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Abstract

In this thesis, we study two discrete models of random growth in the Kardar–Parisi–Zhang (KPZ)

universality class: the directed polymer and the Seppäläinen–Johansson first-passage percolation

model.

The directed polymer was introduced by Huse and Henley as a model for the domain wall in a

ferromagnetic Ising model with random bond impurities. This model depends on a parameter β,

the inverse temperature. We consider the intermediate disorder regime, which consists in taking β

to depend on the length of the polymer 2n, with β = n−α for some α > 0. In this regime, there is

a critical phase transition that happens at α = 1
4 . When α > 1

4 , the fluctuations of the free energy

are of order n(1−4α)/4 and converge to a Gaussian. For α < 1
4 , it was conjectured that the polymer

should fall back in the KPZ regime, and that the fluctuations should instead be of order n(1−4α)/3,

and converge after rescaling to the Tracy–Widom GUE distribution. We prove this conjecture for

1
8 < α < 1

4 for arbitrary i.i.d weights with exponential moments.

The Seppäläinen–Johansson model was introduced by Seppäläinen as a simplified version of

first-passage percolation where he was able to explicitly compute the limiting shape for Bernoulli

weights. The behaviour of the fluctuations for this process were later studied by Johansson. We

consider a generalization of this model, involving two families of i.i.d random variables {ξij} and

{ηij} corresponding to the weights of the horizontal and vertical edges respectively. We obtain

an explicit formula for the limiting shape of the first-passage distance expressed in terms of the

corresponding limit shapes of the two sets of weights for the Seppäläinen–Johansson model. We also

study the limiting fluctuations of this model when at least one of the sets of weights is Bernoulli

distributed, and we prove that these converge to the Airy2 process.
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1.3 The Seppäläinen–Johansson model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 The Brownian web distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.4 Outline of the proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Intersections of Random walks 20

2.1 Notation and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Replacing bridges by random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Estimates for the intersection local time . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 A lemma on triple intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Local fluctuations of directed polymers 28

3.1 Centred moments of the partition function . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Local deviations and the critical exponent α = 1
8 . . . . . . . . . . . . . . . . . . . . 31

3.3 Upper bound for T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Lower bound for B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Universality of directed polymers in the intermediate regime 41

4.1 Proof of Theorem 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Valid sets of weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Proof of Theorem 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

v



5 Limit shapes for the Seppäläinen–Johansson model 55
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5.2 The Seppäläinen–Johansson model with special boundary conditions . . . . . . . . . 65

5.3 Stationarity on down-right paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Modifying paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 The limit shape f in terms of fH and fV . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



Chapter 1

Introduction

1.1 Random growth models and KPZ universality

In their seminal 1986 paper [45], Kardar, Parisi and Zhang derived their now eponymous KPZ

equation to model the random growth of interfaces between two media:

∂th = ν∂2
xh− λ(∂xh)2 +

√
Dξ. (1.1)

Here h(t, x) is a height function, describing the height of the interface at time t and position x, ν,

λ and D are physical constants, and ξ(t, x) is space-time white noise. Thus (1.1) is a non-linear,

stochastic partial differential equation.

Using renormalization group methods, they predicted that solutions h to (1.1) should have an

interesting limit as ε→ 0 under the scaling

hε(t, x) = ε1/2h

(
t

ε3/2
,
x

ε

)
. (1.2)

This means that for large times t, one expects to see non-trivial fluctuations at spatial scales x ≈ t2/3,

and those fluctuations should be of order t1/3. The scaling exponents ζ = 2
3 and χ = 1

3 are the

1-dimensional KPZ transversal and longitudinal exponents respectively, and (1.2) is the KPZ 1-2-3

scaling.

Since the original paper of Kardar, Parisi and Zhang, it has been shown that many other models

of random growth, both continuous and discrete, have the same scaling exponents as above. This

collection of models is now known as the KPZ universality class and includes directed polymers, first

and last-passage percolation, interacting particle systems, random metric spaces, longest increasing

subsequences of random permutations, the stochastic six vertex model, non-intersecting random

walks and line ensembles, and much more. The KPZ equation has also been used in other disciplines

to describe many other models, such as bacterial growth [36] and liquid crystal turbulence [71,

70]. See [23, 60] for mathematical surveys on KPZ theory, and [37] for a review from the physics

literature.

The classical central limit theorem states that if Sn is the sum of n independent, identically

1
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distributed random variables with mean µ and finite, non-zero variance σ2, then for large n,

Sn ≈ µn+ σn
1
2X, (1.3)

where X is a standard Gaussian random variable. There is a similar asymptotic formula that holds

for models in the KPZ universality class. The main order term is also linear in n (or t for continuous

models) with a coefficient representing the limiting shape of the model. However as discussed above,

the size of the error term is n1/3 as opposed to n1/2, and instead of a normal X, there is a random

variable Y following a different universal distribution, the Tracy–Widom GUE :

hn ≈ C1n+ C2n
1
3Y. (1.4)

This probability law was first discovered by Tracy and Widom in [77] in the context of random

matrix theory, as the scaling limit of the top eigenvalue value in the Gaussian Unitary Ensemble.

Unlike the Gaussian, the density of the Tracy–Widom GUE does not have a simple expression. The

distribution function can be written as a Fredholm determinant:

FGUE(t) = det(I −Ai)L2(t,∞),

where Ai is the Airy kernel. Alternatively, it can be written in terms of the solution of a Painlevé

equation:

FGUE(t) = exp

(
−
∫ ∞
t

(x− t)q(x)2dx

)
where q is the unique solution of the differential equation

q′′(x) = xq(x) + 2q(x)3

which satisfies the asymptotic q(x) ∼ Ai(x) as x → ∞ (here Ai(x) is the Airy function). Just like

the Gaussian distribution is the basic building block for Brownian motion, the Tracy–Widom GUE

describes the one-point marginals of several continuous processes conjectured to be the functional

scaling limits of all the KPZ models. These processes include the Airy2 process, the KPZ fixed point

and the directed landscape.

A central open problem in this field of study is to establish universality. Roughly speaking,

this means that the asymptotic global behaviour (i.e the scaling exponents and limiting distribu-

tions) should not depend on the local structure of the models and should be invariant under small

perturbations. For discrete models, the randomness often comes from some family of i.i.d random

variables; then universality in this context means that under suitable tail decay conditions, (1.4)

should hold regardless of the distribution of those variables, just like the CLT holds for any choice

of i.i.d non-trivial L2 random variables.

In contrast to the CLT, for almost every model mentioned earlier, we only know how to prove

belonging to the KPZ universality class for very specific choices of distribution of the noise. For

example, in last-passage percolation, (1.4) is only known to hold for exponential and geometric

environments. The proofs for this and other models usually exploits special algebraic properties of

the laws of the random inputs which then makes these models exactly solvable. If the distributions of

the variables in this environment do not have those properties, then there is little hope of obtaining
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exact formulas. The goal of this thesis is to obtain some universality results for two discrete models:

the directed polymer and the Seppäläinen–Johansson model. We now describe these two models

and state our main results.

1.2 The directed polymer

In this section, we give a brief description of the model and of the related exactly solvable model,

the log-gamma polymer. We describe the intermediate disorder regime and illustrate the phase

transition that occurs in this regime. We then state our main results on the universality of directed

polymers in the intermediate disorder regime.

1.2.1 Description of the model

The directed polymer was introduced in the physics literature by Huse and Henley during the 80’s

in [40] as a model of the domain wall in a ferromagnetic Ising model with random bond impurities.

Since then, its study has been taken up by both physicists and mathematicians and it has become

one of the central models conjectured to be in the KPZ universality class. See [22] for a survey on

the topic.

The model can be described as follows. Let ξi,j , with i, j ∈ Z≥0 be a collection of independent

random variables, and let β > 0 be a parameter, which is commonly referred to as the inverse

temperature. We define the (point-to-point) partition function by

Zn(β) =
∑

π:(0,0)→(n,n)

2n∏
i=0

eβξπ(i) .

Here the sum is taken over all up-right paths π which start at (0, 0) and end at (n, n), that is the

set of functions

π : {0, 1, . . . , 2n} → Z2
≥0

such that π(0) = (0, 0), π(2n) = (n, n) and for each i, π(i + 1) − π(i) = (1, 0) or (0, 1). See Figure

1.1. The free energy is logZn(β), and the polymer measure is the random probability measure Pn,βPoly

on up-right paths defined by

Pn,βPoly(π) =

∏2n
i=0 e

βξπ(i)

Zn(β)
.

For convenience, we will henceforth write the partition function and polymer measure in terms of

Bernoulli paths. A Bernoulli path of length 2n is a function

π : {0, 1, . . . , 2n} → Z≥0

such that π(i+1)−π(i) = 0 or 1 for each i. There is an obvious bijection between the set of up-right

paths from (0, 0) to (n, n) and the set of Bernoulli paths of length 2n started at 0 and ending at n,

so this transformation does not change anything. This translation however will make a lot of the

expressions easier to write down in terms of intersections of Bernoulli walks. In terms of Bernoulli
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Figure 1.1: On the left: an up-right path from (0,0) to (4,4), and on the right the corresponding
Bernoulli path from (0,0) to (8,4)

paths, the partition function is

Zn(β) =
∑

π:π(2n)=n

2n∏
i=0

eβξi,π(i)

where now the sum is taken over Bernoulli paths π such that π(2n) = n, and the polymer measure

is

Pn,βPoly(π) =

∏2n
i=0 e

βξi,π(i)

Zn(β)
.

The central problem with the directed polymer is to understand the behaviour of the free energy

and the polymer measure as a function of β and as n→∞.

The directed polymer is expected to be in the KPZ universality class. Unlike simple random

walk, the (quenched) polymer measure is localized [21]. This means that there will be random

locations (i, j) where paths concentrate. These locations correspond to weights ξi,j which are big;

indeed we can see from the definition of Pn,βPoly that paths that visit those points get assigned higher

probability. For large β, almost all of the mass of the measure will go towards the path of highest

mass. It is expected that for β > 0, the midpoint distribution has variance of order 1 around a

random favourite location which is situated in a window of size n2/3.

On the other hand, the annealed measure (i.e the measure obtained after averaging over the

environment) exhibits “superdiffusive” behaviour, which loosely means that the transversal fluctua-

tions are of order nζ for some large fixed exponent ζ. When β = 0, the polymer measure is random

walk bridge measure, and ζ = 1/2. For β > 0, the conjecture is the KPZ exponent ζ = 2/3. This

was verified numerically in Huse and Henley’s original paper [40], but it has only been proven for

the very special log-gamma polymer of Seppäläinen [13, 18, 68], and for general weights in thin

rectangles [8].

As for the free energy, the KPZ predictions tell us that the fluctuations should be of order n1/3,

and the limiting distribution of the scaled fluctuations is the Tracy–Widom GUE. This has only

been confirmed for the log-gamma polymer again [13, 18, 68], some other exactly solvable models

like the beta polymer [12], strict weak polymer [25, 55] and inverse beta polymer [75], as well as for

certain models of last passage percolation [10, 43, 44].
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1.2.2 The log-gamma polymer

The log-gamma polymer is a similar model to the directed polymer described in terms of a collection

of i.i.d weights Xi,j following the Gamma(θ, 1) distribution, that is they have density

f(x) =
1

Γ(θ)
xθ−1e−x (x > 0).

The partition function in this case is defined in a similar way as before as

Zn(θ) =
∑
π

2n∏
i=0

1

Xi,π(i)
,

with again the sum being taken over Bernoulli paths π such that π(2n) = n. The free energy is

logZn(θ). Here we think of θ as a positive parameter which plays a similar role to the inverse

temperature β. As we will see later, by taking θ to be a function of β such that θ ∼ c/β2 as

β → 0 for some positive constant c, the moments of the random variables 1/Xi,j will have the same

asymptotic behaviour as those of eβξi,j as β → 0.

The name “log-gamma polymer” comes from the fact that since Xi,j > 0, we can rewrite the

partition function as

Zn(θ) =
∑
π

2n∏
i=0

eξi,π(i)(θ)

where ξi,j(θ) = − logXi,j is the log of a Gamma distributed random variable. Written this way,

the partition function then has a similar form to the one for a standard polymer. However, it is

important to note that the log-gamma polymer is not a special case of the directed polymer; the

dependence on θ (or β if we write θ as a function of β) is non-trivial and is built into the distribution

of the weights. That is, the density of ξi,j(θ) depends on θ.

The relevance of this model is that it is exactly solvable, in the sense that one can write down an

explicit formula for the distribution of the free energy logZn(θ) in terms of a Fredholm determinant,

and so one can do some asymptotic analysis of these exact formulas to derive the scaling exponents

and limiting distributions. For general weights, no such formula is believed to exist.

1.2.3 The intermediate disorder regime

In this thesis, we consider the intermediate disorder regime of the directed polymer. This consists

in taking β = βn depending on n and such that βn → 0 as n → ∞. This regime was introduced

by Alberts, Khanin and Quastel in [3], and they showed in [2, 3] that for βn ∼ n−1/4, the directed

polymer converges to a non-trivial limit known as the continuum directed polymer.

If βn = n−α for some α > 1/4, then the limiting fluctuations of the free energy are Gaussian.

This can be seen by doing a Taylor expansion of logZn(β) centred at β = 0:

logZn(β) = log

(
2n

n

)
+

∑
i,j

PBri((i, j) ∈ π)ξij

β + . . . ,

for π a “Bernoulli bridge”, that is π is uniformly distributed on the set of Bernoulli paths such that

π(2n) = n; the notation will be made clearer in Section 2.1. One can check that the variance of the
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coefficient of the k-th order term is of order nk/2. So with α > 1/4, the terms of order 2 and higher

vanish in the limit, and the order 1 term is a weighted sum of independent random variables, so it

has Gaussian fluctuations by the central limit theorem. For α = 1/4, the terms of higher order do

not vanish; in fact, each term in the expansion converges in distribution individually, and Alberts,

Khanin and Quastel showed that the entire sum converges.

When α < 1/4, it was conjectured that the directed polymer should fall back in the KPZ regime

and that the fluctuations are of order β4/3n1/3 with a Tracy–Widom GUE limit. This was proven

by Krishnan and Quastel for the log-gamma polymer.

Theorem 1.1. [46, Theorem 2.1] Let θ ∼ c/β2
n as n → ∞, where βn = n−α for some 0 < α < 1

4

and c is a positive constant. Then

logZn(θ) + 2nΨ(θ/2)

−(Ψ′′(θ/2))1/3n1/3

d−→ TWGUE.

Here Ψ is the digamma function. Our goal is to extend Theorem 1.1 to the standard directed

polymer in the intermediate disorder regime for arbitrary i.i.d weights ξi,j .

1.2.4 Main results

We consider collections of positive independent random variables ωi,j(β), i, j ≥ 0, which are

parametrized by the inverse temperature β. The usual directed polymer corresponds to taking

ωi,j(β) = eβξi,j where the ξi,j ’s are independent random variables. We allow this more complicated

dependence on β in order to include the log-gamma polymer, which is not given by a standard

polymer. The partition function is given by

Zn(β) =
∑
π

2n∏
i=0

ωi,π(i)(β),

the free energy is logZn(β) and the polymer measure is

Pn,βPoly(π) =

∏2n
i=0 ωi,π(i)(β)

Zn(β)
.

We are primarily interested in the intermediate disorder regime, which corresponds to taking β =

βn → 0 as n → ∞. In view of the discussion in the previous subsection, we will consider the case

when β = n−α for some fixed α < 1/4. Our main result is the following.

Theorem 1.2. Let 1
8 < α < 1

4 , and set β = n−α. Let ξi,j with i, j ≥ 0 be i.i.d random variables

with variance σ2 > 0 and an exponential moment, that is E(ec|ξ1,1|) < ∞ for some c > 0, and let

Zn(β) be the point-to-point partition function for the corresponding directed polymer. Then there

exists a deterministic sequence an such that

logZn(β)− an
(4σ4β4n)1/3

d−→ TWGUE.

We obtain an explicit expression for an at the end of Section 4.3. This expression depends on

the distribution of ξi,j , but only in terms of its first six moments.
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The significance of Theorem 1.2 is that it is universal, in the sense that the scaling exponent

and limiting distribution do not depend on the choice of distribution of the weights. As discussed

in Section 1.1, KPZ universality in random growth models is a major open problem, and there are

very few models for which it has been shown.

The key ingredient in the proof of Theorem 1.2 is a perturbation theorem. In order to properly

state it, we need to specify which sets of parametrized weights ωi,j(β) we will be considering.

Definition 1.3. A collection of independent, parametrized random variables ωi,j(β) where i, j ∈ Z≥0

and β > 0 is called valid if it satisfies the following conditions for all i and j and for all sufficiently

small β:

1. ωi,j(β) > 0 almost surely.

2. E(ωi,j(β)) = 1.

3. For all positive integers k, there is a constant Ck > 0 such that

E(|ωi,j(β)− 1|k|) ≤ Ckβk

4. There is a p > 3 and a constant C > 0 such that

E
(

1

ωi,j(β)p

)
≤ C.

Condition 1 is fairly natural and avoids the possibility of the partition function being negative.

Condition 2 is mostly a convenient normalization constraint and can be achieved by simply dividing

each weight by its mean if it is not satisfied already. Condition 4 is a technical condition to prevent

some pathological problems of some weights taking really small values but with low probability; we

will see that in the two cases that interest us (the directed polymer and the log-gamma polymer),

this condition is easily verified.

The heart of Definition 1.3 is Condition 3, which gives a precise rate at which ωi,j(β) is converging

to 1 as β → 0 uniformly in i and j. The main technique that will go into the proofs of Theorem 1.2

and Theorem 1.5 is Taylor expansion, so having precise asymptotic bounds on the centred moments

of the ωi,j(β)’s will be crucial. We do not impose any restriction on how fast the Ck’s grow as

k →∞, only that they are independent of i, j and β.

We make one more important remark about Definition 1.3 before stating the perturbation theo-

rem.

Remark 1.4. If ωi,j(β) and ω′i,j(β) are two independent collections of valid weights, then any com-

bination of the two sets of weights is also valid. More precisely, let G : Z2 → {0, 1} be an arbitrary

function, and define

ω′′i,j(β) =

ωi,j(β) if G(i, j) = 0

ω′i,j(β) if G(i, j) = 1.

Then ω′′i,j(β) is valid. In fact, it is easy to see that one can pick the constants in Conditions 3 and

4 so that those inequalities work uniformly over all choices of G.
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Theorem 1.5. Let 1
8 < α < 1

4 , and set β = n−α. Let ωi,j(β) and ω′i,j(β) be independent valid

collections of weights such that for each i, j ≥ 0, and for every sufficiently small β, E(ωi,j(β)2) =

E(ω′i,j(β)2). Let Zn(β) and Z ′n(β) be the corresponding partition functions for these two sets of

weights. Then for a probability distribution F on R and a sequence of real numbers (an), we have

logZn(β)− an
β4/3n1/3

d−→ F

if and only if
logZ ′n(β)− an

β4/3n1/3

d−→ F.

The reason for which the lower exponent α > 1
8 comes up is due to a large deviation bound that

we obtain in Section 3.2. As the calculations at the end of Section 4.1 show, Theorems 1.2 and 1.5

should hold with 2
17 < α < 1

4 , and we conjecture that this is indeed the case. If we strengthen the

assumptions of Theorem 1.5 to ωi,j(β) and ω′i,j(β) having the same first k moments, then Theorems

1.2 and 1.5 should hold (with different an’s) for α > 2
3k+11 ; see Remark 4.2 at the end of Section

4.1.

1.2.5 Outline of the proofs

In Section 4.2, we will show that both the standard directed polymer and the log-gamma polymer

(or at least suitably normalized versions of them) are valid. By Theorem 1.1, the fluctuations of the

log-gamma polymer converge to the Tracy–Widom GUE distribution, and so Theorem 1.2 will be a

consequence of Theorem 1.5.

The main tool that goes into the proof of Theorem 1.5 is the Lindeberg method. Suppose

that gn : Rn → R is a sequence of functions and X1, X2, . . . is a sequence of independent random

variables for which we know gn(X1, . . . , Xn)
d−→ F . The Lindeberg method consists in showing that

gn(Y1, . . . , Yn) also converges in distribution to F for a different sequence of independent random

variables by estimating the error when one changes just one of the inputs of gn from the X sequence

to the Y sequence. If the sum of all the errors after changing each input one by one is o(1), then we

can conclude that gn(Y1, . . . , Yn)
d−→ F . This is typically done by expanding

E(f ◦ gn(X1, . . . , Xj−1, t, Yj+1, . . . , Yn))

(here f is some test function) as a Taylor series around t, evaluating the resulting expression at

t = Xj and t = Yj and subtracting, and then using some kind of moment matching condition to

cancel certain terms. In our case, gn will correspond to the free energy logZn(β).

The Lindeberg exchange trick was first used by Lindeberg in [49] to give an alternate proof of

the central limit theorem. It is now a standard tool for proving universality results, and it has been

utilized notably in random matrix theory, see for example [72, 73] on the four moment theorem for

the universality of local eigenvalue statistics.

For a given (i, j), we can write

Zn(β) = Vi,j(β) + ωi,j(β)Wi,j(β)
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where

Wi,j =
∑

π,(i,j)∈π

2n∏
`=0
` 6=i

ω`,π(`), Vi,j =
∑

π,(i,j)/∈π

2n∏
`=0

ω`,π(`).

The summation for Wi,j is taken over the set of paths that go through the point (i, j), and the

product inside does not include the weight ωi,j(β). The summation for Vi,j is taken over the set of

paths that do not visit the site (i, j). Let us now expand log(Vi,j + tWi,j) as a Taylor polynomial

of order 3 centred at t = 1 (we omit the dependence on i, j and β to make the notation easier to

follow):

log(V + tW ) ≈ log(V +W ) +
W

V +W
(t− 1)− W 2

2(V +W )2
(t− 1)2 +

W 3

3(V +W )3
(t− 1)3.

We substitute t = ωi,j and t = ω′i,j , take expectations and subtract. Since ωi,j and ω′i,j have the

same first and second moments and V,W are independent of them, the order 0, order 1 and order 2

terms will all cancel each other out. For the third order term, we use Condition 3 of Definition 1.3

to find

|E(log(V + ωi,jW ))− E(log(V + ω′i,jW ))| ≈ E
(

W 3

3(V +W )3

)
|E((ωi,j − 1)3 + (ω′i,j − 1)3)|

≤ Cβ3E
(

W 3

(V +W )3

)
for some constant C. This is the error obtained from changing the weight ωi,j to ω′i,j ; to get the

total error, we do this replacement for all i and j and then sum everything to obtain

|E(logZn)− E(logZ ′n)| ≤ Cβ3E

∑
i,j

W 3
i,j

(Vi,j +Wi,j)3

 . (1.5)

There are two technical issues here. First, we shouldn’t be estimating the difference between logZn

and logZ ′n, but rather the difference between f((logZn−an)/(β4n)1/3) and f((logZ ′n−an)/(β4n)1/3)

for f in some suitable class of test functions. This does not change the nature of the estimates that

we get, but we omit the computations for this heuristic. Second, there is some ambiguity as to how

Wi,j and Vi,j are defined; the weights that are multiplied in their expressions could be from the

(ωi,j) polymer for some indices and from the (ω′i,j) polymer for other indices, depending on which

stage of the replacement we have reached and the order in which we are exchanging the weights.

Both of these problems are handled more carefully in Section 4.1.

Ignoring these technicalities, the double sum on the right-hand side of (1.5) has a nice interpre-

tation in terms of the polymer measure. By Definition 1.3, we have ωi,j ≈ 1, so

W 3
i,j

(Vi,j +Wi,j)3
≈ (ωi,jWi,j)

3

(Vi,j + ωi,jWi,j)3
=

(ωi,jWi,j)
3

Z3
n

.

This last expression is the probability that three independent polymer distributed paths all visit the

site (i, j), and so ∑
i,j

W 3
i,j

(Vi,j +Wi,j)3
≈
∑
i,j

(ωi,jWi,j)
3

Z3
n
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gives the expected number of times that three independent polymer distributed paths simultaneously

intersect. That is, if π1, π2, π3 are independent and distributed according to polymer measure, then

it is the expected number of k’s such that π1(k) = π2(k) = π3(k). For Bernoulli random walks

and bridges, we will see in Section 2.4 that this expectation is of order log n. However as discussed

earlier, neither the quenched nor annealed polymer measure behaves like random walk, so we cannot

simply substitute log n for the double sum in (1.5).

A more serious issue with the above calculations is that it supposes that the partition functions

for polymers with different weights are comparable to each other, which is not the case. To see why

that is, let us compute the second moment of the normalized partition function Zn(β)/
(

2n
n

)
. We

have

E

(
Zn(β)(

2n
n

) )2

= E

(
1(
2n
n

) ∑
π

2n∏
i=0

ωi,π(i)

)2

= E

(
1(

2n
n

)2 ∑
π1,π2

2n∏
i=0

ωi,π1(i)ωi,π2(i)

)

=
1(

2n
n

)2 ∑
π1,π2

2n∏
i=0

E(ωi,π1(i)ωi,π2(i)).

The second and third sums are taken over pairs of paths π1, π2. If i 6= j, then the weights ωi,k and

ωj,` are necessarily distinct no matter what k and ` are, hence they are independent which is why the

expectation can be switched with the product in this way. We can further simplify the expectation

of each term

E(ωi,π1(i)ωi,π2(i)) = E(ωi,π1(i))E(ωi,π2(i)) = 1

but only if π1 and π2 do not intersect at time i. If they do intersect at time i, then we instead get

the second moment of ωi,π1(i), which in view of Conditions 2 and 3 for valid sets of weights, should

be roughly 1 + Cβ2 for some positive constant C. We therefore get

E

(
Zn(β)(

2n
n

) )2

≈ 1(
2n
n

)2 ∑
π1,π2

(1 + Cβ2)L(π1,π2),

where L(π1, π2) is the intersection local time of π1, π2, i.e the number of k’s such that π1(k) = π2(k).

The sum can be interpreted as an expectation over pairs of paths selected using Bernoulli random

walk bridge measure, and in that case, we will see that L(π1, π2) = O(
√
n) with high probability, so

that

E

(
Zn(β)(

2n
n

) )2

≈ EBri((1 + Cβ2)L(π1,π2)) ≈ (1 + Cβ2)C
√
n ≈ eCβ

2√n.

Here EBri denotes expectation with respect to bridge measure; once again the notation will be made

clearer in Section 2.1. This suggests that the partition functions are comparable to each other up

to a factor of eCβ
2√n. In the regime β = n−α with α < 1

4 , this factor is way too large, and we get a

worse estimate in (1.5) than if we used the trivial bound Wi,j/(Vi,j +Wi,j) ≤ 1.

The key to resolving these problems is to work locally. Let [a, b] be some interval contained in

[0, 2n], and let n0 = b−a. Then by factoring out the product of the weights lying outside of [a, b]×Z,
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we can rewrite the partition function as

Zµ(β) :=
Zn(β)

Z
=
∑
π:a→b

µ(π)
∏

`∈[a,b]

ω`,π(`),

where

µ(π) =
1

Z
∑

π̃: π̃|[a,b]=π

∏
`/∈[a,b]

ω`,π̃(`), Z =
∑
π

∏
`/∈[a,b]

ω`,π(`).

The summation for Zµ is taken over paths on [a, b], the one for Z is over all paths on [0, 2n], and

the one for µ is over paths π̃ on [0, 2n] whose restriction to [a, b] is π. If we condition on the weights

lying outside the strip [a, b] × Z, then µ is a probability measure on paths in [a, b], so that Zµ(β)

can be interpreted as the partition function for the polymer where the paths are on [a, b] and are

weighted according to µ. The idea is that if n0 is small enough, then we will have β ∼ n−γ0 for an

exponent γ that is larger than 1/4, and so now the comparison factor eCβ
2√n0 is O(1).

There is a slight wrinkle now, which is that the paths are distributed according to µ, not Bernoulli

walk measure, so that the above second moment calculation requires us to study the intersection

local time of paths distributed according to µ. Furthermore, µ is random as it depends on the

environment outside of [a, b]×Z. Showing that µ does not behave too differently from random walk

measure with high probability will require a local large deviation estimate. Chapter 3 is devoted to

obtaining this estimate.

To conclude the proof of Theorem 1.5, we partition the indices i and j of the double sum in (1.5)

into strips of width n0. On such a strip [a, b]× [0, n], we have

n∑
j=0

b∑
i=a

(ωi,jWi,j)
3

Z3
n

=

n∑
j=0

b∑
i=a

(ωi,jWi,j/Z)3

(Zn/Z)3
≤ C

n∑
j=0

b∑
i=a

(ωi,jWi,j)
3

Z3

since Zn/Z is roughly constant at this scale by the above argument. This last double sum is then

more or less the number of triple intersections in [a, b] of three independent µ distributed paths,

which should be of order log n0 if we believe that µ is close to random walk measure with high

probability. There are 2n/n0 different strips, so this will produce an error of size (n/n0) log n for the

entire double sum over all i and j. Plugging this in (1.5) and dividing by the scaling factor β4/3n1/3

appearing in the statement of Theorem 1.5, we obtain the following overall error:

C
β3
(
n
n0

)
log n

β4/3n1/3
= C

β5/3n2/3 log n

n0
.

We will see that it is possible to choose n0 so that we have β = o(n
−1/4
0 ) and also that the above

expression goes to zero for 1
8 < α < 1

4 . This will prove Theorem 1.5 (modulo the evaluation at a

test function f rather than an estimate for logZn − logZ ′n).

1.3 The Seppäläinen–Johansson model

The second model that we study in this thesis is the Seppäläinen–Johansson first-passage percolation

model, or rather a certain generalization of it. We first give a description of this model along with a
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brief history of some prior results on it. We then describe the limit shape phenomenon, and state our

main result on how to recover the limit shape, as well as the limiting fluctuations in the Bernoulli

case.

1.3.1 Description of the model

Let Bi,j with i, j ≥ 0 be i.i.d Bernoulli(p) random variables, and ξi,j , ηi,j where i, j ≥ 0 be families

of random variables that are all independent, that is

{Bi,j : i, j ≥ 0} ∪ {ξi,j : i, j ≥ 0} ∪ {ηi,j : i, j ≥ 0}

is independent (although as we will see later, the ξi,j ’s do not need to be independent of the ηi,j ’s).

We assume that the ξi,j ’s are non-negative, integrable and have a common distribution, and likewise

for the ηi,j ’s (though the distribution of the ξi,j ’s can be different of that of the ηi,j ’s). We place

weights on the edges e of Z2
≥0 as follows.

• If e is the horizontal edge joining (i− 1, j) to (i, j), then e has weight ωe = Bi,jξi,j .

• If e is the vertical edge joining (i, j − 1) to (i, j), then e has weight ωe = (1−Bi,j)ηi,j .

So for any vertex (i, j), one of the two “incoming” edges (i− 1, j)→ (i, j) or (i, j − 1)→ (i, j) will

have weight 0. Given an up-right path π, we define its weight S(π) as

S(π) =
∑

e∈E(π)

ωe

where the sum is taken over the set E(π) of edges that π traverses; see Figure 1.2. For two points

(a, b) and (m,n) with a ≤ m and b ≤ n, we define the first-passage value from (a, b) to (m,n) as

F (a, b;m,n) = min
π:(a,b)→(m,n)

S(π) (1.6)

where the minimum is taken over all up-right paths π started at (a, b) and finishing at (m,n). We

write F (m,n) for F (0, 0;m,n). A path which achieves the minimum in (1.6) is called a geodesic.

The function F defines a directed metric on Z2
≥0 × Z2

≥0, in the sense that for any point (m,n),

we have F (m,n;m,n) = 0, and F satisfies the triangle inequality, but the distance can only be

measured in one direction; F (a, b;m,n) is only defined when a ≤ m and b ≤ n.

The special case when all the Bi,j ’s are equal to one (i.e only horizontal edges have non-zero

weights) is known as the Seppäläinen–Johansson (SJ) model. It was introduced by Seppäläinen in

[67] as a simplified model of directed first-passage percolation, and Johansson showed in [41] that

in the special case of Bernoulli weights, the model is completely solvable. Indeed, the law of the

last-passage value (that is where we take maximum instead of minimum in (1.6)) is the same as that

of the top point of the Krawtchouk ensemble, a discrete orthogonal polynomial ensemble.

By Kingman’s subadditive ergodic theorem, there exists a deterministic function f on R2
≥0 (which

depends on the distribution of the weights) such that for all x, y ≥ 0,

F (bnxc, bnyb)
n

→ f(x, y)
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Figure 1.2: An upright path from (0,0) to (4,3). The weight of this path is B1,0ξ1,0 +(1−B1,1)η1,1 +
(1−B1,2)η1,2 +B2,2ξ2,2 +B3,2ξ3,2 + (1−B3,3)η3,3 +B4,3ξ4,3.

in L1. If we assume that the ξi,j ’s and ηi,j ’s have a finite second moment, then the above convergence

also holds almost surely, see Theorem 5.1. We will refer to f as the limit shape. It follows from

the translation invariance of this model that f must be homogeneous (i.e f(cx, cy) = cf(x, y) for

all c ≥ 0), and together with the triangle inequality for F , we have that f also satisfies a triangle

inequality:

f(x1 + x2, y1 + y2) ≤ f(x1, y1) + f(x2, y2).

The homogeneity plus triangle inequality clearly imply that f must be convex, and so in particular

it is continuous on R2
>0.

The existence of a limit shape in the general first-passage percolation model (that is with no

restriction on paths going up-right) is a classical result of Cox and Durrett [26]. Despite this, there

are no non-trivial examples of edge weight distributions for which the limit shape is known. The

fluctuations of first-passage percolation are even less well understood. We refer the reader to the

book [9] for an extensive review on first-passage percolation.

Consequently, the SJ model provides an interesting simplified version of first-passage percolation

for which we can compute some limit shapes and fluctuations. Seppäläinen obtained in [67] the

following explicit formula for the limit shape in the SJ model with Bernoulli(p) weights:

f(x, y) =

(
√
px−

√
(1− p)y)2 if x ≥ 1−p

p y

0 otherwise.
(1.7)

Similar formulas were obtained in the SJ model for geometric and exponential weights in [53]. The

most general cases for which we can compute explicitly the limit shape are due to Martin [50]; this is

when ξi,j
d
= B ·X, where B is Bernoulli distributed, and X is a geometric or exponential independent

of B. See Table 5.1 for a list of all the known limit shapes.

The generalized SJ model that we are considering first appears in [12] for ξi,j and ηi,j expo-

nentially distributed as the zero temperature limit of the beta polymer. The authors show that

the distribution function of a point to half-line first-passage percolation version of this model can

be written down explicitly as a Fredholm determinant, and as a result, they obtain Tracy–Widom

limiting fluctuations.

Much more is known about the SJ model for Bernoulli weights. Indeed, in [28], it was shown
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Figure 1.3: A portion of the random walk web obtained from the Bij ’s. If Bij = 0, an edge is placed
from (i− 1, j) to (i, j); otherwise, the edge is placed from (i, j − 1) to (i, j).

that the scaled fluctuations of the first-passage value function converges in distribution with respect

to uniform convergence on compact sets to the Airy2 process. Using this, we will obtain, in the

Bernoulli case, the limiting distribution of the scaled fluctuations of F (nx, ny) in the generalized

SJ model, for points satisfying x 6= (1 − p)y/p. It has also been shown in [30] that the SJ model

converges to the directed landscape in various weak topologies. The full four-parameter uniform

convergence on compact sets to the directed landscape is still open as of the time of writing this

thesis.

1.3.2 The Brownian web distance

As extra motivation, we now briefly discuss a recent connection that has been made between the gen-

eralized Seppäläinen–Johansson model and a new model of random directed geometry, the Brownian

web distance.

Consider the following subgraph of Z2. For each i and j, we place an edge from (i − 1, j) to

(i, j) if the corresponding Bernoulli variable Bi,j is 0; otherwise we place an edge from (i, j − 1) to

(i, j). The resulting subgraph is then a system of coalescing random walks moving in the south-west

direction; see Figure 1.3. We call this random graph the random walk web. Note that by recurrence

of the one-dimensional simple random walk, the random walk web is almost surely a tree (it is

connected and has no cycles).

The random walk web has a scaling limit known as the Brownian web. One can informally think

of the Brownian web as a continuum analogue of the random walk web; each point of R2 has a

one-dimensional Brownian motion started from it, and the Brownian motions started from distinct

points behave independently until they intersect, at which point they coalesce into a single Brownian

motion. The Brownian web was first constructed by Tóth and Werner in [76], using ideas from the

work of Arratia [6, 7]. It was characterized as a random variable taking values in compact collections

of paths under the Hausdorff distance in [34], and convergence of coalescing random walks to the

Brownian web was shown in the same article. We refer to this last paper and the references therein

for more details and further properties of the Brownian web.
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When the ξi,j ’s and ηi,j ’s are all equal to 1, the generalized Seppäläinen–Johansson distance

from (a, b) to (m,n) is precisely the smallest number of jumps one has to make to get from (a, b)

to (m,n) while staying as much as possible on the random walk web. In [78], the authors show

that when time and space are scaled diffusively, the generalized SJ distance converges to a directed

metric on the Brownian web, the Brownian web distance. For general ξi,j ’s and ηi,j ’s, each empty

edge of the web has a cost associated to it corresponding to the value of the weight on that edge,

and the generalized SJ distance is the smallest total cost one has to pay while trying to remain on

the random walk web. In this more general situation, the scaling limit should be the Brownian net

distance. The Brownian net is a generalization of the Brownian web where branching is possible;

see [69] for more details.

We believe that directed metrics on “random walk trees” should have their own universality class

under the Brownian scaling. This is ongoing joint work of the author with Vető and Virág.

1.3.3 Main results

Let FH(m,n) be the first-passage value at (m,n) in the SJ model with weights Bi,jξi,j on horizontal

edges (i− 1, j)→ (i, j) and FV (m,n) the first-passage value at (m,n) for the SJ model on vertical

edges with weights (1−Bi,j)ηi,j (that is, we change all the weights on vertical edges to be 0 for FH

and all the weights on horizontal edges to be 0 for FV ). Let fH and fV be the corresponding limit

shapes. Clearly, we have FH(m,n) ≤ F (m,n), since we can simply ignore any weights picked up

along vertical edges when following a geodesic for F and this gives a valid path for FH . Similarly,

we also have FV (m,n) ≤ F (m,n). Passing to the limit, this implies the corresponding bound on

limit shapes:

max(fH(x, y), fV (x, y)) ≤ f(x, y) (1.8)

for all x, y ≥ 0. Our first result is that equality holds in (1.8).

Theorem 1.6. Assume the ξi,j’s and ηi,j’s have a finite first moment. Then

max(fH(x, y), fV (x, y)) = f(x, y).

As we will see later, fH(x, y) = 0 for all x ≤ (1− p)y/p and fV (x, y) = 0 for all x ≥ (1− p)y/p,
so Theorem 1.6 can be rewritten as

f(x, y) =

fH(x, y) if x ≥ 1−p
p y

fV (x, y) if x < 1−p
p y.

Since the scaled first-passage functions converge to their limit shape, it follows that

F (bnxc, bnyc) = FH(bnxc, bnyc) + o(n) (1.9)

for any x > (1 − p)y/p, and a similar asymptotic holds with FV when x < (1 − p)y/p. Thus the

plane is divided into two regions, one where essentially only the horizontal weights matter, and one

where only the vertical weights matter. Numerical simulations seem to show that the error term is

actually of much smaller order than o(n), and that the equality max(fH(x, y), fV (x, y)) = f(x, y)

almost holds even in the prelimit.
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Note that fH and fV are the limit shapes for the SJ model with weights Bi,jξi,j and (1−Bi,j)ηi,j
respectively, and not the limit shapes with weights ξi,j or ηi,j . This means that in order to get

explicit formulas for f , we need weights with atoms at 0 for which we can compute the SJ limit

shape. Bernoulli’s, geometrics and Bernoulli’s times geometrics/exponentials are all possible choices.

See Table 5.1. Any two of the formulas from this table can be combined, except for the exponential

case.

Next we consider the special case where at least one of the ξi,j ’s or ηi,j ’s are Bernoulli distributed

(without loss of generality, we can assume it is the ξi,j ’s). In this situation, we can show that the

error in (1.9) is in fact o(n1/3), uniformly in a window of size n2/3. As a consequence, we obtain the

following limiting fluctuations result.

Theorem 1.7. Suppose that Bi,jξi,j follow a Bernoulli(p) distribution. Assume 0 < p < 1, and let

x, y be positive and satisfying x > (1− p)y/p. Define

τ(x, y) = 2

[
x2

y
√
p(1− p)

(
√
px−

√
(1− p)y)(

√
(1− p)x+

√
py)

]1/3

χ(x, y) =

[√
p(1− p)
xy

(
√
px−

√
(1− p)y)2(

√
(1− p)x+

√
py)2

]1/3

ρ(x, y) = p−
√
p(1− p)y

x

Then
F (bnxc+ bτ(x, y)n2/3tc, bnyc)− nf(x, y)− τ(x, y)n2/3tρ(x, y)

χ(x, y)n1/3

d−→ −A(t) (1.10)

with respect to uniform convergence on compact sets. Here A(t) is the Airy2 process.

Theorem 1.7 is known for the SJ model (with the same scaling factors τ, χ and ρ); this is Corollary

6.11 in [28]. The new part of this result is that even if we allow some vertical weights ηi,j to be

non-zero, we get the exact same scaling limit; the process F (m,n) “does not see” the weights on the

vertical edges if the angle between the line joining (0, 0) to the target point (m,n) and the x-axis is

sufficiently small. This further reinforces this behaviour of F being almost completely determined

by only one set of weights on either side of the critical line.

In the special case where we set t = 0, we recover [41, Theorem 5.3], again with the same scaling

factors:

−
(
F (nx, ny)− nf(x, y)

χ(x, y)n1/3

)
d−→ TWGUE. (1.11)

1.3.4 Outline of the proofs

As noted above, we have an easy lower bound on F :

F (m,n) ≥ max(FH(m,n), FV (m,n)),
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and so the key will be to establish a useful upper bound on F . We will show (Proposition 6.2) that

F (m,n) ≤ FH(m,n) +

D(m,n)∑
j=1

η0,j , (1.12)

where D(m,n) is the top-most departure point that a geodesic for the SJ model from (0, 0) to (m,n)

can take. That is, it is the largest k such that there is a geodesic for FH(m,n) which passes through

the point (0, k). Since the weights of all the vertical edges are 0 for FH , we can also write

D(m,n) = max{k ≥ 0 : FH(0, k;m,n) = FH(m,n)}.

A similar upper bound also holds in terms of FV and the right-most departure point of a geodesic

for the SJ model on vertical edges.

Inequality (1.12) is remarkable; as we will see from the proof of Proposition 6.2, it is completely

deterministic and only depends on the combinatorial structure of how weights are assigned to edges.

In particular, this means that the ξi,j ’s do not have to be independent of the ηi,j ’s. The key that

makes this work of course is that for any vertex (i, j), at least one of the incoming edges must have

weight 0.

In view of (1.12) and the easy lower bound, it will suffice to show that

D(nx, ny)

n
→ 0 (1.13)

in probability to prove Theorem 1.6. It is more convenient to work with the bottom-most entry point

E(m,n) to the line x = m; that is the largest k such that there is a geodesic for FH(m,n) which

passes through the point (m,n−k). Again, since all weights on vertical edges are 0 for the SJ model,

this definition is equivalent to

E(m,n) = max{k ≥ 0 : FH(m,n− k) = FH(m,n)}.

We can see that E(m,n) has the same law as D(m,n), since it corresponds exactly to the bottom-

most departure point for first-passage percolation with down-left paths from (m,n) to (0, 0). So

(1.13) is equivalent to showing that
E(nx, ny)

n
→ 0 (1.14)

in probability. Now, if E(nx, ny) ≥ nε, then that means FH(nx, ny) = FH(nx, ny − nε), and in

the limit, this would imply fH(x, y) = fH(x, y − ε). Thus the limiting behaviour of E is connected

to the local properties of the limit shape fH , and in particular whether y 7→ fH(x, y) is strictly

decreasing or not. We will show that this function is indeed strictly decreasing on [0, (1 − q)x/q],
where q = P(ωi,j = 0). This will imply (1.14).

For Theorem 1.7, the idea behind the proof is as follows. Fix ε > 0, and Taylor expand the limit

shape for the SJ model fH(x, y) around y:

fH

(
x, y − ε

n2/3

)
= fH(x, y)− ∂yfH(x, y)ε

n2/3
+O

(
1

n4/3

)
.

Now fH being the limit shape tells us that FH(nw, nz) ≈ nfH(w, z) for large n, and so applying
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this with w = x, z = y and also w = x, z = y − ε
n2/3 gives

FH(nx, ny − εn1/3)− FH(nx, ny) = FH

(
nx, n

(
y − ε

n2/3

))
− FH(nx, ny)

≈ n
(
fH

(
x, y − ε

n2/3

)
− fH(x, y)

)
= −∂yfH(x, y)εn1/3 +O

(
1

n1/3

)
.

(1.15)

Note that ∂yfH(x, y) is strictly negative since x > (1−p)y/p (recall formula (1.7) for the limit shape

in the Bernoulli case; this also holds for general weights, see Lemma 6.4). It follows that for all n

sufficiently large, this last expression is not 0, and therefore

FH(nx, ny − εn1/3) 6= FH(nx, ny).

In particular, the bottom-most entry point E(nx, ny) must be smaller than εn1/3, and since ε > 0

was arbitrary, we conclude that E(nx, ny) = o(n1/3). Since D has the same law as E , we also have

D(nx, ny) = o(n1/3), and so combining this with the upper bound (1.12) and the fact that (1.11) is

known to hold for the SJ model (that is when we replace F by FH), we conclude that the fluctuations

of F converge to the Tracy–Widom GUE. A similar argument can be used to get a uniform statement

as a function of t and deduce (1.10).

Of course, the problem with this heuristic is the “≈” in (1.15); there is a non-rigorous exchange

of limits between FH(nx, ny)/n→ fH(x, y) and the Taylor expansion for fH(x, y−ε/n2/3). However

for the Bernoulli case, this can be made to work by using that (1.10) is known to hold for FH by

[28, Corollary 6.11]. Looking at appropriate subsequences and using suitable changes of variables,

this can essentially be rephrased as

FH(nx, ny + n2/3t)− nfH(x, y)− n2/3∂yfH(x, y)t

n1/3

d−→ G(t)

uniformly for t in a compact set. Here G is basically the Airy2 process up to some constants factors

and linear rescaling in t; the details are not important for this heuristic. Since the convergence is

uniform, we may take t to depend on n in the above limit. Taking first tn = −ε/n1/3, then t = 0

and subtracting the expressions we get from those yields

FH(nx, ny − εn1/3)− FH(nx, ny)

n1/3
= −∂yfH(x, y)ε+G

(
− ε

n1/3

)
−G(0) + o(1)

= −∂yfH(x, y)ε+ o(1)

(we use the continuity of G in the second equality) which is precisely (1.15) with a less specific error

term, but fully justified.

1.4 Organization of the thesis

This thesis is divided into two independent parts. Chapters 2, 3 and 4 concern the directed polymer,

while Chapters 5 and 6 deal with the Seppäläinen–Johansson model. There is no overlap between

these two parts and they can be read separately. Here is a brief overview of each chapter.
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In Chapter 2, we study in detail the intersection local time of Bernoulli random walks and

bridges. We obtain asymptotic estimates for the moments and the moment generating function of

the number of intersections of independent random walks/bridges, and we also derive an estimate

for the number of triple intersections.

In Chapter 3, we obtain local large deviation estimates for the partition function and the polymer

measure in the intermediate regime. We use these to find the correct local scale at which we expect

polymer measure to behave like random walk measure, and we deduce the range of exponents
1
8 < α < 1

4 for which our main results hold.

Chapter 4 starts with the proof of Theorem 1.5. We execute the strategy laid out in Subsection

1.2.5 of comparing the free energies of two polymers using the Lindeberg replacement method, and

we use the technical estimates of the two previous chapters to show that the limiting fluctuations

are the same when the weights have two matching moments. Afterwards, we show that both the

standard polymer and the log-gamma polymer satisfy the conditions of Definition 1.3, and we then

deduce Theorem 1.2 from Theorem 1.5.

Chapter 5 is about limit shapes for the Seppäläinen–Johansson model. After a brief review of

subadditive ergodic theory, we prove the existence of a limit shape for our generalized SJ model,

and we show convergence in L1 and jointly almost surely. Finally we sketch how to obtain exact

formulas for the limit shape in the SJ model when the weights are a product of a Bernoulli with an

independent geometric random variable.

For Chapter 6, we begin by proving the combinatorial upper bound (1.12) relating the first-

passage value to the top-most departure point of a geodesic in the SJ model. We analyze this

departure point by relating it to the local properties of the limit shape. We obtain Theorem 1.6

after showing that the limit shape is strictly decreasing in a certain region. Theorem 1.7 follows

instead from the uniform convergence of the fluctuations in the SJ model with Bernoulli weights.

The main contributions of this thesis are Theorems 1.2 and 1.5 on the universality of directed

polymers in the intermediate disorder regime, and Theorems 1.6 and 1.7 on the limit shapes and fluc-

tuations respectively of the generalized Seppäläinen–Johansson model. These results are contained

in two papers [63, 64] written by the author:

• “Universality of directed of polymers in the intermediate disorder regime” was submitted to

the Annals of Probability and is currently under revision following a favourable report from

the referee

• “Limit shape formulas for a generalized Seppäläinen–Johansson model” is now published in

Electronic Communications in Probability.



Chapter 2

Intersections of Random walks

In this chapter, we collect several facts and estimates about the intersection local time of Bernoulli

random walks and bridges. We begin by proving an estimate relating the probability of events under

bridge measure to those under random walk measure. This is convenient as random walks are easier

to analyze than bridges. We then obtain bounds on the moments and moment generating function

of the intersection local time. Finally we consider triple intersections of random walks and bridges.

2.1 Notation and definitions

A (Bernoulli) path is a function π : Z≥0 → Z such that π(0) = 0 and π(i)−π(i−1) ∈ {0, 1} for all i.

For two integers 0 ≤ a < b, a path on [a, b] is the restriction of a path to the interval [a, b]. We denote

the set of all paths on [a, b] by Π[a, b]. Note that if π ∈ Π[a, b], then we must have 0 ≤ π(a) ≤ a and

π(a) ≤ π(b) ≤ b.
For 0 ≤ x ≤ a and p ∈ [0, 1], we denote by P[a,b],p,x

RW the usual Bernoulli random walk measure on

Π[a, b] with mean p, started at x:

P[a,b],p,x
RW (π) =

(
b− a

π(b)− x

)
pπ(b)−x(1− p)b−a−(π(b)−x).

If we are also given a y such that x ≤ y ≤ x+b−a, we denote by P[a,b],x,y
Bri the uniform measure on the

sets of paths such that π(a) = x and π(b) = y, and we refer to this measure as a (Bernoulli) bridge.

The corresponding expectations for these measures are denoted by E[a,b],p,x
RW and E[a,b],x,y

Bri . We also

use the same notation for the product measure and expectation on Π[a, b]k, where the superscripts

x and y are then understood to be vectors of size k corresponding to the endpoints of each of the

paths, and p is also a vector of size k whose entries are the means of the k Bernoulli walks. We will

usually omit the superscripts for both the Bernoulli random walk and bridge measures when it is

clear from the context what [a, b], p, x and y are.

If π ∼ P[a,b],p,x
RW , then p will be referred to as the slope of π, and if π ∼ P[a,b],x,y

Bri , the slope of π

will refer to the slope of the line joining (a, x) to (b, y), namely (y − x)/(b − a). When the slope is

1/2, there is a simple bound that allows one to transfer bridge measure to random walk measure:

20
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for a set of paths S,

P[0,2n],0,n
Bri (S) =

|S|(
2n
n

) ≤ C√n |S|
4n

= C
√
nP[0,2n], 12 ,0

RW (S)

for some absolute constant C that does not depend on n. Here we used Stirling’s formula. This

bound is very crude but is occasionally sufficient for our needs.

Given a set of paths π1, . . . , πk in Π[a, b], we let

v(i, j) = the number of paths that visited the site (i, j),

and

V(π1, . . . , πk) = {(i, j) : v(i, j) ≥ 2}.

The intersection local time of the paths π1, . . . , πk is the cardinality of the set V(π1, . . . , πk), and

we denote it by L(π1, . . . , πk). For an interval I, we also write L(π1, . . . , πk; I) for the number of

intersections of the paths in I, that is the number of points (i, j) in V(π1, . . . , πk) such that i ∈ I.

We have the bound

L(π1, . . . , πk) ≤
∑

1≤j<i≤k

L(πi, πj), (2.1)

since the right-hand side counts multiple times all the instances where three or more paths intersect

all at once (for example, if π1, π2, π3 intersect all at the same time, then the left-hand side counts this

intersection once, whereas the right-hand side counts it three times). This is a simple observation,

but it will be very useful in what follows since it means that we only really need to analyze the

intersection local time of pairs of paths.

Throughout all of Chapters 2, 3 and 4, we will use C to denote an unspecified constant that may

change from line to line. Occasionally we will add subscripts or comments in the text to detail what

the constants depend on.

2.2 Replacing bridges by random walks

We will need an estimate for L(π1, . . . , πk) when the πj ’s are independent and distributed according

to Bernoulli bridge measure. It turns out to be easier to estimate this when the πj ’s are distributed

according to Bernoulli walk measure, so the first step is to show that we can replace bridges by

walks. The next lemma describes how to make this change.

Lemma 2.1. There exists an n∗ such that the following holds. For any interval [a, b] of length

n ≥ n∗, for any π distributed according to bridge measure on [a, b] with slope p, for any path

π̃ ∈ Π[a, (b− a)/2] and for any p ∈ [1/4, 3/4],

P[a,b],x,y
Bri (π|[a,(b−a)/2] = π̃) ≤ 2P[a,(b−a)/2],p,x

RW (π̃).

Here π|[a,(b−a)/2] denotes the restriction of π to the interval [a, (b−a)/2]. Thus Lemma 2.1 asserts

that the ratio of the probabilities under either measure that π takes on a specific trajectory in the

first half of [a, b] is bounded by 2 (the actual constant is irrelevant, what matters is that this constant

is independent of p, [a, b], etc.). This implies that if F is a measurable, non-negative function on
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Π[a, b]k which only depends on the behaviour of the paths in the first half of the interval, then

E[a,b],x,y
Bri (F (π1, . . . , πk)) ≤ 2kE[a,(b−a)/2],p,x

RW (F (π1, . . . , πk)), (2.2)

provided that all the slopes pi = (yi − xi)/(b − a) are in [1/4, 3/4]. In particular we can take F to

be some moment of the intersection local time of the paths in the first half of [a, b].

The main ingredient for the proof of Lemma 2.1 is the following theorem ([57, Equation 25]).

Theorem 2.2 (Platonov). Let f be the probability mass function of the binomial (n, p) distribution,

and let φ be the density of the standard normal distribution. There exists a universal constant C,

which does not depend on p or n, such that

max
0≤k≤n

∣∣∣∣∣√np(1− p)f(k)− φ

(
k − np√
np(1− p)

)∣∣∣∣∣ ≤ C√
np(1− p)

.

Platonov’s theorem gives an explicit bound for the error term in the local central limit theorem

that is uniform over all possible choices of parameters of the binomial distribution.

Proof of Lemma 2.1. Without loss of generality, we can assume that a = 0 and the starting point x

is 0. Note that p = y/n.

By definition of conditional probabilities and the Markov property of Bernoulli random walks,

we have for a fixed given path π̃ on [a, (b− a)/2],

P[0,n],0,y
Bri (π|[0,n/2] = π̃) =

P[0,n],p,0
RW ({π[0,n/2] = π̃} ∩ {π(n) = y})

P[0,n],p,0
RW (π(n) = y)

=
P[0,n/2],p,0

RW (π̃) P[n/2,n],p,π̃(n/2)
RW (π(n) = y)

P[0,n],p,0
RW (π(n) = y)

.

By Platonov’s theorem,

P[n/2,n],p,π̃(n/2)
RW (π(n) = y) ≤ 1√

2π(n− π̃(n/2))p(1− p)
+

C

np(1− p)

≤ 1√
πnp(1− p)

+
C

np(1− p)
.

Here we used the fact that φ(x) ≤ 1/
√

2π for all x and π̃(n/2) can only be at most n/2. Also, by

Platonov’s theorem again,

P[0,n],p,0
RW (π(n) = y) ≥ 1√

np(1− p)
φ

(
y − np√
np(1− p)

)
− C

np(1− p)

=
1√

2πnp(1− p)
− C

np(1− p)

since y − np = 0 and φ(0) = 1/
√

2π. Putting these two inequalities together yields

P[n/2,n],p,π̃(n/2)
RW (π(n) = y)

P[0,n],p,0
RW (π(n) = y)

≤
1√

πnp(1−p)
+ C

np(1−p)

1√
2πnp(1−p)

− C
np(1−p)

=

√
2np(1− p) + C√
np(1− p)− C

.



CHAPTER 2. INTERSECTIONS OF RANDOM WALKS 23

If n is sufficiently large, then this last bound is ≤ 2 uniformly for p ∈ [1/4, 3/4].

2.3 Estimates for the intersection local time

We now apply (2.2) with F the moments of the intersection local time in the first half of the interval.

By (2.2) and the triangle inequality for Lm norms, we have that for all m ≥ 1,

[E[a,b],x,y
Bri (L(π1, . . . , πk)m)]1/m

≤ [E[a,b],x,y
Bri (L(π1, . . . , πk; [a, (b− a)/2])m)]1/m

+ [E[a,b],x,y
Bri (L(π1, . . . , πk; [(b− a)/2, b])m)]1/m

= 2[E[a,b],x,y
Bri (L(π1, . . . , πk; [a, (b− a)/2])m)]1/m

≤ 2[2kE[a,b],p,x
RW (L(π1, . . . , πk; [a, (b− a)/2])m)]1/m

≤ 2[2kE[a,b],p,x
RW (L(π1, . . . , πk)m)]1/m

(2.3)

provided that the slopes pi = (yi − xi)/(b − a) are all in [1/4, 3/4]. In the fourth line, we used the

fact that the number of intersections in the first half of [a, b] has the same law as the number of

intersections in the second half by considering backward paths. In view of (2.1), we will only really

need to consider the case k = 2.

We can do a similar calculation to estimate the moment generating function of the intersection

local time. Since the function x 7→ erx is convex, we have again by (2.2) that for r ≥ 0 and paths

with slopes in [1/4, 3/4],

E[a,b],x,y
Bri (erL(π1,...,πk))

≤ 1

2
E[a,b],x,y

Bri (e2rL(π1,...,πk;[a,(b−a)/2])) +
1

2
E[a,b],x,y

Bri (e2rL(π1,...,πk;[(b−a)/2,b]))

= E[a,b],x,y
Bri (e2rL(π1,...,πk;[a,(b−a)/2]))

≤ 2kE[a,b],x,p
RW (e2rL(π1,...,πk;[a,(b−a)/2]))

≤ 2kE[a,b],x,p
RW (e2rL(π1,...,πk)).

(2.4)

So now we need to estimate the moments and moment generating function of the intersection

local time of two independent Bernoulli random walks. There is yet another simplification we can

make. Extend the walks to infinite Bernoulli walks, and let G(π1, π2) be the number of times the

two walks intersect before there is an interval of length at least b − a where they do not intersect.

Then clearly we have L(π1, π2; [a, b]) ≤ G(π1, π2), since any intersection that happens in [a, b] is an

intersection that happens before there is an interval of length at least b − a with no intersection.

The advantage of working with G(π1, π2) instead is that its distribution is much simpler; it is the

Geo0(qb−a), where qk is the probability that the two paths do not intersect before time k (we use

Geo0 to denote the geometric distribution on {0, 1, 2, . . . }). If X ∼ Geo0(q), then its moments

satisfy

E(Xm) ≤ m!

qm
(2.5)

for all q > 0. One way to see this is that if Y ∼ Exp(1), then X = b−Y/ log(1 − q)c follows the

Geo0(q) distribution, E(Y m) = m! by integration by parts, and − log(1 − q) ≥ q for all 0 ≤ q < 1.
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So all we need is a lower bound on the probability that the first intersection of two Bernoulli walks

happens after time k.

Lemma 2.3. Let π1, π2 be independent Bernoulli walks with slopes p1, p2 respectively, started at the

same point, and let T = min{k ≥ 1 : π1(k) = π2(k)}. Then there is an absolute constant C such

that for all n ≥ 1,

PRW(T ≥ n) ≥ C(p1(1− p2) + (1− p1)p2)√
n

.

Proof. Let X(k) = π1(k) − π2(k). Then X is a “lazy” random walk, with transition probabilities

given by

X(k + 1)−X(k) =


0 with probability p1p2 + (1− p1)(1− p2)

1 with probability p1(1− p2)

−1 with probability (1− p1)p2.

The law of X is the same as a random walk Y with transition steps given by

Y (k + 1)− Y (k) =

1 with probability p1(1−p2)
p1(1−p2)+(1−p1)p2

−1 with probability (1−p1)p2
p1(1−p2)+(1−p1)p2

and where at each step, the walk stays there for a Geo0(p1(1 − p2) + (1 − p1)p2) amount of time

before jumping according to Y . Let T ′ = min{k ≥ 1 : Y (k) = 0} be the first return to 0 of Y . If the

walk X immediately jumps away from 0 (i.e the geometric time spent at 0 is 0) and T ′ ≥ n, then we

certainly have T ≥ n. Indeed it will take longer for X to come back to 0 than Y because after each

time it jumps, it needs to stay at the same position for a geometric amount of time. We thus have

PRW(T ≥ n) ≥ PRW(T ′ ≥ n,X(1) 6= 0) = (p1(1− p2) + (1− p1)p2)PRW(T ′ ≥ n).

There is an explicit formula for the law of the first return time to 0 of an asymmetric simple

random walk S started at 0 with probability q of going up and probability 1 − q of going down; it

is given by

P(S(1) 6= 0, . . . , S(2k − 1) 6= 0, S(2k) = 0) = [q(1− q)]k
(

2k
k

)
2k − 1

.

Indeed, the number of such walks is given by 2 times the kth Catalan number:
(

2k
k

)
/(2k − 1) (see

for example [33, Section III.3]), and each of those walks have exactly k up steps and k down steps,

so they all have probability [q(1 − q)]k. For any k, this quantity will clearly be the largest when

q = 1/2, so it follows from Stirling’s formula that

PRW(T ′ ≥ n) = 1−
bn/2c∑
k=0

[q(1− q)]k
(

2k
k

)
2k − 1

≥ 1−
bn/2c∑
k=0

(
2k
k

)
4k(2k − 1)

=

∞∑
k=bn/2c

(
2k
k

)
4k(2k − 1)

≥ C√
n

for some appropriate constant C.

Lemma 2.3 thus gives a lower bound which is uniform over all slopes p1, p2 ∈ [1/4, 3/4]. Com-

bining this with (2.5), the bound L(π1, π2) ≤ G(π1, π2) and (2.3), we therefore obtain the following
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proposition.

Proposition 2.4. We have

E[a,b],x,y
Bri (L(π1, π2)m) ≤ Cm!Am(b− a)m/2 (2.6)

for constants C and A that do not depend on a or b and are uniform over all slopes (y1−x1)/(b−a)

and (y2 − x2)/(b− a) in [1/4, 3/4].

Next we turn our attention to the moment generating function E[a,b],x,y
Bri (erL(π1,π2)). Of particular

interest is when r = o(
√
b− a).

Proposition 2.5. Let r, δ > 0, and let n = b− a. Then there is a constant Cr,δ such that

E[a,b],x,y
Bri

[
exp

(
rn−( 1

2 +δ)L(π1, π2)
)]
≤ Cr,δ,

for all n and for all slopes (y1 − x1)/(b− a) and (y2 − x2)/(b− a) in [1/4, 3/4].

Proof. By (2.4), we can replace bridge measure with random walk measure, and we can then bound

L(π1, π2) by G(π1, π2). Then G(π1, π2) follows the Geo0(q) distribution where q is the probability

that π1 and π2 do not intersect on an [a, b], and by Lemma 2.3, q ≥ C/
√
n for some constant C.

Since the Geo0(q) stochastically dominates the Geo0(p) whenever q < p, we may as well replace

G(π1, π2) by X where X ∼ Geo0(C/
√
n). Thus we have

E[a,b],x,y
Bri

[
exp

(
rn−( 1

2 +δ)L(π1, π2)
)]
≤ E(e2rn−( 1

2
+δ)X).

We now estimate the moment generating function of X. By the inequality (1− x) ≤ e−x,

E(e2rn−( 1
2
+δ)X) =

∞∑
j=0

e2rn−( 1
2
+δ)j C√

n

(
1− C√

n

)j
≤ C√

n

∞∑
j=0

exp

[(
2rn−( 1

2 +δ) − C√
n

)
j

]
=

C
√
n
[
1− exp

(
2rn−( 1

2 +δ) − C√
n

)] .
Note that since n−( 1

2 +δ) goes to 0 faster than 1/
√
n, the term inside the exponential will be negative

for all n sufficiently large, and so the series does indeed converge. Also, by doing a Taylor expansion

of the exponential, we have

exp

(
2rn−( 1

2 +δ) − C√
n

)
= 1− C√

n
+ o

(
1√
n

)
,

(the error term may depend on r and δ) and so

E(e2rn−( 1
2
+δ)X) ≤ C

√
n
[
1− exp

(
2rn−( 1

2 +δ) − C√
n

)] =
C

C ′ + o(1)
.

This completes the proof.
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2.4 A lemma on triple intersections

We finish this chapter with a somewhat technical lemma on the number of triple intersections of

random walks. Given three paths π1, π2, π3 on [a, b], we denote by L3(π1, π2, π3) the number of times

that all three paths intersect simultaneously:

L3(π1, π2, π3) =

b∑
k=a

1{π1(k)=π2(k)=π3(k)}.

By the exact same calculation as (2.3), we can bound the moments of L3(π1, π2, π3) under bridge

measure by those with respect to random walk measure, assuming that all the paths have slopes in

[1/4, 3/4]:

E[a,b],x,y
Bri (L3(π1, π2, π3)m) ≤ 8 · 2mE[a,b],x,p

RW (L3(π1, π2, π3)m). (2.7)

For Bernoulli random walks, triple intersections are much rarer than intersections of two paths.

The following makes this statement more precise.

Lemma 2.6. Let π1, π2, π3 be independent Bernoulli bridges on an interval [a, b] of length n, with

slopes p1, p2, p3 respectively. Then there is a constant C such that for all p1, p2, p3 ∈ [1/4, 3/4],

EBri(L3(π2, π2, π3)2) ≤ C(log n)2.

Proof. By (2.7), we may consider Bernoulli walks instead of bridges, with the same slopes. Assume

first that all three paths start at the same position (without loss of generality this initial position is

0 and [a, b] = [0, n]). Let

qk = PRW(π1(k) = π2(k) = π3(k)).

We first show that qk = O(1/k). For each i, let fi be the probability mass function of πi at time k.

Then

qk =

k∑
j=0

f1(j)f2(j)f3(j). (2.8)

By Platonov’s theorem, we have, for each i,

fi(j) ≤
1√

kpi(1− pi)
φ

(
j − kpi√
kpi(1− pi)

)
+

C

kpi(1− pi)
,

so after expanding the product in each term of (2.8), the main order term is

≤ C

k3/2

k∑
j=0

φ

(
j − kp1√
kp1(1− p1)

)
φ

(
j − kp2√
kp2(1− p2)

)
φ

(
j − kp3√
kp3(1− p3)

)

≤ C

k

∫ √k
−
√
k

φ

(
x− p1

√
k√

p1(1− p1)

)
φ

(
x− p2

√
k√

p2(1− p2)

)
φ

(
x− p3

√
k√

p3(1− p3)

)
dx

+O

(
1

k3/2

)
≤ C

k
.
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Here we used the fact that the sum can be interpreted as a Riemann sum, and that the difference

between a Riemann sum and the integral it approximates is at most a constant times the modulus of

continuity of the integrand times the size of the mesh. In this case the size of the mesh is 1/
√
k, and

the modulus of continuity is bounded by a constant independent of k given that p1, p2, p3 ∈ [1/4, 3/4].

The integral is easily seen to be bounded, using say Hölder’s inequality. The lower order terms can

be treated similarly: instead of having products of three Gaussian densities, we’ll have products of

two, one or zero Gaussian densities along with a higher exponent of 1/k, and in all cases after we

approximate the sum with an integral, the result will be O(1/k3/2).

We then have for n ≥ 2,

ERW(L3(π1, π2, π3)2) = ERW

(
n∑
k=1

1{π1(k)=π2(k)=π3(k)}

)2

= ERW

2
∑

1≤j<k≤n

1{π1(j)=π2(j)=π3(j)}1{π1(k)=π2(k)=π3(k)}

+

n∑
k=1

1{π1(k)=π2(k)=π3(k)}

)

= 2
∑

1≤j<k≤n

qjqk−j +

n∑
k=1

qk

≤ C

n−1∑
j=1

1

j

n∑
k=j+1

1

k − j
+

n∑
k=1

1

k

 ≤ C(log n)2.

Finally, if the paths do not start at the same location, then we still have

L3(π1, π2, π3) ≤ 1 + L3(π′1, π
′
2, π
′
3)

where the π′i are the paths after the first intersection. The above bounds then holds for L3(π′1, π
′
2, π
′
3)

and the required inequality follows easily.



Chapter 3

Local fluctuations of directed

polymers

In this chapter, we study the local behaviour of directed polymers. We first obtain an estimate

on the centred moments of the partition function, which is given in terms of the moments of the

intersection local time. We then obtain a large deviation bound for the polymer measure, and we

derive the value of the critical exponent α = 1/8.

3.1 Centred moments of the partition function

Let µ be a probability measure on the set of paths on [a, b], and let (ωi,j(β))i,j≥0 be a parametrized

set of valid weights. We define the corresponding partition function as

Zµ(β) =
∑

π∈Π[a,b]

µ(π)
∏

`∈[a,b]

ω`,π(`)(β).

Note that the point-to-point partition function as defined in the introduction is the special case

where µ is Bernoulli bridge measure. Since the weights ωi,j(β) are independent and have mean 1

for all β, Zµ(β) clearly has mean 1.

Theorem 3.1. Assume the (ωi,j(β))i,j≥0 are a valid set of weights. Let µ be a probability measure

on paths in [a, b], n = b− a, and k a positive even integer. Then

E((Zµ(β)− 1)k) ≤

 n∑
j=1

(Ck)jβj
[
Eµ(L(π1, . . . , πk)kj/2)

(kj/2)!

]1/k
k

,

where π1, . . . , πk are independent paths distributed according to µ. The constants Ck only depend on

the constants involved in the definition of valid weights.

Proof. For each i and j, let ζi,j(β) = ωi,j(β)− 1. Then the ζi,j have mean 0, and by Condition 3 of

28
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valid sets of weights, E|ζi,j(β)|k ≤ Ckβk. We can thus rewrite Zµ(β)− 1 as follows

Zµ(β)− 1 =
∑

π∈Π[a,b]

[
b∏
i=a

(1 + ζi,π(i)(β))− 1

]
µ(π)

=
∑

π∈Π[a,b]

µ(π)
∑

S⊆[a,b],S 6=∅

∏
i∈S

ζi,π(i)(β).

Here the inner sum is taken over non-empty subsets of [a, b] (we interpret intervals in this proof as

intervals of integers, so [a, b] = {a, a+ 1, . . . , b}). For 1 ≤ j ≤ n, let

Zµ,j(β) =
∑

π∈Π[a,b]

µ(π)
∑

S⊆[a,b],|S|=j

∏
i∈S

ζi,π(i)(β).

Then Zµ(β)− 1 = Zµ,1(β) + . . .+ Zµ,n(β). We will estimate the k-th moment of each Zµ,j(β).

We have

E(Zµ,j)
k = E

 ∑
π1,...,πk

µ(π1) · · ·µ(πk)
∑

S1,...,Sk
|Si|=j

∏
i1∈S1

ζi1,π1(i1) · · ·
∏
ik∈Sk

ζik,πk(ik)

 . (3.1)

Next, by Hölder’s inequality and the inequalities E|ζi,j(β)|k ≤ Ckβk,

E

∣∣∣∣∣ ∏
i1∈S1

ζi1,π1(i1) · · ·
∏
ik∈Sk

ζik,πk(ik)

∣∣∣∣∣
≤

(
E

( ∏
i1∈S1

ζki1,π1(i1)

))1/k

· · ·

(
E

( ∏
ik∈Sk

ζkik,πk(ik)

))1/k

=

( ∏
i1∈S1

E(ζki1,π1(i1))

)1/k

· · ·

( ∏
ik∈Sk

E(ζkik,πk(ik))

)1/k

≤ (Ck)jβkj .

Now each product in the inner sum of (3.1) that has non-zero expectation is obtained by taking

points (i1, j1), . . . (i`, j`) in V(π1, . . . , πk) such that

v(i1, j1) + · · ·+ v(i`, j`) = kj

and multiplying their corresponding weights ζ
v(i1,ji)
i1,j1

, . . . , ζ
v(i`,j`)
i`,j`

. Since each of those v(i, j) are at

least 2, the number of such configurations is at most(
L(π1, . . . , πk)

kj
2

)
≤ L(π1, . . . , πk)kj/2

(kj/2)!
.

Hence, the expectation of the inner sum is no larger than

L(π1, . . . , πk)kj/2(Ck)jβkj

(kj/2)!
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and therefore

E(Zµ,j)
k ≤ (Ck)jβkj

∑
π1,...,πk

µ(π1) · · ·µ(πk)
L(π1, . . . , πk)kj/2

(kj/2)!

=
(Ck)jβkj

(kj/2)!
Eµ(L(π1, . . . , πk)kj/2).

Finally, by the triangle inequality for Lk norms,

E(Zµ(β)− 1)k = E(Zµ,1(β) + · · ·+ Zµ,n(β))k

≤
(

(E(Zµ,1(β))k)1/k + · · ·+ (E(Zµ,n(β))k)1/k
)k

≤

 n∑
j=1

(Ck)jβj
[
Eµ(L(π1, . . . , πk)kj/2)

(kj/2)!

]1/k
k

.

This concludes the proof.

We can use Theorem 3.1 together with Proposition 2.4 on the moments of the intersection local

time for bridge measure to obtain the following corollary.

Corollary 3.2. Let (ωi,j(β))i,j≥0 be a set of valid weights, and let µ be a convex combination of

bridge measures on [a, b] of slopes in [1/4, 3/4]. Assume that β = n−( 1
4 +δ) for some δ > 0. Then for

any positive even integer k, there is a positive constant Ck such that

E(Zµ(β)− 1)k ≤ Ck
nkδ

for n sufficiently large.

Proof. First off, by the bound (2.1), the fact that every term in that sum has the same law and the

triangle inequality for Lm norms,

Eµ(L(π1, . . . , πk)m) ≤
(
k

2

)m
Eµ(L(π1, π2)m)

for each m ≥ 1. So by Proposition 2.4,

Eµ(L(π1, . . . , πk)m) ≤
(
k

2

)m
Eµ(L(π1, π2)m) ≤ Cm!(Ak2)mnm/2.

Indeed, this holds for any bridge measure with slope in [1/4, 3/4], with the same choice of C and A,

so it also holds for convex combinations. Combining this with Theorem 3.1, we obtain

E((Zµ(β)− 1)k) ≤

 2n∑
j=1

(Ck)jβj
[
Eµ(L(π1, . . . , πk)kj/2)

(kj/2)!

]1/k
k

≤

 2n∑
j=1

(Ck)jβjC1/k(Ak2)j/2nj/4

k

≤
(

Ckβn
1/4

1− Ckβn1/4

)k
.



CHAPTER 3. LOCAL FLUCTUATIONS OF DIRECTED POLYMERS 31

Since β = n−( 1
4 +δ), it follows that for n large enough,

E((Zµ(β)− 1)k) ≤ Ck
nkδ

for some appropriate constant Ck.

3.2 Local deviations and the critical exponent α = 1
8

Let (ωi,j(β))i,j≥0 be a valid set of weights, and let Zn(β) be the corresponding point-to-point par-

tition function:

Zn(β) =
∑
π

2n∏
i=0

ωi,π(i)(β),

the sum being taken over paths π on [0, 2n] such that π(0) = 0 and π(2n) = n. We consider the

intermediate disorder regime, which consists in taking β = n−α for some fixed α > 0. When α > 1/4,

Corollary 3.2 implies that Zn(β)/
(

2n
n

)
is very close to 1 with high probability. However the case that

interests us is when α < 1/4, and in this regime, Corollary 3.2 does not hold. Nevertheless, we can

still obtain a local deviations estimate.

Let [a, b] ⊂ [0, 2n] be a subinterval of length n0, and let

Z =
∑
π

∏
i/∈[a,b]

ωi,π(i)(β).

Thus Z is the partition function where all the weights lying in the strip

∆ = {(i, j) : a ≤ i ≤ b, 0 ≤ j ≤ n}

have been changed to 1. We wish to obtain an estimate for Zn/Z, as this quotient represents the

relative change in Zn when one changes the weights inside ∆. Now, we can factor out the weights

lying in ∆ from the product inside Zn, and this allows us to write

Zµ(β) =
Zn
Z

=
∑

π∈Π[a,b]

µ(π)
∏

`∈[a,b]

ω`,π(`)(β),

where µ is the random measure on Π[a, b] defined by

µ(π) =
1

Z
∑

π̃: π̃|[a,b]=π

∏
`/∈[a,b]

ω`,π̃(`)(β). (3.2)

Here the sum is taken over bridges π̃ on [0, 2n] whose restriction to [a, b] is π. Concretely, µ is

simply a Bernoulli bridge measure where the endpoints are random, chosen depending on what the

environment is outside of the strip ∆. Indeed, two paths on [a, b] with the same endpoints have the

same measure, since the paths on [0, 2n] with those restrictions on [a, b] must agree outside of [a, b],

and µ only counts weights from the environment outside the strip. See Figure 3.1.

Now, the key is that if n0, the length of [a, b], is small enough, then β as a function of n0 satisfies
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a b

Figure 3.1: Two paths in [a, b] distributed according to µ. The endpoints of the paths are random
and depend on the configuration of the ωi,j ’s outside of the strip, represented as black dots here.

β ∼ n−γ0 for some exponent γ > 1/4. Specifically, setting

n0 = 2

⌊
n

4α
1+4δ

2

⌋
(3.3)

for some δ > 0 gives β ∼ n−( 1
4 +δ)

0 . As explained above, µ is a convex combination of bridge measures,

and therefore we can apply Corollary 3.2 to obtain an estimate on Zn/Z provided that there is a low

probability that µ assigns high mass to paths with slopes not in [1/4, 3/4]. The following theorem

gives a precise bound on this probability.

Theorem 3.3. There are positive constants C, Ck such that the following hold. For all n sufficiently

large, there is probability at least

1− Ckn

nkδ+1
0

that the weights ωi,j not in the strip ∆ yield a probability measure µ which satisfies

µ(S) ≤ C exp

(
C
n

n0
log n

)
P[0,2n], 12 ,0

RW (S̃)1/2 (3.4)

for all sets of paths S ⊂ Π[a, b]. Here S̃ is the set of paths on [0, 2n] whose restriction to [a, b] is in

S.

We will take as S the set of paths whose slope on [a, b] is not in [1/4, 3/4]:

S =

{
π :

π(b)− π(a)

b− a
/∈
[

1

4
,

3

4

]}
=
{
π :
∣∣∣π(b)− π(a)− n0

2

∣∣∣ ≥ n0

4

}
. (3.5)

By the Markov property of random walks, S̃ is independent under PRW of the behaviour of a path

before time a, and therefore PRW(S̃) is simply the probability that a Bernoulli random walk with

mean 1/2, started at 0 and length n0 ends at a position more than n0/4 away from n0/2. Thus by
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Hoeffding’s inequality,

PRW(S̃) ≤ Ce−Cn0

for some constant C > 0. Plugging this in (3.4) yields

µ(S) ≤ C exp

(
C

(
n

n0
log n− n0

))
with probability at least 1−Ckn/nkδ+1

0 . Both n0 and n/n0 grow like powers of n, so as long as the

exponent for n0 is strictly larger than the one for n/n0, this will imply that µ(S) is exponentially

decreasing in some power of n. By (3.3),

n0 ∼ n
4α

1+4δ ,
n

n0
∼ n1− 4α

1+4δ ,

so we need
8α

1 + 4δ
> 1. (3.6)

As long as α > 1/8, we can find a δ > 0 such that the above holds.

We henceforth assume that we have fixed some 1
8 < α < 1

4 , and a corresponding δ > 0 for which

(3.6) holds. Thus when dealing with an estimate of the form Ck/n
kδ
0 , we only need to know this

holds for some sufficiently large k for which n−kδ0 has lower order than the main term in whatever

expression we are working with. Results such as Theorem 3.3 hold for any k; the n for which

“sufficiently large” starts to hold may depend on k, but this will not cause any issues as the k will

be fixed depending on what α is.

Let us also mention that so far and in all of what follows, the location of the interval [a, b] is

irrelevant. All that matters is its length.

With these technical details out of the way, letM be the event that the weights outside the strip

∆ yield a measure which satisfies (3.4) for all sets of paths S ⊂ Π[a, b]. Thus Theorem 3.3 says that

P(M) ≥ 1− Ckn

nkδ+1
0

.

With S as in (3.5), the above calculations imply that on M,

µ(S) ≤ Ce−Cn0 (3.7)

for some positive constant C. We then conclude the following corollary for the conditional centred

moments of Zn/Z.

Corollary 3.4. There are positive constants C,Ck such that for any even k, and for any n suffi-

ciently large,

E

[(
Zn
Z
− 1

)k∣∣∣∣∣M
]
≤ Ck
nkδ0

.

Proof of Corollary 3.4. We essentially copy the proof of Corollary 3.2 but with a slight modification

since µ might still assign non-zero probability to paths with slopes not in [1/4, 3/4].

Let π1 and π2 be independent paths on [a, b] distributed according to µ. We estimate the moments
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of the intersection local time by conditioning on the event S:

Eµ(L(π1, π2)m) = Eµ(L(π1, π2)m|{π1 /∈ S} ∩ {π2 /∈ S}) µ({π1 /∈ S} ∩ {π2 /∈ S})

+ Eµ(L(π1, π2)m|{π1 ∈ S} ∪ {π2 ∈ S}) µ({π1 ∈ S} ∪ {π2 ∈ S})

≤ Eµ(L(π1, π2)m|{π1 /∈ S} ∩ {π2 /∈ S}) + 2nm0 µ(S).

In the last line, we have used the fact that µ is a probability measure for the first term, and the

trivial inequality L(π1, π2) ≤ n0 plus a union bound for the second term. Conditional on S not

happening, µ is a convex combination of bridge measures with slopes in [1/4, 3/4], so by Proposition

2.4,

Eµ(L(π1, π2)m|{π1 /∈ S} ∩ {π2 /∈ S}) ≤ Cm!Amn
m/2
0 .

Next, we have

eCn0 =

∞∑
j=0

(Cn0)j

j!
≥ (Cn0)m

m!

for any m, and so after some rearranging, we have by (3.7)

2nm0 µ(S) ≤ Cnm0 e−Cn0 ≤ Cm!Am

for constants C,A > 0 which do not depend on m. Combining these estimates thus gives

Eµ(L(π1, π2)m) ≤ Cm!Amn
m/2
0 .

Then we can do exactly the same calculations done at the end of the proof of Corollary 3.2 with n

replaced by n0, and this implies the result since β ∼ n−( 1
4 +δ)

0 .

It now remains to actually prove Theorem 3.3. First recall that the random measure µ is given

by

µ(S) =

∑
π∈S̃

∏
`/∈[a,b] ω`,π(`)(β)∑

π

∏
`/∈[a,b] ω`,π(`)(β)

where for a set of paths S on [a, b], we denote by S̃ the set of paths on [0, 2n] whose restriction to

[a, b] is in S. The goal is to obtain an estimate for µ(S) in terms of PRW(S̃). Let us write

µ(S) =
T
B

where T and B are the normalized top and bottom parts of µ(S):

T =
1(
2n
n

) ∑
π∈S̃

∏
`/∈[a,b]

ω`,π(`)(β), B =
1(
2n
n

) ∑
π

∏
`/∈[a,b]

ω`,π(`)(β).

We will find an upper bound for T and lower bound for B over the next two sections. Then Theorem

3.3 will result immediately from the following two lemmas. In their statements and proofs, P and E
refers to probability and expectation with respect to the weights ωi,j not in the strip ∆.

Lemma 3.5. There is a positive constant C such that for all n sufficiently large, and for all sets of
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paths S ⊂ Π[a, b],

P(T ≤ CeC
n
n0 PRW(S̃)1/2) ≥ 1− C

√
ne−C

n
n0 .

Lemma 3.6. There are positive constants C,Ck such that for all n sufficiently large,

P(B ≥ Ce−C
n
n0

logn) ≥ 1− Ckn

nkδ+1
0

.

3.3 Upper bound for T

In the proofs of Lemma 3.5 and 3.6, we set m = b2n/n0c. Thus 0 ≤ 2n−mn0 ≤ n0.

Proof of Lemma 3.5. Using the fact that ωi,j is independent of ωk,` whenever i 6= k, we have

E(T 2) =
1(

2n
n

)2 ∑
π1,π2

1{π1,π2∈S̃}

∏
`/∈[a,b]

E(ω`,π1(`)ω`,π2(`)).

If π1(`) 6= π2(`), then the inner expectation can be broken as a product of expectations by indepen-

dence, and the expectation is 1. If π1(`) = π2(`), then the expectation is

E(ω2
`,π1(`)) ≤ 1 + Cβ2

by Condition 3 of valid weights. Thus

E(T 2) ≤ 1(
2n
n

)2 ∑
π1,π2

1{π1,π2∈S̃}(1 + Cβ2)L(π1,π2)

≤ 1(
2n
n

)2
(∑
π1,π2

(1 + Cβ2)2L(π1,π2)

)1/2

|S̃|

= PBri(S̃)
(
EBri(1 + Cβ2)2L(π1,π2)

)1/2

,

where we used the Cauchy–Schwarz inequality in the second line. By Stirling’s formula,

PBri(S̃) =
|S̃|(
2n
n

) ≤ C√n |S̃|
4n

= C
√
nPRW(S̃)

for some positive constant C, and by (2.4),

EBri(1 + Cβ2)2L(π1,π2) ≤ EBri(e
2Cβ2L(π1,π2)) ≤ 4ERW(e4Cβ2L(π1,π2)).

Clearly, we can write

L(π1, π2) = L(π1, π2; [0, n0)) + L(π1, π2; [n0, 2n0)) + . . .

+ L(π1, π2; [(m− 1)n0,mn0)) + L(π1, π2; [mn0, 2n]).

The idea is that the terms appearing in the above sum are essentially independent, and so we can

use this to write the above expectation as a product of the moment generating functions of the

intersection local time on each subinterval [jn0, (j + 1)n0).
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For each 0 ≤ j ≤ m− 1, let

Tj = min{` ∈ [jn0, (j + 1)n0) : π1(`) = π2(`)}

be the first time that π1 and π2 intersect on the subinterval [jn0, (j + 1)n0), and similarly define

Tm = min{` ∈ [mn0, 2n] : π1(`) = π2(`)}.

If π1 and π2 do not intersect on some subinterval, then we set

Tj = (j + 1)n0.

Note that the Tj ’s are stopping times. Now for each 0 ≤ j ≤ m, let ρj1, ρ
j
2 be independent

Bernoulli(1/2) random walks started at 0, all independent of π1 and π2. Then define

πj1(`) =

π1(`+ Tj)− π1(Tj) if `+ Tj < (j + 1)n0

π1((j + 1)n0)− π1(Tj) + ρj1(`) otherwise

and similarly for πj2. Concretely, πj1 and πj2 are obtained by deleting the part of the walks before

the first intersection of π1 and π2 in [jn0, (j + 1)n0), and then “gluing” ρj1 and ρj2 at the ends once

the walks have reached time (j + 1)n0. In the case where π1 and π2 do not intersect at all in a

subinterval, they are thrown away entirely and πj1 = ρj1 and πj2 = ρj2. See Figure 3.2.

By the strong Markov property of Bernoulli random walks, the πj1’s and πj2’s are Bernoulli(1/2)

random walks, and furthermore they are all independent. Additionally, we have

L(π1, π2; [jn0, (j + 1)n0)) ≤ L(πj1, π
j
2; [0, n0))

since all the intersections of π1 and π2 on the subinterval have been kept in the construction of

πj1 and πj2. The latter two may have more intersections depending on the behaviour of ρj1 and ρj2.

Consequently, we have

ERW[eCβ
2L(π1,π2)] ≤ ERW[eCβ

2(L(π1
1 ,π

1
2 ;[0,n0))+...+L(πm1 ,π

m
2 ;[0,n0)))]

=
m∏
j=0

ERW[eCβ
2L(πj1,π

j
2;[0,n0))]

Since β2 ∼ n−( 1
2 +2δ)

0 , we have

ERW[eCβ
2L(πj1,π

j
2;[0,n0))] ≤ C

for some C > 1 by Proposition 2.5 (the proposition is stated in terms of bridge measure, but the

very first thing that we did in the proof is change to random walk measure, so the estimate also

holds for ERW). The terms in the product above are all the same since πj1 and πj2 have the same

distribution for all j. Therefore

m∏
j=0

ERW[eCβ
2L(πj1,π

j
2;[0,n0))] ≤ Cm+1 ≤ eC

n
n0 .
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Tj Tj+1

π1

π2

πj1

πj2

πj+1
1

πj+1
2

Figure 3.2: On top are the paths π1, π2, together with the times Tj , Tj+1 when they first intersect on

the intervals [jn0, (j+ 1)n0) and [(j+ 1)n0, (j+ 2)n0) respectively. Below are the paths πj1, π
j
2, π

j+1
1

and πj+1
2 . These are obtained by deleting the parts of the paths before the first intersection time

on each subinterval, and gluing at the end ρj1, ρ
j
2, ρ

j+1
1 and ρj+1

2 (represented as dotted paths here).
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jn0 (j + 1)n0 (j + 2)n0

Figure 3.3: Two paths in the set G. On each subinterval [jn0, (j+1)n0), the restriction of the paths
are Bernoulli bridges of slope 1/2.

In summary, we have obtained the bound

E(T 2) ≤ C
√
nPRW(S̃)eC

n
n0 , (3.8)

and so by Chebyshev’s inequality,

P(T ≥ λ) ≤ C
√
nPRW(S̃)eC

n
n0

λ2
.

If PRW(S̃) is 0, then the sum in the definition of T is empty, so in this case there is nothing to prove.

So assume PRW(S̃) > 0. Then by taking λ = PRW(S̃)1/2eC
n
n0 in (3.8) (with the same C), we thus

find

T ≤ PRW(S̃)1/2eC
n
n0

with probability at least 1− C
√
ne−C

n
n0 .

3.4 Lower bound for B

Proof of Lemma 3.6. Let G ⊂ Π[0, 2n] be the following set of paths

G =

{
π : π(jn0) =

jn0

2
for j = 0, 1, . . . ,m and π(2n) = n

}
.

That is, G is the set of paths which intersect the line of y = x/2 for all times 0, n0, . . . ,mn0 and

2n. See Figure 3.3. Clearly, by restricting the sum for B to only the paths in G, we obtain a lower

bound on B. The advantage of doing so is that when restricted to G, the partition function admits

a special factorization.
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For each j, let Gj be the set of paths on [jn0, (j + 1)n0) defined by

Gj =

{
π : π(jn0) =

jn0

2
, π((j + 1)n0) =

(j + 1)n0

2

}
and Gm the set of paths on [mn0, 2n) defined as

Gm =
{
π : π(mn0) =

mn0

2
, π(2n) = n

}
.

Write ω̃i,j(β) = ωi,j(β) if i /∈ [a, b] and ω̃i,j(β) = 1 if i ∈ [a, b]. Finally define

Yj =
1(
n0

n0/2

) ∑
π∈Gj

(j+1)n0−1∏
`=jn0

ω̃`,π(`)

for j = 0, 1, . . . ,m− 1 and

Ym =
1(

2n−mn0

n−mn0
2

) ∑
π∈Gm

2n∏
`=m

ω̃`,π(`)

(if 2n = mn0, i.e n0 divides 2n, then we set Ym = 1). Then we have

B ≥ 1(
2n
n

) ∑
π∈G

∏
`/∈[a,b]

ω`,π(`) =

(
n0

n0/2

)m(
2n
n

) (
2n−mn0

n− mn0

2

) m∏
j=0

Yj . (3.9)

This last equality is because the set G is precisely the set of paths obtained by gluing together paths

from G0, G1, . . . , Gm. Now, by Stirling’s formula and the bound 2n − mn0 ≤ n0, we have when

2n 6= mn0, (
n0

n0/2

)m(
2n−mn0

n− mn0

2

)
≥
(

C
√
n0

2n0

)m
C

4n−
mn0

2√
n− mn0

2

≥ C4nCme−Cm log(
√
n0) ≥ C4ne−C

n
n0

logn

for some positive constant C. When 2n = mn0, then Ym and the corresponding binomial coefficient

do not appear in (3.9), and instead we just get(
n0

n0/2

)m
≥
(

C
√
n0

2n0

)m
=
Cm4n

n
n/n0

0

≥ C4ne−C
n
n0

logn.

We also have the trivial bound (
2n

n

)
≤ 22n = 4n.

Plugging these estimates in (3.9) gives in all cases that

B ≥ Ce−C
n
n0

logn
m∏
j=0

Yj . (3.10)

Each Yj has the law of a normalized point-to-point partition function for a valid set of weights on an

interval of length n0 (or 2n−mn0 in the case j = m). Since β ∼ n−( 1
4 +δ)

0 , it follows from Corollary
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3.2 that for any positive even integer k, there is a constant Ck such that

E(Yj − 1)k ≤ Ck
nkδ0

.

The Ck’s are the same for each j, since the Yj ’s are partition functions for the same set of valid

weights. By Chebyshev’s inequality, we therefore have

P(Yj ≤ 1/2) ≤ P(|Yj − 1| ≥ 1/2) ≤ 2kCk
nkδ0

.

Hence, with the same C as in (3.10),

P(B ≥ Ce−C
n
n0

logn2−(m+1)) ≥ P

 m∏
j=0

Yj ≥ 2−(m+1)


≥ P

 m⋂
j=0

{Yj ≥ 1/2}


≥ 1−

m∑
j=0

P(Yj < 1/2)

≥ 1− 2k(m+ 1)Ck
nkδ0

≥ 1− Ckn

nkδ+1
0

.

The result follows since 2−(m+1) ≥ e−C
n
n0

logn for n sufficiently large.



Chapter 4

Universality of directed polymers

in the intermediate regime

We prove our two main theorems on the directed polymer in the intermediate disorder regime. We

first prove Theorem 1.5, using the Lindeberg replacement strategy. We then show that both the

standard polymer and the log-gamma polymer (suitably renormalized) are valid sets of weights, and

we thus conclude Theorem 1.2 from Theorem 1.5.

4.1 Proof of Theorem 1.5

Having established the prerequisite estimates on the intersection local time of random walks and the

local fluctuations of polymers, we are finally ready to complete the proof of Theorem 1.5. Before we

begin, let us briefly recall the setup; we are given two parametrized valid (see Definition 1.3) sets of

weights (ωi,j(β))i,j≥0 and (ω′i,j(β))i,j≥0 whose second moment coincide for all β sufficiently small:

E(ωi,j(β)2) = E(ω′i,j(β)2).

The corresponding point-to-point partition functions Zn(β) and Z ′n(β) are as follows

Zn(β) =
∑
π

2n∏
i=0

ωi,π(i)(β), Z ′n(β) =
∑
π

2n∏
i=0

ω′i,π(i)(β).

We consider the intermediate disorder regime; so β depends on the length of the polymer via β = n−α

for some α > 0. We assume that 1
8 < α < 1

4 is fixed, and δ > 0 is chosen so that

8α

1 + 4δ
> 1

and

(2− 17α) + 8δ − 20αδ < 0. (4.1)

The first of these conditions is simply (3.6), and we have already established in Section 3.2 that this

needs to hold. On the other hand, (4.1) looks like a bizarre assumption to make, but this will come

41
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n0

Figure 4.1: The Lindeberg method in action. The blue dots are the weights from the (ωi,j(β))
polymer, and these are gradually replaced by weights from the (ω′i,j(β)) polymer, represented by
red dots. The vertex inside the square has just been replaced. We partition the whole range into
strips and estimate the errors accumulated from each replacement over a strip.

out of the calculations at the end of the proof. Note that such a δ > 0 exists for (4.1) as long as

α > 2/17, which is indeed our case.

Our main hypothesis is that the free energy logZ ′n(β) has a scaling limit:

logZ ′n(β)− an
σn

d−→ F

for some deterministic sequence an, and a probability distribution F . Here σn is the scaling factor

σn = β
4
3n

1
3 .

Note that since α < 1/4, we have σn →∞. Our goal is to show that we also have

logZn(β)− an
σn

d−→ F

for the same choice of an and F . By the Portmanteau theorem [15, Theorem 2.1] and a standard

density argument, it is enough to show that

lim
n→∞

E
[
f

(
logZn(β)− an

σn

)]
= lim
n→∞

E
[
f

(
logZ ′n(β)− an

σn

)]
for all C3 functions f whose derivatives are all bounded.

To estimate the difference of these two expectations, we will use the Lindeberg method, which

consists in replacing each weight of the (ωi,j(β))i,j≥0 polymer one by one to a weight from the

(ω′i,j(β))i,j≥0 polymer and estimating the resulting error from each step by a Taylor expansion. The

order in which we replace the weights will be along vertical lines: we change ωi,0 to ω′i,0, then ωi,1

to ω′i,1 and so on until we reach (i, n), at which point we move over to the (i + 1)th vertical line

and then replace those moving upwards. Eventually we will be partitioning the points into vertical

strips of width n0, so doing things this way ensures that the random measure µ introduced in (3.2)

stays the same at each stage of the replacement on a given strip. See Figure 4.1.
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Let

Wi,j(β) =
∑

π,(i,j)∈π

2n∏
`=0

ω
(i,j)
`,π(`)(β)

Vi,j(β) =
∑

π,(i,j)/∈π

2n∏
`=0

ω
(i,j)
`,π(`)(β).

Here the sum for Wi,j(β) is taken over the paths which go through the point (i, j), the sum for

Vi,j(β) is over the paths which do not go through the point (i, j), and

ω
(i,j)
k,` (β) =


ωk,`(β) if k > i or (k = i and ` > j)

ω′k,`(β) if k < i or (k = i and ` < j)

1 if i = k and j = `.

Thus the (ω
(i,j)
k,` (β))k,`≥0 are the weights in the polymer at the (i, j)th step of the replacement. We

have that Vi,j + ωi,jWi,j is the partition function if we choose the weight at (i, j) to be ωi,j , and

Vi,j + ω′i,jWi,j is the partition function if we instead choose this weight to be ω′i,j . To ease the

notation, we will usually omit to write β, i or j when it is clear that we are working with some

specific point (i, j). Likewise, we will also generally omit the superscript (i, j) from ω
(i,j)
k,` , and

it should then be understood that the set of weights for this particular polymer is the one at a

particular phase of the replacement. The estimates that will follow will only depend on the weights

in terms of the constants in Definition 1.3, and as already noted in Remark 1.4, those can be chosen

to be uniform over any combination of the weights. Hence, this abuse of notation should not cause

any issues.

Observe that V0,0 + ω0,0W0,0 = Zn and V2n,n + ω′2n,nW2n,n = Z ′n, so we have the following

telescoping sum formula:

E
[
f

(
logZn(β)− an

σn

)
− f

(
logZ ′n(β)− an

σn

)]
=

2n∑
i=0

n∑
j=0

E
[
f

(
log(Vi,j + ωi,jWi,j)− an

σn

)
− f

(
log(Vi,j + ω′i,jWi,j)− an

σn

)]
.

(4.2)

Note that some of the points (i, j) for 0 ≤ i ≤ 2n and 0 ≤ j ≤ n do not get visited by any path,

since paths are constrained to finish at (2n, n). So Wi,j = 0 for those points, and the corresponding

term in the sum is 0. We choose to keep these terms written in the sum for notational convenience.
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By Taylor’s theorem,

f

(
log(V + ωi,jW )− an

σn

)
= f

(
log(V +W )− an

σn

)
+ f ′

(
log(V +W )− an

σn

)
W

σn(V +W )
(ωi,j − 1)

− 1

2

[
f ′
(

log(V +W )− an
σn

)
−σ−1

n f ′′
(

log(V +W )− an
σn

)]
W 2

σn(V +W )2
(ωi,j − 1)2

+
1

6

[
2f ′
(

log(V + ηW )− an
σn

)
− 3σ−1

n f ′′
(

log(V + ηW )− an
σn

)
+σ−2

n f ′′′
(

log(V + ηW )− an
σn

)]
W 3

σn(V + ηW )3
(ωi,j − 1)3

for some η between 1 and ωi,j . The same expansion holds as well with ω′i,j , but with instead some

η′ between 1 and ω′i,j .

We now substitute these into (4.2). Since ωi,j(β) and ω′i,j(β) have the same first and second

moments for all sufficiently small β, and Vi,j and Wi,j are independent of ωi,j and ω′i,j , the order 0,

order 1 and order 2 terms all cancel each other out. For the third order terms, we can use the fact

that f has bounded derivatives and σn →∞ to get an upper bound. In summary, we have∣∣∣∣E [f ( log(V + ωi,jW )− an
σn

)
− f

(
log(V + ω′i,jW )− an

σn

)]∣∣∣∣
≤ C

σn
E
[

W 3

σn(V + ηW )3
|ωi,j − 1|3 +

W 3

σn(V + η′W )3
|ω′i,j − 1|3

]
.

We can get rid of the dependence on η and η′ by proceeding as follows. Consider the events {ω ≤ 1/2}
and {ω > 1/2}. On the second event, we have η > 1/2 (since η is between ω and 1), so

E
∣∣∣∣ W 3

(V + ηW )3
|ω − 1|31{ω>1/2}

∣∣∣∣ ≤ E
(

W 3

(V + 1
2W )3

|ω − 1|3
)

≤ 8E
(

W 3

(V +W )3

)
E|ω − 1|3

≤ CE
(

W 3

(V +W )3

)
β3.

Here the breaking up of the expectation is justified because W and V are independent of ω. On the
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other event, we have by Hölder’s inequality that

E
∣∣∣∣ W 3

(V + ηW )3
|ω − 1|31{ω≤1/2}

∣∣∣∣ ≤ E
(

W 3

(V + ωW )3
1{ω≤1/2}

)
≤ E

(
1

ω3
1{ω≤1/2}

)
≤ E

(
1

ωp

)3/p

P(ω ≤ 1/2)1−3/p

≤ CP(|ω − 1| ≥ 1/2)1−3/p

where p > 3 is the exponent appearing in Condition 4 of Definition 1.3. By Chebyshev’s inequality,

P(|ω − 1| ≥ 1/2)1−3/p ≤ (2kE|ω − 1|k)1−3/p ≤ Ckβk(1−3/p) =
Ck

nk(1−3/p)α

for any positive integer k. A corresponding error term holds for ω′, and in fact for each i, j in the

sum (4.2) with the same Ck’s (those only depend on the constants in the definition of valid weights).

There are O(n2) terms in the sum, and this produces an error of size

Ckn
2

nk(1−3/p)α
.

We are free to choose k as large as we want, so by choosing it sufficiently large, this term will go to

zero as n→∞, and we do not need to worry about it in the rest. All of the above calculations hold

with ω′, and so we have∣∣∣∣E [f ( log(V + ωi,jW )− an
σn

)
− f

(
log(V + ω′i,jW )− an

σn

)]∣∣∣∣
≤ Cβ3

σn
E
(

W 3

(V +W )3

)
+ o

(
1

n2

)
.

The constant C and the o(1/n2) term are uniform over all i and j as already mentioned, so substi-

tuting this back in (4.2) yields

∣∣∣∣E [f ( logZn(β)− an
σn

)
− f

(
logZ ′n(β)− an

σn

)]∣∣∣∣ ≤ Cβ3

σn

2n∑
i=0

n∑
j=0

E

(
W 3
i,j

(Vi,j +Wi,j)3

)
+ o(1). (4.3)

Let [a, b] ⊂ [0, 2n] be a subinterval of length n0, where

n0 = 2

⌊
n

4α
1+4δ

2

⌋

as in (3.3), and let ∆ (represented as the shaded yellow region in Figure 4.1) be the strip

∆ = {(i, j) : a ≤ i ≤ b, 0 ≤ j ≤ n}.
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We wish to obtain an estimate for

∑
(i,j)∈∆

E

(
W 3
i,j

(Vi,j +Wi,j)3

)
. (4.4)

Let µ be the random measure on Π[a, b] introduced in (3.2):

µ(π) =
1

Z
∑

π̃: π̃|[a,b]=π

∏
`/∈[a,b]

ω`,π̃(`)(β)

where Z is the normalizing factor

Z =
∑
π

∏
`/∈[a,b]

ω`,π(`)(β).

As explained earlier, our choice of the order in which the weights are changed means that µ and

Z are the same at each stage of the replacement for (i, j) ∈ ∆. Technically, in the definition of µ

and Z, we should use the weights ω′`,π(`) when ` < a and ω`,π(`) when ` > b, but we will omit to

introduce more notation and will simply write ω everywhere using our convention described before.

By Theorem 3.3 and the discussion that follows it, there are positive constants C,Ck such that

if M is the event

M = {µ(S) ≤ Ce−Cn0}

where S ⊂ Π[a, b] as defined in (3.5) is the set of paths with slopes not in [1/4, 3/4], then

P(M) ≥ 1− Ckn

nkδ+1
0

.

By conditioning on M, we then have

E

(
W 3
i,j

(Vi,j +Wi,j)3

)
= E

(
W 3
i,j

(Vi,j +Wi,j)3

∣∣∣∣∣M
)
P(M) + E

(
W 3
i,j

(Vi,j +Wi,j)3

∣∣∣∣∣Mc

)
P(Mc)

≤ E

(
W 3
i,j

(Vi,j +Wi,j)3

∣∣∣∣∣M
)

+ P(Mc).

When we sum over (i, j) ∈ ∆, the second term above will produce an error of order

∑
(i,j)∈∆

P(Mc) ≤ Ckn
2

nkδ0

,

and again we can make this term go to 0 as fast as any polynomial that we want by choosing k large
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enough, so we may ignore it in all that follows. For the first term, we have by Corollary 3.4

E
(

W 3

(V +W )3

∣∣∣∣M)
= E

(
W 3

(V +W )3
1{(V+W )/Z≤1/2}

∣∣∣∣M)+ E
(

(W/Z)3

((V +W )/Z)3
1{(V+W )/Z>1/2}

∣∣∣∣M)
≤ P

(
V +W

Z
≤ 1

2

∣∣∣∣M)+ 8E
(
W 3

Z3

∣∣∣∣M) .
Now Vi,j + Wi,j is the partition function where the weight at (i, j) has been changed to 1, so by

Chebyshev’s inequality and Corollary 3.4,

P
(
V +W

Z
≤ 1

2

∣∣∣∣M) ≤ P
(∣∣∣∣V +W

Z
− 1

∣∣∣∣ ≥ 1

2

∣∣∣∣M) ≤ 2kE

[(
V +W

Z
− 1

)k∣∣∣∣∣M
]

≤ 2kCk
nkδ0

for any positive even integer k. Once again, we are free to pick k as large as we want, so we can

again ignore this term in the rest of the calculations by the same reasoning as above.

So all that remains now is to estimate

E
(
W 3

Z3

∣∣∣∣M) .
Expanding out W 3/Z3 gives

W 3

Z3
=

 ∑
π∈Π[a,b],(i,j)∈π

µ(π)
∏

`∈[a,b]\{i}

ω`,π(`)

3

=
∑

π1,π2,π3∈Π[a,b]

µ(π1)µ(π2)µ(π3)1{(i,j)∈π1,π2,π3}
∏

`∈[a,b]\{i}

ω`,π1(`)ω`,π2(`)ω`,π3(`)

where the sum is taken over triplets of paths that all visit the point (i, j). The product inside does

not include ` = i, since for Wi,j , the weight at (i, j) has been replaced by one. Let us now take the

conditional expectation of this quantity given the weights outside of ∆. Since the weights in ∆ are

independent of those outside, and the measure µ only depends on the weights outside of ∆, we have

E
[
W 3

Z3

∣∣∣∣ (ωk,`) : (k, `) /∈ ∆

]
=

∑
π1,π2,π3∈Π[a,b]

µ(π1)µ(π2)µ(π3)1{(i,j)∈π1,π2,π3}
∏

`∈[a,b]\{i}

E(ω`,π1(`)ω`,π2(`)ω`,π3(`)).

Now, for the expectation inside the product, there are three possible cases. It will be 1 if the paths

π1, π2 and π3 are all at different locations at time `; it will be

E(ω`,k(β)2) = E((ω`,k(β)− 1)2) + 1 ≤ 1 + C2β
2
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if exactly two paths intersect at time ` (at location k) and it will be

E(ω`,k(β)3) = E((ω`,k(β)− 1)3 + 3(ω`,k − 1)2 + 1) ≤ 1 + 3C2β
2 + C3β

3

if all three paths intersect at time ` (at location k). Here C2 and C3 are the constants appearing in

the Definition 1.3. If n is sufficiently large so that β < 1, then in both of those last two cases, we

get an upper bound of 1 +Cβ2 for some positive constant C. To summarize, the expectation is one

when the paths do not intersect and it is at most 1 +Cβ2 when at least two paths intersect, so that∑
π1,π2,π3∈Π[a,b]

µ(π1)µ(π2)µ(π3)1{(i,j)∈π1,π2,π3}
∏

`∈[a,b]\{i}

E(ω`,π1(`)ω`,π2(`)ω`,π3(`))

≤
∑

π1,π2,π3∈Π[a,b]

µ(π1)µ(π2)µ(π3)1{(i,j)∈π1,π2,π3}(1 + Cβ2)L(π1,π2,π3)

≤
∑

π1,π2,π3∈Π[a,b]

µ(π1)µ(π2)µ(π3)1{(i,j)∈π1,π2,π3}e
Cβ2L(π1,π2,π3).

The above bound is the same for any (i, j) ∈ ∆ (that is C is the same for any (i, j)). Since the

random measure µ stays the same throughout the replacement of the weights in ∆, we can add this

bound over (i, j) ∈ ∆, and this gives

∑
(i,j)∈∆

E

[
W 3
i,j

(Vi,j +Wi,j)3

∣∣∣∣∣M
]

= E

 ∑
(i,j)∈∆

E

[
W 3
i,j

(Vi,j +Wi,j)3

∣∣∣∣∣ (ωi,j) : (i, j) /∈ ∆

]∣∣∣∣∣∣M


≤ E

 ∑
π1,π2,π3∈Π[a,b]

µ(π1)µ(π2)µ(π3)L3(π1, π2, π3)eCβ
2L(π1,π2,π3)

∣∣∣∣∣∣M


= E
[
Eµ(L3(π1, π2, π3)eCβ

2L(π1,π2,π3))
∣∣∣M]

where we recall that L3(π1, π2, π3) denotes the number of triple intersections of the walks. It is now

that our work on triple intersections from Section 2.4 comes to fruition.

Lemma 4.1. There is a positive constant C such that for any configuration of weights in M,

Eµ(L3(π1, π2, π3)eCβ
2L(π1,π2,π3)) ≤ C log n.

Furthermore, C does not depend on the location of the interval [a, b].

Proof. Using the bound L(π1, π2, π3) ≤ L(π1, π2)+L(π1, π3)+L(π2, π3) (inequality (2.1)), that each

of these have the same law and Hölder’s inequality, we get

Eµ
(
L3(π1, π2, π3)eCβ

2L(π1,π2,π3)
)

≤ Eµ
(
L3(π1, π2, π3)eCβ

2(L(π1,π2)+L(π1,π3)+L(π2,π3))
)

≤
(
Eµ(L3(π1, π2, π3)2)

)1/2 (Eµ(e6Cβ2L(π1,π2))
)1/2

.

Both expectations are estimated in a similar way to how the moments of L(π1, π2) were calculated

in the proof of Corollary 3.4. Let S be the set of paths on [a, b] with slopes not in [1/4, 3/4]. Then
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by definition of M, there is a positive constant C such that for any configuration in M, we have

µ(S) ≤ Ce−Cn0 (this constant arose from Theorem 3.3 and did not depend on the location of [a, b]).

Thus

Eµ(L3(π1, π2, π3)2) ≤ Eµ((L3(π1, π2, π3)2)|π1 /∈ S, π2 /∈ S, π3 /∈ S) + 3n2
0µ(S).

The second term is

3n2
0µ(S) ≤ Cn2

0e
−Cn0 = O(1).

For the first term, if none of π1, π2 or π3 are in S, then they are all Bernoulli bridges with slopes in

[1/4, 3/4], so by Lemma 2.6,

Eµ((L3(π1, π2, π3)2)|π1 /∈ S, π2 /∈ S, π3 /∈ S) ≤ C(log n0)2.

Next,

Eµ(e6Cβ2L(π1,π2)) ≤ Eµ(e6Cβ2L(π1,π2)|π1 /∈ S, π2 /∈ S) + 2eCβ
2n0µ(S).

Now, n0 was specifically chosen so that β2 ∼ n−( 1
2 +2δ)

0 . Thus the second term above will be

2eCβ
2n0µ(S) ≤ CeCn

1
2
0 e−Cn0 = O(1),

and the first term is also O(1) by Proposition 2.5.

We are finally ready to conclude. What we have shown is that we have the following estimate

for (4.4): ∑
(i,j)∈∆

E

(
W 3
i,j

(Vi,j +Wi,j)3

)
≤ C log n,

plus some lower order terms that we can make smaller than any power of n that we need. We

reiterate again the crucial fact that this constant C does not depend on n or the location of [a, b];

it may depend on α, δ and the constants in Definition 1.3, but all of those were fixed at the start.

Therefore, we can partition the double sum in (4.3) into sums over strips of width n0, and each such

sum will be at most C log n for the same C. There are 2n/n0 different strips, so this gives the bound∣∣∣∣E [f ( logZn(β)− an
σn

)
− f

(
logZ ′n(β)− an

σn

)]∣∣∣∣ ≤ Cβ3n log n

σnn0
. (4.5)

Note that if 2n/n0 is not an integer, then we can just add some overlapping strips to cover the whole

of [0, 2n]. Some points may be contained in two different strips, but this just means we add the

errors for those points twice, and so all this does is add an extra factor of 2 in the above bound.

We now express β, n0 and σn in terms of n to conclude. We had β = n−α, n0 = n4α/(1+4δ) and

σn = β4/3n1/3. So then

β3n log n

σnn0
=

β3n log n

β4/3n1/3n0
=
β5/3n2/3 log n

n4α/(1+4δ)
= nλ log n

where

λ = −5α

3
+

2

3
− 4α

1 + 4δ
=

(2− 17α) + 8δ − 20αδ

3(1 + 4δ)
.
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By (4.1), we have λ < 0, and so our bound goes to 0 as n→∞. This concludes the proof of Theorem

1.5!

Remark 4.2. The above calculation seems to indicate that Theorem 1.5 should hold for any α > 2
17 .

In fact, if we strengthen our hypotheses and assume that the weights ωi,j(β) and ω′i,j(β) have the

same first k moments for all β sufficiently small, then we can do all the calculations of this section

with a Taylor expansion of order k+1 instead. The end result will be the same estimate as (4.5) but

with β3 replaced by βk+1. After substituting the values of β and n0 in terms of n in this expression

and simplifying, one obtains a bound which goes to 0 provided that

α >
2

3k + 11
.

This for now is only a conjecture, since we are at the moment limited to α > 1
8 by our work from

Chapter 3.

4.2 Valid sets of weights

We now wish to apply Theorem 1.5 together with Krishnan and Quastel’s Theorem 1.1 to show

that the fluctuations of the directed polymer converge to the Tracy–Widom GUE distribution in

the intermediate regime. In order for this to work, there are two more tasks left to complete. First,

we need to show that appropriately normalized versions of the standard directed polymer and the

log-gamma polymer are both valid sets weights. Second, we need to show that it is possible to

reparametrize the log-gamma polymer so that the first and second moments of each weight matches

with those of the standard polymer for all β sufficiently small. We deal with the first problem in

this section and the second in the next section.

Proposition 4.3. The following two parametrizations of weights are valid.

1. ωi,j(β) = ψi,j(β)−1eβξi,j , where the ξi,j are independent, have a uniform exponential tail and

ψi,j is the moment generating function of ξi,j.

2. ωi,j(β) = (θ− 1)/Xi,j, where θ = θ(β) ∼ c/β2 for some positive constant c as β → 0 and Xi,j

are i.i.d with Xi,j ∼ Gamma(θ, 1).

Proof. 1. Properties 1 and 2 trivially hold. Here “uniform exponential tail” means there are con-

stants C, c > 0 such that for all i, j and all λ ≥ 0,

P(|ξi,j | ≥ λ) ≤ Ce−cλ.

Therefore, for all i, j,

ψi,j(β) = E(eβξi,j ) ≤ E(eβ|ξi,j |) =

∫ ∞
0

P(e|βξi,j | > t)dt

= 1 +

∫ ∞
1

P
(
|ξi,j | >

log t

β

)
dt ≤ 1 +

∫ ∞
1

Ce−c
log t
β dt

= 1 +
Cβ

c− β
,
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and

ψi,j(β) ≥ E(e−β|ξi,j |) =

∫ ∞
0

P(e−|βξi,j | > t)dt

= 1−
∫ 1

0

P
(
|ξi,j | ≥ −

log t

β

)
dt ≥ 1−

∫ 1

0

Cec
log t
β dt

= 1− Cβ

c+ β
.

These two inequalities imply that there is a positive constant C such that for all i, j and all sufficiently

small β,

|ψi,j(β)− 1| ≤ Cβ. (4.6)

In particular, for sufficiently small β, we have ψi,j(β) ≥ 1/2 for all i, j. Therefore, by the triangle

inequality for Lk norms,

E(|ωi,j − 1|k) =
E|eβξi,j − ψi,j(β)|k

ψi,j(β)k
≤ 2kE|eβξi,j − ψi,j(β)|k

≤ 2k
(

(E|eβξi,j − 1|k)1/k + (E|ψi,j(β)− 1|k)1/k
)k

≤ 2k
(

(E|eβξi,j − 1|k)1/k + Cβ
)k
.

(4.7)

By the mean value theorem, |eβξi,j − 1| ≤ β|ξi,j |eβ|ξi,j |. Since

|ξi,j | ≤
2k

c
e
c|ξi,j |

2k ,

it follows that for β < c/2k, we have

E|eβξi,j − 1|k ≤ βkE(|ξi,j |keβk|ξi,j |) ≤
2kkk

ck
βkE(ec|ξi,j |) ≤ Ckβk

where Ck depends on k but not i or j. Plugging this back in (4.7) then gives Property 3.

Finally for Property 4, any p > 3 will do; indeed by (4.6)

E
(

1

ωi,j(β)p

)
= E(e−pβξi,j )ψi,j(β)p = ψi,j(−pβ)ψi,j(β)p ≤ C

for all i, j and for all sufficiently small β.

2. Property 1 holds provided we only consider β small enough. Using well-known formulas for

the moments of the Gamma distribution, we have E(X−1) = (θ− 1)−1, so Property 2 holds as well.

Next, by the Cauchy–Schwarz inequality,

E
∣∣∣∣θ − 1

X
− 1

∣∣∣∣k = E
∣∣∣∣θ − 1−X

X

∣∣∣∣k ≤ (E(θ − 1−X)2k)1/2

(
E
(

1

X2k

))1/2

.

The second expectation is, for θ sufficiently large,(
E
(

1

X2k

))1/2

=

(
1

(θ − 1) · · · (θ − 2k)

)1/2

≤ Ck
θk
.
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Let Xt be a Gamma process, i.e Xt is a Lévy process with independent increments given by Xt−Xs ∼
Gamma(t− s, 1). Then t−Xt is a square-integrable martingale, with quadratic variation [X]t = t,

so by the Burkholder–Davis–Gundy inequality ([5, Theorem 4.4.20]),

(E(θ − 1−X)2k)1/2 ≤ ((E(θ −X)2k)1/2k + 1)k ≤ (CkE([X]kθ)1/2k + 1)k

= (Ckθ
1/2 + 1)k ≤ Ckθk/2.

Combining these 2 inequalities, we obtain Property 3:

E
∣∣∣∣θ − 1

X
− 1

∣∣∣∣k ≤ Ckθ−k/2 ≤ Ckβk.
Finally, Property 4 holds with p = 4 for example:

1

(θ − 1)4
E(X4) =

(θ + 3)(θ + 2)(θ + 1)θ

(θ − 1)4
≤ 2

for all θ sufficiently large (or in terms of β, for all β sufficiently small).

4.3 Proof of Theorem 1.2

We are ready to complete the proof of Theorem 1.2. Recall that the log-gamma polymer is the

directed polymer with weights 1/Xi,j , where the Xi,j are i.i.d with the Gamma(θ, 1) distribution.

The partition function is given by

Fn(θ) =
∑
π

2n∏
i=0

1

Xi,π(i)
,

and the free energy is logFn(θ). By Krishnan and Quastel’s Theorem 1.1, if we take θ ∼ c/β2 as

β → 0 with β = n−α for some 0 < α < 1/4, then

logFn(θ) + 2nΨ(θ/2)

−(Ψ′′(θ/2))1/3n1/3

d−→ TWGUE (4.8)

where Ψ is the digamma function. Let Z ′n(θ) be the corresponding normalized partition function:

Z ′n(θ) = log

(∑
π

2n∏
i=0

θ − 1

Xi,π(i)

)
.

By factoring a (θ−1)2n+1 from each term in the sum, we can rewrite the free energy of the log-gamma

polymer as

log

(∑
π

2n∏
i=0

1

Xi,π(i)

)
= log

(∑
π

2n∏
i=0

θ − 1

Xi,π(i)

)
− (2n+ 1) log(θ − 1),

and plugging this back in (4.8) gives

logZ ′n(θ) + 2n(Ψ(θ/2)− log(θ − 1))

−(Ψ′′(θ/2))1/3n1/3

d−→ TWGUE. (4.9)



CHAPTER 4. UNIVERSALITY OF DIRECTED POLYMERS IN THE INTERMEDIATE REGIME 53

The second moment of the set of weights ω′i,j(β) = (θ − 1)/Xi,j is

E

[(
θ − 1

Xi,j

)2
]

=
θ − 1

θ − 2
,

and for the weights ωi,j(β) = eβξi,j/ψ(β),

E

[(
eβξi,j

ψ(β)

)2
]

=
ψ(2β)

ψ(β)2
.

Solving
θ − 1

θ − 2
=
ψ(2β)

ψ(β)2

yields

θ = 2 +
ψ(β)2

ψ(2β)− ψ(β)2
,

and so with this choice of θ, the two sets of weights have the same first and second moments. Note

that by expanding ψ(β) and ψ(2β) as Taylor series, we can see after some calculations that

θ = 2 +
1 + 2E(ξ)β +O(β2)

Var(ξ)β2 +O(β3)
, (4.10)

and so θ ∼ 1/σ2β2 as β → 0, where σ2 is the variance of the ξi,j ’s. We are thus in the context of

the Krishnan–Quastel theorem and Proposition 4.3.

The digamma function satisfies the following asymptotics:

Ψ(x) = log x− 1

2x
− 1

12x2
+O

(
1

x4

)
, −Ψ′′(x) ∼ 1

x2
(4.11)

as x→∞ (see [1, Chapter 6]). Therefore, the denominator of (4.9) is

−(Ψ′′(θ/2))1/3n1/3 ∼ 41/3n1/3

θ2/3
∼ (4σ4β4n)1/3

as n→∞. It then follows from Theorem 1.5 that if β = n−α for some 1
8 < α < 1

4 ,

log Z̃n(β) + 2n(Ψ(θ/2)− log(θ − 1))

(4σ4β4n)1/3

d−→ TWGUE

where Z̃n(β) is the normalized partition function of the directed polymer with weights ξi,j

Z̃n(β) =
∑
π

2n∏
i=0

eβξi,j

ψ(β)
.

To get the limiting fluctuations for the unnormalized free energy, we can factor out a ψ(β)−(2n+1)

from each term in the sum of Z̃n(β), and this finally gives

logZn(β)− an
(4σ4β4n)1/3

d−→ TWGUE
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with

an = 2n(−Ψ(θ/2) + log(θ − 1) + log(ψ(β)).

We can clean up the expression for an and get an asymptotic expansion as β → 0. Using (4.11) and

a Taylor expansion for log(1− 1/θ),

an = 2n

[(
− log θ + log 2 +

1

θ
+

1

3θ2

)
+

(
log θ − 1

θ
− 1

2θ2
− 1

3θ3

)
+ log(ψ(β))

]
= 2n

[
log 2− 1

6θ2
− 1

3θ3
+ log(ψ(β))

]
.

The terms of order O(1/θ4) can be thrown out; indeed after multiplying by 2n and dividing by

(β4n)1/3, this will result in a term of order

nθ−4

β4/3n1/3
∼ n2/3σ8β8

β4/3
= σ8n

2−20α
3

which goes to 0 as n→∞ since α > 1
8 >

1
10 . Finally, substituting the expression for θ in terms of β

in the above and expanding the whole thing as a Taylor series, one obtains after a lot of work that

an = 2n

[
log 2 + κ1β +

κ2

2
β2 +

κ3

6
β3 +

(
κ4

24
− κ2

2

6

)
β4 +

( κ5

120
− κ2κ3

3

)
β5

+

(
κ6

720
+
κ3

2

6
− 7κ2κ4

36
− κ2

3

6

)
β6 +O(β7)

]

where κj denotes the j-th cumulant of the ξi,j ’s. Once again, we do not need the terms of order

O(β7) since
nβ7

β4/3n1/3
= n2/3β17/3 = n

2−17α
3

which goes to 0 since α > 1
8 >

2
17 . This concludes the proof of Theorem 1.2!



Chapter 5

Limit shapes for the

Seppäläinen–Johansson model

In this chapter, we prove the existence of the limit shape for the generalized Seppäläinen–Johansson

model described in Subsection 1.3.1. We then look at some special cases of weights distributions

for which we can explicitly compute the limit shape, and we present a sketch of a proof of how to

obtain these formulas.

5.1 Existence of the limit shape

Recall the generalized SJ model described in Subsection 1.3.1: we are given three arrays of indepen-

dent random variables Bi,j , ξi,j and ηi,j for i, j ≥ 0. The Bi,j ’s are Bernoulli(p) distributed, the ξi,j ’s

have the same law, similarly for the ηi,j ’s (we allow the distribution of the ξi,j ’s to be different of

those of the ηi,j ’s). Each edge of Z2
≥0 is then assigned a weight depending on whether it is horizontal

or vertical: the horizontal edge joining (i − 1, j) to (i, j) has weight ωi,j = Bi,jξi,j and the vertical

edge joining (i, j − 1) to (i, j) has weight ω̃i,j = (1 − Bi,j)ηi,j . The first-passage value F (m,n) at

(m,n) is the minimum over all up-right paths from (0, 0) to (m,n) of the sum of the weights along

that path. We refer again to Figure 1.2 for an example of a path and its corresponding total weight.

In this section, we give a proof of the following theorem.

Theorem 5.1. Assume that the ξi,j’s and ηi,j’s have a finite first moment. Then there exists a

deterministic function f : R2
≥0 → R such that for all x, y ≥ 0,

lim
n→∞

F (bnxc, bnyc)
n

= lim
n→∞

E(F (bnxc, bnyc))
n

= f(x, y) (5.1)

in L1. If the ξi,j’s and ηi,j’s have a finite second moment, then the above convergence also holds

with probability 1. Additionally, the function f satisfies the following two properties

1. f(cx, cy) = cf(x, y) for all c ≥ 0

2. f(x1 + x2, y1 + y2) ≤ f(x1, y1) + f(x2, y2).

55
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The above two properties of f clearly imply that f is convex, and therefore continuous on R2
>0.

Of course a convex function on R2
≥0 may not be continuous on the axes. Whether f is continuous

up to the boundary in our case is thus a more subtle question. We refer the reader to [51] for some

results in this direction for certain models of directed first-passage and last-passage percolation.

Limit shape theorems of this type go back to Richardson [65] who proved a version of this for

the Eden model [32]. Cox and Durrett proved the general version for (undirected) first-passage

percolation in [26]. The Cox–Durrett theorem is usually stated in terms of the growing cluster

C(t) = {x ∈ Rd : F (bxc) ≤ t}

of points reachable within distance t “converging” to the unit ball

B = {x ∈ Rd : f(x) ≤ 1}

(we reuse F and f to denote the (undirected) first-passage value and corresponding limit shape in

d dimensions respectively for this brief digression) in the following sense: for every ε > 0,

P
(

(1− ε)B ⊂ C(t)

t
⊂ (1 + ε)B for all sufficiently large t

)
= 1.

Under certain conditions on the moments and mass of the atom at 0 of the weights in the environ-

ment, this formulation is essentially equivalent to the claim that for all x ∈ Rd, F (bnxc)/n→ f(x)

almost surely. We refer to [9, Section 2.3] for a more complete discussion on this topic.

The main ingredient that goes into the proof of Theorem 5.1 is Kingman’s subadditive ergodic

theorem. We will use the following “random variable” version of the theorem, which can be found

in [47].

Theorem 5.2 (Kingman’s subadditive ergodic theorem). Let (Xm,n)0≤m<n be a collection of ran-

dom variables such that

1. X0,n ≤ X0,m +Xm,n for all 0 ≤ m < n,

2. for each k ≥ 1, (Xnk,(n+1)k)n≥1 is an i.i.d. sequence,

3. for any m ≥ 1, (X0,k)k≥1 and (Xm,m+k)k≥1 have the same joint distribution,

4. E|X0,1| <∞ and there is a constant M > 0 such that for all n ≥ 1, E(X0,n) ≥ −Mn.

Then

1. γ := limn→∞
E(X0,n)

n exists and γ = infn≥1
E(X0,n)

n ,

2.
X0,n

n → γ almost surely and in L1.

The overall plan is as follows. We will apply the subadditive ergodic theorem to the random

variables

Xm,n = F (mx,my;nx, ny)

where x, y are fixed non-negative integers. Conditions 1 to 4 are easy to verify in this case, and this

will imply the existence of f(x, y) for integer x and y. Property 1 of Theorem 5.1 will follow in this
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case from the invariance of this process under translations, and Property 2 follows from the triangle

inequality. It is then relatively straightforward to extend this to all rational x and y by looking along

the subsequence of n’s which are multiples of q, where q is some large enough integer for which qx

and qy are both integers. The final more technical step is to extend this to all x, y ≥ 0. We do this

by showing that f , at this point only defined on the rationals, admits a unique continuous extension

to R2
>0, and we then use this along with a law of large numbers for triangular arrays to obtain the

convergence for any x and y.

Before we begin the proof, we need two preliminary results that will justify this last step.

Lemma 5.3. Let f : Q2
≥0 → R be a non-negative function which satisfies Properties 1 and 2 in

the conclusion of Theorem 5.1 for rational c and rational inputs x, y, x1, x2, y1, y2. Then f is locally

Lipschitz on Q2
>0. In particular, f admits a unique continuous extension to R2

>0, and this extension

satisfies Properties 1 and 2.

Proof. We will work throughout this proof with the `1 norm. Of course, all norms on R2 are

equivalent, so this does not make any difference, but it has the advantage that the norm of a vector

with rational coordinates is rational.

First, it follows easily from Properties 1 and 2 that

f(x, y) ≤ f(x, 0) + f(0, y) = xf(1, 0) + yf(0, 1) ≤ ‖(x, y)‖1(f(1, 0) + f(0, 1)),

and so f is bounded on bounded subsets of Q≥0.

Second, fix (x0, y0) ∈ Q2
>0 and choose r > 0 rational sufficiently small so that B((x0, y0), r) (the

`1 ball of radius r) is contained in Q2
>0. Let M = supB((x0,y0),r) f(x, y) (M is finite by the above).

We claim that

|f(x1, y1)− f(x2, y2)| ≤ 2M

r
‖(x1, y1)− (x2, y2)‖1 (5.2)

for all (x1, y1), (x2, y2) ∈ B((x0, y0), r/4). Given two distinct such points, let

(x3, y3) = (x1, y1) +
r

2‖(x1, y1)− (x2, y2)‖1
(x2 − x1, y2 − y1)

(x4, y4) = (x2, y2) +
r

2‖(x1, y1)− (x2, y2)‖1
(x1 − x2, y1 − y2).

Then (x3, y3) and (x4, y4) have rational coordinates, and

‖(x3, y3)− (x0, y0)‖1 ≤ ‖(x1, y1)− (x0, y0)‖1 +
r

2
<

3r

4

and similarly for (x4, y4). So both of these points are in the ball B((x0, y0), r). Next, define t =

2‖(x1, y1)− (x2, y2)‖1/r. Then t is rational, positive and

t ≤ 2(‖(x1, y1)− (x0, y0)‖1 + ‖(x0, y0)− (x2, y2)‖1)

r
< 1.

Note that we have (x3, y3) = (x1, y1) + 1
t (x2 − x1, y2 − y1), so after some rearranging this gives

(x2, y2) = t(x3, y3) + (1− t)(x1, y1),



CHAPTER 5. LIMIT SHAPES FOR THE SEPPÄLÄINEN–JOHANSSON MODEL 58

and therefore by Properties 1 and 2,

f(x2, y2) ≤ tf(x3, y3) + (1− t)f(x1, y1).

After some more rearranging, we find

f(x2, y2)− f(x1, y1) ≤ t(f(x3, y3)− f(x1, y1)) ≤ tM =
2M

r
‖(x1, y1)− (x2, y2)‖1.

On the other hand, we have (x4, y4) = (x2, y2)+ 1
t (x1−x2, y1−y2), and after doing similar calculations

to the above, this yields

f(x1, y1)− f(x2, y2) ≤ t(f(x4, y4)− f(x2, y2)) ≤ tM =
2M

r
‖(x1, y1)− (x2, y2)‖1.

These two inequalities together give (5.2). Then f has a unique continuous extension to R2
>0 by

a standard fact from calculus, and Properties 1 and 2 for real c and real inputs for f follow from

approximating with rationals and using the continuity of f .

The next result is an old theorem of Hsu and Robbins which gives a strengthening of the law of

large numbers when the random variables have a finite second moment. See [39].

Theorem 5.4. Let X1, X2, . . . be a sequence of i.i.d. mean 0 random variables with a finite second

moment, and let Sn = X1 + . . .+Xn. Then for every ε > 0,

∞∑
n=1

P(|Sn| > nε) <∞.

Together with the Borel–Cantelli lemma, this theorem immediately implies the following strong

law of large numbers for triangular arrays.

Corollary 5.5. Let (Xi,n)1≤i≤n be a collection of row-wise independent, identically distributed ran-

dom variables with mean µ and a finite second moment. That is, we assume that for each fixed

n, X1,n, . . . , Xn,n are independent, but we do not require independence between different rows. Let

Sn = X1,n + . . .+Xn,n. Then
Sn
n
→ µ

almost surely.

It is worth noting that Corollary 5.5 is false without the assumption of a finite second moment.

For example, consider (Xi,n)1≤i≤n all i.i.d (including across different rows) with distribution function

F (x) = 1− 1

x2 + 1

for x ≥ 0, and F (x) = 0 for x < 0. Note that this distribution has a finite (2 − δ)th moment for

every δ > 0, but does not have a finite second moment. We have, for M > 0,

P(Sn ≥ nM) ≥ P(Xi,n ≥ nM for some 1 ≤ i ≤ n) = 1− (1− P(X1,1 ≥ nM))n

≥ 1−
(

1− C

n2

)n
≥ 1− e−C/n ≥ C

n
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for some positive constant C depending on M but not n. Since the (Sn)n≥1 are independent, it

follows from the second Borel–Cantelli lemma that Sn ≥ nM infinitely often almost surely, and

because M was arbitrary, we conclude that Sn/n is unbounded almost surely. Thus a finite second

moment is the borderline condition needed.

Proof of Theorem 5.1. We first fix non-negative integers x and y. As described earlier, we will verify

that the random variables

Xm,n = F (mx,my;nx, ny)

satisfy the conditions of the subadditive ergodic theorem. First, if π1 is the optimal path from (0, 0)

to (mx,my) and π2 is the optimal path from (mx,my) to (nx, ny), then concatenating these two

paths together gives a possible path from (0, 0) to (nx, ny), and so

X0,n = F (0, 0;nx, ny) ≤ F (0, 0;mx,my) + F (mx,my;nx, ny) = X0,m +Xm,n.

Second, for each k, we have

Xnk,(n+1)k = F (nkx, nky; (n+ 1)kx, (n+ 1)ky).

The grid whose bottom left corner is (nkx, nky) and whose top right corner is ((n+ 1)kx, (n+ 1)ky)

has the same size for any n, and they are composed of edges with weights which are independent

from the other grids, that is the grids for different values of n are independent. So for every k,

(Xnk,(n+1)k) is an i.i.d. sequence. Third, we have

X0,k = F (0, 0; kx, ky)

and

Xm,m+k = F (mx,my;mx+ kx,my + ky).

These have the same distribution for any m since X0,k and Xm,m+k describe the distance traveled

in grids of the same size, with edge weights that have the same distribution. Finally,

E|X0,1| = E(F (x, y)) ≤ E

 x∑
i=1

ωi,0 +

y∑
j=1

ω̃x,j

 <∞

since the path that only goes right on the x-axis until (x, 0) and then goes right until (x, y) is a valid

path from (0, 0) to (x, y). Also X0,n is nonnegative. So by the subadditive ergodic theorem,

lim
n→∞

F (nx, ny)

n
= lim
n→∞

E(F (nx, ny))

n

exists almost surely and in L1. We call f(x, y) this limit.

By the triangle inequality for F ,

F (n(x1 + x2), n(y1 + y2))

n
≤ F (nx1, ny1)

n
+
F (nx1, ny1;n(x1 + x2), n(y1 + y2))

n
. (5.3)

The first term converges almost surely to f(x1, y1). The second term has the same distribution as
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F (nx2, ny2)/n, and so it converges in probability to f(x2, y2). And so by looking at (5.3) along an

appropriate subsequence and taking limits, we conclude that

f(x1 + x2, y1 + y2) ≤ f(x1, y1) + f(x2, y2). (5.4)

If c ∈ N, then

f(cx, cy) = lim
n→∞

F (ncx, ncy)

n
= c lim

n→∞

F (cnx, cny)

cn
= cf(x, y),

which proves homogeneity of f on the integers, for integer scalars.

Next, we extend the definition of f to the rationals. Let x and y be nonnegative rationals, and

write them under a common denominator, say x = s/q and y = t/q. Define

f(x, y) :=
f(qx, qy)

q
.

This definition is independent of the representation of x and y as quotients of integers by homogeneity

for integer scalars. This new f is clearly homogeneous for c rational and also satisfies the inequality

(5.4) for rational inputs (simply multiply x1, x2, y1, y2 by an appropriate integer to make them

integers, and apply (5.4) in the integer case along with homogeneity). To show the convergence

(5.1) holds for rational x and y, we proceed as follows. Again write x = s/q and y = t/q. We have

for all n that ⌊
n

q

⌋
qx ≤ nx.

Since the left-hand side is an integer and bnxc is the largest integer less than or equal to nx, it

follows that ⌊
n

q

⌋
qx ≤ bnxc.

Also, we have ⌊
n

q

⌋
qx ≥

(
n

q
− 1

)
qx = nx− qx ≥ bnxc − qx

which implies that there are at most qx = s integers between bnxc and bnq cqx for any n. A similar

reasoning also shows that there are at most t integers between bnyc and bnq cqy for any n. Now, a

possible path from (0, 0) to (bnxc, bnyc) is to take the optimal path from (0, 0) to (bnq cqx, bnyc) then

move right until (bnxc, bnyc), while picking up at most s horizontal weights along the way. This

gives the bound

F (bnxc, bnyc) ≤ F
(⌊

n

q

⌋
qx, bnyc

)
+ ωbnq cqx+1,bnyc + . . .+ ωbnq cqx+s,bnyc.

Similarly, a possible path from (0, 0) to (bnq cqx, bnyc) is to take the optimal path to (bnq cqx, b
n
q cqy)

and then move up until (bnq cqx, bnyc), while picking up at most t vertical weights along the way.

Combining this with the above bound then yields

F (bnxc, bnyc) ≤ F
(⌊

n

q

⌋
qx,

⌊
n

q

⌋
qy

)
+ ωbn/qcqx+1,bnyc + . . .+ ωbnq cqx+s,bnyc

+ ω̃bnq cqx,b
n
q qyc+1 + . . .+ ω̃bnq cqx,b

n
q qyc+t.

(5.5)
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We then divide both sides by n and let n → ∞. By the convergence to the limit shape shown for

integer inputs, we have

F
(⌊

n
q

⌋
qx,
⌊
n
q

⌋
qy
)

n
=

⌊
n
q

⌋
n

F
(⌊

n
q

⌋
qx,
⌊
n
q

⌋
qy
)

⌊
n
q

⌋ → f(qx, qy)

q
= f(x, y)

almost surely and in L1. To deal with the remaining terms, we observe the following: if in and jn

are sequences of distinct integers, then
ωin,jn
n
→ 0

almost surely and in L1. Indeed, this just follows from the law of large of numbers:

ωin,jn
n

=
ωi1,j1 + . . .+ ωin,jn

n
−
(
n− 1

n

)
ωi1,j1 + . . .+ ωin−1,jn−1

n− 1
→ E(ω1,1)− E(ω1,1) = 0,

and likewise for ω̃in,jn . The indices of the weights appearing in (5.5) are not necessarily distinct,

but they repeat at most max(s, t) times, and the total number of weights appearing is s + t which

is constant in n, so on the whole these terms converge to 0 almost surely and in L1 after being

divided by n. We can use a very similar argument to obtain an analogous lower bound to (5.5) for

F (bnxc, bnyc)/n which also converges to f(x, y), and so we conclude that

F (bnxc, bnyc)
n

→ f(x, y)

almost surely and in L1 for all rational x and y.

Finally we generalize to real x and y. By Lemma 5.3, f has a unique continuous extension to

R2
>0 and this f satisfies Properties 1 and 2. Fix x, y > 0, and let p1, p2, q1, q2 be rationals such that

p1 < x < p2 and q1 < y < q2. Then by the same reasoning used to derive (5.5), we have

F (bnxc, bnyc) ≤ F (bnp1c, bnyc) + ωbnp1c+1,bnyc + . . .+ ωbnp2c,bnyc

≤ F (bnp1c, bnq1c) + ωbnp1c+1,bnyc + . . .+ ωbnp2c,bnyc

+ ω̃bnp1c,bnq1c+1 + . . .+ ω̃bnp1c,bnq2c.

Divide by n and let n go to infinity. By what we have already shown for rational inputs, we have

F (bnp1c, bnq1c)
n

→ f(p1, q1)

almost surely and in L1. For the other terms, we have

ωbnp1c+1,bnyc + . . .+ ωbnp2c,bnyc

n
+
ω̃bnp1c,bnq1c+1 + . . .+ ω̃bnp1c,bnq2c

n

→ (p2 − p1)E(ω1,1) + (q2 − q1)E(ω̃1,1)

in L1 but not necessarily almost surely. This is because the above are partial sums in a triangular

array of random variables and the indices are changing with n. The L1 convergence follows from the

law of large numbers and the fact that these have the same law as a regular partial sum in a sequence

of i.i.d. random variables. If the weights have a finite second moment, then by Corollary 5.5, we
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do have almost sure convergence, but as discussed after this corollary, almost sure convergence may

not hold if the ωi,j ’s or ω̃i,j ’s are not in L2. We can similarly get a lower bound on F (bnxc, bnyc):

F (bnxc, bnyc) ≥ F (bnp2c, bnq2c)− ωbnp1c+1,bnyc − . . .− ωbnp2c,bnyc
− ω̃bnp2c,bnq1c+1 − . . .− ω̃bnp2c,bnq2c,

and the right-hand side, after being divided by n, converges to

f(p2, q2)− (p2 − p1)E(ω1,1)− (q2 − q1)E(ω̃1,1)

almost surely for L2 weights, and in L1 for general weights. Letting p1 ↗ x, p2 ↘ x and q1 ↗ y,

q2 ↘ y and using the continuity of f on R2
>0, we obtain the desired conclusion of the theorem. The

only remaining case is when x = 0, y > 0 or x > 0, y = 0, however in this situation, things are much

easier. Indeed, there is only one path from (0, 0) to (bnxc, 0), namely the path that always goes

right, so in this situation the convergence just follows directly from the law of large numbers:

F (bnxc, 0)

n
=
ω1,0 + . . .+ ωbnxc,0

n
→ xE(ω1,1)

almost surely and in L1. The case x > 0, y = 0 is handled the same way.

5.2 Joint almost sure convergence

Theorem 5.1 shows that in the L2 case,

F (bnxc, bnyc)
n

→ f(x, y)

for each x, y ≥ 0 almost surely, however the set of probability 1 on which this holds may a priori

depend on x and y. We now show that under the assumption of Theorem 1.6, we can get the

convergence to hold jointly for all x and y with probability 1. The precise statement is as follows.

Theorem 5.6. Assume that the ωi,j’s and ω̃i,j’s have a finite second moment. Then with probability

1, we have

max(fH(x, y), fV (x, y)) ≤ lim inf
n→∞

F (bnxc, bnyc)
n

≤ lim sup
n→∞

F (bnxc, bnyc)
n

≤ f(x, y)

simultaneously for all x, y ≥ 0.

Let us mention that Theorem 5.6 is not used in the proof of Theorem 1.6, so there is no circular

argument going on here.

Proof. Recall that FH(m,n) denotes the Seppäläinen–Johansson first-passage value where the hor-

izontal weights are the ωi,j ’s and the vertical weights are replaced by zero, while FV (m,n) is the

first-passage value where the vertical weights are the ω̃i,j ’s and the horizontal weights are replaced

by 0. Then we have the trivial inequality

F (m,n) ≥ max(FH(m,n), FV (m,n)).
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bnp1c σ bnxc bnp2c

bnq1c

bnyc

bnq2c

Figure 5.1: The down-left path of weight 0 started from (bnxc, bnyc) is represented in red. The
sum of the weights on the edges between (bnp1c, bnq1c) and (σ, bnq1c) is then an upper bound for
F (bnp1c, bnq1c; bnxc, bnyc). The sum of those weights is certainly no larger than the sum of all the
weights on the black “L shape”

Now, in the SJ case, the joint almost sure convergence is much easier to establish since the first-

passage function is monotonic in this situation. Indeed, for fixed n, the function m 7→ FH(m,n) is

non-decreasing, and for fixed m, the function n 7→ FH(m,n) is non-increasing. So if p1, p2, q1, q2 are

rationals such that p1 < x < p2 and q1 < y < q2, then

FH(bnp1c, bnq2c)
n

≤ FH(bnxc, bnyc)
n

≤ FH(bnp2c, bnq1c)
n

.

It follows from the almost sure convergence along the rationals that

fH(p1, q2) ≤ lim inf
n→∞

FH(bnxc, bnyc)
n

≤ lim sup
n→∞

FH(bnxc, bnyc)
n

≤ fH(p2, q1)

almost surely, and by continuity of fH , we get upon sending p1, p2 to x and q1, q2 to y along the

rationals that
FH(bnxc, bnyc)

n
→ fH(x, y).

The above holds with probability 1 simultaneously for all x and y, since this only depends on having

the limit hold for all rationals. The same idea works for FV as well, and so we get

lim inf
n→∞

F (bnxc, bnyc)
n

≥ max(fH(x, y), fV (x, y))

almost surely for all x, y ≥ 0.

For the upper bound, we have by the triangle inequality that

F (bnxc, bnyc) ≤ F (bnp1c, bnq1c) + F (bnp1c, bnq1c; bnxc, bnyc). (5.6)

To estimate the second term in the right-hand side above, we note the following. For each (i, j),

at least one of the weights from the two incoming edges (i − 1, j) → (i, j) or (i, j − 1) → (i, j) is
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0. This means that from each point (i, j), there exists a down-left path started from (i, j) which

only visits edges of weight 0. This path that starts at (bnxc, bnyc) will eventually hit a point of the

form (bnp1c, τ) or (σ, bnq1c) for some bnq1c ≤ τ ≤ bnyc or bnp1c ≤ σ ≤ bnxc. See Figure 5.1. The

path that moves vertically or horizontally until it hits (bnp1c, τ) or (σ, bnq1c) and then follows the

down-left path of weight 0 gives a valid path from (bnp1c, bnq1c) to (bnxc, bnyc), so this yields an

upper bound for F (bnp1c, bnq1c; bnxc, bnyc). We could figure out the distribution of τ and σ; this

is the hitting location of a random walk to a wedge, but this is completely unnecessary. Instead, we

can simply use the crude bound

F (bnp1c, bnq1c; bnxc, bnyc) ≤ ωbnp1c+1,bnq1c + . . .+ ωbnp2c,bnq1c

+ ω̃bnp1c,bnq1c+1 + . . .+ ω̃bnp1c,bnq2c

which is obtained by adding all the weights in the “L shape” started from (bnp1c, bnq1c); see Figure

5.1 again. Plugging this in (5.6), it follows from the convergence shown along the rationals and

Corollary 5.5 that

lim sup
n→∞

F (bnxc, bnyc)
n

≤ f(p1, q1) + (p2 − p1)E(ω1,1) + (q2 − q1)E(ω̃1,1)

almost surely. Letting p1 ↗ x, p2 ↘ x and q1 ↗ y, q2 ↘ y and using the continuity of f gives the

required upper bound; this bounds holds with probability 1 simultaneously for all x and y since the

above limits only depend on them holding along all rational directions.

5.3 Exact limit shape formulas

In this section, we describe how to obtain some exact formulas for the limiting shape in certain

special cases of weights. Since these formulas were already found by Martin in [50], we will omit the

technical calculations and only sketch the main ideas that go into obtaining these formulas. Martin

uses the language of queuing theory to obtain these expressions. We will follow the more geometric

approach used in [66, Section 4.6] in the context of last-passage percolation, as well as [74].

Throughout this section, we consider the SJ model with i.i.d weights ωi,j on the horizontal edges

(i − 1, j) → (i, j), with distribution given by ωi,j ∼ Ber(q)Geo(p), that is their distribution is the

product of a Bernoulli with an independent geometric. Thus we have for k a non-negative integer,

P(ωi,j = k) =

(1− q) if k = 0

qp(1− p)k−1 if k ≥ 1.

Note that this includes both the Bernoulli distribution (take p = 1) and the Geometric distribution

(take q = 1− p) as special cases.

What makes this distribution special is that there exists in this case a set of boundary conditions

that turn the SJ model into a stationary process in the sense described in Proposition 5.8 below.

Let 0 ≤ α < 1 be a parameter. We change the weights lying on the x-axis to be ωαi,0, and we also
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ωα1,0 ωα2,0 ωα3,0 ωα4,0 ωα5,0 ωα6,0 ωα7,0

ω̃α0,1

ω̃α0,2

ω̃α0,3

ω̃α0,4

ω̃α0,5

Figure 5.2: The special boundary conditions. The bulk horizontal edges (represented as bold black
lines) have weights ωi,j distributed according to a Ber(q)Geo(p). The bulk vertical edges have weight
0. The laws of the boundary edges are different and given by (5.7) and (5.8).

introduce weights on the vertical edges of the y-axis ω̃α0,j with distributions

ωαi,0 ∼ Ber

(
pqα

pα+ (1− q)(1− α)

)
Geo(1− α(1− p)), (5.7)

− ω̃α0,j ∼ Ber

(
pα

1− α(1− p)

)
Geo(1− α) (5.8)

(the ω̃α0,j weights are negative). All weights are assumed to be independent. We will denote by

Fα(m,n) the first-passage values with the above special boundary conditions. See Figure 5.2.

Next we consider the increments of first-passage values in this model. Let

Xi,j = Fα(i, j)− Fα(i− 1, j)

Yi,j = Fα(i, j − 1)− Fα(i, j)

so the Xi,j are the horizontal increments, and the Yi,j are the vertical increments. Notice that

the order in which the subtraction occurs in these definitions is different; this is to ensure that the

Xi,j and the Yi,j are always non-negative. The SJ first-passage values are non-decreasing in the x

direction, and non-increasing in the y direction. We have of course Xi,0 = ωαi,0 and Y0,j = −ω̃α0,j .
The first-passage values Fα satisfy the recursions

Fα(i, j) = min(Fα(i− 1, j) + ωi,j , F
α(i, j − 1))

and so we can obtain from this recursions for the Xi,j ’s and Yi,j ’s:

Xi,j = min(Fα(i− 1, j) + ωi,j , F
α(i, j − 1))− Fα(i− 1, j)

= min(ωi,j , Xi,j−1 + Yi−1,j)
(5.9)
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and

Yi,j = Fα(i, j − 1)−min(Fα(i− 1, j) + ωi,j , F
α(i, j − 1))

= max(Xi,j−1 + Yi−1,j − ωi,j , 0).
(5.10)

The reason for these choices of boundary conditions is the following lemma.

Lemma 5.7. Let X,Y and ω be independent random variables with the following distributions

X ∼ Ber

(
pqα

pα+ (1− q)(1− α)

)
Geo(1− α(1− p)),

Y ∼ Ber

(
pα

1− α(1− p)

)
Geo(1− α)

ω ∼ Ber(q)Geo(p).

Then

(min(X + Y, ω),max(X + Y − ω, 0))
d
= (X,Y ).

The proof of Lemma 5.7 is only a long and tedious (but not difficult) computation so we will

skip it. One first finds the law of the sum S = X+Y , either directly by calculating a convolution or

using characteristic functions. This distribution is also a Ber(q′)Geo(p′) for certain q′ and p′. It is

then easy to show that min(S, ω) has the same distribution as X, and max(S − ω, 0) has the same

distribution as Y . To check independence, note that if max(S − ω, 0) = j for a non-zero j, it means

that we must have S ≥ ω, so

P(min(S, ω) = k,max(S − ω, 0) = j) = P(ω = k, S = k + j) = P(ω = k)P(S = k + j)

and then one easily verifies that this last expression equals P(X = k)P(Y = j). A similar computa-

tion can be done when j = 0.

The next step is to show that the distributions chosen for the boundary variables Xi,0 and Y0,j

will “propagate” the right way throughout the lattice to get a stationary process. For this, we look

at edges of the lattice contained in down-right paths.

A down-right path is a two-sided infinite sequence of vertices in the lattice Z2
≥0, say π =

(. . . , v−1, v0, v1, . . . ), such that for any n ∈ Z,

vn − vn−1 = (1, 0) or (0,−1).

We let N(π) denote the number of vertices in the upper right quadrant of Z2 which are strictly

below and to the left of π, that is, N(π) is the cardinality of the set

B(π) = {(i, j) : i ≥ 0, j ≥ 0, there is (m,n) ∈ π such that i < m, j < n}.

See Figure 5.3. Note that N(π) can be infinite. The set of edges that connect two consecutive

vertices in π is denoted by E(π). For each edge e ∈ E(π), we define a random variable Ze which is
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Figure 5.3: A down-right path. Here B(π) is represented by the black dots, so N(π) = 5.

(i, j)

Figure 5.4: The black line is π. To get π̃, we replace the black dashed line by the red dashed line.

the increment Xi,j or Yi,j associated to that edge:

Ze =

Xi,j if e is the edge (i− 1, j)→ (i, j)

Yi,j if e is the edge (i, j)→ (i, j − 1).

Proposition 5.8. Let π be a down-right path. Then the random variables {Ze : e ∈ E(π)} are

independent. If e is horizontal, then Ze has the distribution (5.7), and if e is vertical, then Ze has

the distribution (5.8).

Proof. We first prove this in the case N(π) <∞, using induction on N(π). If N(π) = 0, this means

that π is precisely the path that goes down along the y-axis, and then turns to the right at the origin

and continues on the x-axis. The random variables corresponding to those edges are independent

and have the right distributions by definition of the boundary conditions (5.7) and (5.8).

Now suppose that 0 < N(π) < ∞, and that the result has been proven for paths π′ with

N(π′) < N(π). Consider a corner vertex of π: this is a vertex (i, j) such that (i − 1, j), (i, j) and

(i, j − 1) all belong to π, and i ≥ 1, j ≥ 1. Such a vertex must exist since 0 < N(π) < ∞. We

now define a new down-right path π̃: it has the same vertices as π, except that (i, j) is replaced by
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(i− 1, j − 1). See Figure 5.4.

Now, N(π̃) = N(π) − 1, so by induction, the random variables {Ze, e ∈ E(π̃)} are independent

with the correct distributions. The families {Ze, e ∈ E(π̃)} and {Ze, e ∈ E(π)} are the same, except

that Xi,j−1 and Yi−1,j are in the first family, and they are replaced by Xi,j and Yi,j in the second

family. By Lemma 5.7 and the recursions (5.9) and (5.10), Xi,j and Yi,j are independent and have

the right distributions. Furthermore, these recursions mean they only depend on Xi,j−1, Yi−1,j and

ωi,j , and all three of these are independent of the Ze’s for all the other edges e ∈ E(π). This

completes the induction and proves the proposition when N(π) <∞.

Finally if N(π) =∞, then at least one of the following must happen:

• There are i ≥ 0 and j ≥ 1 such that eventually, π becomes π = (. . . , (i, j), (i+1, j), (i+2, j), . . . )

(so π ends up horizontal).

• There are i ≥ 1 and j ≥ 0 such that π starts off as π = (. . . , (i, j + 2), (i, j + 1), (i, j), . . . ) (so

π starts off vertical).

By definition, independence of {Ze, e ∈ E(π)} means that every finite sub-collection of these random

variables are independent. Given any finite sub-collection A ⊂ E(π), it is easy to see that in both

of the above cases, one can find a path π̃ which passes through all the edges of A and N(π̃) < ∞.

The result follows from applying the finite case to π̃.

Vertical and horizontal lines in Z2 are special cases of down-right paths, and so we immediately

deduce the following.

Corollary 5.9. The following hold

• For any fixed n ≥ 0, the random variables X1,n, X2,n, X3,n, . . . are i.i.d with the distribution

(5.7).

• For any fixed m ≥ 0, the random variables Ym,1, Ym,2, Ym,3, . . . are i.i.d with the distribution

(5.8).

We can rewrite Fα as a sum/difference of increments

Fα(bnxc, bnyc) =

bnxc∑
i=1

Xi,0 −
bnyc∑
j=1

Ybnxc,j .

We divide by n and let n → ∞. The first term converges almost surely to xE(X1,0) by the law

of large numbers, and the second terms converges almost surely to −yE(Y0,1) by Corollary 5.5 (or

more simply we can just use Markov’s inequality and the Borel–Cantelli lemma directly since the

Yi,j ’s have exponential tails). Thus

Fα(bnxc, bnyc)
n

→ xE(X1,0)− yE(Y0,1)

=
pqαx

(1− (1− p)α)(pα+ (1− q)(1− α))
− pαy

(1− (1− p)α)(1− α)

almost surely. On the other hand, we can compute this limit in a different way. Any path from

(0, 0) to (bnxc, bnyc) will spend some time on one of the axes before it leaves, and then it will only
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pick up weights that are also in the non-stationary model F . So we find

Fα(bnxc, bnyc) = min

[
min

1≤k≤bnxc

(
k∑
i=1

ωαi,0 + F (k, 1; bnxc, bnyc)

)
,

min
1≤k≤bnyc

− k∑
j=1

ω̃α0,j + ω1,k + F (1, k; bnxc, bnyc)

 (5.11)

After dividing by n, (5.11) converges to a similar continuum expression and so we have

pqαx

(1− (1− p)α)(pα+ (1− q)(1− α))
− pαy

(1− (1− p)α)(1− α)
=

min

[
inf

0≤t≤x

(
pqαt

(1− (1− p)α)(pα+ (1− q)(1− α))
+ f(x− t, y)

)
,

inf
0≤t≤y

(
− pαt

(1− (1− p)α)(1− α)
+ f(x, y − t)

)]
.

(5.12)

The equation (5.12) has the form of a Legendre transform. Since the limit shape f is convex, it

can therefore be inverted to find a formula for f(x, y). We omit the details; see [74, Section VI B]

for more on how to solve equations like (5.12). The end result is

f(x, y) = sup
0≤α<1

(
pqαx

(1− (1− p)α)(pα+ (1− q)(1− α))
− pαy

(1− (1− p)α)(1− α)

)
. (5.13)

If h(α) denotes the expression inside the sup above, then one can solve h′(α) = 0 and plug this

answer back in h to get a more explicit formula. The equation h′(α) = 0 is a quartic equation, and

so in principle there is a formula for the solution. However it is extremely messy and it does not

appear to be simplifiable all that much, so we instead keep the form (5.13). In the special case of

Bernoulli weights (p = 1) or geometric weights (q = 1− p), then h′(α) = 0 is a quadratic equation,

and (5.13) does simplify to a more compact expression.

One can also use (5.13) to derive a formula for the limit shape when the weights follow a

Ber(q)Exp(1) distribution (that is they are the product of a Bernoulli with an independent ex-

ponential random variable). To obtain this formula, we first reparametrize (5.13) in terms of a new

variable γ, where we set γ = (1− α)/p. After some calculations, this gives

f(x, y) =
1

p
sup

0<γ≤ 1
p

(
q(1− pγ)x

(γ + 1− pγ)(1 + (1− q)γ − pγ)
− (1− pγ)y

(γ + 1− pγ)γ

)
.

Now it is a well-known fact of probability that if Xp ∼ Geo(p), then pXp
d−→ Exp(1) as p→ 0. Mul-

tiplying the above by p, we obtain the limit shape for the weights pωi,j where ωi,j ∼ Ber(q)Geo(p),

and so letting p→ 0 will give the limit shape for weights with the distribution Ber(q)Exp(1):

f(x, y) = sup
0<γ<∞

(
qx

(γ + 1)(1 + (1− q)γ)
− y

(γ + 1)γ

)
. (5.14)

There are several technicalities that we are sweeping under the rug here, for instance the fact that

the map which associates a probability distribution to the corresponding limit shape is continuous

under some tail bound conditions, and the 0 < γ ≤ 1/p which achieves the sup depends on p and
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Distribution of the ωi,j ’s Limit shape f(x, y)

Ber(q)

{
(
√
qx−

√
(1− q)y)2 if x ≥ 1−q

q y

0 otherwise

Geo0(p)

{
(
√

(1−p)(x+y)−√y)2

p if x > p
1−py

0 otherwise

Exp(1) (
√
x+ y −√y)2

Ber(q)Geo(p) sup
0≤α<1

(
1

1− (1− p)α

[
pqαx

pα+ (1− q)(1− α)
− pαy

1− α

])

Ber(q)Exp(1) sup
0<γ<∞

(
qx

(γ + 1)(1 + (1− q)γ)
− y

(γ + 1)γ

)

Table 5.1: A list of all the known limit shapes for the Seppäläinen–Johansson model. Although the
Bernoulli, geometric and exponential are special cases of the other two, we still include these in this
table since they have nice and simple expressions.

could a priori go to ∞ as p → 0, but we will ignore these. It is possible to start from scratch and

instead find stationary boundary conditions similar to (5.7) and (5.8). Those will be of the form

Ber(q′)Exp(λ) for certain choices of q′ and λ, and then one can reprove Lemma 5.7 and Proposition

5.8 in this setup and obtain a formula like (5.12) which can be inverted as well. The final result will

be exactly (5.14).

Computing the sup in (5.14) also comes down to solving a quartic expression for which it does

not seem possible to simplify. When q = 1 (that is when the weights are Exp(1)), then we instead

get a quadratic which can be more easily solved and this gives a nice and clean expression for f(x, y).

We summarize all the distributions of weights for which the limit shape can be computed explicitly

in Table 5.1.

It is not expected that there are other formulas that one can explicitly compute for other dis-

tributions. Indeed, the existence of an X and Y for which independence in Lemma 5.7 holds is

essentially equivalent to a kind of lack of memory property for ω, so we can only expect this to work

for weights that are exponentially or geometrically distributed, possibly with an extra delta mass at

0.

In [20], the authors characterize all positive temperature models which admit versions of Lemma

5.7 and Proposition 5.8. It is expected that there should be a similar classification for zero temper-

ature models; see [27] for an extensive discussion on this topic.



Chapter 6

The generalized

Seppäläinen–Johansson model

In this chapter, we prove Theorems 1.6 and 1.7. We first show a combinatorial identity that relates

F (m,n) to the top-most exit point of a geodesic D(m,n) in the SJ model. The limiting behaviour

of D(m,n) is related to the local properties of the SJ limit shape fH . We will show that in the

general case, D(nx, ny) is o(n) in probability which will prove Theorem 1.6. In the Bernoulli case,

D(nx, ny + τn2/3t) is o(n1/3) in probability, uniformly for t in a compact set, which will imply

Theorem 1.7.

6.1 The boundary condition lemma

Throughout this chapter, we will usually simplify notation by omitting the floor function when

evaluating F or FH at non-integer points. It is then understood that if m and n are not integers,

then F (m,n) is defined to be F (bmc, bnc). The main ingredient which goes in the proofs of Theorems

1.6 and 1.7 is the following curious identity.

Lemma 6.1. Let Bi,j ∈ {0, 1}, and let ξi,j , ηi,j be collections of real numbers. Let F (m,n) be the first

passage value from (0, 0) to (m,n) with weights ωi,j = Bi,jξi,j on horizontal edges (i− 1, j)→ (i, j)

and weights ω̃i,j = (1 − Bi,j)ηi,j on vertical edges (i, j − 1) → (i, j), and let FH(m,n) be the first

passage value from (0, 0) to (m,n) where the weights on the horizontal edges are ωi,j and the weights

on the vertical edges are 0 except for the weights on the y-axis which are ω̃0,j. Suppose that

ξi,j ≥ 0 for all i, j ≥ 0,

ηi,j ≥ 0 for all i ≥ 1, j ≥ 0,

η0,j ≤ 0 for all j ≥ 0,

that is the ξi,j’s and ηi,j’s are all non-negative except for the ηi,j’s lying on the y-axis which are all

non-positive. Then for all m,n,

F (m,n) = FH(m,n).

71
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Thus if one replaces the weights on the y-axis with non-positive weights, then the first-passage

value corresponds exactly to the first-passage value on horizontal edges. That is, we can completely

ignore any vertical edges not on the y-axis; given a geodesic from (0, 0) to (m,n), it cannot pass

through a vertical edge of non-zero weight except for edges on the y-axis. Lemma 6.1 is deterministic

and holds for arbitrary collections of numbers ξi,j , ηi,j and Bi,j satisfying the conditions in the

lemma. A similar result holds with weights on the x-axis changed to being non-positive and first-

passage on vertical edges.

Proof. As was done in Section 5.3, let Xi,j , Yi,j be the horizontal and vertical increments for F :

Xi,j = F (i, j)− F (i− 1, j)

Yi,j = F (i, j − 1)− F (i, j)

and define XH
i,j and Y Hi,j similarly for FH . If we’re given all the increments of a model, we can deduce

what the first-passage values are by just adding/subtracting the increments:

F (m,n) =

m∑
i=1

Xi,0 −
n∑
j=1

Ym,j

(and similarly for FH). It is therefore enough to show that Xi,j = XH
i,j and Yi,j = Y Hi,j for all i, j.

Since any path from (0, 0) to (i, j) must pass through exactly one of the vertices (i−1, j) or (i, j−1),

it is easy to see that F and FH satisfy the recursions

F (i, j) = min(F (i− 1, j) + ωi,j , F (i, j − 1) + ω̃i,j)

FH(i, j) = min(FH(i− 1, j) + ωi,j , FH(i, j − 1)).
(6.1)

Using (6.1), we obtain recursions for Xi,j and Yi,j :

Xi,j = min(F (i− 1, j) + ωi,j , F (i, j − 1) + ω̃i,j)− F (i− 1, j)

= min(ωi,j , Xi,j−1 + Yi−1,j + ω̃i,j)

and

Yi,j = F (i, j − 1)−min(F (i− 1, j) + ωi,j , F (i, j − 1) + ω̃i,j)

= max(Xi,j−1 + Yi−1,j − ωi,j ,−ω̃i,j).

Now, suppose that Xi,j−1 and Yi−1,j are both non-negative. By definition of the model, at least one

of ωi,j or ω̃i,j must be 0. If ω̃i,j = 0, then Yi,j = max(Xi,j−1 + Yi−1,j − ωi,j , 0). If ωi,j = 0, then

because Xi,j−1 + Yi−1,j and ω̃i,j are non-negative,

Yi,j = max(Xi,j−1 + Yi−1,j ,−ω̃i,j) = Xi,j−1 + Yi−1,j

= max(Xi,j−1 + Yi−1,j − ωi,j , 0).
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Likewise, if both Xi,j−1 and Yi−1,j are non-negative and ω̃i,j = 0, then

Xi,j = min(ωi,j , Xi,j−1 + Yi−1,j),

and if instead ωi,j = 0, then

Xi,j = min(0, Xi,j−1 + Yi−1,j + ω̃i,j) = 0 = min(ωi,j , Xi,j−1 + Yi−1,j).

Note also from these recursions that Xi,j and Yi,j are then both non-negative. Using (6.1) for FH

(which we had already established in Section 5.3) and the fact that vertical edges have weight 0 in

this model, we find

XH
i,j = min(XH

i,j−1 + Y Hi−1,j , ωi,j).

and

Y Hi,j = max(0, XH
i,j−1 + Y Hi−1,j − ωi,j)

So the increments for F and FH satisfy the exact same recursion provided the increments for F

are non-negative. The increments are indeed non-negative; this is clear when i = 0 or j = 0 since

ξi,j ≥ 0 and ηi,0 ≤ 0 for all i and j and for a point (i, j) on one of the axes, there is only one path

joining (0, 0) to (i, j), namely the straight line that always stays on the axis. For general i and j,

this follows by an induction similar to the one done in the proof of Proposition 5.8 using what we

have just shown about the increments of F and FH . Finally the boundary conditions are the same

since the weights on the edges of both axes are the same.

We now return to the case we are interested in, which is when all the ξi,j ’s and ηi,j ’s are non-

negative. Applying Lemma 6.1 to the special case where the weights on the y-axis are zero will then

yield the upper bound (6.2). Recall that the top-most departure point D(m,n) was defined as

D(m,n) = max{k ≥ 0 : FH(0, k;m,n) = FH(m,n)}.

Proposition 6.2. Let D(m,n) be the top-most departure point of a geodesic for FH(m,n), as defined

above. Then

F (m,n) ≤ FH(m,n) +

D(m,n)∑
j=1

η0,j . (6.2)

Proof. By Lemma 6.1, the first-passage value F (m,n) is the same as FH(m,n) when we change all

the weights on the y-axis to be zero. So there must be a geodesic π for FH(m,n) which does not pass

through any vertical edge of non-zero weight except possibly on the y-axis. We obviously have that

the length of this path S(π) (where we include the weights on the y-axis) satisfies S(π) ≥ F (m,n),

since F (m,n) is the length of the shortest path. The only difference between these two are the extra

weights picked up by π along the y-axis:

F (m,n) ≤ S(π) = FH(m,n) +

Z∑
j=1

(1−B0,j)η0,j

where Z = min{k ≥ 0 : (1, k) ∈ π} is the position where π exits the y-axis (when Z = 0, we interpret

the sum as being 0). Since π is a geodesic for FH(m,n), we have Z ≤ D(m,n), and 1 − B0,j ≤ 1
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because B0,j is either 0 or 1. This concludes the proof.

6.2 Proof of Theorem 1.6

We now begin the proof of Theorem 1.6. As explained in Subsection 1.3.4, our strategy will be to

show that the function y 7→ fH(x, y) is strictly decreasing on [0, (1− q)x/q], where q = P(ωi,j = 0).

This is done via a sequence of lemmas.

Lemma 6.3. Let ωi,j be i.i.d and non-negative, and let fH be the limit shape for the SJ model on

horizontal edges with weights ωi,j. Let q = P(ωi,j = 0). Then fH(x, y) > 0 if and only if x > q
1−qy.

Proof. First assume that 0 < x < qy/(1 − q) (the case where x = 0 is trivial, since FH(0, n) = 0

for all n). Note in particular that this implies q > 0 in that case. In order for FH(m,n) to be 0,

there has to be a path from the origin to (m,n) which only visits edges of weight 0. Every time

the path sees a horizontal edge of weight 0, it will take it, otherwise it will keep moving up until it

sees an edge of weight 0. The number of up steps it needs to take before it sees such an edge has

the geometric distribution on {0, 1, . . . } with probability of success q, and it needs to take m right

steps. So

P(FH(m,n) = 0) = P(Z1 + · · ·+ Zm ≤ n)

where Z1, . . . , Zm are i.i.d. Geo0(q) random variables. Take bnxc and bnyc instead of m and n.

Then for θ > 0, we have, by Markov’s inequality,

P(FH(bnxc, bnyc) 6= 0) = P(Z1 + · · ·+ Zbnxc > bnyc)

= P(eθ(Z1+···+Zbnxc) > eθbnyc) ≤ E(eθZ1)bnxc

eθbnyc

= exp(bnxc log q − bnxc log(1− (1− q)eθ)− θbnyc).

There is some 0 < ε < 1 such that x = (1− ε)qy/(1− q). Take

θ := log

(
y

(1− q)(x+ y)

)
.

By this condition on x and y, we have θ = − log(1− εq) > 0. Substituting θ in the above, we then

find

P(FH(bnxc, bnyc) 6= 0)

≤ exp

(
bnxc log q − bnxc log

(
1− (1− q)

1− εq

)
+ bnyc log(1− εq)

)
= exp((bnxc+ bnyc) log(1− εq)− bnxc log(1− ε))

≤ exp((nx+ ny − 2) log(1− εq)− nx log(1− ε))

=

(
1

1− εq

)2

exp

(
nx

[
1− εq
p(1− ε)

log(1− εq)− log(1− ε)
])

.
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Let g(ε) be the expression in square brackets above. Then

g′(ε) =
(1− q) log(1− εq)

q(1− ε)2
< 0

so g is strictly decreasing. Since g(0) = 0, it follows that g(ε) < 0 for every 0 < ε < 1, and

therefore the above probabilities are summable in n. By the Borel–Cantelli lemma, it follows that

FH(bnxc, bnyc) is 0 for all but finitely many n almost surely, and thus the limit shape must satisfy

fH(x, y) = 0. This proves that fH(x, y) = 0 for all x < qy/(1− q), and by continuity, we obtain this

for x = qy/(1− q) as well.

Finally assume x > qy/(1− q), and choose r > q such that x > ry/(1− r). Since

1− q = P(ωi,j > 0) = lim
s↓0

P(ωi,j > s),

there is some c > 0 such that P(ωi,j > c) > 1− r, or equivalently that P(ωi,j ≤ c) < r. Define new

weights ω̂i,j as follows:

ω̂i,j =

0 if ωi,j ≤ c

c if ωi,j > c.

Then we have ωi,j ≥ ω̂i,j for all i, j, and ω̂i,j is c times a Bernoulli(1− s) for some 0 ≤ s < r. With

f̂H the limit shape of the ω̂i,j ’s (which we can compute explicitly; see Table 5.1), we then have

fH(x, y) ≥ f̂H(x, y) = c(
√

(1− s)x−√sy)2 > 0

which finishes the proof.

Lemma 6.4. With the hypotheses of the previous lemma and the assumption that q > 0, we have

for any fixed x that the function y 7→ fH(x, y) is strictly decreasing on [0, (1− q)x/q].

Proof. Let 0 ≤ y1 < y2 < (1 − q)x/q, and pick any z > (1 − q)x/q. Then there is a t ∈ (0, 1) such

that y2 = (1 − t)y1 + tz. By Lemma 6.3, fH(x, y1) > 0 and fH(x, z) = 0. Since y 7→ fH(x, y) is

convex, it follows that

fH(x, y2) = fH(x, (1− t)y1 + tz) ≤ (1− t)fH(x, y1) + tfH(x, z)

= (1− t)fH(x, y1) < fH(x, y1).

Thus y 7→ fH(x, y) is strictly decreasing on [0, (1− q)x/q].

In view of (6.2), what we actually need to show is that

1

n

D(nx,ny)∑
j=1

η0,j → 0

in probability rather than D(nx, ny)/n→ 0 in probability. The next lemma handles this issue.

Lemma 6.5. Let (Nn)n≥1 be a sequence of non-negative integer-valued random variables, and
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(Xn)n≥1 a sequence of integrable random variables with a uniformly bounded absolute first moment:

M = sup
n≥1

E|Xn| <∞.

Suppose that (an)n≥1 is a deterministic sequence of positive real numbers such that an → ∞ as

n→∞ and Nn/an → 0 in probability. Then

1

an

Nn∑
i=1

Xi → 0

in probability.

Proof. Let ε > 0 and δ > 0. Then

P

(∣∣∣∣∣
Nn∑
i=1

Xi

∣∣∣∣∣ ≥ εan
)
≤ P(Nn ≥ δεan) + P

({∣∣∣∣∣
Nn∑
i=1

Xi

∣∣∣∣∣ ≥ εan
}
∩ {Nn ≤ δεan}

)
.

The first term on the right converges to 0 since Nn/an → 0 in probability. For the second term, we

have by Markov’s inequality

P

({∣∣∣∣∣
Nn∑
i=1

Xi

∣∣∣∣∣ ≥ εan
}
∩ {Nn ≤ δεan}

)
≤ P

dδεane∑
i=1

|Xi| ≥ εan

 ≤ 1

εan
E

dδεane∑
i=1

|Xi|


≤ Mdδεane

εan
.

Thus

lim sup
n→∞

P

(∣∣∣∣∣
Nn∑
i=1

Xi

∣∣∣∣∣ ≥ εan
)
≤Mδ.

Since δ > 0 was arbitrary, we obtain what we wanted upon sending δ → 0.

We are now ready to finish the proof of Theorem 1.6. Let q = P(Bi,jξi,j = 0), and recall that

the bottom-most entry point E(m,n) is defined as

E(m,n) = max{k ≥ 0 : FH(m,n− k) = FH(m,n)}.

Then for a point (x, y) satisfying x > qy/(1− q), we have that the function z 7→ fH(x, z) is strictly

decreasing in a neighbourhood of y by Lemma 6.4. So for all ε > 0 small enough, fH(x, y − ε) >
fH(x, y), and because

FH(nx, ny)

n
→ fH(x, y),

FH(nx, n(y − ε))
n

→ fH(x, y − ε)

in probability, it follows that

P(E(nx, ny) ≥ nε) = P(FH(nx, ny) = FH(nx, n(y − ε)))→ 0.

The random variables D(nx, ny) and E(nx, ny) have the same distribution, so D(nx, ny)/n → 0 in
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fV (x, y)

fH(x, y)

Figure 6.1: The limit shape f in terms of fH and fV . The dashed black line is x = 1−p
p y, the red

line is x = q
1−qy and the blue line is x = 1−r

r y. Everywhere above the red line, we have fH(x, y) = 0,

and everywhere below the blue line, fV (x, y) = 0. The limit shape f is obtained by “gluing” fH and
fV along the black dashed line.

probability, and by Lemma 6.5, we deduce that

1

n

D(nx,ny)∑
j=1

η0,j → 0

in probability. By Proposition 6.2 and the lower bound F (nx, ny) ≥ FH(nx, ny), we infer that

f(x, y) = fH(x, y) for x > qy/(1− q).
We can also get Theorem 1.6 for x < (1− r)y/r where r = P((1−Bij)ηij = 0) by using the same

arguments employed in the last two sections but with first-passage percolation on vertical edges

instead and by considering the right-most departure from the x-axis and left-most entry to the line

y = n to derive a similar inequality as in (6.2). The proof for this case is exactly the same so we

will not write it down.

So far we have shown that f(x, y) = fH(x, y) for x > qy/(1 − q) and f(x, y) = fV (x, y) for

x < (1−r)y/r. By continuity of the limit shape and Lemma 6.3, we also have f(x, y) = fH(x, y) = 0

for x = qy/(1− q) and f(x, y) = fV (x, y) = 0 for x = (1− r)y/r.
In the case where both ξij and ηij are positive almost surely, we are done (since then we have

q = 1−p and r = p). If not, then we still have to deal with points in between the lines x = qy/(1−q)
and x = (1− r)y/r. However on those lines, we have f(x, y) = 0, and f is non-negative and convex.

So f must also be zero in between those lines, and therefore equals both fH and fV there (see

Figure 6.1). This shows that f(x, y) = max(fH(x, y), fV (x, y)) in all cases and concludes the proof

of Theorem 1.6!
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6.3 Proof of Theorem 1.7

We now prove Theorem 1.7. As defined in the statement the theorem, we let

τ(x, y) = 2

[
x2

y
√
p(1− p)

(
√
px−

√
(1− p)y)(

√
(1− p)x+

√
py)

]1/3

χ(x, y) =

[√
p(1− p)
xy

(
√
px−

√
(1− p)y)2(

√
(1− p)x+

√
py)2

]1/3

ρ(x, y) = p−
√
p(1− p)y

x

where 0 < p < 1, and x, y are positive and satisfy x > (1 − p)y/p. We will abbreviate things by

omitting the dependence on x and y for τ, χ and ρ.

In [28, Corollary 6.11], it was shown that

FH(bnxc+ bτn2/3tc, bnyc)− nfH(x, y)− τn2/3tρ

χn1/3

d−→ −A(t) (6.3)

uniformly on compact sets, where A(t) is the Airy2 process. Their result is actually stated in a

slightly different way. The authors consider the Seppäläinen–Johansson last-passage percolation

value instead of first-passage. However if (L(m,n))m,n≥0 denotes the array of last-passage values

from (0, 0) with Bernoulli(p) weights, then it is easy to see that the array (m − L(m,n))m,n≥0 is

an array of first-passage values from (0, 0) with Bernoulli(1− p) weights. Thus [28, Corollary 6.11]

can be rewritten in terms of first-passage. The other difference is that the authors only state their

corollary for y = 1, but since fH is homogenous, it is easy to recover (6.3) for arbitrary y by looking

at an appropriate subsequence. We omit the calculations of the scaling factors τ, χ and ρ that we

obtain when we consider arbitrary y. Our goal is to show that (6.3) also holds when we replace FH

by the generalized SJ model F . Note that for this choice of x, y and p, we have f(x, y) = fH(x, y)

by Theorem 1.6. We let Fn(t) denote the left-hand side of (6.3).

Before we continue, we need to address a technical point, which is how to make sense of (6.3).

This is saying that a sequence of probability measures on a certain space of functions converges

weakly to minus the Airy2 process. What should this space of functions be? The function FH is

only defined at integer coordinates. One possible approach is to extend FH to all of R by making it

a step function. Then Fn(t) is a càdlàg function, and the limit is in the sense of uniform convergence

on compact sets. This is essentially what we have been doing so far by using the floor function. The

other approach is to interpolate linearly between the values of t 7→ FH(bnxc+ τn2/3t, bnyc). Then

Fn(t) is a continuous function, and again the convergence is in the sense of uniform convergence

on compact sets. It does not really make a difference which method we use, as it is an easy fact

from analysis to check that for a sequence of functions hn defined on a sequence of finer and finer

partitions and a continuous function h, the step function version of the hn’s converge uniformly to h

if and only if the linear interpolation version of the hn’s converge uniformly to h. We will therefore

stick with the step function version for convenience.

Fix t ∈ R and ε > 0. By the Skorokhod representation theorem [15, Theorem 6.7], the Fn and A
can be coupled together on the same probability space such that Fn → −A uniformly on compact
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sets, almost surely. We henceforth work with this particular coupling. Define

tn =

ε
yn

1/3x+ τn2/3t

(n− ε
yn

1/3)2/3τ
.

Then tn → t, and

Fn− ε
yn

1/3(tn)→ −A(t),

(we again use the convention that Fk = Fbkc when k is not an integer). Indeed, let K be a compact

subset of R which contains all the tn’s. Then

|Fn− ε
yn

1/3(tn) +A(t)| ≤ sup
s∈K
|Fn− ε

yn
1/3(s) +A(s)|+ |A(tn)−A(t)|.

The first term on the right-hand side above converges to 0 since Fn → −A uniformly on K, and the

second term converges to 0 because A is continuous. We have

Fn− ε
yn

1/3(tn) =
FH(nx+ τn2/3t, ny − εn1/3)− (n− ε

yn
1/3)f(x, y)− ( εyxn

1/3 + τn2/3t)ρ

(n− ε
yn

1/3)1/3χ
,

and so

FH(nx+ τn2/3t, ny − εn1/3)− (n− ε

y
n1/3)f(x, y)− ε

y
xρn1/3 − τn2/3tρ

= −χA(t)n1/3 + o(n1/3).
(6.4)

We also have Fn(t)→ −A(t), and this gives

FH(nx+ τn2/3t, ny)− nf(x, y)− τn2/3tρ = −χA(t)n1/3 + o(n1/3). (6.5)

Now subtract (6.5) from (6.4) and divide by n1/3. After some rearranging, this yields

FH(nx+ τn2/3t, ny − εn1/3)− FH(nx+ τn2/3t, ny)

n1/3
=
ε

y
(xρ− f(x, y)) + o(1). (6.6)

Since we are in the Bernoulli case, f(x, y) is given by the formula in Table 5.1, and so we find

xρ(x, y)− f(x, y) = px−
√
p(1− p)xy − (

√
px−

√
(1− p)y)2

=
√
p(1− p)xy − (1− p)y > 0

by our assumption on x, y and p. This together with (6.6) implies that for all sufficiently large n,

we must have

FH(nx+ τn2/3t, ny) 6= FH(nx+ τn2/3t, ny − εn1/3).

Consequently, the bottom-most entry point E(nx+ τn2/3t, ny) is at most εn1/3, and this implies

lim sup
n→∞

E(nx+ τn2/3t, ny)

n1/3
≤ ε
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almost surely. Since ε was arbitrary, it follows that

E(nx+ τn2/3t, ny)

n1/3
→ 0 (6.7)

almost surely, and because D(nx+ τn2/3t, ny) has the same distribution as E(nx+ τn2/3t, ny), we

deduce that
D(nx+ τn2/3t, ny)

n1/3
→ 0 (6.8)

in probability. By Lemma 6.5 applied to the sequence an = n1/3, it then follows that

1

n1/3

D(nx+τn2/3t,ny)∑
j=1

η0j → 0 (6.9)

in probability.

It is fairly straightforward to generalize the above argument to obtain that (6.7) holds uniformly

for t in a compact set almost surely. However, while it is true that E(m,n) and D(m,n) have the

same distribution for a fixed endpoint (m,n), it is not the case that the joint laws of {E(m, k) : k ∈ S}
and {D(m, k) : k ∈ S} are the same for k varying in some set of integers S. However, we can still

obtain (6.8) and (6.9) uniformly for t in a compact set since D is monotonic.

Lemma 6.6. For each n ≥ 0, the function m 7→ D(m,n) is non-increasing.

Proof. We proceed by induction on n. When n = 0, the result is clear; there is only one path from

(0, 0) to (m, 0), so the departure point is 0:

D(m, 0) = 0.

Assume we have proven that m 7→ D(m,n−1) is non-increasing, and let m ≥ 1. Let π be a geodesic

from (0, 0) to (m,n) whose departure point is D(m,n). Then π necessarily passes through exactly

one of (m− 1, n) or (m,n− 1).

Case 1: The geodesic π passes through (m − 1, n). In this case, π must also be a geodesic

for (m − 1, n) which maximizes the departure point. If π were not a geodesic, then there is some

other path π′ from (0, 0) to (m− 1, n) such that S(π′) < S(π) (not counting the weight on the edge

(m − 1, n) → (m,n)). But then we can follow π′ and then go from (m − 1, n) to (m,n), and this

will give a path of smaller weight than π, contradicting the fact that π is a geodesic for (m,n). So π

is a geodesic for (m− 1, n). Likewise, the same logic implies that π maximizes the departure point

for (m− 1, n), for if not, then there is some geodesic π′ from the origin to (m− 1, n) with a higher

departure point, and by extending this path to (m,n), we a get a geodesic with a higher departure

point than π, another contradiction. Thus in this case, we have D(m,n) = D(m− 1, n).

Case 2: The geodesic π passes through (m,n − 1). By the exact same reasoning as above, π

must then also be a geodesic to (m,n − 1) which maximizes the departure point, and so we have

D(m,n) = D(m,n− 1). Now let π∗ be a geodesic from (0, 0) to (m− 1, n) whose departure point is

D(m − 1, n). Then π∗ necessarily visits a point of the form (j, n − 1) for some 0 ≤ j ≤ m − 1. By

the same argument as above once again, π∗ is then also a geodesic to (j, n− 1) which maximizes the

departure point, so we have D(m − 1, n) = D(j, n − 1). Therefore by the induction hypothesis, we
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have

D(m,n) = D(m,n− 1) ≤ D(j, n− 1) = D(m− 1, n).

So in both cases, we have D(m,n) ≤ D(m− 1, n).

Thus if K ⊂ R is compact and t0 is such that t0 ≤ t for all t ∈ K, then

sup
t∈K

 1

n1/3

D(nx+τn2/3t,ny)∑
j=1

η0j

 ≤ 1

n1/3

D(nx+τn2/3t0,ny)∑
j=1

η0j → 0 (6.10)

in probability.

Let us now conclude. First let S be the following metric which metrizes uniform convergence on

compact sets

S(φ, ψ) =

∞∑
n=1

1

2n
min

(
sup

t∈[−n,n]

|φ(t)− ψ(t)|, 1

)
.

Note that with this choice, if φ(t) ≤ σ(t) ≤ ψ(t) for all t ∈ R, then

S(φ, σ) ≤ S(φ, ψ). (6.11)

Let G be a bounded, real-valued, uniformly continuous function on the space of càdlàg functions

with respect to uniform convergence on compact sets, and let ε > 0. Then there is a δ > 0 such that

|G(φ)−G(ψ)| < ε whenever S(φ, ψ) < δ. By Proposition 6.2,

FH(nx+ τn2/3t, ny)− nf(x, y)− τn2/3tρ

χn1/3
≤ F (nx+ τn2/3t, ny)− nf(x, y)− τn2/3tρ

χn1/3

≤ FH(nx+ τn2/3t, ny)− nf(x, y)− τn2/3tρ

χn1/3
+

1

χn1/3

D(nx+τn2/3t,ny)∑
j=1

η0j .

Thus if the scaled fluctuations of F and FH are at least δ apart from each other (with respect to

the S metric), then by (6.11),

S

 1

χn1/3

D(nx+τn2/3t,ny)∑
j=1

η0j , 0

 ≥ δ.
Hence,

E
∣∣∣∣G(FH(nx+ τn2/3t, ny)− nf(x, y)− τn2/3tρ

χn1/3

)
−G

(
F (nx+ τn2/3t, ny)− nf(x, y)− τn2/3tρ

χn1/3

)∣∣∣∣
≤ 2 sup |G|P

S
 1

χn1/3

D(nx+τn2/3t,ny)∑
j=1

η0j , 0

 ≥ δ
+ ε→ ε
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by (6.10). Since ε was arbitrary, it then follows along with (6.3) that

lim
n→∞

E
[
G

(
F (nx+ τn2/3t, ny)− nf(x, y)− τn2/3tρ

χn1/3

)]
= lim
n→∞

E
[
G

(
FH(nx+ τn2/3t, ny)− nf(x, y)− τn2/3tρ

χn1/3

)]
=

∫
G(φ) dµ−Airy2

(φ)

where µ−Airy2
is the law of minus the Airy2 process. This concludes the proof of Theorem 1.7!
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[25] Ivan Corwin, Timo Seppäläinen, and Hao Shen. “The strict-weak lattice polymer”. In: J. Stat.

Phys. 160.4 (2015), pp. 1027–1053. issn: 0022-4715,1572-9613. doi: 10.1007/s10955-015-

1267-0. url: https://doi.org/10.1007/s10955-015-1267-0.

[26] J. Theodore Cox and Richard Durrett. “Some limit theorems for percolation processes with

necessary and sufficient conditions”. In: Ann. Probab. 9.4 (1981), pp. 583–603. issn: 0091-

1798,2168-894X. url: http://links.jstor.org/sici?sici=0091- 1798(198108)9:4%

3C583:SLTFPP%3E2.0.CO;2-0&origin=MSN.

[27] David A. Croydon and Makiko Sasada. “On the stationary solutions of random polymer models

and their zero-temperature limits”. In: J. Stat. Phys. 188.3 (2022), Paper No. 23, 32. issn:

0022-4715,1572-9613. doi: 10.1007/s10955-022-02947-x. url: https://doi.org/10.1007/

s10955-022-02947-x.

[28] Duncan Dauvergne, Mihai Nica, and Bálint Virág. “Uniform convergence to the Airy line
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