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We present a numerical method for solving the elliptic partial differential

equation problem for the electrostatic potential with piecewise constant

conductivity and a Neumann boundary condition. This setting is often

considered in studies of the Electrical Impedance Tomography (EIT) in-

verse problem. Our aim is to provide an accessible and self-contained

presentation of both an integral equation formulation of the problem and a

numerical method for solving it, which we hope will facilitate the adoption

of such methods in the EIT community. Our method employs an inte-

gral equation approach for which we derive a system of well-conditioned

integral equations by representing the solution as a sum of single layer

potentials. The fast multipole method is used to accelerate the generalized

minimal residual method solution of the integral equations. For efficiency,

we adapt the grid of the Nyström method based on the spectral resolution

of the layer charge density. Additionally, we present a method for evaluat-

ing the solution, based on up-sampling and the boundary element method,

that is efficient and accurate throughout the domain, circumventing the

ii



close-evaluation problem. To support the design choices of the numerical

method, we derive regularity estimates with bounds explicitly in terms

of the conductivities and the geometries of the boundaries between their

regions. The resulting method is fast and accurate for solving for the

electrostatic potential in media with piecewise constant conductivities. We

also provide analytical results for the system of equations for the charge

densities. Firstly, we establish existence and uniqueness to this system of

equations. Secondly, we derive regularity for the charge densities along

each interface. We show that assuming that the interface has Ck regularity,

then the charge density is of regularity Hk (i.e., in the Hilbert space of

order k). Furthermore, we generalize our results by considering the case

where the piecewise constant regions of conductivity overlap and we study

the behaviour of the solution to leading order at points of intersection

between two transversely intersecting interfaces of regions of piecewise

constant conductivity.
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1
I N T R O D U C T I O N

The electrical impedance tomography (EIT) problem, also known as the
inverse electrical conductivity problem, is the problem of determining the
electrical conductivity σ(x) > 0 in a region Ω ⊂ Rn from measurements of
the electric potential u(x) on the boundary ∂Ω, given an injected current
∂u(x)/∂n on the boundary. The map from the injected current to the
observed voltage is known as the Neumann-to-Dirichlet or current-to-
voltage map, and the potential u(x) satisfies the conductivity equation

∇ · (σ(x)∇u(x)) = 0, x ∈ Ω, (1.1)

and depends in a nonlinear way on the conductivity σ(x).
In Calderón’s seminal paper [Cal80], he proved that, for the linearized

problem, the conductivity can be determined uniquely from the Neumann-
to-Dirichlet map. Since then, it has been shown that the conductivity
is globally determined by the Neumann-to-Dirichlet map in two dimen-
sions [Nac96b], three dimensions [SU87], for piecewise smooth conduc-
tivities [KV84, KV85, Isa88], and even for conductivities that are only
bounded [AP06]. The EIT problem is known to be unstable, in the sense
that a large perturbation to the conductivity inside Ω can result in only a
small change to the Neumann-to-Dirichlet map (see, for example, [Ale88]).
Nonetheless, a significant amount of information can be obtained about
the conductivity, and the expected low cost and lack of any known side
effects on the human body make EIT a potentially attractive imaging
modality in medicine (see, for example, [CIN99]).

Since the EIT problem is unstable, any algorithm for solving it must
restrict itself to looking for conductivities in some compact space, so that
the inverse problem is well-posed in the sense of Tikhonov (see, for exam-
ple, [TA77]). The spaces to which the conductivity belong are inextricably
linked to the numerical method. Many regularization methods assume
smooth solutions, including methods which use Tikhonov regularization
[DZKK10] and methods which regularize the solution using integral equa-
tion formulations (see, for example, [CPS04]). Other methods explicitly
represent the conductivity inside the region as a smooth function, using,
for example, a sum of basis functions localized by smooth cutoff functions
(see [BBP96]). As it turns out, spaces of smooth conductivities are not

1



introduction 2

particularly realistic when it comes to practical applications. Conduc-
tivities often have large discontinuous jumps between regions on which
they are smooth—tumors, for example, are many times more conductive
than normal tissue (see [SSBS88] and [ZG03]). Such considerations make
the piecewise constant conductivity assumption an attractive choice. An
enormous variety of methods and approaches have been proposed based
on the piecewise constant conductivity assumption, of which the following
is only a sample [CIN+

90, CZ99, CT04, ALS20, BMPS18, KLMS08, FY20a,
HU13a, Bru01].

Whatever the method for the inverse problem, the solution of the for-
ward problem, in which the electric potential is determined from a known
conductivity and injected current, is essential for validation and bench-
marking, and forms an essential component of many inverse solvers. In
the case of piecewise constant conductivities, the forward problem has
been solved by the finite element method [TNM+

14], the finite difference
method [LL94], and the finite volume method [DZB+

05]. The boundary
element method (BEM) has also been applied to the corresponding integral
equation formulations [dMFH00], which are derived by first reformulating
the forward problem as a system of partial differential equations with
interface boundary conditions connecting the various regions, and then
representing the solution to this system by layer-potentials on the bound-
aries of the regions (see, for example, [CK13]). Such integral equations,
when discretized, lead to well-conditioned, dense linear systems, which
can be solved rapidly using the fast multipole method (FMM) (see, for
example, [GR87, Mar19]).

The resulting reduction in the dimensionality of the problem and their
favourable conditioning make integral equation formulations an attractive
target for numerical methods. Boundary element methods solve these
integral equations in two dimensions by approximating the boundaries
by polylines (see, for example, [Liu09a]), but when the boundaries are
smooth, the number of elements must be quite large, reducing their overall
computational efficiency. Boundary integral equation methods (BIEMs),
on the other hand, represent the boundaries and layer-potential densities
by high order spectral expansions, and so can require far fewer degrees of
freedom, but the evaluation of the resulting layer potentials close to their
sources is highly involved and is the subject of contemporary research
[HO08a, aKB21].

The integral equation formulations of transmission problems have been
studied extensively from the point of view of both boundary integral equa-
tion methods and boundary element methods, and many fast and accurate
solvers have been constructed. However, this work has mainly focused
on acoustic and electromagnetic scattering [GB13, HX11, GHL14, PAB14]
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and crack problems [YNK01, ON08, WYW05], with the notable exception
of the work of Zakharov and Kalinin [ZK09] who studied the Laplace
equation in a piecewise homogeneous medium. As far as we are aware,
no boundary integral equation method has yet been proposed which
simultaneously addresses all of the particular features of the forward
electrical conductivity problem, including: the presence of large numbers
of inclusions, which may be close to touching, the smooth boundaries
of the inclusions, the finite extent of the domain, the moderate accuracy
requirements of the method, and the need for reasonably accurate evalua-
tion of the induced potential close to and on the boundaries of the regions.
Furthermore, while the fast multipole method is not unknown in electrical
impedance tomography, it has only been used in order to accelerate an
application of an inverse solver, rather than to accelerate a forward solver
(see [BM04]).

This thesis is organized as follows: In Chapter 2 we prove regularity of
the solution to Eq. (1.1) at points across and near smooth interfaces between
regions of piecewise constant conductivity and discuss our numerical
methods in detail. In Chapter 3 we study the behaviour of the solution to
Eq. (1.1) to leading order at points of intersection between two transversely
intersecting interfaces of regions of piecewise constant conductivity. The
conclusions follow in Chapter 4.



2
F O RWA R D C O N D U C T I V I T Y
P R O B L E M F O R
N O N - O V E R L A P P I N G
R E G I O N S

2.1 introduction

This chapter is motivated by the challenge of the Electrical Impedance
Tomography (EIT) inverse problem, which is often studied in the setting
of piecewise constant conductivities.

The general EIT problem in two dimensions is as follows. One has a
conductive body Ω ⊂ R2, where the conductivity at each point x ∈ Ω is
assumed isotropic and thus given by a positive number σ(x) > 0. The
distribution of the electrostatic potential u inside the body is described by
the elliptic partial differential equation

Lσ(u) := ∇ · (σ(x)∇u(x)) = 0, x ∈ Ω. (2.1)

This is coupled to a boundary condition. In this chapter we consider the
Neumann condition of injections of current. Letting n(x) be the outward-
pointing unit normal to ∂Ω, the Neumann boundary condition is

σ(x)
∂u
∂n

(x) = b0(x), x ∈ ∂Ω, (2.2)

with b0(x) given subject to the constraint
∫

∂Ω b0(x) dℓ(x) = 0. We can
denote the solution to this problem by uσ(b0), to stress the dependence on
the conductivity σ(x) and the injected current b0(x).

In this Neumann model of EIT, we seek to reconstruct (or approximate)
σ(x) given a finite number of sample measurements. An example of this
would be to consider points Pj ∈ ∂Ω, j ∈ {1, . . . , J} and a set of injections
bi

0(x), i ∈ {1, . . . , I} of current. Assume that for each of the I injections
we measure the voltage uσ(bi

0)(Pj) at the J points (having grounded some-
where). This gives I · J data points concerning the conductivity σ(x). We
then seek to reconstruct, to some approximation, the conductivity σ(x)

4



2.1 introduction 5

from these I · J pieces of data. The pieces of data can be seen as sam-
ples of the Neumann-to-Dirichlet map b0 7→ uσ(b0)|∂Ω associated to the
operator Lσ(u). We remark that this Neumann model is not the only
model for EIT; another model is the related Complete Electrode Model
(CEM) [BKIN07, TSA24], which considers the same equation (2.1) but im-
poses a different boundary condition. The CEM model is a more realistic
model when the current injections are performed by electrodes, but since
the case of Neumann injections has received more attention we focus on
the Neumann setting here.

A successful resolution to the EIT problem (i.e., a good reconstruction
of σ(x) given a finite set of boundary measurements {uσ(bi

0)(Pj)}i≤I,j≤J)
has potential real-world applications. In the Direct Current Resistivity
(DCR) method used in geophysics, electrode arrays are placed on the
Earth’s surface or inside boreholes with the aim of determining the verti-
cal distribution of resistivity in the ground. The typical assumption is that
geological structures consist of pockets of various materials with differing
constant conductivities (see Table 4.3-2 in [KLV07]). This same imaging
modality is also used to image cross-sections of industrial processes and
is known as Electrical Capacitance Tomography (ECT). In ECT, the ca-
pacitances of multi-electrode sensors surrounding an industrial vessel or
pipe are used to determine the makeup of the materials inside (see, for
example, [YP02]). Typically, the contents consist of a multiphase flow, and
the usual assumption is that there are two materials inside the pipe or
vessel with different constant permittivities: the flow itself, and either
inclusions of a different material or voids (bubbles) (see [MTF15]).

We also note that weaker versions of this problem are also of interest.
One such problem is where one does not try to reconstruct σ(x) with any
precision, but to just detect very coarse features of σ(x). One such pursuit
is for stroke detection [ACL+

20].
A number of approaches have been tried to numerically solve the EIT

problem, which we briefly review momentarily. However prior to doing
so, let us note that given the finite number of measurements available,
one frequently wants to either restrict the class of conductivities to a
finite-dimensional space [Har19], or to impose a regularization to promote
closeness to a subspace in a larger space of all possible conductivities
σ(x) [LÖS18]. As already discussed, a common assumption is that σ(x)
is piecewise constant. This is the class of conductivities that we will be
considering in this chapter.

In addition to serving as a convenient model for real-world conduc-
tivities, the assumption of piecewise constant σ(x) also ties in well with
some of the methods that have been introduced to solve the EIT inverse
problem. In particular the factorization method [Kir05, KG07] can be tried
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to identify islands on which a sharp jump of conductivity occurs relative
to a known (often constant) background conductivity. Another recent
approach to EIT also considers piecewise constant conductivities which in
addition are layered, and utilizes a one-dimensional method to identify the
layers [Gar20, HS10, HU13b].

Furthermore, it is very common to test solvers of the EIT problem on
real-world data which are piecewise constant. An example of this is in
FIPS data set [HKM+

17]. These data sets are frequently in two dimensions,
where a well-studied approach is the d-bar method, based on Nachman’s
resolution of the Calderón problem [SMI00, Nac96a, KLMS09].

We also mention certain deep learning approaches to the EIT problem,
which also seek to learn the map sending piecewise constant conductivities
to their corresponding Neumann-to-Dirichlet (ND) operator (or, more
correctly, the inverse of this map) [AMS22, FY20b, WLC19, HH18].

All these works make clear the significance of the piecewise constant
conductivities setting to the EIT inverse problem. The significance for EIT
of a fast and efficient solver specific to piecewise constant conductivities is
in fact two-fold: For inverse solvers that rely directly on a fast and accurate
forward solver to fit measurements to data, any improved forward solver
for piecewise constant conductivities can be expected to provide better
results. But even for solvers that do not rely on such direct methods, an
improved solver could be useful: For instance for solvers that seek to learn
a map from the ND operators to conductivities, the setting of piecewise
constant conductivities has been used as a training set (see [HHHK19,
CM20]).

Of course one may object that many realistic models have conductivities
that are perhaps close to piecewise constant but not quite so. As we
note in Section 2.5.5, in certain examples that we consider, piecewise
constant conductivities seem to provide a good approximation for the
EIT measurements for conductivities that are smooth: We consider the EIT
data for conductivities that are C1 smooth, but transition rapidly between
islands of constant conductivity and a background of (different) fixed
conductivity. We find that the EIT data of that setting are in fact small
perturbations of the EIT data that correspond to the same islands, but
where the transition between background and island conductivities is
sharp.

The solution of (2.1) for piecewise constant σ(x) is clearly then an impor-
tant subject in EIT. In the case of piecewise constant conductivities, the for-
ward problem has been solved by the finite element method [TNM+

14], the
finite difference method [LL94], and the finite volume method [DZB+

05].
The boundary element method (BEM) and the boundary integral equa-
tion method (BIEM) have also been applied to the corresponding integral
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equation formulations (see [dMFH00, YB13]), which are derived by first
reformulating the forward problem as a system of partial differential
equations with transmission boundary conditions connecting the various
regions, and then representing the solution to this system of transmission
problems by layer-potentials on the boundaries of the regions (see, for ex-
ample, [CK13]). Such integral equations, when discretized, generally lead
to well-conditioned, dense linear systems, which can be solved rapidly
using an iterative linear system solver together with the fast multipole
method (FMM), or by a direct approach (see, for example, [GR87, Mar19]).

The reduction in the dimensionality of the problem and their favorable
conditioning make integral equation formulations an attractive target for
numerical methods. BEMs solve these integral equations by approximating
the boundaries by polylines (see, for example, [Liu09b]); however, when
the boundaries are smooth, the number of elements must be quite large,
which reduces their overall computational efficiency. BIEMs, on the other
hand, represent the boundaries and layer-potential densities by high order
spectral expansions, and so can require far fewer degrees of freedom, but
the evaluation of the resulting layer potentials close to their sources can be
fairly involved [HO08b, aKB21].

The integral equation formulations of transmission problems have been
studied extensively using the BEM and the BIEM and many fast and
accurate solvers have been constructed. Much of this work has focused on
acoustic and electromagnetic scattering [GB13, HX11, GHL14, PAB14] and
crack problems [YNK01, ON08, WYW05], however, several authors have
presented methods specifically for the electrical conductivity problem, in-
cluding the works of Zakharov and Kalinin [ZK09], Ying and Beale [YB13],
and Helsing [Hel11a, Hel11b].

Despite the availability of these papers, boundary integral equation
methods have remained essentially unused in the EIT literature. For this,
we offer the following possible explanations. Firstly, boundary integral
equation formulations are usually presented in the literature without
proofs of existence, uniqueness, and regularity. Such proofs are gener-
ally confined to more specialized references (see, for example, the dis-
cussion of pseudodifferential boundary integral operators in [HW08]),
which remain mostly inaccessible to non-specialists. Secondly, papers
like [Hel11a, Hel11b] are written with an integral equation method au-
dience in mind, and focus on demonstrating the effectiveness of more
advanced and specialized techniques. For example, [Hel11b] solves (2.1)
where the conductivity σ(x) is piecewise constant on a random checker-
board, and while the results are very impressive, the methods described
there (include the methods for discretization and preconditioning) are
highly specific to this particular checkerboard geometry. Thirdly, the pa-
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pers [ZK09] and [YB13], which are aimed at a more general audience, do
not solve quite the same problem as the one required in EIT. Both papers
only consider Dirichlet boundary conditions, which are easier to handle
with integral equation formulations, and neither describe methods for
adaptive discretization.

In this chapter, we seek to remedy this situation, providing both a
complete and self-contained theory together with an easy-to-use algo-
rithm. In particular, we describe an accessible algorithm for solving the
forward electrical conductivity problem which: constructs the solution to
the equation (2.1) on domains with numerous inclusions; allows for Neu-
mann boundary conditions; evaluates the solution quickly and accurately;
achieves O(N) scaling with the use of the FMM; and solves the problem
in an automatically adaptive fashion depending only on a user-specified
accuracy.

We illustrate the performance of our algorithm with several numerical
examples. We show that the method is highly effective, especially in the
low-to-moderate accuracy regime typically required in EIT problems.

Of all of the papers previously cited, the algorithm of this chapter is
most closely related to the algorithm proposed in [YB13]. Our algorithm
differs in that we consider Neumann boundary conditions; we show that
a combination of upsampling and BEM discretization performs well at the
accuracy levels required in EIT, yielding a simpler approach compared
to their more mathematically involved singularity splitting scheme (see
also [BL01]); we evaluate the solution directly from the solved layer po-
tentials; and we construct our Nyström discretization in a fully adaptive
fashion.

In this chapter, we also provide a completely self-contained theory with
regards to the formulation of a well-conditioned system of boundary in-
tegral equations, and to the existence, uniqueness, and regularity of its
solutions. First, we describe how the rank-deficiency resulting from the
Neumann boundary conditions of the electrical conductivity problem can
be resolved by adding an extra term to adjust the resulting system of
integral equations. This is done without changing the dimensionality of
the system to be solved, and differs from the usual approach of adjoining
additional degrees of freedom as well as additional constraints to the
system (see, for example, [GGM93, ZK09]). Second, we provide a detailed
justification for the choice of rescaling of the integral equations to ensure
good conditioning (see also [ZK09]). Third, we provide the proofs of
existence and uniqueness to this system of integral equations, and derive
Ck,α regularity estimates for the charge densities on the interfaces using
energy-type methods. While the behaviour of such systems of boundary
integral equations is considered well-understood, regularity results are



2.2 problem setting 9

typically stated in more general settings (see, for example, [HW08, Cos88]),
where the dependency of the constants on the physical parameters of the
problem is often suppressed. Our Ck,α estimates provide bounds explic-
itly in terms of the conductivities and the geometries of the boundaries
between regions, and are highly illuminating with respect to numerical
and practical applications. We also provide stronger estimates for the case
of concentric circles, which is a ubiquitous test case for inverse methods
in EIT (see, for example, [KLMS08, CII90, MS03]). Our proofs are also
reasonably short and should be accessible to an applied audience.

This chapter is organized as follows. In Section 2.2, we describe the
forward electrical conductivity problem. In Section 2.3, we derive the
corresponding system of boundary integral equations and modify it so
that it is both solvable and well-conditioned. Our numerical method is
presented in Section 2.4. We provide numerical experiments in Section 2.5.
In Section 2.6, we prove existence and uniqueness, and provide regularity
estimates for both the case of general regions and the case of concentric
circular regions of constant conductivity. The conclusions follow in Sec-
tion 2.7.

2.2 problem setting

Let Ω ⊂ R2 be a simply connected and bounded domain with smooth
boundary ∂Ω. We consider the conductivity equation (2.1) for which
u : Ω → R is the unknown scalar potential and σ : Ω → R

+ is the
electrical conductivity. We consider the case in which the domain consists
of finitely many regions of piecewise constant conductivity i.e., σ = σi on
region Ei for i = 0, 1, . . . , N. The Neumann boundary condition is (2.2) in
which b0 : ∂Ω → R is the injected current. We consider the case for which
b0 ∈ C0,1 is a Lipschitz function. We use n to denote the unit outward
normal vector to the boundary and use ∂

∂n or ∂n for the corresponding
normal derivative.

We introduce a tree structure, a connected acyclic undirected graph, to
describe the layout of the regions of constant conductivity. The descendants
of a region are those regions that are entirely within it. Let pi denote the
unique parent of region Ei for i = 1, . . . , N. Note that n will point towards
a region’s parent. Let region 0 be the root region in the tree. This is the
region on whose boundary the Neumann boundary condition is imposed.
The conductivity jumps across the outer boundary of region i ̸= 0 from
σi to σpi . Leaves of the tree correspond to simply connected regions that
do not contain any other regions. Figure 2.1 shows an example layout of
regions and the corresponding tree of regions.
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Figure 2.1: An example layout of regions and the corresponding tree of re-
gions. The outer boundary of the root of the tree, here region
0, is the boundary of the domain. Each region shares an inter-
face with its children in the tree. The sets of descendants are
S0 = {1, 2, 3, 4, 5}, S1 = {}, S2 = {3, 4, 5}, S3 = {5}, S4 = {}, S5 = {}.

We seek to solve an elliptic interface problem by finding u such that:

∆u = 0 in Ω \ ∪N
i=0∂Ωi (2.3)

σ0∂nu = b0 on ∂Ω0 (2.4)

[u] = 0 on ∂Ωi, i = 1, . . . , N (2.5)

[σ∂nu] = bi on ∂Ωi, i = 1, . . . , N (2.6)

in which Ωi is the union of region Ei and all its descendants. We require
∂Ωi ∈ C2 and bi ∈ C0,1 for i = 0, . . . , N. Additionally, we require that no
region intersects the outer boundary ∂Ω0. For any function ξ : Ω → R

and x0 ∈ ∂Ωi, we define [ξ](x0) to be ξ+(x0)− ξ−(x0) where ξ+(x0) is
the limit of ξ(x) as x → x0 from Ω \ Ωi and ξ−(x0) is the limit of ξ(x) as
x → x0 from Ωi. We require

∫
∂Ωi

bi(x) dℓx = 0 for i = 0, . . . , N so that the
PDE problem is well-posed up to an additive constant.

The weak formulation of the PDE problem (2.3)-(2.6) will be discussed
in Section 2.6.

2.3 a boundary integral formulation

We recast the PDE problem, equations (2.3)-(2.6), as a boundary integral
equation of the second kind [Atk97]. The resulting system of integral
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equations is given in (2.38) and (2.39). Using an indirect approach, we
represent the solution as the sum of N + 1 single layer potentials

u(x) =
N

∑
j=0

S∂Ωj [γj](x). (2.7)

The single layer potential with charge density γj ∈ C(∂Ωj) is defined as

S∂Ωj [γj](x) :=
∫

∂Ωj

G(x, y)γj(y) dℓy, (2.8)

with the two-dimensional free space Green’s function

G(x, y) =
1

2π
log |x − y|. (2.9)

Since the single layer potential is harmonic off of ∂Ωj and continuous
across ∂Ωj, the sum of single layer potentials in (2.7) automatically satis-
fies (2.3) and (2.5).

As a consequence of (2.7), the charge density on an interface is equal to
the jump in normal derivatives of the solution across the interface i.e.,

γi = [∂nu] = ∂n+u − ∂n−u on ∂Ωi, i = 1, . . . , N. (2.10)

The normal derivative of a single layer potential on ∂Ωi is readily
computed using the adjoint of the Neumann-Poincaré operator,

K∗
∂Ωi

[γi](x) :=
1

2π

∫
∂Ωi

(x − y) · n(x)
|x − y|2 γi(y) dℓy, x ∈ ∂Ωi. (2.11)

A standard result from potential theory [Kre14, CDH16] is that for x ∈ ∂Ωi

∂n±S∂Ωi [γi](x) = K∗
∂Ωi

[γi](x)± 1
2

γi(x), (2.12)

provided that ∂Ωi is C2 and γi ∈ C(∂Ωi). The kernel of the adjoint of the
Neumann-Poincaré operator,

K(x, y) =
1

2π

(x − y) · n(x)
|x − y|2 , (2.13)

has a removable discontinuity at x = y ∈ ∂Ωi. This discontinuity is
removed by defining

K(x, x) :=
κ(x)
4π

, (2.14)
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in which κ is the curvature at point x ∈ ∂Ωi. Since the interfaces are in
C2, do not self-intersect, and do not intersect with other interfaces, x = y
implies n(x) = n(y) and K(x, y) ∈ C2.

On the boundary of each region ∂Ωi, there is a single layer of charge
with density γi. Enforcing the boundary condition (2.4) and the interfaces
conditions (2.6) provide a system of integral equations that determine
γ0, . . . , γN . The normal derivative of the single layer potential S∂Ωj [γj] at
point x ∈ ∂Ωi, i ∈ {0, . . . , N} is

∂n±S∂Ωj [γj](x) =
∫

∂Ωj

K(x, y)γj(y) dℓy ±
1
2

γj(x)δij, (2.15)

in which δij is the Kronecker delta. Substituting (2.7) and (2.15) into (2.4)
and (2.6) gives a system of integral equations for the charge densities,

−1
2

σ0γ0(x) + σ0

N

∑
j=0

∫
∂Ωj

K(x, y)γj(y) dℓy = b0(x), x ∈ ∂Ω0,

(2.16)

1
2
(
σpi + σi

)
γi(x) +

(
σpi − σi

) N

∑
j=0

∫
∂Ωj

K(x, y)γj(y) dℓy = bi(x), x ∈ ∂Ωi,

(2.17)

for i = 1, . . . , N.

The system of equations (2.16) and (2.17) is ill-posed, owing exclusively to
the well-known non-uniqueness for the Neumann problem for equations
of this type. In particular, solutions are only defined up to an additive
constant.

We will resolve this issue here, by making a suitable change to the
system. Prior to doing this, it is instructive to derive that the total charge
on any inner interface must vanish as a consequence of the system (2.16)
and (2.17). The non-uniqueness is entirely captured in the freedom to
define a weighted integral of the charge density on the outer boundary
arbitrarily, as we will see later.

Denote the total charge on ∂Ωi by Ci i.e.,

Ci :=
∫

∂Ωi

γi(x) dℓx, for i = 0, . . . , N. (2.18)

We will show that the integral equations (2.17) imply that Ci = 0 for all
i = 1, . . . , N. We integrate the integral equations (2.17) along ∂Ωi and use
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the requirement that
∫

∂Ωi
bi(x) dℓx = 0 for i ∈ {1, . . . , N} to obtain the

system of equations

0 =
1
2
(σpi + σi)Ci +

(
σpi − σi

) N

∑
j=0

∫
∂Ωi

∫
∂Ωj

K(x, y)γj(y) dℓy dℓx, (2.19)

for i = 1, . . . , N.

Since y ∈ ∂Ωj, the divergence theorem and in the case when y ∈ ∂Ωi
slightly modifying the contour can be used to compute the integral

∫
∂Ωi

K(x, y) dℓx =


1, y ∈ int(Ωi)
1
2 , y ∈ ∂Ωi

0, y ∈ ext(Ωi)

. (2.20)

Swapping the order of integration in (2.19) and using (2.20) leads to the
system of equations

0 = σpi Ci + (σpi − σi) ∑
j∈Si

Cj, for i = 1, . . . , N, (2.21)

in which Si ⊆ {0, . . . , N} is the set of all regions that are descendants of
region Ei as illustrated in Figure 2.1. These equations immediately give
us that for any region Ei that has no descendants i.e., a leaf of our tree
of regions, Ci = 0. Then, for any parent region pi whose descendants all
have Ci = 0, we must also have Cpi = 0. By induction, we get Ci = 0 for
all i = 1, . . . , N.

Subsequently, we will show that the freedom in selecting the total charge
on the outer boundary is equivalent to choosing the additive constant for
the PDE problem. We will begin by showing that the freedom in selecting a
weighted integral of the charge density on the outer boundary is equivalent
to choosing the additive constant for the PDE problem. Assume we have
two solutions to the system of integral equations (2.16) and (2.17). We will
denote these two solutions by u1 and u2. Define u to be the difference
between the two solutions i.e., u = u1 − u2.

Then u satisfies the same problem as before (2.3)-(2.6) with all the right
hand sides being zero. Any solution to the system (2.3)-(2.6) is a solution
of the weak formulation of the elliptic interface problem. The only solution
to the weak problem with all the right hand sides being zero is the constant
solution u = d.

Let us denote the charge densities corresponding to the difference of
the two solutions to the integral equations system (2.16) and (2.17) by
δγi, i = 0, . . . , N. Since we know that the solution u must be a constant,
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we have using (2.10) that δγi = 0 for all i ≥ 1. Therefore, using (2.7) and
(2.8) u satisfies the formula

u(x) =
∫

∂Ω0

G(x, y)δγ0(y) dℓy, (2.22)

in which δγ0 is the charge density on the outer boundary. Integrating u
along ∂Ω0 and swapping the order of integration gives

d · length(∂Ω0) =
∫

∂Ω0

u(x) dℓx (2.23)

=
∫

∂Ω0

∫
∂Ω0

G(x, y)δγ0(y) dℓy dℓx (2.24)

=
∫

∂Ω0

w(y)δγ0(y) dℓy (2.25)

in which w(y) :=
∫

∂Ω0
G(x, y) dℓx. If ∂Ω0 is a circle of radius R, then

w(y) is constant and identically equal to R log R. This computation is as
follows:

w =
1

2π

∫ 2π

0
log |⟨R cos θ, R sin θ⟩ − ⟨R, 0⟩|R dθ (2.26)

=
1

2π

∫ 2π

0
log |⟨R cos θ − R, R sin θ⟩|R dθ (2.27)

=
1

2π

∫ 2π

0
log
(√

(R cos θ − R)2 + (R sin θ)2

)
R dθ (2.28)

=
R

4π

∫ 2π

0
log
(
(R cos θ − R)2 + (R sin θ)2) dθ (2.29)

=
R

4π

∫ 2π

0
log
(
2R2(1 − cos θ)

)
dθ (2.30)

=
R

4π

∫ 2π

0
(2 log (R) + log (2(1 − cos θ))) dθ (2.31)

=
R

4π
[4π log R] (2.32)

= R log R. (2.33)

Next we will show that specifying the given weighted integral of the
charge density on the outer boundary is equivalent to specifying the total
charge on the outer boundary. We note that δγ0 is the charge density on
the boundary of a conductor and is thus continuous and never zero [Pet12].
Hence, δγ0 is of constant sign. Now we have already shown there is a
one-dimensional kernel to our system of integral equations (2.16) and
(2.17) consisting of charge densities that yield the constant solution so
specifying the total charge on the outer boundary will uniquely specify
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the weighted integral of the charge density on the outer boundary and
vice versa.

We thus derive that any two solutions to the original problem (2.3)-(2.6)
with the same bi for i = 0, . . . , N differ by a constant and that specifying
the total charge on the outer boundary uniquely specifies a solution to
problem (2.3)-(2.6).

For definiteness, we will be imposing that the total charge on the outer
boundary C0 :=

∫
∂Ω0

γ0(y) dℓy = 0. We incorporate our choice of C0 = 0
into the system of linear integral equations given in (2.16) and (2.17) by
modifying the kernel in (2.13) when i = j = 0 by subtracting 1. The inte-
gral equations (2.16) and (2.17) for the charge densities with the modified
kernel where C0 = 0 become

−1
2

σ0γ0(x) + σ0

N

∑
j=0

∫
∂Ωj

[
K(x, y)− δ0j

]
γj(y) dℓy = b0(x), x ∈ ∂Ω0,

(2.34)

1
2
(
σpi + σi

)
γi(x) +

(
σpi − σi

) N

∑
j=0

∫
∂Ωj

K(x, y)γj(y) dℓy = bi(x), x ∈ ∂Ωi,

for i = 1, . . . , N.
(2.35)

We seek to show that the previous integral equations (2.16) and (2.17)
with the additional constraint C0 :=

∫
∂Ω0

γ0(y) dℓy = 0 are equivalent
to the modified integral equations (2.34) and (2.35). We first show that
a solution to the previous integral equations (2.16) and (2.17) where in
addition C0 = 0 yields a solution to the modified integral equations (2.34)
and (2.35). Since the only difference between the two systems of integral
equations is that (2.34) has an additional term on the left hand side

−
∫

∂Ω0

γ0(y) dℓy (2.36)

which is 0 when C0 = 0, a solution to the previous integral equations
(2.16) and (2.17) where in addition C0 = 0 yields a solution to the modified
integral equations (2.34) and (2.35).

Next, we show the converse that a solution to the modified integral
equations (2.34) and (2.35) yields a solution to the previous integral equa-
tions (2.16) and (2.17) where in addition C0 = 0. Integrating the integral
equation with the modified kernel (2.34) around ∂Ω0, swapping the or-
der of integration, and using the divergence theorem immediately gives
−
∫

∂Ω0
γ0(y) dℓy = 0 which by definition of C0 implies that C0 = 0. Now,

the additional term (2.36) in equation (2.34) vanishes so a solution to
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the modified integral equations (2.34) and (2.35) yields a solution to the
previous integral equations (2.16) and (2.17).

Thus, the system of modified integral equations (2.34)-(2.35) is equiv-
alent to the original system of integral equations (2.16)-(2.17) with the
additional constraint that the total charge on the outer boundary C0 = 0.

2.3.1 Conditioning of Linear System

The scenarios we are interested in typically involve conductivities of order
1; however, if two neighbouring conductivities are very similar in value
then the resulting system of integral equations will be poorly conditioned.
For an inner interface (i.e., i ≥ 1), if bi ≡ [σ∂nu] = 0, then (2.6) and (2.10)
imply that the charge density on interface ∂Ωi is

γi = ∂n+u
(

1 −
σpi

σi

)
. (2.37)

This quantity will be very small if σpi ≈ σi leading to a poorly conditioned
system of integral equations. To improve the conditioning of the system
of integral equations, we rescale the charge densities to be proportional to
∂n+u by defining ϕi := γi/αi where αi = 1 − σpi /σi for i ∈ {1, . . . , N} and
α0 = 1. The integral equations for the rescaled charge densities ϕi become

−1
2

ϕ0(x) +
N

∑
j=0

αj

∫
∂Ωj

[
K(x, y)− δ0j

]
ϕj(y) dℓy =

b0(x)
σ0

, x ∈ ∂Ω0,

(2.38)

1
2

αi

(
σpi + σi

)
σpi − σi

ϕi(x) +
N

∑
j=0

αj

∫
∂Ωj

K(x, y)ϕj(y) dℓy =
bi(x)

σpi − σi
, x ∈ ∂Ωi,

(2.39)

for i = 1, . . . , N

in which δ0j is the Kronecker delta and K is the kernel of the adjoint of the
Neumann-Poincaré operator defined in (2.13) and (2.14). Thus, ϕi in view
of (2.37) will be proportional to ∂n+u leading to a well-conditioned system
of integral equations.

2.4 numerical methods

This section describes the discretization scheme for the integral equations,
specifies the interpolation of the charge densities, documents the adaptive
quadrature method used to automatically refine the quadrature grids,
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details the solution evaluation, and presents the exact solution for the two
non-concentric nested circles case.

2.4.1 Discretization Scheme

We employ the Nyström method [Kre14] to discretize the integral equa-
tions (2.38)-(2.39). The curves ∂Ωi are parameterized in q ∈ [0, 1] and the
grid on each curve is denoted qi,m, m = 0, . . . , Mi − 1 for Mi grid points
on curve i. We use two different quadrature schemes. For interfaces that
approach other interfaces within a threshold, we use composite quadrature
and split the interface into panels. We use Gauss-Legendre quadrature on
each panel and Lagrange interpolation for interpolating the charge density.
For interfaces that are sufficiently far away from all other interfaces we
use uniform grid points, trapezoidal rule quadrature, and trigonometric
interpolation for interpolating the charge density. For either interface type,
we adaptively refine the panels and increase the number of grid points to
meet a given error tolerance.

After discretization, the integral equations (2.38) and (2.39) can be ex-
pressed as Aϕ = b. The entries in b are given by evaluating the functions
b0, b1, . . . , bN at the quadrature nodes and the entries in A are computed
from evaluating the kernel (2.13) at the pairs of grid points and applying
the quadrature rule.

We solve the system Aϕ = b using GMRES [SS86], an iterative method
that approximates the solution by the vector in a Krylov subspace with
minimal residual. When solving with GMRES, the well-conditioned inte-
gral equations give a well-conditioned discrete linear system for which
GMRES converges quickly.

We use the fmm2d library that implements fast multipole methods in two
dimensions [Fla21]. It allows us to compute N-body interactions governed
by the Laplace equation, to a specified precision, in two dimensions, on
a multi-core shared-memory machine. In particular, fmm2d can accelerate
evaluation of the sum

M

∑
j=1

cjK
(

xi, yj

)
, for i = 1, 2 . . . , N, (2.40)

in which there are M arbitrary source locations yj ∈ R2 with correspond-
ing strengths cj ∈ R, N target locations xi ∈ R2, and the kernel K can be
the free-space Green’s function G(x, y) from (2.9) or its derivative K(x, y)
from (2.13).
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2.4.2 Interpolation of Charge Densities

The boundary integral method results in estimates of the charge den-
sities on a grid γi(qi,m). When evaluating the singular layer potentials
S∂Ωi [γi](x) =

∫
∂Ωi

G(x, y)γi(y) dℓy, the value of the charge density may
need to be known off of this grid depending on the quadrature scheme
employed.

While we could have opted to use Nyström interpolation [Nys30, DM88,
Kre14] in which the integral equations are re-arranged and evaluated
for the charge density at non-grid points, we instead choose barycentric
Lagrange interpolation [BT04] for the paneled interfaces and trigonometric
interpolation [WJMT15] for the uniform interfaces.

Consider the case of a uniform interface first. Let pK(q) be the trigono-
metric polynomial of degree K, i.e., a truncated Fourier series. The 2K + 1
unknowns are determined by requiring that the interpolant pass through
given values pK(qm) = fm, m = 0, . . . , M − 1 with M = 2K + 1. In the case
of the shifted uniform grid qm = (m + s)/M, m = 0, . . . , M − 1, s ∈ [0, 1],
this interpolant can readily and stably be evaluated using the barycentric
formula for trigonometric interpolation [WJMT15],

pK(q) =

M−1

∑
m=0

(−1)m fmF (π(q − qm))

M−1

∑
m=0

(−1)mF (π(q − qm))

. (2.41)

For odd M, F(q) = csc(q), while for even M, F(q) = cot(q). We choose
s = 1

2 so as to avoid a possible numerical instability with the barycentric
formula [AX17].

In the case of a non-uniform grid qm, m = 0, . . . , M − 1, we opt for a
degree M − 1 Lagrange interpolant using the barycentric formula [BT04],

pM−1(q) =

M−1

∑
m=0

wm fm

q − qm

M−1

∑
m=0

wm

q − qm

, (2.42)

in which
wm =

1
∏n ̸=m(qm − qn)

. (2.43)

If the coefficients wm are precomputed, then interpolation requires only
O(NM) work for N evaluation points.
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2.4.3 Adaptive Grid Refinement

We use an adaptive strategy to automatically refine the quadrature grids
for the integral equations.

For interfaces discretized with uniform grids, we solve the discretized in-
tegral equations (2.38)-(2.39) with M uniform grid points and use trigono-
metric interpolation to approximate the scaled charge densities. We take
M = 2K + 1 and let pK(q) be the truncated Fourier series of degree K
approximation to the discrete charge densities

pK(q) =
K

∑
k=−K

ck exp(2πikq), (2.44)

in which the Fourier coefficients are

ck =
∫ 1

0
pK(q) exp(−2πikq) dq. (2.45)

If the two highest mode Fourier coefficients |cK| and |cK−1| are both smaller
than a specified tolerance, then the charge densities are well resolved and
pK(q) is taken to be our final approximation of the scaled charge density.
Otherwise, we refine the interface and iterate until |cK| and |cK−1| are both
smaller than the specified tolerance. We check that the last two coefficients,
rather than just one, are smaller than the threshold so that a symmetry
does not mislead us into thinking that the series has converged.

For interfaces discretized with composite quadrature (panels), we solve
the discretized integral equations (2.38)-(2.39) with an M point Gauss-
Legendre quadrature and examine the truncated Legendre series polyno-
mial of order M approximation to the discrete charge densities on each
panel. If either of the last two coefficients in the polynomial approximation
are above a specified tolerance, then the panel is refined. After refinement,
if the number of quadrature nodes is greater than the maximum allowed
on a panel, then we split the panel into four smaller panels. We iterate
until the last two coefficients in the polynomial approximation are both
below the specified tolerance, indicating that the charge densities are well
resolved. Refining based on the size of the coefficients of Legendre se-
ries polynomials has been used previously when computing generalized
Gaussian quadratures [BGR10].

Each time the grid is refined, the linear system for charge densities needs
to be solved again. We reduced the number of GMRES iterations needed
to solve this linear system by using an initial guess from interpolating the
charge densities from the course grid to the fine grid.
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2.4.4 Solution Evaluation

Having solved for the charge densities, the solution may be evaluated
using (2.7) and the same quadrature scheme used in the Nyström method.
This is known as naïve quadrature and is fast and accurate when the
evaluation point is not near or on an interface or the boundary. For
evaluation points on or near an interface or the boundary, the integrand
is logarithmically singular or nearly singular for which the quadrature
schemes for smooth integrands perform poorly [Bar14, HO08b].

This so-called close evaluation problem has been addressed with quadra-
tures that are spectrally accurate up to the boundary [HO08b, BWV15],
quadrature by expansion [KBGO13] (whose convergence is analyzed
in [EGK13]), and adaptive quadrature [Gon09]. We opt for a simpler
approach: approximate interfaces or the boundary with line segments
near an evaluation point and employ an analytic expression for the single
layer potential due to a line segment.

Through explicit integration, the potential at point x due to a single
layer of charge on a line segment ∆S, parameterized by arclength s, from
X1 at s1 to X2 at s2 with a charge density γ(s) = γ1

s2−s
s2−s1

+ γ2
s−s1
s2−s1

varying
linearly from γ1 at X1 to γ2 at X2 is

S∆S[γ(s)](x) =
1

2π

γ1s2 − γ2s1

s2 − s1
(s2 log(r2)− s1 log(r1)− s2 + s1 + (θ2 − θ1)d)

(2.46)

+
1

2π

γ2 − γ1

s2 − s1

(
r2

2
2

(
log(r2)−

1
2

)
− r2

1
2

(
log(r1)−

1
2

))
,

in which: r1, r2 are the distances between x and X1, X2, respectively; d is
the perpendicular distance between x and the line segment ∆S; and θ1, θ2

are the angles from the perpendicular line to X1, X2, respectively. The
variables in this formula are shown in Figure 2.2a. This formula is given
in the Appendix A of [Liu09b] in the case of γ1 = γ2 = 1.

The values of the charge densities at the endpoints of each line segment
can be obtained by interpolating the charge density solution. If we simply
take the values of the unmodified charge densities at the endpoints of
the curved segment, then the total charge for the line segment approx-
imation would be reduced as the length of the line segment is shorter
than that of the curved segment. To ensure the total charge on each line
segment is equal to the total charge on the corresponding curved segment,
we estimate the total charge on each curved segment by computing a
truncated Legendre (respectively Fourier) series polynomial for panelled
(respectively uniform) interfaces. Imposing that the estimated total charge
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θ1
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(a) (b)

Figure 2.2: Line segment potential. (a) The variables used in (2.46) to compute the
potential at point x due to a single layer of charge on a line segment
∆S, parameterized by arclength s, from X1 at s1 to X2 at s2. Here
r1, r2 are the distances between x and X1, X2; d is the perpendicular
distance between x and the line segment ∆S; and θ1, θ2 are the angles
from the perpendicular line to X1, X2. (b) The difference between the
single layer potential SΓ[1] for unit charge density on a curve Γ and
the sum of the charge line potentials ∑i S∆Si [1] for 36 segments. The
difference is negligible outside the boundary of the “5h rule”.

on each curved segment equals that on the corresponding line segment
yields a system for the charge densities at each endpoint. For an even
number of endpoints, this system has a one-dimensional kernel and we
choose the solution with minimum ℓ2-norm.

Following the “5h rule” [Bar14], panels within a distance of five times
the local grid spacing to an evaluation point are broken into line segments
and evaluated using (2.46). The contributions to the potential due the
other panels are evaluated using (2.7). Approximating the curves ∂Ωi
near the evaluation point as the union of line segments introduces some
error especially where the curve has high curvature. This is illustrated in
Figure 2.2b, which shows the difference between the single layer potential
on a curve Γ and the approximate potential due to 36 line segments.
In practical applications, more line segments are used so that the error
introduced by this approximation is much smaller.

2.4.5 Exact Solution to Two Non-Concentric Nested Circles Problem

We will construct a solution to the two non-concentric nested circles
problem using a conformal map to a two concentric nested circles problem.
The numerical solution to this problem computed using our method
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and using FEniCS [ABH+
15] will be compared to the exact solution in

Section 2.5.1. The conformal map

z̃ = f (z) =
z − α

1 − ᾱz
(2.47)

maps the unit disk to the unit disk and the point α to 0. The inverse of
this map is

z = f−1(z̃) =
z̃ + α

1 + ᾱz̃
. (2.48)

Let the off-centre circle have a diameter on the x-axis passing through
(0, 0) and (a, 0). Choose

α =

√
1 + a −

√
1 − a√

1 + a +
√

1 − a
, (2.49)

the point equidistant between (0, 0) and (a, 0) in the unit disc model for
hyperbolic geometry.

Let us construct some solutions ũ(r̃, θ̃) in the domain with concentric
circles. Consider the problem

∆ũ = 0 on r̃ < 1, r̃ ̸= α (2.50)

∂r̃ũ = sin(mθ̃) on r̃ = 1, (2.51)

ũ− = ũ+ on r̃ = α, (2.52)

σ∂r̃− ũ = ∂r̃+ ũ on r̃ = α, (2.53)

in which σ = σ1/σ0 is the ratio of conductivities in the disks of radius α

and 1. m is a natural number. By separating variables on the disk, we find
the solution

ũ(r̃, θ̃) =

{
Ar̃m sin(mθ̃), r̃ ≤ α

(Br̃m + Cr̃−m) sin(mθ̃), α ≤ r̃ ≤ 1
, (2.54)

in which A = 2
m

1
α2m(σ−1)+σ+1 , B = A(σ + 1)/2, C = B − 1/m.

We obtain a solution to a non-concentric nested circles problem where
u(r, θ) = ũ(r̃, θ̃). The injected current b0 this implies for the non-concentric
problem is

b0(θ) = sin
(

m tan−1
(

sin(θ)(1 − α2)

cos(θ)(1 + α2)− 2α

))
1 − α2

1 − 2α cos(θ) + α2 . (2.55)
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The charge density on the inner circle is

γ1(θ̃) = [∂r̃+ ũ − ∂r̃− ũ]r̃=α = sin(mθ̃)
2αm−1(σ − 1)

α2m(σ − 1) + σ + 1
. (2.56)

2.5 numerical results

This section illustrates numerically the performance of our method. We
compare results obtained using our solver to those obtained using FEn-
iCS [ABH+

15], a popular open-source (LGPLv3) computing platform for
solving partial differential equations. The finite element meshes used in
FEniCS were created in Gmsh [GR09], an open source 2D and 3D finite
element mesh generator distributed under the terms of the GNU General
Public License (GPL). Gmsh allows one to create customizable finite ele-
ment meshes that can be refined near each interface to increase accuracy
at minimal cost to computation time. We consider four separate test cases.

2.5.1 Test Case 1: Two Nested Circles

We consider the case of two nested circles. Figure 2.3 shows the analytic
solution to a two circle non-concentric and the corresponding concentric
problems, the pointwise difference between the analytic solutions and
the boundary integral method solutions, and the pointwise difference
between the analytic solutions and the solution computed using FEniCS.
Additionally, the finite element mesh created using the frontal Delaunay
triangulation [Reb93] in Gmsh and used by FEniCS is shown. The wall
time to build and solve the system of equations for the two non-concentric
circle problem was 0.23 seconds for our solver and 1.37 seconds for FEniCS
and the two concentric circle problem was 0.07 seconds for our solver
and 0.83 seconds for FEniCS. Figure 2.4 shows the absolute error in the
computed solution using the naïve quadrature (dash-dotted), using adap-
tive quadrature using the interpolant of the charge densities (solid), and
using the charge line potential between each node (dashed) for the case of
two concentric circles as a function of distance from the outer boundary.
The solution is evaluated at the point (r, θ) = (1 − x̂, π

2 ) in polar coordi-
nates. In Fig. 2.4a the point (r, θ) = (1, π

2 ) is at a quadrature node and in
Fig. 2.4b we use the same number of quadrature nodes but rotate them
so that the same point (r, θ) = (1, π

2 ) is half way between two quadrature
nodes. The wall time to evaluate the solution at all 8,000 points used
in Figure 2.4 was 0.02 seconds when using the naïve quadrature, 36.16

seconds when using adaptive quadrature, and 0.90 seconds when using
the charge line potential. The charge line potential leads to more accurate
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results near the boundary than the naïve quadrature and is faster than
adaptive quadrature.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3: Pointwise errors for the nested circles test case. In the non-concentric
case, a coarse version of the finite element mesh created in Gmsh and
used by FEniCS (a), the contours of the solutions (b), the pointwise
error of the numerically computed solutions using FEniCS (e) and
using our method (f). The corresponding plots for the concentric
case are shown in (c,d,g, and h) respectively. Parameter values are
m = 3, σ = 2, α = 0.40 (a ≈ 0.69).

2.5.2 Test Cases 2, 3, and 4: Examples of General Curves

We consider cases where the conductivity is piecewise constant on regions
defined by more general curves. Test case 2 has elliptical regions, test case
3 has clover leaf/starfish curves where the radius of each curve is given in
polar coordinates by r(θ) = A + B cos(Cθ) for parameters A, B, C, and test
case 4 has 155 regions of constant conductivity. In each case, the injected
current on the outer boundary is b0(θ) = cos(6θ − π)1{|θ−π/2|<π/12} −
cos(6θ − π)1{|θ−3π/2|<π/12}. Figure 2.5 displays the regions of constant
conductivity and the computed potential using our solver for test cases 2,
3, and 4.
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(a) (b)

Figure 2.4: Absolute error in the computed solution using the naïve quadrature
(dash-dotted), using adaptive quadrature using the interpolant of the
charge densities (solid), and using the charge line potential between
each node (dashed) for the case of two concentric circles as a function
of distance from the outer boundary. The solution is evaluated at the
point (r, θ) = (1 − x̂, π

2 ) in polar coordinates. In (a) the point (r, θ) =
(1, π

2 ) is at a quadrature node and in (b) we rotate the quadrature
nodes so that the same point is half way between two quadrature
nodes. On each interface/boundary 28 uniformly spaced nodes were
used. For the adaptive quadrature, an adaptive tolerance of 10−6 was
used.

2.5.3 Test Cases From the Literature

We consider the conductivities from Example 2 of Gehre’s paper [GJL14]
(test case 5) and Nasser’s paper [NMIA11] (test case 6). We take the in-
jected current on the outer boundary to be b0(θ) = cos(8θ −π)1{|θ−π/2|<π/16}−
cos(8θ −π)1{|θ−3π/2|<π/16} (test case 5) and b0(θ) = cos(6θ −π)1{|θ−π/2|<π/12}−
cos(6θ − π)1{|θ−3π/2|<π/12} (test case 6). Figure 2.6 displays the regions of
constant conductivity and the computed potential using our solver.

2.5.4 Grid Refinement and Rescaling Studies

Figures 2.7a and 2.7b display two refinement studies for our solver. In
the first refinement study, the error estimate of the potential u is plotted
as a function of M, the number of uniform grid points on each interface,
for each of the four test cases. The error estimate is taken to be the
absolute difference between the potential difference between the solutions
computed at the boundary point (1, 0) with M and 2M uniform grid
points on each interface. The error is primarily due to solution evaluation
error. If higher accuracy in the evaluation is required then using adaptive
quadrature will improve the accuracy of the solver albeit at an increased
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(a)

(b)

(c)

Figure 2.5: Conductivity for the problem (left) and potential computed using our
solver (right) for test case 2 (a), test case 3 (b), and test case 4 (c).
In all three test cases the injected current on the outer boundary is
b0(θ) = cos(6θ − π)1{|θ−π/2|<π/12} − cos(6θ − π)1{|θ−3π/2|<π/12}.
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(a) (b)

Figure 2.6: Conductivity σ for the problem (top) and potential u computed using
our solver (bottom) for test case 5 (a) and 6 (b). The injected cur-
rent on the outer boundary is b0(θ) = cos(8θ − π)1{|θ−π/2|<π/16} −
cos(8θ − π)1{|θ−3π/2|<π/16} (test case 5) and b0(θ) = cos(6θ −
π)1{|θ−π/2|<π/12} − cos(6θ − π)1{|θ−3π/2|<π/12} (test case 6).
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(a) (b) (c)

Figure 2.7: Refinement studies showing (a) the pointwise error estimate of the
solution u at the boundary point (1, 0) and (b) the error estimate of the
charge density γ as a function of M, the number of uniform grid points
on each interface, for all four test cases – 1 (blue), 2 (red), 3 (yellow),
4 (purple). (c) Number of GMRES iterations (with GMRES tolerance,
i.e., relative residual error, of 10−8 and initial guess of the zero vector)
performed with (dotted lines) and without (solid lines) rescaling the
charge densities for seven elliptical regions of constant conductivity
alternating between 1 and σ. On each of the seven ellipses, M = 25

(blue lines) or 28 (red lines) uniformly spaced nodes were used.

cost to computation time. In the second refinement study, the charge
density at each node on each interface/boundary is computed for each
M and the maximal difference between these charge densities and the
charge densities computed with 2M grid points is plotted. The refinement
studies show that the charge densities converge spectrally and the potential
converges linearly for our solver for all four test cases.

As discussed in Section 2.3.1, especially in the case of close conductivi-
ties, scaling the charge densities improves the conditioning of the resulting
linear system. A study on the effect of rescaling the charge densities for
our solver was performed for the case of the seven elliptical regions of
constant conductivity described in test case 2 except with the conductivi-
ties alternating between 1 and a variable value σ for nested regions. The
number of GMRES iterations performed with and without rescaling the
charge densities as a function of the value σ are shown in Figure 2.7c.
Rescaling decreased the number of GMRES iterations required to meet the
convergence criterion. Note that iterations with a larger number of nodes
per interface take longer to complete.

In order to benefit from the improved accuracy that using a larger
number of nodes per interface brings without suffering too much increased
computation time, we adaptively refine our grid to place more points
where the interfaces are close together. Figure 2.8a shows an example
of the automatically selected adaptive grid for test case 3. Figure 2.8b
demonstrates how the adaptive grid refinement improves accuracy at
minimal cost to computation time for test cases 2 and 3. The total wall time
for the build and solve averaged over 10 samples is plotted against an error
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(a) (b)

Figure 2.8: (a) Part of the automatically selected adaptive grid (black dots are the
quadrature nodes, red lines are the panel boundaries, black curves are
interfaces) for test case 3. (b) Refinement performance plot showing
wall time averaged over 10 samples vs error estimate for our solver
with (black outline) and without (no outline) adaptively selecting the
grid points for test case 2 (red) and 3 (yellow).

estimate – the absolute difference between the potential computed at the
origin for the given run and a run computed with higher accuracy. For both
test cases, the adaptive method was more efficient ultimately achieving
more accurate results with less computation time. All simulations were
performed on a desktop PC with a 6-Core 3.59 GHz CPU and 16 GB RAM.

2.5.5 Effect of Smoothing Out Jumps in Conductivity

We now propose that the setting of sharp jumps in conductivities is a good
approximation (in terms of the EIT data) for steep but smooth transitions in
conductivity.

We consider smoothings of piecewise constant conductivity functions.
Given islands of constant conductivity inside a constant conductivity
medium, the total conductivity function σ(x) is of course discontinuous.
We consider smoothings σ̃(x) of these discontinuous functions.

We seek to find whether the EIT data corresponding to σ(x) and σ̃(x) for
the same current injection will be sufficiently close. If this were the case,
one can imagine our solver for σ(x) producing adequate approximations
to the solution for σ̃(x) more efficiently than solvers specifically designed
for smooth conductivities since such solvers would require fine grids near
the transition regions. We verify in numerical examples that the difference
in EIT data between σ(x) and σ̃(x) is indeed very small.

Using FEniCS, we computed the voltage between the north and south
pole for five different cases with sharp and smooth jumps in conductivity.
The percentage difference between the voltage in the smooth jump and
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Case VSharp V0.1 D0.1 V0.01 D0.01

1. two concentric circles 1.6901 1.6978 0.4560% 1.6910 0.0534%
2. three concentric circles 1.6827 1.6922 0.5668% 1.6837 0.0596%
3. two ellipses inside disk 1.7672 1.7746 0.4164% 1.7681 0.0475%
4. four ellipses inside disk 1.6354 1.6443 0.5467% 1.6364 0.0636%
5. five ellipses inside disk 1.7529 1.7616 0.5001% 1.7540 0.0615%

Table 2.1: Voltage between the north and south pole for the different cases com-
puted using FEniCS on a unit disk domain. VSharp is the voltage
computed with a sharp jump in conductivity. V0.1 and V0.01 are the
voltages when the conductivity is smoothed out over a region of width
0.1 and 0.01, respectively. D0.1 and D0.01 denote the percentage dif-
ference between the voltage with a smooth jump in conductivity and
the voltage with a sharp jump in conductivity, (i.e., percent difference
between V0.1 and VSharp and between V0.01 and VSharp, respectively).
The injected current is g(θ) = sin(θ) and the FEniCS mesh resolution
is 27.

the sharp jump case is included. An injected current of g(θ) = sin(θ) and
a FEniCS mesh resolution of 27 was used. The domain was the unit disk
and the conductivities were smoothed out over a region of width 0.1 and
0.01 and the resulting voltages are shown in Table 2.1. A plot of the sharp
jump and smoothed out conductivity appears in Fig. 2.9.

We found good agreement between the voltages computed when the
conductivity had a smooth jump and a sharp jump. When the conductivi-
ties were smoothed out over a region of width 0.1, the resulting voltages
differed by only 0.4–0.6% and when smoothing occurred over a region of
width 0.01, the resulting voltages differed by a minuscule 0.05–0.06%.

2.6 existence and regularity

In this section we will provide some theoretical study of the system of
integral equations (2.38)-(2.39). The following regularity results on the
charge densities will guide our choice of quadrature for discretizing the
integral equations. The discretization scheme and details of the solution
evaluation were discussed in depth in Section 2.4. The conclusions follow
in Section 2.7. For now, we aim to show two separate results.

First, we will establish existence and uniqueness to this system of equa-
tions. This will be obtained from general PDE theory, and the analogous
statement for the system (2.38)-(2.39) will follow as a consequence.

Secondly, we will derive regularity for the charge densities along each
interface. The latter result will have two formulations. In both, we
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Figure 2.9: Sharp and smooth jump in conductivity. First row - two nested ellipses
inside a circle (case 3). Second row - four nested ellipses inside a circle
(case 4). Third row - five non-nested ellipses inside a circle (case 5).
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will obtain regularity of the charge density functions along an interface,
assuming the interface itself enjoys the same regularity. The most general
result will be Theorem 2.2 below, which will show that assuming that
the interface ∂Ωi enjoys Ck regularity, then the charge density γi(x) is of
regularity Hk (i.e., in the Hilbert space of order k). In particular it will also
be of regularity Ck−2, by Sobolev embedding. In the second theorem the
control we obtain on these norms will be in terms of the L2-norm of the
injected current. In the first Theorem 2.1 we assume that the interfaces
are just concentric circles and obtain stronger control making stronger
assumptions.

Theorem 2.1. Consider the solution of problem (2.38)-(2.39), with ∂Ωi nested
concentric circles inside the unit disk D, injected current b0 ∈ Hk(∂D), and
bi = 0 for i = 1, . . . , N. Then, the charge densities γi(·) at each of the inner
interfaces are Ck−2 regular functions, and their norms are bounded as follows: (θ
is the standard polar coordinate)

∥γi(θ)∥Ck−2(∂Ωi)
≤
∣∣∣∣1 − σpi

σi

∣∣∣∣ M
min{σ0, . . . , σN}

6
(rN)2 ∥b0∥Hk(∂D) (2.57)

in which M is a constant that depends on the constants in the Sobolev embedding,
the trace theorem, and the Poincaré inequality on domain D and rN is the radius
of the innermost circle.

Theorem 2.2. Consider the solution of problem (2.38)-(2.39), in which ∂Ωi are
general Ck curves, b0 ∈ L2(∂Ω), and bi = 0 for i = 1, . . . , N. Then, the charge
densities γi(·) at each of the inner interfaces are Ck−2 regular functions, and their
norms are bounded as follows: (s is the arc-length parameter on each curve)

∥γi(s)∥Ck−2(∂Ωi)
≤
∣∣∣∣1 − σpi

σi

∣∣∣∣ Mi

min{σ0, . . . , σN}
ρσi∥b0∥L2(∂Ω). (2.58)

Here the constant Mi depends on the shape of the interface ∂Ωi, the distance δi
between the curve ∂Ωi and its nearest curves, and the order k ∈ N. ρσi is the
maximum ratio of neighbouring conductivities i.e., ρσi := max{ σi

σpi
,

σpi
σi
}.

In particular when an interface ∂Ωi is very close to another interface
∂Ωj, (j ̸= i) then the constants Mi will increase. The precise constant Mi is
given in the proof below.

For comparison, in Theorem 2.1 the constant M does not blow up as
two interfaces (circles in that case) approach each other; of course on the
other hand, the bounds are in terms of a stronger norm of the injected
current.
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2.6.1 Regularity of the Solution at the Interfaces, in the Context of Concentric
Circles

We consider the special case where the regions of piecewise constant
conductivity are defined by N + 1 ∈ N concentric circles, of radii r0 = 1 >

r1 > · · · > rN > 0. Figure 2.10 shows the domain and conductivities that
we consider.

σ0
σ1

σN rN

r1

r0

Figure 2.10: Domain for the problem with N + 1 concentric circular regions of con-
stant conductivity. The conductivity jumps across the outer boundary
of region i ̸= 0, a circle of radius ri, from σi to σi−1.

We denote the unit disk by D and we use the standard polar coordinates
(r, θ). Let b0 ∈ Hk(∂D) for some k ∈ N. The weak formulation of (2.1)
and (2.2) is ∫

D
σ⟨∇u,∇ϕ⟩ dA =

∫
∂D

b0ϕ dℓ (2.59)

for all ϕ ∈ C∞ on the closed disk.
Since σ ∈ L∞, from general PDE theory we obtain that there exists a

unique weak solution u ∈ H1
0(D) [Eva10]. Setting ϕ = u and using the
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Cauchy–Schwarz inequality, the trace theorem, and the Poincaré inequality
we obtain

min{σ0, . . . , σN}
∫

D
|∇u|2dA

≤
∫

D
σ|∇u|2dA (2.60)

=
∫

∂D
b0u dℓ (2.61)

≤ 1
2

µ
∫

∂D
b2

0 dℓ+
1
2

µ−1
∫

∂D
u2 dℓ (2.62)

≤ 1
2

µ
∫

∂D
b2

0 dℓ+
1
2

µ−1c2
1∥u∥2

H1(D) (2.63)

=
1
2

µ
∫

∂D
b2

0 dℓ+
1
2

µ−1c2
1

(∫
D
|u|2 + |∇u|2 dA

)
(2.64)

≤ 1
2

µ
∫

∂D
b2

0 dℓ+
1
2

µ−1c2
∫

D
|∇u|2 dA, (2.65)

in which c1 is the trace constant and
√

c2

c2
1
− 1 is the Poincaré constant for

the domain D. Thus, choosing µ = c2

min{σ0,...,σN} we get the bound

∥∇u∥L2(D) ≤
c

min{σ0, . . . , σN}
∥b0∥L2(∂D), (2.66)

in which c is a constant depending on the trace constant and Poincaré
constant for the domain D.

We seek to prove better regularity for u. First we examine tangential
regularity. Let w ∈ C∞ and take ϕ = ∂

j
θw for some j ≤ k in (2.59) i.e.∫

D
σ⟨∇u,∇∂

j
θw⟩ dA =

∫
∂D

b0∂
j
θw dℓ. (2.67)

We integrate by parts in θ to give∫
D

σ⟨∇∂
j
θu,∇w⟩ dA =

∫
∂D

∂
j
θb0w dℓ, (2.68)

so ∂
j
θu is a weak solution to the same PDE problem (2.1) with Neumann

boundary condition σ∂nu = ∂
j
θb0 and ∂

j
θu ∈ H1(D) for j ≤ k with the

estimate (note that
∫

D
∂θu dA = 0)

∥∇∂
j
θu∥L2(D) ≤

c
min{σ0, . . . , σN}

∥∂
j
θb0∥L2(∂D), (2.69)
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in which c is a constant depending on the trace constant and Poincaré
constant for the domain D.

Next we examine normal regularity in the annulus Ωn \ Ωn+1 up to
the interface for n ∈ {0, . . . , N − 1}. Since ∂

j
θu ∈ H1(D) we get that

∂r∂
j
θu ∈ L2(Ωn \ Ωn+1) and ∂

j+1
θ u ∈ L2(Ωn \ Ωn+1) for j ≤ k. We use the

PDE (2.1) to get bounds on ∂i
r∂

j
θu for i+ j ≤ k+ 1 and i ≤ 3. In the annulus

Ωn \ Ωn+1, ∂
j
θu is harmonic so

∂2
r ∂

j
θu = −1

r
∂r∂

j
θu − 1

r2 ∂
j+2
θ u. (2.70)

Hence, we can estimate ∂2
r ∂

j
θu in L2(Ωn \ Ωn+1) by∥∥∥∂2

r ∂
j
θu
∥∥∥

L2(Ωn\Ωn+1)

≤ 1
rn+1

∥∥∥∂r∂
j
θu
∥∥∥

L2(Ωn\Ωn+1)
+

(
1

rn+1

)2 ∥∥∥∂
j+2
θ u

∥∥∥
L2(Ωn\Ωn+1)

(2.71)

≤ 1
rn+1

∥∥∥∇∂
j
θu
∥∥∥

L2(Ωn\Ωn+1)
+

(
1

rn+1

)2 ∥∥∥∇∂
j+1
θ u

∥∥∥
L2(Ωn\Ωn+1)

(2.72)

for j ≤ k − 1. To get higher normal regularity in the annulus Ωn \ Ωn+1,
we differentiate (2.70) with respect to r which leads to the equation

∂3
r ∂

j
θu =

1
r2 ∂r∂

j
θu − 1

r
∂2

r ∂
j
θu +

2
r3 ∂

j+2
θ u − 1

r2 ∂r∂
j+2
θ u (2.73)

and the corresponding estimate∥∥∥∂3
r ∂

j
θu
∥∥∥

L2(Ωn\Ωn+1)

≤
(

1
rn+1

)2 ∥∥∥∂r∂
j
θu
∥∥∥

L2(Ωn\Ωn+1)
+

1
rn+1

∥∥∥∂2
r ∂

j
θu
∥∥∥

L2(Ωn\Ωn+1)

+2
(

1
rn+1

)3 ∥∥∥∂
j+2
θ u

∥∥∥
L2(Ωn\Ωn+1)

+

(
1

rn+1

)2 ∥∥∥∂r∂
j+2
θ u

∥∥∥
L2(Ωn\Ωn+1)

(2.74)

≤ 2
(

1
rn+1

)2 ∥∥∥∇∂
j
θu
∥∥∥

L2(Ωn\Ωn+1)
(2.75)

+3
(

1
rn+1

)2 ∥∥∥∇∂
j+1
θ u

∥∥∥
L2(Ωn\Ωn+1)

+

(
1

rn+1

)2 ∥∥∥∇∂
j+2
θ u

∥∥∥
L2(Ωn\Ωn+1)
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for j ≤ k − 2.
We can estimate ∂r∂

j
θu in H2 on the annulus Ωn \ Ωn+1 by∥∥∥∂r∂

j
θu
∥∥∥

H2(Ωn\Ωn+1)
=
∥∥∥∂r∂

j
θu
∥∥∥

L2(Ωn\Ωn+1)
+
∥∥∥∂r∂

j+1
θ u

∥∥∥
L2(Ωn\Ωn+1)

(2.76)

+
∥∥∥∂r∂

j+2
θ u

∥∥∥
L2(Ωn\Ωn+1)

+
∥∥∥∂2

r ∂
j
θu
∥∥∥

L2(Ωn\Ωn+1)

+
∥∥∥∂2

r ∂
j+1
θ u

∥∥∥
L2(Ωn\Ωn+1)

+
∥∥∥∂3

r ∂
j
θu
∥∥∥

L2(Ωn\Ωn+1)

≤
∥∥∥∇∂

j
θu
∥∥∥

L2(Ωn\Ωn+1)
+
∥∥∥∇∂

j+1
θ u

∥∥∥
L2(Ωn\Ωn+1)

(2.77)

+
∥∥∥∇∂

j+2
θ u

∥∥∥
L2(Ωn\Ωn+1)

+
∥∥∥∂2

r ∂
j
θu
∥∥∥

L2(Ωn\Ωn+1)

+
∥∥∥∂2

r ∂
j+1
θ u

∥∥∥
L2(Ωn\Ωn+1)

+
∥∥∥∂3

r ∂
j
θu
∥∥∥

L2(Ωn\Ωn+1)

≤
(

1 +
1

rn+1
+ 2

(
1

rn+1

)2
)∥∥∥∇∂

j
θu
∥∥∥

L2(Ωn\Ωn+1)

(2.78)

+

(
1 +

1
rn+1

+ 4
(

1
rn+1

)2
)∥∥∥∇∂

j+1
θ u

∥∥∥
L2(Ωn\Ωn+1)

+

(
1 + 2

(
1

rn+1

)2
)∥∥∥∇∂

j+2
θ u

∥∥∥
L2(Ωn\Ωn+1)

.

We can estimate ∂r∂
j
θu in H2 on the annulus Ω \ ΩN by∥∥∥∂r∂

j
θu
∥∥∥

H2(Ω\ΩN)
≤ 6

(rN)2

(∥∥∥∇∂
j
θu
∥∥∥

L2(Ω\ΩN)
+
∥∥∥∇∂

j+1
θ u

∥∥∥
L2(Ω\ΩN)

(2.79)

+
∥∥∥∇∂

j+2
θ u

∥∥∥
L2(Ω\ΩN)

)
.

2.6.2 Regularity of the Solution at the Interfaces, in the Context of General Ck

Interfaces

Now we examine regularity of the solution for general Ck interfaces. Let
b0 ∈ L2(∂Ω). The weak formulation of (2.1) and (2.2) is∫

Ω
σ⟨∇u,∇ϕ⟩ dA =

∫
∂Ω

b0ϕ dℓ (2.80)

for all ϕ ∈ H1(Ω). Since σ ∈ L∞, from general PDE theory we obtain that
there exists a unique weak solution u ∈ H1

0(Ω) [Eva10]. Setting ϕ = u and



2.6 existence and regularity 37

using the Cauchy–Schwarz inequality, the trace theorem, and the Poincaré
inequality we obtain

∥∇u∥L2(Ω) ≤
c

min{σ0, . . . , σN}
∥b0∥L2(∂Ω), (2.81)

in which c is a constant depending on the trace constant and Poincaré
constant for the domain Ω.

First we will examine tangential regularity. Let w ∈ C∞(Ω) and let T be
a vector field that on ∂Ωi is of unit length and tangent to ∂Ωi and is zero
before the next curve. (Any such vector field T will do for now–we further
fix T momentarily). Then take ϕ = T(w) in (2.80) i.e.∫

Ω
σ⟨∇u,∇T(w)⟩ dA =

∫
∂Ω

b0T(w) dℓ = 0. (2.82)

We integrate by parts with respect to T, to obtain:∫
Ω

σ⟨∇T(u),∇w⟩ dA

= −
∫

Ω
σ · div(T) · ⟨∇u,∇w⟩ dA + 2

∫
Ω

σ∇aTb∇au∇bw dA. (2.83)

(We use the Einstein summation convention so a and b are summer from
1 to 2). So formally setting w = T(u) and using the Cauchy–Schwarz
inequality we obtain the inequality:

min|σ| ·
√∫

Ω
|∇T(u)|2 dA

≤ max|σ| · (sup |div(T)|+ 2 sup |∇T|)
√∫

Ω
|∇u|2 dA. (2.84)

So ∇T(u) ∈ L2(Ω), with the bound:

∥∇T(u)∥L2(Ω) ≤ 4 sup |∇T| · max|σ|
min|σ| ∥∇u∥L2(Ω). (2.85)

Iterating we get that the composition

T j(u) ∈ H1(Ω) (2.86)

for all j ≤ k. The constant for each such iteration will increase by a factor

4 sup |∇T| · max|σ|
min|σ| (2.87)
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i.e.

∥∇T j(u)∥L2(Ω) ≤
(

4 sup |∇T| · max|σ|
min|σ|

)j

∥∇u∥L2(Ω) (2.88)

for j ≤ k. In particular, we have obtained extra regularity in the direction
of the vector field T.

We next use the PDE to obtain regularity for u in the complementary
direction. To do this we construct coordinates suitably adapted to each
interface and express T in terms of these new coordinates. We consider
a unit vector field n⃗ which is normal to the interface ∂Ωi. Introduce a
coordinate y ∈ [0, |∂Ωi|) along ∂Ωi so that T(y) = 1. We then introduce
Fermi coordinates (x, y) where x is the arclength parameter along the
normal lines, with x = 0 on ∂Ωi, and y is extended from ∂Ωi to be
constant along each such line. We restrict x to lie in a small interval (−ϵ, ϵ)

so that no two lines normal to ∂Ωi intersect over the intervals x ∈ (−ϵ, ϵ).
This can be achieved since ∂Ωi is assumed to be C2. Take 0 < ϵ∗ ≤ ϵ so that
in addition the lines of constant y value with x ∈ (−ϵ∗, ϵ∗) do not intersect
any other interface. This can be achieved since all interfaces are mutually
disjoint. An example interface with the assigned Fermi coordinates is
shown in Figure 2.11.

Define the region Ω∗
i := {(x, y) ∈ Ω : y ∈ [0, |∂Ωi|), x ∈ (−ϵ∗, ϵ∗)}. In

these coordinates the Euclidean metric on ∂Ω∗
i is expressed as

gE2 = dx2 + gi(x, y)dy2, (2.89)

where gi(0, y) = 1 and gi(x, y) > 0 elsewhere. Furthermore, if the interface
∂Ωi ∈ Ck, then g is also bounded in Ck−1(Ω∗

i ) and its Ck−1(Ω∗
i )-norm

depends on the Ck norm of ∂Ωi.

x

y

0

ϵ

−ϵ

∂Ωi

n⃗

Figure 2.11: An example interface ∂Ωi with assigned Fermi coordinates (x, y)
where y ∈ [0, |∂Ωi|) along ∂Ωi, x is the arc length parameter along
the normal lines, with x = 0 on ∂Ωi, and y is extended from ∂Ωi to
be constant along each such line. Here n⃗ is a normal vector to curve
∂Ωi
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Then the Laplacian on the region Ω∗
i is

∆ = ∂2
x +

1
2

∂xgi(x, y)
gi(x, y)

∂x + [gi(x, y)]−1 ∂2
y. (2.90)

Define χ to be a smooth cutoff function that is 1 when x ∈ (−ϵ∗/2, ϵ∗/2)
and 0 when x = ±ϵ∗. Define the region Ω∗∗

i := {(x, y) ∈ Ω : y ∈ [0, |∂Ωi|),
x ∈ (−ϵ∗/2, ϵ∗/2)}. Then define T = χ ∂

∂y . Invoking the bounds in (2.88),
we have that:

∂
j
y(u) ∈ H1(Ω∗∗

i ) (2.91)

for all j ≤ k. Since ∂
j
y(u) ∈ H1(Ω∗∗

i ) we have that ∂x∂
j
y(u) ∈ L2(Ω∗∗

i ) for
all j ≤ k. To get bounds on ∂2

x∂
j
y(u) ∈ L2(Ω∗∗

i ) we differentiate (2.90) with
respect to y a total of j times. We get the equation

∂2
x∂

j
yu = −∂

j
y

[
1
2

∂xgi(x, y)
gi(x, y)

∂xu
]
− ∂

j
y

[
[gi(x, y)]−1 ∂2

yu
]

. (2.92)

Hence, we can estimate ∂2
x∂

j
yu in L2(Ω∗∗

i ) by

∥∂2
x∂

j
yu∥L2(Ω∗∗

i ) ≤
∥∥∥∥∂

j
y

[
1
2

∂xgi(x, y)
gi(x, y)

∂xu
]∥∥∥∥

L2(Ω∗∗
i )

+
∥∥∥∂

j
y

[
[gi(x, y)]−1 ∂2

yu
]∥∥∥

L2(Ω∗∗
i )

.

(2.93)
To get higher normal regularity in the region Ω∗∗

i , we differentiate (2.92)
with respect to x which leads to the equation

∂3
x∂

j
yu = −1

2
∂

j
y

[
[gi(x, y)]−1 ∂2

xgi(x, y)u
]
+

1
2

∂
j
y

[
[gi(x, y)]−2 [∂xgi(x, y)]2 u

]
−1

2
∂

j
y

[
[gi(x, y)]−1 ∂xgi(x, y)∂2

xu
]
+ ∂

j
y

[
[gi(x, y)]−2 ∂xgi(x, y)∂2

yu
]

−∂
j
y

[
[gi(x, y)]−1 ∂x∂2

yu
]

(2.94)
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and the corresponding estimate∥∥∥∂3
x∂

j
yu
∥∥∥

L2(Ω∗∗
i )

≤
∥∥∥∥1

2
∂

j
y

[
[gi(x, y)]−1 ∂2

xgi(x, y)u
]∥∥∥∥

L2(Ω∗∗
i )

+

∥∥∥∥1
2

∂
j
y

[
[gi(x, y)]−2 [∂xgi(x, y)]2 u

]∥∥∥∥
L2(Ω∗∗

i )

+

∥∥∥∥1
2

∂
j
y

[
[gi(x, y)]−1 ∂xgi(x, y)∂2

xu
]∥∥∥∥

L2(Ω∗∗
i )

+
∥∥∥∂

j
y

[
[gi(x, y)]−2 ∂xgi(x, y)∂2

yu
]∥∥∥

L2(Ω∗∗
i )

+
∥∥∥∂

j
y

[
[gi(x, y)]−1 ∂x∂2

yu
]∥∥∥

L2(Ω∗∗
i )

. (2.95)

Repeating the same argument as in the concentric circles case we can
estimate T j∂n+u in H2(Ω∗∗

i ) by

∥T j∂n+u∥H2(Ω∗∗
i ) ≤ (4 sup |∇T| · ρσi)

j+2 · Ki

min{σ0, . . . , σN}
∥b0∥L2(∂Ω),

(2.96)

in which Ki is a constant that depends on the trace constant and Poincaré
constant on domain Ω∗∗

i and ρσi is max{ σi
σpi

,
σpi
σi
}.

2.6.3 Regularity of the Solution at the Interface Translates into Regularity of
the Charge Densities

We now derive estimates on the regularity of the charge densities in the
two cases – the case of concentric circles and the case of general domains.
These estimates will immediately allow us to prove Theorems 2.1 and 2.2.

Firstly, we consider the case of concentric circular domains. Using (2.37),
the trace theorem, the Poincaré inequality, and (2.69) we get for 0 ≤ j ≤
k − 2 the bound

∥∂
j
θγi∥C0(∂Ωi) =

∣∣∣∣1 − σpi

σi

∣∣∣∣ ∥∂r∂
j
θu∥C0(∂Ωi) (2.97)

≤
∣∣∣∣1 − σpi

σi

∣∣∣∣ c∥∂r∂
j
θu∥H2(D\(D(0, 1

4 )∩ΩN)) (2.98)

≤
∣∣∣∣1 − σpi

σi

∣∣∣∣ c · K
min{σ0, . . . , σN}

6
(rN)2 ∥b0∥H j+2(∂D), (2.99)

in which c is the Sobolev embedding constant on on disks of size 1
2 which

is uniformly bounded, K is a constant that depends on the trace constant
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and Poincaré constant on domain D, rN is the radius of the innermost
circle, and we take the convention σp0 = 0. Here D

(
0, 1

4

)
is the disk of

radius 1
4 centred at the origin.

Secondly, we consider the case of general domains. Using (2.37), the
trace theorem, the Poincaré inequality, and (2.88) we get for 0 ≤ j ≤ k − 2
the bound

∥T jγi∥C0(∂Ωi) =

∣∣∣∣1 − σpi

σi

∣∣∣∣ ∥T j∂n+u∥C0(∂Ωi) (2.100)

≤
∣∣∣∣1 − σpi

σi

∣∣∣∣ ci∥T j∂n+u∥H2(Ω∗∗
i ) (2.101)

≤
∣∣∣∣1 − σpi

σi

∣∣∣∣ (4 sup |∇T| · maxρσi)
j+2

· ci · Ki

min{σ0, . . . , σN}
∥b0∥L2(∂Ω), (2.102)

in which and ρσi is max{ σi
σpi

,
σpi
σi
}, ci is the Sobolev embedding constant

on Ω∗∗
i , Ki is a constant that depends on the trace constant and Poincaré

constant on domain Ω∗∗
i , and we take the convention σp0 = 0.

Remark: We note that in the special case of concentric circles and for
injected currents that are smooth enough as functions of θ on the outer
boundary, each extra derivative of our solution is bounded without the
bounds deteriorating if the two circles are close together. In contrast, in
the general case, if two interfaces are close, then the term sup |∇T|, for the
domain we constructed will necessarily become large. And moreover an
interface with large geodesic curvature κ will also cause the constants in
the higher-derivatives estimates to deteriorate (i.e., become large). Thus the
more general estimate is more versatile, yet more sensitive to the interfaces
being either mutually close, or very curved.

2.7 conclusions

In this chapter, we presented a novel method for solving the elliptic partial
differential equation problem for the electrostatic potential with piecewise
constant conductivity. We employ an integral equation approach for which
we derive a system of well-conditioned integral equations that can be
used to solve the problem. The kernel of the resulting integral operator is
smooth.

GMRES is used to solve a linear system for the charge densities at each
grid point. Regarding discretion of the integral equations, we employ
two different quadrature schemes. In the case where two interfaces are
sufficiently close to one another, we use composite quadrature and split
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the interface into panels. We then use Gauss-Legendre quadrature on
each panel and Lagrange interpolation for interpolating the charge density.
For interfaces that are sufficiently far away from all other interfaces we
use uniform grid points, trapezoidal rule quadrature, and trigonometric
interpolation for interpolating the charge density. An adaptive method
allows our solver to achieve higher accuracy even when the curves are
close together with acceptably small cost to computation time. In the
case of interfaces discretized with uniform grid points we use a truncated
Fourier series to approximate the scaled charge densities. On the other
hand, in the case of interfaces discretized with composite quadrature
(panels) we use a truncated Legendre series polynomial to approximate
the scaled charge densities. In either case, if either of the two highest
mode coefficients are above a specified threshold, then the interface/panel
is refined.

When the evaluation point is not near or on an interface or the boundary,
we evaluate the single layer potentials using the same quadrature as used
to solve the integral equations. When the evaluation point is near or on an
interface or the boundary, we approximate interfaces or the boundary with
line segments near the evaluation point and employ an analytic expression
for the single layer potential due to a line segment.

To illustrate the effectiveness of our method, we solved the elliptic
partial differential equation problem for four test cases. Our method
was compared against a popular open-source platform and is shown to
be superior since our method produced more accurate results in less
computational time. In addition, our method is also shown to easily
handle problems of increasingly higher complexity involving up to 155

different regions of constant conductivity.
Numerous avenues of future work exist. One could adapt our method

to solve the problem in which the potential u has a prescribed jump across
the interfaces by including double layer potentials. Also, the method could
be adapted to the three dimensional version of the problem. Each of these
generalizations would enable several applications of the method.

In the following chapter, we generalize our method to handle the case of
overlapping regions of constant conductivity and we study the behaviour
of the solution to Eq. (1.1) to leading order at points of intersection between
two transversely intersecting interfaces of regions of piecewise constant
conductivity.



3
S I N G U L A R B E H AV I O U R O F
E L E C T R O S TAT I C
P O T E N T I A L S AT
T R A N S V E R S E LY
I N T E R S E C T I N G I N T E R FA C E S

3.1 problem setting

We consider the elliptic partial differential equation for the real-valued
electric potential u on a domain Ω ⊂ R

2

P(u)(x) := ∇ · (σ(x)∇u(x)) = 0, x ∈ Ω, (3.1)

in which σ is a positive function in L∞ which in addition is piecewise con-
stant. Our main assumption will consider the geometry of the boundaries
of the regions where σ is constant. The Neumann boundary condition is

σ
∂u
∂n

= b0 on ∂Ω, (3.2)

in which b0 : ∂Ω → R is the real-valued applied current. We use n to
denote the unit outward normal vector to the boundary and use ∂

∂n or
∂n for the corresponding normal derivative. We require

∫
∂Ω b0 dℓ = 0 for

solvability. Our goal is also to understand the behaviour of the solution at
points where the regularity theory in Chapter 2 is not applicable.

Garde [Gar20] considers a class of piecewise constant conductivity
coefficients that can be decomposed into a sum of piecewise constant
functions on nested sets (layers) with connected complement. This type
of conductivity is referred to as a piecewise constant layered conductivity
(PCLC). A decomposition of a PCLC type conductivity into each of its
layers is shown in Fig. 3.1 [Gar20].

We consider a different class of conductivities than the PCLC class
considered by Garde. We remove the requirement that the layers be nested
(i.e., we allow the interfaces of two separate layers to intersect) and we
require the interfaces to be C2 smooth. That is, we will consider the class

43
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Figure 3.1: Decomposition of a PCLC type conductivity into each of its layers.
The numbers represent function values in each of the coloured re-
gions [Gar20].

of piecewise constant conductivity coefficients that can be decomposed
into a sum of finitely many piecewise constant functions on not necessarily
nested sets (layers) with connected complement and C2 boundary. The
key novelty here is that we allow the boundaries to intersect, transversely.
More formally, for a finite set of simply connected regions {Ωi}N

i=0, each
with C2 boundary (i.e., ∂Ωi ∈ C2), and each contributing σi to the total
conductivity, we denote the conductivity at any point x ∈ R2 by

σ(x) =
N

∑
i=0

σiχΩi(x), (3.3)

in which the indicator function of a subset A ⊆ R2 is a function χA : R2 →
{0, 1} defined as

χA(x) :=

{
1 if x ∈ A

0 if x /∈ A
. (3.4)

We stress that the regions Ωi can overlap but if the boundaries intersect,
then we require that the boundaries necessarily intersect transversely. An
example layout of our regions of conductivity is shown in Figure 3.2.

To analyze the solution u to Eq. (3.1) near a point of intersection, we con-
sider a corresponding straight lines model case. The asymptotic behaviour
of u near the point of intersection will be fully captured by a model op-
erator on this reduced problem. We now describe the construction of the
reduced problem.

Definition 3.1 (Angles at Point of Intersection). Consider N ∈ N half-
curves ci for i = 1, . . . , N which intersect at some point (without loss of
generality, say 0 ∈ R2), forming N successive angles ω̃i, for i = 1, . . . , N
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Ω0

Ω1

Ω2

Ω3

Ω4

Ω5

Figure 3.2: An example layout of regions. The boundary of region Ω0 is the
boundary of the domain.

which are all strictly positive (and sum to 2π, i.e., ∑N
i=1 ω̃i = 2π). We

define ωi := ∑i
j=1 ω̃j for i = 1, . . . , N.

An example of the original problem and the corresponding reduced
problem is shown in Fig. 3.3.

ω̃1

ω̃2

ω̃3

ω̃4

ω̃1

ω̃2

ω̃3

ω̃4

Figure 3.3: The original problem (left) and the reduced problem (right). We note
that in the reduced problem, the conductivity will be constant in each
sector.

Definition 3.2. Define the model operator L := −[σ̃(θ)]−1∂θ(σ̃(θ)∂θ) on
S1 where σ̃(θ) := σi when θ ∈ [ωi−1, ωi) for i = 1, . . . , N (adopting the
convention that ω0 := ωN).

We now show that L has a sequence of non-negative eigenvalues 0 =

λ0 < λ1 < λ2 < . . . , and the corresponding eigenspaces V0, V1, . . . are
mutually orthogonal, and their joint space V0 ⊕V1 ⊕V2 ⊕ . . . forms a basis
of H1(S1).
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To do this, let us define the Rayleigh quotient:

R[ f ] =

∫ 2π
0 σ̃(θ) · [∂θ f (θ)]2dθ∫ 2π

0 σ̃(θ)[ f (θ)]2dθ
. (3.5)

Then we show that a function f (θ) that is a critical point of this quotient
is an eigenvalue of L[·].

This follows by noting that if f is a critical point of R[ f ] than there exists
a λ ∈ R so that for all v ∈ H1(S1):

(−
∫ 2π

0
∂θ(σ̃(θ) · ∂θ f ) · vdθ =)

∫ 2π

0
σ̃(θ)∂θ f · ∂θvdθ =

∫ 2π

0
σ̃(θ) f (θ) · v(θ)dθ.

This shows that such an f (θ) is an eigenfunction of L, with eigenvalue λ.
Note that by [Eva10], the first eigenvalue is simple, and by inspection

λ0 = 0 with V0 = Span(1).
We point out that considering the L2-norm with respect to the measure

σ̃(θ)dθ, i.e.,

∥ f (θ)∥L2(σ̃(θ)dθ) =

√∫ 2π

0
| f (θ)|2σ̃(θ)dθ, (3.6)

and also H1(σ̃(θ)dθ)

(
with associated norm

∥ f ∥H1(σ̃(θ)dθ) =
√
∥∂θ f ∥2

L2(σ̃(θ)dθ)
+ ∥ f ∥2

L2(σ̃(θ)dθ)

)
(3.7)

then L is self-adjoint on H1(σ̃(θ)dθ). In particular the eigenfunctions ek, el
corresponding to different eigenvalues 0 < λA < λB will be orthogonal
with respect to the inner product L2(σ̃(θ)dθ). In fact we can take all
eigenvectors ei(θ) (which form a basis for L2(σ̃(θ)dθ))) to be mutually
orthogonal with respect to that inner product.

We note that (since all σi > 0 are bounded above and below), the norms
L2(σ̃(θ)dθ) and H1(σ̃(θ)dθ) are equivalent to the standard norms L2(dθ)

and H1(dθ), but not identical to them.

To find these eigenvectors and eigenvalues we perform the standard
iterative method: First let λ0 be the infimum of this quotient R[ f ] among
functions f (θ) in H1(σ̃(θ)dθ), and let the corresponding space of functions
be V0 ⊂ H1(σ̃(θ)dθ). Then minimize R over (V0)⊥ ⊂ H1(σ̃(θ)dθ). The
corresponding space of functions gives the next eigenspace V1 with an
eigenvalue λ1 > 0. Then minimize R[ f ] over the space (V0 ⊕ V1)

⊥ ⊂
H1(S1); the corresponding space of functions is V2 and corresponds to the
next eigenvalue λ2 > λ1, etc.
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Definition 3.3. We define ek(θ), k ∈ N to be the orthonormal basis of
L2(σ̃(θ)dθ) consisting of the eigenvectors of L on S1. In particular∫ 2π

0
ei(θ) · ej(θ)σ̃(θ)dθ = δij.

We choose the ordering so that if ei(θ), ej(θ) with i < j have corresponding
eigenvalues λ, µ then λ ≤ µ.

We will denote the eigenvalue of ek(θ) by λek . Alternatively, we will
denote the eigenvalues of L in order of increasing size by 0 = λ0 <

λ1 < λ2 < λ3 < . . . . Let M be the multiplicity of λ1 > 0. In particular
e1(θ), . . . , eM(θ) have eigenvalue λ1.

It turns out that for the special operators L that we consider here (built
out of piecewise constant functions σ̃(θ) on S1) the eigenvalues λek ’s will
always satisfy an algebraic system of equations. In Appendix A we show
that in the special case where N = 4 and ω̃i = π

2 for all i, then the
eigenvalues λek ’s satisfy the specific algebraic system Eqs. (A.24) to (A.31)
and the first positive eigenvalue λ1 < 1. From this point on, we will make
the assumption that 0 < λ1 < 1.

Definition 3.4. For a disk of radius ε > 0 centred at 0, denoted by D(0, ε) ⊂
R2 and a piecewise constant σ(θ), we define the function space Ḣ2

1(D(0, ε))

as follows:

Ḣ2
1(D(0, ε)) : = { f : σ(θ)∂r f , r−1σ(θ)∂θ f , rσ(θ)∂r(∂r f ), ∂r(σ(θ)∂θ f ),

r−1∂θ (σ(θ)∂θ f ) ∈ L2(D(0, ε)} (3.8)

in which r and θ are the standard radial and angular polar coordinates,
respectively. Recall that σ(θ)∂θ f is continuous. We note that a more proper
notation would be Ḣ2

1,σ(θ)(D(0, ε)); however, we avoid this for notational
simplicity.

The main theorem of this chapter is now stated:

Theorem 3.5 (Main Theorem). Let u solve Eq. (3.1) at a point of intersection
as defined in Definition 3.1. Recall the model operator L on S1 defined in
Definition 3.2. Recall that e1(θ), . . . , eM(θ) are the eigenfunctions corresponding
to the first positive eigenvalue λ1 > 0 of L. Assume λ1 < 1. Let λ2 be the second
positive eigenvalue of L. Consider the standard polar coordinates (r, θ) centred
at the point of intersection. There exists a change of coordinates to (ρ, φ) (which
is explicitly defined in Eq. (3.32)) with respect to which the following expansion
holds. Then there exists some (α1, . . . , αM) ∈ RM such that for

S(ρ) :=
∥∥∥u(ρ, φ)− u(0)

ρ
√

λ1
−

M

∑
k=1

αkek(φ)
∥∥∥

L2
φ(dφ)

, (3.9)
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we have to leading order
S(ρ) = O(ρδ), (3.10)

in which δ = min(
√

λ2 −
√

λ1, 1
3

(
1 −

√
λ1
)
) > 0.

3.2 general intersecting curves

We will show that the solution u(x) to Eq. (3.1) near a point in the case
of general intersecting curves (Fig. 3.3 left) and the case of intersecting
half-lines (Fig. 3.3 right) are identical to leading order. This will be done in
two steps. The first step will be a change of coordinates that will convert
the general intersecting curves to straight half-lines. A suitable choice of
coordinates allows us to express the operator P with respect to the new
coordinates leading to a natural decomposition of the operator:

P = P + P̃ (3.11)

in which P is the operator defined in Eq. (3.37) and P̃ is a correction term
that vanishes at the point of intersection and involves first and second
derivatives. We will refer to P as the original operator. The second step
will be to solve this original problem Pu = 0.

3.2.1 Change of Coordinates

The first step to showing that the case of general intersecting curves
(Fig. 3.3 left) is identical to the straight lines case (Fig. 3.3 right) to leading
order will be a change of coordinates that will convert the general inter-
secting curves to straight lines. In particular, the curves ci will be level
sets of a new coordinate φ. Also, the coordinate r will be replaced by a
new coordinate ρ which will have the property that ∂ρ, ∂φ are normal in
an open neighbourhood around each curve ci. In fact our construction
of new coordinates (ρ, φ) is performed in a suitable local angle around
each ci and then the coordinates are glued together making use of suitable
cutoff functions.

Let us consider the following local problem: Recall the angles of in-
tersection as defined in Definition 3.1. Consider N ∈ N half-curves ci
for i = 1, . . . , N which intersect at some point (say 0 ∈ R2), forming N
successive angles ω̃i, for i = 1, . . . , N which are all strictly positive (and
sum to 2π): ∑N

i=1 ω̃i = 2π. We define ωi := ∑i
j=1 ω̃j for i = 1, . . . , N. The

curves ci can be expressed in parameterized form:

ci : [0, δ) → R2, ci(0) = 0, ċi(t) ̸= 0 ∀t ∈ [0, δ) (3.12)
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for some δ > 0. Here the functions ci are assumed to be Ck for some k ≥ 2.
For definiteness, let us assume t to be the unique arc-length parameter
along the curve ci.

We consider the conductivity σ defined in the standard polar coordinates
(r, θ) by σ(r, θ) := σi when θ ∈ [ωi−1, ωi) for i = 1, . . . , N.

Proposition 3.6. Consider N ∈ N half-curves {ci}N
i=1, each parameterized by

Eq. (3.12), which intersect at 0 ∈ R2, forming N successive positive angles ω̃i,
for i = 1, . . . , N. Then there exists a change of coordinates function fcc that will
transform the general intersecting half-curves to straight half-lines.

The smoothness of the half-lines can be captured when we express them
as a graph over their tangent line at the origin: Consider the straight half-
lines li(t) which emanate from the origin and are such that li−1 and li form
an angle ω̃i at the origin (with the convention that l0 = lN). Normalize the
parameter t on these half-lines to have unit speed. In other words:

li(t) = t · (cos ωi, sin ωi). (3.13)

Associated to each such line li, let us consider a complementary direction
s, so that s is the (signed) distance function from the line li. Then the curve
ci (seen as an un-parameterized object) can be written as a graph:

s = bi(t), bi ∈ C2([0, δ)), bi(0) = 0, b′i(0) = 0 (3.14)

(here ′ stands for d
dt ). We note the geometric significance of the second

derivative of bi(t) at t = 0:

b′′i (0) = κi(0), (3.15)

in which κi is the (signed) curvature of curve ci.
Now, let us restrict our attention to a small disc D(0, ε) centred at the

origin of radius ε. By slight abuse of notation, we denote the restrictions
of the curves ci to this disc by ci again.

We now introduce our change of coordinates:

Lemma 3.7. There exists a function φ defined in D(0, ε),

φ : D(0, ε) → [0, 2π)

with the property that:
{φ = ωi} = ci,

and moreover φ is a 2π-periodic function, in the sense that

d(i)

dθi φ(r, θ)
∣∣∣
θ=0

=
d(i)

dθi φ(r, θ)
∣∣∣
θ=2π
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for all i ∈ N and r ∈ (0, ε). Furthermore, if we think of φ as a function of the
usual polar coordinates (r, θ), then dφ ̸= 0 everywhere.

Proof. Let us construct this function φ. First, we express the curves ci as
graphs of functions in the regular polar coordinates (r, θ). In particular
there exist functions θi(r) so that

ci := {(r, θi(r)), r ∈ [0, δ)}, (3.16)

and moreover, we have θi(r) ∈ C2([0, δ)) and also θi(0) = ωi. We note that
for a general C2 curve,

θi(r) = θi(0) + κir2 + o(r2) (3.17)

= ωi + κir2 + o(r2). (3.18)

Hence,
θi(r)− ωi = κir2 + o(r2). (3.19)

Let us locally construct φ near curves ci. We define

φi(r, θ) = θ − θi(r) + ωi. (3.20)

We introduce a cutoff function:

Definition 3.8. Let χ(θ), 0 ≤ χ(θ) ≤ 1 be a C∞-smooth periodic func-
tion over [0, 2π) which equals 1 in an open neighbourhood around each
ωi and 0 in open neighbourhoods around the midpoints M1 = 1

2 [ω1 +

ω2], . . . , MN = 1
2 [ωN + ω1]. We also require that the regions {χ(θ) = 0}

on large enough intervals so that {χ(θ) ̸= 0} ⊂ ⋃N
i=1[ωi − δ, ωi + δ].

Let us then define φ̃i on each of the intervals [Mi−1, Mi] for i = 1, . . . , N
(with the convention that M0 = MN) via the formula:

φ̃i(r, θ) = χ(θ) · φi(r, θ) + (1 − χ(θ))θ. (3.21)

We note in particular that these functions agree with θ in open neighbour-
hoods of the points M1, . . . , MN . So merely defining φ via the formula:

φ(r, θ) = φ̃i(r, θ) for θ ∈ [Mi−1, Mi], (3.22)

(with the convention that M0 = MN) defines a C1 2π-periodic function on
[0, 2π).
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We also check that dφ(r, θ) ̸= 0, for all (r, θ) ∈ (0, δ)× [0, 2π), provided
we take δ > 0 sufficiently small. To check this, it suffices to show that
∂θ φ(r, θ) > 0, when δ > 0 is taken small enough. We calculate:

∂θ φ(r, θ) = χ′(θ) · φi(r, θ) + χ(θ) · ∂θ φi(r, θ)− χ′(θ) · θ + (1 − χ(θ)).

Since by taking δ small enough we can make θi arbitrarily close to ωi, the
claim follows:

∂θ φ(r, θ) = χ′(θ) · [θ − θi(r) + ωi] + χ(θ) · ∂θ [θ − θi(r) + ωi]

− χ′(θ) · θ + (1 − χ(θ))

= χ′(θ) · [θ − θi(r) + ωi] + χ(θ)− χ′(θ) · θ + (1 − χ(θ))

= χ′(θ) · [−θi(r) + ωi] + 1

−−−→
δ→0+

χ′(θ) · [−ωi + ωi] + 1

= 1.

We have defined

φ(r, θ) = χ(θ) [−θi(r) + ωi] + θ. (3.23)

We now introduce a second coordinate ρ(r, θ) which will replace r; the pair
(ρ(r, θ), φ(r, θ)) will define our desired new coordinates. Let ρ = ρ(r, θ)

unspecified for now. Then

dρ =
∂ρ

∂r
dr +

∂ρ

∂θ
dθ. (3.24)

We impose ⟨dρ, dθ⟩ = 0 (where ⟨·, ·, ⟩ denotes the inner product of the
1-forms with respect to the Euclidean metric, in a small set Di = {(r, θ)|θ ∈
[ωi − δ, ωi + δ], r ∈ (0, ε)} around each ci). This is equivalent to

∂ρ

∂r
∂φ

∂r
+ r−2 ∂ρ

∂θ

∂φ

∂θ
= 0. (3.25)

We chose φ = θ − θi(r) + ωi which implies

dφ =
∂φ

∂θ
dθ +

∂φ

∂r
dr (3.26)

= dθ − θ′i(r)dr. (3.27)

By Eq. (3.25),
∂ρ

∂r
·
(
−θ′i(r)

)
+ r−2 ∂ρ

∂θ
· 1 = 0. (3.28)
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So we need
∂ρ

∂θ
= r2θ′i(r)

∂ρ

∂r
. (3.29)

We locally solve this equation in the neighbourhoods Di abound each
ci; we denote these local solutions by ρi(r, θ). In particular we solve for
ρi(r, θ) by solving {(

∂θ − r2θ′i(r)∂r
)

ρi(r, θ) = 0

ρi(r, ωi) = r.
(3.30)

Eq. (3.30) admits a unique solution. Given the C2 regularity of θi(r) in r and
since θ′i(0) = 0 we derive that ρi(r, θ)− r = O(r3), ∂rρi(r, θ)− 1 = O(r2).

Finally, we build our desired coordinate ρ(r, θ) out of the locally con-
structed ρi(r, θ) by means of the cutoff function in Definition 3.8. Let
ρi(r, θ) be the function that equals 0 outside the domain of definitions Di.
We then define

ρ(r, θ) =
N

∑
i=1

χ(θ) · ρi(r, θ) + (1 − χ(θ))r. (3.31)

Combining Eqs. (3.23) and (3.31) gives us the change of coordinates trans-
formation {

ρ(r, θ) = ∑N
i=1 χ(θ) · ρi(r, θ) + (1 − χ(θ))r

φ(r, θ) = χ(θ) [−θi(r) + ωi] + θ
. (3.32)

We note that:

Lemma 3.9. The coordinate system (ρ(r, θ), φ(r, θ)) just constructed has the
property that there exist open neighbourhoods D̃i = [ωi − δ′, ωi + δ′] ⊂ Di
around each curve ci where ⟨dρ, dφ⟩ = 0. In particular in those same neighbour-
hoods ∂ρ ⊥ ∂φ (with respect to the Euclidean metric).

Moreover we have the bounds

ρ(r, θ)− r = O(r3), (3.33)

∂rρ(r, θ)− 1 = O(r2), (3.34)

∂θρ(r, θ) = O(r3). (3.35)

We also make a key remark: The conductivity function σ(x) defined in
(3.3), expressed now in the new coordinates via σ̃(ρ(r, θ), φ(r, θ)) = σ(r, θ)

is a piecewise constant function only of φ. Moreover, the current matching
condition σi⃗n(u) = σi+1n⃗(u) across each interface is now recast as σi∂φu =

σi+1∂φu at each φ = ωi, i = 1, . . . , N.
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Our next goal is to re-express the operator P in terms of the coordinates
ρ, φ. With slight abuse of notation, we call the operator expressed with
respect to ρ, φ again P. We will show in Proposition 3.13 that this operator
can be expressed in the form:

P = P + P̃ (3.36)

in which P is the operator:

P[u(ρ, φ)] := σ̃(φ)

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ

)
u +

1
ρ2

∂

∂φ

(
σ̃(φ)

∂u
∂φ

)
(3.37)

and P̃ is the correction term which we will show in Proposition 3.13 can
be expressed in polar coordinates:

In the corner-like neighbourhoods {(ρ, φ)|φ ∈ (ωi − δ, ωi + δ), ρ ∈
(0, ε)} around the angles φ = ωi the operator P̃ can be expressed:

P̃ f = O(ρ)∂ρ[σ̃(φ)∂ρ] f +O(ρ−1)∂φ[σ̃(φ)∂φ] f (3.38)

+O(1)∂φ f +O(ρ)∂ρ f .

On the other hand, away from the corner-like neighbourhoods around
φ = ωi, the operator P̃ can be expressed as:

P̃ f = O(ρ2)∂ρ∂ρ f +O(ρ)∂φ∂ρ f +O(ρ−2)∂φ∂φ f (3.39)

+O(1)∂φ f +O(ρ)∂ρ f .

See Eqs. (3.174) to (3.180) below for a more detailed expression of P̃.

3.2.2 Regularity Results

Recall the original problem involving the equation for the electric potential
u on a domain Ω ⊂ R2 Eq. (3.1) and the Neumann boundary condition
Eq. (3.2): {

Pu = 0 in Ω

σ ∂u
∂n = b0 on ∂Ω

.

We want to study the solution u near the intersection of regions of
constant conductivity. Let Ω̃ ⊂ Ω be a small region around a point of
intersection between different regions of constant conductivity. Without
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loss of generality, take the point of intersection to be located at the origin.
The electric potential u will satisfy{

Pu = 0 in Ω̃

u = f̃ on ∂Ω̃
, (3.40)

in which f̃ is a C2 piecewise smooth function satisfying the current conti-
nuity condition across each interface.

We perform the change of coordinates transformation defined in Lemma 3.9
that converts the general intersecting curves to straight lines. We specifi-
cally choose Ω̃ in Eq. (3.40) to be the preimage of D(0, ε) for the change
of coordinates transformation. We seek to solve the reduced problem on
D(0, ε) ⊂ R2, i.e., the disk of radius ε > 0. We note that any asymptotic
behaviour we obtain in ρ for solutions to (3.40) will imply the identical
bound for r, in view of the bounds on ρ in terms of r in Lemma 3.9. We
make a further convention: all functions spaces H1, L2, H2

1 unless stated
otherwise will be considered in the coordinates ρ, φ, and unless otherwise
stated the volume form will be ρdρdφ.

In the new coordinate system (ρ, φ) defined in Eq. (3.32):{
Pu = 0 in D(0, ε)

u = f on ∂D(0, ε)
, (3.41)

in which f (φ) is piecewise C2 on each of the intervals [φi, φi+1] and σ∂φu
is continuous across each juncture φi. We note that the current was
continuous across each interface before the change of coordinates. We
invoke the fact that the current continuity condition is invariant under
changes of coordinates. Note that after the change of coordinates, ρ−1∂φ is
the unit normal vector field to the interface, on both sides of the interface.
This implies that σi∂φu equals σi+1∂φu after the change of coordinates.
Since σ∂φu is Lipschitz on ∂D(0, ε), we have that ∂φ(σ∂φu) is bounded on
∂D(0, ε) and hence in L2 on ∂D(0, ε). Therefore, ∂φ(σ∂φ f ) makes sense as
an L2 function on the circle.

Recall that P is the operator defined in Eq. (3.37) and P̃ is the correc-
tion term which can be expressed in polar coordinates as in Eqs. (3.38)
and (3.39). We can write the solution to the problem Eq. (3.41) as the sum
of the solution u to the problem:{

Pu = 0 in D(0, ε)

u = f on ∂D(0, ε)
(3.42)
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and a correction term ũ, i.e.,

u = u + ũ. (3.43)

In view of the divergence form of P defined in Eq. (3.36), we will refer
to Eq. (3.42) along with the current matching condition as the “angularly
matched Laplace equations”.

Now, combining Eqs. (3.36) and (3.43) yields

Pu = (P + P̃)(u + ũ). (3.44)

Then we can rewrite Eq. (3.41) as{
(P + P̃)(u + ũ) = 0 in D(0, ε)

u + ũ = f on ∂D(0, ε).
(3.45)

By Eq. (3.42), Pu = 0 in D(0, ε) and u = f on ∂D(0, ε), so we need to solve
the problem: {

(P + P̃)ũ = −P̃u in D(0, ε)

ũ = 0 on ∂D(0, ε)
. (3.46)

In Proposition 3.13, we will show that P̃ : Ḣ2
1(D(0, ε)) → L2(D(0, ε)),

and hence P̃(u) ∈ L2(D(0, ε)). For g := −P̃(u) ∈ L2(D(0, ε)), we can
rewrite problem (3.46) in the form{(

P + P̃
)

ũ = g in D(0, ε)

ũ = 0 on ∂D(0, ε)
, (3.47)

that is, ũ satisfies the elliptic PDE ∇ · (σ(x)∇ũ(x)) = g(x) inside the disk
D(0, ε) with Dirichlet boundary condition.

In general, for a divergence type elliptic operator B on D(0, ε) and a
function g ∈ L2(D(0, ε)), we define the function v := B−1g ∈ H1(D(0, ε))

to be the unique solution of the problem{
Bv = g in D(0, ε)

v = 0 on ∂D(0, ε)
. (3.48)

In our case, B =
(

P + P̃
)
, so for g ∈ L2(D(0, ε)), we are able to define(

P + P̃
)−1 g ∈ H1(D(0, ε)) to be the solution to Eq. (3.47). We will also
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define P−1 as follows: Let g ∈ L2(D(0, ε)). Then, define v := P−1g to be
the solution to the boundary value problem:{

Pv = g in D(0, ε)

v = 0 on ∂D(0, ε)
. (3.49)

Since σ ∈ L∞ and σ > 0, we a priori know that for g ∈ L2(D(0, ε)) we have
v ∈ H1(D(0, ε)) [Eva10]. We will show further mapping properties of P−1

below. We now state bounds on the operator norms of P̃ and P−1:

Proposition 3.10. For P̃ and P−1 as defined above we have the following bounds:

∥P−1∥L2(D(0,ε))→Ḣ2
1 (D(0,ε)) ≤ Cε (3.50)

∥P̃∥Ḣ2
1 (D(0,ε))→L2(D(0,ε)) ≤ c (3.51)

for some c, C > 0.

We will prove these two bounds in Propositions 3.12 and 3.13, respec-
tively. For a bounded linear operator T on a Banach space X, the Neumann
series ∑∞

j=1 T j will converge in the operator norm if the operator norm

∥T∥ < 1. In Lemma 3.14 we will show that ∥P−1P̃∥Ḣ2
1 (D(0,ε))→Ḣ2

1 (D(0,ε)) < 1.

3.2.2.1 P−1 is a map from L2(D) to Ḣ2
1(D)

Denote the unit disk centred at the origin by D. We will show that P−1 is
a bounded map from L2(D) to Ḣ2

1(D).

Proposition 3.11. Consider the following problem,{
Pv = g in D

v = 0 on ∂D
(3.52)

in which g ∈ L2(D). Define v := P−1g. Then P−1 is a bounded map from
L2(D) to Ḣ2

1(D), i.e., there exists a constant C > 0 such that

∥v∥Ḣ2
1 (D) ≤ C∥g∥L2(D). (3.53)

Proof. Since σ ∈ L∞, from general PDE theory we obtain that there exists
a unique weak solution v ∈ H1(D) [Eva10]. We now want to establish the
higher regularity that v ∈ Ḣ2

1(D) for g ∈ L2(D). To derive Ḣ2
1-regularity

we use a mollifier approach.
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Since v is a weak solution of the PDE Eq. (3.52), we have for all w ∈
H1(D),∫

D

[
∂ρv∂ρw + ρ−2σ(φ)∂φv∂φw

]
ρdρdφ = −

∫
D

gw dA. (3.54)

We write the resulting expression as

A = B, (3.55)

in which
A :=

∫
D

[
∂ρv∂ρw + ρ−2σ(φ)∂φv∂φw

]
ρdρdφ (3.56)

and
B := −

∫
D

gw dA. (3.57)

We can further write A = A1 + A2 for

A1 =
∫

D

[
∂ρv∂ρw

]
ρdρdφ (3.58)

and
A2 =

∫
D

[
ρ−2σ(φ)∂φv∂φw

]
ρdρdφ. (3.59)

Let Ψ(φ) be a symmetric mollifier in the angular coordinate φ defined by

Ψ(φ) =

{
e−1/(1−|φ|2)/K if |φ| < 1

0 if |φ| ≥ 1
, (3.60)

where the numerical constant K ensures the normalization
∫ π
−π |Ψ(φ)| dφ =

1. Define Ψε(φ) := ε−1Ψ( φ
ε ). Using the definition of convolution, Fubini’s

Theorem, and a change of variables we get the identity∫ 2π

0
f (φ)(g ∗ Ψε)(φ) dφ =

∫ 2π

0
f (φ)

∫ 2π

0
g(φ̃)Ψε(φ − φ̃) dφ̃dφ (3.61)

=
∫ 2π

0
g(φ̃)

∫ 2π

0
f (φ)Ψε(φ − φ̃) dφdφ̃ (3.62)

= −
∫ 2π

0
g(φ)( f ∗ Ψε)(φ) dφ. (3.63)

Introduce the notation ∗φ to denote the convolution taken in the φ variable,
i.e.,

v(r, φ) ∗φ f (φ) :=
∫ 2π

0
v(r, φ̃) f (φ − φ̃) dφ̃. (3.64)
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Using the definition and commutativity of convolution, we can show that

∂φ[v ∗φ Ψε] = ∂φ[Ψε ∗φ v] (3.65)

= ∂φ

∫ 2π

0
Ψε(φ̃)v(r, φ − φ̃) dφ̃ (3.66)

=
∫ 2π

0
Ψε(φ̃)∂φv(r, φ − φ̃) dφ̃ (3.67)

= Ψε ∗φ [∂φv] (3.68)

= [∂φv] ∗φ Ψε. (3.69)

We will choose the test function

w(ρ, φ) = {[∂φ(σ(φ) · ∂φv)] ∗φ Ψε} ∗φ Ψε (3.70)

in Eq. (3.54). We first verify that this function lies in H1(D), and then
derive our Ḣ2

1(D) estimates using it. To derive that this function is a valid
test function, it suffices to show that ρ−1∂φw and ∂ρw lie in L2(D). By the
properties of convolutions noted above, we observe that:

ρ−1∂φw = (∂φΨε) ∗φ (∂φΨε) ∗φ (σ(φ) · ρ−1∂φv)). (3.71)

Now, recall that since v ∈ H1(D), (σ(φ) · ρ−1∂φv)) ∈ L2(D). Now note
that by construction (∂φΨε) is a bounded function of φ only, (bounded by
some constant Bε < ∞) thus we obtain on each fixed radius ρ ∈ (0, 1):∫ 2π

0
|ρ−1∂φw|2(ρ, φ)dφ ≤ B2

ε · max(σ(φ)) ·
∫ 2π

0
(ρ−1∂φv(ρ, φ))2dφ. (3.72)

Integrating the above in ρ with respect to ρdρ over ρ ∈ (0, 1) yields that
ρ−1∂φw lies in L2(D). To show that ∂ρw ∈ L2(D) we write:

∂ρw = {[∂φ(σ(φ) · ∂φ∂ρv)] ∗φ Ψε} ∗φ Ψε (3.73)

= (∂φΨε) ∗φ {Ψε ∗φ (σ(φ) · ∂φ∂ρv)}. (3.74)

To show this lies in L2(D) it suffices to show that {σ(φ) · ∂φΨε} ∗φ (∂ρv) lies
in L2(D). This again follows by noting that {σ(φ) · ∂φΨε} is everywhere
bounded, and (∂ρv) ∈ L2(D). Thus repeating the Fubini-type argument
from above confirms that w ∈ L2(D).
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Using the above properties of convolutions,

A1 =
∫

D
∂ρv∂ρw ρdρdφ (3.75)

=
∫ 2π

φ=0

∫ 1

ρ=0
∂ρv{[∂φ(σ(φ) · ∂φ∂ρv)] ∗φ Ψε} ∗φ Ψε ρdρdφ (3.76)

= −
∫ 1

ρ=0

∫ 2π

φ=0
(∂ρv ∗φ Ψε)([∂φ(σ(φ) · ∂φ∂ρv)] ∗φ Ψε) dφρdρ (3.77)

=
∫ 1

ρ=0

∫ 2π

φ=0
(∂φ∂ρv ∗φ Ψε)(∂ρ(σ(φ)∂φv ∗φ Ψε)) dφρdρ (3.78)

=
∫ 1

ρ=0

∫ 2π

φ=0
σ(φ)[∂ρ(∂φv ∗φ Ψε)]

2 dφρdρ (3.79)

=
∫

D
σ(φ)[∂ρ(∂φv ∗φ Ψε)]

2 dφρdρ (3.80)

is finite. Similarly,

A2 =
∫

D

[
ρ−2σ(φ)∂φv∂φw

]
ρdρdφ (3.81)

=
∫ 2π

φ=0

∫ 1

ρ=0

[
ρ−2σ(φ)∂φv

]
∂φ

(
{[∂φ(σ(φ) · ∂φv)] ∗φ Ψε} ∗φ Ψε

)
ρdρdφ

(3.82)

= −
∫ 2π

φ=0

∫ 1

ρ=0
∂φ

[
ρ−2σ(φ)∂φv

] (
{[∂φ(σ(φ) · ∂φv)] ∗φ Ψε} ∗φ Ψε

)
ρdρdφ

(3.83)

=
∫ 2π

φ=0

∫ 1

ρ=0
ρ−2 ({[∂φ(σ(φ) · ∂φv)] ∗φ Ψε}

) (
{[∂φ(σ(φ) · ∂φv)] ∗φ Ψε}

)
ρdρdφ

(3.84)

=
∫

D

∣∣∣1
ρ
[∂φ(σ(φ) · ∂φv)] ∗φ Ψε

∣∣∣2 dφρdρ (3.85)

is finite. Using the Cauchy–Schwarz inequality we get the bound for all
η > 0,

|B| ≤ η

2

∫
D
|w|2 dA +

1
2η

∫
D
|g|2 dA. (3.86)

Since we chose w = {[∂φ(σ(φ) · ∂φv)] ∗φ Ψε} ∗φ Ψε , we get the bound

|B| ≤ η

2

∫
D
|{[∂φ(σ(φ) · ∂φv)] ∗φ Ψε} ∗φ Ψε|2 dA +

1
2η

∫
D
|g|2 dA. (3.87)
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Since ∥Ψ∥L1(S1) ≤ 1, we have that ∥Ψ̂∥L∞(S1) ≤ 1. Using the Plancherel
Theorem on S1, we show that our convolution decreases the L2-norm:

∥ f ∗φ Ψ∥2
L2(D) =

∫ 1

ρ=0

∫ 2π

φ=0
| f ∗φ Ψ|2 dφρdρ (3.88)

=
∫ 1

ρ=0

∫ 2π

φ=0
| f̂ ∗φ Ψ|2 dφρdρ (3.89)

=
∫ 1

ρ=0

∫ 2π

φ=0
| f̂ · Ψ̂|2 dφρdρ (3.90)

≤
∫ 1

ρ=0

∫ 2π

φ=0
| f̂ · ∥Ψ̂∥L∞(S1)|2 dφρdρ (3.91)

≤
∫ 1

ρ=0

∫ 2π

φ=0
| f̂ |2 dφρdρ (3.92)

=
∫ 1

ρ=0

∫ 2π

φ=0
| f |2 dφρdρ (3.93)

= ∥ f ∥2
L2(D). (3.94)

Since our convolution decreases the L2-norm and r ≤ 1 in D,∫
D
|{[∂φ(σ(φ) · ∂φv)] ∗φ Ψε} ∗φ Ψε|2 dA ≤

∫
D
|[∂φ(σ(φ) · ∂φv)] ∗φ Ψε|2 dA

(3.95)

≤
∫

D

∣∣∣1
ρ
[∂φ(σ(φ) · ∂φv)] ∗φ Ψε

∣∣∣2 dA.

(3.96)

By Eqs. (3.87) and (3.96) we have the bound

|B| ≤ η

2

∫
D

∣∣∣1
ρ
[∂φ(σ(φ) · ∂φv)] ∗φ Ψε

∣∣∣2 dA +
1

2η

∫
D
|g|2 dA (3.97)

and thus we obtain a bound:∫
D

σ(φ)[∂ρ(∂φv ∗φ Ψε)]
2 dφρdρ

+
∫

D

∣∣∣1
ρ
[∂φ(σ(φ) · ∂φv)] ∗φ Ψε

∣∣∣2 dφρdρ

≤η

2

∫
D

∣∣∣1
ρ
[∂φ(σ(φ) · ∂φv)] ∗φ Ψε

∣∣∣2 dA +
1

2η

∫
D
|g|2 dA. (3.98)

Since
∫

D
σ(φ)[∂ρ(∂φv ∗φ Ψε)]2 dφρdρ ≥ 0, rearranging gives(

1 − η

2

) ∫
D

∣∣∣1
ρ
[∂φ(σ(φ) · ∂φv)] ∗φ Ψε

∣∣∣2 dA ≤ 1
2η

∫
D
|g|2 dA. (3.99)
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Taking η = 1 gives that 1
ρ [∂φ(σ(φ) · ∂φv)] ∗φ Ψε is in L2(D) with the bound,

∥∥∥1
ρ
[∂φ(σ(φ) · ∂φv)] ∗φ Ψε

∥∥∥
L2(D)

≤ ∥g∥L2(D). (3.100)

Taking ε → 0, we get the bound∥∥∥1
ρ

∂φ(σ(φ)∂φv)
∥∥∥

L2(D)
≤ ∥g∥L2(D). (3.101)

From Eq. (3.98) we obtain the inequality∫
D
|σ(φ)∂ρ∂φ(v ∗φ Ψε)|2 dA +

∫
D

∣∣∣1
ρ
[∂φ(σ(φ) · ∂φv)] ∗φ Ψε

∣∣∣2 dA

≤η

2

∫
D

∣∣∣1
ρ
[∂φ(σ(φ) · ∂φv)] ∗φ Ψε

∣∣∣2 dA +
1

2η

∫
D
|g|2 dA. (3.102)

Taking η = 2 yields∫
D
|σ(φ)∂ρ∂φ(v ∗φ Ψε)|2 dA ≤ 1

4

∫
D
|g|2 dA. (3.103)

Hence, σ(φ)∂ρ∂φ(v ∗φ Ψε) is in L2(D) with the bound∥∥∥σ(φ)∂ρ∂φ(v ∗φ Ψε)
∥∥∥

L2(D)
≤ 1

2
∥g∥L2(D). (3.104)

Furthermore, ∥∥∥∂ρ∂φ(v ∗φ Ψε)
∥∥∥

L2(D)
≤ 1

2minD(σ)
∥g∥L2(D). (3.105)

By Eq. (3.69), ∥∥∥∂ρ∂φ(v ∗φ Ψε)
∥∥∥

L2(D)
=
∥∥∥(∂ρ∂φv) ∗φ Ψε

∥∥∥
L2(D)

(3.106)

so ∥∥∥(∂ρ∂φv) ∗φ Ψε

∥∥∥
L2(D)

≤ 1
2minD(σ)

∥g∥L2(D). (3.107)

Taking ε → 0, we get∥∥∥∂ρ∂φv
∥∥∥

L2(D)
≤ 1

2minD(σ)
∥g∥L2(D). (3.108)
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Hence, we have the bound∥∥∥σ(φ)∂ρ∂φv
∥∥∥

L2(D)
≤ maxD(σ)

∥∥∥∂ρ∂φv
∥∥∥

L2(D)
(3.109)

≤ maxD(σ)

2minD(σ)
∥g∥L2(D). (3.110)

We can bound σ(φ)ρ∂ρ∂ρv in L2(D) by using the partial differential equa-
tion Eq. (3.52), the triangle inequality, and Eq. (3.101):∥∥∥σ(φ)ρ∂ρ∂ρv

∥∥∥
L2(D)

=
∥∥∥ρg − σ(φ)∂ρv − 1

ρ
∂φ(σ(φ)∂φv)

∥∥∥
L2(D)

(3.111)

=
∥∥∥ρg

∥∥∥
L2(D)

+
∥∥∥σ(φ)∂ρv

∥∥∥
L2(D)

+
∥∥∥1

ρ
∂φ(σ(φ)∂φv)

∥∥∥
L2(D)

(3.112)

≤
∥∥∥g
∥∥∥

L2(D)
+
∥∥∥g
∥∥∥

L2(D)
+
∥∥∥g
∥∥∥

L2(D)
(3.113)

≤ 3
∥∥∥g
∥∥∥

L2(D)
. (3.114)

Since v ∈ H1(D) with the bound ∥v∥H1(D) ≤ ∥g∥L2(D) from standard
PDE theory [Eva10], we can bound v in Ḣ2

1(D) using Eqs. (3.101), (3.110),
and (3.114):

∥v∥Ḣ2
1 (D) ≤ ∥v∥H1(D) + ∥σ(φ)ρ∂ρ∂ρv∥L2(D) (3.115)

+ ∥σ(φ)∂ρ∂φv∥L2(D) + ∥ρ−1∂φ(σ(φ)∂φv)∥L2(D)

≤ ∥g∥L2(D) + 3∥g∥L2(D) +
maxD(σ)

2minD(σ)
∥g∥L2(D) + ∥g∥L2(D)

(3.116)

= C∥g∥L2(D) (3.117)

in which C = 5 + maxD(σ)
2minD(σ)

. Hence P−1 is a bounded map from L2(D) to
Ḣ2

1(D).

Recall the space Ḣ2
1(D(0, ε)) defined in Eq. (3.8) and the solution u to

the angularly matched Laplace equations Eq. (3.42):{
Pu = 0 in D(0, ε)

u = f on ∂D(0, ε)

We define a C∞-smooth radially symmetric cutoff function χ(r) which is
identically 1 at ρ = ε and equals 0 for ρ < ε

2 . Then we define the extension
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u#(ρ, φ) := f (φ)χ(ρ). The extension u# will be C∞ in ρ. Then the function
v := u − u# satisfies {

Pv = −Pu# in D(0, ε)

v = 0 on ∂D(0, ε)
. (3.118)

Since u# satisfies the current continuity matching conditions across each
interface, σ̃(φ)∂φu# is Lipschitz in φ in D(0, ε). Invoking the piecewise C1

property of σ̃∂φu# we have derived in Chapter 2, we derive ∂φ(σ̃(φ)∂φu#)

is a bounded function in D(0, ε). Thus, Pu# is in L2 in D(0, ε). In
Proposition 3.12 we will show that P−1 : L2(D(0, ε)) → Ḣ2

1(D(0, ε)), so
v ∈ Ḣ2

1(D(0, ε)).
Because of the current continuity matching conditions across each inter-

face and that u# is C∞ in ρ, all first derivatives and all second derivatives
with a weight ρ (except ∂φφ) of u# are bounded and hence will be in
L2(D(0, ε)), i.e., ∂ρu#, σ̃∂φu#, ρ∂φ

(
∂ρu#) , ρ∂ρ

(
∂ρu#) ∈ L2(D(0, ε)). Addi-

tionally, since u# satisfies the Laplacian in each sector, ∂ρρu# + 1
ρ ∂ρu# +

1
ρ2 ∂φφu# = 0. Rearranging and multiplying by ρ yields ρ−1∂φφu# =

−ρ∂ρρu# − ∂ρu#. Since both ρ∂ρρu# and ∂ρu# are in L2(D(0, ε)), we also
get ρ−1∂φφu# ∈ L2(D(0, ε)). Hence, u# is also in Ḣ2

1(D(0, ε)) as defined in
Definition 3.4. Since both v and u# are in Ḣ2

1(D(0, ε)) and u = v + u#, we
conclude that u ∈ Ḣ2

1(D(0, ε)).

3.2.2.2 Norm of P−1 as an operator from L2(D(0, ε)) to Ḣ2
1(D(0, ε))

We will show that P−1 as an operator from L2(D(0, ε)) to Ḣ2
1(D(0, ε)) has

norm proportional to the radius of the disk, ε.

Proposition 3.12. Let ε ∈ (0, 1) and let g ∈ L2(D(0, ε)). Consider the unique
solution, v := P−1g, to the problem{

Pv = g in D(0, ε)

v = 0 on ∂D(0, ε)
. (3.119)

Then P−1 as an operator from L2(D(0, ε)) to Ḣ2
1(D(0, ε)) has norm proportional

to the radius of the disk, ε, i.e.,

∥P−1∥L2(D(0,ε))→Ḣ2
1 (D(0,ε)) ≤ Cε, (3.120)

in which C is a constant that may depend on the conductivities (σi’s) and the
angles (ωi’s) but not on ε.
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Proof. Since v is a weak solution of the PDE Eq. (3.119), we have for all
w ∈ H1(D(0, ε)),

N

∑
i=1

σi

∫ ωi

φ=ωi−1

∫ ε

ρ=0

[
∂ρv∂ρw + ρ−2∂φv∂φw

]
ρdρdφ = −

∫
D(0,ε)

gw dA.

(3.121)
Define a new function V over the unit disk via the formula V(ρ̃, φ) =

v(ερ̃, φ). For all w ∈ H1(D(0, ε)), define a new H1 function on the unit disk
via W(ρ̃, φ) = w(ερ̃, φ). Now, via Eq. (3.121) and a change of variables,
ρ = ερ̃,

N

∑
i=1

σi

∫ ωi

φ=ωi−1

∫ 1

ρ̃=0

[
∂ρ̃V(ρ̃, φ)∂ρ̃W(ρ̃, φ) + ρ̃−2∂φV(ρ̃, φ)∂φW(ρ̃, φ)

]
ρ̃dρ̃dφ

(3.122)

=
N

∑
i=1

σi

∫ ωi

φ=ωi−1

∫ 1

ρ̃=0

[
∂ρ̃v(ερ̃, φ)∂ρ̃w(ερ̃, φ) + ρ̃−2∂φv(ερ̃, φ)∂φw(ερ̃, φ)

]
ρ̃dρ̃dφ

(3.123)

=
N

∑
i=1

σi

∫ ωi

φ=ωi−1

∫ ε

ρ=0

[
ε∂ρv(ρ, φ)ε∂ρw(ρ, φ) + ε2ρ−2∂φv(ρ, φ)∂φw(ρ, φ)

] 1
ε

ρ
1
ε

dρdφ

(3.124)

=−
∫

D(0,ε)
g(ρ, φ)w(ρ, φ)ρ dρdφ (3.125)

=−
∫

D(0,ε)
g(ερ̃, φ)w(ερ̃, φ)ερ̃ εdρ̃dφ (3.126)

=−
∫

D
ε2g(ερ̃, φ)W(ρ̃, φ) dA. (3.127)

Hence V is a weak solution to the problem{
PV = G in D

V = 0 on ∂D
, (3.128)

in which G(ρ̃, φ) = ε2g(ερ̃, φ). From Proposition 3.11, there exists some
C > 0 such that

∥V∥Ḣ2
1 (D) ≤ C∥G∥L2(D). (3.129)
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We consider the change of variables, ρ = ερ̃, represented by the dilation

map (ρ, φ)
M−→ ( ρ

ε , φ). The Euclidean metric changes by

M∗gD(0,ε) = ε2gD (3.130)

M∗v = V (3.131)

M∗g = G̃. (3.132)

So,
∆gD(0,ε)v = ε−2∆gDV (3.133)

and hence,
∆gD

V = ε2G̃ = G. (3.134)

From Eq. (3.131), we get

∥v∥Ḣ2
1 (D(0,ε)) = ∥V∥Ḣ2

1 (D). (3.135)

From Eqs. (3.132) and (3.134), we get

∥G∥L2(D) = ε∥g∥L2(D(0,ε)). (3.136)

Hence, combining Eqs. (3.129), (3.135), and (3.136), we get the bound

∥v∥Ḣ2
1 (D(0,ε)) = ∥V∥Ḣ2

1 (D) (3.137)

≤ C∥G∥L2(D) (3.138)

= Cε∥g∥L2(D(0,ε)). (3.139)

Thus, P−1 is an operator from L2(D(0, ε)) to Ḣ2
1(D(0, ε)) with norm pro-

portional to the radius of the disk, i.e., there exists some C > 0 such
that

∥P−1∥L2(D(0,ε))→Ḣ2
1 (D(0,ε)) ≤ Cε. (3.140)

3.2.2.3 Regularity of the Operator P̃

We will show that P̃ is a bounded map from Ḣ2
1(D(0, ε)) to L2(D(0, ε)).

Proposition 3.13. The operator P( f ) = ∂i(σ̃(r, θ)∂i f ) , after the change of
coordinates transformation from (r, θ) → (ρ, φ) defined by Eq. (3.32) is given by

P = P + P̃,
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in which P is the operator defined in Eq. (3.37) and P̃ is the correction term which
can be expressed in polar coordinates as in Eqs. (3.38) and (3.39). Furthermore,
on D(0, ε), we have the bound

∥P̃ f ∥L2(D(0,ε)) ≤ c∥ f ∥Ḣ2
1 (D(0,ε)) (3.141)

for some c > 0 and hence P̃ is a bounded map from Ḣ2
1(D(0, ε)) to L2(D(0, ε)).

Proof. We seek to write down the operator in the new coordinates.
The Jacobian determinant for the change of coordinates transformation

Eq. (3.32) from (r, θ) → (ρ, φ) is

J =

∣∣∣∣∣ ∂ρ
∂r

∂ρ
∂θ

∂φ
∂r

∂φ
∂θ

∣∣∣∣∣ (3.142)

=

∣∣∣∣∣ ∂ρ
∂r r2θ′i(r)

∂ρ
∂r

−χ(θ)θ′i(r) χ′(θ)[−θi(r) + ωi] + 1

∣∣∣∣∣ (3.143)

=
(
χ′(θ)[−θi(r) + ωi] + 1

) ∂ρ

∂r
+ χ(θ)θ′i(r)

∂ρ

∂r
(3.144)

for θ ∈ [Mi−1, Mi] in which χ(θ) is a C∞-smooth 2π-periodic function
defined in Definition 3.8, 0 ≤ χ(θ) ≤ 1 which equals 1 in open neighbour-
hoods around the values ωi, i ∈ {1, . . . , N}, and 0 in open neighbourhoods
around the mid-point values M1 = 1

2 [ω1 + ω2], . . . , MN = 1
2 [ωN + ω1].

The operator P accounting for the conductivity in our original coordi-
nates (r, θ) is

P( f ) = ∂r(σ̃∂r f ) +
σ̃

r
∂r f + r−2∂θ(σ̃∂θ f ) (3.145)

We compute the first derivatives of f . Since ∂φ
∂r = −χ(θ)θ′i(r),

∂ f
∂r

=
∂ρ

∂r
∂ f
∂ρ

+
∂φ

∂r
∂ f
∂φ

(3.146)

=
∂ρ

∂r
∂ f
∂ρ

− χ(θ)θ′i(r)
∂ f
∂φ

. (3.147)

Since ∂ρ
∂θ = r2θ′i(r)

∂ρ
∂r and ∂φ

∂θ = χ′(θ)[−θi(r) + ωi] + 1,

∂ f
∂θ

=
∂ρ

∂θ

∂ f
∂ρ

+
∂φ

∂θ

∂ f
∂φ

(3.148)

= r2θ′i(r)
∂ρ

∂r
∂ f
∂ρ

+
(
χ′(θ)[−θi(r) + ωi] + 1

) ∂ f
∂φ

. (3.149)
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We can express ∂ρ and ∂φ in terms of ∂r and ∂θ ,

∂ f
∂ρ = (χ′(θ)[−θi(r)+ωi ]+1)

∂ρ
∂r (χ

′(θ)[−θi(r)+ωi ]+1)+χ(θ)θ′i (r)r
2θ′i (r)

∂ρ
∂r

∂ f
∂r

+
χ(θ)θ′i (r)

∂ρ
∂r (χ

′(θ)[−θi(r)+ωi ]+1)+χ(θ)θ′i (r)r
2θ′i (r)

∂ρ
∂r

∂ f
∂θ

∂ f
∂φ =

−r2θ′i (r)
(χ′(θ)[−θi(r)+ωi ]+1)+χ(θ)θ′i (r)r

2θ′i (r)
∂ f
∂r +

1
(χ′(θ)[−θi(r)+ωi ]+1)+χ(θ)θ′i (r)r

2θ′i (r)
∂ f
∂θ

. (3.150)

Next, we compute the second unmixed derivatives of f . We compute

∂

∂r

(
σ̃(r, θ)

∂ f
∂r

)
=

∂

∂r

(
σ̃(r, θ)

[
∂ρ

∂r
∂ f
∂ρ

− χ(θ)θ′i(r)
∂ f
∂φ

])
(3.151)

=
∂ρ

∂r
∂

∂ρ

(
σ̃(r, θ)

[
∂ρ

∂r
∂ f
∂ρ

− χ(θ)θ′i(r)
∂ f
∂φ

])
(3.152)

− χ(θ)θ′i(r)
∂

∂φ

(
σ̃(r, θ)

[
∂ρ

∂r
∂ f
∂ρ

− χ(θ)θ′i(r)
∂ f
∂φ

])
= σ̃(φ)

∂ρ

∂r
∂

∂ρ

∂ρ

∂r
∂ f
∂ρ

− ∂ρ

∂r
σ̃(φ)

(
∂

∂ρ
χ(θ)

)
θ′i(r)

∂ f
∂φ

(3.153)

− ∂ρ

∂r
σ̃(φ)χ(θ)

(
∂

∂ρ
θ′i(r)

)
∂ f
∂φ

− ∂ρ

∂r
χ(θ)θ′i(r)

∂

∂ρ

(
σ̃(φ)

∂ f
∂φ

)
− χ(θ)θ′i(r)

[
∂

∂φ

(
σ̃(φ)

∂ρ

∂r
∂ f
∂ρ

)
− σ̃(φ)

(
∂

∂φ
χ(θ)

)
θ′i(r)

∂ f
∂φ

− σ̃(φ)χ(θ)

(
∂

∂φ
θ′i(r)

)
∂ f
∂φ

− χ(θ)θ′i(r)
∂

∂φ

(
σ̃(φ)

∂ f
∂φ

)]
.

Now, we compute the derivatives

∂

∂ρ
χ(θ) =

χ(θ)θ′i(r)χ
′(θ)

∂ρ
∂r (χ

′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

∂ρ
∂r

(3.154)

∂

∂ρ
θ′i(r) =

(χ′(θ)[−θi(r) + ωi] + 1) θ′′i (r)
∂ρ
∂r (χ

′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

∂ρ
∂r

(3.155)

∂

∂φ
χ(θ) =

χ′(θ)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

(3.156)

∂

∂φ
θ′i(r) =

−r2θ′i(r)θ
′′
i (r)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

. (3.157)
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Thus,

∂

∂r

(
σ̃(r, θ)

∂ f
∂r

)
= σ̃(φ)

∂ρ

∂r
∂

∂ρ

(
∂ρ

∂r
∂ f
∂ρ

)
(3.158)

− ∂ρ

∂r
σ̃(φ)

(
χ(θ)θ′i(r)χ

′(θ)
∂ρ
∂r (χ

′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

∂ρ
∂r

)
θ′i(r)

∂ f
∂φ

− ∂ρ

∂r
σ̃(φ)χ(θ)

(
(χ′(θ)[−θi(r) + ωi] + 1) θ′′i (r)

∂ρ
∂r (χ

′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

∂ρ
∂r

)
∂ f
∂φ

− ∂ρ

∂r
χ(θ)θ′i(r)

∂

∂ρ

(
σ̃(φ)

∂ f
∂φ

)
− χ(θ)θ′i(r)

[
∂

∂φ

(
σ̃(φ)

∂ρ

∂r
∂ f
∂ρ

)
− σ̃(φ)

(
χ′(θ)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

)
θ′i(r)

∂ f
∂φ

− σ̃(φ)χ(θ)

( −r2θ′i(r)θ
′′
i (r)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

)
∂ f
∂φ

− χ(θ)θ′i(r)
∂

∂φ

(
σ̃(φ)

∂ f
∂φ

)]
.
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And we compute

∂

∂θ

(
σ̃(r, θ)

∂ f
∂θ

)
=

∂

∂θ

(
σ̃(r, θ)r2θ′i(r)

∂ρ

∂r
∂ f
∂ρ

+ σ̃(r, θ)
(
χ′(θ)[−θi(r) + ωi] + 1

) ∂ f
∂φ

)
(3.159)

= r2θ′i(r)
∂ρ

∂r
∂

∂ρ

(
σ̃(r, θ)r2θ′i(r)

∂ρ

∂r
∂ f
∂ρ

+ σ̃(r, θ)
(
χ′(θ)[−θi(r) + ωi] + 1

) ∂ f
∂φ

)
(3.160)

+
(
χ′(θ)[−θi(r) + ωi] + 1

) ∂

∂φ

(
σ̃(r, θ)r2θ′i(r)

∂ρ

∂r
∂ f
∂ρ

+ σ̃(r, θ)
(
χ′(θ)[−θi(r) + ωi] + 1

) ∂ f
∂φ

)
= r2θ′i(r)

∂ρ

∂r
∂

∂ρ

(
r2θ′i(r)

∂ρ

∂r
σ̃(φ)

∂ f
∂ρ

)
(3.161)

+ r2θ′i(r)
∂ρ

∂r
∂

∂ρ

( (
χ′(θ)[−θi(r) + ωi] + 1

)
σ̃(φ)

∂ f
∂φ

)
+
(
χ′(θ)[−θi(r) + ωi] + 1

) ∂

∂φ

(
r2θ′i(r)

∂ρ

∂r
σ̃(φ)

∂ f
∂ρ

)
+
(
χ′(θ)[−θi(r) + ωi] + 1

) ∂

∂φ

( (
χ′(θ)[−θi(r) + ωi] + 1

)
σ̃(φ)

∂ f
∂φ

)
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Further computation gives

∂

∂θ

(
σ̃(r, θ)

∂ f
∂θ

)
= r2θ′i(r)

∂ρ

∂r

[ (
∂

∂ρ

(
r2θ′i(r)

)) ∂ρ

∂r
σ̃(φ)

∂ f
∂ρ

(3.162)

+ r2θ′i(r)
(

∂

∂ρ

(
∂ρ

∂r

))
σ̃(φ)

∂ f
∂ρ

+ r2θ′i(r)
∂ρ

∂r

(
∂

∂ρ

(
σ̃(φ)

∂ f
∂ρ

)) ]
+ r2θ′i(r)

∂ρ

∂r

[(
χ′(θ)[−θi(r) + ωi] + 1

) ∂

∂ρ

(
σ̃(φ)

∂ f
∂φ

)
+ σ̃(φ)

(
∂

∂ρ
χ′(θ)

)
[−θi(r) + ωi]

∂ f
∂φ

+ σ̃(φ)χ′(θ)

(
− ∂

∂ρ
θi(r)

)
∂ f
∂φ

]
+
(
χ′(θ)[−θi(r) + ωi] + 1

) [ ( ∂

∂φ

(
r2θ′i(r)

)) ∂ρ

∂r
σ̃(φ)

∂ f
∂ρ

+ r2θ′i(r)
(

∂

∂φ

(
∂ρ

∂r

))
σ̃(φ)

∂ f
∂ρ

+ r2θ′i(r)
∂ρ

∂r

(
∂

∂φ

(
σ̃(φ)

∂ f
∂ρ

)) ]
+
(
χ′(θ)[−θi(r) + ωi] + 1

) [(
χ′(θ)[−θi(r) + ωi] + 1

) ∂

∂φ

(
σ̃(φ)

∂ f
∂φ

)
+ σ̃(φ)

(
∂

∂φ
χ′(θ)

)
[−θi(r) + ωi]

∂ f
∂φ

+ σ̃(φ)χ′(θ)

(
− ∂

∂φ
θi(r)

)
∂ f
∂φ

]
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Now, we compute the derivatives

∂

∂φ
χ′(θ) =

χ′′(θ)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

(3.163)

∂

∂φ
θi(r) =

−r2θ′i(r)θ
′
i(r)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

(3.164)

∂

∂φ

(
r2θ′i(r)

)
=

−r2θ′i(r)
(
2rθ′i(r) + r2θ′′i (r)

)
(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r

2θ′i(r)
(3.165)

∂

∂ρ
χ′(θ) =

χ(θ)θ′i(r)χ
′′(θ)

∂ρ
∂r (χ

′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

∂ρ
∂r

(3.166)

∂

∂ρ
θi(r) =

(χ′(θ)[−θi(r) + ωi] + 1) θ′i(r)
∂ρ
∂r (χ

′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

∂ρ
∂r

(3.167)

∂

∂ρ

(
r2θ′i(r)

)
=

(χ′(θ)[−θi(r) + ωi] + 1)
(
2rθ′i(r) + r2θ′′i (r)

)
∂ρ
∂r (χ

′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

∂ρ
∂r

. (3.168)
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Thus,

∂

∂θ

(
σ̃(r, θ)

∂ f
∂θ

)
= r2θ′i(r)

∂ρ

∂r

[(
(χ′(θ)[−θi(r) + ωi] + 1)

(
2rθ′i(r) + r2θ′′i (r)

)
∂ρ
∂r (χ

′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

∂ρ
∂r

)
∂ρ

∂r
σ̃(φ)

∂ f
∂ρ

(3.169)

+ r2θ′i(r)
(

∂

∂ρ

(
∂ρ

∂r

))
σ̃(φ)

∂ f
∂ρ

+ r2θ′i(r)
∂ρ

∂r

(
∂

∂ρ

(
σ̃(φ)

∂ f
∂ρ

)) ]
+ r2θ′i(r)

∂ρ

∂r

[(
χ′(θ)[−θi(r) + ωi] + 1

) ∂

∂ρ

(
σ̃(φ)

∂ f
∂φ

)
+ σ̃(φ)

(
χ(θ)θ′i(r)χ

′′(θ)[−θi(r) + ωi]
∂ρ
∂r (χ

′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

∂ρ
∂r

)
∂ f
∂φ

+ σ̃(φ)χ′(θ)

(
− (χ′(θ)[−θi(r) + ωi] + 1) θ′i(r)

∂ρ
∂r (χ

′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

∂ρ
∂r

)
∂ f
∂φ

]

+
(
χ′(θ)[−θi(r) + ωi] + 1

) [
(

−r2θ′i(r)
(
2rθ′i(r) + r2θ′′i (r)

)
(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r

2θ′i(r)

)
∂ρ

∂r
σ̃(φ)

∂ f
∂ρ

+ r2θ′i(r)
(

∂

∂φ

(
∂ρ

∂r

))
σ̃(φ)

∂ f
∂ρ

+ r2θ′i(r)
∂ρ

∂r

(
∂

∂φ

(
σ̃(φ)

∂ f
∂ρ

)) ]
+
(
χ′(θ)[−θi(r) + ωi] + 1

) [(
χ′(θ)[−θi(r) + ωi] + 1

) ∂

∂φ

(
σ̃(φ)

∂ f
∂φ

)
+ σ̃(φ)

(
χ′′(θ)[−θi(r) + ωi]

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

)
∂ f
∂φ

+ σ̃(φ)χ′(θ)

(
−

−r2θ′i(r)θ
′
i(r)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

)
∂ f
∂φ

]
The operator P accounting for the conductivity can now be expressed in
terms of the new coordinates

P( f )

= ∂r(σ̃∂r f ) +
σ̃

r
∂r f + r−2∂θ(σ̃∂θ f ) (3.170)
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= σ̃(φ)
∂ρ

∂r
∂

∂ρ

(
∂ρ

∂r
∂ f
∂ρ

)
(3.171)

− ∂ρ

∂r
σ̃(φ)

(
χ(θ)θ′i(r)χ

′(θ)
∂ρ
∂r (χ

′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

∂ρ
∂r

)
θ′i(r)

∂ f
∂φ

− ∂ρ

∂r
σ̃(φ)χ(θ)

(
(χ′(θ)[−θi(r) + ωi] + 1) θ′′i (r)

∂ρ
∂r (χ

′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

∂ρ
∂r

)
∂ f
∂φ

− ∂ρ

∂r
χ(θ)θ′i(r)

∂

∂ρ

(
σ̃(φ)

∂ f
∂φ

)
− χ(θ)θ′i(r)

[
∂

∂φ

(
σ̃(φ)

∂ρ

∂r
∂ f
∂ρ

)
− σ̃(φ)

(
χ′(θ)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

)
θ′i(r)

∂ f
∂φ

− σ̃(φ)χ(θ)

( −r2θ′i(r)θ
′′
i (r)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

)
∂ f
∂φ

− χ(θ)θ′i(r)
∂

∂φ

(
σ̃(φ)

∂ f
∂φ

)]
+ σ̃(φ)

1
r

[
∂ρ

∂r
∂ f
∂ρ

− χ(θ)θ′i(r)
∂ f
∂φ

]
+

1
r2

[
r2θ′i(r)

∂ρ

∂r

[(
(χ′(θ)[−θi(r) + ωi] + 1)

(
2rθ′i(r) + r2θ′′i (r)

)
∂ρ
∂r (χ

′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

∂ρ
∂r

)
∂ρ

∂r
σ̃(φ)

∂ f
∂ρ

+ r2θ′i(r)
(

∂

∂ρ

(
∂ρ

∂r

))
σ̃(φ)

∂ f
∂ρ

+ r2θ′i(r)
∂ρ

∂r

(
∂

∂ρ

(
σ̃(φ)

∂ f
∂ρ

)) ]
+ r2θ′i(r)

∂ρ

∂r

[(
χ′(θ)[−θi(r) + ωi] + 1

) ∂

∂ρ

(
σ̃(φ)

∂ f
∂φ

)
+ σ̃(φ)

(
χ(θ)θ′i(r)χ

′′(θ)[−θi(r) + ωi]
∂ρ
∂r (χ

′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

∂ρ
∂r

)
∂ f
∂φ

+ σ̃(φ)χ′(θ)

(
− (χ′(θ)[−θi(r) + ωi] + 1) θ′i(r)

∂ρ
∂r (χ

′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

∂ρ
∂r

)
∂ f
∂φ

]

+
(
χ′(θ)[−θi(r) + ωi] + 1

) [
(

−r2θ′i(r)
(
2rθ′i(r) + r2θ′′i (r)

)
(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r

2θ′i(r)

)
∂ρ

∂r
σ̃(φ)

∂ f
∂ρ

+ r2θ′i(r)
(

∂

∂φ

(
∂ρ

∂r

))
σ̃(φ)

∂ f
∂ρ
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+ r2θ′i(r)
∂ρ

∂r

(
∂

∂φ

(
σ̃(φ)

∂ f
∂ρ

)) ]
+
(
χ′(θ)[−θi(r) + ωi] + 1

) [(
χ′(θ)[−θi(r) + ωi] + 1

) ∂

∂φ

(
σ̃(φ)

∂ f
∂φ

)
+ σ̃(φ)

(
χ′′(θ)[−θi(r) + ωi]

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

)
∂ f
∂φ

+ σ̃(φ)χ′(θ)

(
−

−r2θ′i(r)θ
′
i(r)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

)
∂ f
∂φ

]]
= P f + P̃ f , (3.172)

in which we define the operator P

P( f ) := σ̃(φ)

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ

)
f +

1
ρ2

∂

∂φ

(
σ̃(φ)

∂ f
∂φ

)
(3.173)

and we define the operator P̃ := P − P. We can explicitly denote the
operator P̃ by

P̃( f ) =
(

Aρρ + Aφρ + Aρφ + Aφφ + Aφ + Aρ

)
f (3.174)

in which the second order terms are

Aρρ f = σ̃(φ)
∂ρ

∂r
∂

∂ρ

(
∂ρ

∂r
∂ f
∂ρ

)
− σ̃(φ)

∂2 f
∂ρ2 +

(
θ′i(r)

∂ρ

∂r

)2 ( ∂

∂ρ

(
σ̃(φ)

∂ f
∂ρ

))
(3.175)

Aφρ f =
(
χ′(θ)[−θi(r) + ωi] + 1

)
θ′i(r)

∂ρ

∂r

[
∂

∂φ

(
σ̃(φ)

∂ f
∂ρ

)]
(3.176)

− χ(θ)θ′i(r)
[

∂

∂φ

(
σ̃(φ)

∂ρ

∂r
∂ f
∂ρ

)]
Aρφ f = θ′i(r)

∂ρ

∂r

[(
χ′(θ)[−θi(r) + ωi] + 1

) ∂

∂ρ

(
σ̃(φ)

∂ f
∂φ

)]
(3.177)

− ∂ρ

∂r
χ(θ)θ′i(r)

∂

∂ρ

(
σ̃(φ)

∂ f
∂φ

)
Aφφ f =

(
χ(θ)θ′i(r)

)2 ∂

∂φ

(
σ̃(φ)

∂ f
∂φ

)
+

1
r2

(
χ′(θ)[−θi(r) + ωi] + 1

)2 ∂

∂φ

(
σ̃(φ)

∂ f
∂φ

)
(3.178)

− 1
ρ2

∂

∂φ

(
σ̃(φ)

∂ f
∂φ

)
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and the first order terms are

Aφ f = −σ̃(φ)

(
χ(θ)θ′i(r)χ

′(θ)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

)
θ′i(r)

∂ f
∂φ

(3.179)

− σ̃(φ)χ(θ)

(
(χ′(θ)[−θi(r) + ωi] + 1) θ′′i (r)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

)
∂ f
∂φ

+ χ(θ)θ′i(r)σ̃(φ)

(
χ′(θ)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

)
θ′i(r)

∂ f
∂φ

+ χ(θ)θ′i(r)σ̃(φ)χ(θ)

( −r2θ′i(r)θ
′′
i (r)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

)
∂ f
∂φ

+ σ̃(φ)
1
r

[
−χ(θ)θ′i(r)

∂ f
∂φ

]
+ θ′i(r)σ̃(φ)

(
χ(θ)θ′i(r)χ

′′(θ)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

)
[−θi(r) + ωi]

∂ f
∂φ

+ θ′i(r)σ̃(φ)χ′(θ)

(
− (χ′(θ)[−θi(r) + ωi] + 1) θ′i(r)
(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r

2θ′i(r)

)
∂ f
∂φ

+
1
r2 σ̃(φ)

(
(χ′(θ)[−θi(r) + ωi] + 1) χ′′(θ)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

)
[−θi(r) + ωi]

∂ f
∂φ

+ σ̃(φ)χ′(θ)

(
(χ′(θ)[−θi(r) + ωi] + 1) θ′i(r)θ

′
i(r)

(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r
2θ′i(r)

)
∂ f
∂φ

Aρ f = σ̃(φ)
1
r

∂ρ

∂r
∂ f
∂ρ

− σ̃(φ)
1
ρ

∂ f
∂ρ

(3.180)

+ θ′i(r)

(
(χ′(θ)[−θi(r) + ωi] + 1)

(
2rθ′i(r) + r2θ′′i (r)

)
(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r

2θ′i(r)

)
∂ρ

∂r
σ̃(φ)

∂ f
∂ρ

+ θ′i(r)
∂ρ

∂r
θ′i(r)

(
∂

∂ρ

(
∂ρ

∂r

))
σ̃(φ)

∂ f
∂ρ

+

(− (χ′(θ)[−θi(r) + ωi] + 1) θ′i(r) (2rθ′i(r) + θ′′i (r))
(χ′(θ)[−θi(r) + ωi] + 1) + χ(θ)θ′i(r)r

2θ′i(r)

)
∂ρ

∂r
σ̃(φ)

∂ f
∂ρ

+
(
χ′(θ)[−θi(r) + ωi] + 1

)
θ′i(r)

(
∂

∂φ

(
∂ρ

∂r

))
σ̃(φ)

∂ f
∂ρ

Recall that from Eq. (3.18), for a general C2 curve,

θi(r) = ωi + κir2 + o(r2).

The first and second derivatives of θi(r) are

θ′i(r) = 2κir + o(r) (3.181)
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and
θ′′i (r) = 2κi + o(1), (3.182)

respectively. We consider neighbourhoods {φ ∈ (ωi − δ, ωi + δ), ρ ∈ (0, ε)}
of the curves. In these neighbourhoods χ(θ) = 1 and χ′(θ) = 0 and
from Lemma 3.9 we have the bounds ρ(r, θ)− r = O(r3), ∂rρ(r, θ)− 1 =

O(r2), ∂θρ(r, θ) = O(r3). In these neighbourhoods, we can explicitly
denote the operator P̃ in terms of its coefficients

P̃ = aρρ∂ρρ + aρφ∂ρ[σ̃(φ)∂φ] + aφρ∂φ[σ̃(φ)∂ρ] + aφφ∂φ[σ̃(φ)∂φ] (3.183)

+ aρ∂ρ + σ̃(φ)aφ∂φ,

in which the second order coefficients are

aρρ : = O(ρ) (3.184)

aφρ : = 0 (3.185)

aρφ : = 0 (3.186)

aφφ : = O(ρ−1) (3.187)

and the first order coefficients are

aφ : = −σ̃(φ)

(
θ′′i (r)

1 + θ′i(r)r
2θ′i(r)

)
(3.188)

+ θ′i(r)σ̃(φ)

( −r2θ′i(r)θ
′′
i (r)

1 + θ′i(r)r
2θ′i(r)

)
− σ̃(φ)

1
r

θ′i(r)

= O(1), (3.189)

aρ = σ̃(φ)
1
r

∂ρ

∂r
− σ̃(φ)

1
ρ

(3.190)

+ θ′i(r)
∂ρ

∂r
θ′i(r)

(
∂

∂ρ

(
∂ρ

∂r

))
σ̃(φ)

+ θ′i(r)
(

∂

∂φ

(
∂ρ

∂r

))
σ̃(φ)

= O(ρ). (3.191)

Note in particular that the coefficient aφρ vanishes in neighbourhoods
{(ρ, φ)|φ ∈ (ωi − δ, ωi + δ), ρ ∈ (0, ε)} where χ′(φ) = 0. This will prove
important further down. This is one key feature of the change of coordi-
nates (r, θ) → (ρ, φ) that we performed.
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Thus, in these corner-like neighbourhoods {(ρ, φ)|φ ∈ (ωi − δ, ωi +

δ), ρ ∈ (0, ε)} around the angles φ = ωi the operator P̃ can be expressed:

P̃ f =
(
aρρ∂ρρ + aρφ∂ρ[σ̃(φ)∂φ] + aφρ∂φ[σ̃(φ)∂ρ] + aφφ∂φ[σ̃(φ)∂φ] (3.192)

+aρ∂ρ + σ̃(φ)aφ∂φ

)
f

= O(ρ)∂ρ[σ̃(φ)∂ρ] f +O(ρ−1)∂φ[σ̃(φ)∂φ] f (3.193)

+O(1)∂φ f +O(ρ)∂ρ f .

On the other hand, away from the corner-like neighbourhoods around
φ = ωi, σ̃(φ) is just a constant function. Invoking the calculations on the
coefficients aρρ, aρφ, aφρ, aφφ, aρ, aφ, we derive that there, the operator P̃ can
be expressed as:

P̃ f =
(
aρρ∂ρρ + aρφ∂ρ[σ̃(φ)∂φ] + aφρ∂φ[σ̃(φ)∂ρ] + aφφ∂φ[σ̃(φ)∂φ] (3.194)

+aρ∂ρ + σ̃(φ)aφ∂φ

)
f

= O(ρ2)∂ρ∂ρ f +O(ρ)∂φ∂ρ f +O(ρ−2)∂φ∂φ f (3.195)

+O(1)∂φ f +O(ρ)∂ρ f .

In particular, dividing the domain φ ∈ [0, 2π), ρ ∈ (0, ε) into the corner
domains around the angles ωi and the rest, and applying the above two
formulas in the resulting domains and adding, we obtain the bound
D(0, ε),

∥P̃ f ∥L2(D(0,ε)) ≤ C2∥ f ∥Ḣ2
1 (D(0,ε)) (3.196)

for some constant C2 > 0.

3.2.2.4 The Composition P−1P̃

Lemma 3.14. Let ε > 0. On D(0, ε), the composition P−1P̃ has operator norm
from Ḣ2

1(D(0, ε)) → Ḣ2
1(D(0, ε)) less than 1, i.e.,

∥P−1P̃∥Ḣ2
1 (D(0,ε))→Ḣ2

1 (D(0,ε)) < 1. (3.197)

Proof. From Proposition 3.12, we have that ∥P−1g∥Ḣ2
1 (D(0,ε)) ≤ C1ε∥g∥L2(D(0,ε))

for some C1 > 0. Thus, the operator norm ∥P−1∥L2(D(0,ε))→Ḣ2
1 (D(0,ε)) ≤ C1ε.

From Proposition 3.13, ∥P̃v∥L2(D(0,ε)) is bounded, so we have that on
D(0, ε),

∥P̃v∥L2(D(0,ε)) ≤ C2∥v∥Ḣ2
1 (D(0,ε)). (3.198)
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Hence ∥P̃∥Ḣ2
1 (D(0,ε))→L2(D(0,ε)) ≤ C2. Taking ε = 1

2C1C2
yields

∥P−1P̃v∥Ḣ2
1 (D(0,ε)) ≤ ∥P−1∥L2→Ḣ2

1 (D(0,ε))∥P̃∥Ḣ2
1→L2∥v∥Ḣ2

1 (D(0,ε)) (3.199)

≤ C1εC2∥v∥Ḣ2
1 (D(0,ε)) (3.200)

=
1
2
∥v∥Ḣ2

1 (D(0,ε)). (3.201)

Thus, ∥P−1P̃∥Ḣ2
1 (D(0,ε))→Ḣ2

1 (D(0,ε)) ≤ 1
2 < 1.

Since ∥P−1P̃∥Ḣ2
1 (D(0,ε))→Ḣ2

1 (D(0,ε)) < 1, the series representation for ũ
given in Eq. (3.202) converges.

Lemma 3.15. Let ũ be the solution to Eq. (3.47). Let g = −P̃(u) ∈ L2(D(0, ε)).
Assume ∥P−1P̃∥Ḣ2

1 (D(0,ε))→Ḣ2
1 (D(0,ε)) < 1. Then we can write ũ as a Neumann

series:

ũ = −
[

I +
∞

∑
j=1

(−1)j(P−1P̃)j

]
P−1P̃(u). (3.202)

Proof. Let ũ be defined as in Eq. (3.47). Then we can write ũ as a Neumann
series,

ũ = (P + P̃)−1g (3.203)

=
[

P(I + P−1P̃)
]−1

g (3.204)

= (I + P−1P̃)−1P−1g (3.205)

=
[

I − (P−1P̃) + (P−1P̃)2 − (P−1P̃)3 + · · ·
]

P−1g (3.206)

=

[
I +

∞

∑
j=1

(−1)j(P−1P̃)j

]
P−1g (3.207)

= −
[

I +
∞

∑
j=1

(−1)j(P−1P̃)j

]
P−1P̃(u). (3.208)

Next, we will control the asymptotics of ũ as defined in Eq. (3.202) as
ρ → 0+.

Lemma 3.16. Let g ∈ L2(D(0, ε)). Consider the solution, v := P−1g, to the
boundary value problem, {

Pv = g in D(0, ε)

v = 0 on ∂D(0, ε)
. (3.209)
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Then the solution admits the representation

v(ρ, φ) =
∞

∑
k=0

lk(ρ)ek(φ), (3.210)

in which e0(φ), e1(φ), . . . are the orthonormal eigenfunctions of L defined in
Definition 3.3 normalized such that

∫ 2π
0 σ̃(φ)|ek(φ)|2 dφ = 1.

Proof. By expanding out the operator P defined in Eq. (3.173):

Pv = σ̃(φ)

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ

)
v +

1
ρ2

∂

∂φ

(
σ̃(φ)

∂v
∂φ

)
(3.211)

and dividing by σ̃(φ) we obtain the boundary value problem
(

∂2

∂ρ2 +
1
ρ

∂
∂ρ

)
v − 1

ρ2 Lv = g
σ̃ in D(0, ε)

v = 0 on ∂D(0, ε)

(3.212)

in which L := −[σ̃(φ)]−1∂φ(σ̃(φ)∂φ) defined in Definition 3.2. For fixed
ρ > 0, we have an orthonormal basis of L2(σ̃(φ)dφ) consisting of the
eigenfunctions {ek}k∈N of L on the circle of radius ρ normalized such that∫ 2π

0 σ̃(φ)|ek(φ)|2 dφ = 1 for all k ∈ N as defined in Definition 3.3. Note
that this basis is independent of ρ. For any c ∈ (0, ε), we can express
g(ρ,φ)
σ̃(φ)

|ρ=c ∈ L2(σ̃(φ)dφ) in this basis {ek}k∈N. For almost every ρ > 0, we

can write g(ρ,φ)
σ̃(φ)

= ∑∞
k=0 hk(ρ)ek(φ). Define

lk(ρ) :=
∫ 2π

0
σ̃(φ)v(ρ, φ)ek(φ) dφ. (3.213)

Then v(ρ, φ) = ∑∞
k=0 lk(ρ)ek(φ).

We will determine the asymptotic behaviour of lk(ρ) as ρ → 0+ below.
It is useful to note the equivalence of L2-norms over the circle and over

the disc when we use norms L2(dφ), L2(σ̃(φ)dφ) and L2(ρ · σ̃(φ)dρdφ), L2(ρ ·
σ̃(φ)dρdφ). In particular,

(mini∈{1,...,N}σi)∥ · ∥L2(dφ) ≤ ∥ · ∥L2(σ̃(φ)·dφ) ≤ (maxi∈{1,...,N}σi)∥ · ∥L2(dφ).

We will then use the convention ∥ · ∥1 ≃ ∥ · ∥2 to mean that there exists
a universal C (depending only on σi, i ∈ {1, . . . , N}) so that C−1 · ∥ · ∥2 ≤
∥ · ∥1 ≤ C · ∥ · ∥2.

We state a short lemma.
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Lemma 3.17. Let g(ρ,φ)
σ̃(φ)

= ∑∞
k=0 hk(ρ)ek(φ) ∈ L2(D(0, ε)). Then

∥∥∥∥ g(ρ, φ)

σ̃(φ)

∥∥∥∥2

L2(D(0,ε),σ̃(φ)ρdρdφ)

=
∞

∑
k=0

∫ ε

0
ρ|hk(ρ)|2 dρ. (3.214)

Proof. First, by the orthonormality of the ek’s,

∫ 2π

0

∣∣∣∣ g(ρ, φ)

σ̃(φ)

∣∣∣∣2σ̃(φ) dφ =
∫ 2π

0

∣∣∣∣ ∞

∑
k=0

hk(ρ)ek(φ)

∣∣∣∣2σ̃(φ) dφ (3.215)

=
∞

∑
k=0

|hk(ρ)|2
∫ 2π

0
|ek(φ)|2σ̃(φ) dφ (3.216)

=
∞

∑
k=0

|hk(ρ)|2. (3.217)

Then by Eq. (3.217), we compute∥∥∥∥ g(ρ, φ)

σ̃(φ)

∥∥∥∥2

L2(D(0,ε),σ̃(φ)ρdρdφ)

=
∫ ε

ρ=0

∫ 2π

φ=0

∣∣∣∣ g(ρ, φ)

σ̃(φ)

∣∣∣∣2σ̃(φ) dφρdρ (3.218)

=
∫ ε

ρ=0

∞

∑
k=0

|hk(ρ)|2ρdρ (3.219)

=
∞

∑
k=0

∫ ε

0
ρ|hk(ρ)|2 dρ. (3.220)

Proposition 3.18. Let g ∈ L2(D(0, ε)). Let v be a solution to the bound-
ary value problem Eq. (3.49) in which for almost every ρ > 0, we can write
g(ρ,φ)
σ̃(φ)

= ∑∞
k=0 hk(ρ)ek(φ) where the ek’s are orthogonal eigenfunctions of the

model operator L = −[σ̃(φ)]−1∂φ(σ̃(φ)∂φ) with associated eigenvalues λek ’s.
Then we can express v in the following form:

v(ρ, φ) = −
∫ ε

ρ
s−1

∫ s

0
th0(t)dtds +

∞

∑
k=1

[
1

2
√

λek

ρ
√

λek ε−2
√

λek

∫ ε

0
t1+

√
λek hk(t) dt

(3.221)

+
1

2
√

λek

ρ
√

λek

∫ ρ

ε
t1−

√
λek hk(t)dt

− 1
2
√

λek

ρ−
√

λek

∫ ρ

0
t1+

√
λek hk(t)dt

]
ek(φ) (3.222)
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Proof. By dividing the equation Pv = g in Eq. (3.49) by σ̃(φ), we get an
equation for each k:[

∂2
ρ +

1
ρ

∂ρ −
1
ρ2 λek

]
lk(ρ)ek(φ) = hk(ρ)ek(φ). (3.223)

The first summand in the right hand side of (3.221) is the the term
corresponding to k = 0, (in which case λe0 = 0) and is obtained by explicit
integration. For all k ≥ 1 we seek to find an explicit solution to Eq. (3.223)
using variation of parameters and invoking that v ∈ H1(D(0, ε)). To solve
the inhomogeneous ODE[

∂2
ρ +

1
ρ

∂ρ −
1
ρ2 λek

]
lk(ρ) = hk(ρ), (3.224)

we first find the complimentary solution ℓk,comp(ρ), i.e., the general solution
to the corresponding homogeneous ODE[

∂2
ρ +

1
ρ

∂ρ −
1
ρ2 λek

]
ℓk,comp(ρ) = 0. (3.225)

These types of second order linear homogeneous ODEs are called Eu-
ler Equations (or Cauchy–Euler equations). The solution to this Euler
Equation for k ≥ 1 is

ℓk,comp(ρ) = c1ℓk,1(ρ) + c2ℓk,2(ρ). (3.226)

in which the two fundamental solutions are

ℓk,1(ρ) = ρ
√

λek , ℓk,2(ρ) = ρ−
√

λek . (3.227)

We will now use variation of parameters to find a particular solution to
the inhomogeneous ODE Eq. (3.224). A particular solution is

ℓk,P(ρ) = ℓk,1(ρ)v1(ρ) + ℓk,2(ρ)v2(ρ) (3.228)

in which

v1(ρ) = −
∫

ℓk,2(ρ)hk(ρ)

W(ℓk,1, ℓk,2)
dρ, v2(ρ) =

∫
ℓk,1(ρ)hk(ρ)

W(ℓk,1, ℓk,2)
dρ (3.229)

and W denotes the Wronskian

W(ℓk,1, ℓk,2) = ℓk,1ℓ
′
k,2 − ℓk,2ℓ

′
k,1. (3.230)
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The derivatives of the fundamental solutions are

ℓ′k,1(ρ) =
√

λek ρ
√

λek−1, ℓ′k,2(ρ) = −
√

λek ρ−
√

λek−1 (3.231)

and hence, the Wronskian is

W(ℓk,1, ℓk,2) = ℓk,1ℓ
′
k,2 − ℓk,2ℓ

′
k,1 (3.232)

= −ρ
√

λek

√
λek ρ−

√
λek−1 − ρ−

√
λek

√
λek ρ

√
λek−1 (3.233)

= −2
√

λek ρ−1. (3.234)

Thus,

v1(ρ) =
∫ ρ

ε

t−
√

λek hk(t)
2
√

λek t−1
dt, v2(ρ) =

∫ ρ

0

t
√

λek hk(t)
−2
√

λek t−1
dt (3.235)

and a particular solution is

ℓk,P(ρ) = ρ
√

λek

∫ ρ

ε

t−
√

λek hk(t)
2
√

λek t−1
dt + ρ−

√
λek

∫ ρ

0

t
√

λek hk(t)
−2
√

λek t−1
dt. (3.236)

The general solution to the inhomogeneous differential equation Eq. (3.224)
is

lk(ρ) = ℓk,comp(ρ) + ℓk,P(ρ) (3.237)

= Akρ
√

λek + Bkρ−
√

λek + ρ
√

λek

∫ ρ

ε

t−
√

λek hk(t)
2
√

λek t−1
dt + ρ−

√
λek

∫ ρ

0

t
√

λek hk(t)
−2
√

λek t−1
dt

(3.238)

= Akρ
√

λek + Bkρ−
√

λek +
1

2
√

λek

ρ
√

λek

∫ ρ

ε
t1−

√
λek hk(t)dt (3.239)

− 1
2
√

λek

ρ−
√

λek

∫ ρ

0
t1+

√
λek hk(t)dt.

Since our solution v is in H1(D(0, ε)), this forces Bk = 0. Hence,

lk(ρ) = Akρ
√

λek +
1

2
√

λek

ρ
√

λek

∫ ρ

ε
t1−

√
λek hk(t)dt− 1

2
√

λek

ρ−
√

λek

∫ ρ

0
t1+

√
λek hk(t)dt.

(3.240)
The condition that lk(ε) = 0 implies that

Ak =
1

2
√

λek

ε−2
√

λek

∫ ε

0
t1+

√
λek hk(t) dt. (3.241)
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Thus, the solution to the boundary value problem Eq. (3.49) is

v(ρ, φ) =
∞

∑
k=1

lk(ρ)ek(φ)−
∫ ε

ρ

∫ s

0
th0(t)dtds (3.242)

=
∞

∑
k=1

[
1

2
√

λek

ρ
√

λek ε−2
√

λek

∫ ε

0
t1+

√
λek hk(t) dt +

1
2
√

λek

ρ
√

λek

∫ ρ

ε
t1−

√
λek hk(t)dt

(3.243)

− 1
2
√

λek

ρ−
√

λek

∫ ρ

0
t1+

√
λek hk(t)dt

]
ek(φ)−

∫ ε

ρ

∫ s

0
th0(t)dtds.

which concludes the proof of Proposition 3.18.

Note that −
∫ ε

0 s−1
∫ s

0 th0(t) dtds equals v(0, φ), which is the origin in
polar coordinates; we now denote this by v(0); sometimes to stress the
dependence on h0(t) we write: v[h0](0). We note that applying Cauchy-
Schwarz, then Hardy inequality and the Cauchy-Schwarz again, yields:

|v[h0](0)| ≤
√

ε ·
∥∥∥∥s−1

∫ s

0
th0(t)dt

∥∥∥∥
L2
(
(0,ε),ds

) (3.244)

≤ 4
√

ε · ∥t · h0(t)∥L2
(
(0,ε),dt

) (3.245)

≤ 4ε ·
√∫ ε

0
t · |h0(t)|2dt (3.246)

≤ ε · C∥g∥
L2
(

D(0,ε)
). (3.247)

Our main remaining task is to show that limρ→0+
lk(ρ)

ρ
√

λ1
has a limit as ρ →

0+ for k = 1, . . . , M. (Recall that M is the multiplicity of the eigenvalue
λ1).

Recall that Lemma 3.17 provides an expression for computing the
L2(D(0, ε), σ̃(φρdρdφ))-norm of the function g and due to the equivalence
of the L2(D(0, ε)) and L2(D(0, ε), σ̃(φρdρdφ)) norms:

∥g∥L2(D(0,ε)) ≃
√

∞

∑
k=0

∫ ε

0
ρ|hk(ρ)|2 dρ. (3.248)

For functions that depend on the polar coordinates (ρ, φ), we define a
new function of ρ alone by taking the L2(σ̃(φ)dφ)-norm as

∥ f ∥L2(σ̃(φ)dφ)(ρ) :=

√∫ 2π

0
| f (ρ, φ)|2 σ̃(φ)dφ. (3.249)
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Let g ∈ L2(D(0, ε)). Then we seek to obtain a strong understanding of
the asymptotic behaviour as ρ → 0+ of the solution v to the system{

Pv = g in D(0, ε)

v = 0 on ∂D(0, ε)
. (3.250)

In Proposition 3.18 we derived that the solution to Eq. (3.250) can be
written in the form

v(ρ, φ) +
∫ ε

ρ
s−1

∫ s

0
th0(t)dtds =

∞

∑
k=1

lk(ρ)ek(φ), (3.251)

in which

lk(ρ) : = Akρ
√

λek +
1

2
√

λek

ρ
√

λek

∫ ρ

ε
t1−

√
λek hk(t)dt (3.252)

− 1
2
√

λek

ρ−
√

λek

∫ ρ

0
t1+

√
λek hk(t)dt

and
Ak :=

1
2
√

λek

ε−2
√

λek

∫ ε

0
t1+

√
λek hk(t) dt. (3.253)

Lemma 3.19. Let l1(ρ), . . . , lM(ρ) be defined by Eq. (3.252). Then limρ→0+
lk(ρ)

ρ
√

λ1

exists for k = 1, . . . , M. Furthermore,

lim
ρ→0+

lk(ρ)

ρ
√

λ1
=

1
2
√

λ1
ε−2

√
λ1

∫ ε

0
t1+

√
λ1 hk(t) dt − 1

2
√

λ1

∫ ε

0
t1−

√
λ1 hk(t) dt

(3.254)
and there exists a C > 0 such that

lim
ρ→0+

lk(ρ)

ρ
√

λ1
≤ C∥g∥L2(D(0,ε)). (3.255)

Proof. We will show that limρ→0+
lk(ρ)

ρ
√

λ1
exists for k = 1, . . . , M. Once this is

proven we will define

αk := lim
ρ→0+

lk(ρ)

ρ
√

λ1
. (3.256)

Now, we need to show that lk(ρ)

ρ
√

λ1
has a limit as ρ → 0+ for k = 1, . . . , M. It

suffices to show that for any sequence {ρn}∞
n=1 with ρn → 0,

lim
n→∞

∣∣∣∣∣ lk(ρn)

ρ
√

λ1
n

− lk(ρn+1)

ρ
√

λ1
n+1

∣∣∣∣∣ = 0. (3.257)



3.2 general intersecting curves 85

Recall that

lk(ρ)

ρ
√

λ1
= Ak +

1
2
√

λ1

∫ ρ

ε
t1−

√
λ1 hk(t) dt (3.258)

− 1
2
√

λ1
ρ−2

√
λ1

∫ ρ

0
t1+

√
λ1 hk(t) dt

and
Ak :=

1
2
√

λ1
ε−2

√
λ1

∫ ε

0
t1+

√
λ1 hk(t) dt. (3.259)

Using the triangle inequality, we compute∣∣∣∣∣ lk(ρn)

ρ
√

λ1
n

− lk(ρn+1)

ρ
√

λ1
n+1

∣∣∣∣∣ ≤ ∣∣∣Ak − Ak

∣∣∣
+
∣∣∣Bk(ρn)− Bk(ρn+1)

∣∣∣
+
∣∣∣Ck(ρn)− Ck(ρn+1)

∣∣∣, (3.260)

in which
Bk(ρ) :=

1
2
√

λ1

∫ ρ

ε
t1−

√
λ1 hk(t) dt (3.261)

and
Ck(ρ) := − 1

2
√

λ1
ρ−2

√
λ1

∫ ρ

0
t1+

√
λ1 hk(t) dt. (3.262)
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Clearly, |Ak − Ak| = 0. By the Cauchy–Schwarz inequality,∣∣∣Bk(ρn)− Bk(ρn+1)
∣∣∣

=
∣∣∣ 1
2
√

λ1

∫ ρn

ε
t1−

√
λ1 hk(t) dt − 1

2
√

λ1

∫ ρn+1

ε
t1−

√
λ1 hk(t) dt

∣∣∣ (3.263)

=
∣∣∣ 1
2
√

λ1

∫ ρn

ρn+1

t1−
√

λ1 hk(t) dt
∣∣∣ (3.264)

≤ 1
2
√

λ1

∫ ρn

ρn+1

∣∣∣t1−
√

λ1 hk(t)
∣∣∣ dt (3.265)

≤ 1
2
√

λ1

√∫ ρn

ρn+1

∣∣∣t 1
2−

√
λ1

∣∣∣2 dt

√∫ ρn

ρn+1

∣∣∣t 1
2 hk(t)

∣∣∣2 dt (3.266)

=
1

2
√

λ1

√∫ ρn

ρn+1

t1−2
√

λ1 dt

√∫ ρn

ρn+1

t
∣∣∣hk(t)

∣∣∣2 dt (3.267)

=
1

2
√

λ1

√
t2−2

√
λ1

2 − 2
√

λ1

∣∣∣ρn

ρn+1

√∫ ρn

ρn+1

t
∣∣∣hk(t)

∣∣∣2 dt (3.268)

≤
(maxi∈{1,...,N}σi)

2
√

λ1

√
(ρn)

2−2
√

λ1 − (ρn+1)
2−2

√
λ1

2 − 2
√

λ1
∥g∥L2(D(0,ε)) (3.269)

−−−→
n→∞

0. (3.270)
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For the third term, using the triangle and Cauchy-Schwarz inequalities,∣∣∣Ck(ρn)− Ck(ρn+1)
∣∣∣

=
∣∣∣− 1

2
√

λ1
ρ−2

√
λ1

n

∫ ρn

0
t1+

√
λ1 hk(t) dt +

1
2
√

λ1
ρ−2

√
λ1

n+1

∫ ρn+1

0
t1+

√
λ1 hk(t) dt

∣∣∣
(3.271)

=
1

2
√

λ1

∣∣∣ρ−2
√

λ1
n

∫ ρn

0
t1+

√
λ1 hk(t) dt − ρ−2

√
λ1

n+1

∫ ρn+1

0
t1+

√
λ1 hk(t) dt

∣∣∣
(3.272)

≤ 1
2
√

λ1
ρ−2

√
λ1

n

∫ ρn

0

∣∣∣t1+
√

λ1 hk(t)
∣∣∣ dt +

1
2
√

λ1
ρ−2

√
λ1

n+1

∫ ρn+1

0

∣∣∣t1+
√

λ1 hk(t)
∣∣∣ dt

(3.273)

≤ 1
2
√

λ1
ρ−2

√
λ1

n

√∫ ρn

0
|t 1

2+
√

λ1 |2 dt

√∫ ρn

0

∣∣∣t 1
2 hk(t)

∣∣∣2 dt (3.274)

+
1

2
√

λ1
ρ−2

√
λ1

n+1

√∫ ρn+1

0
|t 1

2+
√

λ1 |2 dt
√∫ ρn+1

0

∣∣∣t 1
2 hk(t)

∣∣∣2 dt

=
1

2
√

λ1
ρ−2

√
λ1

n

√
t2+2

√
λ1

2 + 2
√

λ1

∣∣∣ρn

0

√∫ ρn

0
t
∣∣∣hk(t)

∣∣∣2 dt (3.275)

+
1

2
√

λ1
ρ−2

√
λ1

n+1

√
t2+2

√
λ1

2 + 2
√

λ1

∣∣∣ρn+1

0

√∫ ρn+1

0
t
∣∣∣hk(t)

∣∣∣2 tdt

≤
(maxi∈{1,...,N}σi)

2
√

λ1

(ρn)
1−

√
λ1 + (ρn+1)

1−
√

λ1√
2 + 2

√
λ1

∥g∥L2(D(0,ε)), (3.276)

which converges to 0 as n → ∞ because 1 −
√

λ1 > 0. Thus,

lim
n→∞

∣∣∣∣∣ lk(ρn)

ρ
√

λ1
n

− lk(ρn+1)

ρ
√

λ1
n+1

∣∣∣∣∣ = 0. (3.277)

Hence, lk(ρ)

ρ
√

λ1
has a limit as ρ → 0+ for k = 1, . . . , M.
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Our argument shows that

αk : = lim
ρ→0+

lk(ρ)

ρ
√

λ1
(3.278)

= lim
ρ→0+

[
1

2
√

λ1
ε−2

√
λ1

∫ ε

0
t1+

√
λ1 hk(t) dt +

1
2
√

λ1

∫ ρ

ε
t1−

√
λ1 hk(t) dt

(3.279)

− 1
2
√

λ1
ρ−2

√
λ1

∫ ρ

0
t1+

√
λ1 hk(t) dt

]
=

1
2
√

λ1
ε−2

√
λ1

∫ ε

0
t1+

√
λ1 hk(t) dt − 1

2
√

λ1

∫ ε

0
t1−

√
λ1 hk(t) dt. (3.280)

By the Cauchy–Schwarz inequality,

∫ ε

0
t1+

√
λ1 hk(t) dt ≤

√∫ ε

0
|t 1

2+
√

λ1 |2 dt
√∫ ε

0
|t 1

2 hk(t)|2 dt (3.281)

=

√∫ ε

0
t1+2

√
λ1 dt

√∫ ε

0
t|hk(t)|2 dt (3.282)

=

√
ε2+2

√
λ1

2 + 2
√

λ1

√∫ ε

0
t|hk(t)|2 dt (3.283)

and ∫ ε

0
t1−

√
λ1 hk(t) dt ≤

√∫ ε

0
|t 1

2−
√

λ1 |2 dt
√∫ ε

0
|t 1

2 hk(t)|2 dt (3.284)

=

√∫ ε

0
t1−2

√
λ1 dt

√∫ ε

0
t|hk(t)|2 dt (3.285)

=

√
ε2−2

√
λ1

2 − 2
√

λ1

√∫ ε

0
t|hk(t)|2 dt. (3.286)

Hence, αk ≤
(maxi∈{1,...,N}σi)

2
√

λ1

(
1√

2+2
√

λ1
+ 1√

2−2
√

λ1

)
∥g∥L2(D(0,ε)).

Taking C =
(maxi∈{1,...,N}σi)

2
√

λ1

(
1√

2+2
√

λ1
+ 1√

2−2
√

λ1

)
completes the proof of

Lemma 3.19.
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Proposition 3.20. Let v be the solution to Eq. (3.250) where g ∈ L2(D(0, ε))

and αk be defined by Eq. (3.280). Let δ = min(
√

λ2 −
√

λ1, 1
3

(
1 −

√
λ1
)
) and

D = (maxi∈{1,...,N}σi)max

(
M√
λ1

(
1√

2 − 2
√

λ1
+

1√
2 + 2

√
λ1

)
,√√√√ 5

λ2

(
1 + 1

2 ε2
√

λ2−2

1 +
√

λ2
+

9
1 −

√
λ1

) ∥g∥L2(D(0,ε)).

Consider the function

M(ρ, φ) :=
v(ρ, φ)− v(0)

ρ
√

λ1
−

M

∑
k=1

αkek(φ). (3.287)

Then for every ρ ∈ (0, ε): ∥∥∥M(ρ, φ)
∥∥∥

L2(dφ)
≤ ρδD. (3.288)

Proof. Note that by the triangle inequality and the Plancherel theorem

∥∥∥M(ρ, φ)
∥∥∥

L2(dφ)
=
∥∥∥v(ρ, φ)− v(0)

ρ
√

λ1
−

M

∑
k=1

αkek(φ)
∥∥∥

L2(dφ)
(3.289)

=
∥∥∥ ∞

∑
k=1

lk(ρ)

ρ
√

λ1
ek(φ)−

M

∑
k=1

αkek(φ)
∥∥∥

L2(dφ)
(3.290)

≤
∥∥∥ M

∑
k=1

lk(ρ)

ρ
√

λ1
ek(φ)−

M

∑
k=1

αkek(φ)
∥∥∥

L2(dφ)
+
∥∥∥ ∞

∑
k=M+1

lk(ρ)

ρ
√

λ1
ek(φ)

∥∥∥
L2(dφ)

(3.291)

≤
M

∑
k=1

∥∥∥ lk(ρ)

ρ
√

λ1
ek(φ)− αkek(φ)

∥∥∥
L2(dφ)

+

√√√√ ∞

∑
k=M+1

l2
k (ρ)

ρ2
√

λ1
.

(3.292)

We seek to show that
∥∥∥M(ρ, φ)

∥∥∥
L2(dφ)

< ρδ · D, for which by Eqs. (3.289)

to (3.292) it suffices to show that for k = 1 . . . , M∥∥∥ lk(ρ)

ρ
√

λ1
ek(φ)− αkek(φ)

∥∥∥
L2(dφ)

≤ 1
2M

ρδ · D (3.293)

and that
∞

∑
k=M+1

l2
k (ρ)

ρ2
√

λ1
≤ 1

4
ρ2δ · D2. (3.294)
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We first seek to show Eq. (3.293). By the triangle inequality, we have that∥∥∥ lk(ρ)

ρ
√

λ1
ek(φ)− αkek(φ)

∥∥∥
L2(dφ)

=

√∫ 2π

0

∣∣∣ lk(ρ)

ρ
√

λ1
ek(φ)− αkek(φ)

∣∣∣2 dφ (3.295)

=

√∣∣∣ lk(ρ)

ρ
√

λ1
− αk

∣∣∣2 ∫ 2π

0
|ek(φ)|2 dφ (3.296)

=
∣∣∣ lk(ρ)

ρ
√

λ1
− αk

∣∣∣ (3.297)

=
∣∣∣ 1
2
√

λ1
ε−2

√
λ1

∫ ε

0
t1+

√
λ1 hk(t) dt +

1
2
√

λ1

∫ ρ

ε
t1−

√
λ1 hk(t) dt (3.298)

− 1
2
√

λ1
ρ−2

√
λ1

∫ ρ

0
t1+

√
λ1 hk(t) dt − αk

∣∣∣ (3.299)

=
∣∣∣ 1
2
√

λ1
ε−2

√
λ1

∫ ε

0
t1+

√
λ1 hk(t) dt − 1

2
√

λ1

∫ ε

0
t1−

√
λ1 hk(t) dt (3.300)

+
1

2
√

λ1

∫ ρ

0
t1−

√
λ1 hk(t) dt

− 1
2
√

λ1
ρ−2

√
λ1

∫ ρ

0
t1+

√
λ1 hk(t) dt − αk

∣∣∣
=
∣∣∣ 1
2
√

λ1

∫ ρ

0
t1−

√
λ1 hk(t) dt − 1

2
√

λ1
ρ−2

√
λ1

∫ ρ

0
t1+

√
λ1 hk(t) dt

∣∣∣ (3.301)

≤ 1
2
√

λ1

∫ ρ

0

∣∣∣t1−
√

λ1 hk(t)
∣∣∣ dt +

1
2
√

λ1
ρ−2

√
λ1

∫ ρ

0

∣∣∣t1+
√

λ1 hk(t)
∣∣∣ dt (3.302)
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By the Cauchy–Schwarz inequality, we have that∥∥∥ lk(ρ)

ρ
√

λ1
ek(φ)− αkek(φ)

∥∥∥
L2(dφ)

≤ 1
2
√

λ1

√∫ ρ

0
|t 1

2−
√

λ1 |2 dt
√∫ ρ

0
|t 1

2 hk(t)|2 dt (3.303)

+
1

2
√

λ1
ρ−2

√
λ1

√∫ ρ

0
|t 1

2+
√

λ1 |2 dt
√∫ ρ

0
|t 1

2 hk(t)|2 dt

=
1

2
√

λ1

√∫ ρ

0
t1−2

√
λ1 dt

√∫ ρ

0
t|hk(t)|2 dt (3.304)

+
1

2
√

λ1
ρ−2

√
λ1

√∫ ρ

0
t1+2

√
λ1 dt

√∫ ρ

0
t|hk(t)|2 dt

=
1

2
√

λ1

√
1

2 − 2
√

λ1
ρ2−2

√
λ1

√∫ ρ

0
t|hk(t)|2 dt (3.305)

+
1

2
√

λ1
ρ−2

√
λ1

√
1

2 + 2
√

λ1
ρ2+2

√
λ1

√∫ ρ

0
t|hk(t)|2 dt

≤ 1
2

ρ1−
√

λ1
(maxi∈{1,...,N}σi)√

λ1

(
1√

2 − 2
√

λ1
+

1√
2 + 2

√
λ1

)
∥g∥L2(D(0,ε))

(3.306)

≤ 1
2M

ρδ · D, (3.307)

in which δ = min(
√

λ2 −
√

λ1, 1
3

(
1 −

√
λ1
)
) and

D = (maxi∈{1,...,N}σi)max

(
M√
λ1

(
1√

2 − 2
√

λ1
+

1√
2 + 2

√
λ1

)
,√

5
λ2

(
1

1 +
√

λ2
+

9
1 −

√
λ1

))
∥g∥L2(D(0,ε)).

Hence,
∥∥∥ lk(ρ)

ρ
√

λ1
ek(φ)− αkek(φ)

∥∥∥
L2(dφ)

≤ 1
2M ρδ · D, proving Eq. (3.293).

We now turn our attention to showing Eq. (3.294). By Eq. (3.252), we
seek to show that

∞

∑
k=M+1

(
Akρ

√
λek−

√
λ1 +

1
2
√

λek

ρ
√

λek−
√

λ1

∫ ρ

ε
t1−

√
λek hk(t)dt (3.308)

− 1
2
√

λek

ρ−
√

λek−
√

λ1

∫ ρ

0
t1+

√
λek hk(t)dt

)2

≤ 1
4

ρ2δ · D2.
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We define

A(ρ) : =
∞

∑
k=M+1

A2
kρ2

√
λek−2

√
λ1 , (3.309)

B(ρ) : =
∞

∑
k=M+1

1
4λek

ρ2
√

λek−2
√

λ1

(∫ ρ

ε
t1−

√
λek hk(t)dt

)2

, (3.310)

C(ρ) : =
∞

∑
k=M+1

1
4λek

ρ−2
√

λek−2
√

λ1

(∫ ρ

0
t1+

√
λek hk(t)dt

)2

. (3.311)

It suffices to show that |A(ρ)| + |B(ρ)| + |C(ρ)| ≤ 1
5

1
4 ρ2δ · D2. Using

Eq. (3.253) and the Cauchy–Schwarz inequality

|A(ρ)| =
∞

∑
k=M+1

(
1

2
√

λek

ε−2
√

λek

∫ ε

0
t1+

√
λek hk(t) dt

)2

ρ2
√

λek−2
√

λ1

(3.312)

=
∞

∑
k=M+1

1
4λek

ρ2
√

λek−2
√

λ1 ε−4
√

λek

∫ ε

0
|t

1
2+
√

λek |2 dt
∫ ε

0
|t 1

2 hk(t)|2 dt

(3.313)

=
∞

∑
k=M+1

1
4λek

ρ2
√

λek−2
√

λ1 ε−4
√

λek

∫ ε

0
t1+2

√
λek dt

∫ ε

0
t|hk(t)|2 dt

(3.314)

=
∞

∑
k=M+1

1
4λek

ρ2
√

λek−2
√

λ1 ε−4
√

λek
ε2+2

√
λek

2 + 2
√

λek

∫ ε

0
t|hk(t)|2 dt (3.315)

=
∞

∑
k=M+1

1
4λek

(ρ

ε

)2
√

λek−2 ρ2−2
√

λ1

2 + 2
√

λek

∫ ε

0
t|hk(t)|2 dt. (3.316)

We know that λek → ∞ as k → ∞. So there is only a finite number of
k’s for which λek < 1. Let that maximum k such that λek < 1 be K. Then
considering the terms where λek ≥ 1,

∞

∑
k=K+1

1
4λek

(ρ

ε

)2
√

λek−2 ρ2−2
√

λ1

2 + 2
√

λek

∫ ε

0
t|hk(t)|2 dt (3.317)

≤ ρ2−2
√

λ1
1

4λ2

1
2 + 2

√
λ2

∞

∑
k=K+1

∫ ε

0
t|hk(t)|2 dt (3.318)

≤ ρ2δA1 · D2
A1

, (3.319)
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in which δA1 = 1 −
√

λ1 and DA1 =
(maxi∈{1,...,N}σi)

2
√

λ2

1√
2+2

√
λ2
∥g∥L2(D(0,ε)).

And considering the terms where λek < 1,

K

∑
k=M+1

1
4λek

(ρ

ε

)2
√

λek−2 ρ2−2
√

λ1

2 + 2
√

λek

∫ ε

0
t|hk(t)|2 dt (3.320)

≤ 1
4λ2

1
2 + 2

√
λ2

K

∑
k=M+1

ρ2
√

λek−2
√

λ1 ε2−2
√

λek

∫ ε

0
t|hk(t)|2 dt (3.321)

≤ ρ2
√

λ2−2
√

λ1 ε2
√

λ2−2 1
4λ2

1
2 + 2

√
λ2

K

∑
k=M+1

∫ ε

0
t|hk(t)|2 dt (3.322)

≤ ρ2δA2 · D2
A2

, (3.323)

in which δA2 =
√

λ2 −
√

λ1 and DA2 =
(maxi∈{1,...,N}σi)

2
√

λ2

ε
√

λ2−1√
2+2

√
λ2
∥g∥L2(D(0,ε)).

Hence,

|A(ρ)| =
∞

∑
k=M+1

1
4λek

(ρ

ε

)2
√

λek−2 ρ2−2
√

λ1

2 + 2
√

λek

∫ ε

0
t|hk(t)|2 dt (3.324)

≤ ρ2δA · D2
A, (3.325)

in which δA = min{δA1 , δA2} = min{
√

λ2 −
√

λ1, 1 −
√

λ1} > 0 and

DA =
√

D2
A1

+ D2
A2

=
(maxi∈{1,...,N}σi)

2
√

λ2

√
1+ε2

√
λ2−2√

2+2
√

λ2
∥g∥L2(D(0,ε)) > 0.

Using the Cauchy–Schwarz inequality and noting that all the terms in
the sum in Eq. (3.310) are positive,

|B(ρ)| =
∞

∑
k=M+1

∣∣∣∣∣ 1
4λek

ρ2
√

λek−2
√

λ1

(∫ ρ

ε
t1−

√
λek hk(t)dt

)2
∣∣∣∣∣ (3.326)

≤
∞

∑
k=M+1

1
4λek

∣∣∣ρ2
√

λek−2
√

λ1
∣∣∣ · ∣∣∣ ∫ ε

ρ
|t

1
2−
√

λek |2dt
∣∣∣ · ∣∣∣ ∫ ε

ρ
|t 1

2 hk(t)|2dt
∣∣∣

(3.327)

=
∞

∑
k=M+1

1
4λek

ρ2
√

λek−2
√

λ1
∣∣∣ ∫ ε

ρ
t1−2

√
λek dt

∣∣∣ ∫ ε

ρ
t|hk(t)|2dt. (3.328)
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Let η = 1−
√

λ1 > 0. We split the sum into two parts: one part containing
the terms where |

√
λek − 1| ≥ η

3 and one part containing the terms where
|
√

λek − 1| < η
3 :

|B(ρ)| ≤ ∑
k≥M+1

|
√

λek−1|≥ η
3

1
4λek

ρ2
√

λek−2
√

λ1
∣∣∣ ∫ ε

ρ
t1−2

√
λek dt

∣∣∣ ∫ ε

ρ
t|hk(t)|2dt

(3.329)

+ ∑
k≥M+1

|
√

λek−1|< η
3

1
4λek

ρ2
√

λek−2
√

λ1
∣∣∣ ∫ ε

ρ
t1−2

√
λek dt

∣∣∣ ∫ ε

ρ
t|hk(t)|2dt.

Firstly, we consider the terms where |
√

λek − 1| ≥ η
3 (which implies

1
|2−2

√
λek |

≤ 3
2η ):

∑
k≥M+1

|
√

λek−1|≥ η
3

1
4λek

ρ2
√

λek−2
√

λ1
∣∣∣ ε2−2

√
λek − ρ2−2

√
λek

2 − 2
√

λek

∣∣∣ ∫ ε

ρ
t|hk(t)|2dt

≤ ∑
k≥M+1

|
√

λek−1|≥ η
3

3
8λek η

ρ2
√

λek−2
√

λ1
∣∣∣ε2−2

√
λek − ρ2−2

√
λek

∣∣∣ ∫ ε

ρ
t|hk(t)|2dt

(3.330)

≤ ∑
k≥M+1

|
√

λek−1|≥ η
3

3
8λek η

ρ2
√

λek−2
√

λ1
(∣∣∣ε2−2

√
λek

∣∣∣+ ∣∣∣ρ2−2
√

λek

∣∣∣) ∫ ε

ρ
t|hk(t)|2dt

(3.331)

≤ ∑
k≥M+1

|
√

λek−1|≥ η
3

3
8λek η

ρ2
√

λek−2
√

λ1
(

2 + 2ρ2−2
√

λek

) ∫ ε

ρ
t|hk(t)|2dt (3.332)

= ∑
k≥M+1

|
√

λek−1|≥ η
3

3
4λek η

(
ρ2
√

λek−2
√

λ1 + ρ2−2
√

λ1
) ∫ ε

ρ
t|hk(t)|2dt (3.333)

≤ ρ2 min(
√

λ2−
√

λ1,1−
√

λ1)
3

2λ2η ∑
k≥M+1

|
√

λek−1|≥ η
3

∫ ε

ρ
t|hk(t)|2dt (3.334)

≤ ρ2 min(
√

λ2−
√

λ1,1−
√

λ1)
3

2λ2η ∑
k≥M+1

|
√

λek−1|≥ η
3

∫ ε

ρ
t|hk(t)|2dt (3.335)

≤ ρ2δB1 D2
B1

, (3.336)
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in which δB1 = min(
√

λ2 −
√

λ1, 1 −
√

λ1) > 0 and

DB1 = (maxi∈{1,...,N}σi)
√

3
2λ2η∥g∥L2(D(0,ε)) > 0.

Secondly, we consider the terms where |
√

λek − 1| < η
3 , i.e., 1 − η

3 <√
λek < 1 + η

3 . Then since ρ ∈ (0, 1) and
√

λek > 1 − η
3 ,

ρ2
√

λek−2 < ρ2(1− η
3 )−2 (3.337)

= ρ−
2η
3 . (3.338)

Since ρ ∈ (0, 1) and
√

λek < 1 + η
3 ,∣∣∣ ∫ ε

ρ
t1−2

√
λek dt

∣∣∣ < ∣∣∣ ∫ ε

ρ
t1−2(1+ η

3 )dt
∣∣∣ (3.339)

=
∣∣∣ ∫ ε

ρ
t(−1− 2η

3 )dt
∣∣∣ (3.340)

=
∣∣∣ t− 2η

3

− 2η
3

∣∣∣ε
ρ

(3.341)

=
∣∣∣ ε− 2η

3

− 2η
3

+
ρ−

2η
3

2η
3

∣∣∣ (3.342)

≤
∣∣∣ ε− 2η

3

− 2η
3

∣∣∣+ ∣∣∣ρ− 2η
3

2η
3

∣∣∣ (3.343)

≤ 3ρ−
2η
3

η
. (3.344)

By combining Eqs. (3.338) and (3.344) we get the bound

∑
k≥M+1

|
√

λek−1|< η
3

1
4λek

ρ2
√

λek−2
√

λ1
∣∣∣ ∫ ε

ρ
t1−2

√
λek dt

∣∣∣ ∫ ε

ρ
t|hk(t)|2dt

≤ ∑
k≥M+1

|
√

λek−1|< η
3

1
4λek

ρ−
2η
3 · ρ2−2

√
λ1 · 3ρ−

2η
3

η

∫ ε

ρ
t|hk(t)|2dt (3.345)

≤ ρ2−2
√

λ1− 4η
3

3
4λ2η ∑

k≥M+1
|
√

λek−1|< η
3

∫ ε

ρ
t|hk(t)|2dt (3.346)

≤ ρ2δB2 D2
B2

, (3.347)

in which δB2 = 1 −
√

λ1 − 2η
3 = 1

3

(
1 −

√
λ1
)
> 0 and

DB2 = (maxi∈{1,...,N}σi)
√

3
4λ2η∥g∥L2(D(0,ε)) > 0.
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Combining Eqs. (3.329), (3.336), and (3.347) yields the bound

|B(ρ)| ≤ ρ2δB1 D2
B1
+ ρ2δB2 D2

B2
(3.348)

≤ ρ2δB D2
B, (3.349)

in which δB = min{δB1 , δB2} = min{
√

λ2 −
√

λ1, 1
3

(
1 −

√
λ1
)
} > 0 and

DB =
√

D2
B1
+ D2

B2
= (maxi∈{1,...,N}σi)

3
2
√

λ2η
∥g∥L2(D(0,ε)) > 0.

Using the Cauchy–Schwarz inequality

|C(ρ)| =
∞

∑
k=M+1

1
4λek

ρ−2
√

λek−2
√

λ1

(∫ ρ

0
t1+

√
λek hk(t)dt

)2

(3.350)

≤
∞

∑
k=M+1

1
4λek

ρ−2
√

λek−2
√

λ1

∫ ρ

0
|t

1
2+
√

λek |2dt
∫ ρ

0
t|hk(t)|2dt (3.351)

=
∞

∑
k=M+1

1
4λek

ρ−2
√

λek−2
√

λ1

∫ ρ

0
t1+2

√
λek dt

∫ ρ

0
t|hk(t)|2dt (3.352)

=
∞

∑
k=M+1

1
4λek

ρ−2
√

λek−2
√

λ1 1
2 + 2

√
λek

ρ2+2
√

λek

∫ ρ

0
t|hk(t)|2dt

(3.353)

= ρ2−2
√

λ1
∞

∑
k=M+1

1
4λek

1
2 + 2

√
λek

∫ ρ

0
t|hk(t)|2dt (3.354)

≤ ρ2−2
√

λ1
1

4λ2

1
2 + 2

√
λ2

∞

∑
k=M+1

∫ ε

0
t|hk(t)|2dt (3.355)

≤ ρ2δC · D2
C, (3.356)

in which δC = 1 −
√

λ1 and DC = 1
2
√

λ2

(maxi∈{1,...,N}σi)√
2+2

√
λ2

∥g∥L2(D(0,ε)).

Note that

=
√

5 · 4
(

D2
A + D2

B + D2
C

)
(3.357)

= (maxi∈{1,...,N}σi)

√√√√5 · 4

(
1

4λ2

1 + ε2
√

λ2−2

2 + 2
√

λ2
+

9
4λ2η

+
1

4λ2

1
2 + 2

√
λ2

)
(3.358)

= (maxi∈{1,...,N}σi)

√√√√ 5
λ2

(
1 + 1

2 ε2
√

λ2−2

1 +
√

λ2
+

9
1 −

√
λ1

)
. (3.359)
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Now, choosing

δ = min{δA, δB, δC} (3.360)

= min
{√

λ2 −
√

λ1,
1
3

(
1 −

√
λ1

) }
(3.361)

and

D = (maxi∈{1,...,N}σi)max

{
M√
λ1

(
1√

2 − 2
√

λ1
+

1√
2 + 2

√
λ1

)
,

√
5 · 4

(
D2

A + D2
B + D2

C

)}
∥g∥L2(D(0,ε)) (3.362)

= (maxi∈{1,...,N}σi)max

{
M√
λ1

(
1√

2 − 2
√

λ1
+

1√
2 + 2

√
λ1

)
,√√√√ 5

λ2

(
1 + 1

2 ε2
√

λ2−2

1 +
√

λ2
+

9
1 −

√
λ1

)}
∥g∥L2(D(0,ε))

(3.363)

allows us to show Eq. (3.294), completing our proof of Proposition 3.20.

We will use Proposition 3.20 to prove the corollary that ũ as defined by
the Neumann series in Eq. (3.208) has the same decomposition.

Corollary 3.21. Let ũ be as defined as in Eq. (3.208). Assume the following:

P−1 : L2(D(0, ε)) → Ḣ2
1(D(0, ε))

P̃ : Ḣ2
1(D(0, ε)) → L2(D(0, ε))

∥P−1P̃∥Ḣ2
1 (D(0,ε))→Ḣ2

1 (D(0,ε)) < 1.

Let δ = min(
√

λ2 −
√

λ1, 1
3

(
1 −

√
λ1)
)
. Then there exist (α∗

1 , . . . , α∗
M) ∈ RM

such that

∥(ũ(ρ, φ)− ũ(0))ρ−
√

λ1 −
M

∑
i=1

α∗
i ei(θ)∥L2(dφ) ≤ ρδ · D∗ (3.364)
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for some D∗ > 0. Furthermore, α∗
1 , . . . , α∗

M, and D∗ are bounded by C 1
1−ε∥P̃u∥L2(D(0,ε))

for

C = (maxi∈{1,...,N}σi)max

(
M√
λ1

(
1√

2 − 2
√

λ1
+

1√
2 + 2

√
λ1

)
,√√√√ 5

λ2

(
1 + 1

2 ε2
√

λ2−2

1 +
√

λ2
+

9
1 −

√
λ1

) .

Proof. From Lemma 3.15, we can write ũ as a Neumann series

ũ = −
[

I +
∞

∑
j=1

(−1)j(P−1P̃)j

]
P−1P̃(u). (3.365)

From this series representation of ũ, we can write ũ = ∑∞
k=0 ũk in which

ũk = (−1)k+1
(

P−1P̃
)k

P−1P̃u. (3.366)

We note that

Pũk = P(−1)k+1
(

P−1P̃
)k

P−1P̃u (3.367)

= (−1)k+1P̃
(

P−1P̃
)k−1

P−1P̃u (3.368)

= (−1)k+1
(

P̃P−1
)k

P̃u. (3.369)

By defining gk := (−1)k+1
(

P̃P−1
)k

P̃u, we have the system

{
Pũk = gk in D(0, ε)

ũk = 0 on ∂D(0, ε)
(3.370)

for each k ≥ 0.
We can bound the L2-norm of gk on D(0, ε) as follows

∥gk∥L2(D(0,ε)) = ∥
(

P̃P−1
)k

g0∥L2(D(0,ε)) (3.371)

≤ ∥
(

P̃P−1
)
∥k

L2(D(0,ε))→L2(D(0,ε))∥g0∥L2(D(0,ε)) (3.372)

≤ εk∥g0∥L2(D(0,ε)) (3.373)

= εk∥P̃u∥L2(D(0,ε)). (3.374)
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Then by invoking Proposition 3.20 as well as (3.247) we get that for
each k ≥ 0, there exist (α1,k, . . . , αM,k) ∈ RM such that ∥(ũk(ρ, φ) −
ũk(0))ρ−

√
λ1 −∑M

i=1 αi,kei(θ)∥L2(dφ) ≤ ρδ ·Dk for δ = min(
√

λ2 −
√

λ1, 1
3

(
1 −

√
λ1
)
)

and α1,k, . . . , αM,k, and Dk are bounded by C∥gk∥L2(D(0,ε)) for

C = (maxi∈{1,...,N}σi)max

(
M√
λ1

(
1√

2 − 2
√

λ1
+

1√
2 + 2

√
λ1

)
,√√√√ 5

λ2

(
1 + 1

2 ε2
√

λ2−2

1 +
√

λ2
+

9
1 −

√
λ1

) .

First note that ũ(0) = ∑k≥0 ũk(0), and the latter series converges, in
view of bound (3.247) and the fact that ∑k≥0 ∥gk∥L2(D(0,ϵ)) < ∞.

We choose
α∗

i = ∑
k≥0

αi,k (3.375)

whose sum converges because of Eq. (3.374)

∑
k≥0

αi,k ≤ ∑
k≥0

C∥gk∥L2(D(0,ε)) (3.376)

≤ ∑
k≥0

Cεk∥P̃u∥L2(D(0,ε)) (3.377)

= C
1

1 − ε
∥P̃u∥L2(D(0,ε)). (3.378)
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We compute using Eq. (3.374)

∥(ũ(ρ, φ)− ũ(0))ρ−
√

λ1 −
M

∑
i=1

α∗
i ei(θ)∥L2(dφ)

=

∥∥∥∥ ∑
k≥0

(
(ũk(ρ, φ)− ũk(0))ρ−

√
λ1 −

M

∑
i=1

αi,kei(θ)

)∥∥∥∥
L2(dφ)

(3.379)

≤ ∑
k≥0

∥∥∥∥(ũk(ρ, φ)− ũk(0))ρ−
√

λ1 −
M

∑
i=1

αi,kei(θ)

∥∥∥∥
L2(dφ)

(3.380)

≤ ∑
k≥0

ρδ · Dk (3.381)

≤ ∑
k≥0

ρδ · C∥gk∥L2(D(0,ε)) (3.382)

≤ ∑
k≥0

ρδ · Cεk∥P̃u∥L2(D(0,ε)) (3.383)

= ρδ · C
1

1 − ε
∥P̃u∥L2(D(0,ε)) (3.384)

= ρδ · D∗ (3.385)

in which D∗ = C 1
1−ε∥P̃u∥L2(D(0,ε)). Thus, for ε fixed, the Neumann series

for ũ divided by ρ
√

λ1 and measured in L2(dφ) converges as ρ → 0+.

3.3 numerical results for general overlapping regions

We consider general overlapping regions of constant conductivity. Fig-
ures 3.4 and 3.5 show the conductivity σin for the problem and potential
u computed using our solver for several test cases. Figure 3.6 shows the
automatically selected adaptive grid (black dots are the quadrature nodes,
red lines are the panel boundaries, black curves are interfaces) for a test
case.

3.3.1 Data Structure for Conductivities

In the case of non-overlapping regions of constant conductivity, we used a
tree structure for the regions of constant conductivity, where each region i
of conductivity σi had a unique parent region pi of conductivity σpi . Now,
in the overlapping region case, every grid point on an interface has a
corresponding inner conductivity σin and outer conductivity σout.

We give every curve a positive counterclockwise orientation. For each
interface ∂Ωi, we compute σout,background which is defined to be the con-
tribution to σout from any interface that does not intersect our chosen
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Figure 3.4: Conductivity σ for the problem (left) and potential u computed using
our solver (right) for different test cases. The Neumann boundary
data is g(θ) = sin(θ).
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Figure 3.5: Conductivity σ for the problem (left) and potential u computed using
our solver (right) for different test cases. The Neumann boundary
data is g(θ) = sin(θ).
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Figure 3.6: The automatically selected adaptive grid refinement (black dots are
the quadrature nodes, red lines are the panel boundaries, black curves
are interfaces) for a test case.
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interface ∂Ωi. To compute σout,background, we look only at those interfaces
that do not intersect ∂Ωi and compute the winding number of those in-
terfaces around an initial point on ∂Ωi. Only the regions whose interface
has winding number 1 (and hence entirely contain ∂Ωi) contribute to
σout,background.

If ∂Ωi has no intersections with any other interface then we take
σout = σout,background and use a uniform grid. If ∂Ωi does intersect other
interfaces, then we find the points of intersection and split ∂Ωi into panels
at each point of intersection and use a dyadic grid between each successive
intersection. On each such panel, σout will be constant. To find the value
of σout on a panel we look ahead along the interface ∂Ωi to find the first
intersection with each other intersecting interface. At each such intersec-
tion point, to determine whether we have entered or exited a region, we
compute the dot product between the tangent vector of the curve that we
are on and the outward normal vector corresponding to the curve that we
have intersected. If this dot product is negative then we have entered the
region — else we have exited the region. On a panel, σout is then equal to
σout,background plus the contributions from the intersecting regions that the
panel is inside.

At every grid point, the value of σin is equal to σout plus the contribution
to the conductivity corresponding to the region whose boundary we are
on. We will discuss how to find the points of intersection in Section 3.3.2.

3.3.2 Locating Intersection Points for General Interfaces

We need to develop an efficient method for computing intersection points
for general interfaces, i.e., for general curves x⃗1, x⃗2 parameterized by q1, q2

we need to find all points such that x⃗1(q1) = x⃗2(q2).
To find all such points, we place a fine square mesh over our domain. We

select each small square whose boundary intersects x⃗1 and x⃗2 in alternating
order. For each selected small square, we use one of the intersection points
between x⃗1 and the boundary of the small square as the initial guess and
use Newton’s method or MATLAB’s fsolve to find the precise intersection
point. Finally, we compile a list of all intersection points and remove any
duplicates.



4
C O N C L U S I O N S

A novel integral equation based method is presented to solve the elliptic
partial differential equation problem for the electrostatic potential with
piecewise constant conductivity and Neumann boundary conditions in
dimension two. A system of well-conditioned integral equations for the
charge densities is derived and used to solve the problem. This indirect
method is comparatively simple owing to the smoothness of the kernel of
the resulting integral operator.

We develop an atypical combination of approaches to address the close
evaluation problem of evaluating single layer potentials at a point near
a boundary. When the evaluation point is not near or on a single layer,
we evaluate the single layer potentials using the same quadrature as used
to solve the integral equations. When the evaluation point is near or
on a single layer, we approximate the curve with line segments near the
evaluation point and employ an analytic expression for the single layer
potential on a line segment.

Additionally, we describe how the non-uniqueness of the Neumann
electrical conductivity problem can be resolved by selecting the solution
where the single layers have no net charge. We impose this condition by
adjusting the kernel in the integral equations. This has the benefit that it
does not change the dimensionality of the system to be solved and differs
from the usual approach of adjoining additional conditions or rows to the
system.

Our method of solving the elliptic partial differential equation problem
is shown to be fast and efficient for several test cases. Our method is
also shown to easily handle problems of significant complexity involving
possibly hundreds of different regions of constant conductivity. This is
enabled by efficient quadratures for smooth kernels, adaptively refining
the quadrature grids, and utilizing the fast multipole method to speed up
the calculation of distant quadrature nodes.

Our numerical method is supported by a robust analytical foundation.
We provide theoretical results for our system of integral equations. We
establish existence and uniqueness to this system of equations and we
derive regularity for the charge densities along each interface. We show
that assuming the interface has Ck regularity and the injected current

105
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on the outer boundary lies in L2, then the charge density on any inner
interface is of regularity Hk. This is a novel analytical result.

Furthermore, we generalize our results by considering the case in which
the piecewise constant regions of conductivity overlap. We study the
behaviour of the solution to leading order at points of intersection between
two transversely intersecting interfaces of regions of piecewise constant
conductivity. This vastly increases the space of domains we can study. In
particular, interfaces can be piecewise Ck with corners.

When regions overlap, the integrands are no longer smooth and instead
contain weak singularities at the points of intersection between the in-
terfaces. Using a dyadic grid, our adaptive quadrature grid refinement
results in robust solutions to this situation. Further improvements could
be made if we understood the asymptotics of the integrands by selecting
a grid specifically chosen to account for the precise asymptotics of the
change densities. Nevertheless, we successfully solve several test cases in
a fast and efficient manner.

The numerical work on overlapping regions is also supported by an-
alytic work on the elliptic partial differential equation problem for the
electrostatic potential with overlapping regions of piecewise constant
conductivity. We show that the electrostatic potential near a point of
intersection between general intersecting curves and intersecting half-lines
are identical to leading order. This is done in two steps. Firstly, a change of
coordinates is performed that will convert the general intersecting curves
to straight half-lines. Secondly, the electrostatic potential is solved for on
this modified domain. We derive analytic bounds in L2 on the asymptotic
behaviour of the electrostatic potential near points of intersection.

Immediate work will commence to find analytic results to investigate
the extent to which the piecewise constant conductivity case is a good
approximation for the smooth conductivity case. Promising numerical
work presented in this thesis suggests that smooth conductivities can be
well approximated by piecewise constant conductivities and we would like
to derive more formal results on this topic. We will also work on finding
the effect of the angle of intersection on the order of convergence for
the charge densities at points of intersection between general intersecting
curves.

Future work could explore using the presented method to develop an
inverse solver to solve the inverse conductivity problem. In the inverse
conductivity problem, one seeks to reconstruct the unknown conductivity
inside a body on whose boundary current and voltage measurements are
made. A common technique for solving the inverse conductivity problem
is to iteratively solve for the hypothesized conductivity. This process
begins by making measurements of the voltage on the boundary of the



conclusions 107

body for specified injections of current and then making an initial guess
for the conductivities. The forward solver is run with this initial guess for
the conductivities and the specified injections of current and the resulting
voltages are recorded. The guess for the conductivities is then updated
to minimize an objective function involving the differences between the
measurements voltages and the numerically computed voltages from the
forward solver. This process is repeated (requiring many forward solves)
until the value of the objective function is sufficiently small. A good
reconstruction of the unknown conductivity given a finite set of boundary
measurements has several real-world applications including in the fields
of medical imaging, geological imaging, and industrial processes imaging.

Another application of our method could be in solving fluid flow
through porous media in fluid mechanics. This problem models the
flow of fluids like water through porous media such as sponges, wood,
and sand filters. The effective fluid permeability of the media would be
analogous to the conductivity in the electrical conductivity problem. The
pressure drop across the medium leads to a flow rate and is likewise anal-
ogous to the voltage leading to the current in the electrical conductivity
problem. In porous media the regions are more likely than not to contain
overlapping regions of effective fluid permeability.

Additional future work is to adapt the method to solve the three di-
mensional version of the problem. In the three dimensional problem, the
resulting integral operator kernel is no longer smooth and the integral
equations are more singular. The three dimensional problem would nat-
urally be of significant importance for the medical imaging technique of
electrical impedance tomography and other real-world applications.
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A
A S Y M P T O T I C B E H AV I O U R
O F H A R M O N I C F U N C T I O N S
D E F I N E D O N C O N E S

We wish to study the asymptotic behaviours of harmonic functions defined
on cones of angle 2πn for some n ∈ (0, 1]. The metric on the cone is
g = dr2 + r2dϕ2. We seek a solution to the PDE

∂2
r u +

1
r

∂ru +
1
r2 ∂2

ϕu = 0. (A.1)

defined on the cone.

Lemma A.1. There exists an H1 solution to Eq. (A.1) of the form

u(r, ϕ) = C0 A0 +
∞

∑
k=1

Ckr
k
n

(
Ak cos

(
k
n

ϕ

)
+ Bk sin

(
k
n

ϕ

))
. (A.2)

for some constants {Ak}k≥0, {Bk}k≥1, {Ck}k≥0.

Proof. We use separation of variables to find a solution. Substitute u(r, ϕ) =

f (r)ℓ(ϕ) into the PDE Eq. (A.1) to obtain

f ′′(r)ℓ(ϕ) +
1
r

f ′(r)ℓ(ϕ) +
1
r2 f (r)ℓ′′(ϕ) = 0. (A.3)

Dividing by 1
r2 f (r)ℓ(ϕ) yields

r2 f ′′(r)
f (r)

+
r f ′(r)
f (r)

+
ℓ′′(ϕ)

ℓ(ϕ)
= 0. (A.4)

Thus, there exists a constant λ such that

r2 f ′′(r)
f (r)

+
r f ′(r)
f (r)

= − ℓ′′(ϕ)

ℓ(ϕ)
= λ. (A.5)
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Figure A.1: The domain bounded by two half lines at a right angle.

We obtain two ODEs

r2 f ′′(r) + r f ′(r)− λ f (r) = 0, (A.6)

ℓ′′(ϕ) + λℓ(ϕ) = 0. (A.7)

For Eq. (A.7), we seek solutions that are 2πn-periodic, i.e.,

ℓ(ϕ) = ℓ(ϕ + 2πn), for λ =
k2

n2 , k = 0, 1, 2 . . . . (A.8)

We obtain a sequence of solutions of the form

ℓk(ϕ) = Ak cos
(

k
n

ϕ

)
+ Bk sin

(
k
n

ϕ

)
, k = 0, 1, 2, . . . (A.9)

for some arbitrary constants Ak’s and Bk’s. Substituting λ = k2

n2 into the
ODE for r Eq. (A.6) we get an Euler equation

r2 f ′′(r) + r f ′(r)− k2

n2 f (r) = 0, k = 0, 1, 2, . . . . (A.10)
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We seek solutions of the form: f (r) = rα. Subbing this into the Euler
equation Eq. (A.10) yields the equation

α2 − k2

n2 = 0, k = 0, 1, 2, . . . . (A.11)

Hence α = ± k
n for k = 0, 1, 2, . . . and we get a sequence of solutions

fk(r) = Ckr
k
n + Dkr−

k
n , k = 1, 2, 3, . . . (A.12)

f0(r) = C0 + D0 ln r, k = 0 (A.13)

for some arbitrary constants Ck’s and Dk’s. Since we require our function
to have finite H1-norm as r → 0, we require that Dk = 0 for all k ≥ 0. Our
solution is then

u(r, ϕ) = C0 A0 +
∞

∑
k=1

Ckr
k
n

(
Ak cos

(
k
n

ϕ

)
+ Bk sin

(
k
n

ϕ

))
. (A.14)

We note that to leading order the solution Eq. (A.14) is

u(r, ϕ) = c0 + c1r
1
n cos

(
1
n

ϕ

)
+ c2r

1
n sin

(
1
n

ϕ

)
+O(r

2
n ) (A.15)

for some constants c0, c1, c2.
We consider the case of Fig. A.1 and define a new metric g′ = σ(d2

x + d2
y),

i.e., the conductivity multiplied by the Euclidean metric where the cone
angle is the ratio between the circumferences of the circle Cr=ρ with respect
to g′ and with respect to ρ. In the case of Fig. A.1 where the lines intersect
at right angles, this ratio is equal to 2π ∑4

i=1 σi.
For Fig. A.1 the solution on each sector is like (proof similar to that of

the removable singularity theorem)

u(r, ϕ) = arα cos(αϕ) + brα sin(αϕ) (A.16)

= λrα cos(αϕ + θ). (A.17)

We impose the interface matching conditions (continuity of potential and
current), u− = u+ and σ−∂nu− = σ+∂nu+, to find a particular combination
of parameters that works.

Across the positive y-axis, u1 = u2 implies

λ1rα1 cos(α1
π

2
+ θ1) = λ2rα2 cos(α2

π

2
+ θ2). (A.18)
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Since this must be true for all positive r we get that α1 = α2.
Across the positive y-axis, the condition that σ−∂nu− = σ+∂nu+ implies

that
σ1

1
r

∂ϕu1 = −σ2
1
r

∂ϕu2, (A.19)

i.e.,

−σ1λ1rα1−1 sin(α1
π

2
+ θ1) = −σ2λ2rα2−1 sin(α2

π

2
+ θ2) (A.20)

Multiplying by r we get

λ1rα1

λ2rα2
=

cos(α2
π
2 + θ2)

cos(α1
π
2 + θ1)

(A.21)

=
σ2 sin(α2

π
2 + θ2)

σ1 sin(α2
π
2 + θ1)

(A.22)
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Considering the matching conditions across the other interfaces, we get

α1 = α2 = α3 = α4 := α (A.23)

and the equations

λ1

λ2
=

cos(α π
2 + θ2)

cos(α π
2 + θ1)

(A.24)

=
σ2 sin(α π

2 + θ2)

σ1 sin(α π
2 + θ1)

(A.25)

λ2

λ3
=

cos(απ + θ3)

cos(απ + θ2)
(A.26)

=
σ3 sin(απ + θ3)

σ2 sin(απ + θ2)
(A.27)

λ3

λ4
=

cos(α 3π
2 + θ4)

cos(α 3π
2 + θ3)

(A.28)

=
σ4 sin(α 3π

2 + θ4)

σ3 sin(α 3π
2 + θ3)

(A.29)

λ4

λ1
=

cos(θ1)

cos(α2π + θ4)
(A.30)

=
σ1 sin(θ1)

σ4 sin(α2π + θ4)
(A.31)

Without loss of generality, we choose λ1 = 1 leading to a system of 8

equations for the 8 unknowns (λ2, λ3, λ4, θ1, θ2, θ3, θ4, α).
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Using the sum and difference trig identities we can rewrite the system
Eqs. (A.24) to (A.31):

λ1

λ2
=

cos(α π
2 ) cos(θ2)− sin(α π

2 ) sin(θ2)

cos(α π
2 ) cos(θ1)− sin(α π

2 ) sin(θ1)
(A.32)

=
σ2

σ1

sin(α π
2 ) cos(θ2) + cos(α π

2 ) sin(θ2)

sin(α π
2 ) cos(θ1) + cos(α π

2 ) sin(θ1)
(A.33)

λ2

λ3
=

cos(απ) cos(θ3)− sin(απ) sin(θ3)

cos(απ) cos(θ2)− sin(απ) sin(θ2)
(A.34)

=
σ3

σ2

sin(απ) cos(θ3) + cos(απ) sin(θ3)

sin(απ) cos(θ2) + cos(απ) sin(θ2)
(A.35)

λ3

λ4
=

cos(α 3π
2 ) cos(θ4)− sin(α 3π

2 ) sin(θ4)

cos(α 3π
2 ) cos(θ3)− sin(α 3π

2 ) sin(θ3)
(A.36)

=
σ4

σ3

sin(α 3π
2 ) cos(θ4) + cos(α 3π

2 ) sin(θ4)

sin(α 3π
2 ) cos(θ3) + cos(α 3π

2 ) sin(θ3)
(A.37)

λ4

λ1
=

cos(θ1)

cos(α2π) cos(θ4)− sin(α2π) sin(θ4)
(A.38)

=
σ1

σ4

sin(θ1)

sin(α2π) cos(θ4) + cos(α2π) sin(θ4)
(A.39)

Lemma A.2. There exists a solution to system Eq. (A.32)–Eq. (A.39) with
α ∈ [0, 1].

Proof. First, we will show that for any solution with α = α∗, we also have
a solution with α = α∗ + 2.

Assume there is a solution to system Eq. (A.32)–Eq. (A.39) with some
α = α∗. Then, taking α = α∗ + 2 and the same θi’s and using the properties
that sin(x + π) = − sin(x) and cos(x + π) = − cos(x), we have

cos((α∗ + 2)π
2 ) cos(θ2)− sin((α∗ + 2)π

2 ) sin(θ2)

cos((α∗ + 2)π
2 ) cos(θ1)− sin((α∗ + 2)π

2 ) sin(θ1)

=
cos(α∗ π

2 + π) cos(θ2)− sin(α∗ π
2 + π) sin(θ2)

cos(α∗ π
2 + π) cos(θ1)− sin(α∗ π

2 + π) sin(θ1)
(A.40)

=
cos(α∗ π

2 ) cos(θ2)− sin(α∗ π
2 ) sin(θ2)

cos(α∗ π
2 ) cos(θ1)− sin(α∗ π

2 ) sin(θ1)
(A.41)

=
λ1

λ2
(A.42)
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Similarly, for α = α∗ + 2 and the same θi’s, the other equations in system
Eq. (A.32)–Eq. (A.39) are also satisfied.

Second, we will show that for any solution with α = α∗, we have a
solution with α = −α∗.

Assume there is a solution to system Eq. (A.32)–Eq. (A.39) with some
α = α∗ and θ∗i ’s. Then, taking α = −α∗ and θi = −θ∗i and using the
properties that sin(x) is odd and cos(x) is even, we have

cos(−α∗ π
2 ) cos(−θ∗2 )− sin(−α∗ π

2 ) sin(−θ∗2 )

cos(−α∗ π
2 ) cos(−θ∗1 )− sin(−α∗ π

2 ) sin(−θ∗1 )

=
cos(α∗ π

2 ) cos(θ∗2 )− sin(α∗ π
2 ) sin(θ∗2 )

cos(α∗ π
2 ) cos(θ∗1 )− sin(α∗ π

2 ) sin(θ∗1 )
(A.43)

=
λ1

λ2
(A.44)

Similarly, for α = −α∗ and the same θi’s, the other equations in system
Eq. (A.32)–Eq. (A.39) are also satisfied.

Hence, there is a solution to system Eq. (A.32)–Eq. (A.39) with α ∈
[0, 1].



B
S O LV I N G A S A
C O N T R A C T I O N M A P P I N G

b.0.1 Condition for Contraction Mapping.

We state a useful condition for a linear map T : L2(S1) → L2(S1) to yield a
contraction mapping.

Consider the map T defined by a kernel function K(x, y) :

T[ f ](x) =
∫

S1
K(x, y) f (y)dy. (B.1)

Then:

Lemma B.1. If
∫

S1

∫
S1 |K(x, y)|2dxdy = δ < 1 the operator T is a contraction

mapping, meaning that:

∥T[ f ]∥L2(S1) ≤ δ∥ f ∥L2(S1). (B.2)

Proof. Note that:

∥T[ f ]∥L2(S1) =
∫

S1

[∫
S1

K(x, y) f (y)dy
]2

dx ≤
∫

S1

∫
S1
[K(x, y)]2dy ·

∫
S1
[ f (y)]2dydx

≤
[∫

S1
[ f (y)]2dy

]
·
∫

S1

∫
S1
[K(x, y)]2dydx

(B.3)

Thus a sufficient condition to get a contraction mapping is precisely that:∫
S1

∫
S1
[K(x, y)]2dydx < 1 (B.4)

b.0.2 A Boundary Integral Formulation

We describe a boundary integral formulation for two concentric circular
regions of constant conductivity. The domain for this inverse conductivity
problem is shown in Fig. B.1.
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−2 −1 0 1 2

−2

−1

0

1

2

E2E1

Figure B.1: Domain for inverse conductivity problem with two concentric circular
regions of constant conductivity, Ωi = ∪i

j=1Ej for i = 1, 2.

Consider the problem

∆u = 0 on Ω2 \ ∂Ω1 (B.5)

σ2∂νu = g(θ) on ∂Ω2 (B.6)

u− = u+ on ∂Ω1 (B.7)

σ1∂ν−u = σ2∂ν+u on ∂Ω1 (B.8)

We choose to represent the solution as the sum of two single layer poten-
tials

u(x) = S∂Ω1 [γ1](x) + S∂Ω2 [γ2](x). (B.9)

The single layer potential is defined as

SΓ[γ](x) =
∫

Γ
G(x, y)γ(y)dsy, (B.10)

with the two-dimensional free space Green’s function

G(x, y) =
1

2π
log |x − y|. (B.11)

The single layer potential is harmonic off of Γ, continuous across Γ, and has
a known jump in normal derivative across Γ. To describe what happens
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to the normal derivative on Γ, we need to define the Neumann-Poincaré
operator

K∗
Γ[γ](x) :=

1
2π

∫
Γ

(x − y) · n(x)
|x − y|2 γ(y) dsy, x ∈ Γ. (B.12)

A standard result from potential theory is that

∂ν±SΓ[γ](y) = K∗
Γ[γ](y)±

1
2

γ(y), (B.13)

which we can use to obtain equations for γ1 and γ2 by enforcing the
boundary conditions.

We parameterize the two boundary curves as ∂Ωi : x = (Ri cos(θi), Ri sin(θi))
T

for i = 1, 2.
The Neumann boundary condition with x ∈ ∂Ω2 gives

σ2

[
−1

2
γ2(θ) +K∗

∂Ω2
[γ2] (x) +

∂

∂n
S∂Ω1 [γ1] (x)

]
= g(θ), (B.14)

and the jump interface condition for x ∈ ∂Ω1 gives

σ1

[
−1

2
γ1(θ) +K∗

∂Ω1
[γ1] (x) +

∂

∂n
S∂Ω2 [γ2] (x)

]
(B.15)

=σ2

[
+

1
2

γ1(θ) +K∗
∂Ω1

[γ1] (x) +
∂

∂n
S∂Ω2 [γ2] (x)

]
.

The kernel of the Neumann-Poincaré operator is constant on a circle:

K∗
Γ[γ](θ)

=
1

2π

∫ 2π

0

((R cos(θ), R sin(θ))T − (R cos(θ′), R sin(θ′))T) · (cos(θ), sin(θ))T

|((R cos(θ), R sin(θ))T − (R cos(θ′), R sin(θ′))T)|2 γ(θ′) Rdθ′

(B.16)

=
R

2π

∫ 2π

0

R − R cos(θ − θ′)

2R2 − 2R2 cos(θ − θ′)
γ(θ′)dθ′ (B.17)

=
1

4π

∫ 2π

0
γ(θ′)dθ′. (B.18)
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We compute the normal derivative of the single layer potentials. The
normal derivative points in the radial direction. For x ∈ ∂Ωi : x =

(Ri cos(θi), Ri sin(θi))
T,

∂

∂ni
S∂Ωj

[
γj
]
(x) =

∂

∂ni

∫
∂Ωj

1
2π

log |x − y|γj(y)dSy (B.19)

=
∂

∂ni

∫ 2π

0

1
2π

log
∣∣∣(Ri cos(θi), Ri sin(θi))

T

−
(

Rj cos(θj), Rj sin(θj)
)T
∣∣∣ γj

(
θj
)

Rjdθj (B.20)

=
∂

∂ni

∫ 2π

0

1
2π

log
∣∣(Ri cos(θi)− Rj cos(θj),

Ri sin(θi)− Rj sin(θj)
)T
∣∣∣ γj

(
θj
)

Rjdθj (B.21)

=
∂

∂ni

∫ 2π

0

1
2π

log
((

Ri cos(θi)− Rj cos(θj)
)2

+
(

Ri sin(θi)− Rj sin(θj)
)2
)1/2

γj
(
θj
)

Rjdθj (B.22)

=
∂

∂ni

∫ 2π

0

1
4π

log
((

Ri cos(θi)− Rj cos(θj)
)2

+
(

Ri sin(θi)− Rj sin(θj)
)2
)

γj
(
θj
)

Rjdθj (B.23)

=
∫ 2π

0

∂

∂Ri

1
4π

log
(

R2
i + R2

j − 2RiRj cos(θi − θj)
)

γj
(
θj
)

Rjdθj

(B.24)

=
∫ 2π

0

Rj

2π

Ri − Rj cos
(
θi − θj

)
R2

i + R2
j − 2RiRj cos

(
θi − θj

)γj(θj)dθj (B.25)

=
∫ 2π

0
Ki,j(θi − θj)γj(θj)dθj (B.26)

where

Ki,j(θ) =
Rj

2π

Ri − Rj cos (θ)
R2

i + R2
j − 2RiRj cos (θ)

. (B.27)

Let

Ci :=
∫ 2π

0
γi(θ)dθ, i = 1, 2. (B.28)
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The two linear integral equations for γ1 and γ2 become

−σ2

2
γ2(θ) +

σ2

4π
C2 + σ2

∫ 2π

0
K1,2(θ − θ′)γ1(θ

′)dθ′ = g(θ)

(B.29)

σ1 + σ2

2
γ1(θ) +

σ2 − σ1

4π
C1 + (σ2 − σ1)

∫ 2π

0
K2,1(θ − θ′)γ2(θ

′)dθ′ = 0.

(B.30)

Integrate Eq. (B.29) and Eq. (B.30) in θ from 0 to 2π to obtain

R2

R1
C1 =

∫ 2π

0
g(θ) dθ (B.31)

σ2C1 = 0. (B.32)

We get that C1 = 0. Since our solution is only defined up to an additive
constant, we can take C2 = 0. Thus, there is no net charge density around
each boundary.

Solving for γ1 in the second equation we get

γ1(θ) =
2(σ1 − σ2)

σ1 + σ2

∫ 2π

0
K2,1(θ − θ′)γ2(θ

′)dθ′. (B.33)

Substituting this result into the first equation we get

g(θ) = −σ2

2
γ2(θ) + σ2

∫ 2π

0
K1,2(θ − θ′)

[
2(σ1 − σ2)

σ1 + σ2

∫ 2π

0
K2,1(θ

′ − θ′′)γ2(θ
′′)dθ′′

]
dθ′

(B.34)

= −σ2

2
γ2(θ) +

2σ2(σ1 − σ2)

σ1 + σ2

∫ 2π

0

∫ 2π

0
K1,2(θ − θ′)K2,1(θ

′ − θ′′)γ2(θ
′′)dθ′′dθ′.

(B.35)

Multiplying by −2/σ2 we get:

− 2
σ2

g(θ) = γ2(θ)−
4(σ1 − σ2)

σ1 + σ2

∫ 2π

0

∫ 2π

0
K1,2(θ − θ′)K2,1(θ

′ − θ′′)γ2(θ
′′)dθ′′dθ′

(B.36)

= (I − T)[γ2](θ) (B.37)
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where

T[γ2](θ)

=
4(σ1 − σ2)

σ1 + σ2

∫ 2π

0

∫ 2π

0
K1,2(θ − θ′)K2,1(θ

′ − θ′′)γ2(θ
′′)dθ′′dθ′ (B.38)

=
4(σ1 − σ2)

σ1 + σ2

∫ 2π

0

∫ 2π

0

(
R2

2π

R1 − R2 cos (θ − θ′)

R2
1 + R2

2 − 2R1R2 cos (θ − θ′)

R1

2π

R2 − R1 cos (θ′ − θ′′)

R2
1 + R2

2 − 2R1R2 cos (θ′ − θ′′)
γ2(θ

′′)

)
dθ′′dθ′

(B.39)

=
r

π2
(σ1 − σ2)

σ1 + σ2

∫ 2π

0

∫ 2π

0

r − cos(θ − θ′)

r2 + 1 − 2r cos(θ − θ′)

1 − r cos(θ′ − θ′′)

r2 + 1 − 2r cos(θ′ − θ′′)
dθ′γ2(θ

′′)dθ′′

(B.40)

in which r = R1/R2.
By switching the order of integration and explicitly evaluating the

integrals, we find that

T[γ2](θ) =
∫ 2π

0

(
1

2π
+ a2σ1r +

b2σ1

π

r2

1 + r
r2 − cos(θ − θ′)

1 + r4 − 2r2 cos(θ − θ′)

)
γ2(θ

′)dθ′,

(B.41)
in which r = R2/R.

By Eq. (B.4), in order to show that T is a contraction mapping, it suffices
to show that∫ 2π

0

∫ 2π

0

(
1

2π
+ a2σ1r +

b2σ1

π

r2

1 + r
r2 − cos(θ − θ′)

1 + r4 − 2r2 cos(θ − θ′)

)2

dθ′dθ < 1.

(B.42)

b.0.3 Inverting an Integral Equation

Interior Dirichlet Problem. Find a function u that is harmonic in D, is
continuous in D̄, and satisfies the boundary condition

u = f on ∂D

where f is a given continuous function.
Let K : C(∂D) → C(∂D) be the integral operators given by

(Kφ)(x) := 2
∫

∂D
φ(y)

∂Φ(x, y)
∂v(y)

ds(y), x ∈ ∂D (B.43)
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where Φ(x, y) = 1
2π ln 1

|x−y| is the fundamental solution to Laplace’s equa-
tion.

Neumann [Neu77] gave the first rigorous proof for the existence of a
solution to the two-dimensional interior Dirichlet problem in a strictly
convex domain of class C2. By completely elementary means he established
that the successive approximations

φn+1 :=
1
2

φn +
1
2

Kφn − f , n = 0, 1, 2, . . .

with arbitrary φ0 ∈ C(∂D) converge uniformly to the unique solution φ

of the integral equation φ − Kφ = −2 f . In functional analytic terms his
proof amounted to showing that the operator L given by L := 1

2 (I + K) is
a contraction with respect to the norm

∥φ∥ :=

∣∣∣∣∣sup
z∈∂D

φ(z)− inf
z∈∂D

φ(z)

∣∣∣∣∣+ α sup
z∈∂D

|φ(z)| (B.44)

where α > 0 is appropriately chosen. This norm is equivalent to the
maximum norm.

If our kernel K does not lead to a contraction mapping then we can
consider another kernel K̃

K̃(θ, θ′) = K(θ, θ′)−
∫ 2π

0 K(θ, θ′′) dθ′′

2π
(B.45)

This is because we require
∫ 2π

0 γ1(θ) dθ = 0 and

T̃[γ1](θ) =
∫ 2π

0
K(θ, θ′)γ1(θ

′) dθ′ (B.46)

=
∫ 2π

0
K(θ, θ′)

[
γ1(θ

′)−
∫ 2π

0 γ1(θ
′′) dθ′′

2π

]
dθ′ (B.47)

=
∫ 2π

0

[
K(θ, θ′)−

∫ 2π
0 K(θ, θ′′) dθ′′

2π

]
γ1(θ

′)dθ′ (B.48)

=
∫ 2π

0
K̃(θ, θ′)γ1(θ

′) dθ′. (B.49)



solving as a contraction mapping 133

Then

T̃[γ1](θ) =
∫ 2π

0

b2σ1

2π(1 + r)

(
2r2 r2 − cos(θ − θ′)

1 + r4 − 2r2 cos(θ − θ′)
− 1
)

γ1(θ
′)dθ′

(B.50)

=
∫ 2π

0

b2σ1

2π(1 + r)

(
r4 − 1

1 + r4 − 2r2 cos(θ − θ′)

)
γ1(θ

′)dθ′ (B.51)

=
∫ 2π

0

b2σ1

2π

(
(r − 1)(r2 + 1)

1 + r4 − 2r2 cos(θ − θ′)

)
γ1(θ

′)dθ′ (B.52)

To show that K̃ yields a contraction mapping it suffices to show that

∫ 2π

0

∫ 2π

0

[
b2σ1

2π

(
(r − 1)(r2 + 1)

1 + r4 − 2r2 cos(θ − θ′)

)]2

dθ′dθ < 1 (B.53)

We compute the double integral in (B.53) numerically in MATLAB
and plot the results in Fig. B.2 along with the largest (in absolute value)
eigenvalue of the kernel

K̃(θ, θ′) =
b2σ1

2π

(
(r − 1)(r2 + 1)

1 + r4 − 2r2 cos(θ − θ′)

)
. (B.54)

Figure B.2: On the left, integral computed numerically for different radii R2 and
conductivities σ2 of the small disk where the large disk has radius
R = 1 and conductivity σ1 = 1. On the right, the largest (in absolute
value) eigenvalue of the kernel.
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The integral in (B.53) can be expressed as an integral of one variable
because the function depends on the difference (θ − θ′) and is 2π-periodic.
So once you find the inner integral in dθ′, you get a constant. And the
next integral in dθ just yields a factor 2π.

Mathematica computes the inner integral explicitly with:

Integrate[((r-1)*(r^2+1)/(1+r^4-2*r^2*Cos[theta]))^2,{theta

↪→ ,0,2*Pi},Assumptions->0<r&&r<1]

to give:

2π(1 + r4)/(1 − r)/(1 + r)3/(1 + r2). (B.55)

The double integral of the square of the adjusted kernel then becomes

4σ2
1 (σ1 − σ2)

2/(σ1 + σ2)
2(1 + r4)/(1 − r)/(1 + r)3/(1 + r2) (B.56)

Figure B.3: Integral computed numerically for different radii R2 and conductivi-
ties σ2 of the small disk where the large disk has radius R = 1 and
conductivity σ1 = 1.

We plot this integral with σ1 = 1, R = 1 (so that r = R2) for different
values of σ2 and R2 in Fig. B.3. In the blue region of the plot, the integral
is less than 1 which is a sufficient condition for a contraction mapping.
Thus, we can invert the integral equation

(I − T)[γ1](θ) = −2g(θ) (B.57)
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by considering the series

[γ1](θ) = (I − T)−1[−2g(θ)] (B.58)

= [I + T + T2 + . . . ][−2g(θ)]. (B.59)

We can truncate the series after the Nth term to approximate γ1

[γ1](θ) ≈ [I + T + T2 + · · ·+ TN ][−2g(θ)]. (B.60)

We want to find an explicit expression for the error for this approxi-
mation. This will require us to find an explicit formula for TN [g](θ). We
compute the following:

T[g](θ) =
∫ 2π

0

b2σ1

2π

(
(r − 1)(r2 + 1)

1 + r4 − 2r2 cos(θ − θ′)

)
g(θ′)dθ′ (B.61)

T2[g](θ)

=
∫ 2π

0

b2σ1

2π

(
(r − 1)(r2 + 1)

1 + r4 − 2r2 cos(θ − θ′)

)
T[g](θ′)dθ′ (B.62)

=

(
b2σ1

2π

)2 ∫ 2π

0

∫ 2π

0

(
(r − 1)(r2 + 1)

1 + r4 − 2r2 cos(θ − θ′)

)
·
(

(r − 1)(r2 + 1)
1 + r4 − 2r2 cos(θ′ − θ′′)

)
g(θ′′)dθ′dθ′′ (B.63)

We can define TN [g](θ) recursively

TN [g](θ) =
∫ 2π

0

b2σ1

2π

(
(r − 1)(r2 + 1)

1 + r4 − 2r2 cos(θ − θ′)

)
TN−1[g](θ′)dθ′. (B.64)
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