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Discrete differential geometry arises from the use of discrete spaces such as graphs,

simplicial, cubical, or polyhedral complexes for modeling geometric structures on mani-

folds. A common practice in this work is to transport structures on smooth manifolds to

discrete counterparts in a process referred to as discretization. Discretizations often appear

as elements of a sequence that approximates the smooth structure on the manifold through

some measure of convergence. Algorithms which produce such sequences are highly sought

after for computational applications but frequently ignore deeper structural relationships

between successive discrete models. This thesis makes contributions to the discretization

of Hodge theory through the construction of a framework that serves to axiomatize a foun-

dational set of results in the field. The salient feature of this framework is the ability to

directly measure the difference in approximation accuracy between discretizations without

reference to the overarching smooth structure. This provides a Cauchy-type characteri-

zation of sequences of discretizations while opening the scope of inquiry to a much larger

class of problems involving the analysis of Hodge Theory through Cauchy sequences.

ii



Acknowledgements

First and foremost, I would like to thank my advisor, Marco Gualtieri, for dedicating
countless hours towards my studies. It has been through his passion for research and
persistence in advancing me as a student that I derived an enormous amount of inspiration
to complete my Ph.D. I deeply appreciate the kindness and consideration he showed me
during the incredibly challenging moments I encountered over the years.

I would also like to thank those on my supervisory and defense committees. To Lisa
Jeffrey, Boris Khesin, Eckhard Meinrenken, and Vardan Papyan, for taking the time to
be part of my committee and offer valuable comments. As well as my external reviewer
Józef Dodziuk, for taking the time to review my work and also for his foundational papers
that inspired much of my Ph.D. endeavors. Additionally, thank you to Jemima Merisca for
organizing my defense and dealing with my many, many, technical administration questions
throughout my time in the program.

It has been a pleasure being a member of the Geometric Structures Laboratory and
working alongside extremely talented researchers Daniel Álvarez, Maziar Farahzad, Gavin
Hurd, Yucong Jiang, Caleb Jonker, Aidan Lindberg, Alessandro Malusà, Adriano Pacifico,
Waleed Qaisar, and Thomas Stanley. I would like to extend my sincerest thanks to each of
you for contributing to my work invaluably, either through collaboration on mathematical
ideas or listening to my many rants.

Some of the most critical moments in preparing this thesis required collective effort.
For thoroughly reading my initial draft line by line, catching my mistakes, and working
with me to correct them too, I would like to express my appreciation to Maziar Farahzad,
Adriano Pacifico, and Jack Ceroni.

As well, in days before submitting this thesis, I discovered a critical error that put my
entire thesis in jeopardy. During this time, I was incredibly fortunate to correspond with
Olaf Post, whose work is intimately related. Professor Post, thank you for taking time
away from your vacation to discuss the issue with me, point me towards relevant literature
that I was unaware of, and provide me with feedback on my proof of Theorem 2.2.4. I
will always see your input and willingness to help me, a stranger, on a moment’s notice,

iii



as commendable and extremely valuable.
I have had several educators who went above and beyond in their support of my aca-

demic growth and career. Namely, I would like to thank Almut Burchard, the late Alfonso
Gracia-Saz, Diane Horton, Ivan Khatchatourian, Matt Killen, Brian Lim, George Lybero-
giannis, Catharine Ma, and Jacopo De Simoi. It is through their patience with my learning
and encouragement of my curiosity that I found the confidence to follow through with the
Ph.D. program.

On a more personal note, thank you to my friends Assaf Bar-Natan, Jesse Frohlich,
Pierre Gauvreau, Filip Lee, Liam Little, Nick Martin, and David Pechersky, for your
support, talking with me about my uncertainties, and sharing your excitement with me
throughout this process. To my partner, Anna VanDuzer, thank you for your consistent
support and love throughout. For spending the last four years lending an ear to my
incomprehensible ideas and ceaseless complaints, I am in awe of your patience and am
truly in your debt. Finally, thank you to my family, Virginie Hayot, Savanna Munro,
Julia Rosenberg, and especially my father, Chris Munro. Dad, thank you for a lifetime of
support, teaching me the value of hard work, and encouraging me to stay playful.

Finally, I would like to acknowledge the funding I received through the Department of
Mathematics at the University of Toronto and the Ontario Graduate Scholarship (OGS)
program that made it financially viable to complete the Ph.D. program.

iv



Contents

1 Introduction 8
1.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Outline and Notation Conventions . . . . . . . . . . . . . . . . . . . . . . . 10

2 Delta Retracts and Convergence of Spectra 16
2.1 Comparing Systems: Delta Retracts . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Convergence of the Spectra of a Convergent Sequence . . . . . . . . . . . . 24

3 Constructing the Limit of a Cauchy Sequence 29
3.1 Convergence Implies Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Construction of the Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Construction of the Self-Adjoint Operator . . . . . . . . . . . . . . . . . . . 38
3.4 Uniqueness of the Construction . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Properties of Limit Spectra 46
4.1 Properties of the Limit Spectrum . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Behavior of Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Sequences of Hilbert Complexes with the Hodge Laplacian 51
5.1 Background on Hilbert Complexes . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Comparing Hilbert Complexes: Delta Deformation Retracts . . . . . . . . . 54
5.3 Comparing the Hodge Decomposition of Elements . . . . . . . . . . . . . . 58
5.4 Behavior of Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 Example: Truncation of the Spectrum of the Smooth Laplacian . . . . . . . 63
5.6 Constructing the limit of a Cauchy Sequence of Hilbert Complexes . . . . . 64

6 Application: Simplicial Approximation of the Hodge Laplacian 77
6.1 Background and Notation for Simplicial Complexes . . . . . . . . . . . . . . 77
6.2 Subdivision Algorithms for a Simplicial Complex . . . . . . . . . . . . . . . 79

v



6.3 Triangulations of Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4 Subdivision of a Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.5 Simplicial Approximation of Hodge Theory Through Triangulation Subdi-

vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.6 Simplicial Approximation as a Cauchy Sequence . . . . . . . . . . . . . . . 95

Appendix 101
A Spectral Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
B Whitney Standard Subdivision . . . . . . . . . . . . . . . . . . . . . . . . . 104

References 107

vi



Given the pace of technology, I propose we leave math to the machines and go play
outside.

- Calvin, Bill Watterson’s Calvin and Hobbes
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Chapter 1

Introduction

1.1 Synopsis

The central theme of this thesis is to enable the direct study of relationships between
discrete geometric structures without the use of an underlying smooth manifold. Develop-
ments in the field of Discrete Differential Geometry often provide a sequence of discrete
structures that serve as an approximation scheme for a smooth structure by exhibiting
some form of convergence. In many examples, the results proving convergence depend
heavily on the existence of the smooth structure and do not provide an analysis of the
sequence of discrete objects independently. The example that we are interested in for this
thesis occurs in the landmark results that were introduced by Dodziuk in [14] and fur-
ther developed in collaboration with Patodi in [15]. The goal of this thesis is to build a
framework that provides such an analysis of the relationship between the discrete objects
introduced in [14, 15]. In the process of doing this, we will incorporate three main fields of
mathematical knowledge: Discrete Differential geometry, Computational Algebraic Topol-
ogy, and Hilbert Spaces. By incorporating a diverse set of tools in the framework, we
present new openings for further exploration.

Broadly speaking, the work of [14, 15] aims to approximate the Hodge theory of the
differential forms on a Riemannian manifold using (finite) simplicial complexes. It begins
with a compact orientable Riemannian manifold M and a triangulation of M , K (see
Section 6.3 or Chapter IV Section 12 of [49] for details). Through a standard subdivision
algorithm, K is subdivided to produce a new triangulation, ?K, for which each k-simplex
of K has been split into 2k k-simplices. Iterative subdivisions are performed and denoted
by ?nK to construct a sequence of triangulations, (?nK)∞n=1.

Consider Ω•(M) equipped with the Riemannian metric induced on forms and its metric
completion L2Ω•(M). In the work of Whitney [49], it is shown that there exists a cochain
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L2Ω•(M) Ω•(M)

C•(K)

ι

RKWK

Figure 1.1: A diagram depicting the set-up of [14, 15] where ι is the inclusion map which
exists because smooth forms on a compact manifold are L2.

map WK : C•(K) → L2Ω•(M), known as the Whitney Cochain Embedding, that performs
a type of linear interpolation adapted to forms. On the other hand, we have a cochain
map RK : Ω•(M) → C•(K) given by integration of forms over simplices. The situation is
depicted in Figure 1.1. The guiding line of inquiry lies in how well the finite dimensional
space C•(K) approximates Ω•(M) under WK , RK . The first major theorem in [14] shows
that for α ∈ Ω•(M),

lim
n→∞

‖α−W⋆nKR⋆nK(α)‖ = 0, (1.1)

where we are regarding α as an element of L2Ω•(M) under the inclusion.
Through W⋆nK , we induce an inner product onto each complex C•(?nK), 〈, 〉n, by

pulling back the inner product from L2Ω•(M). This allows us to define the codifferential
map d∗n : C

•(?nK) → C•(?nK) and the Hodge Laplacian ∆n = dnd
∗
n + d∗ndn = (dn + d∗n)

2.
We obtain a Hodge decomposition

C•(?nK) = im (dn)⊕ ker(∆n)⊕ im (d∗n) . (1.2)

This immediately introduces the question of how one may approximate the Hodge decom-
position of an element α ∈ Ω•(M). In particular, writing

α = dα0 + α1 + d∗α2

R⋆nK(α) = dnβn,0 + βn,1 + d∗nβn,2,
(1.3)

where α1, βn,1 are harmonic in their respective complexes, it is shown that

lim
n→∞

‖dα0 −W⋆nK (dnβn,0)‖ = 0

lim
n→∞

‖α1 −W⋆nK (βn,1)‖ = 0

lim
n→∞

‖d∗α2 −W⋆nK (d∗nβn,2)‖ = 0.

(1.4)

Similar approximation results appear in [15] for the eigenvectors and eigenvalues of ∆ and
∆n.
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Notice that the above results compare each package of data (C• (?nK) , dn, 〈, 〉n)
to
(
L2Ω•(M), d, 〈, 〉

)
independently and make few claims about combinatorial rela-

tionships between (C• (?mK) , dm, 〈, 〉m) and (C• (?nK) , dn, 〈, 〉n). Because of this,
(C• (?nK) , dn, 〈, 〉n)

∞
n=1 lacks the structure of a Cauchy or convergent sequence that can be

described independently of L2Ω•(M). At a high level, we will use tools from computational
algebraic topology to relate pairs of discrete cochain complexes and Hilbert space methods
to provide an analysis of the relationship.

By studying R⋆nK ,W⋆nK between L2Ω•(M) and C• (?nK), one finds that these maps
fit into larger package of maps forming a deformation retraction due to [16]. Deformation
retractions have been used extensively in computational algebraic topology [26, 18, 43, 45,
11, 17] and have also been studied as a means of transferring algebraic structure in discrete
differential geometry [50]. We will use a particular type of deformation retraction in our
work as a structure that can relate Hodge theory between different cochain complexes in
the sequence (C• (?nK) , dn, 〈, 〉n)

∞
n=1.

We will then analyze their ability to approximate by using Hilbert space methods in-
spired by resolvent convergence and introduced in [39] as a means of assigning an approx-
imation accuracy value to a deformation retraction. By interpreting this approximation
accuracy as a distance, this will allow us to discuss Cauchy and convergent sequences of the
discrete structures (C• (?nK) , dn, 〈, 〉n)

∞
n=1. Furthermore, we will use these tools to prove

that
(
L2Ω• (M) , d, 〈, 〉

)
can be constructed using the sequence (C• (?nK) , dn, 〈, 〉n)

∞
n=1.

1.2 Outline and Notation Conventions

The goal of this thesis is to explain what it means for a sequence of finite dimensional spaces
to approximate Hodge theory on an infinite dimensional space. Moreover, we want to do
this in such a way that elements of the sequence eventually approximate each-other. To
accomplish this, we will use sequences of Hilbert spaces where each is equipped with a self-
adjoint non-negative operator. The Hilbert space will be denoted by H and the self-adjoint
non-negative operator by ∆: H → H. We will write this as a package, (H,∆), and for a
sequence, (Hn,∆n)

∞
n=1, define the properties of being Cauchy and convergent to formalize

the idea of approximation. As a notation convention, in all packages with alphanumeric
subscripts, (Hn,∆n), Hn will be assumed to be finite dimensional. All manifolds considered
will be smooth and without boundary.

The spectrum of ∆, σ (∆), is a subset of [0,∞) which is filtered via the sequence
of subsets (σ (∆) ∩ [0, B])B∈[0,∞). This filtration gives rise to a filtration of H through
eigenspaces of ∆ corresponding to eigenvalues contained in σ (∆)∩ [0, B]. The notion of a
convergent (resp. Cauchy) sequence (Hn,∆n)

∞
n=1 will be such that for any B ∈ [0,∞), the

10



sequence of subsets (σ (∆n) ∩ [0, B])∞n=1 are convergent (resp. Cauchy) in the Hausdorff
metric associated to the Euclidean metric on R. Moreover, we will see how the sequence
of subspaces given by the span of eigenvectors associated to eigenvalues in σ (∆n) ∩ [0, B]

is Cauchy.
In Section 2.1, Definition 2.1.1, we explain the method of measuring similarity between

two packages (H,∆), (H′,∆′) which was introduced and explored by Post in [39]. As an
overview, we say that (H,∆) a δ-retract of (H′,∆′) if there exists an isometry g : H → H′

that relates ∆ and ∆′ with error bounded above by δ ∈ R. We will think of δ as the distance
between (H,∆) and (H′,∆′). Some results of [39] are discussed. Definition 2.1.5 comes
from [39] and explains what it means for a sequence to be convergent, while Definition
2.1.7 is original (though inspired by 2.1.5) and explains what it means for a sequence to
be Cauchy. Example 2.1.13 uses existing literature on Sobolev spaces to demonstrate how
to use the method of δ-retracts to approximate Sobolev spaces of S1. Proposition 2.1.14
is original and serves to narrow the scope of this work by showing that if (Hn,∆n)

∞
n=1

converges to (H,∆), then σ (∆) consists only of eigenvalues of ∆ and there exists an
orthonormal eigenbasis of ∆ for H.

In Section 2.2, we show how the sequence of spectra (σ (∆n))
∞
n=1 associated to a con-

vergent sequence converges. The statement of Theorem 2.2.4 comes from [39] and says
that if (Hn,∆n)

∞
n=1 converges to (H,∆), then the sequence of spectra (σ(∆n))

∞
n=1 limits

to σ(∆) under the Hausdorff metric associated to the distance function

d(x, y) =

∣∣∣∣ 1

x+ 1
− 1

y + 1

∣∣∣∣ . (1.5)

While the statement of this theorem is not original, the proof of it provided in [39] contains
a mistake and so our proof is an original replacement.

In Chapter 3, we tackle the problem of, given a Cauchy sequence (Hn,∆n)
∞
n=1, con-

structing a limit package (H∞,∆∞). This limit is constructed along with isometries
gn : Hn → H∞ which show that (Hn,∆n)

∞
n=1 converges to (H∞,∆∞). We go on to show

that this construction is unique up to an intertwining unitary map. In summary, this shows
that every Cauchy sequence converges. Although inspired by existing work, the results of
this chapter are original.

Section 4.1 consists of material that examines the properties of the sequence of spectra
of a Cauchy sequence. By the preceding chapter, every Cauchy sequence converges and so
we know that the sequence of spectra converges to that of the limit package by Section
2.2. Theorem 4.1.1 is a technical result that is an original correction of a claim made in
[39, 38], where the initial statement and proof contain mistakes. In the remainder of the
section, we make use of Theorem 4.1.1 to repair proofs of ideas contained in [39]. These
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ideas can be summarized as follows

1. Definition 4.1.2 and Theorem 4.1.3 show how multiplicity in the limit spectrum is
approximately observed in the sequence of spectra of the Cauchy sequence.

2. Corollary 4.1.4 shows that for fixed j,

lim
n→∞

λ
(n)
j = λj . (1.6)

Section 4.2 consists of original work that provides a comparison between the eigenvec-
tors of ∆m and ∆n through Proposition 4.2.3. This result explains that when an eigenvector
of ∆m corresponding to λ

(m)
j is mapped to Hn using the isometry from a δ-retract, the

result is close to the eigenspace of λ(n)j where closeness is a function of δ.
In Chapter 5, we upgrade the tools developed thus far for application to the case of

Hilbert complexes, a generalization of cochain complexes into the setting of Hilbert spaces.
To do this, we replace the use of δ-retracts with a package of maps that we call a δ-
deformation retract and whose definition is based on the notion from algebraic topology of
a strong deformation retraction (see [6]).

In Section 5.1, we provide an overview of the existing work on Hilbert complexes using
[8, 5, 22, 12]. For our purposes, we will work with packages of data (H•, d,∆) where
∆ = (d+ d∗)2 and we have the familiar orthogonal Hodge decomposition

H• = im(d)⊕ ker (∆)⊕ im (d∗) . (1.7)

In Section 5.2, Definition 5.2.3 defines a δ-deformation retract from a package(
H′•, d′,∆′) onto (H•, d,∆) and serves as the Hilbert complex analogue of a δ-retract.

This is an original definition but is based on [8, 6, 9, 39]. At a high level, it provides a
collection of maps arranged as follows:

(H•, d,∆) (H′•, d′,∆′)

g

f h

where g relates ∆,∆′ with error bounded above by δ and the maps f, g, h satisfy a collection
of compatibility conditions including fg = 1 and 1 − gf = [d, h]. Proposition 5.2.4 shows
that g witnesses a δ-retract from

(
H′•,∆′) onto (H•,∆) and so a δ-deformation retract

is a generalization of a δ-retract. We use δ-deformation retracts to define the notion of a
Cauchy or convergent sequence (H•

n, dn,∆n)
∞
n=1.

12



Proposition 5.2.8 is original and shows that a Cauchy sequence (H•
n, dn,∆n)

∞
n=1 con-

vergent to some (H•, d,∆) exhibits a spectral gap in the sense that

lim
n→∞

minσ (∆n) \ {0} > 0. (1.8)

The argument for this relies on counting the dimension of eigenspaces and makes use of
the isomorphism on cohomology given by the maps from a δ-deformation retract. For the
remainder of the chapter, we assume (H•

n, dn,∆n)
∞
n=1 is a Cauchy sequence.

In Section 5.3 we use the work of [14] to show how the Hodge decomposition of elements
in (H•

n, dn,∆n) compare to those in (H•
m, dm,∆m).

Section 5.4 consists of original developments that mirror Section 4.2 by showing how,
for m ≤ n, eigenvectors of ∆m are approximately mapped to eigenvectors of ∆n using the
δ-deformation retract and while also approximately respecting the Hodge decomposition.

Section 5.5 exhibits, for a compact Riemannian manifold M , an example of approxi-
mation of L2Ω•(M) equipped with the Hodge Laplacian, ∆. The spaces H•

n are given by
the span of the eigenvectors of ∆ corresponding to the first n eigenvalues. Work in this
section is influenced by similar constructions in [35, 33].

Chapter 5 closes with Section 5.6 which adapts Chapter 3 to the context of Hilbert
complexes and consists solely of original material. We exhibit the construction of a limit
point, (H•

∞, d∞,∆∞), from a Cauchy sequence, (H•
n, dn,∆n)

∞
n=1. We show that ∆∞ =

(d∞ + d∗∞)2 and provide δ-deformation retracts from (H•
∞, d∞,∆∞) to (H•

n, dn,∆n) for
each n.

Chapter 6 is dedicated to the main application of this thesis, showing that the work of
[14, 15] can be described in terms of our framework. In Sections 6.1 and 6.2, we review the
basics of simplicial complexes and introduce a subdivision algorithm for complexes. This
review consists of material from [19, 31, 30, 1].

In Sections 6.3 and 6.4, we review material on triangulations from [49, 16, 1, 14, 15, 23].
We explain how finite simplicial complexes, K, and iterated subdivisions, ?nK, can be used
to model a compact orientable Riemannian manifold, M , by endowing each cochain com-
plex C• (?nK) with an inner product and thus a Hilbert complex structure. Due to the in-
ner product, we obtain a codifferential d∗n and Laplacian ∆n = (dn + d∗n)

2 on C• (?nK). We
show that there exists a δ-deformation retract from

(
L2Ω•(M), d,∆

)
to (C• (?nK) , dn,∆n)

for some δ which uses the maps R⋆nK , W⋆nK described in the previous section (Section
1.1). We also show that, for m < n and some δ, there exists a δ-deformation retract from
(C• (?nK) , dn,∆n) onto (C• (?mK) , dm,∆m). The remainder of the chapter is devoted to
showing that (C• (?nK) , dn,∆n)

∞
n=1 is Cauchy and convergent to

(
L2Ω•(M), d,∆

)
using

these δ-deformation retracts.
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In Section 6.5, we provide background on the results of [14, 15] along with some Corol-
laries (6.5.4 and 6.5.5) whose proofs are original and which are later used to prove our
main application.

Section 6.6 is devoted to the main proof that (C• (?nK) , dn,∆n)
∞
n=1 is Cauchy and

convergent to
(
L2Ω•(M), d,∆

)
. This section consists solely of original material and the

main results are as follows:

1. Theorem 6.6.3 shows that (C• (?nK) , dn,∆n)
∞
n=1 is convergent to

(
L2Ω•(M), d,∆

)
.

2. Corollary 6.6.4 uses Theorem 6.6.3 and some facts about our δ-deformation retracts
to show that (C• (?nK) , dn,∆n)

∞
n=1 is Cauchy.

As a result, we have accomplished the main goal of constructing a framework with
which to directly compare the discrete structure of the cochain complexes (C• (?mK) , dm),
(C• (?nK) , dn) equipped with inner products. The results of this section allow us to use
all the results of Chapter 5 to compare discrete Hodge decompositions and eigenvectors of
the discrete Laplacians ∆m,∆n.

The conclusions of Chapter 6 in the context of Section 5.6 have the interesting corollary
that the sequence (C• (?nK) , dn,∆n)

∞
n=1 uniquely determines

(
L2Ω•(M), d,∆

)
. In other

words, we have shown that the sequence of discretizations contains all of the data necessary
to construct the space L2Ω•(M), its inner product, and the maps d, d∗, ∆.

From this work, the author expects that the following lines of inquiry will be fruitful
to explore for future work:

1. A proof of discreteness of the spectrum of the Laplacian on a compact orientable
Riemannian manifold using a sequence of cochain complexes.

2. The existing literature has struggled to see convergence of the discrete codifferential
d∗n to d∗ on L2Ω•(M) [46, 3]. With the knowledge that (C• (?nK) , dn,∆n)

∞
n=1 con-

tains enough information to construct d∗, it may now be possible to describe this
convergence.

3. Incorporation of the Hodge star operator into our framework. Such developments
would likely rely on several existing works that have defined and discussed results
concerning convergence of the discrete Hodge star operator [50, 47].

4. For a strong deformation retraction (f, g, h) from (H′•, d′) onto (H•, d), we obtain a
Hodge-like decomposition

H′• ∼= im(g)⊕ d′ ker(f)⊕ im(h), (1.9)

14



where we are thinking of im(g) as the Harmonic forms corresponding to the operator
(d + h)2 and h as a codifferential ([43] and Section 4.3 of [35]). The connection
between this idea and the work in this thesis is not fully understood and further
investigation is in order.
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Chapter 2

Delta Retracts and Convergence of
Spectra

2.1 Comparing Systems: Delta Retracts

We begin with the following definition which has been adapted and renamed from Defini-
tions 4.1.1 and 4.2.3 part 2 of [39].

Definition 2.1.1. Consider (H,∆), (H′,∆′). For δ > 0, an isometry g : H → H′ is said
to be a δ-isometry if ∥∥∥(1− gg∗)

(
∆′ + 1

)−1
∥∥∥ ≤ δ∥∥∥(∆′ + 1

)−1
g − g (∆ + 1)−1

∥∥∥ ≤ δ
(2.1)

When such a map exists, (H,∆) is said to be a δ-retract of (H′,∆′).

Recall that g being an isometry is equivalent to g being bounded and such that g∗g = 1

(but g need not be an isomorphism). This property justifies the use of the term “retract”,
where g∗ : H′ → H is a retraction in the topological sense. In addition, note that im(g) ⊆ H′

is a closed subspace of H′ and that 1− gg∗ is the orthogonal projection onto im(g)⊥.

It is instructive to notice that any isometry g : H → H′ is a 2-isometry. To see this,
first notice that by our assumption, ‖g‖ ≤ 1 and due to non-negativity of ∆′, ∆, we have∥∥∥(∆′ + 1)−1

∥∥∥ ≤ 1,
∥∥∥(∆ + 1)−1

∥∥∥ ≤ 1. So,

∥∥∥(1− gg∗)
(
∆′ + 1

)−1
∥∥∥ ≤

∥∥∥(∆′ + 1
)−1
∥∥∥+ ∥∥∥gg∗ (∆′ + 1

)−1
∥∥∥

≤ 2
(2.2)
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and ∥∥∥(∆′ + 1
)−1

g − g (∆ + 1)−1
∥∥∥ ≤

∥∥∥(∆′ + 1
)−1

g
∥∥∥+ ∥∥∥g (∆ + 1)−1

∥∥∥
≤
∥∥∥(∆′ + 1

)−1
∥∥∥+ ∥∥∥(∆ + 1)−1

∥∥∥
≤ 2.

(2.3)

The following comes from Proposition 4.2.4 Part 1 of [39]. The proof has been slightly
expanded upon in the interest of clarity.

Lemma 2.1.2. If (H,∆) is a 0-retract of (H′,∆′) under the 0-isometry g : H → H′, then
g is unitary and intertwines (∆′ + 1)−1 and (∆ + 1)−1.

Proof. First note that because∥∥∥(∆′ + 1
)−1

g − g (∆ + 1)−1
∥∥∥ = 0, (2.4)

we have (∆′ + 1)−1 g = g (∆ + 1)−1. Since ∆′,∆ are self-adjoint, so are (∆′ + 1)−1 , (∆ + 1)−1.
Taking the adjoint of the previous equation, we additionally see that g∗ (∆′ + 1)−1 =

(∆+ 1)−1 g∗.
By definition, g is an isometry and so we need only show that g is surjective. To do

this, decompose
H′ = im(g)⊕ im(g)⊥, (2.5)

where we get this from im(g) being a closed subspace. Now, fix α ∈ im(g)⊥ and compute

0 =
∥∥∥(1− gg∗)

(
∆′ + 1

)−1
α
∥∥∥

=
∥∥∥(∆′ + 1

)−1
(1− gg∗)α

∥∥∥ , as shown above

=
∥∥∥(∆′ + 1

)−1
α
∥∥∥ .

(2.6)

Observe that (∆′ + 1)−1 is an injection because it is an inverse and so the above implies
that α = 0. Thus, im(g)⊥ = 0 and so g is a bijective isometry which means that g is
unitary.

Lemma 2.1.3. Let (H,∆) be a δ-retract of (H′,∆′) witnessed by the δ-isometry g : H →
H′ and let α ∈ dom (∆′). Then,

‖(1− gg∗)α‖ ≤
∥∥(∆′ + 1

)
α
∥∥ δ. (2.7)
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Proof. Observe,

‖(1− gg∗)α‖ =
∥∥∥(1− gg∗)

(
∆′ + 1

)−1 (
∆′ + 1

)
α
∥∥∥

≤
∥∥(∆′ + 1

)
α
∥∥ δ. (2.8)

The following will become useful in later sections.

Lemma 2.1.4. For α ∈ H′,

inf
β∈H

‖α− g (β)‖ = ‖(1− gg∗) (α)‖ . (2.9)

Proof. Note that 1 − gg∗ is the orthogonal projection onto im(g)⊥ and im(g) is a closed
subspace of H since g is an isometry. Apply the Hilbert Projection Theorem (Theorem
15.3 of [51]) to conclude.

The following definition comes from Definition 4.2.6 of [39] with small adaptations in
order to conform with our notation.

Definition 2.1.5. Given (H,∆), a sequence (Hn,∆n)
∞
n=1 is said to converge to (H,∆) if

there exists a sequence (δn)
∞
n=1, δn ≥ 0, such that δn → 0 and (Hn,∆n) is a δn-retract of

(H,∆). We will sometimes refer to (Hn,∆n)
∞
n=1 as an approximation scheme for (H,∆).

For a sequence (Hn,∆n)
∞
n=1 convergent to some (H,∆), we will denote the δ-isometries

gn : Hn → H. To define Cauchy sequences, we need a preliminary definition.

Definition 2.1.6. Given a package (H,∆) and I ⊆ R≥ 0, define the spectral projection
map onto I, P∆,I : H → H, as

P∆,I = Proj ⊕
λ∈σ(∆)∩I

Eλ , (2.10)

where Eλ is the λ-eigenspace of ∆. We will later see, through Proposition 2.1.14, that this
definition matches the spectral projection denoted by 1I in [39] for our use-cases.

Definition 2.1.7. A sequence (Hn,∆n)
∞
n=1 is said to be Cauchy if for every m ≤ n, there

exist isometries gnm : Hm → Hn such that the following hold:

1. For every δ > 0, there exists Nδ ∈ N such that for all n > m ≥ Nδ, gnm is a δ-isometry.

2. For all k ≥ n ≥ m, gkm = gkn ◦ gnm.
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3. For all n,
lim
B→∞

lim
k→∞

∥∥∥P∆k,[B,∞) ◦ gkn
∥∥∥ = 0. (2.11)

The last condition will not be used until Chapter 3, where we will see that it is necessary
for the construction of a space for which a Cauchy sequence is an approximation scheme.
We also see how convergent sequences necessarily exhibit this property.

Example 2.1.8. Let H = `2 (R) equipped with the standard `2 inner product. Let en be
the sequence with nth term equal to 1 and all other terms equal to 0 so that (en)n∈N is an
orthonormal basis for H. Define ∆ on H via ∆ej = jej . Define Hn = span (e1, . . . , en) ⊂ H
with the inner product inherited from H and define ∆n on Hn to be the restriction of ∆.
The operators ∆,∆n are self-adjoint and non-negative. For m < n, let gnm : Hm ↪→ Hn be
the inclusion and for all n, let gn : Hn ↪→ H be the inclusion. By definition, gnm and gn are
isometries for all m,n.

We will show that (Hn,∆n)
∞
n=1 is both Cauchy and convergent to (H,∆). Pursuant

to showing that the sequence is Cauchy, we will show that for m < n, (Hm,∆m) is a δm-
retract of (Hn,∆n) for some δm > 0 independent of n and such that δm → 0 as m → ∞.
This will be conducted by verifying the conditions under Definition 2.1.1. Since the gnm are
inclusions, Equation (2.11) will be automatically satisfied and so we will have shown that
(Hn,∆n)

∞
n=1 is Cauchy under Definition 2.1.7.

To show that (Hn,∆n)
∞
n=1 is convergent to (H,∆), we will show that for each n,

(Hn,∆n) is a δn-retract of (H,∆) for δn such that δn → 0 as n → ∞. This will show
convergence under Definition 2.1.5.

Fix m < n. Since gnm is the inclusion map and ∆m,∆n are obtained from ∆, we have
that ∥∥∥(∆n + 1)−1 gnm − gnm (∆m + 1)−1

∥∥∥ = 0. (2.12)

To verify the other condition, observe that (1− gnmg
n
m

∗) = Projspan(em+1,em+2,...,en) and so
for a generic element of Hn,

∑n
j=1 ajej , we have∥∥∥∥∥∥(1− gnmg

n
m

∗) (∆n + 1)−1
n∑
j=1

ajej

∥∥∥∥∥∥ =

∥∥∥∥∥∥(1− gnmg
n
m

∗)
n∑
j=1

aj
j + 1

ej

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n∑

j=m+1

aj
j + 1

ej

∥∥∥∥∥∥
≤ 1

m+ 2

∥∥∥∥∥∥
n∑
j=1

ajej

∥∥∥∥∥∥ .
(2.13)
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Thus, (Hm,∆m) is a
(

1
m+2

)
-retract of (Hn,∆n) and we see that (Hn,∆n)

∞
n=1 is a Cauchy

sequence. Now to check that (Hn,∆n)
∞
n=1 converges to (H,∆), the same reasoning as the

previous case shows ∥∥∥(∆ + 1)−1 gn − gn (∆n + 1)−1
∥∥∥ = 0. (2.14)

Since (1− gng
∗
n) = Projspan(en+1,en+2,... ),∥∥∥∥∥∥(1− gng

∗
n) (∆ + 1)−1

∞∑
j=1

ajej

∥∥∥∥∥∥ =

∥∥∥∥∥∥(1− gng
∗
n)

∞∑
j=1

aj
j + 1

ej

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∞∑

j=n+1

aj
j + 1

ej

∥∥∥∥∥∥
≤ 1

n+ 2

∥∥∥∥∥∥
∞∑
j=1

ajej

∥∥∥∥∥∥ .
(2.15)

This tells us that (Hn,∆n) is a
(

1
n+2

)
-retract of (H,∆) and thus (Hn,∆n)

∞
n=1 converges

to (H,∆).

Remark 2.1.9. Consider taking ∆ = 0 in Example 2.1.8. In this case, we still have∥∥∥(∆ + 1)−1 gn − gn (∆n + 1)−1
∥∥∥ = 0. (2.16)

However, for each n ∥∥∥(1− gng
∗
n) (∆ + 1)−1 en+1

∥∥∥ = ‖(1− gng
∗
n) en+1‖

= ‖en+1‖

= 1.

(2.17)

Similarly,
∥∥∥(1− gnmg

n
m

∗) (∆ + 1)−1 em+1

∥∥∥ = 1 and so (Hn,∆n)
∞
n=1 is neither Cauchy nor

convergent to (H,∆) under the 1-isometries gn, gnm.

Remark 2.1.10. Suppose that (H1,∆1) , (H2,∆2) are both δ-retracts of some (H,∆) given
by the isometries g1 : H1 → H, g2 : H2 → H. It is not clear that we can use g1 and g2 to
construct an isometry witnessing a δ-retract relationship between (H1,∆1) and (H2,∆2).

Proposition 2.1.11. Suppose (H1,∆1) is a δ1-retract of (H,∆) witnessed by g1 : H1 → H
and (H2,∆2) is a δ2-retract of (H,∆) witnessed by g2 : H2 → H. If im (g1) ⊆ im (g2), then
g21 := g∗2g1 : H1 → H2 is a (δ1 + δ2)-isometry.
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(H,∆)

(H1,∆1) (H2,∆2)

g1

g∗2g1

g2

Figure 2.1: A diagram depicting the set-up of Proposition 2.1.11

Proof. Since im (g1) ⊆ im (g2) and g2g
∗
2 = Projim(g2), we have

g2g
2
1 = Projim(g2)g1 = g1. (2.18)

Thus,
g21

∗
g21 = g∗1g2g

2
1 = g∗1g1 = 1. (2.19)

Since g1, g2 are bounded, we have that g21 is bounded and so g21 is an isometry. Next,∥∥∥(∆2 + 1)−1 g21 − g21 (∆1 + 1)−1
∥∥∥ =

∥∥∥g2 ((∆2 + 1)−1 g21 − g21 (∆1 + 1)−1
)∥∥∥

=
∥∥∥g2 (∆2 + 1)−1 g21 − g1 (∆1 + 1)−1

∥∥∥
≤
∥∥∥g2 (∆2 + 1)−1 g21 − (∆ + 1)−1 g1

∥∥∥
+
∥∥∥(∆ + 1)−1 g1 − g1 (∆1 + 1)−1

∥∥∥
≤
∥∥∥g2 (∆2 + 1)−1 g21 − (∆ + 1)−1 g1

∥∥∥+ δ1

=
∥∥∥(g2 (∆2 + 1)−1 − (∆ + 1)−1 g2

)
g21

∥∥∥+ δ1

≤
∥∥∥g2 (∆2 + 1)−1 − (∆ + 1)−1 g2

∥∥∥+ δ1

≤ δ1 + δ2.

(2.20)

Checking the last condition,∥∥∥(1− g21g
2
1
∗
)
(∆2 + 1)−1

∥∥∥ =
∥∥∥(1− g∗2g1g

∗
1g2) (∆2 + 1)−1

∥∥∥
=
∥∥∥g∗2 (1− g1g

∗
1) g2 (∆2 + 1)−1

∥∥∥
≤
∥∥∥g∗2 (1− g1g

∗
1) (∆ + 1)−1 g2

∥∥∥
+
∥∥∥g∗2 (1− g1g

∗
1)
(
g2 (∆2 + 1)−1 − (∆ + 1)−1 g2

)∥∥∥
≤
∥∥∥g∗2 (1− g1g

∗
1) (∆ + 1)−1 g2

∥∥∥+ δ2

≤ δ1 + δ2.

(2.21)

Thus, (H1,∆1) is a (δ1 + δ2)-retract of (H2,∆2).
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Unfortunately, transitivity of δ-retracts has not yet been established. The closest results
seen in this direction are taken from Proposition 4.2.5 of [39] and Section 2.4 of [41] which
can be paraphrased as follows:

Proposition 2.1.12. Suppose (H1,∆) is a δ1-retract of (H2,∆2) witnessed by g1 : H1 →
H2 and (H2,∆2) is a δ2-retract of (H3,∆3) witnessed by g2 : H2 → H3. Then g31 : g2g1 : H1 →
H3 is a (δ1 + 3δ2)-isometry.

Example 2.1.13. This example makes use of the review of Sobolev spaces and Fourier
series on S1 presented in Chapter 8 of [21].

Consider the Hilbert space L2
(
S1;C

)
where S1 is equipped with the flat Riemannian

metric so that ∆ = − ∂2

∂θ2
. For each k ∈ N, define the Sobolev space

Hk
(
S1
)
= dom

(
∆k
)
. (2.22)

Following Chapter 3.1 of [39], equip Hk
(
S1
)

with the inner product 〈, 〉Hk(S1) defined on
f, g ∈ Hk

(
S1
)

using the inner product 〈, 〉 on L2 via

〈f, g〉Hk(S1) =
〈
(∆ + 1)k f, (∆ + 1)k g

〉
. (2.23)

Since ∆ is self-adjoint, it is closed, and thus each Hk
(
S1
)

is a Hilbert space. Denote the
corresponding norm ‖·‖Hk(S1). These spaces are related under containment like so:

C∞ (S1
)
⊆ · · · ⊆ Hk+1

(
S1
)
⊆ Hk

(
S1
)
⊆ · · · ⊆ L2

(
S1
)
. (2.24)

We know that C∞ (S1;C
)

is dense in L2
(
S1;C

)
and contains an orthonormal eigenbasis

for ∆, namely the functions ϕj : S1 → C for j ∈ Z defined via

ϕj(θ) :=
1

2π
e2πijθ. (2.25)

This implies that, for each k, Hk+1
(
S1
)

is dense in Hk
(
S1
)
. Consequently, the operator

∆
∣∣
Hk(S1)

with dom
(
∆
∣∣
Hk(S1)

)
= Hk+1

(
S1
)

is self-adjoint and so we may consider the

package
(
Hk
(
S1
)
,∆
∣∣
Hk(S1)

)
for each k. We will use the tools developed thus far to

exhibit an approximation scheme for
(
Hk
(
S1
)
,∆
∣∣
Hk(S1)

)
in the same way as Example

2.1.8. The calculation is almost identical: Define

Hk
n = span (ϕ0, ϕ−1, ϕ1, . . . , ϕ−n, ϕn)

∆n,k = ∆
∣∣
Hk

n
,

(2.26)

where Hk
n is equipped with the inner product induced by 〈, 〉Hk(S1). Let gn : Hk

n → Hk
(
S1
)

22



be the inclusion. We will now show that
(
Hk
n,∆n,k

)
is a 1

2πn -retract of
(
Hk
(
S1
)
,∆
∣∣
Hk(S1)

)
.

First, since the metric on Hk
n is induced from Hk(S1), gn is an isometry. Similarly,∥∥∥∥(∆∣∣Hk(S1)

+ 1
)−1

gn − gn (∆n,k + 1)−1

∥∥∥∥
Hk(S1)

= 0. (2.27)

For the final condition, fix α ∈ Hk
(
S1
)

of unit norm, write α =
∑

j∈Z ajϕj for aj ∈ C,
and observe

∥∥∥∥(1− gng
∗
n)
(
∆
∣∣
Hk(S1)

+ 1
)−1

α

∥∥∥∥
Hk(S1)

=

∥∥∥∥∥∥(1− gng
∗
n)
(
∆
∣∣
Hk(S1)

+ 1
)−1∑

j∈Z
ajϕj

∥∥∥∥∥∥
Hk(S1)

=

∥∥∥∥∥∥(1− gng
∗
n)
∑
j∈Z

aj
2πj + 1

ϕj

∥∥∥∥∥∥
Hk(S1)

=

∥∥∥∥∥∥
∑
|j|>n

aj
2πj + 1

ϕj

∥∥∥∥∥∥
Hk(S1)

<
1

2πn

∥∥∥∥∥∥
∑
|j|>n

ajϕj

∥∥∥∥∥∥
Hk(S1)

≤ 1

2πn
.

(2.28)
So,

(
Hk
n,∆n,k

)∞
n=1

converges to
(
Hk
(
S1
)
,∆
∣∣
Hk(S1)

)
. Moreover, for each m ≤ n, im(gm) ⊆

im(gn) and so Proposition 2.1.11 implies that
(
Hk
n,∆n,k

)∞
n=1

satisfies all conditions of being
a Cauchy sequence except for Equation (2.11). Since the gnm are inclusions, Equation (2.11)
will be automatically satisfied and so

(
Hk
n,∆n,k

)∞
n=1

is Cauchy.

Proposition 2.1.14. Let (Hn,∆n)
∞
n=1 be a sequence convergent to (H,∆). Then, (∆ + 1)−1

is a compact operator. Moreover, σ (∆) consists only of eigenvalues of ∆ and there exists
a countable eigenbasis for H.

Proof. If dim (H) is finite, the result is immediate. Assume then that dim (H) = ∞. Since
Hn is finite dimensional, each operator gn (∆n + 1)−1 g∗n has finite dimensional range and
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is thus compact. On the other hand,

lim
n→∞

∥∥∥(∆ + 1)−1 − gn (∆n + 1)−1 g∗n

∥∥∥
≤ lim

n→∞

∥∥∥(1− gng
∗
n) (∆ + 1)−1

∥∥∥+ ∥∥∥gn (g∗n (∆ + 1)−1 − (∆n + 1)−1 g∗n

)∥∥∥
= lim

n→∞

∥∥∥(1− gng
∗
n) (∆ + 1)−1

∥∥∥+ ∥∥∥gn (∆n + 1)−1 − (∆ + 1)−1 gn

∥∥∥ ,
since (∆ + 1)−1 is self-adjoint

= 0.

(2.29)

We then have that
(
gn (∆n + 1)−1 g∗n

)∞
n=1

is a sequence of compact operators convergent
to (∆ + 1)−1. This is equivalent to compactness of (∆ + 1)−1 by Theorem 1.3.25 of [13].
Theorem 11.3.13 of [13] shows that compactness of (∆ + 1)−1 is equivalent to emptiness of
the essential spectrum of ∆ as well as the existence of a countable eigenbasis for H.

Proposition 2.1.14 represents an important bound on the scope of this work. Namely,
we will only be concerned with operators ∆ such that σ(∆) consists of only the eigenvalues
of ∆.

2.2 Convergence of the Spectra of a Convergent Sequence

We want to say something about convergence of spectra for a convergent sequence. In
later sections, we will look at convergence of the spectra of a Cauchy sequence. In order to
state such a result, we need to explain how to compare the spectra. Define R+ := [0,∞)

and R+ := [0,∞]. We will review and then use the weighted distance on R+ defined in
Section 4.3 of [39] to perform this comparison. Since all operators are self-adjoint and
non-negative, we have that σ (∆n) ⊆ R+. Define

ϕ : R+ → [0, 1] (2.30)

via

ϕ (λ) =

 1
λ+1 if λ <∞,

0 if λ = ∞,
(2.31)

and notice that ϕ is a homeomorphism. Define a distance function on R+ via

d(x, y) = |ϕ(x)− ϕ(y)| . (2.32)
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Observe that R+ equipped with d is a complete compact metric space. From now on, we
will assume the metric topology induced by d.

The following is a rewording of the definitions presented in Appendix A.1 of [39].

Definition 2.2.1. Given a ∈ R+ and B ⊆ R+, define

d (a,B) = inf
b∈B

d(a, b). (2.33)

As a convention, we will say that for B = ∅, d (a,B) = 1. The Hausdorff Distance between
two subsets A,B ⊆ R+ is given by

d(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
= max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
.

(2.34)

We will use this Hausdorff distance to compare the spectra σ(∆n).

Proposition 2.2.2 (Proposition A.1.6 [39]). Let (An)∞n=1 be a sequence of compact subsets
An ⊆ R+ and let B ⊆ R+ be compact. Then, An → B in the Hausdorff distance is
equivalent to satisfaction of both of the following:

• An ↘ B: For λ /∈ B, there exists ε > 0, N ∈ N so that for each n ≥ N , Bε(λ)∩An = ∅.

• An ↗ B: For λ ∈ B and ε > 0, there exists N ∈ N so that for each n ≥ N ,
Bε(λ) ∩An 6= ∅.

Let I ⊆ R+ and define
∂+I := I ∩ R+ \ I. (2.35)

As an instructive example, for I = [0, L), ∂+I = {L}.
We recall a crucial result, Theorem A.7 of [38], rephrased to conform with our notation.

See Theorem A.0.1 in Appendix A for details.

Theorem 2.2.3. Let ψ : R+ → R be continuous and let ε > 0. Then, there exists δψ,ε > 0

such that for all δ ≤ δψ,ε and (H,∆), a δ-retract of (H′,∆′) with δ-isometry g : H → H′,

∥∥ψ (∆′) g − gψ (∆)
∥∥ < ε. (2.36)

The following Theorem is a special case of Theorem 4.3.3 in [39]. During the preparation
of this thesis, we discovered a mistake in the proof written in [39] and so the proof provided
below is original. In writing this proof, we took inspiration from Section 1.3 of [40], Section
4.3 of [39], as well as Appendix A in [38].
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Theorem 2.2.4. Suppose (Hn,∆n)
∞
n=1 converges to (H,∆). Then,

d
(
σ (∆n) , σ (∆)

)
→ 0, (2.37)

where σ (∆) is the closure in the topology induced by d.

Proof. Apply Proposition 2.1.14 to see that σ (∆) is countable and possesses no finite
accumulation points. One consequence of this is that σ (∆) either coincides with σ (∆)

or is equal to σ (∆) ∪ {∞}. We will use Proposition 2.2.2 to determine convergence and
will deal with the points of σ (∆) separately from the case of ∞ ∈ σ (∆). Let λ ∈ σ (∆).
We want to show that for all ε > 0, there exists N large enough such that for n ≥ N ,
Bε(λ) ∩ σ (∆n) 6= ∅. We know that L := d (λ, σ (∆) \ {λ}) > 0. Let η = min (ε, L) and
construct continuous χλ : R+ → [0, 1] such that χλ(λ) = 1 and supp (χλ) ⊆ Bη(λ). This
can be done via a piecewise linear function, for example see Figure 2.2.

λ

(λ, 1)

Figure 2.2: A depiction of the graph of a piecewise linear implementation of χλ where
we can see χλ(λ) = 1 and supp (χλ) ⊆ Bη(λ). The bold region represents a closed set
containing σ (∆) \ {λ}.

Consequently, im
(
χλ
∣∣
σ(∆)

)
⊆ {0, 1}. Apply Theorem 2.2.3 and take N large enough

so that for n ≥ N , (Hn,∆n) is a δ-retract of (H,∆) for δ > 0 small enough that

‖χλ (∆) gn − gnχλ (∆n)‖ <
1

2
(2.38)

and also
δ ≤ 1

2 (λ+ 1)
. (2.39)

Let β ∈ H be a unit eigenvector of ∆ corresponding to λ. Then, χλ (∆) (β) = β by
definition, and so

1

2
> ‖(g∗nχλ (∆)− χλ (∆n) g

∗
n) (β)‖

= ‖(1− χλ (∆n)) g
∗
n (β)‖ .

(2.40)
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On the other hand, by the definition of a δ-retract, we have

‖g∗n(β)‖ ≥ ‖β‖ − ‖β − gng
∗
n(β)‖

= 1− ‖(1− gng
∗
n) (β)‖

= 1− (λ+ 1)
∥∥∥(1− gng

∗
n) (∆ + 1)−1 (β)

∥∥∥
≥ 1− (λ+ 1) δ

≥ 1

2
,

(2.41)

where the last inequality comes from our assumptions on δ. Assume, towards a contradic-
tion, that χλ (∆n) g

∗
n (β) = 0. Then equations (2.40) and (2.41) together tell us

1

2
≤ ‖g∗n(β)‖ <

1

2
, (2.42)

a contradiction. This means that χλ (∆n) is a non-zero operator and, by definition of χλ
and spectral calculus, it means that

∅ 6= σ (∆n) ∩ supp (χλ) ⊆ σ (∆n) ∩Bη (λ) ⊆ σ (∆n) ∩Bε (λ) . (2.43)

Now suppose that ∞ ∈ σ (∆). Then, ∞ must be an accumulation point of σ (∆) and
so for every ε > 0, we can find λ ∈ σ (∆) ∩ B ε

2
(∞). Apply the above argument to obtain

N ∈ N such that for all n ≥ N , there exists λ(n) ∈ σ (∆n) ∩ B ε
2
(λ). By the triangle

inequality, λ(n) ∈ Bε(∞) and so Bε(∞) ∩ σ (∆n) 6= ∅.
Now fix λ /∈ σ (∆) (note that in this case we allow for λ = ∞). We want to show

that there exists ε > 0 and N large enough such that for all n ≥ N , σ (∆n) ∩ Bε(λ) = ∅.
Using the fact that σ (∆) is closed, let L := d

(
λ, σ (∆)

)
> 0. Construct continuous

χλ : R+ → [0, 1] such that χλ
∣∣
BL

4
(λ)

= 1 and supp (χλ) ⊆ BL
2
(λ). As in the previous

argument, this be done via a piecewise linear function, for example see Figure 2.3.

λ

Figure 2.3: A depiction of the graph of a piecewise linear implementation of χλ. We can
see that χλ = 1 on BL

4
(λ) and supp (χλ) ⊆ BL

2
(λ). The bold region represents a closed

set containing σ (∆).

Then, apply Theorem 2.2.3 and take N large enough so that for n ≥ N , (Hn,∆n) is a
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δ-retract of (H,∆) for δ small enough that

‖χλ (∆) gn − gnχλ (∆n)‖ <
1

2
. (2.44)

By definition of χλ, χλ (∆) = 0 and since gn is an isometry, we have

‖χλ (∆n)‖ <
1

2
. (2.45)

In particular, if we had α ∈ Hn of unit norm corresponding to an eigenvalue of ∆n lying
in BL

4
(λ), then

‖χλ (∆n) (α)‖ = ‖α‖ = 1, (2.46)

a contradiction. So, Bε(λ) ∩ σ (∆n) = ∅ for ε = L
4 and for all n ≥ N .
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Chapter 3

Constructing the Limit of a
Cauchy Sequence

In this chapter, we describe how a Cauchy sequence, (Hn,∆n)
∞
n=1, can be used to construct

(H∞,∆∞) such that (Hn,∆n)
∞
n=1 is convergent to (H∞,∆∞). To the authors knowledge,

no previous developments have been made to accomplish this. A somewhat similar con-
struction was performed in [42] for convergent sequences (Hn,∆n)

∞
n=1 → (H∞,∆∞) to

construct a parent Hilbert space H along with injections ιn : Hn → H for n ∈ N. However,
no such results were used in the writing of this chapter.

3.1 Convergence Implies Cauchy

We begin with a preliminary discussion of Equation (2.11) in the definition of a Cauchy
sequence. Equation (2.11) may be thought of intuitively as follows: For an element α ∈ Hn,
the eigenvectors of ∆k appearing in gkn (α) correspond to eigenvalues which are eventually
concentrated in some bounded interval of R.

Example 3.1.1. For each n, let Hn = R with inner product given by multiplication and
let ∆n(1) = n. Let gnm : Hm → Hn be the identity map, which is an isometry. Then,∥∥∥(∆n + 1)−1 gnm − gnm (∆m + 1)−1

∥∥∥ ≤ 1

n+ 1
+

1

m+ 1
,∥∥∥(1− gnmg

n
m

∗) (∆n + 1)−1
∥∥∥ ≤ 1

n+ 1
,

(3.1)

and so (Hn,∆n)
∞
n=1 is a Cauchy sequence. On the other hand, for each n ∈ N and B ∈ R,
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g
⌈B⌉
n (1) = 1 is an eigenvector for ∆⌈B⌉ corresponding to the eigenvalue dBe and so

lim
k→∞

∥∥∥P[B,∞)g
k
n(1)

∥∥∥ = gkn(1). (3.2)

Thus, Equation (2.11) does not hold.

Proposition 3.1.2. If (Hn,∆n)
∞
n=1 converges to some (H,∆) for which the δ-isometries

gn : Hn → H are such that gn ◦ gnm = gm for m ≤ n, then Equation (2.11) is satisfied.

Proof. By assumption, Hn is finite dimensional and so for fixed n,

lim
B→∞

lim
k→∞

∥∥∥P[B,∞) ◦ gkn
∥∥∥ = 0 (3.3)

is equivalent to
lim
B→∞

lim
k→∞

∥∥∥P[B,∞)

(
gkn(α)

)∥∥∥ = 0 (3.4)

for each α ∈ Hn. Towards a contradiction, suppose that for some n ∈ N, α ∈ Hn of unit
norm, there exists C > 0, arbitrarily large B′ ∈ R, and arbitrarily large k′ ∈ N for each B′

such that ∥∥∥P[B′,∞)

(
gk

′
n (α)

)∥∥∥ ≥ C. (3.5)

Proposition 2.1.14 implies that H possesses a countable eigenbasis for ∆. Thus, we may
fix B > 0 large enough to ensure that

∥∥P[B,∞) (gn(α))
∥∥ < C2

4
. (3.6)

The main idea of the argument to follow is to show that gk′ maps enough of P[B′,∞)

(
gk

′
n (α)

)
into P[0,B) (H) to contradict convergence of (Hn,∆n)

∞
n=1.

By assumption, we may take B′ ∈ R, k′ ∈ N large enough so that

1.
∥∥∥P[B′,∞)

(
gk

′
n (α)

)∥∥∥ ≥ C.

2. 1
B′+1 <

C2

8(B+1) .

3. (Hk′ ,∆k′) is a δ-retract of (H,∆) for δ < C2

8(B+1) .

Define
β<B′ := P[0,B′)g

k′
n (α),

β≥B′ := P[B′,∞)g
k′
n (α),

(3.7)

so that gk′n (α) = β<B′ + β≥B′ is an orthogonal decomposition and so ‖β<B′‖ , ‖β≥B′‖ ≤
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‖α‖ = 1. Observe that assumption number 1. above can be written as ‖β≥B′‖ ≥ C. Then,∥∥∥(∆ + 1)−1 gk′ (β≥B′)
∥∥∥ ≤

∥∥∥((∆ + 1)−1 gk′ − gk′ (∆k′ + 1)−1
)
(β≥B′)

∥∥∥
+
∥∥∥gk′ (∆k′ + 1)−1 (β≥B′)

∥∥∥
≤ δ +

∥∥∥gk′ (∆k′ + 1)−1 (β≥B′)
∥∥∥ ,

(3.8)

by assumption number 3. By definition, we have
∥∥∥∥(∆k′ + 1)−1

∣∣∣
P[B′,∞)Hk′

∥∥∥∥ ≤ 1
B′+1 and so

∥∥∥(∆k′ + 1)−1 (β≥B′)
∥∥∥ ≤ 1

B′ + 1
. (3.9)

Continuing our work above, we obtain∥∥∥(∆ + 1)−1 gk′ (β≥B′)
∥∥∥ ≤ δ +

1

B′ + 1

<
C2

4 (B + 1)
.

(3.10)

So, ∥∥P[0,B)gk′ (β≥B′)
∥∥ ≤ (B + 1)

∥∥∥(∆ + 1)−1 P[0,B)gk′ (β≥B′)
∥∥∥

≤ (B + 1)
∥∥∥(∆ + 1)−1 gk′ (β≥B′)

∥∥∥
<
C2

4
.

(3.11)

So,

1− C2

4
< ‖gn(α)‖ −

∥∥P[B,∞)gn(α)
∥∥

≤
∥∥P[0,B)gn(α)

∥∥
=
∥∥∥P[0,B)gk′

(
gk

′
n (α)

)∥∥∥
≤
∥∥P[0,B)gk′ (β<B′)

∥∥+ ∥∥P[0,B)gk′ (β≥B′)
∥∥

< ‖β<B′‖+ C2

4
,

(3.12)
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and thus,
1 = ‖α‖2

= ‖β<B′‖2 + ‖β≥B′‖2

>

(
1− C2

2

)2

+ C2

= 1− C2 +
C4

4
+ C2

= 1 +
C4

4
.

(3.13)

A contradiction.

Proposition 3.1.3. Suppose (Hn,∆n)
∞
n=1 is a sequence convergent to (H,∆) such that

for m < n, im (gm) ⊆ im (gn). Then, (Hn,∆n)
∞
n=1 is Cauchy and isometries witnessing this

are given by gnm = g∗n ◦ gm.

Proof. This is an immediate Corollary of Propositions 2.1.11 and 3.1.2.

3.2 Construction of the Hilbert Space

Let

H̃∞ =

{
(αn)

∞
n=1 ∈

∞∏
n=1

Hn : lim
m→∞

sup
n≥m

‖αn − gnm (αm)‖ = 0

}
(3.14)

and define a vector space structure via

c (αn)
∞
n=1 = (cαn)

∞
n=1 (c ∈ R) ,

(αn)
∞
n=1 + (βn)

∞
n=1 = (αn + βn)

∞
n=1 ,

(3.15)

where (cαn)
∞
n=1 ∈ H̃∞ because

lim
m→∞

sup
n≥m

‖cαn − gnm (cαm)‖ = |c| lim
m→∞

sup
n≥m

‖αn − gnm (αm)‖

= 0

(3.16)

and (αn + βn)
∞
n=1 ∈ H̃∞ because

lim
m→∞

sup
n≥m

‖αn + βn − gnm (αm + βm)‖ ≤ lim
m→∞

sup
n≥m

‖αn − gnm (αm)‖+ lim
m→∞

sup
n≥m

‖βn − gnm (βm)‖

= 0.

(3.17)
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Lemma 3.2.1. The map 〈, 〉 : H̃×2
∞ → R given by

〈(αn)∞n=1 , (βn)
∞
n=1〉 = lim

n→∞
〈αn, βn〉 (3.18)

is well-defined, symmetric, and bi-linear. Moreover, the induced semi-norm

‖(αn)∞n=1‖ =
√
〈(αn)∞n=1 , (αn)

∞
n=1〉 (3.19)

is equal to limn→∞ ‖αn‖.

Proof. First,

lim
m→∞

sup
n≥m

|‖αn‖ − ‖αm‖| ≤ lim
m→∞

sup
n≥m

‖αn − gnm (αm)‖ = 0, (3.20)

which implies (‖αn‖)∞n=1 is Cauchy and so limn→∞ ‖αn‖ exists. Non-negativity is immedi-
ate. Moreover,

‖(αn)∞n=1‖ =
√

lim
n→∞

〈αn, αn〉

=

√
lim
n→∞

‖αn‖2

= lim
n→∞

‖αn‖ , by continuity.

(3.21)

To see that 〈, 〉 is well-defined, we will show that the sequence (〈αn, βn〉)∞n=1 is Cauchy.
Fix ε > 0 and take k large enough that for ` ≥ k,∥∥∥αℓ − gℓk (αk)

∥∥∥ < min
(
1,

ε

4 (‖(βn)∞n=1‖+ 1)

)
,∥∥∥βℓ − gℓk (βk)

∥∥∥ < min
(
1,

ε

4 (‖(αn)∞n=1‖+ 1)

)
.

(3.22)

Observe that the above bounds imply

|‖αk‖ − ‖(αn)∞n=1‖| = lim
n→∞

|‖αk‖ − ‖αn‖|

≤ lim
n→∞

‖gnk (αk)− αn‖

< 1.

(3.23)
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Likewise, |‖βk‖ − ‖(βn)∞n=1‖| < 1. Now observe,

|〈αℓ, βℓ〉 − 〈αk, βk〉| =
∣∣∣〈gℓk (αk)− (gℓk (αk)− αℓ

)
, gℓk (βk)−

(
gℓk (βk)− βℓ

)〉
− 〈αk, βk〉

∣∣∣
≤
∣∣∣〈(gℓk (αk)− αℓ

)
, gℓk (βk)

〉∣∣∣+ ∣∣∣〈gℓk (αk) ,(gℓk (βk)− βℓ

)〉∣∣∣
+
∣∣∣〈(gℓk (αk)− αℓ

)
,
(
gℓk (βk)− βℓ

)〉∣∣∣
≤
∥∥∥gℓk (αk)− αℓ

∥∥∥ ‖βk‖+ ∥∥∥gℓk (βk)− βℓ

∥∥∥ ‖αk‖+ ∥∥∥gℓk (αk)− αℓ

∥∥∥ ∥∥∥gℓk (βk)− βℓ

∥∥∥
<

ε

4 (‖(βn)∞n=1‖+ 1)
(‖(βn)∞n=1‖+ 1) +

ε

4 (‖(αn)∞n=1‖+ 1)
(‖(αn)∞n=1‖+ 1)

+
ε

4

< ε.

(3.24)
So, (〈αn, βn〉)∞n=1 is Cauchy and thus convergent. Since the inner product on each Hn is
bi-linear, so is 〈, 〉.

Define
K =

{
(αn)

∞
n=1 ∈ H̃∞ : ‖(αn)∞n=1‖ = 0

}
, (3.25)

a subspace of H̃∞. Define the quotient vector space

H∞ = H̃∞/K. (3.26)

Let π : H̃∞ → H∞ be the quotient map. By the construction, 〈, 〉 descends to an inner
product 〈, 〉H∞

on H∞ where 〈π(−), π(−)〉H∞
= 〈, 〉. For the purpose of notation, we will

use 〈, 〉 to denote 〈, 〉H∞
and when referring to H∞, we will always assume the inner product

space
(
H∞, 〈, 〉H∞

)
.

Lemma 3.2.2. H∞ is a Hilbert space.

Proof. We need to show that H∞ is complete. We will show this by fixing a Cauchy
sequence, performing a diagonalization type construction to construct a limit point, and
showing that said limit point is in H∞.

Let
(
αℓ
)∞
ℓ=1

be a Cauchy sequence of elements in H∞. For each `, pick a representative(
αℓk
)∞
k=1

∈ π−1
(
αℓ
)
⊆ H̃∞. For each n ∈ N, let `n be such that `n > `n−1 (for n > 1) and

appeal to
(
αℓ
)∞
ℓ=1

being Cauchy to guarantee that for all t ≥ `n,

∥∥∥(αℓnk )∞
k=1

−
(
αtk
)∞
k=1

∥∥∥ =
∥∥∥αℓn − αt

∥∥∥ < 1

2n
. (3.27)
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So, for all m < n, we know that∥∥∥(αℓnk )∞
k=1

−
(
αℓmk

)∞
k=1

∥∥∥ < 1

2m
. (3.28)

By the definition of ‖·‖ on H̃∞, this equation means that we can find arbitrarily large k
such that ∥∥∥αℓnk − αℓmk

∥∥∥ < 1

2m
. (3.29)

On the other hand, the definition of H̃∞ implies that we can find arbitrarily large k such
that for t ≥ k, ∥∥∥αℓnt − gkkn

(
αℓnk

)∥∥∥ < 1

2n
. (3.30)

So, let kn be large enough that kn > kn−1 (for n > 1) and both of the following hold:

1. For m ≤ n,
∥∥∥αℓmkn − αℓnkn

∥∥∥ < 1
2m .

2. For k ≥ kn,
∥∥∥αℓnk − gkkn

(
αℓnkn

)∥∥∥ < 1
2n .

Since the kn’s form an increasing sequence, we have that for every k ≥ k1, k lies in [kn, kn+1)

for some n. For each k ≥ 1, define

βk =


0 if k < k1,

αℓnkn if k = kn,

gkkn

(
αℓnkn

)
if k ∈ [kn, kn+1).

(3.31)

We want to show that (βk)
∞
k=1 ∈ H̃∞ and that

(
αℓ
)∞
ℓ=1

→ π ((βk)
∞
k=1). Pursuant to the

first goal, fix ε > 0, let M be large enough that 1
M < ε, and fix m > kM . Fix n ≥ m. We

will show that
‖βn − gnm (βm)‖ < ε. (3.32)
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Let n′,m′ be such that n ∈ [kn′ , kn′+1), m ∈ [km′ , km′+1). Note that n′ ≥ m′ ≥M . Then,

‖βn − gnm (βm)‖ =
∥∥∥gnkn′

(
α
ℓn′
kn′

)
− gnm

(
gmkm′

(
α
ℓm′
km′

))∥∥∥
=
∥∥∥gnkn′

(
α
ℓn′
kn′

− g
kn′
m

(
gmkm′

(
α
ℓm′
km′

)))∥∥∥
=
∥∥∥αℓn′

kn′
− g

kn′
km′

(
α
ℓm′
km′

)∥∥∥
≤
∥∥∥αℓn′

kn′
− α

ℓm′
kn′

∥∥∥+ ∥∥∥αℓm′
kn′

− g
kn′
km′

(
α
ℓm′
km′

)∥∥∥
<

1

m′

≤ 1

M

< ε.

(3.33)

So, limm→∞ supn≥m ‖βn − gnm (βm)‖ = 0 and thus (βk)
∞
k=1 ∈ H̃∞. Next we want to show

that
(
αℓ
)∞
ℓ=1

converges to π ((βk)∞k=1) which means showing

0 = lim
ℓ→∞

∥∥∥αℓ − π ((βk)
∞
k=1)

∥∥∥ = lim
ℓ→∞

lim
k→∞

∥∥∥αℓk − βk

∥∥∥ . (3.34)

We will accomplish this by showing that the sub-sequence
(
αℓn
)∞
n=1

is convergent to
π ((βk)

∞
k=1). Since

(
αℓ
)∞
ℓ=1

is Cauchy, this is sufficient to show convergence to π ((βk)∞k=1).
Fix n ∈ N. Let k ≥ kn and let n′ ∈ N be such that k ∈ [kn′ , kn′+1). Notice that n′ ≥ n.

Then,∥∥∥αℓnk − βk

∥∥∥ =
∥∥∥αℓnk − gkkn′

(
α
ℓn′
kn′

)∥∥∥
≤
∥∥∥αℓnk − gkkn

(
αℓnkn

)∥∥∥+ ∥∥∥gkn′
kn

(
αℓnkn

)
− αℓnkn′

∥∥∥+ ∥∥∥αℓnkn′
− α

ℓn′
kn′

∥∥∥
<

3

2n
.

(3.35)

This shows that
lim
n→∞

∥∥∥(αℓnk )∞
k=1

− (βk)
∞
k=1

∥∥∥ ≤ lim
n→∞

3

2n
= 0. (3.36)

So, the sub-sequence
((
αℓnk

)∞
k=1

)∞
n=1

is convergent to (βk)
∞
k=1 and we are done.

The construction of H∞ is only useful if, for all n, there exists an injection gn : Hn →
H∞ which is an isometry. On top of this, we will want that gn is a δn-isometry for δn → 0.
The following Lemma addresses the first requirement:
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Lemma 3.2.3. For each n ∈ N, define g̃n : Hn → H̃∞ on α ∈ Hn as follows:

(g̃n(α))k =

0 if k < n,

gkn(α) if k ≥ n.
(3.37)

Define gn := π ◦ g̃n. Then, the following are true:

1. gn is an isometry.

2. for m ≤ n, gm = gn ◦ gnm.

3. The sequence (im (gn))
∞
n=1 is a filtration.

4.
⋃
n∈N im (gn) ⊆ H∞ is dense.

Proof. We must first show that, given α ∈ Hn, g̃n (α) =
(
gkn(α)

)∞
k=1

defines an element in
H̃∞. To see this, observe that

lim
k→∞

sup
ℓ≥k

∥∥∥gℓn(α)− gℓk

(
gkn(α)

)∥∥∥ = lim
k→∞

sup
ℓ≥k

∥∥∥gℓn(α)− gℓn(α)
∥∥∥ = 0. (3.38)

So, g̃n(α) ∈ H̃∞. To verify that gn is an isometry, consider α, β ∈ Hn,

〈gn(α), gn(β)〉 = 〈g̃n(α), g̃n(β)〉

= lim
k→∞

〈
gkn (α) , g

k
n (β)

〉
= 〈α, β〉 .

(3.39)

This shows that each gn is an isometry. Since gkm = gkn ◦ gnm, we have gm = gn ◦ gnm which
proves that im (gm) ⊆ im (gn) and so the sequence (im (gn))

∞
n=1 is a filtration.

To see the final claim, let α ∈ H∞, fix (αn)
∞
n=1 ∈ π−1(α), and consider the sequence

(gn (αn))
∞
n=1. We aim to show that (gn (αn))

∞
n=1 converges to α. Fix ε > 0 and take n

large enough that for all k > n,
∥∥αk − gkn (αn)

∥∥ < ε. Then,

‖α− gn (αn)‖ = lim
k→∞

‖(αn)∞n=1 − g̃n(α)‖

= lim
k→∞

∥∥∥αk − gkn (αn)
∥∥∥

< ε.

(3.40)

Thus,
⋃
n∈N im (gn) = H∞ and we are done.
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3.3 Construction of the Self-Adjoint Operator

With the previous section, we have shown that H∞ is a separable Hilbert space equipped
with isometries gn : Hn → H∞. To complete the construction of a limiting package,
we need to define a self-adjoint non-negative operator ∆∞ : H∞ → H∞ so that each
gn : (Hn,∆n)

∞
n=1 → (H∞,∆∞) is a δn-isometry for each n and such that δn → 0. By

Proposition 2.1.14, the spectrum σ (∆∞) will consist of countably many eigenvalues with
no finite accumulation points. An additional consideration is that σ (∆∞) could be un-
bounded and so ∆∞ will be defined only on a dense subspace of H∞. The way we deal
with this is through the construction of an operator G∞ on H∞ using the sequence of
operators Gn := (∆n + 1)−1 for each n ∈ N. We will see that G∞ is bounded, everywhere
defined, self-adjoint, invertible, im (G∞) is dense, and then define ∆∞ on im (G∞) such
that G∞ = (∆∞ + 1)−1. We will then argue that ∆∞ is self-adjoint, non-negative, and
such that the isometries gn are δn-isometries for δn → 0 as n→ ∞.

Lemma 3.3.1. The map G̃∞ : H̃∞ → H̃∞ defined via

(αn)
∞
n=1 7→ (Gn (αn))

∞
n=1 (3.41)

is well-defined. Moreover, G̃∞ induces a bounded (equiv. continuous) map G∞ : H∞ →
H∞ such that G∞ ◦ π = π ◦ G̃∞.

Proof. We must first show that for all (αn)∞n=1 ∈ H̃∞, (Gn (αn))∞n=1 ∈ H̃∞. Fix ε > 0 and
let m be large enough such that for all n ≥ m, ‖αn − gnm (αm)‖ < ε

2 and (Hm,∆m) is an
ε
2 -retract of (Hn,∆n). Then,

‖Gn (αn)− gnm (Gm (αm))‖ =
∥∥∥(∆n + 1)−1 (αn)− gnm

(
(∆m + 1)−1 (αm)

)∥∥∥
≤
∥∥∥(∆n + 1)−1 gnm (αm)− gnm

(
(∆m + 1)−1 (αm)

)∥∥∥
+
∥∥∥(∆n + 1)−1 gnm (αm)− (∆n + 1)−1 (αn)

∥∥∥
<
ε

2
+ ‖gnm (αm)− αn‖

< ε.

(3.42)

So, G̃∞ ((αn)
∞
n=1) = (Gn (αn))

∞
n=1 ∈ H̃∞. Let (αn)

∞
n=1 ∈ H̃∞ and observe:∥∥∥G̃∞ ((αn)

∞
n=1)

∥∥∥ = lim
n→∞

‖Gn (αn)‖

≤ lim
n→∞

‖αn‖

= ‖(αn)∞n=1‖ .

(3.43)
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In particular, if (αn)∞n=1 ∈ K, then
∥∥∥G̃∞ ((αn)

∞
n=1)

∥∥∥ = 0 and so G̃∞ ((αn)
∞
n=1) ∈ K. Thus,

G̃∞ induces a map G∞ : H∞ → H∞ such that G∞◦π = π◦G̃∞. Moreover, we immediately
see that G∞ is bounded: For (αn)

∞
n=1 ∈ H̃∞,

‖G∞ (π ((αn)
∞
n=1))‖ =

∥∥∥G̃∞ ((αn)
∞
n=1)

∥∥∥ ≤ ‖(αn)∞n=1‖ . (3.44)

The next Lemma shows that G∞ is injective, which is crucial for our construction of
∆∞, and uses Equation (2.11) in the proof. This is the only place in our construction that
requires satisfaction of Equation (2.11).

Lemma 3.3.2. G∞ is injective.

Proof. G∞ is injective if and only if G̃−1
∞ (K) ⊆ K. So, let (αn)

∞
n=1 ∈ H̃∞ and suppose

G̃∞ ((αn)
∞
n=1) ∈ K. Then,

lim
n→∞

‖Gn(αn)‖ = 0. (3.45)

We will show that (αk)
∞
k=1 ∈ K by showing that ‖(αk)∞k=1‖ = 0. Fix ε > 0 and take m

large enough such that for all n ≥ m,

‖αn − gnm(αm)‖ <
ε

2
. (3.46)

Let B > 0 large enough so that, by Equation (2.11),

lim
n→∞

∥∥P[B,∞)g
n
m (αm)

∥∥ < ε

2
. (3.47)

Now,

‖(αk)∞k=1‖ = lim
n→∞

‖αn‖

≤ lim
n→∞

∥∥P[0,B) (αn)
∥∥+ ∥∥P[B,∞) (αn)

∥∥
≤ lim

n→∞

∥∥P[0,B) (αn)
∥∥+ ∥∥P[B,∞) (αn − gnm (αm))

∥∥+ ∥∥P[B,∞) (g
n
m (αm))

∥∥
≤ lim

n→∞

∥∥P[0,B) (αn)
∥∥+ ‖αn − gnm (αm)‖+

∥∥P[B,∞) (g
n
m (αm))

∥∥
< lim

n→∞

∥∥P[0,B) (αn)
∥∥+ ε

<
(
(B + 1) lim

n→∞

∥∥GnP[0,B)(αn)
∥∥)+ ε

≤
(
(B + 1) lim

n→∞
‖Gn(αn)‖

)
+ ε

= ε.

(3.48)
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We have shown that ‖(αk)∞k=1‖ < ε for all ε > 0 and so ‖(αk)∞k=1‖ = 0. Thus, G∞ is
injective.

Since (Hn,∆n)
∞
n=1 is Cauchy, we can take δn > 0 for each n ∈ N to be such that

(Hn,∆n) is a δn-retract of (Hk,∆k) for each k ≥ n and such that limn→∞ δn = 0.

Lemma 3.3.3.
‖(1− gng

∗
n)G∞‖ ≤ δn,

‖gnGn −G∞gn‖ ≤ δn.
(3.49)

Proof. Lemma 3.2.3 shows that each gn is an isometry which implies continuity of gn
and g∗n. On the other hand, G∞ is continuous by Lemma 3.3.1 and so (1− gng

∗
n)G∞ is

continuous. Lemma 3.2.3 also tells us that
⋃
n∈N im (gn) ⊆ H̃∞ is dense and so it suffices

to check each norm on unit norm elements of the form gm (β) for β ∈ Hm. For such β,

‖(1− gng
∗
n)G∞gm (β)‖ = inf

α∈Hn

‖G∞ (gm(β))− gn(α)‖ , by Lemma 2.1.4

≤ ‖G∞ (gm(β))− gnGng
n
m(β)‖

= lim
k→∞

∥∥∥Gkgkm(β)− gknGng
n
m(β)

∥∥∥
= lim

k→∞

∥∥∥((∆k + 1)−1 gkn − gkn (∆n + 1)−1
)
gnm(β)

∥∥∥
≤ δn.

(3.50)

For the second bound, suppose now that β ∈ Hn is a unit. Observe,

‖(gnGn −G∞gn) (β)‖ =
∥∥∥(g̃nGn − G̃∞g̃n

)
(β)
∥∥∥

≤ lim
k→∞

∥∥∥(gkn (∆n + 1)−1 − (∆k + 1)−1 gkn

)
(β)
∥∥∥

≤ δn.

(3.51)

Lemma 3.3.4. G∞ is both self-adjoint and compact.

Proof. The domain of G∞ is all of H∞ and so it suffices to demonstrate that G∞ is
symmetric in order to show self-adjointness. Let α, β ∈ H∞. Let (αn)

∞
n=1 ∈ π−1(α),
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(βn)
∞
n=1 ∈ π−1(β). Then,

〈G∞(α), β〉 =
〈
G̃∞ ((αn)

∞
n=1) , (βn)

∞
n=1

〉
= lim

n→∞
〈Gn (αn) , βn〉

= lim
n→∞

〈αn, Gn (βn)〉

=
〈
(αn)

∞
n=1 , G̃∞ ((βn)

∞
n=1)

〉
= 〈α,G∞(β)〉 .

(3.52)

Thus G∞ is self-adjoint. In light of Lemma 3.3.3, the proof of Proposition 2.1.14 shows
that the sequence (gnGng

∗
n)

∞
n=1 converges to G∞, implying compactness.

Lemma 3.3.5. The map ∆̃∞ : im
(
G̃∞

)
→ H̃∞ defined on (αn)

∞
n=1 ∈ im

(
G̃∞

)
via

∆̃∞ ((αn)
∞
n=1) = (∆nαn)

∞
n=1 . (3.53)

is well defined and induces a map ∆∞ : im (G∞) → H∞. Moreover, ∆∞ =
(
G−1

∞ − 1
)

and
is a non-negative self-adjoint operator.

Proof. To see that ∆̃∞ is well-defined, let (αn)
∞
n=1 ∈ H̃∞ and observe:

lim
m→∞

sup
n≥m

‖∆nGn (αn)− gnm (∆mGm (αm))‖

≤ lim
m→∞

sup
n≥m

(‖αn − gnm (αm)‖+ ‖Gn (αn)− gnm (Gm (αm))‖)

= 0.

(3.54)

The last line is due to (αn)
∞
n=1 , G̃∞ ((αn)

∞
n=1) ∈ H̃∞. This shows that ∆̃∞G̃∞ ((αn)

∞
n=1) ∈

H̃∞. Now, (
∆̃∞ + 1

)
G̃∞ (αn)

∞
n=1 =

(
(∆n + 1) (∆n + 1)−1 (αn)

)∞
n=1

= (αn)
∞
n=1 .

(3.55)

So, ∆̃∞ + 1 is the one sided inverse of G̃∞. By Lemma 3.3.2, G̃∞ ((αn)
∞
n=1) ∈ K if and

only if (αn)
∞
n=1 ∈ K and so

(
∆̃∞ + 1

)(
K ∩ im

(
G̃∞

))
⊆ K. By the reverse triangle

inequality, ∆̃∞

(
K ∩ im

(
G̃∞

))
⊆ K and so ∆̃∞ induces a map ∆∞ : im (G∞) → H∞

such that (∆∞ + 1)G∞ = 1.
By Lemma 3.3.4, G∞ is self-adjoint and compact. Corollaries 1.6.7 and 8.1.3 of [13]

then imply that there exists a countable orthonormal eigenbasis of H∞ with respect to
G∞. Since G∞ is injective, im (G∞) contains the eigenbasis and so im (G∞) is a dense
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subset of H∞. In particular, ∆∞ is densely defined. By Proposition 8.2, Section A of
[48], ∆∞ + 1 is self-adjoint with domain im (G∞), and so ∆∞ is self-adjoint with domain
im (G∞). Non-negativity follows from the definitions of ∆̃∞ and the inner product.

Theorem 3.3.6. The sequence (Hn,∆n)
∞
n=1 is convergent to (H∞,∆∞) and this is wit-

nessed by the isometries gn.

Proof. Lemma 3.2.3 tells us that each gn is an isometry and so we need to additionally
verify that each is a δn-isometry. By Lemma 3.3.5, G∞ = (∆∞ + 1)−1. Applying Lemma
3.3.3, ∥∥∥(1− gng

∗
n) (∆∞ + 1)−1

∥∥∥ ≤ δn,∥∥∥gn (∆n + 1)−1 − (∆∞ + 1)−1 gn

∥∥∥ ≤ δn.
(3.56)

Observe that the domain of ∆∞ has been described implicitly and is not clearly wit-
nessed by the approximation scheme (Hn,∆n)

∞
n=1. We remedy this by explicitly describing

dom
(
∆̃∞

)
as a subspace of H̃∞.

Proposition 3.3.7. Consider the subspace

D :=
{
(αn)

∞
n=1 ∈ H̃∞ : (∆nαn)

∞
n=1 ∈ H̃∞

}
=

{
(αn)

∞
n=1 ∈ H̃∞ : lim

m→∞
sup
n≥m

‖∆nαn − gnm (∆mαm)‖ = 0

}
⊆ H̃∞.

(3.57)

Then,
D = dom

(
∆̃∞

)
= im

(
G̃∞

)
. (3.58)

Proof. Let (αn)
∞
n=1 ∈ dom

(
∆̃∞

)
, then ∆̃∞ ((αn)

∞
n=1) = (∆nαn)

∞
n=1 ∈ H̃∞ which implies

lim
m→∞

sup
n≥m

‖∆nαn − gnm (∆mαm)‖ = 0. (3.59)

and so (αn)
∞
n=1 ∈ D. Now fix (αn)

∞
n=1 ∈ D. Then,

H̃∞ 3 (∆nαn)
∞
n=1 + (αn)

∞
n=1 =

(
∆̃∞ + 1

)
(αn)

∞
n=1. (3.60)

So,
G̃∞

(
∆̃∞ + 1

)
(αn)

∞
n=1 = (αn)

∞
n=1 ∈ im

(
G̃∞

)
. (3.61)
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3.4 Uniqueness of the Construction

In this section, we want to explore the uniqueness of our construction (H∞,∆∞). We begin
with Lemma 3.4.1 which shows that if we have a Hilbert space H′

∞ along with isometries
for all n, g′n : Hn → H′

∞ such that g′ngnm = g′m, then there exists an isometry ϕ : H∞ → H′
∞.

i.e. H∞ is a colimit. Theorem 3.4.2 will build off this result by showing that if H′
∞ fits

into a package (H′
∞,∆

′
∞) such that (Hn,∆n)

∞
n=1 converges to (H′

∞,∆
′
∞), then ϕ is unitary

and intertwining.

Lemma 3.4.1. There exists a continuous linear map ϕ : H∞ → H′
∞ such that for αn ∈ Hn,

ϕ(gn(αn)) = g′n(αn). (3.62)

Moreover, ϕ is an isometry.

Proof. Define ϕ on
⋃
n∈N im (gn) via Equation (3.62). To see that ϕ is well-defined, let

αm ∈ Hm and observe that

g′m (αm) = ϕ (gm (αm))

= ϕ (gn (g
n
m (αm)))

= g′n (g
n
m (αm))

= g′m (αm) .

(3.63)

To see that ϕ with domain
⋃
n∈N im (gn) is an isometry, observe that for gn(α), gm(β) with

n ≥ m,
〈gn(α), gm(β)〉 = 〈α, gnm(β)〉

=
〈
g′n(α), g

′
m(β)

〉
= 〈ϕ (gn(α)) , ϕ (gm(β))〉 .

(3.64)

This implies that ϕ is an isometry. Lemma 3.2.3 tells us that
⋃
n∈N im (gn) is dense and so

‖ϕ‖ = 1 implies that we may continuously extend ϕ to an isometry with domain H∞.

Lemma 3.4.1 implies H∞ is a colimit. Now assume that H′
∞ fits into a package

(H′
∞,∆

′
∞) such that (Hn,∆n)

∞
n=1 converges to (H′

∞,∆
′
∞).

Theorem 3.4.2. The map ϕ is a 0-isometry and so (H∞,∆∞) is a 0-retract of (H′
∞,∆

′
∞).

Consequently, ϕ is unitary and intertwines (∆′
∞ + 1)−1 and (∆∞ + 1)−1.

Proof. We must show that ϕ is a 0-isometry. By Lemma 3.4.1, ϕ is an isometry and so we

43



just need to check that ∥∥∥ϕ (∆∞ + 1)−1 −
(
∆′

∞ + 1
)−1

ϕ
∥∥∥ = 0∥∥∥(1− ϕϕ∗)

(
∆′

∞ + 1
)−1
∥∥∥ = 0.

(3.65)

It is sufficient to check both equations on
⋃
n∈N imgn due to continuity. Let αm ∈ Hm.

Then, ∥∥∥(ϕ (∆∞ + 1)−1 −
(
∆′

∞ + 1
)−1

ϕ
)
gm (αm)

∥∥∥
= lim

n→∞

∥∥∥(ϕ (∆∞ + 1)−1 −
(
∆′

∞ + 1
)−1

ϕ
)
gng

n
m (αm)

∥∥∥
= lim

n→∞

∥∥∥(ϕ (∆∞ + 1)−1 gn −
(
∆′

∞ + 1
)−1

g′n

)
gnm (αm)

∥∥∥
≤ lim

n→∞

∥∥∥(g′n (∆n + 1)−1 −
(
∆′

∞ + 1
)−1

g′n

)
gnm (αm)

∥∥∥
+
∥∥∥ϕ((∆∞ + 1)−1 gn − gn (∆n + 1)−1

)
gnm (αm)

∥∥∥
≤ lim

n→∞

(
δ′n + δn

)
‖αm‖ , since ‖ϕ‖ = 1

= 0.

(3.66)

For the second condition, observe,∥∥∥(1− ϕϕ∗)
(
∆′

∞ + 1
)−1

g′m(αm)
∥∥∥ = lim

n→∞

∥∥∥(1− ϕϕ∗)
(
∆′

∞ + 1
)−1

g′ng
n
m(αm)

∥∥∥
= lim

n→∞

∥∥∥(1− ϕϕ∗) g′n (∆n + 1)−1 gnm(αm)
∥∥∥

+
∥∥∥(1− ϕϕ∗)

((
∆′

∞ + 1
)−1

g′n − g′n (∆n + 1)−1
)
gnm(αm)

∥∥∥
≤ lim

n→∞

∥∥∥(1− ϕϕ∗) g′n (∆n + 1)−1 gnm(αm)
∥∥∥+ δ′n ‖αm‖

= lim
n→∞

∥∥∥(1− ϕϕ∗)ϕgn (∆n + 1)−1 gnm(αm)
∥∥∥

= 0.

(3.67)
By continuity, we have that (1− ϕϕ∗) (∆′

∞ + 1)−1 vanishes on the closure⋃
n∈N

im (g′n) ⊆ H′
∞. (3.68)
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Suppose α ∈
(⋃

n∈N im (g′n)
)⊥

. Then

0 = lim
n→∞

δ′n

= lim
n→∞

∥∥∥(1− g′ng
′
n
∗) (

∆′
∞ + 1

)−1
α
∥∥∥

≤ lim
n→∞

∥∥∥((∆′
∞ + 1

)−1 − g′n (∆n + 1)−1 g′n
∗
)
α
∥∥∥

+
∥∥∥((∆n + 1)−1 g′n

∗ − g′n
∗ (

∆′
∞ + 1

)−1
)
α
∥∥∥

≤ lim
n→∞

∥∥∥(∆′
∞ + 1

)−1 (
1− g′ng

′
n
∗)
α
∥∥∥

+
∥∥∥((∆′

∞ + 1
)−1

g′n − g′n (∆n + 1)−1
)
g′n

∗
(α)
∥∥∥

+
∥∥∥((∆n + 1)−1 g′n

∗ − g′n
∗ (

∆′
∞ + 1

)−1
)
α
∥∥∥

= lim
n→∞

∥∥∥(∆′
∞ + 1

)−1 (
1− g′ng

′
n
∗)
α
∥∥∥

= lim
n→∞

∥∥∥(∆′
∞ + 1

)−1
α
∥∥∥

=
∥∥∥(∆′

∞ + 1
)−1

α
∥∥∥ .

(3.69)

This implies that α ∈ ker (∆′
∞ + 1)−1 = 0 and so α = 0. Thus,⋃

n∈N
im (g′n) = H′

∞ (3.70)

and so our equations hold. By Lemma 2.1.2, ϕ is unitary.
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Chapter 4

Properties of Limit Spectra

4.1 Properties of the Limit Spectrum

For this section, we will assume that (Hn,∆n)
∞
n=1 is a Cauchy sequence and (H∞,∆∞)

is the limit point constructed in Chapter 3. We begin by stating a result whose idea is
based on Proposition 4.3.1 from [39]. Due to an error in the proof of this result that we
discovered when preparing this thesis, Proposition 4.3.1 is false as stated but the following
represents a statement that can be salvaged from it. The proof is written under Theorem
A.0.2 in Appendix A.

Theorem 4.1.1. For each finite closed interval I with

∂+I ∩ σ (∆∞) = ∅, (4.1)

there exists N ∈ N such that for all n ≥ N ,

dim im (P∆n,I) = dim im (P∆∞,I) . (4.2)

The remainder of this section is based on ideas from the statement and proof of Theorem
4.3.5 of [39]. The proof presented in [39] relies on Proposition 4.3.1 of [39] and so we exhibit
similar proofs that use Theorem 4.1.1 instead.

Definition 4.1.2. Define µ : R+ → R+ via

µ (λ) :=


lim
n→∞

dim im
(
P∆n,B d(λ,σ(∆∞)\{λ})

2

)
if λ 6= ∞,

0 if λ = ∞.

(4.3)

By Theorem 4.1.1, since each Hn is finite dimensional, µ is finite and well-defined.
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Theorem 4.1.3. The multiplicity of each λ ∈ σ (∆∞) is equal to µ (λ).

Proof. This follows from direct application of Theorem 4.1.1.

As a consequence of Proposition 2.1.14, we can enumerate σ (∆∞) as (λj)
∞
j=1 where

λj ≤ λj+1 and elements are repeated according to multiplicity. i.e. λj appears µ (λj)-times
in the enumeration. Since each Hn is finite dimensional, we can similarly enumerate:

σ(∆n) =
(
λ
(n)
j

)dimHn

j=1
. (4.4)

Corollary 4.1.4. For each j,
lim
n→∞

λ
(n)
j = λj . (4.5)

where λ(n)j = 0 for n such that j > dimHn.

Proof. Let ε > 0. We will show that for large enough n, d
(
λ
(n)
j , λj

)
< ε. Define

ε′ = min
(
ε,min

k≤j

d (λk, σ (∆∞) \ {λk})
2

)
> 0. (4.6)

By definition, for k, ` ≤ j,

Bε′ (λk) ∩Bε′ (λℓ) 6= ∅ if and only if λk = λℓ. (4.7)

and there exists N ∈ N such that for n ≥ N ,

1.
{
λ
(n)
1 , . . . , λ

(n)
j

}
⊆
⋃j
k=1Bε′(λk).

2. For each k ≤ j,
dim im

(
P
∆n,Bε′ (λk)

)
= µ (λk) . (4.8)

This implies that each λ
(n)
k ∈ Bε′ (λk). Namely, λ(n)j ∈ Bε′ (λj) and so

d
(
λ
(n)
j , λj

)
< ε′ ≤ ε. (4.9)

The idea behind Corollary 4.1.4 is depicted pictorially in Figure 4.1.
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σ(∆m)

σ(∆n)

σ (∆∞) •
λj3

µ(λj3
) = 1

•

•

•
λj2

µ(λj2
) = 3

• • •

• • •

•
λj1

µ(λj1
) = 3

• ••

• • •

Figure 4.1: A depiction of the convergence of spectra where m < n and the curves are
visual aids meant to signify relationships between eigenvalues.

4.2 Behavior of Eigenvectors

Definition 4.2.1. For each n, define ρn : R+ → P (σ(∆n)) via

ρn(λ) =
{
λ
(n)
j ∈ σ(∆n) : λj = λ

}
. (4.10)

For a subset I ⊆ R+,
ρn(I) =

⋃
λ∈I

{
λ
(n)
j ∈ σ(∆n) : λj ∈ I

}
. (4.11)

Notice that for λ ∈ R+ \ σ (∆∞), ρn(λ) = ∅.

Definition 4.2.2. Define κ : R+ → P (N) via

κ(λ) = {j ∈ N : λj = λ} . (4.12)

For a subset I ⊆ R+,
κ(I) = {j ∈ N : λj ∈ I} . (4.13)

Note that |κ(λ)| = µ(λ).

Notation. In the work to follow, we will make heavy use of the spectral projection maps
P∆n,I in settings where the domain is clear. Such examples will include expressions of the
form P∆n,I ◦ gnm or P∆n,ρn(λ). In such cases where there is no risk of confusion of domain,
denote P∆n,I by PI .

Proposition 4.2.3. Let λ ∈ σ (∆∞) and let L = d (λ, σ (∆∞) \ {λ}) > 0. Then, there
exists N such that for all n > m ≥ N ,

∥∥Pσ(∆n)\ρn(λ) ◦ g
n
m ◦ Pρm(λ)

∥∥ ≤ 2µ(λ)

L
δm, (4.14)
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where δm is such that (Hm,∆m) is a δm-retract of (Hn,∆n).

Proof. Apply Theorem 2.2.4 to obtain N such that for all n ≥ N ,

1. For λ(n) ∈ ρn(λ),
d
(
λ(n), λ

)
<
L

4
. (4.15)

2. For λ(n) ∈ σ(∆n) \ ρn(λ),
d
(
λ(n), λ

)
>

3L

4
. (4.16)

Let n > m ≥ N . Let
(
α
(m)
k

)dim(Hm)

k=1
,
(
α
(n)
k

)dim(Hn)

k=1
be orthonormal eigenbases for

Hm,Hn respectively such that ∆nα
(n)
k = λ

(n)
k α

(n)
k and likewise for m. For each j, write

gnm

(
α
(m)
j

)
=

dim(Hn)∑
k=1

aj,kα
(n)
k , (4.17)

where each aj,k ∈ R. Then, for each j ∈ κ(λ),

δm ≥
∥∥∥((∆n + 1)−1 gnm − gnm (∆m + 1)−1

)(
α
(m)
j

)∥∥∥
=

∥∥∥∥∥∥
dim(Hn)∑
k=1

aj,k

(
1

λ
(n)
k + 1

− 1

λ
(m)
j + 1

)
α
(n)
k

∥∥∥∥∥∥
=

dim(Hn)∑
k=1

a2j,kd
(
λ
(n)
k , λ

(m)
j

)2 1
2

≥

 ∑
k/∈κ(λ)

a2j,kd
(
λ
(n)
k , λ

(m)
j

)2 1
2

≥
(

min
k/∈κ(λ)

d
(
λ
(n)
k , λ

(m)
j

))∥∥∥∥∥∥
∑
k/∈κ(λ)

aj,kα
(n)
k

∥∥∥∥∥∥
≥
(

min
k/∈κ(λ)

d
(
λ
(n)
k , λ

(m)
j

))∥∥∥Pσ(∆n)\ρn(λ)

(
gnm

(
α
(m)
j

))∥∥∥ .

(4.18)

Observe that
min
k/∈κ(λ)

d
(
λ
(n)
k , λ

(m)
j

)
≥ min

k/∈κ(λ)
d
(
λ
(n)
k , λ

)
− d

(
λ, λ

(m)
j

)
>

3L

4
− L

4

=
L

2
.

(4.19)
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So, ∥∥∥Pσ(∆n)\ρn(λ)

(
gnm

(
α
(m)
j

))∥∥∥ < 2

L
δm. (4.20)

Now fix α(m) ∈ Pρm(λ)(Hm) of unit norm. Write

α(m) =
∑
j∈κ(λ)

bjα
(m)
j , (4.21)

where each bj ∈ [−1, 1] by assumption. Then,∥∥∥Pσ(∆n)\ρn(λ)

(
gnm

(
α(m)

))∥∥∥ ≤
∑
j∈κ(λ)

|bj |
∥∥∥Pσ(∆n)\ρn(λ)

(
gnm

(
α
(m)
j

))∥∥∥
<

2 |κ(λ)|
L

δm

=
2µ(λ)

L
δm.

(4.22)

Assuming the set-up for Proposition 4.2.3, we get

Corollary 4.2.4. For large enough n,m,

Pρn(λ) ◦ g
n
m ◦ Pρm(λ) (4.23)

is an isomorphism.

Proof. By Proposition 4.2.3, Pρn(λ) ◦ gnm ◦ Pρm(λ) is an injection for large enough m. By
Theorem 4.1.3, for large enough n ≥ m, we see that |ρn(λ)| = |ρm(λ)| and so Pρn(λ) ◦ gnm ◦
Pρm(λ) is an isomorphism.

Corollary 4.2.5. Let Λ ⊆ σ (∆∞) be a finite set. Let L = minλ∈Λ d (λ, σ (∆∞) \ {λ}).
Then, there exists N such that for all n > m ≥ N ,

∥∥Pσ(∆n)\ρn(Λ) ◦ g
n
m ◦ Pρm(Λ)

∥∥ ≤
2
∑

λ∈Λ µ(λ)

L
δn, (4.24)

where δn is such that (Hm,∆m) is a δn-retract of (Hn,∆n).

Proof. Apply Proposition 4.2.3 with the triangle inequality.
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Chapter 5

Sequences of Hilbert Complexes
with the Hodge Laplacian

In this section, we specialize our tools for use on Hilbert complexes [8], an analogue of
cochain complexes in the setting of Hilbert spaces. We aim to generalize phenomena involv-
ing

(
L2Ω•(M), d

)
, which is not a cochain complex in general because dom(d) 6= L2Ω•(M).

So, our theory cannot strictly rely on the traditional notion of a cochain complex. We will
see, however, that our approximation schemes consist of cochain complexes due to finite
dimensionality of each element.

We explain how, in the setting of Hilbert complexes, there exists a notion of Hodge de-
composition and a Hodge Laplacian. We aim to compare the structure of differing Hilbert
complexes along Cauchy sequences. To perform this study meaningfully, the definition of a
δ-retract alone will be insufficient and we will instead work with a more elaborate mapping
structure inspired by strong deformation retractions (also known as contractions, or special
deformation retractions) in the context of cochain complexes. Strong deformation retrac-
tions have a rich history in the field of Homological Algebra. In particular, Homological
Perturbation Theory [6] and Mathematical Physics through A∞ algebras [28, 29] where
they are used in name or implicitly for the transfer of an A∞ structure [32, 9, 33]. In line
with the context of discretizations, techniques related to strong deformation retractions are
used in the field of Computational Algebraic Topology [11, 26] and in the Mathematical
Physics literature through the formation of discrete physical models based on triangulations
of manifolds [36]. One bridge between Topological applications and Geometric develop-
ments of particular interest emerged from Discrete Morse Theory [18] in attempts to import
the geometric notions of Morse Theory into the algebraic setting [43, 45]. The majority
of the mathematical applications in this field have followed a similar motive of realizing
geometric structures as examples from the perspective of algebraic topology [24, 17], while
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the potential geometric utility of the algebraic techniques used in the discrete setting are
less well understood. Developments to this effect are beginning [10] and this chapter aims
to add to this emerging body of literature.

5.1 Background on Hilbert Complexes

We begin by reviewing basic material on Hilbert Complexes as outlined in Sections 1 and
2 of [8], Sections 3 and 4 of [5], and [22]. Both [12, 25] were consulted for a review on L2

cohomology.

Definition 5.1.1 (Definition 4.1 [5], Definition 3.1 [22]). Let
(
Hi
)
i∈Z be a sequence of

Hilbert spaces and, for each i ∈ Z, let di : Hi → Hi+1 be a closed, densely defined map
such that im (di) ⊆ ker (di+1). The resulting structure is referred to as a Hilbert complex.

. . . H0 H1 H2 . . .
d−1 d0 d1 d2

We will denote Hilbert complexes using the notation (H•, d), refer to each Hi as possessing
degree i, and omit the subscripts on the di maps when convenient. Notice that

H• :=
⊕
i∈Z

Hi (5.1)

is a Hilbert space under the inner product induced from each Hi such that Hi ⊥ Hj for
i 6= j.

The associated cohomology at degree i is given by

ker (di) / im (di−1) . (5.2)

Note that there is an underlying cochain complex given by

. . . dom(d0) dom(d1) dom(d2) . . .
d−1 d0 d1 d2

We will denote this complex by (dom(d)•, d) where dom(d)k = dom(dk). In the case that
each Hi is finite dimensional,

(dom(d)•, d) = (H•, d) . (5.3)

By taking the adjoint of d, d∗, we obtain the complex

. . . H0 H1 H2 . . . .
d∗−1 d∗0 d∗1 d∗2

Since d is closed and densely defined, so is d∗ (Theorem 1.8 (i) [44]).
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Definition 5.1.2 (Section 2 [8], Section 4.1.1 [5]). A Fredholm complex, (H•, d), is a
Hilbert complex such that the degree i cohomology is finite dimensional for all i.

By Theorem 2.4 of [8], if (H•, d) is a Fredholm complex, then im(di) is closed for all i.
Moreover, Theorem 5.13 from [27] implies that im(d∗) is closed.

Example 5.1.3. Following Section 1 of [12], if M is a compact Riemannian manifold, then
the cohomology of

(
L2Ω•(M), d

)
is isomorphic to the cohomology of (Ω•(M), d). Since the

latter cohomology is finite dimensional,
(
L2Ω•(M), d

)
is a Fredholm complex.

We will only work in the case that (H•, d) is a Fredholm complex. Following the work
of Section 2 of [8], observe that d, d∗ being closed implies

im(d)⊥ = ker (d∗) ,

im (d∗) = ker (d)⊥ ,

H• = im(d)⊕ im(d)⊥

(5.4)

and so we obtain the following sequence of orthogonal decompositions:

H• = ker(d)⊕ ker(d)⊥

= im(d)⊕
(

ker(d) ∩ im(d)⊥
)
⊕ ker(d)⊥

= im(d)⊕ (ker(d) ∩ ker (d∗))⊕ im (d∗) .

(5.5)

Refer to im(d) as the exact elements, im(d∗) as coexact, ker(d)∩ ker (d∗) as harmonic, and
this decomposition as the Hodge decomposition. For the harmonic forms, we saw in the
above equations that

ker(d) = im(d)⊕ (ker(d) ∩ ker (d∗)) (5.6)

and so ker(d) ∩ ker (d∗) is isomorphic to the cohomology of (H•, d).
Define ∆ = (d+ d∗)2, which we will refer to as the Hodge Laplacian. The operator ∆

is non-negative and, by Section 2 of [20] or Lemma 3.11 of [7], self-adjoint. Notice that
ker(∆) = ker(d) ∩ ker (d∗) and so we obtain the familiar Hodge decomposition:

H• = im(d)⊕ ker(∆)⊕ im (d∗) . (5.7)

Immediately, we have that ker(∆) is isomorphic to the cohomology of (H•, d). In the
case where (H•, d) =

(
L2Ω•(M), d

)
for some Riemannian manifold M , the property is

sometimes known as satisfaction of the Strong Hodge Theorem (see Section 1.3 of [12]).

Definition 5.1.4. Given Hilbert complexes
(
H′•, d′

)
and (H•, d), a Hilbert cochain map,

f : H′• → H•, is a (densely defined) linear map such that (dom•(f), d′) is a subcomplex of

53



(dom• (d′) , d′) and, for α ∈ dom(f), f(α) ∈ dom(d) and

f
(
d′α
)
= df (α) . (5.8)

In other words, f is a cochain map from (dom•(f), d′) to (dom(d)•, d).

In all subsequent work, we will work with packages of data (H•, d,∆) where ∆ =

dd∗ + d∗d. Note that this notation is a strict extension of our previous notation, since H•

is a Hilbert space and ∆ is a non-negative self-adjoint operator on it. In line with previous
sections, we will assume that all Hilbert complexes with subscripts, denoted H•

n, are finite
dimensional as Hilbert spaces. In other words, Hi

n = 0 for all but finitely many i and each
such Hi

n is finite dimensional. Of course, in this case, H•
n is a cochain complex where d is

defined everywhere and (H•
n, d) is Fredholm.

5.2 Comparing Hilbert Complexes: Delta Deformation Re-
tracts

Definition 5.2.1 (adapted from [6] and Definition 1 of [9]). Given Hilbert complexes(
H′•, d′

)
and (H•, d), a strong deformation retraction from

(
H′•, d′

)
and (H•, d) is a package

of linear maps f : H′• → H•, g : H• → H′•, h : H′• → H′•, summarized in the following
diagram:

(H•, d) (H′•, d′)

g

f h

such that

1. f, g are Hilbert cochain maps (degree 0).

2. dom(h) = dom(f) ⊇ im(g) and im(h) ⊆ ker(h).

3. The cohomology in each degree of (dom•(f), d′) is isomorphic to that of
(
H′•, d′

)
.

4. dom(g) = H•.

5. h has degree −1.

6. fh = hg = h2 = 0.

7. fg = 1.
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8. 1− gf = d′h+ hd′.

We will denote this relationship using the following notation:

(f, g, h) :
(
H′•, d′

)
→ (H•, d) . (5.9)

We will sometimes omit the distinction between d′, d due to f and g being cochain maps.
Note that a deformation retraction induces an isomorphism between the cohomology of(
H′•, d′

)
and of (H•, d).

Remark 5.2.2. Conditions 3 and 4 in Definition 5.2.1 are slightly unusual but exist
because of the unruly nature of Hilbert complex cohomology. Condition 3 is necessary to
capture the intended use of deformation retractions in Algebraic Topology. Condition 4
implies that dom(d) = H• and so (H•, d) is a cochain complex. This condition will not
hinder any work to follow because H• will always be a finite dimensional Hilbert space and
thus a cochain complex by default.

Definition 5.2.3. A δ-deformation retraction from
(
H′•, d′,∆′) to (H•, d,∆) is a strong

deformation retraction (f, g, h) :
(
H′•, d′

)
→ (H•, d) where g is an isometry and such that:∥∥∥(∆′ + 1

)− 1
2 g − g (∆ + 1)−

1
2

∥∥∥ < 1

2
δ,∥∥∥(1− gg∗)

(
∆′ + 1

)− 1
2

∥∥∥ < 1

2
δ.

(5.10)

We will say that (H•, d,∆) is a δ-deformation retract of
(
H′•, d′,∆′) if there exists a

δ-deformation retraction (f, g, h) :
(
H′•, d′,∆′)→ (H•, d,∆).

Notice that in the above definition, the conditions (5.10) on g closely resemble the
conditions required for a δ-isometry in Definition 2.1.1. We will see that Definition 5.2.3
implies g is indeed a δ-isometry. We impose Equation (5.10) on g instead of those from
Definition 2.1.1 for reasons that will become more clear in Section 5.6.

Proposition 5.2.4. If (f, g, h) :
(
H′•, d,∆′) → (H•, d,∆) is a δ-deformation retraction,

then (H•,∆) is a δ-retract of
(
H′•,∆′) and g is a δ-isometry.

Proof. This amounts to verification of the properties listed in 2.1.1. Observe:∥∥∥(∆′ + 1
)−1

g − g (∆ + 1)−1
∥∥∥ ≤

∥∥∥(∆′ + 1
)− 1

2

((
∆′ + 1

)− 1
2 g − g (∆ + 1)−

1
2

)∥∥∥
+
∥∥∥((∆′ + 1

)− 1
2 g − g (∆ + 1)−

1
2

)
(∆ + 1)−

1
2

∥∥∥
≤ 2

∥∥∥(∆′ + 1
)− 1

2 g − g (∆ + 1)−
1
2

∥∥∥
< δ

(5.11)
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and ∥∥∥(1− gg∗)
(
∆′ + 1

)−1
∥∥∥ =

∥∥∥(1− gg∗)
(
∆′ + 1

)− 1
2
(
∆′ + 1

)− 1
2

∥∥∥
=
∥∥∥(1− gg∗)

(
∆′ + 1

)− 1
2

∥∥∥
< δ.

(5.12)

Proposition 5.2.4 tells us that the spectrum convergence results of Chapter 2 applies in
the context Hilbert complexes and δ-deformation retractions. The following Proposition
illustrates how Proposition 2.1.11 is adapted to the context of Equation (5.10).

Proposition 5.2.5. Suppose g1 : H1 → H satisfies Equation (5.10) for δ1 > 0 and
g2 : H2 → H satisfies Equation (5.10) for δ2 > 0. Suppose as well that im (g1) ⊆ im (g2).
Then, g21 := g∗2g1 : H1 → H2 is an isometry which satisfies Equation (5.10) with δ1 + δ2.

(H,∆)

(H1,∆1) (H2,∆2)

g1

g∗2g1

g2

Figure 5.1: A diagram depicting the set-up of Proposition 5.2.5

Proof. The proof is identical to that of Proposition 2.1.11, only with (∆ + 1)−1, (∆1 + 1)−1,
(∆2 + 1)−1 replaced with (∆ + 1)−

1
2 , (∆1 + 1)−

1
2 , (∆2 + 1)−

1
2 .

Proposition 5.2.6. Suppose (f, g, h) :
(
H′•, d′,∆′) → (H•, d,∆) is a δ-deformation re-

traction with bounded f . Then, for α ∈ dom (f),

‖(1− gf)α‖ < δ (‖f‖+ 1)
∥∥∥(∆′ + 1

) 1
2 α
∥∥∥ . (5.13)

Proof. This is a calculation that uses an idea used in the proof of Theorem 5.6 in [4] for
the first equality:

‖(1− gf)α‖ = inf
β∈H•

‖(1− gf) (α− g (β))‖ , Since (1− gf)
∣∣
im(g)

= 0

≤ (‖f‖+ 1) inf
β∈H•

‖α− g (β)‖

= (‖f‖+ 1) ‖(1− gg∗) (α)‖ , by Lemma 2.1.4

< δ (‖f‖+ 1)
∥∥∥(∆′ + 1

) 1
2 α
∥∥∥ .

(5.14)
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Definition 5.2.7. Definitions 2.1.5 and 2.1.7 of convergent and Cauchy sequences carry
over directly: A sequence (H•

n, dn,∆n)
∞
n=1 is said to be...

• convergent to some (H•, d,∆) if there exists a sequence δn → 0 such that (H•
n, dn,∆n)

is a δn-deformation retract of (H•, d,∆). In this case, and as in Definition 2.1.5, we
will sometimes refer to (H•

n, dn,∆n)
∞
n=1 as an approximation scheme for (H•, d,∆).

• Cauchy if for every m ≤ n, there exist strong deformation retractions
(fmn , g

n
m, hn,m) : (H•

n, dn) → (H•
m, dm) such that the following hold:

1. For every δ > 0, there existsNδ ∈ N such that for all n > m ≥ Nδ, (fmn , gnm, hn,m)
is a δ-deformation retraction.

2. For all k ≥ n ≥ m, gkm = gkn ◦ gnm, fmk = fmn ◦ fnk .

3. For all n,
lim
B→∞

lim
k→∞

∥∥∥P[B,∞) ◦ gkn
∥∥∥ = 0. (5.15)

From the definition of Cauchy, Proposition 5.2.4, and Chapter 3, for each Cauchy se-
quence (H•

n, dn,∆n)
∞
n=1 there exists (H•

∞,∆∞) such that (H•
n,∆n)

∞
n=1 converges to (H•

∞,∆∞).
We do not yet know that there exists (H•

∞, d∞,∆∞) such that (H•
n, dn,∆n)

∞
n=1 converges

to (H•
∞, d∞,∆∞). Section 5.6 will be devoted to this.

The following Proposition explains how the topological implications of a strong de-
formation retraction provide utility in the geometric setting by showing the existence of
a uniform spectral gap between 0 and the first non-zero eigenvalue of σ (∆n). Existing
results concerning spectral gaps in the context of convergent Hilbert spaces appear in [39]
(see Theorem 1.5.1) but address the slightly different problem of showing that for intervals
(a, b) such that (a, b) ∩ σ(∆) = ∅ and ε > 0, there exists nε ∈ N large enough such that
(a+ ε, b− ε)∩ σ(∆n) = ∅ for n ≥ nε. Such results are not applicable to bounding the first
non-zero eigenvalue uniformly in the sequence of spectra σ(∆n) and thus, the following
result is new in this regard.

Proposition 5.2.8. Suppose (H•
n, dn,∆n)

∞
n=1 is a Cauchy sequence which is convergent to

(H•
∞, d∞,∆∞) and let L = d(0,σ(∆∞)\{0})

2 . Then, for large enough n, min (σ (∆n) \ {0}) ≥
L.

Proof. By Proposition 2.1.14, L > 0. Using Theorem 4.1.1, let N be large enough so that

dim im
(
P
∆n,BL(0)

)
= dim im

(
P
∆∞,BL(0)

)
(5.16)

for n ≥ N . By the definition of L, im
(
P
∆∞,BL(0)

)
= ker (∆∞) and that the latter

subspace is isomorphic to cohomology. On the other hand, the data of a strong deformation
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retraction (fn, gn, hn) : (H•
∞, d∞,∆∞) → (H•

n, dn,∆n) tells us that the cohomology of the
Hilbert complexes are isomorphic and so dim ker (∆∞) = dim ker (∆n). Consequently,

dim im
(
P
∆n,BL(0)

)
= dim ker (∆n) (5.17)

and since ker (∆n) ⊆ im
(
P
∆n,BL(0)

)
, we have

im
(
P
∆n,BL(0)

)
= dim ker (∆n) . (5.18)

It must then be that BL (0) ∩ σ (∆n) = {0} and thus min (σ (∆n) \ {0}) ≥ L.

For the remainder of this section, assume that (H•
n, dn,∆n)

∞
n=1 is a Cauchy sequence

which is observed by strong deformation retractions (fmn , gnm, hn,m) : (H•
n, dn,∆n) → (H•

m, dm,∆m).
For all n, we have previously assumed that dimH•

n < ∞ and so, by definition, we have
dom (fmn ) = H•

n.

5.3 Comparing the Hodge Decomposition of Elements

Theorem 5.3.1. Let α ∈ H•
n be of unit norm and write

α = α0 + d∗nα1 + dnα2,

fmn (α) = β0 + d∗mβ1 + dmβ2,
(5.19)

according to the Hodge decompositions. Then,

‖α0 − gnm (β0)‖ ≤ 3δm,n (‖fmn ‖+ 1)
∥∥∥(∆n + 1)

1
2 α
∥∥∥ ,

‖d∗nα1 − gnm (d∗mβ1)‖ ≤ 3δm,n (‖fmn ‖+ 1)
∥∥∥(∆n + 1)

1
2 α
∥∥∥ ,

‖dnα2 − gnm (dmβ2)‖ ≤ 3δm,n (‖fmn ‖+ 1)
∥∥∥(∆n + 1)

1
2 α
∥∥∥ .

(5.20)

Proof. Proposition 5.2.6 allows the direct use of the proof of Theorem 4.9 in [14].

One should view the previous Theorem as a description and bound on the change of
Hodge decomposition when mapping down H•

n → H•
m. This bound involves the chosen

element in H•
n along with ∆n.

Corollary 5.3.2. Let β ∈ H•
m and write

β = β0 + d∗mβ1 + dmβ2,

gnm (β) = α0 + d∗nα1 + dnα2.
(5.21)
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Then,
‖α0 − gnm (β0)‖ ≤ 3δm,n (‖fmn ‖+ 1)

∥∥∥(∆n + 1)
1
2 gnm (β)

∥∥∥ ,
‖d∗nα1 − gnm (d∗mβ1)‖ ≤ 3δm,n (‖fmn ‖+ 1)

∥∥∥(∆n + 1)
1
2 gnm (β)

∥∥∥ ,
‖dnα2 − gnm (dmβ2)‖ ≤ 3δm,n (‖fmn ‖+ 1)

∥∥∥(∆n + 1)
1
2 gnm (β)

∥∥∥ .
(5.22)

Proof. Apply Theorem 5.3.1 with α = gnm (β), noting that fmn (α) = fmn g
n
m (β) = β.

Proposition 5.3.3. Suppose (H•
n, dn,∆n)

∞
n=1 is a Cauchy sequence which is convergent

to (H•, d,∆) under (fn, gn, hn) : (H•, d,∆) → (H•
n, dn,∆n). Let α ∈ ker (∆). Then, for

n ∈ N, define
αn = Projker(∆n)(fn(α)). (5.23)

Then, for n ≥ m,
αn = Projker(∆n) (g

n
m(αm)) . (5.24)

As a result, αn represents the same cohomology class as α for all n.

Proof. This amounts to computation. Observe,

αn = Projker(∆n) (fn(α))

= Projker(∆n) ((1− dhn,m − hn,md) fn(α))

= Projker(∆n) (g
n
mf

m
n fn(α))

= Projker(∆n) (g
n
mfm(α)) .

(5.25)

At this step, notice that fm(α) = β0 + dβ1 for β0 ∈ ker(∆m) and β1 ∈ H•
m. Since gnm is a

cochain map,

Projker(∆n) (g
n
mfm(α)) = Projker(∆n) (g

n
m (β0 + dβ1))

= Projker(∆n) (g
n
m (β0))

= Projker(∆n)

(
gnmProjker(∆m)fm(α)

)
= Projker(∆n) (g

n
m (αm)) .

(5.26)

5.4 Behavior of Eigenvectors

In this section, we study the behavior of eigenvectors of ∆m when mapped by gnm. Observe
first that for each n, ∆n restricts to an endomorphism of each summand of the Hodge
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decomposition
im(dn)⊕ ker (∆n)⊕ im (d∗n) . (5.27)

Thus, the eigenvectors of ∆n arise from eigenvectors of each summand above. Let

• γ
(n)
1 , . . . , γ

(n)
dim(ker(∆n))

be an orthonormal basis of ker (∆n).

• α
(n)
r1 , . . . , α

(n)
rdim(im(d∗n))

be an orthonormal eigenbasis of im (d∗n) such that ∆nα
(n)
rk =

λ
(n)
rk α

(n)
rk .

• β
(n)
s1 , . . . , β

(n)
sdim(im(dn))

be an orthonormal eigenbasis of im (dn) such that ∆nβ
(n)
sk =

λ
(n)
sk β

(n)
sk .

For each k, there exists t such that dα(n)
rk =

√
λ
(n)
rk β

(n)
st and d∗β

(n)
st =

√
λ
(n)
rk α

(n)
rk and

so we see that d, d∗ are endomorphisms of eigenspaces of ∆n. Conversely, the Hodge
decomposition tells us that each eigenspace decomposes into harmonic, exact, and coexact
forms. We will measure how well gnm respects this decomposition. Indeed, this splitting
of eigenspaces according to the Hodge decomposition distinguishes this section from that
which was studied in Section 4.2.

Proposition 5.4.1. Fix ε > 0. Then, there exists N large enough such that for n > m ≥
N , ∥∥P(0,∞) ◦ gnm ◦ P{0}

∥∥ < ε. (5.28)

Proof. This is a direct application of Proposition 4.2.3.

Lemma 5.4.2. For each n, j, Pρn(λj) : H•
n → H•

n is a cochain map.

Proof. This is immediate, since d is an endomorphism of each eigenspace.

Notation. For a subset I ⊆ R+ and fixed n ∈ N, write

Pd = Projim(d),

Pd∗ = Projim(d∗),

Pd,I = Pd ◦ PI = PI ◦ Pd = Projim(d)∩
⊕

λ∈ρn(I) E
(n)
λ

,

Pd∗,I = Pd∗ ◦ PI = PI ◦ Pd∗ = Projim(d∗)∩
⊕

λ∈ρn(I) E
(n)
λ

.

(5.29)

Similarly, define κd, κd∗ : R+ → N via

κd(λ) =
{
j ∈ N : λsj = λ

}
,

κd∗(λ) =
{
j ∈ N : λrj = λ

}
.

(5.30)

60



Proposition 5.4.3. Fix ε > 0 and let λ ∈ σ (∆∞), There exists N large enough such that
for n > m ≥ N , ∥∥(1− Pd,ρn(λ)

)
◦ gnm ◦ Pd,ρm(λ)

∥∥ < ε. (5.31)

Proof. Since gnm is a cochain map,

Pd,ρn(λ) ◦ g
n
m ◦ Pd,ρm(λ) = Pρn(λ) ◦ g

n
m ◦ Pd,ρm(λ). (5.32)

This implies∥∥(1− Pd,ρn(λ)
)
◦ gnm ◦ Pd,ρm(λ)

∥∥ =
∥∥(1− Pρn(λ)

)
◦ gnm ◦ Pd,ρm(λ)

∥∥
=
∥∥Pσ(∆n)\ρn(λ) ◦ g

n
m ◦ Pd,ρm(λ)

∥∥
=
∥∥Pσ(∆n)\ρn(λ) ◦ g

n
m ◦ Pρm(λ) ◦ Pd

∥∥
≤
∥∥Pσ(∆n)\ρn(λ) ◦ g

n
m ◦ Pρm(λ)

∥∥ .
(5.33)

Proposition 4.2.3 yields the result.

Proposition 5.4.4. Let λ ∈ σ (∆∞)\{0} and fix ε > 0. Then, there exists N large enough
such that for n > m ≥ N ,

∥∥(1− Pd∗,ρn(λ)
)
◦ gnm ◦ Pd∗,ρm(λ)

∥∥ < ε. (5.34)

Proof. Let j ∈ κd∗(λ) and write

gnm

(
α(m)
rj

)
=

dim(ker(∆n))∑
i=1

ciγ
(n)
i +

dim(im(d∗n))∑
i=1

aiα
(n)
ri +

dim(im(dn))∑
i=1

biβ
(n)
si . (5.35)

Observe, ∥∥∥dgnm (α(m)
rj

)∥∥∥ =
∥∥∥dα(m)

rj

∥∥∥ =

√
λ
(m)
rj . (5.36)

For large enough N , Proposition 4.2.3 ensures that for all n ≥ N ,

2µ(λ)

√
λ
(m)
rj

d (λ, σ (∆∞) \ {λ})
δn ≥

∥∥∥Pσ(∆n)\ρn(λ)

(
gnm

(
dα(m)

rj

))∥∥∥
=
∥∥∥dPσ(∆n)\ρn(λ)

(
gnm

(
α(m)
rj

))∥∥∥ , Lemma 5.4.2

≥
∣∣∣∥∥∥dgnm (α(m)

rk

)∥∥∥− ∥∥∥dPρn(λ) (gnm (α(m)
rj

))∥∥∥∣∣∣
=

∣∣∣∣√λ(m)
rj −

∥∥∥dPρn(λ) (gnm (α(m)
rj

))∥∥∥∣∣∣∣ .
(5.37)
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By Corollary 4.1.4 and since δn → 0, we may take n large enough so that∣∣∣∣∣∣1−
∥∥∥dPρn(λ) (gnm (α(m)

rj

))∥∥∥√
λ
(m)
rj

∣∣∣∣∣∣ ≤ ε2

4µ(λ)2
. (5.38)

Note that ∣∣∣∣∣∣1 +
∥∥∥dPρn(λ) (gnm (α(m)

rj

))∥∥∥√
λ
(m)
rj

∣∣∣∣∣∣ ≤ 2 (5.39)

and so ∣∣∣∣∣∣∣1−
∥∥∥dPρn(λ) (gnm (α(m)

rj

))∥∥∥2
λ
(m)
rj

∣∣∣∣∣∣∣ ≤
ε2

2µ(λ)2
. (5.40)

On the other hand, by Corollary 4.1.4, we can take n large enough so that for all i ∈ κd∗(λ),∣∣∣∣∣ λ(n)ri

λ
(m)
rj

− 1

∣∣∣∣∣ < ε2

2µ(λ)2
. (5.41)

Then,∣∣∣∣∣∣∣
∥∥∥dPρn(λ) (gnm (α(m)

rj

))∥∥∥2
λ
(m)
rj

−
∥∥∥Pd∗,ρn(λ) (gnm (α(m)

rj

))∥∥∥2
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

i∈κd∗ (λ)

a2i

(
λ
(n)
ri

λ
(m)
rj

− 1

)∣∣∣∣∣∣
≤

∑
i∈κd∗ (λ)

a2i

∣∣∣∣∣ λ(n)ri

λ
(m)
rj

− 1

∣∣∣∣∣
<

ε2

2µ(λ)2
.

(5.42)

The last line follows from
∥∥∥α(m)

rj

∥∥∥ = 1. Combining this with (5.40), we get

∣∣∣∣1− ∥∥∥Pd∗,ρn(λ) (gnm (α(m)
rj

))∥∥∥2∣∣∣∣ ≤
∣∣∣∣∣∣∣
∥∥∥dPρn(λ) (gnm (α(m)

rj

))∥∥∥2
λ
(m)
rj

−
∥∥∥Pd∗,ρn(λ) (gnm (α(m)

rj

))∥∥∥2
∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣1−
∥∥∥dPρn(λ) (gnm (α(m)

rj

))∥∥∥2
λ
(m)
rj

∣∣∣∣∣∣∣
<

ε2

µ(λ)2
.

(5.43)
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Observe,

∥∥∥(1− Pd∗,ρn(λ)
) (
gnm

(
α(m)
rj

))∥∥∥ =

dim(ker(∆n))∑
i=1

c2i +
∑

i/∈κd∗n (λ)

a2i +

dim(im(dn))∑
i=1

b2i

 1
2

=

dim(ker(∆n))∑
i=1

c2i +

dim(im(d∗n))∑
i=1

a2i +

dim(im(dn))∑
i=1

b2i −
∑

i∈κd∗n (λ)

a2i

 1
2

=

(
1−

∥∥∥Pd∗,ρn(λ) (gnm (α(m)
rj

))∥∥∥2) 1
2

<
ε

µ(λ)
.

(5.44)
Now fix α(m) ∈ Pd∗,ρm(λ) (H•

m) of unit norm and write∑
j∈κd∗ (λ)

ajα
(m)
rj (5.45)

where each aj ∈ [−1, 1]. We may then apply what has been shown to each summand of
α(m) using the triangle inequality:∥∥∥(1− Pd∗,ρn(λ)

) (
gnm

(
α(m)

))∥∥∥ ≤
∑

j∈κd∗ (λ)

|aj |
∥∥∥(1− Pd∗,ρn(λ)

) (
gnm

(
α(m)
rj

))∥∥∥
<

∑
j∈κd∗ (λ)

|aj |
ε

µ(λ)

≤
∑

j∈κd∗ (λ)

ε

µ(λ)

≤ ε.

(5.46)

The last line follows from the previous by noting that |κd∗(λ)| ≤ µ(λ).

5.5 Example: Truncation of the Spectrum of the Smooth
Laplacian

In this section, we outline a basic example inspired by ideas from renormalization and
effective actions in Quantum Field Theory [36, 35]. The strong deformation retraction
constructed here is similar to and takes cues from Section 7.1 of [35] and Chapter 4 of [33].

Consider a compact orientable Riemmanian manifold M and n large enough so that
λn > 0. Let H• = L2Ω•(M) with inner product coming from the Riemmanian metric.
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and let H•
n =

⊕n
j=0 Eλj . Let G : L2Ω•(M) → L2Ω•(M) be the Green’s operator. Note the

following properties:

1. For m ≤ n, H•
m ⊆ H•

n ⊆ H•. Let gnm : H•
m → H•

n, gn : H•
n → H• be the respective

inclusions. Note that these maps are isometries.

2. d, d∗,∆, G restrict to endomorphisms of H•
n. Define ∆n = ∆

∣∣
H•

n
.

3. G
∣∣
H•

n
restricts to an endomorphism of (gnmH•

m)
⊥.

We aim to show that (H•
n, d,∆n)

∞
n=1 is Cauchy and convergent to (H•, d,∆). For each n,

define
fn = ProjH•

n
,

hn = Proj⊕∞
j=n+1 Eλj

Gd∗ = (1− gnfn)Gd
∗.

(5.47)

The triple (fn, gn, hn) : (H•, d) → (H•
n, d) defines a strong deformation retraction. Observe

that ∥∥∥(1− gng
∗
n) (∆ + 1)−

1
2

∥∥∥ ≤ 1√
λn+1 + 1

,∥∥∥(∆ + 1)−
1
2 gn − gn(∆n + 1)−

1
2

∥∥∥ = 0.

(5.48)

We know that λn+1 → ∞ as n → ∞ and so 1√
λn+1+1

→ 0 as n → ∞. This shows that
(Hn, d,∆n)

∞
n=1 is convergent to (H, d,∆). For m ≤ n, define

fmn = ProjH•
m

∣∣∣
H•

n

,

hn,m = Proj⊕n
j=m+1 Eλj

Gd∗
∣∣
H•

n
= (1− gnmf

m
n )Gd∗

∣∣
H•

n
.

(5.49)

The triple (fmn , g
n
m, hn,m) : (H•

n, d) → (H•
m, d) defines a strong deformation retraction.

Moreover, im (gm) ⊆ im (gn) and g∗ngm = gnm. So, by Proposition 5.2.5, (fmn , gnm, hn,m) is

a
(

1√
λm+1+1

+ 1√
λn+1+1

)
-deformation retraction. Since each gnm is an inclusion, Equation

(5.15) is trivially satisfied and so we see that the sequence is Cauchy.

5.6 Constructing the limit of a Cauchy Sequence of Hilbert
Complexes

In this section, we apply the ideas developed in Chapter 3 to the setting of Hilbert com-
plexes. This is a non-trivial task due to the extra structure of a grading, differential,
codifferential, the Hodge Laplacian being built from these operators, and the Hodge decom-
position. We want the ability to construct d, d∗,∆∞ in the limit such that ∆∞ = (d+ d∗)2,
and aim to describe dom(d), dom (d∗) in such a way that dom (∆∞) ⊆ dom (d)∩dom (d∗).
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Let (H•
n, dn,∆n)

∞
n=1 be a Cauchy sequence. Since elements of differing degree are

orthogonal, apply Section 3.2 to each sequence
(
Hk
n

)∞
n=1

to obtain a limiting Hilbert space
for each degree, Hk

∞. Let
H̃•

∞ =
⊕
k∈Z

H̃k
∞,

H•
∞ =

⊕
k∈Z

Hk
∞.

(5.50)

For each n, take the direct sum of the inclusion maps gn,k : Hk
n → Hk

∞ constructed in
Lemma 3.2.3 to define a map gn : H•

n → H•
∞. I.e. define

gn :=
⊕
k∈Z

gn,k : H•
n → H•

∞, (5.51)

where gn is an isometry because each of the constituent maps gn,k is an isometry. Apply
the results of Section 3.3 with G

1
2
n in place of Gn to construct an operator G̃

1
2∞ on H̃•

∞

defined on (αn)
∞
n=1 ∈ H̃•

∞ via

G̃
1
2∞ ((αn)

∞
n=1) =

(
G

1
2
n (αn)

)∞

n=1

. (5.52)

The arguments of Section 3.3 apply to show that G̃
1
2∞ induces an operator G

1
2∞ on H•

∞ such
that G

1
2∞ ◦ π = πG̃

1
2∞ and ∥∥∥∥G 1

2∞gn − gnG
1
2
n

∥∥∥∥ < δn
2
,∥∥∥∥(1− gng

∗
n)G

1
2∞

∥∥∥∥ < δn
2
.

(5.53)

By definition of G̃∞, G̃
1
2∞, we have

(
G

1
2∞

)2

= G∞. Following the argument of Lemma 3.3.5,

construct the self-adjoint operator (∆∞ + 1)
1
2 on H•

∞ with dom
(
(∆∞ + 1)

1
2

)
= im

(
G

1
2∞

)
such that

(
(∆∞ + 1)

1
2

)2
= ∆∞ + 1.

A tempting approach for the definition of d is to define it on H̃•
∞ via

(αn)
∞
n=1 7→ (dαn)

∞
n=1 . (5.54)

Without restricting the domain of d, this approach will fail since it is not clear that if

lim
m→∞

sup
n≥m

‖αn − gnm (αm)‖ = 0 (5.55)
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then,
lim
m→∞

sup
n≥m

‖dαn − gnm (dαm)‖ = 0. (5.56)

Moreover, dK 6⊆ K in general. We elect to take a slightly more obscure path towards
defining d which will provide a concise domain of definition and result in the same map
as above on its domain. As an overview, we define Dn = dG

1
2
n for each n, show that this

induces a well-defined degree +1 map D̃∞ on H̃•
∞ which induces a map D∞ on H•

∞, and
finally define d = D∞ (∆∞ + 1)

1
2 on dom

(
(∆∞ + 1)

1
2

)
⊆ H•

∞.

Lemma 5.6.1. For all n, ‖Dn‖ ≤ 1.

Proof. Let α ∈ H•
n be a unit and write

α =

ker(∆n)∑
i=1

ciγ
(n)
i +

dim(im(d∗n))∑
i=1

aiα
(n)
ri +

dim(im(dn))∑
i=1

biβ
(n)
si . (5.57)

We know that d maps each αri to
√
λ
(n)
ri βsj for some j and also that G

1
2
nαri =

1√
1+λ

(n)
ri

αri .

So,

‖Dn(α)‖2 =

∥∥∥∥∥∥Dn

ker(∆n)∑
i=1

ciγ
(n)
i +

dim(im(d∗n))∑
i=1

aiα
(n)
ri +

dim(im(dn))∑
i=1

biβ
(n)
si

∥∥∥∥∥∥
2

=

dim(im(d∗n))∑
i=1

a2i

√
λri√

1 + λri

≤
dim(im(d∗n))∑

i=1

a2i

≤ ‖α‖2 .

(5.58)

So, ‖Dn‖ ≤ 1.

Lemma 5.6.2. The map D̃∞ :
⋃
n∈N im (g̃n) ⊆ H̃•

∞ → H̃•
∞ given by

D̃∞ (αn)
∞
n=1 = (Dn(αn))

∞
n=1 (5.59)

is a well-defined degree +1 map. Moreover,

D̃∞

(⋃
n∈N

im (g̃n) ∩K

)
⊆ K. (5.60)

Proof. Fix m ∈ N and let α ∈ H•
m with unit norm. We want to show that D̃∞ is well
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defined on g̃m (α) = (gnm(α))
∞
n=m ∈ H̃•

∞. To do this, we will show that for every ε > 0, and
n ∈ N sufficiently large,

sup
k≥n

∥∥∥Dkg
k
n (g

n
m(α))− gkn (Dng

n
m(α))

∥∥∥ < ε. (5.61)

The setting is summarized in the following diagram:

. . . Ht−1
m Ht

m Ht+1
m . . .

. . . Ht−1
n Ht

n Ht+1
n . . .

. . . Ht−1
k Ht

k Ht+1
k . . .

Dm

d

Dm

d

gnm
Dm

d

gnm
Dm

d

gnm

Dn

d

Dn

d

gkn
Dn

d

gkn

Dn

d

gkn

Dk

d

Dk

d

Dk

d

Dk

d

By Equation (5.15) and discreteness of σ (∆∞), we may select B ∈ R+ \ σ (∆∞) and
n ∈ N large enough so that for all k ≥ n,∥∥∥P[B,∞)g

k
m

∥∥∥ < ε

3
. (5.62)

By taking n larger if necessary, we can ensure that for all k ≥ n,

1.
∥∥∥∥G 1

2
k g

k
n − gknG

1
2
n

∥∥∥∥ < ε
3
√
B(1+|κ([0,B))|) . This is valid because |κ([0, B))| < ∞ by Theo-

rem 4.1.3.

2. ρk ([0, B)) ⊆ [0, B) and ρk ([B,∞)) ∩ [0, B] = ∅. We can do this by Theorem 4.1.1,
Corollary 4.1.4, and our assumption that B /∈ σ (∆∞).

For each k ≥ m, write

gkm(α) =

ker(∆n)∑
i=1

c
(k)
i γ

(k)
i +

dim(im(d∗n))∑
i=1

a
(k)
i α(k)

ri +

dim(im(dn))∑
i=1

b
(k)
i β(k)si . (5.63)

Notice that DkP[B,∞) = P[B,∞)Dk since Dk = dG
1
2
k has the same eigenspaces as ∆k. Now
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observe

sup
k≥n

∥∥∥Dkg
k
m(α)− gkn (Dng

n
m(α))

∥∥∥ ≤ sup
k≥n

∥∥∥P[0,B)

(
Dkg

k
m(α)− gkn (Dng

n
m(α))

)∥∥∥
+
∥∥∥P[B,∞)Dkg

k
m(α)

∥∥∥+ ∥∥P[B,∞)Dng
n
m(α)

∥∥
= sup

k≥n

∥∥∥P[0,B)

(
Dkg

k
m(α)− gkn (Dng

n
m(α))

)∥∥∥
+
∥∥∥DkP[B,∞)g

k
m(α)

∥∥∥+ ∥∥DnP[B,∞)g
n
m(α)

∥∥
≤ sup

k≥n

∥∥∥P[0,B)

(
Dkg

k
m(α)− gkn (Dng

n
m(α))

)∥∥∥+ 2

3
ε,

(5.64)

where the last line follows from Lemma 5.6.1 and Equation (5.62). Now, by assumption 2
above,

P[0,B) (H•
k) ⊆

⊕
λ
(k)
n ∈ρk([0,B))

E
λ
(k)
i

=
⊕

i∈κ([0,B))

E
λ
(k)
i

(5.65)

and
max ρk ([0, B)) ≤ B. (5.66)

So,

sup
k≥n

∥∥∥P[0,B)

(
Dkg

k
m(α)− gkn (Dng

n
m(α))

)∥∥∥ ≤ sup
k≥n

∥∥∥∥∥∥
∑

i∈κ([0,B))

(
G

1
2
k g

k
n − gknG

1
2
n

)(
a
(n)
i dα(n)

ri

)∥∥∥∥∥∥
≤ sup

k≥n

∥∥∥∥G 1
2
k g

k
n − gknG

1
2
n

∥∥∥∥ ∑
i∈κ([0,B))

∣∣∣a(n)i

∣∣∣√λ(n)i

<
ε
√
B|κ([0, B))|

3
√
B(1 + |κ([0, B))|)

, since each
∣∣∣a(n)i

∣∣∣ ≤ 1

<
ε

3
.

(5.67)
Thus,

sup
k≥n

∥∥∥Dkg
k
m(α)− gkn (Dng

n
m(α))

∥∥∥ < ε (5.68)

and so D̃∞ is well defined on
⋃
n∈N im (g̃n). Now, for

α ∈
⋃
n∈N

im (g̃n) ∩K (5.69)
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we have
∥∥∥D̃∞(α)

∥∥∥ ≤ ‖α‖ = 0 by Lemma 5.6.1 and so

D̃∞(α) ∈ K. (5.70)

Lemma 5.6.3. D̃∞ induces a continuous map D∞ on H•
∞ with dom (D∞) = H•

∞.

Proof. Lemma 5.6.2 implies that D̃∞ induces a map D∞ on H•
∞ with⋃

n∈N
im(gn) ⊆ dom (D∞) (5.71)

and so D∞ is densely defined. Lemma 5.6.1 implies that ‖D∞‖ ≤ 1 and thus D∞ is
continuous. Consequently, we may continuously extend D∞ to be well defined on all of
H•

∞.

Definition 5.6.4. Define d : H•
∞ → H•

∞ by

d = (∆∞ + 1)
1
2 D∞ (5.72)

and observe that
d∗ = D∗

∞ (∆∞ + 1)
1
2 . (5.73)

Lemma 5.6.5. The following are true of d:

1.
⋃
n∈N im (gn) ⊆ dom(d).

2. D∞G
1
2∞ = G

1
2∞D∞.

3. dom (∆∞) ⊆ dom(d).

4. d (dom (∆∞)) ⊆ dom
(
(∆∞ + 1)

1
2

)
⊆ dom(d).

5. im(d) ⊆ ker(d).
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Proof. We verify the claims in order. Let α ∈ H•
n, then

D∞gn(α) = π
(
D̃∞g̃n(α)

)
= π

((
Dkg

k
n (α)

)∞
k=n

)
= π

((
dG

1
2
k g

k
n (α)

)∞

k=n

)
= π

((
G

1
2
k g

k
n (dα)

)∞

k=n

)
= π

(
G̃

1
2∞ (g̃n (dα))

)
= G

1
2∞ (gn (dα)) .

(5.74)

We know that im
(
G

1
2∞

)
= dom

(
(∆∞ + 1)

1
2

)
and so D∞gn(α) ∈ dom

(
(∆∞ + 1)

1
2

)
,

implying that gn(α) ∈ dom(d).
Now let α ∈ H•

∞, pick (αn)
∞
n=1 ∈ π−1 (α). Then,

D∞G
1
2∞α = π

((
DnG

1
2
nαn

)∞

n=1

)
= π

((
dG

1
2
nG

1
2
nαn

)∞

n=1

)
= π

((
G

1
2
ndG

1
2
nαn

)∞

n=1

)
= G

1
2∞D∞α.

(5.75)

Since dom (∆∞) = im (G∞), the above shows that D∞ (dom (∆∞)) ⊆ dom (∆∞). Since
dom (∆∞) ⊆ dom

(
(∆∞ + 1)

1
2

)
, we have that dom (∆∞) ⊆ dom(d). Moreover,

(∆∞ + 1)
1
2 (dom (∆∞)) ⊆ dom

(
(∆∞ + 1)

1
2

)
(5.76)

and so
d (dom (∆∞)) ⊆ dom

(
(∆∞ + 1)

1
2

)
. (5.77)
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For α ∈ dom
(
(∆∞ + 1)

1
2

)
, (αn)∞n=1 ∈ π−1(α) ∩ dom

((
∆̃∞ + 1

) 1
2

)
, we have

D∞ (∆∞ + 1)
1
2 α = π

((
Dn (∆n + 1)

1
2 αn

)∞
n=1

)
= π

((
dG

1
2
n (∆n + 1)

1
2 αn

)∞

n=1

)
= π

((
(∆n + 1)

1
2 dG

1
2
nαn

)∞

n=1

)
= (∆∞ + 1)

1
2 D∞α

= dα.

(5.78)

This implies that dom
(
(∆∞ + 1)

1
2

)
⊆ dom(d).

For the final claim, let α ∈ dom(d), (αn)∞n=1 ∈ π−1(α)∩dom
((

∆̃∞ + 1
) 1

2
D̃∞

)
. Then,

D∞dα = D∞ (∆∞ + 1)
1
2 D∞α

= π

((
dG

1
2
n (∆n + 1)

1
2 dG

1
2
nαn

)∞

n=1

)
= π

((
d2G

1
2
nαn

)∞

n=1

)
= 0

(5.79)

and so D∞dα = 0 ∈ dom
(
(∆∞ + 1)

1
2

)
, implying that im(d) ⊆ ker(d).

Lemma 5.6.6. d is a closed operator.

Proof. Recall that (∆∞ + 1)
1
2 is self-adjoint, thus closed while D∞ is continuous and so

d = (∆∞ + 1)
1
2 D∞ is closed.

The above allows us to conclude that (H•
∞, d) is a Hilbert complex and we turn our

attention to the codifferential map d∗. Because D∞ is bounded, the adjoint operator D∗
∞

is bounded and defined everywhere. Thus, d∗ is well defined on dom
(
(∆∞ + 1)

1
2

)
. In

particular, by Lemma 5.6.5,

dom (∆∞) ⊆ dom (d) ∩ dom (d∗) (5.80)
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Moreover, G
1
2∞D∗

∞ = D∗
∞G

1
2∞ and so, for α ∈ H•

∞,

d∗G∞(α) = D∗
∞ (∆∞ + 1)

1
2 G∞(α)

= D∗
∞G

1
2∞(α)

= G
1
2∞D

∗
∞(α)

(5.81)

This implies that

d∗ (dom (∆∞)) ⊆ dom
(
(∆∞ + 1)

1
2

)
⊆ dom(d). (5.82)

On the other hand, Lemma 5.6.5 tells us

d (dom (∆∞)) ⊆ dom
(
(∆∞ + 1)

1
2

)
⊆ dom (d∗) . (5.83)

So, (d+ d∗)2 is defined on all of dom (∆∞). By Lemma 3.3.5 and the remarks above, we
have (d+ d∗)2 = ∆∞ as expected.

Lemma 5.6.7. We have the following orthogonal decomposition:

H•
∞ = ker (∆∞)⊕ im(d)⊕ im (d∗) , (5.84)

where im(d) and im (d∗) are closed. Moreover,

ker (∆∞) = ker (d) ∩ ker (d∗) . (5.85)

Proof. Suppose α ∈ ker (∆∞). Then,

0 = 〈∆∞α, α〉

= 〈dd∗α, α〉+ 〈d∗dα, α〉

= ‖d∗α‖2 + ‖dα‖2 .

(5.86)

This implies ker (∆∞) = ker(d) ∩ ker (d∗). Moreover, for all β ∈ dom(d),

〈α, dβ〉 = 〈d∗α, β〉 = 0. (5.87)

So ker (∆∞) is orthogonal to im(d) and similarly, ker (∆∞) is orthogonal to im (d∗). In
summary,

im(d)⊕ im (d∗) ⊆ ker (∆∞)⊥ . (5.88)
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Now suppose α ∈ H•
∞ is an eigenvector corresponding to eigenvalue λ > 0. Then,

α =
1

λ
(dd∗α+ d∗dα) ∈ im(d)⊕ im (d∗) . (5.89)

So,
im (∆∞) ⊆ im(d)⊕ im (d∗) . (5.90)

Fix α ∈ ker (∆∞)⊥ and write

α =
∞∑
j=1

ajϕj , (5.91)

where each aj ∈ R and the collection (ϕj)
∞
j=1 form an orthonormal eigenbasis for dom (∆∞)∩

ker (∆∞)⊥ (corresponding to the non-zero eigenvalues). Theorem 4.1.3 implies that the
number of eigenvalues (with multiplicity) in σ (∆∞) ∩ (0, 1) is finite and so the following
definition is valid:

α′ =
∞∑
j=1

aj
λj
ϕj ∈ H•

∞. (5.92)

For each n, define

αn =
n∑
j=1

aj
λj
ϕj ∈ dom (∆∞) . (5.93)

Observe that
αn → α′, (5.94)

since the λj are written in non-decreasing order, while

∆∞(αn) =

n∑
j=1

ajϕj → α. (5.95)

Recall that ∆∞ is a closed operator and so the above implies α′ ∈ dom (∆∞) and ∆∞(α′) =

α. This implies that
ker (∆∞)⊥ ⊆ im (∆∞) . (5.96)

On the other hand, for β ∈ ker (∆∞) and α ∈ dom (∆∞),

〈β,∆∞α〉 = 〈∆∞β, α〉 = 0. (5.97)

So,
ker (∆∞)⊥ = im (∆∞) = im(d)⊕ im (d∗) (5.98)

which implies that im(d) ⊕ im (d∗) is closed. Since im(d), im (d∗) are orthogonal, we have
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that each subspace is closed. In conclusion,

H•
∞ = ker (∆∞)⊕ ker (∆∞)⊥

= ker (∆∞)⊕ im(d)⊕ im (d∗) .
(5.99)

Note that µ(0) <∞ and so Lemma 5.6.7 tells us that (H•
∞, d) is a Fredholm complex.

We aim to construct strong deformation retractions (fm, gm, hm) : (H•
∞, d,∆∞) →

(H•
m, d,∆m) for each n to show that (H•

n, d,∆n)
∞
n=1 is convergent to (H•

∞, d,∆∞). We
will proceed by defining each fm, hm on

⋃
n∈N im(gm). Let α ∈

⋃
n∈N im(gm) and write

α = gℓ (β) for β ∈ H•
ℓ , ` ∈ N. Define

fm (α) =

fmℓ (β) if ` > m,

gmℓ (β) if ` ≤ m,
(5.100)

and

hm (α) =

gℓ (hℓ,m(β)) if ` > m,

0 if ` ≤ m.
(5.101)

By Proposition 5.2.8, if the sequence (H•
n, d,∆n)

∞
n=1 is convergent to (H•

∞, d,∆∞), then it
must be that there exists an n-independent spectral gap in each σ(∆n). So, in order for
(fm, gm, hm) to be a strong deformation retraction, we must assume this property of the
sequence.

Proposition 5.6.8. If the sequence of spectra σ(∆n) possesses a spectral gap in the sense
that

lim
n→∞

minσ (∆n) \ {0} > 0 (5.102)

then, (fm, gm, hm) : (H•
∞, d,∆∞) → (H•

m, d,∆m) is a strong deformation retraction.

Proof. We must verify the numbered conditions under 5.2.1. We already know that gm is
a cochain map with dom(gm) = H•

m and that im(gm) ⊆ dom(fm). To see that fm is a
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cochain map, let α ∈
⋃
n∈N im(gm) where α = gℓ(β). First assume ` > m, then

dfm (α) = dfmℓ (β)

= fmℓ (dβ)

= fm (gℓ (dβ))

= fm (dgℓ (β))

= fm (dα)

(5.103)

and so fm is a cochain map. Since gm is a cochain map, we have that for ` > m,

(dhm + hmd) (α) = dgℓ (hℓ,m(β)) + hmdgℓ(β)

= gℓ (dhℓ,m(β)) + gℓ (hℓ,m(dβ))

= gℓ (dhℓ,m + hℓ,md) (β)

= gℓ

(
1− gℓmf

m
ℓ

)
(β)

= (1− gmfm) (α).

(5.104)

For ` ≤ m,
(dhm + hmd) (α) = 0

= α− gℓ(β)

= α− gmg
m
ℓ (β)

= (1− gmfm) (α).

(5.105)

The relation fmgm = 1 is immediate from the definition as is hmgm = 0. To see that
fmhm = 0, let α ∈

⋃
n∈N im(gm) where α = gℓ(β) and suppose first that ` > m. Then,

fmhm (α) = fmgℓ (hℓ,m (β))

= fmℓ hℓ,m (β)

= 0.

(5.106)

If ` ≤ m, then hm (α) = 0 and so fmhm (α) = 0.
To see that (dom(fm), d) has cohomology isomorphic to (H•

∞, d), note first that the
existence of a strong deformation retraction from (dom(fm), d) to (H•

m, d) implies an iso-
morphism on the level of cohomology and so it suffices to show that the cohomology of
(H•

∞, d) is isomorphic to that of (H•
m, d) for any m. We will do this by showing that the

dimension of the cohomology groups are equal in each degree.
For each degree i, we know that the dimension of the cohomology in degree i is equal

to the dimension of the harmonic forms in degree i. In particular, the dimension of the
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cohomology in degree i of (H•
∞, d) is equal to the multiplicity of 0 as an eigenvalue of

∆∞
∣∣
Hi

∞
and likewise for (H•

m, d). Let

L =
1

2
min

(
d (σ (∆∞) \ {0} , 0) , lim

m→∞
d (σ (∆m) \ {0} , 0)

)
. (5.107)

By our assumption on the existence of a spectral gap and for m large enough,

σ (∆m) ∩BL(0) = {0} . (5.108)

We know that
(
Hi
n,∆n

∣∣
Hi

n

)∞
n=1

is Cauchy and converges to
(
Hi

∞,∆∞
∣∣
Hi

∞

)
. Theorem

4.1.1 tells us that, by taking m large enough, we obtain

dim im
(
P
∆m

∣∣∣
Hi

m
,BL(0)

)
= dim im

(
P
∆∞

∣∣∣
Hi∞

,BL(0)

)
. (5.109)

The left hand side corresponds to the multiplicity of 0 as an eigenvalue of ∆m

∣∣
Hi

m
while the

right hand side corresponds to the multiplicity of 0 as an eigenvalue of ∆∞
∣∣
Hi

∞
. This implies

that the cohomology groups of
(
Hi

∞, d
)

and
(
Hi
m, d

)
are isomorphic and so (fm, gm, hm)

is a strong deformation retraction.

Due to the remarks at the beginning of this section, the arguments from Chapter
3 along with Proposition 5.6.8 show that the existence of a spectral gap implies that
(H•

n, dn,∆n)
∞
n=1 converges to (H•

∞, d,∆∞).
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Chapter 6

Application: Simplicial
Approximation of the Hodge
Laplacian

Let M be a compact orientable Riemannian manifold without boundary. Consider the
Hilbert complex

(
L2Ω•(M), d

)
where the inner product is induced by the Riemannian

metric and d is the closure of the exterior derivative on smooth forms. In this chapter, we
will exhibit an approximation scheme (H•

n, d,∆n)
∞
n=1 of

(
L2Ω•(M), d,∆

)
which exhibits

convergence and is also Cauchy. The Hilbert spaces of this sequence will be given by
cochain complexes of triangulations of M (to be defined momentarily) equipped with inner
products and should be thought of as discrete approximations of Ω•(M). The work in
this section serves to add structure that provides computational insight into the results of
[14, 15, 50].

A method similar to the notion of convergence defined in Section 2.1 was used to study
convergence of the discrete Hodge-Dirac operator on the square lattice hZn as h→ 0 in [34].
In addition, in Chapter 5 of [37], Müller shows that the resolvent of the discrete Green’s
operator converges to that of the Green’s operator on L2Ω•(M). While these references
were not explicitly used in the preparation of this section, they were useful as indicators
of the validity of our approach.

6.1 Background and Notation for Simplicial Complexes

We begin by recalling the basics of simplicial complexes from Chapter 2 of [19] and Chapter
5 of [31]. This section mostly serves to establish notation.

Definition 6.1.1 (Section 2.1 [19]). For n ∈ N, an n-simplex, alternatively a simplex of di-
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mension n, is the convex hull of a collection of n+1 distinct points v0, . . . , vn in a Euclidean
space. We impose the further constraint that the collection v1 − v0, v2 − v0, . . . , vn − v0 is
linearly independent. The points v0, . . . , vn are referred to as the vertices of the simplex
and we denote the corresponding n-simplex by [v0, . . . , vn].

For 0 ≤ k < n, a k-face of an n-simplex is the convex hull of a size k + 1 subset of its
vertices.

The standard n-simplex, denoted ∆n, is the n-simplex given by [0, e1, . . . , en] where ei
is the ith standard basis vector in Rn.

Definition 6.1.2 (Chapter 5 [31]). Given an n-simplex [v0, . . . , vn] and x ∈ [v0, . . . , vn], x
can be written as

x =

n∑
i=0

tivi, (6.1)

where each ti ∈ [0, 1] and are such that

n∑
i=0

ti = 1. (6.2)

We refer to the numbers ti as the barycentric coordinates of x. The last n barycentric
coordinates yield a homeomorphism [v0, . . . , vn] ∼= ∆n and a diffeomorphism from the
interior of [v0, . . . , vn] to the interior of ∆n.

Definition 6.1.3. A simplicial complex, K, in RN is a finite set of simplices such that

1. Each simplex is contained in RN .

2. Every face of every simplex in K is contained in K.

3. The intersection of any two simplices of K is either empty or a face of both.

We will denote the set of n-simplices of K by Kn.

Notice that a simplicial complex determines a subset of RN via the union over all
simplices. We will freely regard simplicial complexes in this way in order to avoid the
notions of geometric realization or abstract simplicial complexes. We will also assume that
K0 possesses a linear order.

Definition 6.1.4. The associated chain complex on K is the linear span of simplices
with coefficients in R, C•(K), equipped with grading given by simplex dimension and the
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differential ∂ defined via

∂[v0, . . . , vn] =

n∑
i=0

(−1)i[v0, . . . , vi−1, v̂i, vi+1, . . . , vn]. (6.3)

We will also account for orientation of simplices by dictating that for any permutation
σ ∈ Sn,

[v0, . . . , vn] = sign(σ) · [vσ(0), vσ(1), . . . , vσ(n)]. (6.4)

The cochain complex (C•(K), d) is given by the dual of (C•(K), ∂).

6.2 Subdivision Algorithms for a Simplicial Complex

Definition 6.2.1 (Adapted from Definition 2.22 [30]). Given a simplicial complex K and
simplex σ ∈ K, the stellar subdivision of K with respect to σ, ?σK, is the simplicial
complex produced by the following algorithm:

1. Start with ?σK = ∅.

2. Let vσ be the barycenter of σ and let (?σK)0 = K0 ∪ {vσ}. If σ is itself a vertex,
then vσ = σ, and we terminate the algorithm with ?σK = K.

3. For each τ = [vi0 , . . . , vik ] ∈ Kk,

(a) If σ is not a face of τ :

i. Add τ to (?σK)k.
ii. If there exists β ∈ K such that τ and σ are faces of β, then add [vσ, vi0 , . . . , vik ]

to (?σK)k.

(b) If σ is a face of τ , do nothing.

Example 6.2.2. Let K be the following simplicial complex:

v3

v0 v1
�
�
�
�
�
�

v2

where [v0, v1, v2] and [v0, v2, v3] are present in K. The stellar subdivision of K with respect
to σ := [v0, v2] yields the following complex:
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v3

v0 v1
�
�
�
�
�
�

v2

@
@

@
@

@
@

v(0,2)

The definitions to follow and proofs of their properties are paraphrased from [1]. Enu-
merate the vertices of K, v0, v1, . . . .

Definition 6.2.3 (Definition 4.0.2 [1]). Fix a k-simplex σ = [vi0 , vi1 , . . . , vik ] ∈ K. Define
the stellar inclusion map iσ : C•(K) → C•(?σK) by

iσ([vj0 , . . . , vjℓ ]) =

[vj0 , . . . , vjℓ ] if {j0, . . . , jℓ} 6⊇ {i0, . . . , ik} ,∑
ji∈{i0,...,ik}(−1)i[v⋆, vj0 , . . . , v̂ji , . . . , vjℓ ] else.

(6.5)

To see that iσ is a chain map, if {j0, . . . , jℓ} 6⊃ {i0, . . . , ik}, then no subset of {j0, . . . , jℓ}
contains {i0, . . . , ik} and so

∂iσ ([vj0 , . . . , vjℓ ]) = iσ (∂[vj0 , . . . , vjℓ ]) . (6.6)
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Now suppose {j0, . . . , jℓ} ⊇ {i0, . . . , ik} and behold,

∂iσ ([vj0 , . . . , vjℓ ]) = ∂
∑

ji∈{i0,...,ik}

(−1)i[v⋆, vj0 , . . . , v̂ji , . . . , vjℓ ]

=
∑

ji∈{i0,...,ik}

(−1)i[vj0 , . . . , v̂ji , . . . , vjℓ ]

−
∑

ji∈{i0,...,ik}

∑
ji′∈{i0,...,ik}

i<i′

(−1)i+i
′
[v⋆, vj0 , . . . , v̂ji , . . . , v̂ji′ , . . . , vjℓ ]

−
∑

ji∈{i0,...,ik}

∑
ji′∈{i0,...,ik}

i>i′

(−1)i+i
′−1[v⋆, vj0 , . . . , v̂ji′ , . . . , v̂ji , . . . , vjℓ ]

−
∑

ji∈{i0,...,ik}

∑
ji′ /∈{i0,...,ik}

i<i′

(−1)i+i
′
[v⋆, vj0 , . . . , v̂ji , . . . , v̂ji′ , . . . , vjℓ ]

−
∑

ji∈{i0,...,ik}

∑
ji′ /∈{i0,...,ik}

i>i′

(−1)i+i
′−1[v⋆, vj0 , . . . , v̂ji′ , . . . , v̂ji , . . . , vjℓ ]

=
∑

ji∈{i0,...,ik}

(−1)i[vj0 , . . . , v̂ji , . . . , vjℓ ]

−
∑

ji∈{i0,...,ik}

∑
ji′ /∈{i0,...,ik}

i<i′

(−1)i+i
′
[v⋆, vj0 , . . . , v̂ji , . . . , v̂ji′ , . . . , vjℓ ]

−
∑

ji∈{i0,...,ik}

∑
ji′ /∈{i0,...,ik}

i>i′

(−1)i+i
′−1[v⋆, vj0 , . . . , v̂ji′ , . . . , v̂ji , . . . , vjℓ ]

= iσ

 ∑
ji∈{i0,...,ik}

(−1)i[vj0 , . . . , v̂ji , . . . , vjℓ ]


+ iσ

 ∑
ji′ /∈{i0,...,ik}

(−1)i
′
[v⋆, vj0 , . . . , v̂ji′ , . . . , vjℓ ]


= iσ (∂[vj0 , . . . , vjℓ ]) .

(6.7)

Definition 6.2.4 (Definition 4.0.3 [1]). Define the stellar projection map pσ : C•(?σ∆
n) →

C•(∆
n) by

pσ([vj0 , . . . , vjℓ ]) = [vj0 , . . . , vjℓ ],

pσ([v⋆, vj0 , . . . , vjℓ ]) =
1

k + 1

∑
α∈{i0,...,ik}\{j0,...,jℓ}

[vα, vj0 , . . . , vjℓ ].
(6.8)

To see that p is a chain map, we turn our attention to the second case of the definition,
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since the verification of the first is trivial. Observe,

∂pσ ([v⋆, vj0 , . . . , vjℓ ]) =
1

k + 1
∂

∑
α∈{i0,...,ik}\{j0,...,jℓ}

[vα, vj0 , . . . , vjℓ ]

=
|{i0, . . . , ik} \ {j0, . . . , jℓ}|

k + 1
[vj0 , . . . , vjℓ ]

− 1

k + 1

∑
α∈{i0,...,ik}\{j0,...,jℓ}

ℓ∑
t=0

(−1)t[vα, vj0 , . . . , v̂jt , . . . , vjℓ ]

=
|{i0, . . . , ik} \ {j0, . . . , jℓ}|+ |{i0, . . . , ik} ∩ {j0, . . . , jℓ}|

k + 1
[vj0 , . . . , vjℓ ]

− 1

k + 1

ℓ∑
t=0

∑
α∈{i0,...,ik}\{j0,...,jt−1,jt+1,...,jℓ}

(−1)t[vα, vj0 , . . . , v̂jt , . . . , vjℓ ]

= [vj0 , . . . , vjℓ ]

− 1

k + 1

ℓ∑
t=0

∑
α∈{i0,...,ik}\{j0,...,jt−1,jt+1,...,jℓ}

(−1)t[vα, vj0 , . . . , v̂jt , . . . , vjℓ ]

= pσ (∂[v⋆, vj0 , . . . , vjℓ ]) .

(6.9)

Definition 6.2.5 (Definition 4.0.4 [1]). Define the map aσ : C•(?σ∆
n) → C•+1(?σ∆

n) by

aσ([vj0 , . . . , vjℓ ]) = 0,

aσ([v⋆, vj0 , . . . , vjℓ ]) =

0 if | {i0, . . . , ik} \ {j0, . . . , jℓ} | = 1,

− 1
k+1

∑
α∈{i0,...,ik}\{j0,...,jℓ}[v⋆, vα, vj0 , . . . , vjℓ ] else.

(6.10)

Theorem 6.2.6 (Theorem 4.0.1 [1]). The following relations hold:

1. a2σ = 0.

2. pσ ◦ aσ = aσ ◦ iσ = 0.

3. pσ ◦ iσ = 1.

4. ∂aσ + aσ∂ = 1− iσ ◦ pσ.

Proof. We will verify the properties in the order listed above. To see that a2σ = 0, consider
{j0, . . . , jℓ} such that

|{i0, . . . , ik} \ {j0, . . . , jℓ}| ≥ 2. (6.11)
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In all other cases, aσ([j0, . . . , jℓ]) = 0 and so the result is trivial. So,

a2σ ([v⋆, vj0 , . . . , vjℓ ]) = − 1

k + 1

∑
α∈{i0,...,ik}\{j0,...,jℓ}

a ([v⋆, vα, vj0 , . . . , vjℓ ])

=
1

(k + 1)2

∑
α∈{i0,...,ik}\{j0,...,jℓ}

∑
α′∈{i0,...,ik}\{j0,...,jℓ,α}

[v⋆, vα′ , vα, vj0 , . . . , vjℓ ]

= 0.

(6.12)

Next, we will show that pσ ◦ aσ = 0. Continue with the assumption that

|{i0, . . . , ik} \ {j0, . . . , jℓ}| ≥ 2. (6.13)

Then,

pσ (aσ ([v⋆, vj0 , . . . , vjℓ ])) = − 1

k + 1

∑
α∈{i0,...,ik}\{j0,...,jℓ}

p ([v⋆, vα, vj0 , . . . , vjℓ ])

= − 1

(k + 1)2

∑
α∈{i0,...,ik}\{j0,...,jℓ}

∑
α′∈{i0,...,ik}\{j0,...,jℓ,α}

[vα′ , vα, vj0 , . . . , vjℓ ]

= 0.

(6.14)

To see that aσ ◦ iσ = 0, consider {j0, . . . , jℓ} ⊇ {i0, . . . , ik} since in the other case, the
result is obvious. Observe,

aσ (iσ ([j0, . . . , jℓ])) =
∑

ji∈{i0,...,ik}

(−1)iaσ ([v⋆, vj0 , . . . , v̂ji , . . . , vjℓ ])

= 0.

(6.15)

Next, we check that pσiσ = 1. For {j0, . . . , jℓ} 6⊇ {i0, . . . , ik}, it is clear that

pσiσ ([vj0 , . . . , vjℓ ]) = [vj0 , . . . , vjℓ ]. (6.16)

For {j0, . . . , jℓ} ⊇ {i0, . . . , ik},

pσ (iσ ([vj0 , . . . , vjℓ ])) = pσ

 ∑
ji∈{i0,...,ik}

(−1)i[v⋆, vj0 , . . . , v̂ji , . . . , vjℓ ]


=

1

k + 1

∑
ji∈{i0,...,ik}

(−1)i
∑

α∈{i0,...,ik}\{j0,...,ji−1,ji+1,...,jℓ}

[vα, vj0 , . . . , v̂ji , . . . , vjℓ ]

= [vj0 , . . . , vjℓ ].

(6.17)
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Finally, we verify the homotopy relation ∂aσ + aσ∂ = 1 − iσ ◦ pσ. For
[vj0 , . . . , vjℓ ] ∈ ?σK, iσpσ ([vj0 , . . . , vjℓ ]) = [vj0 , . . . , vjℓ ] and, by what we have shown above,
(∂aσ + aσ∂) [vj0 , . . . , vjℓ ] = 0. It remains to check the relation on [v⋆, vj0 , . . . , vjℓ ]. Suppose
first that {i0, . . . , ik} \ {j0, . . . , jℓ} = {im}. Then,

iσpσ ([v⋆, vj0 , . . . , vjℓ ]) =
1

k + 1

∑
α∈{i0,...,ik}\{j0,...,jℓ}

iσ ([vα, vj0 , . . . , vjℓ ])

=
1

k + 1
iσ([vim , vj0 , . . . , vjℓ ])

=
1

k + 1

[v⋆, vj0 , . . . , vjℓ ]−
∑

ji∈{i0,...,ik}

(−1)i[v⋆, vim , vj0 , . . . , v̂ji , . . . , vjℓ ]

 .

(6.18)

On the other hand,

(∂aσ + aσ∂)[v⋆, vj0 , . . . , vjℓ ] = aσ∂[v⋆, vj0 , . . . , vjℓ ]

= aσ

(
[vj0 , . . . , vjℓ ]−

ℓ∑
t=0

(−1)ta ([v⋆, vj0 , . . . , v̂jt , . . . , vjℓ ])

)
= −

∑
ji∈{i0,...,ik}

(−1)ia ([v⋆, vj0 , . . . , v̂ji , . . . , vjℓ ])

=
1

k + 1

∑
ji∈{i0,...,ik}

(−1)i[v⋆, vim , vj0 , . . . , v̂ji , . . . , vjℓ ]

+
k

k + 1
[v⋆, vj0 , . . . , vjℓ ]

= (1− iσpσ)[v⋆, vj0 , . . . , vjℓ ].

(6.19)
Now suppose that |{i0, . . . , ik} \ {j0, . . . , jℓ}| ≥ 2 and observe,

iσpσ ([v⋆, vj0 , . . . , vjℓ ]) =
1

k + 1

∑
α∈{i0,...,ik}\{j0,...,jℓ}

iσ ([vα, vj0 , . . . , vjℓ ])

=
1

k + 1

∑
α∈{i0,...,ik}\{j0,...,jℓ}

[vα, vj0 , . . . , vjℓ ]

(6.20)
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and on the other hand

(∂aσ + aσ∂) ([v⋆, vj0 , . . . , vjℓ ])

= − 1

k + 1

∑
α∈{i0,...,ik}\{j0,...,jℓ}

∂[v⋆, vα, vj0 , . . . , vjℓ ]

−
ℓ∑
t=0

(−1)taσ ([v⋆, vj0 , . . . , v̂ji , . . . , vjℓ ])

= −iσpσ([v⋆, vj0 , . . . , vjℓ ]) +
|{i0, . . . , ik} \ {j0, . . . , jℓ}|

k + 1
[v⋆, vj0 , . . . , vjℓ ]

− 1

k + 1

ℓ∑
t=0

(−1)t
∑

α∈{i0,...,ik}\{j0,...,jℓ}

[v⋆, vα, vj0 , . . . , v̂jt , . . . , vjℓ ]

+
1

k + 1

ℓ∑
t=0

(−1)t
∑

α∈{i0,...,ik}\{j0,...,jt−1,jt+1,jℓ}

[v⋆, vα, vj0 , . . . , v̂jt , . . . , vjℓ ]

= (1− iσpσ) ([v⋆, vj0 , . . . , vjℓ ]).

(6.21)

To define maps on cochains, take duals. Define gσ := p∗σ, fσ := i∗σ, hσ := a∗σ. These
maps are given explicitly below and come from Definitions 4.0.5, 4.0.6, 4.0.7 of [1].

fσ

(
δ[vj0 ,...,vjℓ ]

)
= δ[vj0 ,...,vjℓ ]

,

fσ

(
δ[v⋆,vj0 ,...,vjℓ ]

)
=

δ[vim ,vj0 ,...,vjℓ ] if {i0, . . . , ik} \ {j0, . . . , vjℓ} = {im} ,

0 else.

(6.22)

gσ

(
δ[vj0 ,...,vjℓ ]

)
=


δ[vj0 ,...,vjℓ ]

+ 1
k+1

∑
ji∈{i0,...,ik}(−1)iδ[v⋆,vj0 ,...,v̂ji ,...,vjℓ ]

if {vj0 , . . . , vjℓ} 6⊃ {i0, . . . , ik} ,
1

k+1

∑
ji∈{i0,...,ik}(−1)iδ[v⋆,vj0 ,...,v̂ji ,...,vjℓ ]

else.

(6.23)

hσ

(
δ[vj0 ,...,vjℓ ]

)
= 0,

hσ

(
δ[v⋆,vj0 ,...,vjℓ ]

)
= − 1

k + 1

∑
jt∈{i0,...,ik}∩{j0,...,jℓ}

(−1)tδ[v⋆,vj0 ,...,v̂jt ,...,vjℓ ]
.

(6.24)

Corollary 6.2.7 (Theorem 4.0.2 [1]). The package of maps (fσ, gσ, hσ) is a strong defor-
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mation retraction (C•(?σK), d) → (C• (K) , d).

6.3 Triangulations of Manifolds

Definition 6.3.1 (Chapter IV Section 12 [49]). A smooth triangulation of M is a pair
(K,φ) where K is a simplicial complex and φ : K → M is a homeomorphism with the
property that for each σ ∈ K, there is a chart (χσ, Uσ) such that φ(σ) ⊆ Uσ ⊆ M and
(χσφ)

∣∣
σ

is affine. We will refer to such a chart as a simplicial chart.

Theorem 6.3.2 (Chapter IV Section 12 Theorem 12A [49]). Every smooth manifold has
a smooth triangulation.

Definition 6.3.3 (Chapter 2 [16]). Given a simplicial complex K, a simplicial differential
k-form on K is a family {ϕσ}σ∈K of forms ϕσ ∈ Ωk

(
∆dim(σ)

)
such that for a face of τ ≤ σ

with inclusion map ι : τ → σ, we have ι∗ (ϕσ) = ϕτ . Define Ω•(K) to be the collection
of simplicial forms. Equipped with the de Rham differential d, (Ω•(K), d) is a cochain
complex.

Let K be a smooth triangulation of M . We will adopt a relaxed approach to notation
where each σ ∈ K is regarded as a subset of M when required. Each simplicial differential
form on K defines an L2 form on M and conversely each smooth form on M defines a
simplicial differential form on K. Furthermore, for the subdivision ?σK, each simplicial
form on K is also a simplicial form on ?σK. In other words, we may identify the spaces
like so:

Ω•(M) ⊆ Ω•(K) ⊆ Ω• (?σK) ⊆ L2Ω•(M). (6.25)

Since Ω•(M) is dense in L2Ω•(M), so is Ω•(K). The cohomology of Ω•(M) is isomorphic
to the cohomology of L2Ω•(M) and (Chapter 9.5 [23]) isomorphic to the cohomology of
Ω•(K).

Define the integration map RK : Ω•(K) → C• (K) for α ∈ Ω•(K) and σ ∈ K via

RK(α)(σ) =

∫
σ
α. (6.26)

Note that RK is densely defined, is a cochain map by Stokes’ Theorem, and is also a
surjection. Barycentric coordinates with non-zero restrictions to a face τ of σ restrict to
barycentric coordinates of τ . This observation allows us to construct the Whitney cochain
embedding map WK : C• (K) → Ω•(K) defined for σ ∈ K of dimension k as follows:

WK (δσ) = k!

k∑
j=0

(−1)jtjdt0 ∧ · · · ∧ dtj−1 ∧ dtj+1 ∧ · · · ∧ dtk. (6.27)
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Note that WK is an injective cochain map such that RKWK = 1. Moreover, there exists
sK ∈ End−1 (Ω•(K)), known as the Dupont homotopy [16], such that

(RK ,WK , sK) : (Ω•(K), d) → (C• (K) , d) (6.28)

is a strong deformation retraction of Hilbert complexes. Several technical details of this
are exhibited in [9].

6.4 Subdivision of a Triangulation

We now connect the ideas of Sections 6.2 and 6.3 by describing the affect of subdivision
on the triangulation K.

Theorem 6.4.1 (Theorem 6.0.1 [1]). For σ ∈ K, W⋆σK◦g⋆σ =WK and f⋆σ ◦R⋆σK
∣∣
Ω•(K)

=

RK .

(Ω•(K), d) (Ω• (?σK) , d)

(C•(K), d) (C•(?σK), d)

(RK ,WK ,sK) (R⋆σK ,W⋆σK ,s⋆σK)

(fσ ,gσ ,hσ)

Figure 6.1: A diagram depicting the setting of Theorem 6.4.1, where the arrow at the top
is the inclusion given by Equation 6.25.

It should be noted here that sK 6= (W⋆σKhR⋆σK + s⋆σK)
∣∣
Ω•(K)

(see Theorem 6.0.2 [1]).

The papers [14, 15, 50] use a subdivision algorithm, called Whitney standard subdivision
(Appendix II of [49]), that is slightly more sophisticated than stellar subdivision.

Definition 6.4.2 (Section 4, Appendix II of [49], Section 2 [14]). Let K = ∆n, the
simplicial complex on the standard n-simplex. Suppose K ⊆ RN . The Whitney Standard
Subdivision of K is the simplicial complex ?K formed as follows:

1. Enumerate the vertices of ∆n, v0, . . . , vn ∈ RN .

2. For each i ≤ j, define vi,j = vi+vj
2 . Notice that vi,i = vi.

3. Define a partial ordering on the set of vi,j as follows:

vi,j ≤ vh,k, if h ≤ i and j ≤ k. (6.29)
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4. Define

?K =
{
[vi0,j0 , vi1,j1 , . . . , viℓ,jℓ ] ⊆ RN : vi0,j0 < vi1,j1 < · · · < viℓ,jℓ

}
(6.30)

Note that for a k-simplex σ ∈ ∆n, the k-faces of ?∆n contained in σ form ?σ. By
construction, there are 2k such faces. This allows us to define the Whitney Standard Sub-
division of an arbitrary simplicial complex K by applying Whitney Standard Subdivision
to each simplex of K.

Example 6.4.3. Let K = ∆2:

v0 v1
�
�
�
�
�
�

v2

.

The Whitney standard subdivision of K, ?K, is given by

v0 v1
�
�
�
�
�
�

v2

@
@

@
v(0,2)

v(0,1)

v(1,2)

.

Denote by ?nK, the simplicial complex formed by applying n iterations of Whitney
standard subdivision. Proposition B.0.1 in Appendix B shows that Whitney standard
subdivision decomposes as a sequence of stellar subdivisions. Since strong deformation
retractions are composable, the stellar subdivision strong deformation retractions provide
strong deformation retractions between iterations m < n of Whitney subdivision:

(fmn , g
n
m, hn,m) : (C

• (?nK) , d) → (C• (?mK) , d) , (6.31)

with the consistency conditions W⋆nKg
n
m =W⋆mK and fmn R⋆nK

∣∣
Ω•(⋆mK)

= R⋆mK given by
Theorem 6.4.1. For ease of notation, write (Rn,Wn, sn) to signify (R⋆nK ,W⋆nK , s⋆nK).

Pull back the inner product on L2Ω•(M) to C• (?nK) via Wn to endow C• (?nK)

with a Hilbert space structure and define the discrete Hodge Laplacian ∆n := (d+ d∗)2

on C• (?nK). The aim of the remainder of this chapter is to show that the sequence
(C• (?nK) , d,∆n)

∞
n=1 is convergent to

(
L2Ω•(M), d,∆

)
using the strong deformation re-

tractions (Rn,Wn, sn) : (Ω• (?nK) , d) → (C• (?nK) , d) and that (C• (?nK) ,∆n)
∞
n=1 is
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Cauchy using the strong deformation retractions (fmn , g
n
m, hn,m) : (C• (?nK) , d,∆n) →

(C• (?mK) , d,∆m). The remainder of this section is devoted to showing some properties
of triangulation subdivision which will be useful after our main proofs.

Definition 6.4.4. The mesh of ?nK, ηn, is defined to be

ηn := sup
[vi0 ,vi1 ]∈(⋆nK)1

r(vi0 , vi1), (6.32)

where r(vi0 , vi1) is the geodesic distance between vi0 and vi1 in M .

By definition, the Euclidean distance between each vi0 and vi1 in ?nK is halved at each
step of Whitney subdivision. For each σ ∈ K, the simplicial charts and equivalence of
norms in Euclidean space tells us that ηn ∼ 2−n.

Lemma 6.4.5 (Lemma 7.22 [15]). There exist constants c1, c2 > 0 independent of K and
n such that for α ∈ Cq (?nK),

c1η
2q−N
n ‖Wnα‖2 ≤ |||α|||2 ≤ c2η

2q−N
n ‖Wnα‖2 . (6.33)

where |||·||| is the norm arising from the standard L2 inner product on cochains i.e. from

〈〈δτ , δγ〉〉 =

1 if τ = γ,

0 else.
(6.34)

Lemma 6.4.6. There exists C ∈ R such that for each n ∈ N,∥∥∥fn−1
n

∣∣
Cq(⋆nK)

∥∥∥ < √
C2N−q. (6.35)

Proof. Let α ∈ Cq (?nK) have unit norm and write

α =
∑

σ∈(⋆nK)q

aσδσ. (6.36)
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Observe,

∥∥fn−1
n (α)

∥∥2 =
∥∥∥∥∥∥

∑
σ∈(⋆nK)q

aσf
n−1
n (δσ)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥
∑

σ′∈(⋆n−1K)q

∑
σ∈(⋆nK)q

fn−1
n (δσ)=δσ′

aσδσ′

∥∥∥∥∥∥∥∥∥∥

2

≤
ηN−2q
n−1

c1

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
∑

σ′∈(⋆n−1K)q

∑
σ∈(⋆nK)q

fn−1
n (δσ)=δσ′

aσδσ′

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2

, by Lemma 6.4.5

≤
ηN−2q
n−1

c1

∑
σ′∈(⋆n−1K)q


∑

σ∈(⋆nK)q
fn−1
n (δσ)=δσ′

aσ


2

≤
ηN−2q
n−1

c1

∑
σ′∈(⋆n−1K)q

∣∣∣{σ ∈ (?nK)q : fn−1
n (δσ) = δσ′

}∣∣∣ ∑
σ∈(⋆nK)q

fn−1
n (δσ)=δσ′

a2σ.

(6.37)

For σ′ ∈
(
?n−1K

)
q
, the set

{
σ ∈ (?nK)q : fn−1

n (δσ) = δσ′

}
consists of σ ∈ (?nK)q such

that σ ⊂ σ′. By the definition of Whitney standard subdivision, there are 2q such σ and
thus ∣∣∣{σ ∈ (?nK)q : fn−1

n (δσ) = δσ′

}∣∣∣ = 2q. (6.38)
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Proceeding with our computation, we have

∥∥fn−1
n (α)

∥∥2 = ηN−2q
n−1

c1
2q

∑
σ∈(⋆nK)q

a2σ

=
ηN−2q
n−1

c1
2q

∑
σ∈(⋆nK)q

|||aσδσ|||2

=
ηN−2q
n−1

c1
2q

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑

σ∈(⋆nK)q

aσδσ

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ c2
c1

(
ηn−1

ηn

)N−2q

2q

∥∥∥∥∥∥
∑

σ∈(⋆nK)q

aσδσ

∥∥∥∥∥∥
2

, by Lemma 6.4.5

=
c2
c1

(
ηn−1

ηn

)N−2q

2q ‖α‖2

≤ C · 2N−q.

(6.39)

The last line follows from ηn ∼ 2−n.

6.5 Simplicial Approximation of Hodge Theory Through Tri-
angulation Subdivision

We will need a few facts from [14, 15] in order to show convergence. Enumerate σ (∆n) in
non-decreasing order,

(
λ
(n)
j

)
j∈N

, and do the same for σ (∆), (λj)j∈N.

Theorem 6.5.1 (Corollary 3.27 [14]). For α ∈ Ω•(M),

lim
n→∞

‖(1−WnRn)α‖ = 0. (6.40)

Theorem 6.5.2 (Theorem 3.7 [15]). For fixed j,

lim
n→∞

λ
(n)
j = λj . (6.41)

Theorem 6.5.3. Fix an eigenvalue λ of ∆ and recall from Definition 4.2.1 that

ρn(λ) =
{
λ
(n)
j ∈ σ(∆n) : λj = λ

}
. (6.42)

For each α ∈ Eλ and ε > 0, there exists N ∈ N such that for n ≥ N , there exists
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α(n) ∈
⊕

λ(n)∈ρn(λ) E
(n)

λ(n) with ∥∥∥α−Wn

(
α(n)

)∥∥∥ < ε. (6.43)

Proof. This is an immediate corollary of Theorem 4.4 of [15] by Remark 4.8 of [15].

Corollary 6.5.4. Fix an orthonormal basis α1, . . . , αµ(λ) ∈ Eλ. Then, for each ε > 0 there
exists N ∈ N such that for all n ≥ N , there is an orthonormal basis α(n)

1 , . . . , α
(n)
µ(λ) ∈⊕

λ(n)∈ρn(λ) E
(n)

λ(n) with ∥∥∥αj −Wn

(
α
(n)
j

)∥∥∥ < ε. (6.44)

Proof. Let δ = min
(

ε
2(1+6(µ(λ)−1)) ,

1
2

)
. For each 1 ≤ j ≤ µ(λ), apply Theorem 6.5.3 to

obtain Nj ∈ N and α′
j
(n) with

∥∥∥αj −Wn

(
α′
j
(n)
)∥∥∥ < δ for each n ≥ Nj . Since δ < 1, we

know that each α′
j
(n) 6= 0. Let N = maxj=1,...,µ(λ)Nj and take n ≥ N . We will proceed

using the Gram-Schmidt algorithm to produce an orthogonal collection α′′
1
(n), . . . , α′′

µ(λ)
(n),

then normalize to obtain an orthonormal basis α(n)
1 , . . . , α

(n)
µ(λ) and argue the desired bound.

Let

α′′
1
(n)

= α′
1
(n) −

µ(λ)∑
j=2

〈
α′
1
(n), α′

j
(n)
〉

∥∥∥α′
j
(n)
∥∥∥2 α′

j
(n)
. (6.45)

Observe that for j > 1,∣∣∣〈α′
1
(n)
, α′

j
(n)
〉∣∣∣ = ∣∣∣〈α′

1
(n)
, α′

j
(n)
〉∣∣∣− ∣∣∣〈Wn

(
α′
1
(n)
)
, αj

〉∣∣∣+ ∣∣∣〈Wn

(
α′
1
(n)
)
− α1, αj

〉∣∣∣
<
∣∣∣〈Wn

(
α′
1
(n)
)
,Wn

(
α′
j
(n)
)〉∣∣∣− ∣∣∣〈Wn

(
α′
1
(n)
)
, αj

〉∣∣∣+ δ

≤
∣∣∣〈Wn

(
α′
1
(n)
)
,Wn

(
α′
j
(n)
)
− αj

〉∣∣∣+ δ

≤
∥∥∥Wn

(
α′
1
(n)
)∥∥∥∥∥∥Wn

(
α′
j
(n)
)
− αj

∥∥∥+ δ

< δ
(∥∥∥Wn

(
α′
1
(n)
)∥∥∥+ 1

)
≤ δ

(∥∥∥Wn

(
α′
1
(n)
)
− α1

∥∥∥+ ‖α1‖+ 1
)

< δ (δ + 2) .

(6.46)
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Then, ∥∥∥∥∥∥∥
µ(λ)∑
j=2

〈
α′
1
(n), α′

j
(n)
〉

∥∥∥α′
j
(n)
∥∥∥2 α′

j
(n)

∥∥∥∥∥∥∥ ≤
µ(λ)∑
j=2

δ (δ + 2)∥∥∥α′
j
(n)
∥∥∥

≤
µ(λ)∑
j=2

δ (δ + 2)

‖αj‖ −
∥∥∥αj −Wn

(
α′
j
(n)
)∥∥∥

≤
µ(λ)∑
j=2

δ (δ + 2)

1− 1
2

= 2δ (δ + 2) (µ(λ)− 1) ,

(6.47)

and so

∥∥∥α1 −Wn

(
α′′
1
(n)
)∥∥∥ ≤

∥∥∥α1 −Wn

(
α′
1
(n)
)∥∥∥+

∥∥∥∥∥∥∥
µ(λ)∑
j=2

〈
α′
1
(n), α′

j
(n)
〉

∥∥∥α′
j
(n)
∥∥∥2 α′

j
(n)

∥∥∥∥∥∥∥
< δ + 2δ (δ + 2) (µ(λ)− 1)

<
ε

2
.

(6.48)

Now define α(n)
1 =

α′′
1
(n)∥∥∥α′′

1
(n)

∥∥∥ and observe:

∥∥∥α1 −Wn

(
α
(n)
1

)∥∥∥ ≤
∥∥∥α1 −Wn

(
α′′
1
(n)
)∥∥∥+ ∥∥∥α′′

1
(n) − α

(n)
1

∥∥∥
<
ε

2
+
∣∣∣1− ∥∥∥α′′

1
(n)
∥∥∥∣∣∣

=
ε

2
+
∣∣∣‖α1‖ −

∥∥∥α′′
1
(n)
∥∥∥∣∣∣

≤ ε

2
+
∥∥∥α1 −Wn

(
α′′
1
(n)
)∥∥∥

< ε.

(6.49)

Proceed with the Gram-Schmidt algorithm, repeating the above process for α′
2
(n), . . . , α′

µ(λ)
(n).

The proof that
∥∥∥α1 −Wn

(
α
(n)
1

)∥∥∥ < ε applies to show that
∥∥∥αj −Wn

(
α
(n)
j

)∥∥∥ < ε for each
j.

It is important to notice that in Corollary 6.5.4, it is not necessarily the case that each
α
(n)
j is an eigenvector of ∆n. This property will be important in the work to follow and so

the following result addresses this deficiency while providing a similar approximation result.
There is a key difference in the set-up: Informally, Corollary 6.5.4 takes an orthonormal
basis for Eλ as input and outputs an orthonormal basis

⊕
λ(n)∈ρ(λ) E

(n)

λ(n) with the given
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approximation property, while the next result takes as input an orthonormal eigenbasis of⊕
λ(n)∈ρ(λ) E

(n)

λ(n) and outputs an orthonormal basis for Eλ satisfying the same approximation
property. The idea for this Corollary comes from Theorem 1.3 (b) of [2] where a similar
claim is made, albeit less precisely, and the proof is not provided.

Corollary 6.5.5. Fix ε > 0. Then, there exists N ∈ N such that for n ≥ N and any
orthonormal eigenbasis α(n)

1 , . . . , α
(n)
µ(λ) ∈

⊕
λ(n)∈ρn(λ) E

(n)

λ(n) , there exists an orthonormal
basis α1, . . . , αµ(λ) ∈ Eλ such that for all j = 1, . . . , µ(λ),∥∥∥αj −Wn

(
α
(n)
j

)∥∥∥ < ε. (6.50)

Proof. Fix an orthonormal basis ϕ1, . . . , ϕµ(λ) ∈ Eλ. Apply Corollary 6.5.4 to obtain N ∈ N
and an orthonormal basis α′(n)

1 , . . . , α′(n)
µ(λ) ∈

⊕
λ(n)∈ρn(λ) E

(n)

λ(n) for each n ≥ N such that for
all j = 1, . . . , µ(λ), ∥∥∥ϕj −Wn

(
α′(n)
j

)∥∥∥ < ε

µ(λ)
. (6.51)

Fix n ≥ N and any orthonormal eigenbasis α(n)
1 , . . . , α

(n)
µ(λ) ∈

⊕
λ(n)∈ρn(λ) E

(n)

λ(n) . For each
j = 1, . . . , µ(λ), write

α
(n)
j =

µ(λ)∑
k=1

bj,kα
′(n)
k , (6.52)

where each bj,k ∈ [−1, 1], since α(n)
j has unit norm. Now, define

αj =

µ(λ)∑
k=1

bj,kϕk. (6.53)

Notice that for 1 ≤ i, j ≤ µ(λ),

〈αi, αj〉 =
µ(λ)∑
k=1

bi,kbj,k

=
〈
α
(n)
i , α

(n)
j

〉
=

1 if i = j,

0 else,

(6.54)

94



which proves that α1, . . . , αµ(λ) is an orthonormal basis for Eλ. Finally,

∥∥∥αj −Wn

(
α
(n)
j

)∥∥∥ =

∥∥∥∥∥∥
µ(λ)∑
k=1

bj,k

(
ϕk −Wn

(
α′(n)
k

))∥∥∥∥∥∥
≤

µ(λ)∑
k=1

|bj,k|
∥∥∥ϕk −Wn

(
α′(n)
k

)∥∥∥
<

µ(λ)∑
k=1

|bj,k|
ε

µ(λ)

≤ ε.

(6.55)

6.6 Simplicial Approximation as a Cauchy Sequence

We will first show that the sequence (C• (?nK) , d,∆n)
∞
n=1 is convergent to

(
L2Ω•(M), d,∆

)
under the strong deformation retractions (Rn,Wn, hn) :

(
L2Ω•(M), d,∆

)
→ (C• (?nK) , d,∆n).

Notice that by definition, each Wn is an isometry. It then remains to be shown that each
Wn is a δn-isometry for δn → 0 as n→ ∞.

Lemma 6.6.1. Fix ε > 0, then there exists N large enough so that for n ≥ N ,∥∥∥(1−WnW
∗
n) (∆ + 1)−

1
2

∥∥∥ < ε. (6.56)

Proof. Let α1, α2, · · · ∈ Ω•(M) be an orthornormal eigenbasis of ∆ for L2Ω•(M) where αj
is an eigenvector corresponding to eigenvalue λj . Fix ε > 0. Because (λj)

∞
j=1 is increasing

and unbounded, we may take T ∈ N large enough such that for all j ≥ T , 1√
λj+1

< ε
2 .

Then, using Theorem 6.5.1, take N ∈ N large enough so that for each n ≥ N and j < T ,

‖(1−WnRn)αj‖ <
ε

2T
(6.57)
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Let β ∈ L2Ω•(M) have unit norm. Write β =
∑

j≥1 ajαj . Observe,

∥∥∥(1−WnW
∗
n) (∆ + 1)−

1
2 β
∥∥∥ =

∥∥∥∥∥∥(1−WnW
∗
n)
∑
j≥1

aj√
λj + 1

αj

∥∥∥∥∥∥
≤

∥∥∥∥∥∥(1−WnW
∗
n)

T−1∑
j=1

aj√
λj + 1

αj

∥∥∥∥∥∥+
∥∥∥∥∥∥(1−WnW

∗
n)

∞∑
j=T

aj√
λj + 1

αj

∥∥∥∥∥∥
<

∥∥∥∥∥∥(1−WnW
∗
n)

T−1∑
j=1

aj√
λj + 1

αj

∥∥∥∥∥∥+ ε

2

∥∥∥∥∥∥
∞∑
j=T

ajαj

∥∥∥∥∥∥
≤

∥∥∥∥∥∥(1−WnW
∗
n)

T−1∑
j=1

aj√
λj + 1

αj

∥∥∥∥∥∥+ ε

2
.

(6.58)

By Lemma 2.1.4, we see that∥∥∥∥∥∥(1−WnW
∗
n)

T−1∑
j=1

aj√
λj + 1

αj

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥(1−WnRn)
T−1∑
j=1

aj√
λj + 1

αj

∥∥∥∥∥∥
≤

T−1∑
j=1

|aj |√
λj + 1

‖(1−WnRn)αj‖ .

(6.59)

Since β is a unit, we have each |aj | ≤ 1 and since 1√
λj+1

≤ 1, and so the above quantity
can be further bounded:

T−1∑
j=1

|aj |√
λj + 1

‖(1−WnRn)αj‖ ≤
T−1∑
j=1

‖(1−WnRn)αj‖

≤ ε

2
.

(6.60)

In summary, we have shown that for any β ∈ L2Ω•(M) of unit norm,∥∥∥(1−WnW
∗
n) (∆ + 1)−

1
2 β
∥∥∥ < ε (6.61)

and so we are done.

Lemma 6.6.2. Fix ε > 0, then there exists N large enough so that for n ≥ N ,∥∥∥(∆ + 1)−
1
2 Wn −Wn (∆n + 1)−

1
2

∥∥∥ < ε. (6.62)
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Proof. Pick T ∈ N large enough such that

1√
λT + 1

<
ε

8
(6.63)

and λT < λT+1. Apply Theorem 6.5.2 to obtain N large enough such that for all j ≤ T

and n ≥ N , ∣∣∣∣∣∣ 1√
λj + 1

− 1√
λ
(n)
j + 1

∣∣∣∣∣∣ < ε

8T
. (6.64)

Apply Corollary 6.5.5 to each of the distinct eigenvalues in (λj)
T
j=1 and take N larger if

necessary so that for fixed n ≥ N , we obtain an orthonormal eigenbasis α1, . . . , αT for⊕T
j=1 Eλj of ∆ and an orthonormal eigenbasis α(n)

1 , . . . , α
(n)
T for

⊕T
j=1 Eλ(n)

j

of ∆n such that
for each j = 1, . . . T , ∥∥∥αj −Wn

(
α
(n)
j

)∥∥∥ < ε

8T
. (6.65)

Extend (α1, . . . , αT ) to an eigenbasis (αj)∞j=1 for L2Ω•(M) of ∆ and extend
(
α
(n)
1 , . . . , α

(n)
T

)
to an eigenbasis

(
α
(n)
j

)∞
j=1

for C• (?nK) of ∆n. Let β ∈ C• (?nK) have unit norm. Write

β =
∑

j≥1 a
(n)
j α

(n)
j where a(n)j ∈ R and also write β = β≤T + β>T where

β≤T =
∑
j≤T

a
(n)
j α

(n)
j , β>T =

∑
j>T

a
(n)
j α

(n)
j . (6.66)

Use this decomposition to split the quantity that we aim to bound:∥∥∥((∆ + 1)−
1
2 Wn −Wn (∆n + 1)−

1
2

)
(β)
∥∥∥ ≤

∥∥∥((∆ + 1)−
1
2 Wn −Wn (∆n + 1)−

1
2

)
(β≤T )

∥∥∥
+
∥∥∥((∆ + 1)−

1
2 Wn −Wn (∆n + 1)−

1
2

)
(β>T )

∥∥∥ .
(6.67)

We will bound each summand separately. First,∥∥∥((∆ + 1)−
1
2 Wn −Wn (∆n + 1)−

1
2

)
(β≤T )

∥∥∥
≤

∥∥∥∥∥∥(∆ + 1)−
1
2

∑
j≤T

a
(n)
j αj

−Wn (β≤T )

∥∥∥∥∥∥
+

∥∥∥∥∥∥(∆ + 1)−
1
2

∑
j≤T

a
(n)
j αj

−Wn (∆n + 1)−
1
2 (β≤T )

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑
j≤T

a
(n)
j

(
αj −Wn

(
α
(n)
j

))∥∥∥∥∥∥+
∥∥∥∥∥∥
∑
j≤T

a
(n)
j

 αj√
λj + 1

−
Wn

(
α
(n)
j

)
√
λ
(n)
j + 1

∥∥∥∥∥∥ .

(6.68)
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Notice here that ‖β‖ = 1 implies each
∣∣∣a(n)j

∣∣∣ ≤ 1 and so we get

∥∥∥∥∥∥
∑
j≤T

a
(n)
j

(
αj −Wn

(
α
(n)
j

))∥∥∥∥∥∥+
∥∥∥∥∥∥
∑
j≤T

a
(n)
j

 αj√
λj + 1

−
Wn

(
α
(n)
j

)
√
λ
(n)
j + 1

∥∥∥∥∥∥
≤
∑
j≤T

∥∥∥αj −Wn

(
α
(n)
j

)∥∥∥+∑
j≤T

∥∥∥∥∥∥ αj√
λj + 1

−
Wn

(
α
(n)
j

)
√
λ
(n)
j + 1

∥∥∥∥∥∥
<
ε

8
+
∑
j≤T

∥∥∥∥∥∥ αj√
λj + 1

−
Wn

(
α
(n)
j

)
√
λ
(n)
j + 1

∥∥∥∥∥∥
=
ε

8
+
∑
j≤T

∣∣∣∣∣∣ 1√
λj + 1

− 1√
λ
(n)
j + 1

∣∣∣∣∣∣+ 1√
λ
(n)
j + 1

∥∥∥αj −Wn

(
α
(n)
j

)∥∥∥
<
ε

4
+
∑
j≤T

∥∥∥αj −Wn

(
α
(n)
j

)∥∥∥
<
ε

2
.

(6.69)

For the second summand,∥∥∥((∆ + 1)−
1
2 Wn −Wn (∆n + 1)−

1
2

)
(β>T )

∥∥∥ ≤
∥∥∥(∆ + 1)−

1
2 Wn (β>T )

∥∥∥
+
∥∥∥Wn (∆n + 1)−

1
2 (β>T )

∥∥∥
≤
∥∥∥(∆ + 1)−

1
2 Wn (β>T )

∥∥∥
+

1√
λ
(n)
T + 1

‖β>T ‖

≤
∥∥∥(∆ + 1)−

1
2 Wn (β>T )

∥∥∥+ 1√
λT + 1

+

∣∣∣∣∣∣ 1√
λT + 1

− 1√
λ
(n)
T + 1

∣∣∣∣∣∣
<
∥∥∥(∆ + 1)−

1
2 Wn (β>T )

∥∥∥+ ε

4
.

(6.70)

We aim to show that
∥∥∥(∆ + 1)−

1
2 Wn (β>T )

∥∥∥ < ε
4 . Write Wn (β>T ) =

∑
t≥1 btαt and
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observe that since
∥∥∥∑t≥1 btαt

∥∥∥ = ‖Wn (β>T )‖ ≤ 1, we have

∥∥∥(∆ + 1)−
1
2 Wn (β>T )

∥∥∥ =

∥∥∥∥∥∥(∆ + 1)−
1
2

∑
t≥1

btαt

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑
t≤T

btαt

∥∥∥∥∥∥+ 1√
λT + 1

∥∥∥∥∥∑
t>T

btαt

∥∥∥∥∥
<

∥∥∥∥∥∥
∑
t≤T

btαt

∥∥∥∥∥∥+ ε

8
.

(6.71)

To bound
∥∥∥∑t≤T btαt

∥∥∥, observe that for t ≤ T ,

|bt| = ‖〈Wn (β>T ) , αt〉‖

=
∥∥∥〈Wn (β>T ) , αt −Wn

(
α
(n)
t

)〉∥∥∥ , since t ≤ T

≤
∥∥∥αt −Wn

(
α
(n)
t

)∥∥∥ , by Cauchy-Schwarz

<
ε

8T
.

(6.72)

So, ∥∥∥∥∥∥
∑
t≤T

btαt

∥∥∥∥∥∥ <
∑
t≤T

( ε

8T

)2 1
2

<
ε

4
. (6.73)

In summary, we have proven the following:

Theorem 6.6.3. The sequence (C• (?nK) , d,∆n)
∞
n=1 is convergent to

(
L2Ω•(M), d,∆

)
.

Corollary 6.6.4. The sequence (C• (?nK) , d,∆n)
∞
n=1 is Cauchy and strong deformation

retractions witnessing this are given by

(fmn , g
n
m, hn,m) : (C

• (?nK) , d,∆n) → (C• (?mK) , d,∆m) . (6.74)

Proof. Fix ε > 0. Theorem 6.6.3 tells us that we can take N ∈ N large enough so that
for n ≥ m ≥ N , (Rn,Wn, sn) and (Rm,Wm, sm) are ε

2 -deformation retractions. We know
that (fmn , g

n
m, hn,m) is a strong deformation retraction and that Wm = Wng

n
m, implying

im (Wm) ⊆ im (Wn). Moreover,

W ∗
nWm =W ∗

nWng
n
m = gnm. (6.75)
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By Proposition 5.2.5, gnm satisfies Equation (5.10) for ε and so (fmn , g
n
m, hn,m) is a ε-

deformation retraction. By applying Proposition 3.1.2, we see that (C• (?nK) ,∆n)
∞
n=1

is Cauchy through the strong deformation retractions given by

(fmn , g
n
m, hn,m) : (C• (?nK) , d,∆n) → (C• (?mK) , d,∆m) . (6.76)

Corollary 6.6.4 and Lemma 6.4.6, gives us access to the Hodge decomposition approx-
imation results of Section 5.3. Moreover, Section 5.6 implies that

(
L2Ω•(M), d,∆

)
can be

constructed using (C•(M), d,∆n)
∞
n=1. This is interesting in light of previous works inves-

tigating the consistency of the codifferential map d∗ [46, 3]. Namely, for α ∈ Ω•(M), one
might ask if the following quantity is bounded above by a function that is decreasing in n:

‖d∗α−Wnd
∗Rn(α)‖ . (6.77)

It is shown in [3], through experimental techniques, that this is not the case in general.
However, the results in this thesis show that the data necessary to construct the continuum
codifferential are present in the sequence of discretizations (C•(M), d,∆n)

∞
n=1.
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Appendix

A Spectral Projections

In this section, we prove Theorems 2.2.3 and 4.1.1. Theorem 2.2.3 and its proof are
essentially restatements of Theorem A.7 and its proof in [38], with cosmetic modifications
in order to conform with our notation.

Theorem 4.1.1 is based on ideas from the statements of Proposition 4.3.1 in [39] and,
equivalently, Theorem A.11 in [38]. As remarked in Section 4.1, the proofs of this result in
[39, 38] contain mistakes and so Theorem 4.1.1 is our best attempt at salvaging the result.
To do this, we used ideas from the statements and proofs of Theorems 4.1.5, 4.2.9, 4.2.10,
Proposition 4.3.1 in [39] and Theorem A.7, A.8, A.11 in [38].

Theorem A.0.1 (Theorem A.7 [38]). Let ψ : R+ → R be continuous and let ε > 0. Then,
there exists δψ,ε > 0 such that for all δ ≤ δψ,ε, (H,∆), (H′,∆′), g : H → H′ with ‖g‖ = 1

and
∥∥∥(∆′ + 1)−1 g − g (∆ + 1)−1

∥∥∥ < δ,

∥∥ψ (∆′) g − gψ (∆)
∥∥ < ε. (78)

Proof. Note that ψ ◦ ϕ−1 ∈ C0([0, 1]) (where ϕ comes from Equation (2.31)). Apply the
Stone-Weierstrass theorem to ψ ◦ ϕ−1, obtaining a polynomial

p(λ) =

n∑
k=0

akλ
k (79)
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such that
∥∥p− ψ ◦ ϕ−1

∥∥
∞ < ε

4 . This implies that ‖p ◦ ϕ− ψ‖∞ < ε
4 and so

∥∥ψ (∆′) g − gψ (∆)
∥∥ ≤

∥∥(ψ − p ◦ ϕ)
(
∆′) g − g (ψ − p ◦ ϕ) (∆)

∥∥
+
∥∥(p ◦ ϕ) (∆′) g − g (p ◦ ϕ) (∆)

∥∥
≤
∥∥(ψ − p ◦ ϕ)

(
∆′) g∥∥

+ ‖g (ψ − p ◦ ϕ) (∆)‖

+
∥∥(p ◦ ϕ) (∆′) g − g (p ◦ ϕ) (∆)

∥∥
≤
∥∥(ψ − p ◦ ϕ)

(
∆′)∥∥

+ ‖(ψ − p ◦ ϕ) (∆)‖

+
∥∥(p ◦ ϕ) (∆′) g − g (p ◦ ϕ) (∆)

∥∥
≤ ε

2
+
∥∥(p ◦ ϕ) (∆′) g − g (p ◦ ϕ) (∆)

∥∥ .

(80)

We turn our attention to bounding the second summand and employ the proof of Lemma
4.2.8 in [39] in noting that for k ∈ N

(
∆′ + 1

)−k
g − g (∆ + 1)−k =

k∑
j=1

(
∆′ + 1

)−k+j ((
∆′ + 1

)−1
g − g (∆ + 1)−1

)
(∆ + 1)1−j .

(81)
Hence,

∥∥(p ◦ ϕ) (∆′) g − g (p ◦ ϕ) (∆)
∥∥ =

∥∥∥∥∥
n∑
k=0

ak

((
∆′ + 1

)−k
g − g (∆ + 1)−k

)∥∥∥∥∥
≤

n∑
k=0

|ak|
∥∥∥(∆′ + 1

)−k
g − g (∆ + 1)−k

∥∥∥
=

n∑
k=0

|ak|
k∑
j=1

∥∥∥(∆′ + 1
)−k+j∥∥∥ ∥∥∥(∆′ + 1

)−1
g − g (∆ + 1)−1

∥∥∥ ∥∥∥(∆ + 1)1−j
∥∥∥

≤
n∑
k=0

|ak|kδ.

(82)

Suppose
0 < δ <

ε

2
∑n

k=1 |ak|k
. (83)

Notice that the denominator of the upper bound on δ is dependent on ε but not δ, (H,∆),
or (H′,∆′). Then, ∥∥ψ (∆′) g − gψ (∆)

∥∥ < ε. (84)
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Using this Theorem, we were able to prove Theorem 2.2.4 which says that if (Hn,∆n)
∞
n=1

converges to (H∞,∆∞), then d (σ (∆n) , σ (∆∞)) → 0.

Theorem A.0.2. Suppose that (Hn,∆n)
∞
n=1 converges to (H∞,∆∞). Then, for each finite

closed interval I with
∂+I ∩ σ (∆∞) = ∅, (85)

there exists N ∈ N such that for all n ≥ N ,

dim im (P∆n,I) = dim im (P∆∞,I) . (86)

Proof. Since ∂+I ∩ σ (∆∞) = ∅ and ∂+I, σ (∆∞) are closed, we have

d (σ (∆∞) , ∂+I) > 0. (87)

Let χI : R+ → [0, 1] be a continuous function such that χI
∣∣
I
= 1 and for λ ∈ R+ \ I such

that
d (λ, I) ≥ d (σ (∆∞) , ∂+I)

2
, (88)

we have χI (λ) = 0. Notice that im
(
χI
∣∣
σ(∆∞)

)
⊆ {0, 1} and so χI (∆∞) = P∆∞,I .

By Theorem 2.2.4, σ (∆n) → σ (∆∞), so we have that for large enough N1, n ≥ N1,
im
(
χI
∣∣
σ(∆n)

)
⊆ {0, 1} and so χI (∆n) = P∆n,I . Now notice

‖(∆∞ + 1)χI(∆∞)‖ ≤ sup
λ∈I∩σ(∆∞)

|λ+ 1|

≤ sup
λ∈I

|λ+ 1|

<∞, since I is a finite interval.

(89)

Let C1 =
1

2∥(∆∞+1)χI(∆∞)∥ > 0. Apply Theorem A.0.1 with ε = 1
2 to obtain δχI ,I > 0 such

that for all δ < δχI ,I , if (Hn,∆n) a δ-retract of (H∞,∆∞) seen via gn,

‖χI (∆∞) gn − gnχI (∆n)‖ <
1

2
. (90)

Let δI = min (δχI ,I , C1) and take N ≥ N1 large enough such that for all n ≥ N , (Hn,∆n)

a δ-retract of (H∞,∆∞) for δ < δI . Let α ∈ im (P∆n,I) be a unit. Then,

‖P∆∞,Ign(α)‖ ≥ ‖gnP∆n,I(α)‖ − ‖(P∆∞,Ig − gP∆n,I) (α)‖

= 1− ‖(χI (∆∞) gn − gnχI (∆n)) (α)‖

>
1

2
,

(91)
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which proves that P∆∞,Ign
∣∣
im(P∆n,I)

is injective. Now let β ∈ im (P∆∞,I) be a unit. Ob-
serve,

‖P∆n,Ig
∗
n(β)‖ ≥ ‖g∗nP∆∞,I(β)‖ − ‖(g∗nP∆∞,I − P∆n,Ig

∗
n) (β)‖

≥ ‖P∆∞,I(β)‖ − ‖(1− gng
∗
n)P∆∞,I(β)‖ − ‖(g∗nP∆∞,I − P∆n,Ig

∗
n) (β)‖

= ‖P∆∞,I(β)‖ − ‖(1− gng
∗
n)P∆∞,I(β)‖ − ‖(g∗nχI (∆∞)− χI (∆n) g

∗
n) (β)‖

> 1− ‖(1− gng
∗
n)P∆∞,I(β)‖ −

1

2

≥ 1

2
− δ ‖(∆∞ + 1)P∆∞,I(β)‖ , by Lemma 2.1.3

=
1

2
− δ ‖(∆∞ + 1)χI (∆∞) (β)‖

≥ 0,

(92)
which proves that P∆n,Ig

∗∣∣
im(P∆∞,I)

is injective and so we are done.

B Whitney Standard Subdivision

Results on simplicial approximation of the smooth differential forms hinge on the existence
of the Whitney standard subdivision algorithm (Definition 6.4.2). In this section, we prove
that the algorithm decomposes as a sequence of stellar subdivison operations (Definition
6.2.1).

Proposition B.0.1. Given a simplicial complex K, there exists an ordering of the edges
(1-simplices) {e0, . . . , eL} = K1 such that the iterated stellar subdivision ?e0 ?e1 · · · ?eL K
is equal to the Whitney Standard Subdivision ?K.

Proof. Suppose first that K = ∆n. The case of n = 1 is obvious, so assume n ≥ 2.
Enumerate the vertices of K, v0, . . . , vn. Define a total order on edges like so:

[vi, vj ] � [vh, vk] if h < i or h = i and j ≤ k. (93)

Enumerate the edges of K in increasing order according to �, e0, . . . , eL. Consider the
iterated stellar subdivision

K ′ := ?e0 ?e1 · · · ?eL K. (94)

We will show that K ′ = ?K by proving the following claims:

1. For each ` ≤ L, each 1-simplex in
(
?eℓ , ?eℓ−1

· · · ?eL K
)
1
\
(
?eℓ−1

· · · ?eL K
)
1

consists
of two comparable vertices with respect to the partial order ≤ defined in the Whitney
Standard Subdivision algorithm 6.4.2.
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2. All 1-simplices of K ′ consist of comparable vertices.

3. All simplices of K ′ consist of comparable vertices and thus K ′ ⊆ ?K.

4. All simplices consisting of comparable vertices occur in K ′, i.e. ?K ⊆ K ′.

Proceed with the first claim by induction. For ` = L, we must examine the 1-simplices
that get added in ?eLK. Through our definition of �, eL = [v0, vn], and so the 1-simplices
that get added to ?eLK come from 2-simplices [v0, vi, vn] for 0 < i < n and are given by
[vi, v0,n]. By definition, this 1-simplex is consists of comparable vertices according to ≤.

Now fix ` and suppose that for all t > `, each 1-simplex in
(
?et , ?et−1 · · · ?eL K

)
1
\(

?et−1 · · · ?eL K
)
1

consists of comparable vertices. Write eℓ = [viℓ , vjℓ ]. Similar to the
base-case, each 1-simplex that gets added through stellar subdivision by eℓ has the form
[vh,k, viℓ,jℓ ] where [vh,k, viℓ , vjℓ ] ∈ ?eℓ−1

· · ·?eLK. There are 2 cases for vh,k, h = k and h < k.
If h = k, then neither of [vh, viℓ ], [vh, vjℓ ] were subdivided in previous iterations of stellar
subdivision and so it must be that both [vh, viℓ ], [vh, vjℓ ] � [viℓ , vjℓ ]. Thus, iℓ ≤ h ≤ jℓ

which means that vh ≤ viℓ,jℓ and so [vh,k, viℓ,jℓ ] consists of comparable vertices. Now
suppose h < k. Since [vh,k, viℓ , vjℓ ] ∈ ?eℓ−1

· · · ?eL K, [vh,k, viℓ ], [vh,k, vjℓ ] ∈ ?eℓ−1
· · · ?eL K,

and the inductive assumption implies that

vh,k ≤ vjℓ or vjℓ ≤ vh,k,

vh,k ≤ viℓ or viℓ ≤ vh,k
(95)

are both true. Suppose that vh,k ≤ vjℓ , then jℓ ≤ h < k ≤ jℓ, a contradiction. Similarly,
we cannot have vh,k ≤ viℓ . So, vjℓ ≤ vh,k and viℓ ≤ vh,k. This means that

h ≤ iℓ < jℓ ≤ k, (96)

which is equivalent to viℓ,jℓ ≤ vh,k and so [viℓ,jℓ , vh,k] consists of comparable vertices.
To see that all 1-simplices of K ′ consist of comparable vertices, it suffices to show that

each 1-simplex was added during a subdivision. Equivalently, we must show that K ′ and
K share no 1-simplices. This is immediate, however, since each 1-simplex of K appears as
some eℓ and is subdivided.

We now aim to show that all simplices of K ′ consist of comparable vertices. Fix a
k-simplex [vα0,β0 , vα1,β1 , . . . , vαk,βk ] ∈ K ′. For h < k, the face [vαh,βh , vαk,βk ] gets added to
K ′ and by the previous claims, we must have that either vαh,βh ≤ vαk,βk or vαk,βk ≤ vαh,βh .
Thus, the vertices vα0,β0 , vα1,β1 , . . . , vαk,βk can be sorted into increasing order and we have
established the third claim.

To address the fourth claim, fix in increasing sequence of vertices vα0,β0 < vα1,β1 <
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· · · < vαk,βk ∈ K ′. We will show that

[vα0,β0 , vα1,β1 , . . . , vαk,βk ] ∈ K ′. (97)

By the Whitney partial ordering,

αk ≤ αk−1 ≤ · · · ≤ α1 ≤ α0 ≤ β0 ≤ β1 ≤ · · · ≤ βk−1 ≤ βk. (98)

This shows that we can have at most one vertex from K, vα0,β0 . By the total ordering,
[vαℓ

, vβℓ ] ≺ [vαℓ+1
, vβℓ+1

] for each `. So, we can define an increasing sequence (iℓ)
k
ℓ=0 where

iℓ is the index such that eiℓ = [vαℓ
, vβℓ ] and in the case that vα0,β0 ∈ K, i0 = −1. Now, let

σk+1 ∈ K be the simplex spanned by

vαk
, vαk−1

, . . . , vα1 , vα0 , vβ0 , vβ1 , . . . , vβk−1
, vβk . (99)

For each ` = 0, . . . , k, let σℓ be the simplex spanned by

vαk,βk , vαk−1,βk−1
, . . . , vαℓ,βℓ , vαℓ−1

, vαℓ−2
, . . . , vα0 , vβ0 , . . . , vβℓ−2

, vβℓ−1
. (100)

Notice that for t > iℓ, the edge et is not a face of σℓ due to the ordering (98). By induction,
we get that for all `,

σℓ ∈ ?eiℓ ?eiℓ+1 · · · ?eL K. (101)

In the case that vα0,β0 ∈ K, we have σ1 = [vα0,β0 , vα1,β1 , . . . , vαk,βk ] ∈ K ′ and we are done.
If vα0,β0 /∈ K, then σ0 = [vα0,β0 , vα1,β1 , . . . , vαk,βk ] ∈ K ′. Consequently, K ′ = ?K.

For an arbitrary simplicial complexK, order the vertices ofK and apply the same stellar
subdivision procedure on the edges ordered according to �, noting that the restriction of
this process to each simplex yields the process described above.

106



Bibliography

[1] B. I. Albert. The dupont homotopy formula and stellar subdivision. arXiv preprint
arXiv:1902.00627, 2019.

[2] S. Albeverio and B. Zegarliński. Construction of convergent simplicial approximations
of quantum fields on Riemannian manifolds. Comm. Math. Phys., 132(1):39–71, 1990.

[3] D. N. Arnold, R. S. Falk, J. Guzmán, and G. Tsogtgerel. On the consistency of the
combinatorial codifferential. Trans. Amer. Math. Soc., 366(10):5487–5502, 2014.

[4] D. N. Arnold, R. S. Falk, and R. Winther. Finite element exterior calculus, homological
techniques, and applications. Acta Numer., 15:1–155, 2006.

[5] D. N. Arnold, R. S. Falk, and R. Winther. Finite element exterior calculus: from
Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.), 47(2):281–354,
2010.

[6] D. W. Barnes and L. A. Lambe. A fixed point approach to homological perturbation
theory. Proc. Amer. Math. Soc., 112(3):881–892, 1991.

[7] S. Behrens. The L2 Stokes theorem on certain incomplete manifolds. https:
//www.math.uni-bielefeld.de/~sbehrens/files/sbehrens_diplom.pdf, August
2009. Accessed: 15 April 2024.

[8] J. Brüning and M. Lesch. Hilbert complexes. J. Funct. Anal., 108(1):88–132, 1992.

[9] X. Z. Cheng and E. Getzler. Transferring homotopy commutative algebraic structures.
J. Pure Appl. Algebra, 212(11):2535–2542, 2008.

[10] I. Contreras and A. Tawfeek. On discrete gradient vector fields and Laplacians of
simplicial complexes. Ann. Comb., 28(1):67–91, 2024.

[11] J. Cuevas-Rozo, L. Lambán, A. Romero, and H. Sarria. Effective homological compu-
tations on finite topological spaces. Appl. Algebra Engrg. Comm. Comput., 34(1):33–
56, 2023.

107

https://www.math.uni-bielefeld.de/~sbehrens/files/sbehrens_diplom.pdf
https://www.math.uni-bielefeld.de/~sbehrens/files/sbehrens_diplom.pdf


[12] X. Dai. An introduction to L2 cohomology. In Topology of stratified spaces, volume 58
of Math. Sci. Res. Inst. Publ., pages 1–12. Cambridge Univ. Press, Cambridge, 2011.

[13] C. R. de Oliveira. Intermediate spectral theory and quantum dynamics, volume 54 of
Progress in Mathematical Physics. Birkhäuser Verlag, Basel, 2009.

[14] J. Dodziuk. Finite-difference approach to the Hodge theory of harmonic forms. Amer.
J. Math., 98(1):79–104, 1976.

[15] J. Dodziuk and V. K. Patodi. Riemannian structures and triangulations of manifolds.
J. Indian Math. Soc. (N.S.), 40(1-4):1–52, 1976.

[16] J. L. Dupont. Curvature and characteristic classes, volume Vol. 640 of Lecture Notes
in Mathematics. Springer-Verlag, Berlin-New York, 1978.

[17] S. Ebli, C. Hacker, and K. Maggs. Morse theoretic signal compression and reconstruc-
tion on chain complexes. arXiv preprint arXiv:2203.08571, 2022.

[18] R. Forman. Morse theory for cell complexes. Adv. Math., 134(1):90–145, 1998.

[19] G. Friedman. Survey article: An elementary illustrated introduction to simplicial sets.
Rocky Mountain J. Math., 42(2):353–423, 2012.

[20] M. P. Gaffney. Hilbert space methods in the theory of harmonic integrals. Trans.
Amer. Math. Soc., 78:426–444, 1955.

[21] P. Garrett. Functions on circles, Fourier Series, I. https://www-users.cse.umn.edu/
~garrett/m/fun/notes_2012-13/04_blevi_sobolev.pdf, April 2013. Accessed: 11
April 2024.

[22] N. V. Glotko. On the complex of Sobolev spaces associated with an abstract Hilbert
complex. Sibirsk. Mat. Zh., 44(5):992–1014, 2003.

[23] P. Griffiths and J. Morgan. Rational homotopy theory and differential forms, volume 16
of Progress in Mathematics. Springer, New York, second edition, 2013.

[24] S. Harker, K. Mischaikow, M. Mrozek, and V. Nanda. Discrete Morse theoretic al-
gorithms for computing homology of complexes and maps. Found. Comput. Math.,
14(1):151–184, 2014.

[25] B. Hepler. What is L2-cohomology and why should you care? https://ckottke.
ncf.edu/neu/7376_sp16/hepler.pdf, 2015. Accessed: 10 April 2024.

108

https://www-users.cse.umn.edu/~garrett/m/fun/notes_2012-13/04_blevi_sobolev.pdf
https://www-users.cse.umn.edu/~garrett/m/fun/notes_2012-13/04_blevi_sobolev.pdf
https://ckottke.ncf.edu/neu/7376_sp16/hepler.pdf
https://ckottke.ncf.edu/neu/7376_sp16/hepler.pdf


[26] T. Kaczyński, M. Mrozek, and M. Ślusarek. Homology computation by reduction of
chain complexes. Comput. Math. Appl., 35(4):59–70, 1998.

[27] T. Kato. Perturbation theory for linear operators, volume Band 132 of Die Grundlehren
der mathematischen Wissenschaften. Springer-Verlag New York, Inc., New York, 1966.

[28] B. Keller. Introduction to A-infinity algebras and modules. Homology Homotopy
Appl., 3(1):1–35, 2001.

[29] M. Kontsevich and Y. Soibelman. Homological mirror symmetry and torus fibrations.
In Symplectic geometry and mirror symmetry (Seoul, 2000), pages 203–263. World
Sci. Publ., River Edge, NJ, 2001.

[30] D. Kozlov. Combinatorial algebraic topology, volume 21 of Algorithms and Computa-
tion in Mathematics. Springer, Berlin, 2008.

[31] J. M. Lee. Introduction to topological manifolds, volume 202 of Graduate Texts in
Mathematics. Springer, New York, second edition, 2011.

[32] M. Markl. Transferring A∞ (strongly homotopy associative) structures. Rend. Circ.
Mat. Palermo (2) Suppl., (79):139–151, 2006.

[33] S. A. Merkulov. Strong homotopy algebras of a Kähler manifold. Internat. Math. Res.
Notices, (3):153–164, 1999.

[34] P. Miranda and D. Parra. Continuum limit for a discrete Hodge-Dirac operator on
square lattices. Lett. Math. Phys., 113(2):Paper No. 45, 25, 2023.

[35] P. Mnev. Discrete BF theory. arXiv preprint arXiv:0809.1160, 2008.

[36] P. Mnëv. Notes on simplicial BF theory. Mosc. Math. J., 9(2):371–410, back matter,
2009.

[37] W. Müller. Analytic torsion and R-torsion of Riemannian manifolds. Adv. in Math.,
28(3):233–305, 1978.

[38] O. Post. Spectral convergence of quasi-one-dimensional spaces. Ann. Henri Poincaré,
7(5):933–973, 2006.

[39] O. Post. Spectral analysis on graph-like spaces, volume 2039 of Lecture Notes in
Mathematics. Springer, Heidelberg, 2012.

[40] O. Post and J. Simmer. Quasi-unitary equivalence and generalized norm resolvent
convergence. Rev. Roumaine Math. Pures Appl., 64(2-3):373–391, 2019.

109



[41] O. Post and J. Simmer. A distance between operators acting in different Hilbert
spaces and operator convergence. In Control theory of infinite-dimensional systems,
volume 277 of Oper. Theory Adv. Appl., pages 53–72. Birkhäuser/Springer, Cham,
[2020] ©2020.

[42] O. Post and S. Zimmer. Generalised norm resolvent convergence: comparison of
different concepts. J. Spectr. Theory, 12(4):1459–1506, 2022.

[43] A. Romero and F. Sergeraert. Discrete vector fields and fundamental algebraic topol-
ogy. arXiv preprint arXiv:1005.5685, 2010.

[44] K. Schmüdgen. Unbounded self-adjoint operators on Hilbert space, volume 265 of
Graduate Texts in Mathematics. Springer, Dordrecht, 2012.

[45] E. Sköldberg. Morse theory from an algebraic viewpoint. Trans. Amer. Math. Soc.,
358(1):115–129, 2006.

[46] L. Smits. Combinatorial approximation to the divergence of one-forms on surfaces.
Israel J. Math., 75(2-3):257–271, 1991.

[47] M. Tanabe. Several remarks on the combinatorial Hodge star. Topology Proc., 46:33–
43, 2015.

[48] M. E. Taylor. Partial differential equations I. Basic theory, volume 115 of Applied
Mathematical Sciences. Springer, Cham, third edition, [2023] ©2023.

[49] H. Whitney. Geometric integration theory. Princeton University Press, Princeton, NJ,
1957.

[50] S. O. Wilson. Cochain algebra on manifolds and convergence under refinement. Topol-
ogy Appl., 154(9):1898–1920, 2007.

[51] N. Young. An introduction to Hilbert space. Cambridge Mathematical Textbooks.
Cambridge University Press, Cambridge, 1988.

110


	Simplicial Approximation of the Hodge Laplacian Using Cauchy Sequences of Hilbert Complexes
	Table of Contents
	Introduction
	Synopsis
	Outline and Notation Conventions

	Delta Retracts and Convergence of Spectra
	Comparing Systems: Delta Retracts
	Convergence of the Spectra of a Convergent Sequence

	Constructing the Limit of a Cauchy Sequence
	Convergence Implies Cauchy
	Construction of the Hilbert Space
	Construction of the Self-Adjoint Operator
	Uniqueness of the Construction

	Properties of Limit Spectra
	Properties of the Limit Spectrum
	Behavior of Eigenvectors

	Sequences of Hilbert Complexes with the Hodge Laplacian
	Background on Hilbert Complexes
	Comparing Hilbert Complexes: Delta Deformation Retracts
	Comparing the Hodge Decomposition of Elements
	Behavior of Eigenvectors
	Example: Truncation of the Spectrum of the Smooth Laplacian
	Constructing the limit of a Cauchy Sequence of Hilbert Complexes

	Application: Simplicial Approximation of the Hodge Laplacian
	Background and Notation for Simplicial Complexes
	Subdivision Algorithms for a Simplicial Complex
	Triangulations of Manifolds
	Subdivision of a Triangulation
	Simplicial Approximation of Hodge Theory Through Triangulation Subdivision
	Simplicial Approximation as a Cauchy Sequence

	Appendix
	Spectral Projections
	Whitney Standard Subdivision

	References

