [Panaretos-Zemel,
Chapter 4]. This is already a hint on what to do, if the problem involved has few features, absolutely
continuous measures may improve the performance of the algorithm.

3.8 Conclusions and further work
Recent work [Redko-Vayer-Flamary-Courty] has introduced new techniques for domain adaptation,
the idea is to optimally match features and samples, it is still open lines of investigation how different
measure pre-conditioning techniques would impact the co-optimal transport problem. The features
and samples are in general of very different nature for which combining more than one of the
techniques of section 3.3.5 could improve the performance of the algorithms. For example, it may
be the case that features share a structure that can be exploited by a specific technique while the
relation between samples may algorithmically benefit from another.

3.8.1 Order of convergence
Establishing that the ML problem gives a full learner recovery system is good in order to know
convergence is ensured, in algorithmic practice we need more. We need to study the order of
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convergence and the imrpovements on this order by Measure pre-conditioners, this work is left for
future work and other researchers.

Data-driven model changes and convergence

In the start of section 3.3.1 we asked question (iii): Given a choosing of πn’s, could we find sequences
Ln’s and Cn so that the computations on the Cn− problem with loss function Ln associated to πn
converge to 3.1? Could these problems improve the algorithmic performance?
In section 3.3 we studied conditions on C and L to ensure Definition 191 and consequently Theorem
193. The question of how and when to change Cn and Ln at every step is still open and interesting.
A good answer would yield heuristics to change the model given the data in terms of the parametric
space, this means to not only change the way we measure the information from the data but also
how we learn from it. This line of investigation is left for future work.

3.8.2 k-nearest neighbohrs and relation to meta-transport
k-nearest neighbors and point-process notation

The list of empirical estimating probabilities (section 3.4) is obviously non-exhausting. Algorithmic
treatment of data such as k-nearest neighbors represent a potentially significant pre-conditioning
method. The theory of this algorithms is usually developed through point-processes. The extension
of this work to point-processes together with section 3.8.1 is a promising area for mathematical
theory of learning.

Meta-transport

Another recent development in Optimal Transport based machine learning is the development of
meta-optimal transport in [Amos-Cohen-Luise-Redko]. The basic idea, similar to the basic idea of
this document is to present a way to improve the performance of ML-algorithms through pre-working
on them. The seminal work [Amos-Cohen-Luise-Redko] develops completely algorithmic-focused
techniques, as explained in section 3.7.1. This work is focus on the underlying structured of pre-
condiitoning the samples, the statistics in Wasserstein space and how they impact the outputs of
the algorithms. In some way, [Amos-Cohen-Luise-Redko] tackles the pre-conditioning/pre-measure
pre-conditioning in a different manner, with a clever approach based on numerical algorithms. We
expect that a theory similar to the one developed in section 3.4 can also encapsulate the algorithmic
pre-conditioning. This can be modelled via point-processes (as it’s done for k-nearest neighbors).

3.8.3 General disintegration estimates
One can study different conditions on L, C, µ, π, Y |X such that a convergence similar to Theorem
226 occurs. This area is particularly technical as disintegration is not a continuous operation with
respect to some metrics on spaces of probability measures. Generally, one does not necessarily need
to estimate the disintegration but can explore different methods of convergence. An approach to full
learner recovery systems (191) in the special case of assumptions on Y |X would be interesting and
related with sections 3.5.4, 3.5.4 and literature as to [Trigila-Tabak] and references therein.
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3.8.4 Problem 2 of section 3.5.2
If L can be chosen thinking ahead of the Target problem, choose the cost function by chosing an L1
depending on L2 or viceversa. The idea of the problem is to ensure learning can be transferred by
picking the problems with the goal of transferring. A full theory with the approach of training with
the goal of transferring would be interesting on it’s own.

Choosing the first Loss function to improve the second

With the same approach as in Section 3.8.4, if we know that we aim to solve the target problem for
L2, π

t, C2, what loss function L1 should we chose given πs and C1? Similarly, allow C1 to be chosen.
We should chose L1 in a way that data under πs behave similar to L2 under πt. How one takes the
target problem into consideration is an open question.

3.8.5 Choosing the target loss model according to the source
Assume we have solved Problem 3.1 with set of features L1, C1, π

s and we know there is a distribution
(unknown to us) on which we aim to transfer the knowledge, what loss function L2 would ensure good
properties of the learnt agent on target space? One can think of an L2 loss function that penalizes
the error of the learnt agent and simultaneously penalizes the difference between probabilities. This
function would take into account that a mistake in the model is not relevant when one knows the
error on difference of distributions is big. The L2 loss function could be used to simultaneously
control model error with (probability) transfer error.
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Chapter 4
A generalization of an economic model of
Roy for labor distribution under
occupational choice

In collaboration with Jeffrey Liang and Aloysius Siow.

4.1 Introduction
In the seminal work of A.D. Roy [Roy], a model for the distribution of occupations in a community
is presented. The objective of the model is to explain using specific conditions on the needs of
the community, which workers will dedicate to each possible occupation assuming we can give a
numerical value to the skills of performing each job. Recent work ([Siow-Mak2016],[Siow-Mak])
has focused on a generalized version of the model of [Roy] where a separation function, dividing
workers from both roles, has had a successful impact on the analysis of the theory. In this article we
study analytical details of these separation functions, the necessity of them and consequences of this
formulation.
We study a problem based on [McCann-Trokhimtchouk], [Siow-Mak2016] and [Roy] on which workers
aim to be hired in companies for any of two roles. The two roles can be thought of as manager
(primary) and assistant (secondary) and the companies will hire pairs of workers so that each
worker will do one job. Each matched couple of workers will be assigned to a company on which
one of the agents will be the manager and the other one will be the assistant. The underlying
matching is modelled by a production function that evaluates the numerical output of their work,
corresponding to a benefit function in the context of optimal transportation, in the context of
[McCann-Trokhimtchouk].
The work on both occupations is remunerated by wages, the structure of this salaries is what we
refer as earnings schedule. Given an earnings schedule, i.e. determination of salaries for both options,
the occupational choice model requires each worker to choose what job to do. We assume that each
worker’s decision is motivated only by the earnings schedule and hence will choose the job that will
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pay the most according to their own set of skills. The problem studied here involves also finding
the optimal earnings schedule for the economy and therefore differs from the standard occupational
choice in the sense that the earning schedules are not known a priori but are part of the solution.
An important step in the development of this model is Section 4.2.6 on which we show that the
optimal solution of the model corresponds to a 2-step problem on which the inner problem is the
occupational choice for workers given earning schedules.
The problem presented here generalizes the Roy model from [Roy] where the separation between
workers is assumed to be linear. In this generalization, presented to us by Dr. Siow, we allow
the separation to be non-linear. One could expect that in certain specific production functions
depending on interaction, one would always get linear separation, we show this is not the case by
means of an example in section 4.3.4.
We also study the relationship between this model and the general version of the social planner’s
problem presented in [McCann-Trokhimtchouk].

4.1.1 Plan of the Paper
In section 5 we present the generalized Roy model and introduce the formulation of Dr. Siow. We
explain the role of each variable and some technicalities. We describe the problem, the assumptions
made and provide intuition and interpretations of the model.
In section 4.2.6 we rewrite the original model as a 2-step problem which allows us to introduce
the framework of optimal transportation of mass, which is a theory proven to be very useful in
many physical and economical problems, for introduction to the theory see [McCann-Guillen], [Ball],
[Villani2003] and for interesting applications to economics and physics see [Galichon], [Santambrogio]
to name a few. The idea is that any equilibrium of distribution of workers into roles should involve
optimal matching between managers and assistants, allowing optimal transportation theory to
handle an inner problem. The rest of the section is dedicated to obtain further understanding of the
problem using the optimal transport framework.
In section 4.5 we review the model of McCann and Trokhimtchouk, from their seminal work [McCann-
Trokhimtchouk]. We introduce their model and state some important results before making the
connection with the generalized Roy model presented here. At this point we also include simple
examples to fix intuition and also resolve a conjecture by Dr. Siow on whether or not the separation
function would result to be linear and hence agreeing always with the original model of Roy from
[Roy] and [Heckman-Honore].
Finally in section 4.4 we study how the different variables affect the model and yield a continuity
result for separation. This result intuitively says that similar economies and similar work-forces will
yield similar separations of the labor force. Here we take advantage of the separation function to
study the wage inequality, the difference in salaries between two people working in the same firm
and conclude an interesting bound that provides economical insight in 4.4.2. We finish by exploiting
the first order conditions and duality to understand approximations of optimal total production
from similar economies in terms of production or in terms of original distribution of people.
In section 4.7, we explain how this model can be implemented and possibly changed as well as
explaining what we believe the next lines of investigation of this model should look like.
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4.1.2 Preview and conclusions from the economical stand-point
In this section we give an economical preview of the results, that is we explain their economical
significance before developing the mathematical tools required.

• In section 4.2.1 we formulate the model, the objective is to obtain a model for the distribution of
roles that optimally includes occupational choice and the best matching for revenue. We study
the implication of having firms competing to hire the agents, which establishes a structure
in the earning schedules that we model through the use of the F -transform (Definition 235).
We know that agents will decide their occupation in an strictly economical way, meaning
that they will always take the better-paying job. This choice is modelled as a constraint,
as we separate the agents doing the different roles by a function that we call the separation
function (Definition 238). The separating function itself, has to be defined by the wages, and
the occupational choice constraint forces all possible separation functions to have the same
structure (Definition of C in 4.13). This idea has to be coupled with the fact that everyone
will be employed, both of this conditions determine the set on which the optimization is done.

• In section 4.2.6 we propose a slightly different model (4.2.6). In the first model, as all the
optimizations are done at the same time, agents don’t really know the wages and so they
happen to be guessing what the best paying job given their skills is. This guess is eliminated
by the 2-step program. This second problem gives the agents a possible wage structure on
which they base their decision for a role and then optimizes over all feasible wage structures.
We show that these problems are equivalent in 4.2.6.

• For section 251, we establish existence of equilibrium for the 2-step model. In order to do
this, several continuity properties need to be shown. These properties also explain how the
model interacts to small changes. For example, in Lemmatta 254 and 257 we see that if a wage
structure is changed a little, one does not expect agents to radically change their decisions, on
the contrary one expects the new distribution of roles to be similar. This is the content of this
section.

• As the draft by [Siow-Mak2016], in the section 4.2.9 we derive first order conditions on the
separation function (4.22). We learn that the rate of change of the line that separates people
into jobs depends on the amount of change of production with respect to each skill and the
rate of change of salaries. We also obtain a expected result: the change in wages depends
on the partial derivative of revenue with respect to the corresponding skill, evaluated at the
matching.

• We explore an optimality conjecture: Conjecture (4.26). One can expect the optimal wage
schedule to be stable. That is, once agents see the optimal salaries in the market, they will
adjust to use that schedule. We formulate this conjecture rigorously and show some progress
towards it (Observation 265).

• In section 4.5 we look at the Social Planner’s problem of [McCann-Trokhimtchouk] and
compare it to our model. The model in [McCann-Trokhimtchouk] allows a general framework
in which revenue depends on both skills of both agents, in this context the twist condition
(4.39) says that a match on which a manager and an assistant are better in both skills is better
for production. Nevertheless, our model has the singularity that once both agents are hired,
the skill for the job they are not performing is irrelevant. This is a reasonable assumption,
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economies on which both jobs are differentiated need to find good couplings but the roles for
the hired pairs are truly distinguished. This formulation differentiates from said previous work
(as seen in Proposition 271).

• In section 4.3 we study what happens with pure interaction and we note that the formulation
is an actual generalization of the previous models as in general the separation function need
not to be linear.

• After, we show mathematically that if two economies are very similar (in appropriate sense)
the resulting distribution of roles will also be similar (Theorem 266). We do this by showing
that the change in separation function has to be small and we quantify this change in terms of
the difference of this two markets.

• Finally, we provide a bound on the wage inequality (4.37). We show that the difference of
salaries between a manager and an assistant is at most a factor of the maximal change in
revenue by one skill multiplied by how different a person match is to a person who you would
be indifferent to swapping jobs with.

4.2 Generalized Roy Model
The seminal model of Roy [Roy] is a simple community where workers will decide on their own
whether to fish or hunt. The fundamental idea is to allow ourselves to think about the amount of
rabbits hunted or the amount of fish in terms of a numerical pair that represents both skills of each
person. In [Heckman-Honore] we see the first mathematical modelling of the ideas from [Roy]. The
model presented here is called the generalized model of Roy for matching, as we start from the
fundamental idea in [Roy] that the skills of the workers are quantified by numerical values, that the
workers will decide their occupation by themselves but we add the constraint similar to [McCann-
Trokhimtchouk] that two workers are needed in every firm and each of the workers will do a single
job. Our work differs from [Heckman-Honore] in the sense that we do not assume any linearity in
how the distribution of workers will be split and we incorporate the occupational choice as a contraint.

4.2.1 The model
We assume there exists a group of people which represents the labor force and want to be employed.
Every person in this labor force will be required to get one of two jobs: Manager or Assistant.
Manager and assistant represent a key and a secondary role, respectively. We assume that every
worker is capable of doing any of the jobs and will decide on their own which job to take. Each
worker is represented by a skill set, an ordered pair of numerical values (k, s) on which the first
coordinate represents the level of skill of the worker for performing the key occupation (manager)
and the second coordinate represents the skill of the person for the secondary job (assistant). Notice
that this assumption can be relaxed to a multi-dimensional skill set (k̃, s̃) ⊂ Rn×m without much
loss of generality as explained in [Siow-Mak2016]. We do not handle such generalization in this
document.
We model a labor force by a distribution R ∈ Pac,c(R2) where Pac,c(R2) is the set of Borel probability
measures on R2 that are absolutely continuous with respect to the Lebesgue measure and have
compact support. We denote by R the density function of R.
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We assume the existence of a production function F : R2 → R where the value F (k, s) represents
the amount of money generated by a couple of workers where the worker performing the key role
has skill k to do the job and it’s pair has skill s to do the secondary occupation.

Definition 234. (Strict supermodularity)
Let F : R2 → R, we say F is strictly supermodular if

F (c, d) + F (a, b)− F (a, d)− F (c, b) > 0 whenever a < c, b < d. (4.1)

If we assume that F is twice differentiable, then supermodularity implies that the cross partials
are positive and so by addition of a constant we can assume without loss of generality that

∂1F (k, s) > 0, ∂2F (k, s) > 0 R− a.e. on (k, s). (4.2)

From now on, we always assume our production F is strictly supermodular and satisfies (4.2). In
economic terms, strict supermodularity of the production function represents an economy on which
strictly better skills yield strictly better monetary outputs for the firms.
Under a strictly supermodular production function F , the Generalized Roy model aims to study
wages and distribution of occupations among the labor force R on which:

• Every worker will be employed.

• Firms will hire by pairs. For each firm, one worker will be a manager and the other one will
be an assistant.

• Each worker will attempt to maximize salary.

• Each firm attempts to maximize the difference between production and wages paid.

• There is competitive equilibrium, differentiation and no entry barrier among firms so that
every level of skills will be employed by a firm.

4.2.2 Occupational choice
Suppose that the salary for performing the managing role with a skill level of k is given by π(k)
and the salary for performing the assistant role with a skill level of s is w(s). Given an earnings
schedule, an agent of skill (k, s) will evualate

max{π(k), w(s)}

to decide what role to work in.
Competitive occupational choice is the economic model on which the person with skill set (k, s) will
try to dedicate to the highest paying job, that is, manager if π(k) > w(s) and assistant if w(s) > π(k).
The person will be indifferent between jobs if π(k) = w(s). Observe that if π,w are given, then each
worker can just evaluate it’s own skill set and determine what job to do. Nevertheless, the earning
schedules observed in the market will depend on the labor force R, on the production function F ,
on the distribution of both occupations and the possible matchings. This implies that the wages
structures, π and w are not known a priori and have to be determined during the optimization
process.
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4.2.3 Competitive equilibrium for firms
Each firm will attempt to maximize F (k, s) − π(k) − w(s) among the pair of skills it is able to
employ. If there is competitiveness among firms, for each available skill set on the final distribution
of occupations, there will exist a firm willing to employ that skill set pair, yielding the problem

max
(k,s)∈spt(R)

F (k, s)− π(k)− w(s).

The objective of the model presented in this document is to couple occupational choice as in Section
4.2.2 with firms in a competitive equilibrium as in Section 4.2.3. In order to do this, we study the
possible earning schedules in the optimals for both problems, for which it is convenient to recall the
F -transform, a tool from optimal mass transport theory,

Definition 235. (F -transform)
Given π : Ω1 → R, we define πF , the F -transform of π via

πF (s) := sup
k∈Ω1

{F (k, s)− π(k)}. (4.3)

Definition 236. (F̃ -transform) Given w : Ω2 → R, we define πF , the F̃ -transform of π via

wF̃ (s) := sup
s∈Ω2

{F (k, s)− w(s)}. (4.4)

The difference between F -transform and F̃ -transform is the set on which we maximize and the
coordinate used, when there is no confusion on the domain of a function we use F̃ and F to denote
the same transform, that is, we write wF for an F̃ -transform as long as there is no confusion that
the domain of w is a subset of Ω2.
From the definition of F -transform, we have π(k) + πF (s) ≥ F (k, s) for any pair (k, s) on which
π and πF are defined. Note also that the definition of F -transform depends on the domain of the
original function Ω1.

Remark 237. (On the definition of Ω1 and Ω2)
The definitions of the F and F̃ transforms involve two arbitrary sets Ω1 and Ω2. We state it in this
way for technical reasons but after the right Lemmas have been proved we will use the projections
of spt(R) onto coordinates instead of Ω1 and Ω2, respectively. That is, after some mathematical
reasults are obtained we will set Ω1 = spt(P1#R),Ω2 = spt(P2#R) where P1(x, y) = x, P2(x, y) = y.

Definition 238. (Separation of wages)
Given Ω1,Ω2 ⊆ R, and functions π : Ω1 → R, w : Ω2 → R where w is invertible in π(Ω1) we say
ϕ : {k ∈ Ω1 : π(k) ∈ w(Ω2)} → R separates π and w if for every k ∈ Dom(ϕ),

ϕ(k) = w−1(π(k)). (4.5)

The function that separates is called the separation function for (π,w). In the definition Ω1,Ω2 are
just two subsets of R and the domain of the separation function is well-defined. If w = πF , we
denote ϕ = w−1 ◦ π simply by ϕπ when the domains are specified.
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Lemma 239. (Reformulation of wages and separation)
Given π : Ω1 → R, w : Ω2 → R strictly increasing functions, a function ϕ is the separation function
for (π,w) from Definition 238 at k ∈ {k̃ ∈ Ω1 : π(k̃) ∈ w(Ω2)} if and only if max{π(k), w(ϕ(k))} =
π(k) = w(ϕ(k)).

Proof. For the first direction if ϕ = w−1(π) (well-defined as w is strictly increasing), then max{π(k), w(ϕ(k))} =
max{π(k), w(w−1(π(k)))} = max{π(k), π(k)} = π(k) = w(w−1(π(k))) = w(ϕ(k)).
The reverse implication follows directly from the condition π(k) = w(ϕ(k)) and the fact that w is
invertible.

Definition 240. (Separation 1/2-cut)
Let R ∈ Pac,c(R2) with density R, let (π,w) be a pair of strictly increasing functions as in Lemma
239, if ϕ is the separation function for (π,w), we say that ϕ 1/2-cuts R if∫

R

∫ ϕ(u)

−∞
R(u, v)dvdu = 1/2. (4.6)

Observe that this definition only makes sense when ϕ is defined in the correct domain (this
technical point is dealt with in Assumption 242). In the general case, to avoid the use of ϕ and it’s
domain, given an earnings schedule (π,w) we say the earning’s schedule 1/2-cuts R if∫

R

∫
1{π(u)≥w(v)}(v)R(u, v)dvdu = 1/2. (4.7)

where 1{π(u)≥w(v)}(v) denotes the indicator of the set of points v such that π(u) ≥ w(v) at level u.
The two definitions are equivalent via Lemma 239.
The 1/2-cut separation refers to the idea of splitting the mass exactly in half. In this case, ϕ
separates the wages (by definition) and it’s image splits the mass in halves. A separation function
is interpreted as a divisory line between the two groups of the population. Before we set up the
model, we need one more definition. The push-forward measure familiar in the context of optimal
transportation of mass is a useful tool to conceptualize mass-balance.

Definition 241. (Push-forward)
Given a Borel measure ν and a borel function f : R→ R the push-forward measure of ν by f denoted
f#ν is defined for every borel set A via

f#ν(A) := ν(f−1(A)).

To fix notation we write P1(x, y) = x, P2(x, y) = y the coordinate projections and ||F ||∞ to
denote the supremum over the set spt(P1#R)× spt(P2#R), that is

||F ||∞ := sup
(k,s)∈spt(P1#R)×spt(P2#R)

|F (k, s)|

and ||·||∞ to denote the supremum of a function over it’s domain.
As mentioned in Remark 237, from now on we always assume Ω1 = spt(P1#R),Ω2 = spt(P2#R)
for the definitions of F -transforms and separations (Definitions 235 and 238).
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Remark 242. (ϕ and it’s domain)
According to definition 238, in order to define ϕ we need to be able to evaluate (πF )−1 on π(k).
As stated, it is not a general condition nor (to our knowledge) something that can be derived from
initial data R, F . Because of the use of separation functions in literature we state the possibility of
evaluation as an assumption, we explain in section 4.2.5 the consequences of this assumption.

Definition 243. (Market-feasible separation)
We say that a separation function ϕ (as in Definition 238) is market-feasible (with respect to R) if
r1, r2 ∈ Dom(ϕ) i.e. for the wages π,w that ϕ separates, there exist s1, s2 ∈ spt(P2#R) satisfying

π(r1) = w(s1), π(r2) = w(s2). (4.8)

Assumption 7. (Connectedness of the projected measure and feasibility)
We assume that there exist r1, r2 ∈ R such that spt(P1#R) = [r1, r2] and every earnings schedule π
is market-feasible according to Definition 243.

Definition 244. (Occupational distributions induced by separation)
Let R ∈ Pac,c(R2) with density R, given a continuous, ϕ : spt(P1#R) → R the occupational
distributions induced by ϕ are the measures whose distribution functions are given by the following
formulas:

Hϕ(k) =
∫ k

−∞

∫ ϕ(k̃)

−∞
R(s, k̃)dsdk̃ (4.9)

Gϕ(s) =
∫ s

−∞

∫ ϕ−1(s̃)

−∞
R(k, s̃)dkds̃. (4.10)

The measure associated to Hϕ via Hϕ(k) =: µHϕ((−∞, k]) is called the distribution of the labor
force for the key occupation. The one associated to Gϕ corresponds to the secondary job. To simplify
notation we will not distinguish between Hϕ and µHϕ and will write dHϕ instead of dµHϕ . Exactly,
as before, according to Remark 242 it is not clear wether or not a separation function is defined
everywhere on the domain of π, in the case where it is not we instead write

H(π,w)(k) =
∫ k

−∞

∫
1{π(k)≥w(s)}R(s, k̃)dsdk̃ (4.11)

G(π,w)(s) =
∫ s

−∞

∫
1{π(k)≤w(s)}R(k, s̃)dkds̃. (4.12)

To further simplify notation, in the case where w = πF we write H(π,πF ) = Hπ and G(π,w) = Gπ.

Economic interpretation of distributions

Observe that if ϕ induces a 1/2-cut, this rewrites as Hϕ(R) = 1/2 and in that case by Fubini’s
theorem one obtains Gϕ(R) = 1/2 as well.

The idea is that Hϕ(k) should be interpreted as the amount of population that dedicates to the
key role having a skill lesser or equal than the value k. It is amount of workers willing to perform
the key role under the salaries (π,w) which have skill at most k.

The objective of the Generalized Roy model is to incorporate the most economical matching of
managers and assistants under competitive occupational choice and firm competitiveness.
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4.2.4 Formulation of the model
Problem 5. (Generalized Roy Model)
Given R ∈ Pac,c(R2) with density R : spt(R)→ R, a strictly supermodular function F : R2 → R the
Generalized Roy Model is the following non-linear optimization program:

sup
(ϕ,π,w,µ)∈C

{∫
F (k, µ(k))dHϕ

}
. (4.13)

where C is the set of quadruples (ϕ, π, w, µ) satisfying: π, ϕ ∈ C(spt(P1#R),R), w ∈ C(spt(P2#R),R), µ :
R→ R and

i. π = wF ,

ii. ϕ separates (π,w),

iii. ϕ 1/2-cuts R,

iv. µ#Hϕ = Gϕ (as measures according to Definition 241).

v. ||π||∞ ≤ ||F ||∞
A quadruple (ϕ̃, π̃, w̃, µ̃) ∈ C is called an equilibrium for the Generalized Roy model if it achieves the
supremum in (4.13).

The Generalized Roy model (5) differs from a usual Monge-Kantorovich optimal transportation
problem in the sense that the optimization involves the generation of earning schedules directly,
as π,w determine ϕ which in turn defines Hϕ and Gϕ which appear in the objective. This
apparent circularity stops us from applying the theory of optimal transportation ([McCann-Guillen],
[Villani2003]) directly. In section 4.2.6 we will show that the use of ϕ, π, w is somehow immaterial,
as we can reduce it only to dependence on π, given that w and ϕ can be determined by only knowing
π,R and F .
The idea to incorporate the pair (π,w) in the constraint set is motivated from the discussion in the
beginning of section 4.2.2. The earning schedules are not exogenous. The original Roy model assumes
ϕ to be linear, as one can see from the definition of occupational distributions in [Heckman-Honore].
This model makes no such assumption, motivating the name “Generalized Roy Model”.

Detailed review of the model

The supremum in (5) attempts to maximize total production for a distribution of skills Hϕ, at this
point the production in a firm corresponds to matching a worker with skill k to be manager with a
worker whose skill for the assistant role is µ(k). The matching function µ represents which worker is
matched with whom to work together. The integral is computed with respect to Hϕ as we have
to consider the total produced from all workers that will dedicate themselves to the manager role.
The total produced is the sum over all managers of the amount produced by the manager and the
assistant matched with them.
The separation function ϕ will be shown to be avoidable in section 4.2.6 but has a significant
economical interpretation: a person of skill k for the manager role, ϕ(k) is the skill for the assistant
role needed for this person to be indifferent between being a manager or an assistant. That is, every
worker whose skill set is of the form (k, ϕ(k)) is indifferent between being a manager or an assistant,
therefore one expects ϕ to be a certain kind of boundary separating both occupations.
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4.2.5 The set of constraints
In this section we analyze and explain every constraint in the definition of the set C from the model
(5). The objective is to give intuition on why each of this constraints is imposed and the implications
they have on the assumptions made.

Wages are revenue-conjugates

Given a possible earning schedule (π,w) the condition that firms will have profit but this profit
would potentially be zero in competitive equilibrium yields F (k, s) ≥ π(k) + w(s) from which we
know that F (k, s)− π(k) ≥ w(s) which in turn yields πF (s) ≥ w(s), as we will see in section 4.2.6,
the objective function increases as w increases, so πF is a feasible wage for the secondary role that
increases the total output. A similar argument to the one in [Villani2003, Theorem 1.14], for duality
of the Kantorovich problem allows us to reduce our search space to only F -conjugate pairs (functions
that are F -transforms of each other).
In this definition, the use of w−1 involves an apparent hidden assumption that w is strictly increasing,
nevertheless this presents no difficulties due to the following lemma:

Lemma 245. (Strict supermodularity yields strictly increasing F -conjugate wages)
If F is strictly supermodular as in Definition 4.1, then πF is non-decreasing for every function π.
Further if F is twice differentiable and π is continuous then πF is strictly increasing.

Proof. Given s > s′ we have π(k) + πF (s) ≥ F (k, s), consequently

πF (s) ≥ F (k, s)− π(k) > F (k, s′)− π(k)

Taking the supremum yields πF (s) ≥ πF (s′).
In the twice differentiable case, by envelope theorem one has

(πF )′(s) = ∂2F (k∗(s), s) > 0

by the assumption of (4.2) where k∗(s) attains the maximum from Definition 235 and continuity of
π.

Separation of wages

The definition of ϕ = w−1 ◦ π helps to have a better interpretation. In section 4.2.6, the model is
shown to be equivalent to a formulation without ϕ even though the term w−1 ◦ π is essential as
it enforces occupational choice as shown in Lemma 239. The imposition of w−1 ◦ π to determine
distributions of occupations enforces occupational choice. In this way, looking for optimal (π,w)
will yield distributions that satisfy occupational choice in the sense of section 4.2.2.

Separation of wages and the technical assumptions

During the development of this work we realized that the definition of the separation of wages is
somewhat unjustified for the modelling. It turns out that one can define a generalized roy model by
looking only at salaries schedules (π,w) without ever defining ϕ. The use of the separation function
is common in literature (see [Siow-Mak],[Siow-Mak2016],[Roy]). In order to obtain existence and
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continuity results an assumption must be made. Either we impose a technical condition that ensures
separation functions are well defined (Assumption 8 or Assumption 7 combined with Definition 243)
or we impose a condition on the rate of growth of earning schedules (Assumption 9).
Assumptions 8 and 7 allow us to have a better economical interpretation and link our results with
the ideas already present in literature. The assumption 9 allows us to show existence and uniqueness
in other cases. We evaluate both possibilities throughout this work.

Separation cuts the labor force in half

The fact that ϕ (in defect w−1 ◦ π) achieves a 1/2-cut of R represents the fact that exactly half of
the workers will be managers and half will be assistants. If this constraint were not placed, one
would not obtain a one-to-one map for matching. Models of many-to-one are discussed in section
4.7.

Mass Balance

The condition µ#Hϕ = Gϕ ensures the matching is one-to-one, this allows each manager to have
exactly one assistant associated and every firm to get a manager-assistant pair to hire.

4.2.6 The 2-step model
In this section we rewrite the Generalized Roy model (Problem 5) as a 2-step problem. We show
that the model es equivalent to considering the wage structure as given, maximizing production
via optimal matching and then maximizing over feasible earning schedules. This means that in
competitive equilibrium, the determination of optimal wages happens in a way that is equivalent to
the occupational choice given matching.

The condition of market-feasibility imposed via Definition 243 is the economic idea that the worst
and best k-workers will be matched to someone instead of left to work by themselves. Mathematically,
the concept allows separation functions to have the same domain and therefore be compared. An
interesting line of research can be the relaxation or removal of this condition, where one would
encounter the difficulty of multiple domains of separations. Under this setting, one would need to
not compare separation functions in a pointwise matter (as we do later) but maybe the use of a
different distance (like Lp(P1#R)) would suffice. More on this is explained in Section 4.7.3.

Lemma 246. (Market-feasibility and domains)
Let ϕ : C(spt(P1#R) → R, if ϕ is market-feasible (as in Definition 243) separation function for
(π,w) a pair of continuous functions, then Dom(ϕ) = [r1, r2]

Proof. Notice that ϕ = w−1 ◦ π, which means ϕ is continuous as a composition of continuous
functions. Because [r1, r2] is connected so is π([r1, r2]) and by continuity so is w(π([r1, r2]). Hence
Dom(ϕ) is connected and r1, r2 ∈ Dom(ϕ) giving the result.

Problem 6. (2 step problem with explicit separation)
Given a strictly supermodular function F and a labor force R as in (5), we define the 2-step program
with explicit separation to be the non-linear problem:

sup
(ϕ,π,w)∈C2

{
sup

µ#Hϕ=Gϕ

{∫
F (k, µ(k))dHϕ

}}
(4.14)
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where C2 is the set of triples (ϕ, π, w) of continuous functions, π : spt(P1#R)→ R, w : spt(P2#R)→
R, ϕ : R→ R and

i. π = wF ,

ii. ϕ = w−1 ◦ π(k),

iii. ϕ 1/2-cuts R,

iv. ||π||∞ ≤ ||F ||∞,

Problem 7. (2 step problem for earnings schedule)
Given a strictly supermodular function F and a labor force R as in (5), we define the 2-step program
to be the non-linear problem:

sup
π∈C3

{
sup

µ#Hπ=Gπ

{∫
F (k, µ(k))dHπ

}}
(4.15)

where C3 is the set of continuous functions π : spt(P1#R)→ R such that

i. There exists w : spt(P2#R)→ R satisfying π = wF ,

ii. (πF )−1 ◦ π 1/2-cuts R,

iii. ||π||∞ ≤ ||F ||∞

here Hπ and Gπ are the induced measures from Definition 244 using (πF )−1 ◦ π as separation
function.

Observe that the only difference between Problem 6 and Problem 7 is that ϕ is explicit in the
former but not in the latter. This technicality is essential to note that the set of constraints is not
on really triples as one may expect from looking at Problem 6 but only in the wage structure as it is
evident in Problem 7. The fact that Problem 6 and 7 are equivalent is evident by the definition of ϕ
in both cases.
We turn our attention to the relation between these two problems and the generalized Roy model
(Problem 5).

Equivalence

Theorem 247. (Equivalence of the problems)
Given a strictly supermodular production function F and a labor force R ∈ Pac,c(R2), Problem 5,
Problem 6 and Problem 7 are equivalent, i.e.

sup
(ϕ,π,w,µ)∈C

{∫
F (k, µ(k))dHϕ

}
= sup

(ϕ,π,w)∈C2

{
sup

µ#Hϕ=Gϕ

{∫
F (k, µ(k))dHϕ

}}

= sup
π∈C3

{
sup

µ#Hπ=Gπ

{∫
F (k, µ(k))dHϕ

}}
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Proof. It is clear that Problem 6 and Problem 7 are equivalent so it is enough to show that Problem
5 and 7 are equivalent. Given (ϕ, π, w, µ) ∈ C, clearly π ∈ C3 as w satisfies the constrain wF = π, as
it is imposed in C. Again, feasibility means µ#Hπ = Gπ as Hπ = Hϕ by definition. Hence,∫

F (k, µ(k))dHϕ ≤ sup
µ#Hπ=Gπ

{∫
F (k, µ(k))dHϕ

}
≤ sup
π∈C3

{
sup

µ#Hπ=Gπ

{∫
F (k, µ(k))dHπ

}}
As this happens for every (ϕ, π, w, µ) ∈ C taking the supremum on C yields that the supremum in
Problem 5 is bounded above by the suprema in Problem 7.
For the reverse inequality, take π ∈ C3, then there exists w with wF = π and set ϕ = w−1 ◦ π, well
defined as noted in Lemma 245, then (ϕ, π, w, µ) ∈ C and hence∫

F (k, µ(k))dHπ ≤ sup
(ϕ,π,w,µ)∈C3

{∫
F (k, µ(k))dHϕ

}
Taking the suprema in the order of Problem 7 yields the result.

Remark 248. Although the proof is relatively simple, the value of Theorem 247 is 2-fold: firstly,
it simplifies the problem of the Generalized Roy Model into a two-step program on which we can
identify a Monge-Kantorovich optimal transport problem in usual form in the inner problem and
secondly it provides the sanity check that it is indeed the same to think about the matching given the
earning schedules as our intuition predicts.

Interpretation

Theorem 247 allows us to conclude that the generalized Roy model equilibrium yields the same
equilibrium of looking at the occupational choice problem and then optimizing over possible earning
schedules. The original formulation on the quadruple does not allow to apply the results developed
over the last decades from the theory of transportation, while the 2-step reformulation does. In
the community where workers are deciding between being managers or assistants, they can plan by
finding their optimal match first for every earning schedule and then finding the earning schedule
that maximizes the total output. In this way, each individual could potentially plan for their own
occupational choice, knowing that maximizing over earnings will yield the “simultaneous” equilibrium
from problem 5.
The main motivation for establishing Theorem 247 is that we can now make use of the framework
developed in recent years in the study of the Monge-Kantorovich problem.

Duality

In order to take advantage of the technicality provided by Theorem 247, we start by rewriting the
duality theorem for the Monge problem, as in [Villani2009] Theorem 5.3

Theorem 249. (Kantorovich Duality)
Given F strictly supermodular and R ∈ Pac,c(R2), let π : spt(P1#R) → R be given and suppose
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wF = π a.e. for some w : spt(P2#R)→ R, if we set ϕ = w−1 ◦ π we have

sup
µ#Hϕ=Gϕ

∫
F (k, µ(k))dHϕ = sup

γ∈Γ(Hϕ,Gϕ)

{∫
F (k, s)dγ

}
= inf
φ∈C(spt(P1#R))

{∫
φdHϕ +

∫
φF dGϕ

} (4.16)

(4.17)

where Γ(Hϕ, Gϕ) is the set of measures in the product space with marginals Hϕ and Gϕ respectively.

For a proof see [Villani2009, Theorem 5.3].

Existence and Uniqueness

Theorem 250. (Optimality on Monge-Kantorovich)
The F -optimal transport map µ for the Monge-Kantorovich problem between ν1 and ν2 satisfies

π(k) + πF (µ(k)) = F (k, µ(k)) ν1 − a.e. (4.18)

For a proof see [Villani2009, Theorem 5.10].
In this section we explore whether the problem 5 has a unique solution or not. We do this by
exploiting the knowledge of existence and uniqueness on the inner problem of Problem 6 and then
appealing to Theorem 247.

Theorem 251. (Existence)
Under either the assumption 8 or assumption 9, if F is twice differentiable and super-modular and
R ∈ Pac,c(R2) then Problem 5 has a solution.

Before we write the proof of the Theorem we need some Lemmata.

Lemma 252. (F -transforms are equi-Lipschitz)
Let π,w be such that π = wF , then π is Lipschitz with Lipschitz constant at most sup

y
|DxF (x, y)|.

For a proof see [McCann-Guillen, Lemma 3.1].

Lemma 253. (Pointwise uniform bound)
The set C3 is pointwise uniformly bounded.

Proof. Take π ∈ C3 by definition of the set C3, π(x) ≤ ||F ||∞ everywhere on the domain of π. This
bound is uniform as it does not depend on π nor w.

Lemma 254. (π → w continuity)
Let π, π̃ ∈ C3 with wF = π and w̃F = π̃, for every ϵ > 0 there exists δ > 0 such that ||π − π̃||∞ < δ
then ||w − w̃||∞ < ϵ

Proof. Given any y ∈ spt(P2#R), note that

sup
x
{F (x, y)− π(x)} − sup

x
{F (x, y)− π̃(x)} ≤ sup

x
{π̃(x)− π(x)} ≤ ||π − π̃||∞

So setting δ = ϵ finishes the proof.
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Observe that the proof of Lemma 254 indicates that Im(π̃F ) ⊆ {w1 ∈ R : |w − w| < δ,w ∈
Im(π̃)} =: Im(πF )δ. According to Remark 242, separation functions may not share a full domain.
The fact that two different separation functions can not be compared in supremum norm is a
technical liability.Observe that this assumption is implicit in the formulation of the model by [Roy]
and [Siow-Mak]. (See for example the definition of separation function on [Siow-Mak]).

Assumption 8. (Uniformity of Domains)
Assume that for every π ∈ C3, if ϕ is the separation function induced by (π,w) then Dom(ϕ) =
spt(P1#R), i.e. for every k ∈ spt(P1#R) there exists (a unique) s ∈ Dom(w) such that π(k) = w(s).

The assumption 8 will allow us to show continuity of the Roy Model in the sense that small
changes in the earning’s schedule will correspond to small changes in the solution. This continuity is
done via the ||·||∞ norm for which we need to be able to compare separation functions everywhere.
One can argue that the assumption can be avoided by the introduction of a different norm to
evaluate the differences of separation functions (for example an LpP1#R norm, we leave this for future
work or other reasearchers and explain further details in section 4.7.

Remark 255. (Assumption 7 and Definition 243 ⇒ 8)
Observe that Lemma 246 shows that under Assumption 7 if ϕ is market-feasible (by definition 243),
the domain of all separation functions is [r1, r2] which in particular yields Assumption 8.

4.2.7 The restricted version of the problem
Whenever we add the Assumption 8 to the generalized Roy Model we call it the restricted Generalized
model. We note also that this may not be the only way to avoid such problem. We observe that this
assumption on the earning schedules allows us to study general economies and general populations,
nevertheless making assumptions on the population or the production function can lead to similar
conclusions via different techniques. We explore the idea of restricting the production functions
further to not assume the uniform domains in section 9.

Lemma 256. (Continuity of the inverse of w)
Under Assumption 8, let π ∈ C3 and w such that wF = π, for every ϵ > 0 there exists δ > 0 such
that every w̃ ∈ B||·||∞

δ (w) such that

||w̃−1 − w−1||∞ < ϵ. (4.19)

Proof. Given ϵ > 0 let δ be the one from the uniform continuity of w, if y is fixed in Range(w), note
that by w̃ ∈ Bδ(w) we get

w−1(y − δ) ≤ w̃−1(y) ≤ w−1(y + δ)
Substracting w−1(y) in all terms we get

w−1(y − δ)− w−1(y) ≤ w̃−1(y)− w−1(y) ≤ w−1(y + δ)− w−1(y)

By definition of δ the suprema on both bounds approaches 0 as ϵ→ 0 which yields the result as the
definition of D in terms of w and w̃ ensures existence of the inverses.

Lemma 257. (π → ϕ continuity)
Under Assumption 7, given ϵ > 0 and π ∈ C3, there exists δ > 0 such that ||π − π̃||∞ < δ implies
||ϕπ − ϕπ̃||∞ < ϵ where ϕπ and ϕπ̃ are from Definition 238.
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Proof. Given π, π̃ ∈ C and wF = π, w̃F = π̃ by triangle inequality,

|w−1(π(x))− w̃−1(π̃(x))| ≤ |w−1(π(x))− w−1(π̃(x))|+ |w−1(π̃(x))− w̃−1(π̃(x))|.

Given ϵ > 0 we define δ < min{δ1, δ2} where δ1 is from uniform continuity of w−1 and δ2 from
Lemma 256. If π(x) belongs to the image of π̃, using assumption 7.

Lemma 258. (d2-continuity of the split measures)
Take (ϕ, π, w), (ϕ̃, π̃, w̃) satisfying the constraints of (4.2.6) if we assume 8 then for every ϵ > 0 there
exists δ > 0 such that if

||ϕ− ϕ̃||∞ < δ

then
d2(Hϕ, H ϕ̃) < ϵ.

Proof. Note that we can simply compute the difference of integrals∣∣∣∣ ∫ k

−∞

∫ ϕ(k̂)

−∞
R(k̂, s)dsdk̂ −

∫ k

−∞

∫ ϕ̃(k̂)

−∞
R(k̂, s)dsdk̂

∣∣∣∣
≤ ||R||∞,R

(
||ϕ− ϕ̃||∞,R1diam(R1)

)
where the ∞, R norms are the suprema on spt(R) and over the projection to the first coordinate
which are compact sets so continuity of ϕ and R yield an uniform estimate on accumulation functions
of Hϕ and H ϕ̃. Because spt(R) is compact Hϕ and H ϕ̃ also have compact support so the L∞ bound
gives an L1 bound which translates to a d1-bound for the measures and by compactness of spt(R)
again we obtain the desired d2 bound. See [Villani2003] Chapters 2 and 8 for the d1 − d2 relation
under compactness.

4.2.8 What this restriction does
As explained in the previous section, the assumption 8, of uniformity of domains is not inherent
to the original model of Roy. It is a technical hypothesis to reconstruct continuity using the
supremum norm. We formulate here another assumption and explore conditions that result on such
an assumption that would yield a π → Hπ continuity as Lemmata 257 and 258. Here we avoid the
use of ϕ and it’s domain by using the second equivalent definition of Hπ given in definition 244.

4.2.9 Restrictions on production functions and populations instead
We have discussed Assumptions 7 and 8 as they played a significant role in previous versions of
the Roy model ([Siow-Mak], [Roy]). This assumption has been helpful to obtain continuity of the
problem. In this section we explore a different assumption that can be inferred more directly from
initial data and is also sufficient for the continuity conditions as in Lemma 258. In this section we
focus on the formulation of the measures (244) that don’t depend on a separation function (4.11).
The idea is that a uniform lower bound on derivatives of earning schedules for the secondary role
yields the same continuity estimates but we are able to obtain such bounds in more general situations
where ϕ may not be everywhere defined.
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Assumption 9. (Uniform lower bound on F -transforms via F )
We assume that there exists a positive constant C > 0 such that for every π ∈ C3

(πF )′(s) ≥ C. (4.20)

for every s for which the derivative is defined.

Economically, assumption 9 says that the rate of change of salaries of the secondary role is
bounded for all possible salaries.

Lemma 259. (π → Hπ-continuity)
For every ϵ > 0, there exists δ > 0 such that if ||π − π̃||∞ < δ then d2(Hπ, H p̃i) < ϵ

Proof. By Lemma 252, we know πF is a.e. differentiable therefore We claim for any ϵ > 0, there
exists a δ > 0 s.t. if ||π − π̃||∞ < δ then ||fHπ

− fHπ̃
|| < ϵ where f with a subscript refers to the

density. Let ϵ > 0 be given, first note that Hπ −Hk̂ can be written as the integral over k̂ of the
skill density R times the difference in the two indicator functions of he sets where π(k̂) > πF (s) and
π̃(k̂) > π̃F (s) just as in equation (4.11).This difference is nonzero only when exactly one condition
is true at a given point. Since for a given k̂, the left hand sides in the indicator functions in (4.11)
are fixed and the right hand sides are increasing, the integrand is nonzero on an interval (s0, s1).
Without loss of generality suppose that at s0 we have π(k̂) = πF (s0) but π̃(k̂) > π̃F (s0). In this
case,

π̃(k̂)− π̃F (s0) ≤ ||π̃ − π||∞ + |π(k̂)− π̃F (s0)|
= ||π̃ − π||∞ + |πF (s0)− π̃F (s0)| ≤ ||π̃ − π||∞ + ||πF − π̃F ||∞ ≤ 2||π̃ − π||∞

Therefore if π̃F has derivative bounded below by C > 0, we will have

π̃(k̂)− πF (s0) ≤ 2||π̃ − π||∞ ≤ π̃F (s0 + 2||π̃ − π||∞/C)− π̃F (s0),

which means
π̃(k̂) ≤ π̃F (s0 + 2||π̃ − π||∞/C)

i.e. s1 ≤ s0 + 2||π̃ − π||∞/C. Therefore,

||Hπ −Hπ̃||∞ ≤
∫ s1

s0

R(k̂, s)ds ≤ 2C||R||∞ · ||π̃ − π||∞

a bound independent of k̂. Therefore we can choose δ to be ϵC/2||R||∞.

The previous proof seems rather unintuitive because we are only using the low-regularity estimate
of π and π̃ being differentiable almost everywhere, observe that by the mean value theorem if every
element of C3 were continuously differentiable we could obtain the same conclusion by mean value
theorem:

|s1 − s2| =
∣∣ s1 − s2

πF (s1)− πF (s2)
∣∣π(s1)− π(s2)| < ||π − π̃||∞

C
< δ/C

which yields the π → Hπ continuity by the same argument as above. We specifically don’t assume
that the elements in C3 belong to C1(spt(P1#R) as the regularity we use is inherent from Lemma
252.
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Theorem 260. (Stability of optimal Transport)
Let Fn → F uniformly, where each Fn is as in Definition 4.1 and satisfying the assumption (4.2),
and {ρn}, {νn} two sequences of probability measures converging weakly to µ and ν respectively,
suppose that there exists an Fn-optimal transport map Tn between ρn and νn and assume there exists
an optimal transport map T between ρ and ν then as n→∞,∫

F (k, Tn(k))dρn →
∫
F (k, T (k))dρ

For a proof see [Villani2009, Theorem 5.20].

Corollary 261. (Stability of optimal transport maps)
Assume that {Fk}k∈N is a sequence of production functions which are supermodular and twice
continuously differentiable and so is F , such that Fk

||·||∞−−−→ F , let νn
d2−→ ν and ρ ∈ P(R) be fixed,

then the Fk-optimal transport map µk between ρ and νk converges in ρ-probability to µ, the unique
F -optimal transport map between ν and ρ, that is for every ϵ > 0 we have

ρ ({k : |µ(k)− µn(k)| > ϵ}) n→∞−−−−→ 0. (4.21)

For a proof see [Villani2009, Corollary 5.23]. With all the Lemmata in place, now we can write a
proof for Theorem 251.

Proof of Theorem 251. Inner problem has a unique solution via Brenier’s Theorem, the map

π → sup
µ#Hπ=Gπ

{∫
F (k, µ(k))dHπ

}
is continuous in the uniform topology under the assumptions 8 or 9 via Lemmatta 258 or 259
respectively. Let us show that C3 is nonempty. Let Dc := {w ∈ C(spt(P2#R)) : ||w||∞ ≤ c}
and define A to be C3 without the condition that the function 1/2-cuts R , that is A = {π :
spt(P1#R)→ R : ∃w, π = wF , ||π||∞ ≤ ||F ||∞}. Dc is convex and therefore connected, furthermore
it maps continuously to a subset Pc of A via the F transform as long as c is small enough
(according to Lemma 254). Thus Pc is connected. Also note that if w = 0 ∈ Dc is chosen,
then π(k) = sup

s∈spt(P2#R)
F (k, s), and so the resulting Hϕ(R) = 1 and if w = sup

k∈spt(P1#R)
F (k, s) ∈ Dc

then π(k) = sup
s∈spt(P2#R)

F (k, s)− F (k∗, s) where k∗ is the maximum of k in spt(P1#R). Then Hϕ

= 0 on R. But Hϕ is a continuous function on A (according to Lemmata 257 and 258), hence we
have exhibited two functions in a connected subset Pc which map to 0 and 1. Therefore there exists
a function in Pc which maps to 1/2 and is therefore an element of C3. Now by Lemma 252 the set
C3 is equi-Lipschitz and by Lemma 253 point-wise bounded and so by Arsela-Ascoli it is relatively
compact in the uniform topology and hence achieves the supremum by extreme value theorem.

Observation 262. A simpler version of the intermediate value theorem can be used when more
restrictions on the revenue function are imposed. If F satisfies the (A3S) condition from [McCann-
Guillen], then by [McCann-Guillen, Theorem 5.1] the set of F−convex functions is convex itself and
intermediate value theorem van be applied in a much simpler way. In general the (A3S) condition
is a differential equation on the fourth partials of F which is a-priori not assumed here but yields
regularity of optimal transport maps, see [McCann-Guillen] or [Villani2009] for more details.
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First order conditions for optimality

In this section we explore how the optimal quadruples on Problem 5 depend on the problem data. In
this section we assume all variables are continuously differentiable even though form some variables
as π,w only almost everywhere differentiability is ensured by Lemma 252. We assume continuously
differentiable throughout but most of the results can be generalized by the concept of approximate
differentiability.

Proposition 263. Let F and R satisfy assumptions of Problem 5, then for the optimal quadruple
it holds

ϕ′(k) = F1(k, µ(k)) + F2(k, µ(k))µ′(k)− w′(µ(k))µ′(k))
w′(w−1(F (k, µ(k))− w(µ(k)))) . (4.22)

where F1 and F2 denote the partials with respect to the first and second coordinate respectively.

The proposition is a direct computation. But the economical interpretation of this derivative is
particularly interesting: the optimal salary paid in the labor market for workers with skill k depends
not only on the production achieved by their optimal matching but also on how difficult it is to
change the pairs (µ′) at a certain level. Note that one can find this computation in [Siow-Mak].

Proposition 264. Let F and R satisfy assumptions for Problem 5, then for the optimal quadruple
it holds that

π′(k) = F1(k, µ(k))
w′(s) = F2(µ−1(s), s)

(4.23)
(4.24)

for k ∈ spt(H) and s ∈ spt(G). If there exists an interval [a, b] ⊇ spt(H) on which µ is defined
Lebesgue a.e., we may integrate to obtain the following expression for the wages:

π(k) = ck +
∫ k

a

F1(k̂, µ(k̂))dk̂ (4.25)

where ck is an integration constant. The analogous result holds for w(s). For example, this condition
holds for k if the projection of spt(R) to the k-axis is an interval and the ”lower envelope”, defined
as min{s : (k, s) ∈ spt(R)} is non-increasing in k.

Proof. We prove this for π(k) as the result for w follows by symmetry. Recall we have π(k) =
sup

s∈spt(G)
{F (k, s)− w(s)} for k ∈ spt(H) by duality of wages. By (4.18) this supremum is attained by

µ(k). Since π(k) is differentiable and F (k, s)− w(s) is differentiable with respect to k, the envelope
theorem implies that π′(k) = F1(k, µ(k)). The result follows by integrating. The last condition
implies that spt(H) is an interval. Since ϕ is strictly increasing.

4.2.10 An optimality conjecture
The following conjecture arises from discussions with Dr. Siow and the fact that the 2-step problem
rewrites the model in [Siow-Mak2016]. The 2-step problem is expected to be wage-optimal in the
sense that if agents decide after they see wages and wages are maximal, those should correspond to
the actual earnings. In our context, we formulate this economical idea as follows.

146



Conjecture 1. (Super optimality of wages)
The optimal wages in the generalized Roy Model and the 2-step problem are the Kantorovich potentials
of the inner problem of Problem 7, i.e. if π∗ ∈ C3 realizes the supremum of Problem 7 then

max
π∈C3

{
max

µ#Hϕ=Gϕ

∫
F (k, µ(k))dHϕ

}
=
∫
π∗dHπ∗ +

∫
(π∗)F dGπ∗ (4.26)

Observation 265. Note that, by duality (4.17), we automatically obtain

max
π∈C3

{
max

µ#Hϕ=Gϕ

∫
F (k, µ(k))dHϕ

}
≤
∫
π∗dHπ∗ +

∫
(π∗)F dGπ∗ ,

as π is a viable candidate for the inner minimization problem. The trickier part (if the conjecture
is true) is the reverse inequality. One can attempt to define a map Θ : C3 → C3 corresponding to
the Kantorovich potential of a given element (with the appropriate constant to make a 1/2-cut).
If the map Θ happens to be a contraction (in the appropriate Banach space), then one can use a
fixed-point argument, as one could use the consecutive iterations of Θ starting from π∗ to obtain
a limit which increases the objective function and hence should coincide with π∗. We haven’t been
able to show the map is a contraction, not even assuming convexity of C3 which one can derive from
general assumptions of F (such as the cross-curvature condition) as [McCann-Guillen, Theorem
5.1]. By expanding both terms on (4.26), it is equivalent to show that if π∗ ∈ C3 is optimal and ϕ is
it’s corresponding optimal earning schedule for role k, then∫ ∫

max{π(k), πF (s)}dR(k, s) ≤
∫ ∫ (

1{πF (s)≤π(k)}ϕ(k) + 1{π(k)<πF (s)}ϕ
F (s)

)
dR(k, s),

where 1C is the indicator function of the set C.
Now clearly, it would be sufficient to show that R-a.e. with respect to (k, s),

max{π(k), πF (s)} ≤
(
1{πF (s)≤π(k)}ϕ(k) + 1{π(k)<πF (s)}ϕ

F (s)
)
,

which we haven’t been able to show.

4.3 Examples of the Generalized Roy Model
4.3.1 Non-homogeneous degree 1 Cobb-Douglas production
The generalized Roy model (Problem 5) allows many different types of markets and behaviours.
In this section we simplify the problem by looking at a specific production function that depends
non-linearly in both skills k and s but the interaction term is homogeneous of degree 1.

Assumption 10. We assume that there exist strictly increasing, continuously differentiable functions
a, b : R→ R and a constant c ≥ 0 such that

F (k, s) = a(k) + b(s) + cks. (4.27)

By Proposition 264, we have
π′(k) = a′(k) + cµ(k)
w′(µ(k)) = b′(µ(k)) + ck.

(4.28)
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on spt(H). Changing variables to s = µ(k) and integrating we obtain

π(k) = a(k) + c

∫ k

0
µ(k̃)dk̃ + e

w(s) = b(s) + c

∫ s

0
µ−1(s̃)ds̃+ d

(4.29)

for constants e, d. To figure out e and d we plug in the lowest matching (0, µ(0)) whenever
0 ∈ spt(e1#R) we obtain

e+ d+
∫ µ(0)

0
µ−1(s̃)ds̃ = 0.

Using the separation of wages, note that by structure of Brenier’s map µ is positive assortative from
which the integral term vanishes and then e+ d = 0, from the optimality condition on (ϕ, µ, π, w)
we know that ϕ = w−1 ◦ π to find e we use that ϕ 1/2-cuts R, meaning that∫ ∞

−∞

∫ ϕ(k)

−∞
R(k, s)dsdk = 1

2 =
∫ ∞

−∞

∫ ϕ−1(s)

−∞
R(k, s)dkds.

Our goal is to explore the different regimes of the production function as c varies, for which it is
important to start by understanding the model for the case with no interaction.

4.3.2 No interaction
In the case where there is no interaction (c = 0) above, F (k, s) = a(k) + b(s) let us analize the
separation function ϕ. The separation function determines the wages being paid to the workers. For
a worker of skill k, the value ϕ(k) represents the salary at which the worker would be indifferent
between working in the primary or the secondary job.
Given a function π : R→ R, define Hϕ and Gϕ as in Definition (244). Observe that for any function
µ with µ#Hϕ = Gϕ we have∫

F (k, µ(k))dHϕ =
∫
a(k)dHϕ +

∫
b(s)dGϕ

which means that every function µ that satisfies µ#Hϕ = Gϕ yields the same production output.
So the matching does not affect production, we can choose any volume-preserving map when ϕ is
fixed. In this case (4.29) reduce to

π(k) = a(k) + e

w(s) = b(s) + d
(4.30)

Notice then that w−1(y) = b−1(y−d) and so ϕ(k) = b−1(π(k)−d) = b−1(a(k)+e−d) = b−1(a(k)+2e).
This implies that the slope of ϕ in the a(k)− b(s)-axis is 1. The separating function on the skill
value-skill value plane is a straight line, in other words, in equilibrium workers are paid linearly
with respect to their skill sets and how much their skill set produces, independent of other workers
abilities and matches. So in the context where production is modelled to not be improved by the
relationship between manager and assistant, it doesn’t matter who they match, they’ll be paid as
much as they can generate for production. If you are good enough worker, the person you match
should not affect your wage. In this model, even if your manager is incompetent you can still make
it.
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4.3.3 Pure interaction
Now we look into the complete opposite case on which production depends only on the interaction
between workers. This models labor markets where the relationship between primary and secondary
job is complementary, in this context you can not do your job well (in terms of producing more) if
you can’t work efficiently with your coworker. The better you and your coworker get along, the more
you produce together.

Assumption 11. In this case production is totally complementary, i.e. a(k) = 0, b(s) = 0 and there
exists c > 0 such that F (k, s) = cks.

In this case given ϕ, the inner problem of (4.2.6) corresponds to the optimal transport problem
with cost c(k, s) = |k − s|2 because∫

ckµ(k)dHϕ = c

2

(∫
|k|2dHϕ +

∫
|s|2dGϕ −

∫
|k − µ(k)|2dHϕ

)
and once ϕ is fixed, the first two terms are constant. For this part we can think of ϕ as being fixed,
obtain conditions on µ and the afterwards optimize on ϕ thanks to Problem 6. Again by Brenier’s
theorem we know that

µ = (Gϕ)−1 ◦Hϕ (4.31)

where in this context we denote by Gϕ and Hϕ the accumulation functions, simplifying Problem 6 to

max
(ϕ,π,w)

{∫
(k − (Gϕ)−1 ◦Hϕ(k))2dHϕ

}
(4.32)

where (ϕ, π, w) satisfy the constraints of Problem 6.

4.3.4 Counterexample to linearity of the separating function
Let R(k, s) = χ[0,1]2 , so that skills are distributed uniformly on the unit square. Let a(k) = ak, b(s) =
bs, c = 0 so that f(k, s) = ak + bs. As we showed in the last section, b(ϕ(k)) = a(k) + 2α so by
rearranging we obtain ϕ(k) = ak + 2α

b
. Furthermore, the separating function should divide the

density in half so we should have
∫ 1

0
Φ(ϕ(k̂))dk̂ = 1/2, where Φ(x) = max(min(x, 1), 0) clamps the

value between 0 and 1. If α > 0 and b− 2α > a, it is easy to check that 0 ≤ ϕ(k) ≤ 1 for all k in
the unit interval so we can omit Φ. In this case a simple computation shows that α = b− a

4 .

Let a = 1, b = 3. We see that α = 1/2 and the conditions for this computation to be valid are
satisfied. So ϕ(k) = k + 1

3 . Now by the definition of ϕ we have w(ϕ(k)) = π(k).
We claim that this no longer holds for some k when c > 0. Therefore the separating function is

no longer the same. Suppose ϕ is the same for some c > 0. Then we note that µ is also the same.
The corresponding equality would be

3ϕ(k) + c

∫ ϕ(k)

0
µ−1(s)ds− α = k + c

∫ k

0
µ(k̂)dk̂ + α (4.33)
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Substitute the old expression for ϕ and we obtain:

k + 1 + c

∫ k+1
3

0
µ−1(s)ds = k + c

∫ k

0
µ(k̂)dk̂ + 2α

c

(∫ k+1
3

0
µ−1(s)ds−

∫ k

0
µ(k̂)dk̂

)
= 2α− 1

(4.34)

(4.35)

which has to hold for all k in the unit interval. So differentiate with respect to k, we obtain that
µ−1(k + 1

3 ) ∗ 1/3 = µ(k). But µ(0) = 1/3 which implies that µ−1(1/3) = 1 contradicting the fact
that µ−1(1/3) = 0 as we saw.

4.4 Dependence of the model on relevant quantities
In this section we study how the model is affected when different inputs change, of particular interest
is the economical question: If the production function varies slightly, with the same labor force, is it
true that the separation of occupations will vary slightly too? .
This question can be reformulated in terms of the model, if the difference between two production
functions is small (in an appropriate normed space) is it true that the difference of the resulting
optimal separation functions is small (in appropriate normed space)?. We will answer this question
positively in the next section.

4.4.1 On continuity of separation
In this section we provide a positive answer to the question posed in the introduction.

Theorem 266. (Continuity of separation)
Suppose that (ϕ, π, w, µ) ∈ C realize the maximum in Problem 5 for a super-modular function F
and R ∈ Pac,c(R2), for every ϵ > 0 there exists δ > 0 such that if (ϕ̃, π̃, w̃, µ̃) ∈ C is an optimal
quadruple for a super-modular function F̃ and the same labor force R with

||F − F̃ ||C1 < δ

then
||ϕ− ϕ̃||∞ < ϵ

Lemma 267. (F → π continuity)
Let {Fn} be a sequence of twice differentiable functions satisfying supermodularity and converging
uniformly to a supermodular, twice continuously differentiable function F . If πn and π are their
Kantorovich potentials then πn → π in uniform norm.

Proof. By Lemma 252 every potential is Lipschitz with constant depending on it’s production
function Fn. If Fn

C1

−−→ F , then for n big enough {πn, π} are equi-Lipschitz with Lipschitz constant
at most | sup

(x,y)
DxF (x, y)| and so by Arzela-Ascolil using Lemma 253 have a convergent subsequence

with respect to uniform topology. By relabelling, assume πn → π in uniform topology, by Lemma
257 we obtain the desired result.

150



Proof of Theorem 266: The theorem results by consequently applying Lemmata 267 and 257.

Example 268. (From small interaction to none)
For c > 0 consider the function Fc(k, s) = a(k) + b(s) + cks and F (k, s) = a(k) + b(s), then

∇Fc(k, s) =
[
a′(k) + cs
b′(s) + ck

]
(4.36)

Note that Fc → F in uniform norm but also ∇Fc → ∇F in uniform norm over spt(R), so
Fc

C1(spt(R))−−−−−−−→ F and Theorem 266 applies. Therefore in the limiting case of interaction, separation
remains close. This can be understood as follows: If the output of the work done by two people
depends very slightly on how they interact, the distribution of workers for both occupational roles
will be similar to the ones observed in no-interaction at all. This is a mathematical justification of a
expected economical behaviour.

4.4.2 Maximum wage inequality and matching someone with very differ-
ent skill

Observe that if (ϕ, π, w, µ) is the optimal quadruple for a supermodular function F and a labor force
R, by Lemma 252 w is a Lipschitz function, denote it’s Lipschitz constant by LW := sup|D2F (k, s)|
as in Lemma 252, hence

|w(ϕ(k))− w(µ(k))| ≤ LW |ϕ(k)− µ(k)|. (4.37)

This means that the in-firm wage inequality can’t surpass a factor (depending only on the change
in production as one of the skills is changed (see Lemma 252)) times the difference in skill for the
secondary job of the person matched with our worker of k skill level for the primary job and the
secondary skill of the person who our worker would be indifferent in swapping jobs with.
This quanititative result not only tells us that there is no wage inequality when ϕ = µ but also that
the wage is proportional (at worst) to the difference in secondary skill of these workers associated to
the person of key skill k.

4.4.3 Numerics
We compute approximations to the true key wage, π by iteratively applying a function λ(π) which
represents the evolution of wages under market forces. Under the conjecture that this is a contraction
mapping, this procedure indeed converges to the solution. We begin with an arbitrary π. As long as
the distance between the last two wages πk, πk−1 is above some specified threshold ϵ, we compute
λ(πk) =: πk+1 by computing the C that equalizes the mass working in each occupation when C is
added to π (and thus subtracted from πF ) using a root finding algorithm such as bisection. With the
induced skill distributions, we compute the Optimal Transport solution using a specialized library
and extract the dual variable associated with the key role. This is our desired λ(πk). Note that π
may not be defined in skill levels where there are no key workers. In this case, π may be defined
arbitrarily except that it has to be strictly increasing on its domain.
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To obtain (π,w, µ, ϕ) as in the optimal for Problem 6.
π0 ← 0
Define H0 and G0 from π0 as in Definition 244.
while ∥πk − πk−1∥∞ > ϵ do

find C such that πk + C induces Gϕ(R) = Hϕ(R).
set wk = πFk , ϕk = w−1 ◦ ϕ,Hk = Hϕk

compute optimal transport map µ#Hϕ = Gϕ.
set πk+1 as dual minimizer from OT solution. (can be altered on R null set to promote

convergence)
end while
Return (πk, wk, ϕk, µk)

The following graphs show various quantities of the numerical solution when the distribution is
uniform on the unit square and the revenue function is of the form F (k, s) = 3k2 + s2 + cks where c
varies.

Figure 4.1: Simulation for smaller values of c in the interaction of F

4.5 The Social Planner’s problem of McCann-Trokhimtchouk
In this section we present the formulation of the social planner’s problem from [McCann-Trokhimtchouk]
and it’s connections with the present work. We start by presenting the problem, relevant definitions,
the duality result and provide economic interpretation. In section 4.5.2 we relate the formulation of
this social planner’s problem to our generalized Roy model.
The work of McCann and Trokhimtchouk [McCann-Trokhimtchouk] deals in much more generality,
where the skill-set is not assumed to be an ordered paired of real numbers. In this section we write
the relevant definitions of [McCann-Trokhimtchouk] in the specific case of the skill set X = R2 for
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consistency. The goal of this section is to relate these definitions to our generalized Roy model, so
for consistency we rewrite the relevant definitions in the case of R2.

4.5.1 Relevant definitions
Definition 269. (Pure pairing)
A probability measure ν ∈ P(R2) and a Borel function f : R2 → R2 are called a pure pairing for
R ∈ P(R2) whenever

ν + f#ν = 2R

Problem 8. (Social Planner’s problem)
Given a production function p : R2 × R2 → R, the social planner’s problem is the maximization of
pure-pairing productions, that is,

sup
ν+f#ν=2R

{∫
p(x, f(x))dν

}
. (4.38)

The fact that the domain of this production function is a subset of R4 means that the joint
production achieved by a couple of workers may depend on both skills of the workers, i.e. even
if a worker performs the manager role, his assistant skill set influences production. This model is
different to Problem 5 from section 4.2.4. Nevertheless, one can specify the model in R2 ×R2 to our
context by setting p((k, s), (k′, s′)) = F (k, s′).

Finally we review the existence result which mimics the existence theorem from optimal trans-
portation, the idea is that an optimal pure pairing must be supported in a p-cyclically monotone set
which in turn correspond to subdifferentials of potentials.

Theorem 270. (Existence and uniqueness of optimal pure pairings)
Assume that p is non-negative, continuously differentiable and satisfies,

y → ∇1p(x, y) is inyective ∀y. (4.39)

If R ∈ Pac,c(R2) then there exists a p-contact map f such that all optimal mixed pairings are of
the form γ = (Id, f)#(P(1,2)#γ). And this function is unique P(1,2)#γ a.e., where P(1,2) is the
projection onto the first two coordinates: P1((x, y, x′, y′)) = (x, y).

4.5.2 Relation to the Generalized Roy Model
The objective of this section is to relate Problem 5 with the problem 8. One may think that the
Generalized Roy model can be put in the general framework of McCann-Trokhimtchouk but the
assumptions on Theorem 270 are not satisfied, hence one can not ensure from this framework the
general existence and uniqueness result. Note that Theorem 270 presents sufficient conditions for
existence of pure pairings, while the existence in the Generalized Roy Model was discussed in section
251.

Proposition 271. (Dissimilarity of the models)
In the framework of Problem 8, the production function associated to Problem 5 does not satisfy the
twist condition (4.39).
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Proof. Let p : R2 × R2 be given by p((x, y), (x′, y′)) = F (x, y′) where F is the production function
on Problem 5, then

∇1p((x, y), (x′, y′)) =
[
∂1F (x, y′)

0

]
(4.40)

which is clearly not injective as a function of (x′, y′).

This means that even though the problems are related (as both are self-partition of labor force)
the conditions of the independence of the production function F on the skills not used don’t allow us
to conclude the existence and uniqueness from the general framework of [McCann-Trokhimtchouk].
The main reason is that the labor force partition is being done in different ways. The generalized
Roy Model (Problem 5) has the peculiar property that people don’t care about their partner’s
abilities to perform the role they won’t end up performing. Note that the imposition of the outer
supremum on Problem 7 is motivated by the imposition of occupational choice, which is not imposed
a priori in the social Planner’s problem 8. One can think of this difference as the fact that a social
planner will determine the distribution of occupations without considering the specific preferences
of each individual.

4.6 On the identification problems
Suppose now that we do not know the initial distribution of skills R but we see the optimal matchings
made by firms and we see the conditional (on salaries) distributions of skills. The identification
problem asks on what conditions can we recover the distribution of skills R?
Mathematically, the identification problem corresponds to the uniqueness in the inverse problem.
The more interesting question is wether or not we can recover together the distribution of skills and
the production function, that is, given the matchings, earnings and distribution of skills can we
recover the unconditional distribution of skills R together with the production function F ?

4.6.1 Identification on social planner’s problem
In the context of problem (4.5), given ν and f , the condition

ν + f#ν = 2R (4.41)

completely determines R. This is observed by definition, as for every A Borel subset of R2 we have

R(A) = ν(A) + ν(f−1(A))
2 (4.42)

Whether or not the production function p is known, we can always use (4.42) to find R.
In the context of 4.5 if p is twice differentiable, non-negative, satisfies the twist condition and
R is containted in a compact set and the diagonal is p−cyclically monotone, then by [McCann-
Trokhimtchouk, Corollary 1] the mixed pairing is unique indicating how to obtain the production
function via

p(k, s) = π(k) + w(s) 2R− a.e.,
which is exhaustive as we know π,w and R. This implies we can only recover the production
function in the support of the unconditional distribution, meaning that we can only know the
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production function for the workers that we see and it’s behaviour outside the support of 2R can not
be determined. Of course, under regularity assumptions on R and p like being Lipschitz-continuous
one can extend p uniquely.

4.6.2 Discussion on the identification on general non-linear Roy model
In a similar way to the previous section, we ask ourselves whether we can recover R and F from
knowledge of (π,w, ϕ, µ).
If π is fixed and assumed to be continuous and F is known and strictly supermodular, Assume there
exists two different unconditional distributions R1,R2 with continuous densities R1, R2 then for
every k ∈ spt(H(π,w))

0 = H(π,w)(k)−H(π,w)(k) =
∫ k

k1

∫
1{π(k̃)≥w(s)}(R1(k̃, s)−R2(k̃, s))dsdk̃. (4.43)

Let s∗ ∈ spt(P2#R), if k∗ ∈ spt(P1#R) is such that π(k∗) > w(s∗) then by continuity of π and w
there exist δ1, δ2 such that if (k, s) ∈ (k∗ − δ1, k

∗ + δ1) =: Bδ1,δ2(k∗, s∗)× (s∗ − δ1, s
∗ + δ2) then

π(k) > w(s). (4.44)

Using (4.43) we obtain that

0 =
∫ k∗+δ1

k∗−δ1

∫
1Bδ1,δ2 (k∗,s∗)(s̃) · (R1(k̃, s̃)−R2(k̃, s̃))ds̃dk̃

+
∫ k∗+δ1

k∗−δ1

∫
1(Bδ1,δ2 (k∗,s∗))c(s̃) · (R1(k̃, s̃)−R2(k̃, s̃))ds̃dk̃

Using that k̃ ∈ (k∗ − δ1, k
∗ + δ1) yields

0 =
∫ k∗+δ1

k∗−δ1

∫
1Bδ1,δ2 (k∗,s∗)(s̃) · (R1(k̃, s̃)−R2(k̃, s̃))ds̃dk̃ (4.45)

Because R1 −R2 is integrable, by continuity of the Lebesgue integral:

lim
δ1,δ2→0

∫ k∗+δ1

k∗−δ1

∫
1Bδ1,δ2 (k∗,s∗)(s̃) · (R1(k̃, s̃)−R2(k̃, s̃))ds̃dk̃ = 0. (4.46)

Equation (4.46) impedes us from concluding R1(k∗, s∗) = R2(k∗, s∗) = 0 with the usual techniques.
This impediment reinforces the idea of [Heckman-Honore] in the linear case where the distribution can
not be identified. Nevertheless, notice that under regularity assumptions on F, ϕ,R, differentiating
twice (244) we obtain

R(k, ϕ(k)) = (Hϕ)′′(k)
ϕ′(k) . (4.47)

This formula serves as partial analogue of (4.42). We can identify the distribution at the points
(k, ϕ(k)) explicitly but it seems like nowhere else. .
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4.6.3 Identification of production
The identification of production is a more subtle question. Note that uniqueness of Brenier maps in
1-dimensional transport indicates that if the distributions are one dimensional, the optimal matching
will be the same for all super-modular functions. The question whether or not one can recover the
pair (F,R) from only the information of (π,w, µ) remains open to the authors. Observe that F was
known in section 4.6.2 when we looked for R, the identification of the pair (R, F ) is expected to not
be solvable i.e. we expect many different pairs to yield the same earnings (π,w) and matching µ,
although we still have no rigorous proof.

4.7 Further development and some open questions
In this section we describe some generalizations, problems and ideas that we believe would make
interesting lines of future investigation.

4.7.1 Infinite dimensional linear program
Motivated by the success of the Kantorovich formulation in the Monge-Kantorovich problem, in this
section we formulate the infinite-dimensional relaxation of Problem 5.
Definition 272. (Kantorovich formulation of Roy’s model)
Given a supermodular production function F : R2 → R and R ∈ Pc(R2) we define the relaxation of
the generalized Roy model (Problem 5) as the linear program defined via

sup⋃
π∈C3

Γ(Hπ, Gπ)

{∫
F (k, s)dγ(k, s)

}
(4.48)

where Γ(µ, ν) = {γ ∈ P(spt(R)) : P1#γ = µ, P2#γ = ν} and C3 is the set defined in Problem 5.

The constraint set in Definition 272 may be an interesting object of study. It is not clear to the
author whether or not this set is compact or even convex. Observe that a formulation like that of
(4.48) resembles the work in [McCann-Trokhimtchouk], indicating possible lines of investigation.

Reformulation of the definitions of the measures

Given a function f : X → R is S ⊆ X, the S-hypograph of f is defined via

HypS(f) = {(x, r) ∈ S × R : r ≤ f(x)}.

Similarly, the S-strict epi-graph of f is defined via

SEpiS(f) = {(x, r) ∈ S × R : f(x) < r}.

With this notation, Definition 244 rewrites
Hπ(A) = R(HypA(π))
Gπ(B) = R(SEpiB(π)).

We expect this notation to be useful to simplify some of the proofs and enlighten other properties as
the hypergraph and the epigraph have notable properties for convexity/concavity.
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4.7.2 Superoptimality Conjecture
The first line of investigation seems to be whether or not Conjecture 4.26 holds true. This conjecture
is interesting both in mathematical and economical sides. We refer to section 4.2.10 for the details.
This conjecture is also related to classical economical theory, one could attempt to use Theorem
9.19 in [Roth-Marilda-Sotomayor] but the generalizations and connections should be established
rigorously,

4.7.3 Generalizations and extensions
The generalized Roy Model (Problem 5) presented here applies for an absolutely continuous,
compactly supported labor force with skill sets in R2 and a supermodular function F that does not
depend on the skills of your partner in the job not performed. The general version of [McCann-
Trokhimtchouk] deals with much more generality but one could attempt to introduce occupational
choice. The separation function of Problem 5 was shown to be removable via the equivalence with
Problem 7, nevertheless it provides interesting economic interpretations, so one must ask, is there
an equivalent of separation in many dimensions? If so, how can one interpret such a function?.
The intuitive modelling using the separation function ϕ, could potentially be used for a multi-role
model on which one would obtain multiple separation functions and the matching would realize
n-tuples of people to work on a firm. This could be an interesting model for the hiring of teams to
perform a job but the optimal matching in this context would require different tools.
Another interesting point of investigation is the relaxation of the continuity of separation functions
made in Definition 244, we expect the model to be unstable and very different if such hypothesis is
removed.
Along a similar line, the condition of Definition 243 could potentially be removed by looking at
separation functions with different domains, this apparent technicallity showed to be necessary for
the strategy used during the proof of Lemma 258 and the use of Arzela-Ascoli requires a uniform
domain. Studying existence and stability in this framework is still open and interesting.

4.7.4 On the second fundamental Theorem of Welfare
A very interesting line of investigation comes from pure economical reasoning. If the social planner’s
problem from [McCann-Trokhimtchouk] (Problem 8) is indeed a Pareto equilibrium, can one find
the initial conditions (say F supermodular and R) such that the solution for Problem 5 achieves
the solution of Problem 8 ? If not, as they may be disassociated, what is the competitive version
(with no occupational choice as constraints) that allows the social planner’s problem of McCann-
Trokhimtchouk to be attained for initial conditions? Can one find such initial conditions?

Furthermore, the solution to Conjecture (4.26) could come from the second fundamental theorem
of welfare but appropriate definitions and connections are yet to be established.
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4.7.5 First variations, the envelope theorem and approximating total
production in similar economies

In this section we propose two intuitive ways to approximate the resulting outputs of different
economies. Let us introduce notation:

TPGRM (F,R) = sup
(ϕ,π,w,µ)∈C

{∫
F (k, µ(k))dHϕ

}
,

TPMT (p,R) = sup
ν+f#ν=2R

{∫
p(x, f(x))dν

}
.

One could attempt to approximate to first order the values for similar economies via

TPMT (p,R)− TPMT (p, R̃) ≈ 2
∫
v(x)dR · d2(R, R̃)

TPGRM (F,R)− TPGRM (F̃ ,R) ≈
(∫

π − π̃dHϕ +
∫

(w − w̃)dGϕ
)
||F − F ||∞

This ideas are motivated from the concept of first variations (see [Santambrogio, Chapter 7]) and
could be used to approximate the values of economies where one can either only see the earnings or
one element of the quadruple but expects labor forces to be similar (in the second case). Whether
this approximations are good or not to first order is not known to the authors but would yield an
interesting approach to studying similar populations whose production functions are the same or
viceversa. The second guess is a little more naive, we attempt to use only salaries observed in both
economies, difference between production functions and only one of the labor forces to make the
prediction.
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Adversarial Networks,Proceedings of the 34th International Conference on Machine Learning,
214-224,2017.

[Courty et al.] A. Rakotomamonjy, R. Flamary, G. Gasso, M. El Alaya, M. Berar, N. Courty ,
Optimal Transport for Conditional Domain Matching and Label Shift, Machine Learning, Vol.
111, pages1651–1670, 2022

[Criscitiello-Boumal] C. Criscitiello, N. Boumal, N. An Accelerated First-Order Method
for Non-convex Optimization on Manifolds, Found Comput Math 23, 1433–1509 (2023).
https://doi.org/10.1007/s10208-022-09573-9

[Cuturi-Doucet] M. Cuturi, A. Doucet, Fast Computation of Wasserstein Barycenters, Proceedings
of the 31st International Conference on Machine Learning, PMLR 32(2):685-693, 2014.

[DeLellis] De Lellis, Camillo. Ordinary differential equations with rough coefficients and the renor-
malization theorem of Ambrosio (after Ambrosio, DiPerna, Lions), Séminaire Bourbaki, Volume
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Volume 87, Birkhäuser, Springer International Publishing Switzerland 2015

[Siow-Mak2016] (Draft) A. Siow and E. Mak, Occupational Choice and Matching in the Labor
Market [to appear].

[Galichon] A. Galichon, Optimal Transport Methods in Economics, 2016, Princeton University Press,
184 pp.

[Siow-Mak] Aloysius Siow & Eric Mak Occupational Choice and Matching in the Labor Market, 2017
Meeting Papers 30, Society for Economic Dynamics.

[Sriperumbudur] B. Sriperumbudur, K. Fukumizu, A. Gretton, B. Scholkopf, and G. Lanckriet. On
the empirical estimation of integral probability metrics. Electronic Journal of Statistics, 6, 2012.
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