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Abstract

In this thesis we delve into the computation of the Gassner invariant for string links, which are a more
generalized form than braids, utilizing a (co)homological approach. We restrict this (co)homology invariant,

denoted as Gy, to pure braids, leading to the derivation Gassner representation.

We introduce the concept of "flying cars,” which assigns an invariant C(L) to an (n + 1)-component
string link L. This invariant, an #n x n matrix, has entries in the field Q(tg, ty,...,t,). We establishes a
connection between the invariant C(L) and the homology Gassner invariant Gy, (L) of L through the formula
Gn(L) = (Dn -C(L)- D;l)//pcol//mT. Here, D, is a diagonal matrix, mT denotes matrix transpose, and
Pcol Tepresents column permutation. We prove that C(L) is indeed an invariant of string links under the

Reidemeister moves, thereby directly verifying the invariance of the homology Gassner invariant.

Moreover, we provide formulas for the intersection product y := (-, =) : H{(P; F) x Hi(P; F) = F,
which is defined on the cycles of the homology group H; (P;F). In this context, P is an (n + 1)-punctured
disk viewed as a subspace of the complement X of an n+ 1 string link, and F is a local coefficient system on
X determined by the abelianization map € : 71 (X, xg) — (to, 1, , ;). This map takes values in the free
abelian group (to, t1,:--,t,). We conclude by verify that the homology Gassner invariant is unitary with

respect to this intersection product.
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Chapter 1

Introduction

1.1 Background

The theory of braid groups is an interesting topic in topology that deals with braids, the groups formed
by their equivalence classes, and other related concepts. It is one of the many areas in mathematics that
weaves together the beauty of topology and the robustness of algebra. An n-braid is formed by intertwining
n strands (see Definition 2.7) whose endpoints are attached to two fixed planes, Py and P;. Each strand

never backtracks. Figure 1.1 shows some examples of braids. More formally, Artin defines the braid

- s
po AR

Figure 1.1: Examples of braids

group on # strands as the group generated by n — 1 generators oy,---, 0, satisfying the braid relations
oj0j = ojo; foralli,j = 1,2,...,n— 1 with |i - j| > 2, and 0;07,10; = 07,1070,y fori=1,2,...,n-2.
Figure 1.2 shows a geometric representation for the generator o;. The interest in braids stems from their
role in knot theory, such as the close relation of braids to knots and links, as detailed by Alexander’s
theorem and Markov’s theorem!, and in physics, such as their connection to the Yang-Baxter equation. In
particular, studying braids leads to various algebras and linear representations, which include the Burau

and the Gassner representations. For further reading on the braid group, refer to [BC74] and [KTO08].

! Alexander’s Theorem: Any link in R3 can be represented as the closure of a braid.
Markov’s Theorem: The closures of two braids are isotopic if and only if one can be obtained from the other by a sequence of moves
called the Markov moves



1.1. BACKGROUND 2

The Gassner representation is a homomorphism I' : PB,, — GL,(Z[Z"]) defined on the pure braid

1 2 i—1 i i+1 i+2 n 1 2 i—1 i+1 i+2n
1 2 i—1 4 i+l i+2n 1 2 i=1 i i+l i+2n
; -1
(a) Over-crossing o; (b) Under-crossing o;

Figure 1.2: Generators of a braid

(see Definition 2.8, Item 3) group PB,,, which is a subgroup of the braid group on #n strands. Pure braids
on 71 strands induce the identity permutation and they are generated by the set {A; j}1<j<j<,. Here A; ;
is the generator shown in Figure 1.3 and it can be expressed via the braid group generators as A;; =
01 (7]-_2---(7,-+1(fi2(7;r11 ---0]112(7]111. The Gassner representation has been the subject of study by many
authors, including [Knu04], [BC74], [Abd97], [KLW98] [BN14], [Mar20] and [Gas59], each employing
different approaches. The classical Gassner representation, as presented in [BC74] is constructed using

the Magnus representation and Fox free differential calculus as follows:

11 i+l j=1 0 g+l

Figure 1.3: The n-braid Ai,j withl <i<j<n.

Definition 1.1 (Fox free differential calculus). For each j =1,---,n, there is a map % :ZF, — ZF, given
j
by
k

d | e ¢ ¢ st J J
a_xj(xrll"'Xr’f):;eiéri’jxrlln‘x"iz , and a—x] ;agg :;aga—xjg, gEFn,(lgEZ;

where € = +1, ¢ is the Kronecker symbol, and Z[F, ] is the group ring (see Definition 2.3) of the free group

F,, generated by the set {x,---,x,}.

Let @ be an arbitrary homomorphism with domain the free group F,,, taking values in some free abelian
group of A of rank n and Ag be the group of automorphisms of F,, satisfying ®(x) = ®(a(x)) foreach x € F,,

and a € Ag.

Definition 1.2 ([BC74], Theorem 3.9). Let @ € Ag and [a]® be the 1 x 1 matrix

B d(a(x;))
lal” = [q)(a—xj)]i,f
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with entries in the group ring Z[.A]. Then the morphism Ap — M,,(Z[A]) defined by a > [a]? is a well

defined group homomorphism, and it a Magnus representation.

It is a well-known fact that the braid group B,, can be represented as a group of automorphisms of the
free group F,, (see [KT08], Theorem 1.31). Since PB,, is a subgroup of B,,, it can also be represented as a
subgroup of the automorphisms of F,,. Let Z,, be the free abelian group generated by the free basis t;,-- -, t,,,

and ¢ : F, — Z, be the homomorphism defined by x; - t;.

Definition 1.3 (The classical Gassner representation). The morphism PB,, — M,,(Z[Z,,]) assigning a pure

r-fiez),
L]

where [?E Ay is the automorphism corresponding to f3, is a Magnus representation (Artin representation)

braid § the matrix

called the Gassner representation of the pure braid group.

A formula for the Gassner representation for the generator A; ; is presented in [Knu04]:

Iiq 0 0 0 0
0 1_ti+titj 0 tl(l—tl) 0
[4:j1?=] 0 it Iiiy v 0 (1.1)
01— 0 f 0
0 0 0 0 I,

Here, I;_1,1; ;1 and I, ; are identity matrices and i and ¥ are column vectors

(1-tip)(1=1¢)) (I-tip)(ti = 1)

=
I
)
=
(oW
<!
I

(L=t 1)1 —t)) (L—tjq)(t—1)

Another approach discussed in [BN14] is as follows: Let t be a formal variable and let U;(t) = U,.;(¢)

denote the n x n identity matrix with its 2 x 2 block at rows i and i + 1 and column 7 and 7 + 1 replaced by
1-t¢
. Let Ul-_1 () be the inverse of U;(t); it is the nxn identity matrix with block at {7, i+1}x{i,i+1}
t 0

1 1-t% a=1
products are taken from the left to right. Let j, be the index of the over strand at a crossing numbered a

0 t _ k
replaced by [ ], where  denotes t~1. Let 8 be a braid g = [] aiS“, where s, are signs and where

k
in B. Define I : B, > M, (Z[tfl, ., t;;'l]) as the product of matrices I'(B) = ]_[1 Uisa”(tja). The map T
a=
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is not multiplicative, that is I'(8; - B2) = I'(B1)I'(B,) for braids f; and f, in general. However, it becomes
multiplicative when restricted to the pure braids. The restriction, I' : PB,, — M, (Z[tfl, t;l ot ]) of I

to PB,, is the Gassner representation.

The two constructions of the Gassner representation seen above are equivalent. Transposing the matrix
representation I'(A; ;) yields a matrix which is equivalent to [A; ;] for appropriate values of t,s. Although
braids are topological objects, it is clear that the constructions do not involve any topological property
of braids. Moreover, the classical definition involves complicated computations that result in matrices that
need a bit of rewriting to be useful. Homology and cohomology present a natural way to utilize the topology
of braids. The braid group B,, naturally acts on the (co)homology of topological spaces obtained from the
n punctured disk by functorial constructions. One such construction is presented in [KLW98] using more

general objects called string links as follows in the next two paragraphs.

2 1
0 1 2
Figure 1.4: A labeled string link.

0

A string link ? is a braid except that the strands are not required to be monotonic. Unlike braids, string
links do not form a group since they need not have inverses. Labeling the strands of an (1+1)-string link L
involves indexing the strands at the bottom from left to right, starting from 0 and going up to n. An indexed
string link is called a labeled string link. Let T = {0,1,---,n} denote the indexing set; T is called the set
of labels of L. An example of a labeled string link is shown in Figure 1.4. We denote the set of all string

links on 7 + 1 strands by SL,,. In this thesis, string links are not allowed to have circle components.

String links acts on the (co)homology of topological spaces obtained from the n + 1 punctured disk. Let
D? x [0,1] be the solid cylinder and let L be an # + 1 string link embedded in the cylinder as shown in
Figure 1.5a. The complement X = D? x [0,1] = L of L has two subspaces X, = X N (D? x {0}) and X; =
X N(D?x{1}); these are n+ 1 punctured disks, and they are canonically identified via the homeomorphism
(x,0) = (x,1). Let F = Q({tx};_,) be the field of fractions of Z[Z, ], where Z,, = (ty,---,t,) is the free
abelian group generated by the free basis {t;};_,. This field is a local coefficient system (see Section 2.3) on
X determined by the abelianization map € : 711 (X, xg) — (to, t1, -, t,,). Some references for local coefficient

system include [DK01] and [Hat02]. It turns out that the cohomology groups H'(X, 1 F), HY(Xy,q;F)

2 The term "string links" is typically used to refer to tangles that induce the identity permutation. However, in this thesis, we adopt
the convention set forth in [KLW98]; string links do not necessarily induce the identity permutation. A string link that induces the
identity permutation will be referred to as a "pure string link."
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O
%g —'[-

X
(a) A string link in D2 x 0
[0,1]. (b) I; = {xo} x[0,1]

Figure 1.5: String links in D2 x [0,1].

and H'(Xy,q; F) are pair-wise isomorphic (see Lemma 3.3) as vector spaces over the field 7, where g = x

is a fixed basepoint on the boundary of X and I, = {x(}x[0, 1]. This construction assigns an automorphism
I I
Ge(L) : H' (Xo, s F)e——H" (X, 1 F)——H' (X1, F) = H' (X0, F)

to L of the homology group H'(Xy,q;F) of the n + 1 punctured disk. The linear map G,(L) = o (LB)’1
is called the cohomology Gassner invariant of L, see Definition 3.4. Restricting G, to pure braids gives the

Gassner representation. Also, one can define homology Gassner invariant

1

10s 1e
Gu(L) - Hy(Xo, 45 F)——H; (X, I; F)——H, (X, 4; F)

of L, see Definition 3.11.

b -— | \p Reidemeister move 1

/ N\ . .

() <> - 0 Reidemeister move 2
A\ /

\ \ \

/ - > // Reidemeister move 3
N\ \\ \

Figure 1.6: The 3 Reidemeister moves.

In addition, there is the notion of flying cars (see Definition 4.1) which is a modified version of the
car concept discussed in [BNa]. It is based on a “probabilistic” interpretation of the Burau representation
for string links studied in [LTW96], which is extended to give a similar interpretation of the Gassner
representation in Section 8 of [KLW98]. A flying car associates a labeled (1 + 1)-string link L with an nxn
matrix denoted as C(L) with entries in the field 7’ = Q({t; : k € T'}) of rational functions in the variables

tr € T’, where T’ = T — {0}. This matrix serves as an invariant of L, meaning it remains unchanged the
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Reidemeister moves (see Figure 1.6). Specifically, if another string link L’ can be derived from L through a
sequence of Reidemeister moves, then C(L’) = C(L). This invariant is connected to the homology Gassner
invariant, verifying its invariance. By employing flying cars in conjunction with the stitching operation
defined in Section 4.4, one can compute the homology Gassner invariant of L from the homology Gassner

invariant of a braid 8, where L is the partial closure of  (see Lemma 4.4).

It has been established by several authors from different points of view that the Gassner invariant is
unitary with respect to a skew hermitian matrix. In [Abd97] and [BN14], the authors explicitly define
different Hermitian matrices to prove the unitary condition, but they do not provide details on how these
matrices were derived. One advantage of cohomology is that it provides a natural way to define a hermitian
matrix using cup product on the cocyles. However, it is quite difficult to find a suitable cell complex for
the complement of a string link to define the cup product. Alternatively, we can use the dual version: the
intersection product (see Section 5.2) defined on cycles which is easier to compute. Kirk et al. in [KLW98]
tackled this problem from a geometric point of view. They showed that the Gassner invariant is unitary

with respect to an intersection form with coordinate free arguments without providing explicit formulas.

Formulas are easy to remember and may not change over time; they are easy to implement using
computer programs to reduce complexities in computations. In this thesis, motivated by the work in
[BN14] and [KLW98], we provide formulas for the homology Gassner invariant, flying car invariant and

the intersection form to complement the work in [KLW98].

Results of thesis

The results of this thesis are as follows:

1. Formulas for the homology Gassner invariant (see Section 3.3)

frpiv1]—1
0 trp; . 1
Gn(oi) = T and G.(o7!) = frlm ’
L 1=ty a0

where i is the position of the over strand below the horizontal level of the crossing o;.

These are matrix representations of the homology Gassner invariant for the generators o; and it
. -1 . . . .
inverse o; " of the braid group. They are related to the cohomology Gassner invariant given by

inverse transpose in appropriate basis.

2. A relation between homology Gassner invariant and flying cars (see Section 4.3):
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SL,

Mat,(F’) EYEEEy— > Mat,(F’)

3. The intersection product formulas (see Section 5.2):

(to=1)(tr(i)=1)(A=totT(i))
totT(i]

, i=j (self —intersection)

5 5 (to=1)(tpri—1)(tri7-1) ..
<ﬁl" ﬁ]> = - T[tl-[]-] il ’ 1 <]

(to—1)(trpi—D)(trj—1) L.
fotr(j) ’ t>]

4. Unitary condition for the homology Gassner invariant (see Section 5.5): The theorem

Theorem 1.4. Let L be an (n + 1)-string link whose strands are labeled by T = 0,1,---,n. Suppose L
is the partial closure of an (n+ 1) braid p. If the homology Gassner invariant Gy, (p) of B is unitary with
respect to the intersection products Qo and Q)1 then Gy, (L) is also unitary with respect to the intersection

]// tp(n)r t, = tp(n) and[ Pzz Pzt .
ﬁn—l,Z ﬁn—l,n—l

products [ Pozz)  PBotzn-1)

ﬁp(n—l,Z) ﬂp(n—l,n—l)
is an alternative statement for Theorem 5.18, where () and (), are the matrices for the intersection
product on the spaces X and X; corresponding L respectively, B; ; := </?l,/?]), p(Z) represents the
permutation of the element of Z, f,; ;) := (E(,(i),ﬁp(j))) and Bz 7 ={B;j:i,j€Z}. Here T = ZU{n—
1,n}.

Refer to Chapter 6 for the concluding remarks on the thesis results.

1.2 Thesis Structure

In Chapter 2, we will explore fundamental concepts in algebraic topology. Specifically, we will introduce and
define homology, cohomology, and local coefficient systems. References for these concepts can be found in
Hatcher’s "Algebraic Topology", [Hat02] and Brown’s "Cohomology of Groups", [Bro12]. Additionally, we
will define and discuss braids and string links, which serve as the focal points of this thesis. Furthermore,
we will provide a cell structure for the complement of a given string link or braid, its ambient space being
the solid cylinder, utilizing a group presentation known as the Wirtinger presentation. Lastly, we intend to

expound upon a local coefficient system for the complement.
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In Chapter 3, we will delve into the cohomology and homology Gassner invariants of string links and
braids, and offer various examples to elucidate the computation of these invariants. It will be observed that
these two invariants are inverse transpose of each other. Furthermore, we will verify that the homology
Gassner invariant is a braid invariant. Subsequently, in Chapter 4, we will verify that it is also a string link
invariant. Finally, a Mathematica implementation of the homology Gassner invariant will be presented. The

main reference for this chapter is [KLW98].

In Chapter 4, we discuss the concept of flying cars, a slight modification of the one discussed in [BNa].
Flying cars involve assigning an n x n matrix to an n + 1 string link or braid, where the leftmost strand is
always free. It is demonstrated that this assignment serves as an invariant of string links and is connected to
the homology Gassner invariant. Furthermore, the stitching operation is defined to establish a relationship

between string links and braids. Finally, examples are provided to illustrate this concept.

In Chapter 5, we discuss the unitarity of the homology Gassner invariant with respect to a skew hermitian
product given by an intersection product defined on the cycles of the first homology groups H; (Xy; F) and
H;{(X1;F). We provide details on the computation of the intersection product defined on the elements of
H;(Xg; F). Furthermore, we provide a detailed proof of the unitary statement in Theorem 3.2 of [KLW98]
(see Theorem 5.18). We also provide an alternative proof of Theorem 5.18 (see Theorem 5.20). Finally, we

present a Mathematica implementation of the unitarity of the homology Gassner invariant.

Finally, in Chapter 6, we give the concluding remarks.

1.3 Conventions and notations

« In most contexts, the term "string links" is commonly associated with tangles that result in the
identity permutation. However, in the scope of this thesis, we adhere to the convention established
[KLW98]. Accordingly, string links are not strictly limited to inducing the identity permutation. We
will specifically use the term "pure string link" to denote a string link that does induce the identity

permutation.
+ The strands of a string link and a braid move from bottom to the top.

+ In this thesis the Mathematica notation // is used to denote compositions of functions Specifically,

fog:=g//f or f(g(x)):=x//g//f.
« G, represents cohomology Gassner invariant.
« Gy, represents homology Gassner invariant.

« m' stands for matrix transpose.



1.3. CONVENTIONS AND NOTATIONS 9

« A positive crossing A is referred to as an over-crossing and a negative crossing X is referred to as an

under-crossing.

« The strands of an n + 1 string link are indexed 0, 1,---,n, at the bottom from left to right. The set
T ={0,1,---,n} of indices will be the set of labels of the strands. Note that with the strands indexed at
the bottom, the two strands participating in a crossing corresponding to o; may have arbitrary indices,
depending on the permutation induced by the braids below the horizontal level of that crossing. Here
i is the position of the over strand below the horizontal level of the crossing o;. In the case of o, Li
is the position of the under strand instead. For example consider the braid b in the figure below:

T =1{0,1,2,3}

NP
\ T=10,1,3,2}
0 1 3 2
92
\ permutation T=1{0,3,1,2}
, ; —

T =1{0,1,3,2}

0 /1 3 /2 - ’
/ . T =1{0,1,2,3}

Figure 1.7: The braid b with permutations at each horizontal level.

The permutation in cycle notation at the horizontal level below the crossing o3 is (8 12 %) So, the
labels of the two strands participating in the crossing are 3, 2 in that order. The indices for the strands

participating in the crossing o5 ! are 2,3. Permutation of the set T will also be denoted T.

« Braids are composed from bottom to the top. For example in the figure above. the compositionn is

b=o; ! 5,0,03. However, matrix multiplication is done in the opposite direction. For example

Gn(b) = Gi(03)Gn(02)Gn(02)Gn(03) "



Chapter 2

Preliminaries

2.1 Summary of Chapter

In this chapter, we will explore fundamental concepts in algebraic topology. Specifically, we will introduce
and define homology, cohomology, and local coefficient systems. Some references for these concepts include
[DKoO1], [Hat02], [Bro12] and [Rot09] . Additionally, we will define and discuss braids and string links, which
serve as the focal points of this thesis. Furthermore, we will provide a cell structure for the complement
of a given string link or braid, its ambient space being the solid cylinder, utilizing a group presentation
known as the Wirtinger presentation. Lastly, we intend to expound upon a local coefficient system for the

complement.

2.2 Homology and cohomology

In this section, we define and explore the basic concepts of homology and cohomology.

Definition 2.1. 1. A chain complex (C,,d,) is a sequence,
Iy Iy
» Cn+1 1> Cn ? Cn—l >
of modules such that d,, 0 d,,,; = 0. The quotient H,(C,) = % is called the nth homology group

of the complex.

2. A cochain complex (C*,d*) is a sequence,

N Cn—l d"_1> cn ar N Cn+1

~
-

10
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of modules such that d"*! o d" = 0. The quotient H"(C*®) = kerd” s called the nth cohomology

im dn-1
group of the complex.

3. A chain map f, : (C,,d,) — (D,,d,) between two chain complexes (C,,d,) and (D,,d,) is a
collection of homomprphisms f,, : C,, — D,, such that the d,, 0 f, = f,,_1 0 d,,.

4. Given a space X and a subspace A C X, the kth relative chain group Cy(X,A) is defined as the
quotient group Cy(X)/Cy(A) for each integer k. The kth homology group of the relative chain
complex

d + dn
o —— Crp1 (G A) 5 (X, A) —5 Cr1(X,A) —— -

is called kth relative homology and it is denoted by Hy (X, A).

Let M be a group. Then applying Hom(—, M) to the relative chain complex, we get the relative cochain

complex
. k-1 . dk! k d” k+1 . .
— C" (X, AM) — CYX,A) — C" (X, AM) — ,

where C¥(X,A; M) = Hom(Cy(X,A), M) is the set of functions Ci(X,A) — M with values in M.
The kth homology group of the complex is called the kth relative cohomology with coefficients in
M denoted by H*(X, A; M).

5. Given two chain complexes C, and D,, and two chain maps f,, g, : C, — D,, as shown in the diagram
below, a chain homotopy from f, to g, is a sequence of homomorphisms sy : Cx — Dy, such that
the maps satisfiy dy,1 oSg+Sk_1 0dx = fi—gk- The chain maps f, and g, are then said to be homotopic
and denoted by f ~ g.

Iy Iy

> Cra1 = C > Ci1 >
Sk Sk-1

Jrs1 8k+1 fi| |8k fre-1 J/gk—l

> Dyiq > Dy > D1 >
Ik+1 Ik

6. A chainmap f : (C,,d,) — (D,,d,) is null-homotopic if { ~ 0, where 0 is the zero chain map.

7. A chain complex (C,, d,) has a contracting homotopy if the identity chain map idc, : C, — C, is

null-homotopic. Such a chain is called contractible.

Proposition 2.2. A chain complex having a contracting homotopy is an exact sequence.

Proof. Suppose the chain complex (C,, d,) has a contracting homotopy. Then, idc, =~ 0. That is the maps
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in the diagram

Ik
v G ——— G S e
Sk _
il |o id| o ! id| |o
wor —> Cr > Cy > Cpop — -+
k41 Ik

satisfy dj,q osg +Sk_1 0 dx = id. Let z be a k-cycle. Then id(z) = dj,q o Sk(2) + sk_1 0 Ik (2) = dji1(sk(2)) €
im(dyy1). This implies that the induced map id, : H(C) — Hy(C) on homology groups, which is an

isomorphism, is equivalent to the 0 map. Thus, H;(C) = 0. The proposition follows. O

2.3 Homology and Cohomology with Local Coefficients

Definition 2.3. 1. A (left) G-module is an abelian group A together with a group action p : G — Aut(A)

of G on A, where Aut(A) denote the automorphisms of A.

2. Let R be a commutative ring and let G be a multiplicative group. The group ring R[G] associated to

G is a ring with elements of the form } r,¢ where r, € Rand r, = 0 for all but finitely many ¢ € G.
g€G
Addition in the group ring is given by

ngg+ ngg = Z(rg +5¢)8

geG geG geG

where as multiplication is given by the distributive law and multiplication in G, that is

[ngg][ZShh] = ) (rgsu)gh.

geG heG g,heG

Next, we discuss local coefficient systems. There are two approaches to defining local coefficients on a
space X. The first approach, which will be considered in this thesis, is via modules over group ring. The
second approach is via a fibre bundle p : E — X over X, whose fibres p~!(x) are identified with some fixed

abelian group. Standard references for local coefficients include [DK01] and [Hat02].

In this thesis, we will be working with local coefficients via modules over the group ring R[G], where

R and G are ring and group respectively.
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2.3.1 Homology and Cohomology with Local Coefficients via modules

In this section, we define homology and cohomology with local coefficients using modules. We also provide

a proposition to help identify the (co)chain complex that will be used to compute these homologies.

Let G be a groups. Let X be a finite CW complex and let € : 701 (X, xg) rightarrowG be a surjective
group homomorpism. The correspondence between the conjugacy classes of subgroups of 7t;(X, x() and
the covering spaces of X provides us with a covering space pg : (X,%0) — (X,xq) which corresponds to
the subgroup, kere, of 7t1(X, xg), which is the kernel of €, such that pG*(T(l(Y, Xp)) = kere, where pg,
is the map pg, : 71 (X, %) — 11(X,xo) induced by the covering space map. This makes the covering
regular, since ker € is a normal subgroup. The automorphism group of p : (X, %) — (X, x) is isomorphic

to nl(X,xO)/pG*(nl(}?,’fo)) =711(X,x9)/ kere = G.

An action of G on X can be defined as follows. Take an element g € G. Since € is unto, there is an
equivalence class [y] € 11(X,xg) such that €([y]) = g, where y is a loop on X representing the class
[y]- By the lifting property, one can consider the unique lift 3 of y to X such that 7(0) = X. Since pg :
(X, %) — (X, x0) is a regular cover, there exist a unique deck transformation /1 : X — X such that h(%;) = X»
for X1,%3 € pg(x,). Let hy(Xp) = Y(1). So, for any z € X, define z-e([y]) =z-g = h, (z). This defines an
action of G on the covering space X by acting on the points of X and by extension, an action on the cells

of X via action on the points that make up the cells. Let C(X,Z) = <e£‘>:_1 be the chain group generated

— r
by k-cells. Let g € G, and let ok e Cu(X,2); 0k =Y mief. Then
i=1

r r T
[ zmief] =Y e g= Y meh
i=1 i=1 i=1
where [y] € 7t;(X, xo) such that €([y]) = g. It follows that the action described above further extends to an

action of G on the chain groups, Ck()?,Z), for k > 0.

Let Z[G] be the group ring associated with the group G. Then the action of G on Ci(X,Z) extends to
an action of Z[G] on Ci(X, Z). It follows that C(X,Z) is a Z[G] module.

Definition 2.4. (Homology and Cohomology with Local Coefficients) Let M be a Z[7]-module, where
7t =111 (X, %0)
1. The homology groups H,(X; M) of the chain complex C,(X; M) = C,(X;Z) ®z[x] M are called

homology groups of X with local coefficients in M .

2. The homology groups of the cochain complex C*(X; M) = Homzj (C.(X,7Z), M)is called cohomology
of X with local coefficients in M denoted H*(X; M).
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The following two propositions provide a description of how to find generators for the chain and cochain
groups, C,(X; M) = C,(X;2Z) ®z(6) M and C*(X; M) = HomZ[G](C*(}?,Z),M), respectively This is done
by first finding the generators of the chain groups Ci(X,Z).

Proposition 2.5 (Proposition 1.33 of [Hat02]). Suppose given a covering space p : (X,%) — (X,xq) and

amap f :(Y,y9) — (X,xq) with Y path-connected and locally path-connected. Then a lift f : (Y,yq) —
(X,%o) of f exists if and only if £.(1t1 (Y, 99)) € pe(rt1 (X, %))

Proposition 2.6. LetY be a connected finite cell complex with one 0-cell yy and lete : 11 (Y, o) — 11 (Y, yo)"b1

be the abelianisation map. Let Cy(Y,Z) = (e;)i_, be the free abelian group with basis the set of r k-cells of Y .
Then the free Z[1t1 (Y, vg)]-module Cy(Y,Z) is generated by the set {ei}i_, of r k-cells of the covering space Y
of Y, wheree; is a lift of e; foreachi=1,...r.

Proof. Let Y be as in the hypothesis and let C(Y,Z) = (¢;)!_,. Let e be a k-cell of Y and let f : [ —
be the attaching map®. For each element a € nl(Y,y)ab, there is a lift P of yy by Proposition 2.5. The

k-cell e is simply connected. It follows that there is a unique lift € of e for each a € 77, (Y,)?® such that

flyo) =75
Now, consider the unique lift € of e such that ]7(3}0) = fg. Let g € 11 (Y, )2 be the element corresponding

to the deck transformation & : Y — Y such that h(j)‘g) =7 Then, g -2 = h(e?) is a lift of e such that
/—\0
-e

f(vo) = vg . The uniqueness property of lifts implies that g

ev.

This argument can be repeated for each k—cell e of Y and thus, it is enough to consider a single lift of
each k-cell of Y to Y to generate Cy(Y,Z) as Z[r;(Y,y)**]-module. It follows that if C¢(Y,Z) = {¢;)\_,,
then C(Y,Z) = (&)7_,. O

2.4 Braids, String links and their complements

In this section, we define and examine braids and string links. We present a cell structure for the complement
of a string link or braid embedded in D? x [0, 1]. Furthermore, we analyze a local coefficient system on the

complement of a string link or braid.
Does this revision meet your needs, or would you like further adjustments?

Definition 2.7. A strand is a continuous curve f : [0,1] — D? x [0, 1] that starts at a point on the disk

D? at x = 0 and ends at a point on the disk at D? at x = 1. A free strand is a strand of a string link that is

! Here, 1 (Y,yo)ab is the abelianization of the fundamental group. By definition, it is the quotient group
11 (Y,v0)/[101(Y,v0), 701 (Y, v0)], which is isomorphic to Hy (Y;Z).

2 Consider the pair (Dk, Sk’l) of an k-disk and its boundary. Let us think of D as an k-cell. Given a map f : Sk=1 _ ¥, then we
can attach an k-cell to X via f by the following identification: Y Ur Dk = (Yu Dk)/(u ~ f(a)) foralls € Sk=1. we say Y Uy Dk

arises from attaching Dk to X along f and f is called an attaching map.
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not involved in a crossing.

uy  up uy u3 uy  u uy ug

(a) A non pure braid (b) A pure braid

Figure 2.1: Pure and non-pure braids.

Definition 2.8. 1. A braid on n+ 1 strands is a geometric object consisting of two parallel planes P,
and P; in three-dimensional space R3, containing two ordered sets of points ag,ay,...,4, € Py and
bg,by,...,b, € P, and n + 1 simple non-intersecting strands Iy, l1,...1,, intersecting each parallel
plane P; between Py and P; exactly once and joining the points {ag, a1,...,a,} to {by, by,..., b, }. The
points ag,ay,...,a, are called the initial points and the points by, by,...,b,, are called end points.

Figure 2.1 shows some examples of braids.

2. Labeling the strands of an (n+1)-braid  involves indexing the strands at the bottom from left to right,
starting from 0 and going up to n. An indexed braid is called a labeled braid. Let T ={0,1,---,n}
denote the indexing set; T is called the set of labels of L. The mapping of the initial positions to the

final positions is a permutation of T.

If we map T to the subscripts of the initial points, then each braid induces a permutation on the
subscripts of the initial points ay, a1, .. ., a,,. This is because the subscripts of the initial points ag, ay, ..., a,
of the strands will generally be in a different order at the endpoints b, by, ..., b,,. For example the braid
in Figure 2.1a induces the permutation ( 8 (1) % g ) where as the braid in Figure 2.1b induces the identity

permutation.

3. A pure braid® is a braid that induces the identity permutation. That is, if the mapping of the initial
positions to the final positions induces the identity permutation on T. Otherwise, the braid is called

a non-pure braid.

4. The Artin braid group B,, is the group generated by n — 1 generators oy, 05,...,0,,_; such that the
braid relations 0;0; = ojo; forall i,j = 1,2,...,n— 1 with [i - j| > 2, and 0;0;,10; = 0;;10;0;4; for

i=1,2,...,n— 2 are satisfied.

The generator o; denotes a positive crossing between the strand at position number i as counted just

below the horizontal level of that crossing, and the strand just to its right. Note that with the strands indexed

3 In the literature, pure braids are sometimes referred to as coloured braids, since each strand can be assigned a distinct colour (label)
in a way compatible with composition
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[
I

i+1 i+2 n 1 2 i—1 i i+1 i+2n

(a) Over-crossing o; (b) Under-crossing oi_l

Figure 2.2: Geometric representation of o; and 0;1

at the bottom, the two strands participating in a crossing corresponding to o; may have arbitrary indices,

depending on the permutation induced by the braids below the level of that crossing.

Definition 2.9. (String Link)

1. Let n be a positive integer and fix n + 1 points, pg,p1,---py, in the interior of the 2-disk, D2 A
string link L of n components is a smooth, proper, oriented 1-dimensional submanifold of D?x [0, 1]
homeomorphic to the disjoint union of # + 1 intervals (strands) such that the initial point of each

interval (strand) coincides with some p; x {0} and the endpoint coincides with p; x {1}.

Just like braids, string links also induce permutations. See the diagram below.

UO U]- ’l)o v9 U1

C/}

(—
\

up u1 U u1 up
(a) A string link with (b) A string link with non-
identity permutation. identity permutation.

Figure 2.3: String links inducing a permutation.

2. A pure string link is a string link that induces the identity permutation.

Remark 2.10. Braids form a group, where multiplication is achieved by stacking one braid on the other.
String links on the other hand do not form a group since isotopy classes of string links need not have

inverses. However, isotopy classes of pure n-string links form a semi-group.

There is a multiplication on labeled string links where one string link is stacked on the another. Two
n + 1- labeled string links can be multiplied if the labels of the bottom end of one equals the labels of the
top end of the other. For example in Figure 2.4a the two string links are composable where as the two string

links in Figure 2.4b can not be multiplied.
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T 9 b r b
(a) The string links can be (b) The string can not be
multiplied multiplied.

Figure 2.4: Multiplication of string links

By convention, all braids and string links will be oriented such that the strands move from the bottom
to the top and we do not allow closed components. Also, the ambient space of braids and string links is
taken to be the solid cylinder D? x [0,1]; see Figure 1.5a. Unless otherwise stated, all string links will be
denoted by L and the complement of the strands will be denoted X = (D2 x[0,1 ]) -L.

2.4.1 A Cell structure for the complement of a string link

Let L be a labeled (n + 1)-string link. L has positive crossings (*{) and negative crossings (X). Suppose L
has m crossings, then the fundamental group of the complement X = (D2 x [0, 1]) — L has a presentation
(&1,--,8s | 11,..., 7y ) Where the g;’s are closed loop around the strands of L and the r;’s are relations of
the form g;g; gi_1 g ! at each crossing. The closed loops are called meridians. This presentation is called

the Wirtinger presentation.

Description 2.11 (Labelling scheme for Wirtinger generators). The following is a labelling scheme for
the generators of the Wirtinger presentation. Let ug, uy,...,u, denote the generators corresponding to
meridians which lie in D? x {0} and let v, v,...,v, denote the generators corresponding to meridians
which lie in D? x {1}. Here, the subscripts of u; and v; are the labels of the corresponding strands. The
remaining generators are denoted by z1 ;,2; ;,..., 2, ;, where r; is the number of meridians z; ; on a strand

with label i, 1 <k <r;. Let S be the set of the generators (meridians).

Ordering 2.12 (Ordering of generators(meridians)). The ordering S will always be

S U UL ey Uy 21,1221+ » 21y ir V1o os Vppe (2.1)

The complement X deformation retracts to a space Y which retains information at each crossing. The
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(@ A

crossing

over-crossing () An under-crossing
(negative crossing)

generic (b) An
(positive crossing)

Figure 2.5: Over and under-Crossing

space Y can be constructed using the Wirtinger presentation as follows. At each positive crossing c; (see
Figure 2.5b) there is a Wirtinger relation a,-b,-ai’1 gi’l, and at each negative crossing c, (see Figure 2.5c)
, . Note that
j=0,1,...,n; 1<k<r;

uj, Uj, v;,v; are closed paths which form 1-cells; each path begins at the base point (0-cell) x, goes underneath

there is a Wirtinger relation ﬂrbrﬂ;lgr—l, where a;,a,,b;,b,,i, 8 € {uj,vj,zk,s}

a strand and back to x; (see Figure 2.5a). These relations form the boundaries of 2-cells that correspond to
the m crossings. Figures 2.6a and 2.6b exhibits 2-cells at a positive and a negative crossing. If a strand of
the string link is not involved in any of the crossings, then we have a 1-cell u; (see Figure 2.6¢).

. a
a; ) T

AN

()

Lo N

(c) Cell structure of a free strand

(b) Cell structure at a
negative crossing

(a) Cell structure at a
positive crossing

Figure 2.6: Cell structures at an over-crossing, under-crossing and a free strand.

()

(a) The cell structure at
a positive crossing viewed
as a square

(b) The cell structure at a
negative crossing viewed
as a square

Figure 2.7: Cell structure at a positive and a negative crossing.

Gluing the cells together — using appropriate attaching maps — results in the desired cell-complex

structure for the deformation retract Y, from which its chain complex is determined. Since the complement
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e(9)7

€(g;)xq e(a;)x

(a) The lift of ¢; at a (b) The lift of ¢; at a
positive crossing negative crossing

Figure 2.8: Cell structure of the lift of a 2-cell at a positive and a negative crossing.

is connected, all 3-cells can be deformed to a point, and all these points can be identified. By Proposition 2.6,

the chain complex of the covering space Y can be determined.

2.4.2 A Local Coefficient System on the complement

Let L be an n+ 1 string link and let X = (Dz x [0, 1])—L. Let G = 11 (X, x() be the fundamental group of X.
The abelianisation, G/[G, G], of G is isomorphic to the group Z, .1 =~ (ty,t1,...,t,) The abelianisation map
€:G — (tg,t1, -+, t,) is determined by assigning to a meridian of X its corresponding ¢;, i = 0,1,---,n.
Let A = Z[{to,t1, -, t,)] and let F = Q({tg,t1, -, t,)) be the field of fractions for A. Let g € G, then
multiplication by €(g) determines a local coefficient system on X with coefficients in A or F, and hence the
homology and cohomology groups H,(X; M) and H*(X; M) respectively (See Definition 2.4), where M is
either A or F.

Description 2.13 (Boundary of e; and ¢;). The cell structure of the 2-cells in Figure 2.6a and Figure 2.6b
can be viewed as a square with the sides «; identified as seen in Figure 2.7. The lifts of these cells are also

given in Figure 2.8. Each ¢; has boundary of the form
d(e;) = (1 —e(b;))a; + e(a;)b; - g (2:2)

which is computed as follows:

The boundary d,(e;) of each 2-cell e; is a word (path) formed by the 1-cells of the deformation retract
Y of the complement X. The boundary of each e; at a crossing is of the form aibiai_l gi_l, regardless of the
type of crossing. Label the 1-cells (meridians) with the labels of their corresponding strands. Note that b;
and g; have the same labels since they are on the under strand of the crossing, so €(b;) = €(g;). Following

the path a;b;a; ' g7
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1. The lift of 4; is 4;, a path from X, to €(a;)x, where X is a lift of x.

2. The lift of b; is the path €(a;)b;, starting from €(a;)x, and ending at €(a;)e(b;)xy.

3. The lift of al-_l is the path —e(b;)a;, starting from e(a;)e(b;)Xy and ending at e(a;)e(b;)e(a;)™ Xp =

e(b;)xy = e(gi)xo-

4. Finally, the lift of gz._1 is the path —g;, from e(g;)%p to €(c;)e(g) ™ %y = Xo.

Since the lifts are elements in a free abelian group, the boundary of ¢; is written additively as:

a; +e€(a;)b; —e(b;)a; - g,

which simplifies to:

(1 —e(bi))a; + e(ai)b; - g;.

Remark 2.14. Let X, = X N D? x {0} and X; = X N D? x {1}. Both X, and X; are n + 1-punctured
discs (see Figure 3.1); they are canonically identified via the homeomorphism yx : Xy — X defined by
(x,0) = (x,1). They are subspaces of the complement X. Let p be a permutation induced by L. Then
note that p also permutes the punctures of X; via the homeomorphism x. Multiplication by e(g) therefore
determines local coefficient systems on Xy and Xy, with coefficients in F and FP respectively, where
FP =Q( tp) tpr) ** »tp(n) })- So p permutes the set of labels (colors) T = {t;}i_. Note that 7 and F*

are the same. For simplicity, we will also use F to denote FP.



Chapter 3

The Gassner and reduced Gassner

invariant

3.1 Summary of Chapter

In this chapter, we will delve into the cohomology and homology Gassner invariants of string links and
braids, and offer various examples to elucidate the computation of these invariants. It will be observed that
these two invariants are inverse transpose of each other. Furthermore, we will verify that the homology
Gassner invariant is a braid invariant. Subsequently, in Chapter 4, we will verify that it is also a string link
invariant. Finally, a Mathematica implementation of the homology Gassner invariant will be presented. The

main reference for this chapter is [KLW98].

3.2 The cohomology Gassner invariant

In this section, we present the cohomological definition of the Gassner invariant for a string link as described

in [KLW98]. We provide several examples to illustrate this concept.

Given a string link L with 7 + 1 strands, let X = (D? x I) — L be the complement of L, where D? is
the 2dimensional disk, and let 7ty denote the fundamental group 771 (X, x() of the the complement X. The
abelianisation of 7, is isomorphic to the free abelian group, (t;)_,, generated by the set {t,t;, -, t,}.
The abelianisation map € : wx — (t;);_, is determined by assigning to a meridian (a closed path around a

strand of L) its corresponding t;. Let A = Z[(t;)!_, ] and let F = Q({t;)}_,) be the field of fractions of A.

Let Xo = XN D x{0} and X; = X N D x {1}. Both X, and X; are n—punctured disks (see Figure 3.1);

21
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they are canonically identified via the homeomorphism y : Xy — X; defined by (x, 0) > (x, 1). Fix a point
q € dD and let I, C X be the arc I, = {g} x [0,1].

The following ordering of the crossings will help in ordering the 2-cells.

Ordering 3.1. (Ordering the crossings) Order the crossings in the following manner: let the first crossing
c1 be the crossing at which the strand with Wirtinger generator u; ends. Next, the second crossing c; is
the crossing at which the strand with Wirtinger generator 1, ends. Repeat this process going through the
Wirtinger generators u;,i = 2,3,---,n+ 1 and then through 21,i122,ir- -+ Zry i where t; is the number of

meridians zj ; on a strand with label i, 1 <k <7;.

Figure 3.1: An n-punctured disk
with loops wug,u1,-+-,u,. The
) white objects are the punctures.

Lemma 3.2 ([KLW98], Proposition 2.3). Let (X, W) be a pair of path connected cell complexes and € :
101 (X,x9) — Z" a homomorphism. Consider the corresponding local coefficients F on the pair (X, W).
Suppose the inclusion of W in X induces an isomorphism on homology with (untwisted) Q coefficients. Then

H,(X, W;F) = 0.

Proof. Let (C.(X, W;Q),d) denote the cellular chain complex with coefficients in Q for the pair and let
(X, W) and let (C,(X, W;@),g) denote the cellular chain complex, also with Q, of the covering space
determined by the map € : 77, (X, xo) — Z". Fix lifts of the cells of (X, W) to (X, W) to get a free F-basis of
C.(X,W) by using Proposition 2.6.

Since the inclusion W < X induces an isomorphism on homology by the hypothesis, then C,(X, W)
is acyclic, meaning that the homology group of the complex C,(X, W) are all 0. It follows that there exists
a chain contraction s : C,(X, W) — C,(X, W), where s is a degree 1 map satisfying d,,,1s, + s,_19, = I[d

(see Definition 2.1).

Using the F -free basis for C*()?, W) and the formula for d,, 15, +5,_1d, = Id, define a chain homotopy
5:C.(X, W) - C,(X,W). That is, if s(¢) = Y q;v; then, define s(e) = ) q;7;, where ¢, y; are the chosen lifts
i i
of e, ;.

By construction ® = d,, 15, +3,_19,, is a chain map whose matrix in the chosen basis augments
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to the identity map, meaning that if a : 7 — Q is the augmentation t; > 1, then a(®) = Id is the
identity map. Dualizing the complex (C, (X, W;Q), 5), the induced chain homotopy on the cochain complex
HomZ[n](C*()?, Y;Q), F)is a chain homotopy from ®* to 0. Thus, ®* induces the zero map on the cohomology
group H*(X, W;F) of the complex HomZ[n](C*(X’, ?;Q),}'). Note that the determinant of the matrix
induced by ®@* is a non-zero element of Z[7t] since a(®) = Id. Hence, ®* is an isomorphism. This implies

the zero map is also an isomorphism. It follows that the cohomology group, H*(X, W; F) is 0. O

Lemma 3.3 ([KLW98], Lemma 2.1 ). 1. HY(Xg; F)= HY(X; F) = F"and H (X, q; F) = HY(Xy, q; F) =
_7_-n+1'

2. Let1j : Xj <> X be the inclusion maps for j = 0,1. The restriction maps t’]f : HY(X; F) — Hl(X]-;}—)
and l; : Hl(X,Iq;]-') — Hl(Xj,q;f),forj = 0,1 are all isomorphisms.

Proof. 1. The subspace Xy = X N D x {0} is an (1 + 1)-punctured deformation retracts to the wedge
product, Yo = VLS 1 of n+1 copies of S!. The cell structure of Y consists of only one 0-cell, g, and
n+1 1-cells, u;, fori = 0,1,...,n. Up to homotopy, both X, and Y are the same, and it is much easier
doing computations with Y. The fundamental group 71 (Yy, p) of Y} is the free group generated by
the set U = {u;};_ . The abelianisation map € : 111 (Y, p) — (t;);_, sends each generator u; to the

corresponding t; in (t;)!"_ ;. By Proposition 2.6, we have a cellular chain complex
2, — o — PR
- 0——>C(X; Z)——Cy(Xy; Z)——0,

where Cy(Yp,Z) = ( q) and C(Y,Z) = (1 )i—o- Dualizing the above complex with Hom (-, F),

gives the corresponding cellular cochain complex

0 1
0 - COYy; F) 5 cl(vy; F) S 0,

where CO(Yp; F) = ( Q) and C(Yo; F) = ( T >?:o’ and Q@) = 1, Q(I;) = 0, Uy (i) = &;; and

U(’(f) = 0. The kernel of d' is Z'(Yy; F) = kerd! = C!(Yy, F) = F"*! and the image of d° is
n — ~ ~ ~

< Y (t; - 1)U; > =~ F, since d°(Q)(1;) = Q(0:(%;)) = Q((t; — 1)§) = t; — 1. The first cohomology
i=0

HY(Yy; F) is l:;r;l; = < U; >7__11 =~ F". Hence, H'(Xy;F) = H (Yy; F) = F". A similar argument

shows that H(X,; F) = F".

Next, the pair (Xg, q), induces a short exact sequence, which in turn induces a long exact sequences:

0—- C"Xgp,q; F)— C"Xp; F) > C"(q; F) > 0,
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0 — H(Xo,q;F) — H(Xo;F) — H(q; F) j

L) HY(Xo,q; F) —— H' (Xg; F) — HY@GF) — ...

Note that in the cochain complex of Y, above, map d° is injective, so its kernel is 0. It follows that
H%(Xg;F) = 0. Also, notice that the cochain groups of g are all 0 except C%(g; F) = F. It follows
that H'(g; F) = 0 and H%(q; ) = F. Hence, the long exact sequence becomes

0 — H'Xo,q;F) —— 0 —— F j

L)HI(XO,q;}') s Fn > 0 S,

which implies that H! (X, q; F) = F @ F" = F"*1. A similar argument using the inclusion q <> X;
shows that H!(X;,q; F) = F"*1,

2. Since X; deformation retracts to the wedge product of 1 + 1 circles, we have H 1(X]- ;Q) = QL
Also, the abelianization of the fundamental group of X is H; (X;Q), which is the free abelian group
generated by n+ 1 generator. This is because each strand of the string link contributes a generator to
H;(X,Q), corresponding to the meridian around each string. Thus, the inclusion maps ¢; : X; <> X
1j + (Xj,q) <= (X,I,) satisfy the hypothesis of Lemma 3.2, so H*(X, X;; F) = 0. It follows from the

long exact sequence of the pair (X, X;):

_)WL) HY(X; F) —— H'(X; F) j

LW—M H2(X; F) — H2(X;;F) —> ...

* *

L. L.
that the maps H; (X;]:)%Hl (X]-;]:) are isomorphisms for j = 0, 1. Similarly, H; (X, Iq;]:)—j>H1 (Xj9;F)
are isomorphisms for j =0, 1.

O

Definition 3.4 (Gassner Invariant-Cohomological definition [KLW98]). To a string link L assign the automorphism

P l*
G:((L): H (Xo, p; F)e——H'(X, Ip;}')—l>H1(X1,p;f).

The composition G.((L) =1} o (1’6)’1 is called the cohomology Gassner invariant of the string link L

The following lemma provides a simple way to compute the relative (co)homology groups H' (X, I 3 F)-
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Lemma 3.5. Let X be the complement of a string link L and I, = q x [0, 1], where q = x is a fixed point on
the boundary of D?. Suppose X deformation retracts to the space Y as described in Section 2.4.1 with one 0-cell

q. Then the relative homology group H' (X, 143 F) is isomorphic to HY(Y,q;F) = ker(d'), where d" is the

1
coboundary map C1(Y; F) LN C(Y;F).

Proof. Suppose X and Y satisfy the hypothesis. Then the inclusion map (Y,q) < (X,I;) induces the
isomorphism H! (X, I F)= H'(Y,q;F). The relative complex,

- C(Y,7:2) —— C(Y, G Z) —— Co(Y, G Z) — 0,
of the pair (Y, g), is equivalent to
= 23 = J
--0 > Cy(Y;2)——C(Y;Z)—0,
since

Co(Y,FZ) = Co(Y;Z)/Co(FZ)=(§)/G) =0,

C(Y,§2) = Ci(Y;Z)/C(FGZ) = Ci(Y;Z2)/0 = Cy(Y;Z),
G, GZ) = CAY;ZVCHGZ) = Co(Y;2)/0 = Cy(Y;2)
C3(Y,§:Z) = 0/0=0

Dualizing with Homg,,, (=, F), gives the cochain complex

0

1
Od—> Cl(Y;f)d—>C2(Y;.7:)—>O

But H!(Y,q; F) = ker(d') and the lemma follows. O

Corollary 3.6. Let X:,j = 0,1, be the punctured disks associated with the complement of a string link. Then
the relative cohomology groups H' (Xj,q; F) is isomorphic to ker(d') = Cl(Xj;]:)for eachj=0,1.

Proof. The corollary follows immediately from Lemma 3.5, since all but C! (X j;F)isOforeachj=0,1. [

Example 3.7 (Cohomology Gassner invariant). Let L; be the string link in Figure 3.2; it has 3 crossing ¢y, ¢,
and c3. Let X = (D2 x [0, 1]) —L; and let Y be the deformation retract of the complement X with a 0-cell
q = x, five 1-cells ug, uy, 21,9, v, v1, and three 2-cells e, e; and e3 as shown in Figure 3.3 and Figure 3.4.

Note that I, also deformation retracts to g.
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UO 2)1 A
- [ — - | —
€1
21,0
c3 — >
€2
- [ — - | —
() uy

Figure 3.2: A 2-component string link L.

vl 210

(a) 2-cell at cq. (b) 2-cell at c;. (c) 2-cell at c3.

Figure 3.3: Cells of the deformation retract Y.

()

T0 o \

€3

uy ™

)

(a) 2-cell at cy. (b) 2-cell at c5. (c) 2-cell at c3.

Figure 3.4: The cell structure at crossings c1,c1,¢3, viewed as a square.

(z10)%0 e(v)zg e(ug)ag

e(up )y,

““\}1(1

e(ug)e(vy)xg e(u)e(z10)x, e(v)e(ug)zq
e3 0

1)1 i N\
e(v1)ug e(z10)u1 e(vg)g
210
e(vi)ag e(z10)0 e(z10)20
(a) 2-cell at cq. (b) 2-cell at c;. (c) 2-cell at c3.

Figure 3.5: The lift of the cells at crossings c1, 1, c3, viewed as a square.

Let Y be the covering space of Y determined by € : 7, (X, q) — (to, t1), where g = x. By Proposition 2.6,
—~ 2] ~ d =~
the relative chain groups of the relative complex 0 — C,(Y,q;Z) —2, C1(Y,q;2) —1, CoY, 52)— 0
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are

Co(Y,;Z) = Co(Y;Z)/Co(g;2)=0/0=0,
GV, §Z) = CUY;Z/CiGZ) = Ci(Y;Z)/0 = (i, i1, 71,0, V0, V1),
CY,.§2) = CY;Z)/CoGZ) = CoY;2)/0 = (1,8, ).

Up to isomorphism, the relative complex reduces to the chain complex
~ 92 ~ 91
0 — Cy(Y;Z)——C1(Y;Z)—>0.
Dualizing with Homg,;, (-, F), gives the cochain complex
d° 1 dl 2
0—— C (V;F)—— CA(Y;F) =0,
where the cochain groups are
C*(Y;F) = (E1, Ey, E3).

CH(Y;F) = (U, U1, Z1,0, Vo, V1),

Forip € C1(Y; F),d () € C*(Y; F) = Homy, | (C1 (Y; F), F). Ifx € Co(Y; F), thend () (x) = 1p(d(x)).
From Figure 3.5 and by Description 2.13, the image of the boundary map, d, on each generatorse;,i = 1,2,3

is

da(e1) = (L—to)vy+tlg—Z1,0
dr(er) = (L—t1)z1,0+toth — 7y, (3.1)
dy(ez) = (L—tg)ug+tyUo—21,0
Up(2(@1) Ui(02(61)) Z1,0(02(&1) Vo(d2(e1)) Vi(d(21))
The matrix representation for d' is [ Uy(9,() Up(92(82)) Z10(02(8)) Vo(02(8) Vi(92(e2)) |
Up(92(3) U1(02(83)) Z1,0(92(83) Vo(2(83)) Vi(9,(e3))
which is
o0 -1 0 1-t,
rlnatrix = 0 to 1- t 0 -1
1-t, 0 -1 t, O
_ lfto to
t0+t1—1 [0+t1—1
_tl to—to—2t1+1 (t]-l)t]
to+t1—1 to+t1—1
. _1)2 )
The nullspace of drlnatrix is < - t(;gtllll , toiottl[l >, from which we get the kernel of d': Z!(Y;p) =
0 1
1 0
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1\ _ totlzlyo tOUB (H-1)ty ﬁl 7 _(t071)2~Z~1,0 _ (17t0)[70 _ (tltg—t0—2t1+l)L~Il 7 . .
ker(d ) - <t0+t1—1 + t0+t1—1 + t0+t1—1 + VO’ t0+t1—1 t0+t1—1 t0+t1—1 + V1 ’ Wthh 18 the

relative cohomology H' (Y, g; F) of the relative complex of the pair (Y,q) by Lemma 3.5. By Lemma 3.5,

HY(X,q; F) =ker(d').

According to Corollary 3.6, H' (X, q;F) = C1(Xg; F) = (ﬁo, U,) and HY X, q;F) = Ci(X;F) =
(Vo, Vp). By definition of the cohomology Gassner invariant, the map r : HY(X,q; F) — H (X0, q; F) is

given by
toty Z1,0 toUg (-t 0y v toUg (-1t Uy
g tort=1 Tkt T T fort -1 0 _ to+t—1 " fo+t -1 _
0°)  (t0-1)’Z1,0  (1-t)Uy _ (tito—to—2t1+1)T; +V N _(1-t9)Uy _ (t1to—to—2t,+1)U;
to+t1—1 to+t1—1 to+t1—1 1 to+t;—1 to+t1—1

and the map /] : HY(X,q;F) — H'(X;; F) is given by

toi‘lzl’() toﬁo (tl—l)tlﬁl 7 17
g ) Torti=T T gt -1 T Sorh-1 T Vo = W
1 (t0-1%Z0  (1-t))Uy _ (tito—to-2t,+1)U; |, 7 7

- to+t—1 - to+t1—1 - to+t1—1 +V1 = Vl

A matrix representations for /j and /] are

fo _ (1_t0) 1 0
l?‘) — to+t—1 to+t—1 and lxl- —
(-1t (to—te—2f+1) 0 1
t0+t1—1 t0+t1—1

respectively. The cohomology Gassner invariant of the given string link is therefore G.((L;) = 1] o (1’6)’1 =

(15)‘1, )
ttg—tg—2t1+1 to—1
Ge((Ly)=(ig)~" =| At T, (3.2)
ty ftlrfojil T h fo*(;o*tl

Example 3.8 (Cohomology Gassner invariant of over and under crossing). Let X = (D% x [0, 1]) -4 be the

complement of the over-crossing in Figure 3.6, with a deformation retract Y in Figure 3.6b.

(a) 2-cell e at an over-
crossing. (b) Cell structure.

Figure 3.6: An over-crossing with cell structure for Y.

The covering space Y of Y is determined by € : 111 (X, q) — (t;,tj), where q = xo. By Proposition 2.6,
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(a) 2-cell e at an under-
crossing. (b) Cell structure.

Figure 3.7: An under-crossing with cell structure.

the relative chain groups of the complex

—~ 0 —~ 0 ~
0— C(Y, 7 Z) —— C1 (Y, §;Z) —— Co(Y, T:Z) — 0

are

Co(Y,4:2)

Co(Y;Z)/Co(§:Z) = 0,
CUY.GZ) = Ci(Y;Z)/CUGZ) = Ci(Y;2)/0 = (i, 1T}, 7)),
CY.TZ) = CAYLZYC(GL) = Co(Y;Z)/0 = (@),
1
By Lemma 3.5, the relative cohomology group H! (Y, q; F ) isker(C (Y; F) LN C2(Y;F)), where C(Y; F) =

(U, ﬁj, V;yand C2(Y;F) = (E). By Description 2.13, the image of 2under d, is d,(€) = (1 — ;)i +;V;— ;.
The matrix representation for d Lis (ffi(az(’e‘)) ﬁj(az(’e‘)) \7]-(92('@‘))), which evaluates to

1 _
dmatrix - (1 - tj -1 ti)‘

t; 1

1| |5
1 . W [ 77 .7 1 77 .77 I
The nullspace of d,, .,  is < ol 1 > So, ker(d") = <thUi +V, —thlUi"‘ j>, which is the
1 0

relative cohomology group H'(Y,q; F) of the relative complex of the pair (Y, q). By Lemma 3.5,

HY(X,q; F) = ker(d').

According to Corollary 3.6, H'(Xg,q; F) = Ci(Xo; F) = (ﬁi,ﬁj) and H'(X1,q;F) = C1(X; F) =
(\7]-, U,). By definition of the cohomology Gassner invariant, the map & : HY(X,q; F) — HY(Xo,q; F)

is given by

t. -~
t].—il it
L U .+U.; -
_t]'Tl i+ i —

> —7 Ui

Nl
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and the map 1 :HY(X,q; F) — HY(X;; F) is given by

LT 17

i 1T 7

(ad ——fji

1
~ 1
] t]'—l

b 1 1 0

t; 1

t]'—l tj—l

respectively. Thus, the cohomology Gassner invariant of the over-crossing is

Ge()

-
—_
o
—
-
o *
s

|

t; 1
ti— T -1 0 1
tj—

1 ]
[
5 &
1 0

30

where i is the label (colour) of the over strand and j is the label of the under strand. Note that with the

strands indexed at the bottom, the two strands participating in a crossing corresponding to o; may have

arbitrary indices, depending on the permutation induced by the braids below the level of that crossing.

Taking the inverse of G.(*A) gives the cohomology Gassner invariant of the under-crossing X. That is

3.3 The Homology and the reduced homology Gassner invariant

In this section, we present the homological definition of the Gassner invariant and explore its relationship

with the cohomology version. We provide several examples to illustrate these concepts and provide formulas

for this invariant. Additionally, we demonstrate that the homology Gassner invariant is equivalent to the

reduced homology Gassner invariant.

Lemma 3.9 (Homology version of Lemma 3.2). Let (X, W) be a pair of path connected cell complexes and

€ : 111(X,x9) = Z" a homomorphism. Consider the corresponding local coefficients F on the pair (X, W).

Suppose the inclusion of W in X induces an isomorphism on homology with (untwisted) Q coefficients. Then

H.(X,W;F) =0.
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Proof. Let (C.(X, W), d) denote the cellular chain complex with coefficients in Q for the pair (X, W) and let
(C.(X, W), 5) denote the cellular chain complex also with Q of the covering space determined by the map
€ : 11(X,x9) — Z". Fix lifts of the cells of (X, W) to (X, W) to get a free F-basis of C,(X, W) by using

Lemma 2.6.

Since the inclusion W < X induces an isomorphism on homology by then hypothesis, then C,(X, W)
is acyclic. It follows that there exists a chain contraction s : C,(X, W) — C*(}?, W); s is a map of degree 1

satisfying d,,, 15, +5,_19,, = Id.

Using the F -free basis for C*()?, W) and the formula for 04415y +5,-19,, = Id, define a chain homotopy
S C*(X, W) - C,,(X, W) if s(e) = }_q;; then define s(e) = }_q;7; where ¢, y; are the chosen lifts of e, ;.
i i

O = §n+1?n +§1_1§; is a chain map whose matrix in the chosen basis augments to the identity map; if
a:F — Q is the augmentation f; > 1, then a(®) = Id is the identity map. The induced chain homotopy
on the chain complex C,(X, W) ®7[n, (X,xp)] & 18 @ chain homotopy from @, to 0. Thus, P, induces the zero
map on the homology H,(X, W;F). @, is an isomorphism since a(®,) = Id. This implies the zero map is
also an isomorphism. It follows that the homology, H, (X, W; F), of C,(X, W) ®7[n, (X,x)] F 18 0. O

Lemma 3.10. Let L be an (n+1)-string link and let X = (D2 x [0, 1])—L. Also, let X and X be the subspaces
of X described above. Then

1. Hi(Xg; F)= F"=H(X;F) and H{ (Xo, q; F) =~ Fr+l = H,(Xy,q;F), where q = x.

2. Letij: Xj <> X be the inclusion maps for j = 0,1. Then 1. : H{(X}; F) — Hy(X; F) is an isomorphism
forj=0,1. Also, 1;, : H; (Xj,q;f) — H;(X, 143 F) forj = 0,1 is an isomorphism, wherel, = {g}x[0,1].

n
Proof. 1. The subspace X, deformation retracts to the wedge product W = \/ S! of n+ 1 copies of S',

i=0
which has a cell structure consisting of one 0-cell denoted q and n + 1 1-cells u, for k = 0,1,...n.
The fundamental group 7t;(W,q) of W is the free group generated by the loops {u;};_, and the
abelianisation map € : 71 (W, q) — ( ug);_, sends each generator uy to its corresponding t. Thus by

Proposition 2.6, we have a cellular chain complex

—_— 92 ford al > a0
C*(XO;Z) = 0—)C1 (Xo,Z)—>C0(X0,Z)—>O

Fixing 11y, note that the kernel, ker d;, of d; is spanned by {(to - 1u;—(t; - l)ﬁo};l and image of
n

d, is {0}. Hence H;(Xo; F) = ((to - 1)u; —(tj - 1)%>] | = F", where i is the lift of uy.
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Also, For the pair (X, q), there is an associated long exact sequence,

0 —— Hl(q,f) e Hl(X();]:) e HI(X();q;]:) j

[‘> Hy(q; F) — Ho(Xo; F) —— Ho(Xo,¢; F) — ...,

which reduces to 0 — 0 — H;(X(; F) — H{(Xo,9,F) — Ho(q, F) > 0 > H{(Xo,q; F) — ---, since
the homology groups H;(q; F) and Hy(X;F) are isomorphic to 0. It follows that H; (Xg,q; F) =
H,(Xo; F)® Hy(q, F) = F"*1, since 0 — 0 — H,(Xg; F) — H(Xo,q,F) — Hy(q,F) — 0 is an

exact sequence of vector spaces.

2. The inclusions 1; : X; <> X 1; : (Xj,q) <> (X,],) satisfy the hypothesis of Lemma 3.9, since the

)

inclusion map of 1; : X; — X induces the isomorphism H;(X;;Q) = H;(X;Q) = Q™. Thus, the

maps

Liy Liy
Hy(Xj; F)——H,(X; F) and H; (X;, q; F)——H, (X, 1; F)

are isomorphisms for j = 0,1. Here, we use the same argument in the proof of Part 2 of Lemma 3.3,

replacing the long exact sequence with the homology version.

The proof of Lemma 3.10 leads to the following definitions.
Definition 3.11. To a string link L assign the map

1

G(L) : Hy (Xo, p3 F)—2os Hy (X, L F)—2s Hy (X4, p; F).

p’

This is called the homology Gassner invariant of L.
Definition 3.12. To a string link L assign the map
-1

GI(L) : Hy (Xo F)— s H, (X; F)— s Hy (X, F).

This is called the reduced homology Gassner invariant of L.

Remark 3.13. Let L be an n + 1 string link with the initial points of the strands indexed 0 through n from

left to right. The endpoints are also, indexed likewise. Note that the permutation induced by the string link

is not the same as the indexing at the endpoints. Let X = (D? x [0,1]) — L be the complement of L. Then

the relative homology groups H; (X, I,; F), Hi(Xo,q; F) and H; (X1, q; F) are vector spaces over the field

F. If we fix the set {x;};_, indexed from 0 through 7 and identify the basis of each of the vector spaces

with this set, then the vectors spaces are isomorphic to F{xg, x1,:--,%,). Likewise the homology groups

Hy(X;F),H1(Xy; F) and Hy(Xy; F) are vector spaces over the field F isomorphic to F{xy,---, x,).
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ker(an)
im(dye1)’

Fact 3.14. In homology groups H,,(X) = elements in the image im(0,,,1) are taken to be the zero

equivalence class [0] € H,,(X).

Example 3.15 (Homology Gassner invariant). We compute the homology Gassner invariant of the string
link, L; in Figure 3.2; it has 3 crossing ¢y, ¢, and c3. Let X = (Dz x [0, 1]) —L; and let Y be the deformation

retract of the complement X with cells in Figure 3.3 and Figure 3.4.

Let Y be the covering space of Y determined by € : 111(X,q) — (to,t1), where g = x(. The relative
chain groups are given as follows. Notice that C;(g) = 0 for i = 0, Ci(Y) = 0 for i # 0,1,2. The non-
zero chain groups are Co(Y32Z) = Co(GZ) = (§), C1(Y3Z) = (i, 1,710, 90, 01), Ca(V5Z) = (21,8, 3).
So, the relative chain groups are Cy(Y,p; F) = CO(Y;Z)/CO(ﬁ;Z) =0,Ci(Y,p; F) = C(Y;2)/C (pZ) =
C1(Y;7Z), CY,p; F) = CZ(?;Z)/CZ(’ﬁ; 7) = Cy(Y;Z). Thus, it suffices to compute the relative homology

groups using the chain complex

— 0 —~ J
0 — Cy(Y;Z) —=— C,(Y;Z) ——0.

The kernel of d, is kerd, = C,(Y;Z) = (iiy, 11,Z1,0, 9,91 ) The lift € of the 2-cell ¢; can be view as a

square (see Figure 3.5) whose boundary is of the form (1 — €(b;))a; + €(a;)b; — ;. Thus, the image of d, is
(92(€1),92(€2), d5(e3)), where

dr(e1) = (L—to)vy +titig =721,
da(ey) = (L—ty)z1,0+toty — 71, (3.3)
da(e3) = (L—to)ug+toVp—21,0-

Since linear combinations of the generators of ker d; can be formed, we can rewrite the kernel as

ker d = (up, d5(€3),21,0, d2(€3), d2(€1)). So, the quotient Hy (Y, p; F) is given as

(o, d2(€3),21,0, 92(€3), d2(€1))
(d2(€1),02(€2), 91(e3))

(i19,21,0)-

H(Y,p;F) =

Thus, Hy (X, I; F) = Hi(Y,p; F) = (ug,21,0)- The twice punctured disk X, deformation retracts to the
wedge product of two circles. So, the relative chain groups are C;(Xg,p;F) = 0 for all i except for i =
1, where C, (X, p; F) = C1(X0;Z)/C1(§,Z) = C1(Xo;Z)/0 = C1(Xo;Z) = (ig, ;). The relative chain
complex for X, can therefore be taken as 0 — C; ()?O;Z)—LO. So, the relative homology H; (X, g; F) of
the pair (Xg,q) is

Hy(Xo,q;F) = ker dy = (g, 1y ).
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Similarly, the relative homology H; (X1, g; F) of the pair (X1,9) is
Hy(Xy,¢; F) = ker dy = (v, v1).

According to the definition of the Gassner invariant in Definition 3.11, we need to find the isomorphisms
too : Hi(Xo, ; F) = Hi(X,I;F) and 1} : Hy(X,15;F) — Hy(Xy,4; F). Define 1o, : Hy(Xo, 4; F) —

Hy(X,I;;F) as follows. Since H (X, I,; F) = Hi (Y, p; F) = (g, Z1,0), map the generator iy to up. Next,

q’
we need to map the generator % to a linear combination of 1y and Z; . Using Fact 3.14, and eliminating

V7 from the first two equations of Equation 3.3, we obtain u; = ol :()171)’14“0 + totgl(zotﬂz)tlﬂzvlro. Since g, is an
. . —~ H o~ | toh—to—t =
inclusion, then map #; to to(tol_l)uo + Otol(toﬂl)‘ Z1,0- So, define g, : Hi(Xo,q; F) — H1(X,1;; F) by

Uy U

Low ©
0 51 Oy foflffO*flfi
to(to—1) "0 " Ttg(tp—1) “L0

Next, define LL}  Hy(X, Iq;]:) — Hy(X1,q;F) as follows. Using Fact 3.14, and eliminating Z; ¢ from the

first and last equations of Equation 3.3, we get uy = i +tt°1_1 Vo + to’:f;ll_l vy1. Similarly, eliminating 1, from

_+\2
the same equations, we get Z o = toiottll_l vy — t(olﬂtloll v1. Define lI*l CH (X, I3 F) — Hi(Xq,q; F) as

~ to ~ to—l ~
1 o P fFr1 Yot rn-1vl
L toty o~ _ (1—t0)27
21,0 to+fi—1°0 7 fovf—1 71

Then, the homology Gassner invariant is given by

~ to ~ tg-1 ~
o U = fort 1 V0t i1 Y1
Le D00« -y _ b(t=1) o | 2ttg—toh —1 o

U fott;—1 Y0 foth—1 V1

From computations above, the vector spaces are Hy (X, I;; F) = (up,z1,0), H1(Xo,4; F) = (uip, u1) and

H,(X1,9;F) = (Vg,v1). So, referring to Remark 3.13, we make the following identifications

Uy <« X, Uy «— X, Ty >  Xp,

s ’

71,0 «— X U «<— x v /™ X

respectively. With this identification, the homology Gassner invariant, G, (L) : Hy (X, q; F) = H1 (X1, ; F)

is given by
to to—1
g (L ) . X0 = to+t;—1 Xo + to+t—1 X1
hAE1) t(t-1) 2 +tg—toty=1 .’
xl l’0+t1—1 0 t0+t1—1 xl
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with a matrix representation
to h(h=1)

g (L) — to+t;—1 to+t—1
h to—1 2t +tg—tot;—1
t0+t1—1 t0+t1—1

This is the end of the example.

Example 3.16 (Reduced homology Gassner invariant). In this example, we compute the reduced homology

Gassner invariant of the string link L’ in Figure 3.8. This string link is similar to the string link in Figure 3.2,

UOA 7)1 7}2 A
- | — - | — - | —
1
c3 — )~
S
- | — - — - | —
u() uq u9

. . . . 7
Figure 3.8: A 3-component string link L]

except that it has a free strand to the left. The string link has 3 crossings c¢1, ¢, and ¢3. Let X = (D2 x[0,1 ])—
L7 and let Y be the deformation retract of the complement X with cells in Figure 3.9. These cells are similar

to the cells in Figure 3.5.

\ u() \
(a) 1-cell of the free strand. (b) 2-cell at ¢y . (c) 2-cell at cj. (d) 2-cell at c3.

Figure 3.9: Cells of the deformation retract Y.

Let Y be the covering space of Y determined by € : 111(X,q) — (to,t1,t;), where q = xg. The cellular

chain complex of Y is

~ d ~ 0 —
0> Cy(Y;2Z) —2 C1(Y;Z) —— Co(Y;Z) — 0,

where the chain groups are are

Co(Y;Z)=(q), Ci(Y;Z) =il 10, 12,21,1,91,72) ,Ca(Y3Z) = (21,8,,3).

Fixing 1, the kernel of d; is

ker dy = (71,72, C1, P1. B2,
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where

71 = (to—1Duy—(t —1)up,
V2 = (to—1)up—(t2 - 1)y,
G o= (to—1)Z,1 - (t - )i,
Bi = (to—1)7 —(t; — )i
By = (to—1)Ta—(t,— 1)

Using Figure 3.5 with a some slight modification, the image of 0, is {d,(€}), d2(€3), d»(€3)), where

dyfer) = (I-t)vp+ti -2z, = —17/ tollcl to )
— _ — T

hie) = (A-bz+hib-1 = -7 1C1 to—l B> (34)
— L _nly h o7

dy(es) = (I-t)p+Hv1-21, = —¢F371- t071 G- 1hr-

Since the generators for the image of d, can be written as linear combinations of the generators ker d1, then

we can rewrite the kernel as ker dy = ()1, d,(€3), {1, d2(€3), d2(€1)). So, the quotient Hy (Y, F) is given as

(71,92(82), C1,94(@3), 92(e1))
<€z(’€“1 ), 92(€2), 92(€3))
<)’711C1 >

H{(Y,F)

Next, fixing 1 and referring to the computations of Lemma 3.10, the first homology with local coefficients
of Xg is Hy(Xo; F) = (73, 72). Similarly, fixing vo, Hy (Xy; F) = (B1, B2), where By = (tg - 1)v1 — (1 = 1)7p
and B, = (t = 1)7 — (t, — 1)7p.

Using Fact 3.14, and eliminating f, from the first two equations of Equation 3.4, we obtain y, =

tr tita—ti—ty 7~ fy o~ | hiy-ti—bh~
TSy R C;. Since 1, is an inclusion, then map ¥, to e A TSy C1- So, define 1,

by
o 71
titry—t1 —t) &

Lo ¢ ~ t
V2 = t117/1+t1t11C1

Next, define LLI :H{(X; F) = Hi(Xq;F) as follows. Using Fact 3.14, and eliminating a from the first and

|51 /3 t1—1
t1+tp—-1 1 t+tr—

equations, we get Gy =l /51 (h-1)? /32 Define ll* H{(X;F)— H{(Xy,F) by

t+tr— 1 t+tr— 1

last equations of Equation 3.4, we get )71 = T EZ Similarly, eliminating ; from the same

~ 151 -1 5
-1. 71 = ty+ip— 1/51 ty+ip— 1ﬁ2

= tty (t;-1)2
Cl = t+ir— lﬁl ty+tr— lﬁz
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Then, the reduced homology Gassner invariant is given by

=~ 151 s -1 %
171 ol . 7/1 = t1+t2—1 ﬁl + t1+t2—1 ﬁz
1+ 0« ~ tz(tz—l)g + 2t)+t—tytr—1 E
y2 ti+tp—1 1 t+tp—1

From computations above, the vector spaces are H1 (X; F) = (y1,C1), H1(Xo; F) = (¥1, V2)and H (X1, q; F) =

(f;’l, ﬁ~2). So, referring to Remark 3.13, we make the following identifications

V1 e xo V1 o xo i «— xo
’ ’

G «— x Y2 — xi o «— x;

respectively. The reduced homology Gassner invariant, Gj (L)) : H (Xo; F) — H; (Xy; F) is given by

1 t1—1
G X1 = P R B ey )
UA TS X to(tr—1) 2yt —titp=1 7
2 t+ty—1 1 t+ty-1

with a matrix representation

tl—l 2t2+t1—t1 tz—l
ti+ip—1 t+ty-1

t tz(l‘z—l)
g;’,(Li/) — t1+t2—1 t1+t2—1 .
This is the end of the example.

Example 3.17 (Homology Gassner invariant for an over-crossing). Let X = (D?x[0, 1])—>Z be the complement
of the over-crossing in Figure 3.6, with a deformation retract Y in Figure 3.6b. The covering space Y of Y

is determined by € : 71 (X, q) — (t;, {;), where g = xq. The relative chain groups of the pair (Y, g) are

Co(Y,q; F) Co(Y;Z)/Co(B3Z) = 0

CY,¢F) = CUY;2)/C(H:2) =C(Y;Z)
C(Y,q:F) = CoY;2)/Co(p;2) = Co(Y;Z),

since C1(p;Z) = C»(p;Z) = 0, and C;(Y,q; F) = 0 for i > 2. So, it suffices to consider the chain complex
0— Cz(Y;Z)i)Cl(Y;Z)a—lw, where C,(Y;Z) = (¢y and C;(Y;Z) = (u;,uj,vj). By Description 2.13,
the image of ¢ under 0 is (1 - t;)u; + t;v; — 1. The kernel of d; is kerd; = C; (Y; F). So, the quotient of
the kernel by the image is H; (Y, q; F) = kerdy (u;, u;). Hence Hy (X, I F) = (uj, u).

md,
X deformation retracts to the wedge product of two circles. So, the relative chain groups are C; (X, p; F) =
0 for all 7 except for i = 1, where C;(Xg,p; F) = Cl()?o;Z)/Cl (9.2) = C; (XO;Z) = (u;, u;). The relative
chain complex for X, can therefore be taken as 0 — C; (Xy; Z)—a—l—>0. So, the relative homology H; (X, 4; F)
of the pair (X, q) is
Hy(Xo,¢;F) = ker dy = (i, ).
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Similarly, the relative homology H; (X1, g; F) of the pair (X1,9) is

Hy(Xy,q;F) = ker dy = (v, ;).

Next, define the isomorphism 1, : Hy(Xo,q; F) — H1(X,q; F) by

lzlz'l—>f1:[i

1/[]' [ Ll]'
By Fact 3.14, note that 0 = d,(¢). So, define the isomorphism tLl tHy (X, I3 F) — Hi(X1,q; F) by

-1 uj = iIl

i

= 50+ (1= 1)

From computations above, the vector spaces are Hy (X, I;; F) = (u;, ), Hy (Xo, 4; F) = (u;, u;) and Hy (X, ; F) =
(v}, vi). The homology Gassner invariant G, (1) = tLl o1 : H1(Xo,q;F) = H1(Xy,q;F) of the over-

crossing is therefore given by
Gn(A):q >

which is represented by a matrix as

0 t;
, (3.5)
tj]

where i is the label of the over strand and j is the label of the under strand.
The homology Gassner invariant of the under crossing X is computed similarly. It has a matrix representation

41 1]
. (3.6)

ti
1
i 0

Gr(N) =

Example 3.18 (Reduced homology Gassner invariant ). In the previous example, we computed the homology
Gassner invariant of an over-crossing. In this example, we compute the reduced homology Gassner invariant
of the over-crossing with a free strand on the left. Let L, denote this over-crossing. The deformation retract
Y of the complement X = (D? x [0,1]) - L. has cell structure in Figure 3.10b and Figure 3.10. The covering

space Y of Y is determined by € : (my, g) — (to, t;,t;). The cellular chain complex of Y is
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b
1o \
(a) An over-crossing with (b) 1-cell at the free stand
a free stand on the left. on the left. (c) 2-cell structure.

Figure 3.10: An over-crossing with cell structure for Y.
where Co(Y;Z) = (@), C1(Y;Z) = (i, 1;,1;,7;) ,Cy(Y;Z) = (¢). Fixing iy, the kernel of oy is
ker 31 = <’)’7;; %;B}%

where

yi = (to- 1)~ (t; - )i,
Vi = (to—1)uj—(tj—1)up,
Bi = (to—1)7;—(t—1)i

— — 1=t _ ~
By Description 2.13, the image of e under d; is (1 —#;)u; +;7; - ui;. Note also that d,(¢) = to—_i)/,- + B

%%177] So, the quotient of the kernel by the image is H,(X; F) = Hy (Y;F) = (¥;, 7j)-

Next, fixing u( and referring to the computations of Lemma 3.10, the first homology with local coefficients
of X is Hy (Xo; F) = (7, 7;). Similarly, fixing vy = ug, Hy (X1; F) = (B}, Bi), where f; = (to—1)7;—(t;— 1)y
and B = (to = 1)T; = (t; = Do = 7.

By Fact 3.14,

which implies 7; = tiFj +(1-t)yi.

Finally, from the above computations, define the isomorphism 1, : H;(Xo; F) — H{(X; F) by

and the isomorphism lLl tH{(X; F) > Hi(Xq;F) by
B R ¢
PRER N _
Vi o tpi+r (1=t

From computations above, the vector spaces with ordered bases are Hy(X;F) = (¥, ;) H1(Xo; F) =
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(Vi,7j) and H (X1 F) = (B;,/Z) The reduced homology Gassner invariant G, = ti} ol Hi(Xg; F) —
Hy(Xy;F) of the over-crossing is therefore given by
5 5
Gr ( | ) : Vi Vi )

i e B+ (-7

with a matrix representation given by

0
Gi(17)= 1 1-t)
]

Example 3.19 (Reduced homology Gassner invariant). Let L{” be the string link in Figure 3.11; it has 3
crossing cq,¢, and ¢3. Let X = (D2 x [0, 1]) —L{” and let Y be the deformation retract of the complement

X with cells in Figure 3.12.

’UO 1}1 A 1)21;
- | — - | — - | —
‘1
21,0
c3 — )
€
- [ — - | — - | —
’ILO ul u2

Figure 3.11: A 3-component string link.

/UZ«

Lo N

(a) 2-cell at ¢y . (b) 2-cell at c5. (c) 2-cell at c3. (d) 1-cell of the free strand.

Figure 3.12: Cells of the deformation retract Y.

Let Y be the covering space of Y determined by € : 1t1(X, q) — (to, t1,t,), where q = xg. The cellular
chain complex of Y is

~ d ~ 0 —
0> Co(Y;Z) —— C,(Y;Z) —— Co(Y;Z) — 0,

where the chain groups are are
Co(V32) =(@), C1(Y;Z) = (o, 0y, 182, 21,0, 00, 71) Co(Y3Z) = (1,8, 83).

We are interested in the first homology with local coefficients and the computation is as follows. The image
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of w, € {uly, 11, 1,,21 9, Vo, V1 } under the map d; is dy (w,) = (t, — 1)g. Thus the kernel of d; is

ker 91 = (71,72, Co, Pos P1)»

where

1= (to—1)uy —(f — 1)y,
V2 = (to—1)uy— (= 1)ip,
Co = Zyo-1i,
Po = To-iio
Bi = (to=1)71~(t ~ D)l

Using Figure 3.5, the image of d, is (d,(€1), d»(€3), d»(€3)), where

(@) = (I-t))v+tipg—2z10 = Co—p
02(@) = (I-t)Zg+tom -v1 = pgy+(1-h)Co- 1B 3.7)
dy(ez) = (L—to)ug+tevo—21,0 = Co+topPo

Using Equation 3.7, we can rewrite the kernel of d| as ker dy = ( d»(€3), 2, o, d2(€3), d2(€1)). It follows
that Hy (X; F) = H1(Y;F) = (y2, Co)

Next, fixing u( and referring to the computations of Lemma 3.10, the first homology with local coefficients
of Xg is Hy(Xo; F) = (71, 7). Similarly, fixing v, Hy (X1; F) = (Iy, 1), where I = (to — 1)7; — (t; — 1)7,
and I, = (t — 1)ils — (t; — 1)7p, noting that 1 = v,.

By Fact 3.14, the equivalence classes [0], [d2(€71)], [d2(€2)], [d2(€3)] are equal. Using the first two equations

2+t0t1 to— th
0-

of Equation 3.7, we have y; = Recall from Lemma 3.10 that the induced maps

Hy (Xo3 F)—2s Hy (X; F)e—2—Hy (X1 F)

are isomorphisms. Let fy = 1y, and f; = 11,. Define iy, by

7'7'1 — 2+t0t1 to— th

V2 > 7

Low ¢

Again, using Fact 3.14, we have I; = f; — (t; — 1)y = t°+tt—11C and I, = Yo —(ty—1)By = 7 + 2= 1C0
Define fl_l as

~ O N
1) 72 P lz—tofﬁll

tO T
Co P gmoTh
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The composition ti} oo, : Hi(Xo; F) = Hi(X; F) is

~ 2+tot1—tg—t1 7
= to+ty -1 ll

ll* O lpy -

=

V2 = h-ggh

. . e x>
Finally, referring to Remark 3.13, we make the following identifications: . The

Y2 = x «— (

reduced homology Gassner invariant of L{” is therefore given as

2+t0t1—t0—t1
X1 fotfi—1 X1

Gr(LY) =17t o, (3.8)

t)—1
Xy = X2——t0+t1_1X1.

This is the end of the example.

We have seen some examples of how to compute the Gassner and reduced Gassner invariant using
homology with local coefficients in /. The homology Gassner invariant of the string link L, in Example 3.15
and the reduced homology Gassner invariant of the string link L]" in Example 3.16 are the equal. Likewise,
the homology Gassner invariant of the over-crossing >X in Example 3.17 and the reduced homology Gassner
invariant of the over-crossing | X in Example 3.18 are the equal. However, the reduced homology Gassner
invariant of the string link L]” in Example 3.19 and the reduced homology Gassner invariant of the string
link L}” in Example 3.19 are not equal, and certainly not equal to the homology Gassner invariant of the

string link L,. Let L,, represent the m-component string link in Figure 3.13a and L, be the string link

b{
h

(b) m + 1-component string link,
(a) m-component string link, L,,,. Lyy1-

Figure 3.13: An m-component string link with a free strand on the left.

L,, with a free strand added to the left as in Figure 3.13b. Then, one can observe from the examples that the
homology Gassner invariant Gj,(L,,) of L,, and the reduced homology Gassner invariant G} (L,,.1) of L1

are equivalent in appropriate basis.

Lemma 3.20. The homology and reduced homology Gassner invariants Gy,(L,,) and G, (L,,,1) are equivalent

in appropriate bases.
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Proof. The addition of a strand to the leftmost side of the string link L,, results in the string link L, ;.

Consequently, the homology Gassner invariant of L,,,; (see Figure 3.13b) is the (m + 1) x (m + 1) matrix of

the form
1 0 O
0
gh(Lm)
0

But the reduced homology Gassner invariant G; (L,41) of L, is the m x m matrix corresponding to the

block matrix G (L,,) of the matrix above in appropriate basis. The lemma follows. O

Based on the lemma above, the reduced homology Gassner invariant of a string link or braid with a free
strand on the left is equivalent to the homology Gassner invariant of the string link or braid without the
free strand in appropriate basis. From now on, all string links will have a free strand to the left, as shown
in Figure 3.13b. If there is no free strand, it will be assumed. The reduced homology Gassner invariant G;

of such string links or braids will be referred to as the homology Gassner invariant.

Remark 3.21. We have computed the cohomology and homology Gassner invariants G, and Gy, of some

string links including the over-crossing and under-crossing. In Example 3.8 and Example 3.17 we computed

41 0t
G.C=| "t and Gy () = '

10 1 1-t

1
ti

for the over-crossing and under-crossing. But note that G;,(*X) is the inverse transpose of G.(*A). That is,
Gn(*) = (G.C2)~1)//m' We deduce that G, = (G-1)//m!, meaning that the homology Gassner invariant and

the cohomology Gassner invariant are inverse transpose of each other in appropriate basis.

We have already seen from Definition 2.8(3) that n-braids form the braid group B, with generators
0j,1=1,2,---,n—1; where o; is the over-crossing in Figure 3.14 below and p is a transposition, that is, the
permutation that permutes i and i+ 1, and fixes everything else. Recall from Remark 2.14 that p permutes the

set of labels (colours) T ={0,1,---,n}. Let T[k] be the label (colour) at position k in T. From Example 3.18,

0 i—1 i i+1 i+2 n
0 i—1 g i+1  i+2 n

Figure 3.14: Braid generator oj.

one can deduce that the homology Gassner invariant Gy, (0;) : F(x1,---,%,) = F{(x1,--+,x,) of 0}, is given
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by
Xi Xit+1
Gn(0i) 14 xip1 tT[i]xi+(1_tT[i+1])xi+1 ,

Xk = Xfes kii,i+1

The matrix representation of Gy (o;) is the n x n identity matrix with its 2 x 2 block at rows i and i + 1 and
. . 0 230
columns i and i + 1 replaced by
L 1 —=tr(iv
gives the cohomology Gassner invariant of o; :

. . 0 A
. Taking the inverse transpose of Gj,(0;) =
L 1 —=trjis

frieg-1 1
i 1

gc(o'i): T[i] Tlil |,
1 0

Recall from Remark 2.10 that there is a multiplication on coloured string links. The following lemma

shows that the homology Gassner invariant is multiplicative considering when coloured string links.

Lemma 3.22. Let L be a string link. The assignment Gy, : L v+ Gy,(L) is multiplicative under the multiplication

of labeled string links obtained by stacking one above the other: Gy, (L1L,) = G,(L1)Gy(L,).

Proof. Let L = Ly L, be the product of two # coloured string links L1 and L, such that L, stacks appropriately
on L;. We have G (L) = 17" 19(L). Also, G,(L;) = x'1o(Ly) and Gy(L,) = 17" (L,). It follow that

Gu(L) = i7'i(L)
= qlkkflto(L)
= (L)l ig(Ly)

= Gn(L2)Gu(Ly).
O

The spaces X and X are canonically identified via the homeomorphism (x, 0) — (x, 1). This homeomorphism
induces an isomorphism H;(Xy; F) = H;(Xy;F). By Remark 2.10, it follows that the reduced homology

Gassner invariant restricts to a homomorphism
G, : PSL, — GL(H(X¢;F)) = GL,,_; (F)

on the semi group, PSL,, of pure string links on #n + 1 strands called the reduced homology Gassner

representation.
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3.4 (Co)homology Gassner invariant and the Gassner representation

Recall the Gassner representations discussed in [BN14] and [Knu04] and the relation between them. In
this section we establish the connection between the (co)homology Gassner invariant and the Gassner

representation in [Knu04]. The relation is as follows.

By Remark 3.21, we have G.(}%) = (G,(*%)~1)//m*. That is,
ti—1 1 -1
[]T t_r - [O ti //mt

Also, notice that

t—1
1—t ¢t t. o)f[Z— L)1 o
] it £ ti ) // (tk — l) (3.9)
1 0] (o )1 ofJfo ! I

Recall the construction of the Gassner representation in [BN14]: Let f be a formal variable and let

U;(t) = U,.;(t) denote the nx n identity matrix with its 2 x 2 block at rows i and i + 1 and column i and i + 1

1-t 1 1-t 1
]. Transposing [ and replacing 1 —f and ¢ with 1 -1; and f; respectively
0

t

replaced by [
t

1-t;
yields the matrix in Equation 3.9: [ / l].
1 0

Let I};,(0;) be the n x n identity matrix with its 2 x 2 block at rows 7 and i + 1 and columns i and i + 1

11—ty trri
replaced by [ Tlivt] 7T . Taking the inverse transpose of T, (0;) gives the n x n identity matrix with
1 0
. . . . 1
its 2 x 2 block at rows i and 7 + 1 and columns i and i + 1 replaced by L Lt |
T[i] tT[i]

Previously mentioned, each braid can be expressed as a product of braid generators. In contrast, string
links do not possess this property and require more time and space to calculate their Gassner invariant.
However, in Chapter 4, we will establish a relationship between braids and string links. This will simplify
the computation of the Gassner invariant for a string link.

0 3 2 1 0 3 2 1

N N

[2x] 92

\ N

09 _

N
K \ \/\

0 1 2 3 0 1 2 3

91

Figure 3.15: Reidemeister 3: 010707 = 0201 07.
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Figure 3.16: Reidemeister 2 moves on a string link o 1(71 =007 1—ig.

Theorem 3.23. Let § a braid. Then the assignment G, : B + G, (B) defines an invariant of labeled (n +
1) braids with values in GL,(F). It is multiplicative under the multiplication of labeled braids obtained by

stacking one above the other. Restricting to pure braids yields the reduced homology Gassner representation.

Proof. 1t suffices to show that the braid group relations, 0;0; = 0j0; and 0;0;,10; = 0,,10;0;,1, are satisfied
under the mapping G; : > G} (B). As G, : p + G (p) is multiplicative by Lemma 3.22, it is sufficient to
show that G} (0;)G} (01110} (07) = G}(0:41)G}(01)G}(01-1) and G}(0;)G}(05) = G (0,)G}(0;). But, these are

straightforward computations given below.

0 t O0)ft o o Jfo # 0O
Gi(01)G(02)G(o1) = |1 1-t5 offo 0 & |[[1 1-t o0
o 0o 1J)lo 1 1-5J)l0 o0 1
0 o0 tt
= 0 tl tl(l—t3)
1 1-t, 1-ts
1 0 o0 Yo # o)1t 0o o
Gh(02)G1(01)G(02) = o 0 & ||1 1-t;3 0olj0 O t |
01 1-t,Jl0 0 1J)l0 1 1-t
and
r( _—1\o~r tzt;l L]0 51
gh(ol )gh(ol) = !
£ o/l1 1-1
1
1 0
0 1
B 0t |2t 1
Gr(o1)Gp(o7!) = tlz :
1i-n)\ £ o0
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3.4.1 The Gassner representation for the pure braid group PBj

1 A \ " O —

3N\ /1 2 "
1 o9
1 3 2
/ ) L \
1 2 3 1 2 3 1 2 3
(a) The generator Ay 5. (b) The generator Aj 3. (c) The generator Aj 3.

Figure 3.17: Generators for the pure braid group PB3.

The pure braid group is generated by the generators {A; ,A; 3,A; 3} which satisfy the pure braid
relations in Equation 1.7 of [KT08]. Recall the Gassner representation for A; ; in Equation 1.1 (see [Knu04].

The group PBj has the the following representations for the generators:

1—t1+t1t2 tl(l—tl) 0
(A1 =] 1-1 t B
0 0 1

1—t1+f1t3 0 tl(l_tl)
[AslP =|(1-t)(1-t3) 1 (1-t)(t;—1)

1—t5 0 t
and
1 0 0
[A237 =0 1-tr+tots t2(1—1y)]-
0 1-ts t)

Next, let us consider Equation 3.9:

it
which comes from the (co)homology Gassner invariant. Let [}, (X)) = s

]. Then I, is an invariant
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since the G, is an invariant, and it assigns the same matrices to the generators of PBj3 as [—]7nt does. That is,

1—f1+t1t2 tl(l_tl) 0
I‘ch(Al,Z) = Ip(o)en(oy) = 1-¢, 15 0f,
0 0 1

1—t1+t1t3 0 tl(l—tl)
rch(Al,S) = rch(GZ)rch(gl )rch(gl )rch(02_1 :) (1 - tz)(l - t3) 1 (1 - tz)(ﬁ - 1)

1-t; 0 t
and
1 0 0
Ln(Agz) =Tp(02)ln(02) =10 1=ty + 1yt tr(1—ty) |-
0 1-t3 t)

The above shows that I[},(A; ;) = [A; j]d) for 1 <i < j < 3. Thus the (co)homology Gassner invariant, when
restricted to the pure braid group P B3 yields the Gassner representation for PB3. The following proposition

shows that the Gassner invariant yields the Gassner representation.

Proposition 3.24. Let

tTri 0 1 0 1
L) = || Gelo)| T ||/ (kat_)’
0 ftrpis) k

tr(i]

where G.(0;) = (Gu(0;)™1)//mT. ThenT,;(0;) is an invariant of string links. In particular, restricting T, to the

pure strings links yields the Gassner representation. That is [j,(A, ¢) = [A, <]

Proof. The invariance of [;, follows immediately from the invariance of the cohomology Gassner invariant.

Recall that the generator A, ; can be expressed as
— 2 1 -1 -1
Ar,s = 05-105-2""" 04107 041 " 0550 1.
According to Lemma 3.22, we have

I‘ch(Ar,s) = I‘ch(()-s—l )rch(05—2) o 'rch(ar+1 )rch(ar)rch(odr)rch(odrjrll ) toe rch(asilz)rch(g;ll )

But this is exactly [Am](f’ in Equation 1.1. The proposition follows. O



3.5. A MATHEMATICA IMPLEMENTATION OF THE HOMOLOGY GASSNER INVARIANT 49

3.5 A Mathematicaimplementation of the homology Gassner invariant

In this section, we perform computations of the homology Gassner invariant of braids using Mathematica.
We define a Mathematica function for the homology Gassner invariant of the generator o; and its inverse.
This function is then used to compute the invariant for a given braid f. Finally, we test the second and third
Reidemeister moves. A reader with Mathematica can get the notebook by clicking the following link:

GassnerlnvariantMathematicaN otebook.nb

Notations:

+ 0; is the Mathematica function representing Gassner invariant, where §; represents the generator x;
of Hy(Xy, F) and Hy(Xy,F). Here i is the position of the over strand below the horizontal level of
the crossing o;. In the case of oi’l, i is the position of the under strand instead. for an over-crossing

(positive crossing).

The function takes an argument h[T, L, ] and outputs h[p(T), L,].
« Here, the argument /[T, L] has two parameters:

i. T is the set of labels of the strands of an (1 + 1) braid.

ii. Lisan element of F{f1,...,B,) = Hy(Xo;F).
« The output h[p(T),L;] also has two parameters where

i. p(T) is a permutation of T induced by the braid.

ii. Ljisan element of F(By,...,B,) = H{(Xy;F).

« M; evaluates the matrix corresponding to o; and M; is the inverse of M;.

The code for the over-crossing: o;

i o3 [h[T_,L_11/;i>0:=h]
Permute[T,Cycles[{{i,i+1}}11,
Expand[L/. {B;—=B 1+ Bisi2tririn) Bi+(L-trrpivany) Bisrl}]
1

In[2]:= Mi_[T_] :=Table[
Coefficient[o;[h[T,B;11[[211,8,],
{j,1,Length[T]},{k,1,Length[T]}

1//Transpose


https://drive.google.com/file/d/1gLg1aEBLqLOwptO7nfAgMmhrAIvbBkpJ/view?usp=sharing
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The code for under-crossing;: Ui_l

in@3):= 03 [h[T—,L_11/;i>0:=h][

Permute[T,Cycles[{{i,i+1}}]1,
Pia , (triiin-1) B
tripien trppian

Expand[L/. {f;,—
1

:ﬁ1+1—>ﬁ1}]//5implify

in[4l= M; [T_]1:=Tablel
Coefficient[o; [h[T,ﬂj 1101211,B,1,
{j,1,Length[T]1},{k,1,Length[T]}]//Transpose

Applying the code on the braid g below

Note that the free strand labeled is not involved.

6= UQUflaQ

Here, we compute the homology Gassner invariants of the generators 07, 0y !'and 0, and multiply them

to get the homology Gassner invariant of tf3.

ni2601:= {M2[{3, 1, 2}] // MatrixForm, Mi[{1, 3, 2}] // MatrixForm, My[{1, 2, 3}] // MatrixForm}

-1ty
10 0 | |5 Y9 10 o
Out[260]= {[EJ 0 t; , 1 90|00 t ]
0 11-t, 5 01 1-t3

0 0 1)

n(261):= Ma[{3, 1, 2}1.M;[{1, 3, 2}]1.M2[{1, 2, 3}] // SimpLlify // MatrixForm
Qut[261]//MatrixForm=

[ -litg
—t3 [¢] tz
0] t -t (—l"'tfi)
L1t (-1+ty)  (-1l+t3)
t3

In Theorem 3.23, we verified that the homology Gassner invariant is indeed and invairiat of braids. We

test this result using Mathematica below.
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Testing Reidemeister 2 move

Here, we are verifying o] Loy =0y oy ! (see Figure 3.16). Note: we ignore the free strand labeled 0.
In[5]:= {h[{llz}l Xﬂl + YﬂZ]//&]_//0'1}=={h[{1,2}; xﬁl + yﬁz]//o-]_//&l}
out[5]= True

Testing Reidemeister 3 move

Finally, we test 010,01 = 0,010, (see Figure 3.15). Again, we ignore the free strand labeled 0.
infe]= {h[{1,2,3}, xB, + yB,+ 2B31//01//0,//01}=={h[{1,2,3}, xB,+ Y+ zP31//0,2//01//03}

out[6]= True



Chapter 4

Flying Cars and The Gassner invariant

4.1 Summary of Chapter

In [BNa], the author explores the concept of cars, which involves assigning a (211 + 1) x (2n + 1) matrix
to a long knot with # crossings. This chapter introduces the concept of flying cars (see Definition 4.1), a
modification of the one discussed in the cited work above. Flying cars involve assigning an #n x # matrix to
an n+1 string link or braid, where the leftmost strand is always free. It is demonstrated that this assignment
serves as an invariant of string links and is connected to the homology Gassner invariant. Furthermore, the
stitching operation is defined to establish a relationship between string links and braids. Finally, examples

are provided to illustrate this concept.

4.2 String Links and Flying Cars, Bridges and Traffic Counters

In this section, we give the definition of flying cars, which a modified version of the car concept in
[BNa]. This is based on a "probabilistic" interpretation of the Burau representation for string discussed in
[LTW96]. This is further extended to give a similar interpretation of the Gassner representation in Section

8 of [KLW98]. We also discuss an invariant flying cars assign to string links.

A flying car always moves forward along a path which has a start point i and an endpoint j. There
are bridges along the path. A traffic counter is placed at j to measure the probability P; ; of the flying car
exiting at j. A flying car flies under a bridge with an (algebraic) probability #* and, it flies up a bridge with

probability 1 — t°, where ¢ is a variable and s € {—1,+1}. Let x be the set of all possible paths from i to j.

52
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Then the probability of starting at i and ending at j is

=) | [prob),
b

PEX
where
£ flying car flies under at bridge b
1-1t* flying car flies up at bridge b
prob(b) =
1 flying car flies over at bridge b
0 flying car flies down at bridge b

Relating this to labeled string links, the oriented strands are the path along which flying cars move and
the crossings represent the bridges. Here we keep track of the labeled strand a flying car is on. Let L
be an (n + 1)-string link, T = {0,1,---,n} be the labels of the strands of L, and T’ = T — {0}. Let F’ be

Q({tx : k € T’}), the field of rational functions in the variables t;, where k € T".

Definition 4.1 (Flying cars on string links). Flying cars start at the bottom and move forward along the
strands of L to the top. A flying car starts at the initial point g; x {0} € X of the strand labeled i € T” and
exits at the endpoint q; x {1} € X; of the strand labeled j € T'. Let x be the set of all possible paths of the
flying car starting at g; x {0} and ending at q; x {1}. Then the algebraic probability of the flying car starting
at g; x {0} and ending at q; x {1} is given by

=Y [ orobtc)

peEx ¢

where prob(c) is the probability measured after moving past a crossing ¢ defined as follows:

ty flying car flies under at bridge ¢

1-t; flying car flies up at bridge c
prob(c) = ,
1 flying car flies over at bridge ¢

0 flying car flies down at bridge ¢

where k € T’ is the label of the over strand at crossing ¢ and s € {-1,+1}.

Let Matp7/(F’) be the collection of n x n labeled matrices with rows and columns labeled by T".

Let C denote a flying car. Define the map C : SL,, — Mr.7/(F’) by assigning a labeled (1 + 1)-string link

P ] .
’ i,jeT’

where P, ; is the probability of the flying car C starting at q; x {0} and exiting at g; x {1}.

L € SL,, the n x n matrix

Notice that we ignore the free strand labeled 0, so the matrix C(L) does not include #(. This allows us
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to relate the flying car concept to the homology Gassner invariant (see Section 4.3).

Let R; ; and R; ; denote an over-crossing and an under-crossing respectively where i is the label of the
over strand and j is the label the under strand. Then flying-cars assign the following matrices to R; j and

R],l

27 A
(a) Positive (b) Positive (c) Negative (d) Negative
crossing: Car starts crossing: Car starts crossing: Car starts crossing: Car starts
ati at j ati atj

Figure 4.1: Flying car starting positions

It turns out that this assignment is an invariant of braids and string links. It is sufficient to show that C

remains unchanged under the three Reidemeister moves.

i i 1
(a) Kink with a (b) Kink with a (¢) Undoing the
negative crossing positive crossing. kink.

Figure 4.2: Reidemeister 1 move: (a) and (b) are the equivalent to (c).

RM 1 Verifying invariance under Reidemeister 1 move.

(a) In Figure 4.2a, for a kink with a negative crossing, a car starts from the initial point at i. It can
either move under the bridge with probability ti’l, then move over the bridge with probability
1, and exit with probability l‘i_1 x1= ti_l, or move up the bridge at the crossing and exit with
probability 1 — tz._l. The total probability is ti_l +1- ti_1 =1, which is the same probability for

no kink in Figure 4.2c.
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(a) Type one (b) Type two )
Reidemeister 2 Reidemeister 2 ‘ J
move move. (c) Free strand

Figure 4.3: Reidemeister 2 move: (a) and (b) are the equivalent to (c).

AN
N

i J k

@I (b) IL.

Figure 4.4: Reidemeister 3 move: (a) and (b) are the equivalent.

(b) In Figure 4.2a, consider the kink with a positive crossing, where a car starts at the initial point i.
The car has two options: it can descend to the lower strand and exit with a probability of 0, or
it can move over the bridge with a probability of 1 and return to the crossing. At the crossing,
the car can move up the bridge with a probability of 1 — #; and return to the crossing. This

process can repeat with probability Z (1 —t;)¥ until it eventually moves under the bridge with

a probability of ;. The car finally exits with probability t; ): (1-t)k = tl ; = 1. Therefore,

the total probability is 1 + 0 = 1. Again, the probability is the same for no kink. This proves

invariance under Reidemeister 1 move.

RM 2 Verifying invariance under Reidemeister 2 move.

(a) In Figure 4.3b, there are four paths to consider: the paths from i toi,itoj, jtoi,and jtoj. In
each case, there are two options to consider. For instance, a car moving from i to i starts from i,
moves over strand j at the positive crossing with probability 1, then over strand j again at the
negative crossing with probability 1, and finally exits with probability 1-1 = 1. Alternatively,
the car starts at 7, descends onto strand j at the positive crossing with probability 0, then moves
up strand i again with probability 1 — ti’l, and finally exits with probability 0 - (1 — ti’l) =0.
The total probability is 1 + 0 = 1. Checking the other situations similarly, the corresponding

probabilities for the paths i to j, j to i and j to j are 0, 0 and 1 respectively. This is the same as
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the probabilities for the paths in Figure 4.3c.

(b) In Figure 4.3b, a similar situation is reached as in the case of Figure 4.3a. This proves invariance

under Reidemeister 2 move.

RM 3 Verifying invariance under Reidemeister 3 move.

In both Figure 4.4a and Figure 4.4b there are nine paths to consider: the paths from 7 to i, i to j, i to
k,jtoi,jtok,jtoj], ktoi, ktojandktok.

For instance, the path from k to j in Figure 4.4a is as follows: a car starts at k and moves under strand
i at the positive crossing with probability #;, then moves up to strand j with probability 1 —¢;, and

finally exits at j with probability #;(1 —¢;).

In the case of Figure 4.4b, there are two options: a car starts at k moves under strand j at the
first positive crossing with probability ¢;, move up onto strand i at the next positive crossing with
probability (1 — t;), descends onto strand j with probability 0, then finally exits with probability
tj(1—t;)-0 = 0. Alternatively, the car starts at k, moves up onto strand j with probability 1 —t;, then
moves under strand i with probability f;, and exits with probability #;(1 —¢;). So, the total probability
is0+t;(1- t]) =t(1- t])

In both figures, the final probability for the path k to j is t;(1 — t;). Similarly, all the other eight paths

are the same. This proves invariance under Reidemeister 3 move.

From the above demonstration of the invariance of C under the Reidemeister moves, we have established

the following proposition.

Proposition 4.2. Let L be an oriented (n + 1)-component string link. Then the assigned matrix C(L) = (B ;)

is an invariant of string links.

4.3 Flying cars and the Homology Gassner invariant.

In this section, we discuss the relation between C(L) and G, (L) of a labeled string link L. Here, L is of the
form as shown in Figure 3.13b. So, both C(L) and G} (L) do not have ¢, in all their entries. In view of this,

we have C(L), G} (L) € My 7/(F’). In Example 3.18, we computed the homology Gassner invariant of R;

QZ(R@]‘):[O " ]]-

e
and it is given by

1 1-¢;



4.3. FLYING CARS AND THE HOMOLOGY GASSNER INVARIANT. 57

We have also seen above that flying-cars assign a matrix to R; ; which is given by

1 0
C(Rij)= el
1 1

Let p.,; denote the permutation of the over-crossing and denote by m' the transposition of a matrix. The
subscript col of p.,; denotes a column permutation. Let D,, be the n x n matrix with the diagonal entries

givenby d;; =1—-1t;,1 <i <n. When n =2, then

Then, the two matrices G, (Ri,j) and C (Ri,j) are related by the formula

Gi(Rij) = (D2-C(Ryj)-Dy" ) /fpcor//m'. 4.1)

Thus, the homology Gassner invariant is given by first conjugating the matrix C(L) with D,,, followed

by a permutation of the columns and finally transposing the resulting matrix. That is

G (L) = (Dy-C(L)- Dy ) //peort/m' (4.2)

From equations, Equation 4.2 the commutative diagram below is obtained. This is useful because, given

the Gassner invariant I, one can produce the homology Gassner invariant and vice versa.

SL,

Mat,(F’) > Mat, (F’)

D:z(_)DVTl//Pcal//mt

Figure 4.5: Relation between the homology Gassner and flying cars

At the end of Chapter 3, it was verified that the homology Gassner is an invariant of braids. In this
section, we have seen that the assignment C : L + C(L) defines an invariant of labeled (n + 1) string links
with values in GL,(F); it is multiplicative under the multiplication of labeled string links obtained by
stacking one above the other. Thus, by the relation in Equation 4.2 we have verified Theorem 3.23 for string

links. This is the statement of Theorem 2.4 in [KLW98].
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4.4 Stitching operation, Braids and String links.

In this section, we define the stitching operation on string links an on the collection Matp/, /(F’), of nxn
labeled matrices. Given an (# + 1)-string link L labeled by T = {0,1,---,n}, let S,i’j :SL,,1 — SL,, be the
stitching operation defined as follows: connect the head of a strand labeled i # 0 to the tail of another
strand labeled j # 0 and relabel the resulting strand k = min{i, j} as shown in Figure 4.6. Here, we require

that i # j to avoid circle components. We will see that this operation is well defined after Definition 4.3.

Lind L
T T

Figure 4.6: The stitching operation.

4.4.1 The stitching operation and the matrix from by flying cars.
K

o— s O
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—
-
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" <.
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i
i
i
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i
i
i
—
i
i
i
—
- ~

r i) 0 r i
K (b) An n-string link after
(a) An (n + 1)-string link stitching.

Figure 4.7: The stitching operation.

The stitching operation defined above induces an operation on the collection Matp: 1/ (F’), of n x n
labeled matrices as follows: We denote the induced operation also by S,i’j .Let C(L) € Matp7/(F’) be the

labeled n x n matrix assigned the (1 + 1)-string link L in Figure 4.7a by the flying car C:

K i j
K|la b ¢
C(L) = B (4.3)
ild e
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and let

G (L) = (Dy-C(L)-D;")//pcor//m'
p(K) j i
_ K e (4.4
i 6 B «a
j| e oy

where T7 = K U {i, j}. Suppose strand i is stitched to strand j, and the resulting strand is relabeled k =

min{i, j}. Then, the stitching operation S;;'j on L yields a matrix L// S]l;’k with entries described below.

1. When starting at position i, there are two possible paths for the car to exit at position j. The first
option is to directly exit at j with a probability of P; ;. The second option is to exit j by first going
through a loop. In this case, the car exits i at the top with probability P; ;. However, as strand i is
stitched to strand j, the car needs to fly back to the bottom at j along the stitched strands. From j,
the car exits the top at i again with probability P; ;P; ;. This process may repeat with a probability
of P, lP] ;» where P* = rgl P]-”I = 5 P . However, the loop terminates when the car exits the top at j.

The resulting probability is PI’,P]»' ;P; j. Taking into account both paths, the final probability of a car

exiting the top at j, when starting at 7, is (L//m;('j)' =Lij+h ZP] ;P;,j- Referring to the matrix C(L),
ij

P,;j=p.P;=a,P,; =y, and P; = 6. Thus, (L//m;('])‘ =Brarso.

i,

2. When starting at position r, there are two possible paths for the car to exit at position s. Using the same

explanation above, the (7, s)-th entry of the matrix L// m;{’k is (L// m;] ) =P +P, ZP] ;P s- Referring
7,8
to the matrix C(L), P, s = E,, P, ; = ¢, P;; = ¥ and Pj s = €, so that (L//mk ) =E,s+ (p,ﬁes.
s

3. Again, when starting at position r, there are two possible paths for the car to exit at position j,
the same explanation above applies. The (7, j)-th entry of the matrix C(L)//m;(’k is (L//m;(’j ) =
r,
P, i +P P* ]]_111),+qbr1 :
4. Finally, when starting at position i, there are two possible paths for the car to exit at position s.
Referring to the above explanation (L//m;‘(’j )i = =P;+P ,P]*l is =05+ al —€
Let S(P; ;) denote the resulting matrix after stitching strand 7 to strand j, where P; ; is (j,1)th entry  of the

matrix Gy (L) in Equation 4.4. The dimension of S(P; ;) is (n—1) x (n — 1) and it is given by

p(K) k
S =| K| & s+¢r56 ¢,+¢,1L5 /] ti, tj >t (4.5)
k 95+a%65 [5’+a c)
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Definition 4.3. Given G, (L) € Matp/,1/(F’). Define the stitching operation, S;;’j : Matpr/(F') —

Matprrr(F”), on the collection of labeled 1 x n matrices by

p(K) j i
K| = o N p(K) k
; ; ﬁ //Sllcl] = K E'r,s +¢rﬁ€s lPr +¢rﬁ6 // ti’tj = tk’ k= min{i’j}'
k| O+ate, prar=o
j € o Yy =y =y

The stitching operation S;('] : Matpp/(F') = Matpryrr(F”) is well-defined as it maps the n x n
identity matrix to the (n—1) x (n — 1) identity matrix. In this process, we replace the block matrix E with
the corresponding identity matrix, setting @ = 6 = 1 and all other entries to zero. Note that this is done on

the corresponding matrix without the permutation operation.

The diagram below describes the induced operation. Here, m;, j is the (i,j)th entry in C(C), P, ; is
the (i, j)th entry in G} (L), T” = T’ — {max{i, j}} and 7" = Q({tx : k € T"}). Also, Matrrp»(F") is the

collection of labeled (1 — 1) x (n — 1) matrices.

st
SLy £ > SL,
c c
MatT:T/(]:’) S—;(]> MatT”:T”(]:”)
D, (-)D /) peot/ /! Dyy ()0, 4 //peor/ /!
MatT:Tf(]-") —"]> Matw:w(if ”)

Thus, given a string link L and the corresponding matrix C(L), the matrix S(P; ;) associated with stitching

strand i to strand j is computed as follows: Pick the (j, i)thentry P; ; = y of G (L) = trop., (Dn -C(L)-D;! )

Find the minor Min(P; ;), the row Row(P; ;) and the column Col(P; ;) of P;

i where ~° means omit P ;

BE
from the row and column. Then, after stitching, S(y) in Equation 4.5 can be written as

—_— —

S(P;;) = Min(P; ;) + %COZ(P]"Z') -Row(P; ). (4.6)
We have seen from Lemma 3.22 that the assignment Gj, : L — Gy, (L) is multiplicative under the multiplication
of labeled string links. So, to calculate the homology Gassner invariant QZ( B) of a coloured braid g, we
only need to compute the homology Gassner invariant of the braid generators and then combine them
appropriately to obtain G, (). However, this is not the case for string links, as G, is not generally multiplicative.

Fortunately, there is a solution to this issue: string links can be derived from braids using the stitching
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operation, and this relationship is described by the following lemma.

Lemma 4.4 ([Vo18], Lemma 6.1.). Let L be a string link. Then L can be obtained as a partial closure of some
braid 8

Proof. In a string link L, some strands may have downward arcs that connect cups and caps (see Figure 4.8),
since the strands are not required to be monotonic. We want to transform each downward arc into a stitching
of the right-most outgoing strand with the right-most incoming strand. If there are no downward arcs, then
L is a braid and there is nothing to prove. Let us assume L has strands that are not monotonic. In this case, L

can be decomposed into its basic components, consisting of over-crossings ><, under-crossings X, and cups

ANV Y,

Cap Cup Downward arc between a cap and a cup

and caps.

Figure 4.8: A downward arc connecting a cup and a cap.

Consider an arc connecting a cap and cup like the one on the right of Figure 4.8. Upward strands may

go over or under this piece like the one Figure 4.9, which can be transformed so that all downward arcs

W/

Figure 4.9: A downward arc connecting a cup and a cap with over and under strands.

have one crossing as in Figure 4.10.

aNENEN

Figure 4.10: Simplified downward arc passing under or over a single strand.

Now, consider a downward arc with a negative crossing, similar to the picture on the left of Figure 4.11

and perform the following steps.

1. Perform a Reidemeister 1 move to create a kink with a negative crossing.

2. Pull the kink to the right, passing under all other strands by performing a sequence of Reidemeister
2 and 3 moves until the picture on the right is reached. Notice that the downward arc stitches the

right-most outgoing strand to the right-most incoming strand.
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3. Repeat the two steps above until all downward strands inside the dashed rectangle as shown in

Figure 4.11 are exhausted.

'

'

Figure 4.12: Moving a downward arc passing over a strand to the right.

If there are downward arcs with a positive crossing, similar to the picture on the left of Figure 4.12,
follow the same steps as mentioned earlier. However, this time the kink should have a positive crossing
and the kink passes over all other strands when pulling to the right. Once all downward arcs have been
exhausted, you will arrive at a diagram with all upward strands inside a dashed box and all downward arcs

outside the box. This represents a partial closure of a braid as shown in Figure 4.13. Therefore, L is given

Figure 4.13: Transforming a string link L to the partial closure of a 8.

as the partial closure of a braid, which concludes the proof.

O

Example 4.5. Consider the string link L, in Figure 4.14a. On the leftmost side of Figure 4.15, the downward
arc of Ly is coloured and it goes over a strand. Referring to Figure 4.12, transform the red arc into a stitching
of the right-most outgoing strand and the right-most incoming strand, as described visually in Figure 4.15.
This will result in a partially closed braid. Specifically, when strands 1 and 3 of the braid p in Figure 4.14b

are stitched together, a different projection of Ly is obtained.
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1 2 1 2 3
(a) String link Ly (b) Braid j.

Figure 4.14: A 2-string link and a 3-braid

Figure 4.15: Transforming the 2-string link Ly to the partial closure of the braid f.

In the next example, we will show that the homology Gassner invariant of L is the same as the homology
Gassner invariant of partially closed braid . We will first compute the cohomology Gassner invariant
whose transpose is the homology Gassner invariant. Then, we will compute that invariant C(f) of the braid
B, using flying cars. Next, we will stitch strand 1 to strand 3 and rename it 1. Finally, applying the formula

in Equation 4.1 gives the homology Gassner invariant of the partially closed braid, the same for the string

S alites

Cil V9

)

7 |
€] \
4

C

1 2
Stitching Strand 1 to strand 3
Figure 4.16: Stitching strand 1 to strand 3.

The following example is help to explain the relation between braids and string links.

Example 4.6. 1. The cohomology Gassner invariant: The string link L4 has four crossings, labeled
€1,¢,c3 and ¢4 ordered according to Ordering 3.1. Let Y be the deformation retract of the complement
X = (D? x[0,1] = Lg). Using the cell structure given to the complement of a string described in

Section 2.4.1, Y has one 0-cell g = xo, six 1-cells uy,uy,21 1,2,1,7v1,7v2, and four 2-cells e}, e, e3, e4.
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The covering space Y of Y is determined by € : 7t; (X, q) — (o, t1,tp) By Proposition 2.6, the relative

chain groups of Y are

Co(Y,§:2) =
C(Y,§z) =

CY,§2z) =

Co(Y;Z2)/Co(F3Z)

01

Co(Y;2)/Co§2) = Co(Y52)/0 = (21,8, 3,2 ).

C1(Y;Z)/CL (G Z) = C(Y;Z)/0 = (T, 1, 1,1, 22,1, V1, V2 )

dl
By Lemma 3.5, the relative cohomology group H'(Y, q; F) is ker(C!(Y; F) —— C%(Y; F)), where
CYY;F) = <L71,(72,Z,1,Zz,1,\71,\72> and C*(Y;F) = (fl,fz,g3,f4). By Description 2.13, the

boundary of the 2-cells are

drer) = (-t +ti —21,
dy(e3) = (1-t))z1) +Hvp— 10y
dy(ez) = (1-t))vr+t2p1 211
dyey) = (1-t))z1) +HZp1 — 7.
So the matrix of d! is
Up(02(@1)) Ua(02(@1) Z11(02(21)  Zai(
i | U1(02(@)) Ua(02(@)) Z11(02(@)) Zaa(
matrix ~ . ~ __ ~ . —
1(02(€3))  Ua(da(€3)) Z1,1(d2(e3))  Zai(
U1(0>(@) Ux(02(€1)) Z1,1(02(€) Zai(
tt 0 -1 0 1-t 0
o -1 1-5 0 0 t
0 0 -1 t 0 1-¢
0 0 1-4 £ -1 0
The nullspace of drlnamx is
_ l—tl _—t2t1+t1+2t2—1
tyti—t1—tp tyty—t1—tp
31 t2_t§
T hit -t -t Thih-t-t
(t1i-1)f .t
b —h-f Lt —t —t,
< m-n* ' _ 1
tryty—t1—ty tyty—t1—ty
0 1
1 0
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So,
tZ11 Z1 (=taty +t; + 2t - 1)Uy (t2_t%)U2
ker(d') = (- - - - - - +V1,
fti -t -t it -t -1 tot; —t — 1 trty —t — 1
(t1=1)2Zy, +t1(t1—1)21,1_ -t tub
hti—t1—t; bHhi -t -ty bHlhi-H—-t; bHli-tH-1 2/

which is H!(Y,g; F) by Lemma 3.5. Corollary 3.6 implies H!(Xq, ; F) = C1(Xg; F) = (U;,U,) and
HY(X,,q;F) = Ci(X; F) = (V1,V,). By definition of the cohomology Gassner invariant, the map
HY(X,q;F) — HY(X,,q; F) is given by

_ tZZI,l _ ZZ,] _ (—t2t1+t1+2t2—1)U1 _ (tZ_t%)UZ + V — _(—t2t1+t1+2t2—1)U1 _ (t2_t§)U2
I tyti—t1—ty tyti—t1—ty tyt1—t1—tp trat1—t1—tp 1 tyti—t1—tp traty—t1—tp
0 (-1%Zy1 | w(h-1)Ziy  (1-t)U; /U, V. s A=tU 4l

biti—ti—ty bti=ti=ty  hti=ti=ly  bhiti—t;~t 2 bhti=ti=ty  hti=ti~1t

£ (fy=1)=2t, 41 -1
anitrepresented by the matrix tl((ttz ll)t tl(tzzl)fh . Also, the map 1] cHY(X,q; F) — HY(X;F)
2=ty 1
o ty(t=1)—t ta—t1(t2—1)
is given by
_ bZin Zyy (bbb +26-1)U; (t2-13)Us % v
oo bti—ti—ty b=t~ bt —t; =ty bt —t1 =ty 1 L.
L9} (1-12p0 | 61(hi-1)Zi  (1-)U; HhU. 7
3 1 __tl
bti—t1 =tz hh—h-f,  hh-tf  hh-h-h V2 =V
. . 1 . . .
it is represented by . The cohomology Gassner invariant of L, is therefore
0 1
t t—1
- t+ty—1 t+tp—1
L) = () =| itt2 1+t
Ge(La) = (10) (=Dt —ti(ta=1)+2t,—1
ti+tp—1 t]+t2—1

By Remark 3.21, inverting and transposing G (L) gives the homology Gassner invariant of Ly:

tyty—t; —2tp+1 (tr—1)tp
T L — t2l1 _tl —tz t2[1 _tl —tz
gh( 4) t-1 B t
tti—t1—t tat1—t1—ts

2. The invariant C(f) of the braid §: Let us analyze the car’s options starting from each initial point,
which are 1, 2, and 3. If we consider the initial point 1, the car can exit at the endpoint 1, 2, or 3.
To exit at 1, the car first passes under strand 3 at a negative crossing with probability %, then passes
over strand 2 at a positive crossing with a probability of 1. This gives us a probability of % for exiting
at 1. To exit at 2, the car first passes under strand 3 at a negative crossing with probability %, then
moves down onto strand 2 at the positive crossing with a probability of 0, resulting in a probability

of 0 for exiting at 2. Finally, to exit at 3, the car moves up onto strand 3 at the negative crossing,
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giving us a probability of 1 — % for exiting at 3.
Repeating the analysis for the initial points 2 and 3, we find that the invariant C(f) is
1 2 3
1 = 0 1-+
C(p) = 3 3 (4.7)
2 1-1 t 0
3| (A-t)1-t) (I-t)fy 1
Applying Equation 4.2, the homology Gassner invariant of 8 is
Gr(B) = (Ds-C(B)-D3")//pear//tr
3 2 1
t—1
_ 1 1t—3 0 t
21 0 t —t1(t3—1)
3| £ 1-t (h-1)(ts-1)
= Gi(02)-Gilor")-Gj(o2)
1 0o o |(& 1 o)ft o
3
— 1
= 10 0 # iz 0 0]j0 0
01 1-tJL 0 0 1)l0 1 1-t5
t -1
H 0 f2
= 0 9] -1 (t3 - 1) » (48)
% 1-t) (t2-1)(t3-1)
0 0 1
where p.o,; =|0 1 0] is the permutation matrix given by the permutation p: 1 + 3,2+ 2 and
1 0 0

1-t; 0 0

3 1 induced by the braid 8, and D3 =| 0 1-t, 0

0 0 1-t

3. Stitching strand 1 to strand 3 of §: Stitching strand 1 to strand 3 corresponds to finding the entry

P51 of G, (B) in Equation 4.8 and applying the formula in Equation 4.6. The P; ; entry of the matrix

G,(B)is P35y = (t,—1)(t3 —1). After applying the stitching operation, G;(f) becomes the matrix
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S(Ps1):

Gp(Ly)

Min(Ps) + Col(P5;)Row(Ps )
— 43,1
tlt_71 O 1 tz (
3 4+ —_— =
0 f (t2=1)(t5-1) —t1(t5—1) t3
H -l (t2=1)tp
t3  ty(t3—1)—t3  tr(t3—1)—t3
t1(t3-1) t
(t2(t3=1)-t3)t3 t3=ta(t3=1) /5 15 1
tztl—t1—2t2+1 (tz—l)tz
tyty—t;—ty tyty—t;—ty
-1 t 7
thty—t;—t T ht—t—t

which is the same as the homology Gassner invariant of the string link L.
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Chapter 5

Unitarity of the Gassner invariant

5.1 Summary of Chapter

In this chapter, we discuss the unitarity of the homology Gassner invariant with respect to a skew hermitian
product given by an intersection product defined on the cycles of the first homology groups H; (Xg; F) and
H{(X1;F). We provide details on the computation of the intersection product defined on the elements of
H{(Xg; F). Furthermore, we provide a detailed proof of the unitary statement in Theorem 3.2 of [KLW98]
(see Theorem 5.18). We also provide an alternative proof of Theorem 5.18 (see Theorem 5.20). Finally, we

present a Mathematica implementation of the unitarity of the homology Gassner invariant.

5.2 The intersection product on H,(P; F), P = X; for j =0,1

It is natural to obtain a skew-Hermitian matrix using the cup product on cohomology. However, achieving
this for the cohomology Gassner invariant is quite challenging. In contrast, obtaining the Hermitian matrix
via the intersection product defined on the cycles is easier in the context of the homology Gassner invariant.

We begin by discussing the intersection product presented in Section 3.2.1 of [KT08]..

Let o and f3 be two oriented closed loops on an oriented surface ¥. Deform « and f3 slightly, and assume
that they intersect transversely in a finite set of points that are not self-crossings of a or . The algebraic
intersection number of a and fisthesuma-f= 3 &ps where & = +1 if the tangent vectors of «

peanp
and f at p form a positively oriented basis and ¢, = —1 otherwise. Let a,  represent the homology classes

68
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[a],[B] € H1(£;Z) respectively. Then the algebraic intersection number on [«] and [f] is defined as

[a]-[Bl=a-p= ) ¢ (5.1)

peanp
More on intersection number can be found in [GP74].

Let P represent the (1 + 1)-punctured disk, X;, j = 0, 1, which are subspaces of the complement X of an
(n+ 1) string link. Let P — P be the covering space of P determined by the map € : 711 (X, xg) — (tx)}_;-
Also, recall the local efficient system F = Q({tq,---,t,)). The F-module H;(P;F) carries a natural F-
valued skew-hermitian form defined as follows. Consider the associated intersection product H; (P;Z) x
H,(P;7Z) — Z defined in Equation 5.1 whose value [&@] - [] on the homology classes [@],[] € H;(P;Z)
represented by transversal oriented loops @, E on D is the algebraic intersection number of these loops
obtained by counting their intersections with signs +1 determined by the orientations on P. Note that the

orientation on P lifts to the covering space P — P.

Now, tensor H; (17, Z) with F and define a pairing

ooy s (HU(P32) @iy (x)) F ) (HL (P 2) @y () F ) = F

@p)= ) (@ (1.t B)) bt (5.2)

(kg ..... k,, )EZ”+1

where F — Flisthe automorphism sending ¢; to ti’l. Since F is afield, then ZQF = F. So, H; (1’3, Z)®7[r, (X)]
F = Hy(P;Z @y, (x) F) = Hy (B; F). To simplify notations, let k = (k,...,k,) € Z"*! and tX = 1. £},

In this notation, Equation 5.2 becomes

(a, B)= Z (@ (t4p))t (5.3)

kezn+l

Lemma 5.1. The intersection product in Equation 5.3 is well-defined.

Proof. The product o '(tkﬁ) represents the algebraic intersection number of the lifts & and tk/? This number
is finite because the covering map X, — X, maps & bijectively onto a and maps the set a N (UkeZ”*l tkﬁ)
bijectively onto the finite set a N B. Consequently, the sum in Equation 5.2 is finite. Let ¢ = d(f) be the
boundary of some chain E Then if @ does not intersect the boundary of ¢, there is nothing to show. If &
intersect the boundary of ¢, it does so an even number of times. Half of the intersection points have —1

signs and the other half have +1 signs. Thus, <cT, E> = 0. This shows that the pairing is well defined. [

Lemma 5.2. The intersection product in Equation 5.2 is skew hermitian. That is, let y, 1 € H; (X~0;.7-"), then

1 F and F are the same.
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1Ly, n)y=~=(n, y)

2. (fy, n)y=f{y, nyand(y, fn)= ]_‘()/, 1), where f ]_( is the automorphism of F, sending t; to ti_l.
Proof. Let vy, € Hi(P; F) and f € F. Then

1. We show that (y, n1) = =11, ¥).

o =) (r-(Em)e

kez"

= Z (t_k)/-n)tk

keZn

= =) (@ )

keZn

= =) (n-y)e*

kezn
= —n, )

2. We show that (fy, n1) = f(y, #) and (y, fr) = ]_‘(7/, 1). It suffices to show the case when f =t*,

for r e Z"*+1,
oty = ) (y- )
kez"
- ¢tT Z (V . (tr+k11))tr+k
keZ"
= 7y, n).
and

GRS

keZ"

B Z ()/ . (tk_rﬂ))tk_r
kez"

ey, m)-

(t"y, 1)

5.2.1 Understanding the intersection product on X ,7=0,1

In this subsection we will understand how to compute the intersection pairing on covering space of the

punctured disk shown in Figure 5.1.
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20
Figure 5.1: The space X with loops ug, uy,---, uy.

t%l“o i

Figure 5.2: A schematic 3-dimensional view of the covering space Xg — Xg.

Description 5.3 (Intersection pairing of two cycles). Let g = xy € P be the basepoint and let g be a fixed
lift of g to P (namely, fix qe P is such that the projection of q onto the base space P is q.) Given a curve
a in P, which begins and ends at p, let a be the unique lift of « to P for such that & (0) =4. Then we will

have a unique tuple w(a) € Z"*! for which @(1) = t*(¥F.

From Lemma 3.10 the homology group H; (X; F) is generated by the set {E(}Zzl over the field 7, where
f?k = (tp— 1)Uy — (tx — 1)Uy (represented as a closed curve which start and end at X, as shown in Figure 5.2,
also denoted ka, k=1,---,n)and u; is the lift of the meridian u; (which are closed curves that generate the

fundamental group of Xy, see Figure 5.1) such that #;(0) = Xy and u;(1) = t;X5 fori =0,1,---,n.

Every element in HI(IA"; Z) ®zr,(x)] F = H1(Xo; F) can be written as a finite linear combination of

the elements of the set {[?k};(’zl Thus, for &Ee H,(P;Z) ®zin, (x)] F write @ = ) QkEk’ Oy € F and
k=1
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B=Y \B, A, €F.So,
r=1

@By=) 0B B,
k,r

where

Fore T e+t

PEPLNB;
and A - A is F-linear automorphism of F which extends t¥ - t 7% := tl_k1 t;k”. See pages 100 and 101
of [KT08]. Here, Bi#,p, is the curve in X, that follows f from its beginning up to the intersection point

p, and follows 8, backward from p to the beginning of j3,.

d
0 )
0 ()  Path  through (¢)  Path  through
(a) Intersection of two intersection point intersection point
loops. P1- P2

Figure 5.3: A schematic diagram showing the intersection of a and f, and their intersection points.

For example in Figure 5.3, the algebraic intersection pairing of @ and B, (a, $)?, is computed as follows.
Fix a positive orientation {d;,d,} on Xj. Referring to Figure 5.3b, start at x; and move along « following
the yellow path until the first intersection point p; is encountered. Now, move along f, starting from p,
following the blue path back to xg. This forms a path £, whose lift 3;71 to the covering space of P is such
that &,, (0) = Xp and &, (1) = €(&p, )&, (0) = €(&,, )Fo.

The next intersection point is p,. Referring to Figure 5.3b, move along a following the yellow path
until py is encountered, and then along B following the blue path back to xo. Let ,, be the completed
path; it is such that E;,Z(O) =X and gpz(l) = e(épz)gpz(O) = €(&p,)Xo- Repeat the process for all the other

pi € aNB,p; # p1,p2- Then, the intersection pairing of & and f§ is given as

(a, By = Z spie(al',i/i;,'i), (5.4)

pi€anp

where € (al;zﬁl;:) is the product of local coefficient assigned to the intersection point p; and ¢,, € {~1,+1}
is the sign sgn(p;) of the intersection point p;, determined by the given orientation. This concludes the

description.

2 The expression (a, ) is interpreted as tracing the path a first, followed by g.
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- ? v s ()

T U toro  toug g 7

(b) A projection of the generators f;, f;

(a) A 2 dimensional view of the covering onto the punctured disk X under the
space X( showing the generator ;. covering map X — X, where r =1, .

Figure 5.4: The generator ; = (tg — 1)ii; — (t; — 1)ip.

Example 5.4 (Intersection pairing (/};,/};) )- 1. (Self-intersection, that is when i = j): Consider the (n+
1)-punctured disk X in Figure 5.1 and X the covering space determined by e : 711 (X, xo) = {fx)y_o-
Fixing 9, recall from Lemma 3.10 that the homology group H; (X; F) is isomorphic to F" with basis
{E};’zl, where B; = (to — 1)i; — (t;—)i. (See Figure 5.4)

Before computing (E,E), let us first understand the diagram in Figure 5.5. In Figure 5.5a the solid
loop is B; and the dashed loop is a small perturbation of ;. The path followed by f; is I1 ol5,il3 014,
and the path followed by the perturbationis I I} .13 I} ;. The loops Iy ; and I} ; are such that e(lj ;) =

e(l,il j) = t;. In Figure 5.5b, the intersection points are numbered 1 through 16 3,

The self-intersection product (E,E} is computed by using Description 5.3 as follows. In Figure 5.5¢,
the path through the intersection point 1 is 1 = I1 /51314, which is formed by the yellow path followed
by the red, pink and blue paths in that order. This path is such that its lift C, satisfies C; (0) =%y and

a(l) = 6((:1)70 = 6(11121314)’5{0. Thus E(C]) = 6(1112l3l4) = tot]‘tgl tj_l =1 and the Sigl’l at1is —1.

Next, in Figure 5.5d the path through the intersection point 1 is C; = Ay A;, which is formed by the
yellow path followed by the blue path. Again, this path is such that its lift 82 satisfies EZ(O) =X and
Co(1) = €(C,)%o = (A1 A2)%p. Thus €(Cy) = €(Ay Ay) = £71. The sign at 2 is +1.

Now, let C3,Cy, - Cq6 be the corresponding paths passing through the intersection points 3,4,---,16

respectively. Then repeating the above process for these points, we have the following table.

3 We follow this order for simplicity. Any order can be chosen.
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() 0

(a) Self intersection of Ez (b) Numbered intersection points.

dp dp

K]

(c) The path through the intersection (d) The path through the intersection
point 1is I11p1314. point 2is A1 A;.

Figure 5.5: Self intersection points.

Int. pt. k | sgn(k) | €(Cx) | sgn(k)e(Cx) Int. pt. k | sgn(k) | e(Cx) | sgn(k)e(Ck)
1 -1 1 -1 9 -1 tot; —tot;
2 +1 £ t! 10 +1 to to
3 1|ttt | ot 11 -1 1 -1
+1 to to 12 +1 t t;
5 -1 t! —t;! 13 -1 to! —t5!
6 +1 | tot;! tot; ! 14 +1 1 1
7 -1 to —to 15 -1 t! -1
8 +1 1 1 16 +1 |ttt tolt !

Summing up the entries of the last column, we have

16
o (to=1)(t—1)(1 - tot;)
BiBi) = ;sgmk)e(ck) = o .

2. (Intersection when i # j) The intersection product (E, Bv]) of E and BVJ is also computed in a similar
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way using Figure 5.6 together with Description 5.3, where the yellow path is the generator §; and the

green path is the generator B;. The in intersection product is

(a) The intersection point of E and /)7]
shown on the disk Xj. (b) Numbered intersection points

Figure 5.6: Intersection points of 8; and ;.

(fo—1)(t; - 1)(tj - 1)

tj

(i Bj) =~

, for i<j.

This completes the example. Thus, we have the following lemma.

Lemma 5.5 (Intersection product on X,). Consider the n-punctured disk X in Figure 5.1 and X, the covering
space determined by € : 111 (X, x9) — (tx);_,- Fixing iy, the intersection pairing of the generators El,. e En of

the homology groups Hy(X; F) is given by the following formulas:

W, i=j (self —intersection)
~ ~ (to=1)(t;~1)(ti~1) .
BiBj)={ ———— r —, i< (5.5)
(to—1)(t;=1)(t;—1) L.
_ Vo for j , i>j

where B, = (tg— 1)y, — (ty — 1)ig, m#= 1. .

Proof. From Example 5.4 and property 1 of Lemma 5.2, we have proved that

W, i=j (sel f —intersection)
T (to-D)(ti-1)(t;-1) .
(BiBj) = —Ot—j’; i<j
(fo-1)(t;-1)(tj-1) s
_OtT]’ 1 >]

]
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O

The intersection product on X; is similar to the intersection product on Xj. The points and loops on X
and X; differ by a permutation induced by the associated string link. Thus, fixing #, the formulas for the
intersection pairing on X; is the same as Equation 5.5, with appropriate ¢;’s. So, in general, the intersection

product is given by

(to=1)(tr(i)—1)(1-totT[i))

fofrp) ) i=j (self —intersection)
— (to=1)(tr11-1)(t71i1—1) .
BirBj) =3 - u T[flr[j] i)y i<j , (5.6)
(to=1)(tri=1)(trj1-1) S
- totT(j] : 4 1 >]

where T ={0,1,---,n} is the set of labels and T[k] is the label at position k in T. Here, note that the order of
set T corresponding to X may differ from the order of the set T corresponding to X; due to the permutation

induced by the string link (see the conventions in Chapter 1).

5.3 Relation between intersection product and cup product
In this section, we discuss an abstract relation between the intersection product and the cup product. Details
can be found in [Hat02].

Definition 5.6 (Cap product: [Hat02]). Let R be a ring. For an arbitrary space Y, define an R-bilinear cap
product
N: Cr(Y;R)x CH(Y;R) = Cr_i(Y;R)

,,,,,,,,,,

The definition of cap product can be extended to homology and cohomology by using representatives

of the homology and cohomology classes: N : Hi(Y;R) x H'(Y;R) — Hy_;(Y;R) for k > 1.

Definition 5.7 (Cup product: [Hat02]). Let ¢ € Ck(Y;R) and P e C!(Y;R). The cup product ¢ — e

Ck*1(Y;R) is the cochain whose value on a singular simplex o : AR X s given by the formula

(0 —9)(0) = P(lvy,.0 )P (O [y, v1)

where the right-hand side is the product in R. The cup product is defined on cocycles by using representatives

of the cohomology classes: —: H*(Y;R) x H/(Y;R) — H**!(Y;R).
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Theorem 5.8 (Poincaré Duality: Theorem 3.30 [Hat02]). If M is a closed Z-orientable n-manifold with
fundamental class [M] € H,(M;Z), then the map Dy : HX*(M;Z) — H,_i(M;Z) defined by Dys(a) =
[M]Na is an isomorphism for all k.

Theorem 5.9 (Lefschetz Poincaré Duality: Theorem 3.34 [Hat02]). Suppose M is a compact Z-orientable
n-manifold whose boundary dM is decomposed as the union of two compact (n — 1)-dimensional manifolds
A and B with a common boundary dA = dB = A N B. Then the map Dy, : HY(M,A;Z) — H,_i(M, B;Z)
defined by Dyt(a) = [M] N a, where [M] € H,,(M, dM;Z), is an isomorphism for all k.

Setting A and B to be the empty set reduces Theorem 5.9 to Theorem 5.8 The duality theorems also hold

when we consider local coefficients. Refer to [Hat02] and [KLW98] for more details.

Applying the Poincaré Duality map to both factors in —: H¥(M; R)x H" *(M;Z) — Z, the cup product
is the intersection ( ,) : H,_(M;Z) x Hy(M;Z) — Z. More specifically, suppose U and V are closed,
oriented submanifolds of M, of dimensions k and n—k respectively. Suppose U and V intersect transversely,
and u = Dp[U],v = Dy [ V], then (u, v) is the intersection number of u and v described above. If we replace

M with P and tensor with the field P, then we get the intersection product define in Equation 5.2.

5.4 The homology Gassner invariant is unitary

In this section, we detail the proof of the unitarity of the homology Gassner invariant as presented in
[KLW98]. Following this, we will provide a coordinate-based example to illustrate the theorem. In what

follows, the ring R is Z.

Theorem 5.10 (Theorem 3.2 of [KLW98]). Fora € H{(Xy;F) and b € H{(X1;F), {Gy(a), b) ={(a, g}jl(b)).

Before proving the theorem, let us look at the following lemmas. First of all, let us understand the
boundary X = (D?x[0,1]-L). The boundary of X is made up of the two punctured disks X, and X;, and a
disjoint union of cylinders denoted T. Figure 5.7 shows an example of the boundary of the complement of

a 3-string link. Note that up to homotopy, all the complement of all n-string links have the same boundary.

Lemma 5.11. H;(S'; F) =0 and H (S'; F) =0 fori = 0,1, where F = Q(t)

Proof. The cell structure of S! consist od a 0-cell g and a 1-cell y. The cellular chain complex for the
J J 9

universal covering of S! is O——2——>C1 = ()7)—1——>C0 = (ﬁ)—o—»O. Note that d{(y) = t — 1. The chain

complex is therefore 0 — F —i—ﬂ: — 0 with all homology groups equal to 0. Thus H;(S';F) = 0 for

i=0,1.

-1
A similar argument shows that the cellular cochain complex of S liso> F t—>.7: — 0, and it has

cohomology groups H(S!) fori = 0,1 is 0. O
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Figure 5.7: The boundary of X; 0X = X1 U T U X.

Consider the diagram of inclusions and their corresponding induced homomorphisms. We abuse notation

by using the same symbol for both inclusion and induced map. According to Lemma 5.11,
Hl(XO uT UX]}]:) EHI(XO UXl;]:)

since H(T; F) = @ H, (S} F) = 0.

X()UTUXl Hl(XO UXl,f)
Hy(=F)
Xo : Xy ————— Hi(Xg; F) s Hy(Xy;F)
X Hy(X;F)

Figure 5.8: Inclusions and their corresponding induced maps

The pair (X, Xo U T U X;) induces a long exact sequence part of which has been shown in the first row

of the diagram below.

Hz(X,XO UXl,]:) L} Hl(XO UXl,]:) ;) Hl(X,]:) e Hl(X’XO UXl,]:)
Je=Jost 1 i, =ig.+ig.
Hy (Xo; F)® H1(X1; F) = Hy(Xo; F) @ Hi (X33 F)

Figure 5.9: Long exact sequence
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Lemma 5.12. Let a € H;(Xy; F). Then there exists A € Hy(X, Xy U Xy; F) such that dA = a— Gy(a) if and
only if1,(a—Gy(a)) = 0.

Proof of Lemma 5.12. Let a € H{(Xy;F). From Figure 5.8, we have the following mappings which are all
isomorphisms.

Hy (X0 F) —"5 H (X F) ¢ H,(X,; F)

\_/

Gn
a —— ip(a) ——— Gp(a)

Note that (a,-Gy,(a)) € H (Xo; F) ® H1(X;; F). From the first upward arrow in Figure 5.9, we have

j(a,-Gu(a)) = jo.(a) — j1.(Gn(a)) = a— Gy(a).

Note that the square in Figure 5.9 is commutative, that is ¢, o j, = i,. Thus,

L(ja(@,=Gp(a))) = iu(a - gh(a)) = i04(a) — 11.(Gn(a)) = ig.(a) — ig.(a) = 0

since i1,(Gy(a)) = ig.(a). This implies that there exists A € Hy(X, XqU X;;F) such that A = a—vy(a). O

Theorem 5.13 (Excision Theorem: Theorem 2.20 [Hat02]). For subspaces A, B C Y whose interior cover Y,
the inclusion (B, AN B) < (Y, A) induces isomorphisms H,(B,AN B) — H, (X, A) forn.

Lemma 5.14. The maps i1, : H{(Xo U X1; F) = H1(0X; F) and iy, : Hy (X, Xq U X; F) = Hy(X, 0X; F)

are injective and isomorphism respectively.

Proof. The short exact sequence 0 — C,(Xy U X4 )1—1>C*(8X) — C,(dX,Xy U X;) — 0 ( of the pair
(X, Xy U X7), where Xy U X; C dX ) induces a long exact sequence,

Hy(dX,XqU X3 F) —— Hi(XoU X3 F) SR Hy(0X;F) —— H(0X, XoUXy;F)

’ETExcision %TExcision

ETPoincare Duality zTPoincare Duality ’
HY(T;F) HYT;F)
0 0

of the pair (dX, XoUX;). T deformation retract to the disjoint union of S!. By Lemma 5.11, both H(T; F)
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and H'(T;F) are 0. The long exact sequence then reduces to
0 — H, (X UXy; F)—=sH, (9X; F) — 0.

This proves that iy is isomorphic and hence injective. Similarly, the short exact sequence 0 — C,(dX, Xy U
Xl)—l—z——>C,,(X, XoUX) — C.(X,dX) — 0 of the triple (X; X, Xy UX; ), where XqgUX; C dX C X, induces

the following long exact sequence.

Hy(9X, Xo U X3 F) —— Hy(X, Xo UX13F) —2 Hy(X,9X;F) —— Hy(9X, Xo U X); F)

%’TExcision ETExcision

H,(T,dT; F) H(T,dT; F)
%’TPoincare Duality zTPoincare Duality ’
HYT;F) HY(T;F)
0 0
The same argument above shows that i, is an isomorphism. O
Remark 5.15. 1. Up to homotopy, the complement of X is a 3-manifold with a 2-dimensional manifold

boundary dX. Setting M = X, A =0 and B = dX in Theorem 5.9, we have the isomorphism
Dy : HY(X;R) — Hy(X, dX;R),

where Dy := N[X, dX]

2. 0dX is a 2-dimensional manifold without boundary. Replacing X with its boundary, dX, we have
Dyx : HY(0X;R) — H; (dX;R),
where Dy := N[JX]

Now, Referring to Lemma 5.14, Theorem 5.8, Theorem 5.9 and Remark 5.15, the commutative diagram

in Figure 5.10 can be constructed. This leads us to the next lemma.

i ,0.
Hy(X, Xo U X3 F) —2 Hy(X,0%;F) 2 11 (x; )

Q\L 3l is*l
H(XqUXy;F) — H,(dX;F) Nl HY(0X;F)

Figure 5.10: A commutative diagram.

Lemma 5.16. If M € Hy(X,dX;F) and N € Hy(X,dX; F) then (OM,dN) = 0.
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Proof. Let ¢, ¢ € H'(X;F) such that M = ¢N[X,0X]and N = p N[X,dX]. M € Hy(X,dX;F) and
N € Hy(X,0X; F)

Now, from the commutative diagram in Figure 5.10, the intersection product of M and N is computed
as follows. Note that since the fundamental class [dX] of dX is bounded by that of X, then i3,[dX] = 0. So,
(OMIN) = (i3(9) — 53($) N [9X]

= (3(¢ —¢)n[dX]

= (¢ —P)niz([dX])
= 0

Corollary 5.17. Let A € Hy(X,XqU X1;F) and B € Hy(X,XoU X;;F). Then {dA,dB) = 0.

Proof. Referring to the commutative diagram in Figure 5.10, it is clear from Lemma 5.16 that (JA, dB) =
0. O

Now, we are in a good position to prove Theorem 5.10.

Proof of Theorem 5.10. Leta € Hy(Xo; F) and b € Hy(X;;F), then we show that (vj(a),b) = (a, g;l(b». By
Lemma 5.12 there exist A € Hy(X, Xy U X;;F) and B € Hy(X, Xy U X3; F) such that dA = a — Gj,(a) and
JdB = g;l(b) -b.

By Corollary 5.17, {dA, dB) = 0. On the other hand,

(24,9B) = (a-Gy(a),-b+G; (b))

XoUX;
0
= W°+(a,g,;1(b))xo +(=Gn(a),~b)x, + W
= (4G, (1), ~(Gula)b)y,
It follows that ( 4,G," (b)), =(Gn(a),b)x, =

The following theorem shows that the reduced Gassner invariant is unitary with respect to the intersection

pairing on in Lemma 5.5.

Theorem 5.18 (Unitary Condition). Let L be a string link. Then the Gassner invariant

Gn(L): Hi(Xo; F) — Hy(X1;F)
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satisfies

(G L)x,Gh(L)y )y =(x7) (5.7)

Proof. Equation 5.7 follows immediately from the proof of Theorem 5.10 (see Corollary 5.4) which states that
ifae H{(Xy;F)and b € H(Xy;F), then (Gy(a),b) = (a, g,;l(b)). This shows that the Gassner invariant is

unitary. O

Example 5.19 (The homology Gassner invariant of the generator o; is unitary.). In this example we

demonstrate the unitary condition of the homology Gassner invariant for the braid generators using the
ti-1
t; .

formulas obtained above. Gy (R; ;) =

] and g(R]’l) =

-1
i . See Figure 5.11 The local coefficient
1- t]' tl_, 0

0 J i 0 i J

N a
AN /

0 i J 0 J i
(@) Rj,j. (b) Rj,;i

Figure 5.11: Over and under crossing

systemhereis 7 = Q(to, £;, t;). Let 17 : £y > % be the map that inverts #;. For R; ;, the matrices corresponding

to the intersection products on X, and X; are

(to-D)(ti-1)(1=tet;) _ (to=1)(ti=1)(t;-1) (to-1)(;=1)(1-tot;)  (1-tg)(t;=1)(t;—1)
tot; tj and tOtj t;
(to-1)(t=1)(tj=1)  (to=1)(tj=1)(tot;~1) (I-t)(ti-1)(tj-1)  (to-1)(t;i—1)(1~tot;)
- tot; - fotj fot; tot;

respectively. So, we have

(to-1)(-1)(1—tot;)  (1—to)(t;—1)(t;—1) (to—1)(t;=1)(1—tot;) (to—1)(t;=1)(tj-1)
0 1 tot]‘ t; 0 tl tot; - t
/| =
i 1 1

j
f 1=t (1=to)(ti=1)(t;-1) (to=1)(t;=1)(1-tot;) s C(to=1)(E=1)(1=1)  (to=1)(tj=1)(totj=1) |
t tot; tot; ]

tot; tot;

Also, for R; ;, the matrices corresponding to the intersection products on X; and X, are

ji

(to—1)(t;—1)(1—tyt;) _(to—l)(ti—l)(tj—l) (to—1)(;-1)(1-tot;)  (1-to)(t;=1)(t;—1)
tot; tj and tOtj t;
_lo=DE=D(-1) - (o=1)(=1)(toti=1) (-t)(t=D(t=1) (o= D)(ti=1)(1—tt;)

tot; to i‘]‘ to tj tot;
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respectively. So, we have

tot;
(to-1)(t;=1)(tj-1)

ti
1 0

J

(to*l)(tjfl)(totjfl)

tot; to t]'

This completes the example.

[tj—l 1] (to-D(ti-D(1-tot;) (b= 1)(ti=1)(tj-1)
e -

t]'—l
ti
1
ti

83

(tofl)(tjfl)(lftot]‘) (lfto)(tl‘fl)(tjfl)
tot}' t;
(=t)(ti=1)(t=1)  (to=1)(ti=1)(1=tots) |

tot]' toti

P

5.5 Alternative proof of Theorem 5.18

In this section, we present an alternative proof of the unitary condition of the homology Gassner invariant

for a string link, utilizing the relationship between braids and string links as presented in Lemma 4.4. We

then conclude with an example demonstrating the unitary property of the homology Gassner invariant for

a string link.

Let L be a string link obtained from the partial closure of a braid  using repeated stitching operation.

Let Gy = Gy, (B) be the homology Gassner invariant of f,

Gr(B) = (Du-C(B)-Dy" )/ pcord/m'
p(K) p(n—-1) p(n)
_ K | & 7 ¢
n-1| 0 p a |
€ 0 )4

where 2 is an (1 —2) x (n—2) matrix, ¢ and ¢ are (n—2) x 1 matrices and, 6 and € are 1 x (1 — 2) matrices

and Z =1{1,2,---

Suppose G is unitary with respect to ()¢ and €2y, where Qg =

p(Z) p(n—1) p(n)
amdQ, =| P | Pezzr Py Bz
p(” - 1) ﬁp(n—l,Z) ﬁp(n—l,n—l) /jp(n—l,n)
p(Tl) ﬂp(ﬂ,Z) ﬁp(n,n—l) ﬂp(n,n)

,n—2}U {n—1,n} is the set of colours assigned to the strands of g.

Z n—1 n
Z | Bzz  Bzn1  PBzn
n=11Bu-1,z Pun-tn-1 Pu-1n
n Bnz  Bun-1 Pun

are the matrices corresponding to the intersection

products on X and X respectively, where f; ; := </§l, /?]> (see Equation 5.5), p(Z) represents the permutation
of the element of Z, f;,j) := <Ep(i)fgp(j)>) and f7,7 ={B;:1,j € Z}. Thatis,

(Gp//m') Q1 (Gp//n) = Q,

(5.8)
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where 71 : tj > % If the strand labeled p(#n) is stitched to the strand labeled 1, where p(n) = 1, then we
will demonstrated that the homology Gassner invariant of the resulting string link is unitary. It suffices to

do this for one stitching operation.

Suppose L is the string link obtained after stitching strand p(n) to strand 1. The entry of G corresponding

to the stitching operation is P, () = y and the resulting matrix is
-, 1 1
Etimpe p+r150-¢
Syy=| 7 v 1/ touys tn = to(n)-
0+ HO( ‘€ ﬁ 1— -0

The matrix S(y) can be reproduced as a block matrix using elementary matrices as follows: a bold-faced

letter here will denote a matrix, or a vector, whose dimension depends on the context. Let

0 0 O 2 ¢ 0]
H, 1 =Gs—[0 0 0o|=|O6 B a
0 01 e o y-1
and let
1 0 —¢ 1 0 O 1 0 0
E(i): 0 1 0 lEa: 0 1 - JEL: 0 1 0
y-1
1
0 0 1 0 0 1 0 0 7T

00
be elementary matrices, where the block matrices [ ] and [ corresponds to the block matrix
00

(=2
L ]
~—

[1]

¥ of gﬁ. Then, notice that
0 B

1 el = 1 1
EgEEr Hy=l0 1 Lallo g a [5l0+5ae pras 0|=

1 1 1 g 1 1

0 0 ﬁ € o '}/—1 ﬁe Vjé 1 ﬁe ﬁb
So,
10 —¢ 0
S(7)
Hy1=[0 1 -a 0 (5.9)
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Now, let Q . Then gﬁ = Hy_l + Q. So, Equation 5.8 becomes

Il
o o o
o o o
o O

(Gp//m') Q1 (Gp//m) = ((Hyoy + Q) //m') Qy (Hy—y + Q) //1)
(Hy_1//m") Qq (Hy,_1//1) + (Hy_1//m" ) Q+ QQy (Hy_1//1) + QQ41 Q
Q,. (5.10)

The last three summands on the left hand side of Equation 5.10 evaluate to the following:

E//m" 0//m'e//m'\[ Bpzz)  Bpzm-1)  PBoizm |[0 O O
(Hy-1//m1Q = |g//m' B o ||Bpm-1.2) Bpn-1n-1) Bom-1m||0 0 0
o/m'a y=1\ Bowz)  Bptn-1)  Bpum JIO O 1
0 0 m
= 1o 0 ml (5.11)
0 0 mgy

where

m; = (5//ff)ﬁz,n + (6//mt)/3p(n—1,n) + (E//mt)ﬂp(n,n)
mp; = (lP//tr)ﬁZ,n + ﬁﬁp(n—l,n) + 5ﬁp(n,n)
msz = (<P//”),Bz,n + aﬁp(n—l,n) + (7/ - 1)/3p(n,n)i

0 0 O\ Bozzy  Bozn-1y  Bozw [/ @/ @/

0 0 O0||Bpn-1.2) Bpn-1u-1) Bpm-1m||0//m B/ al/n

0 0 N Bonzy  Botmn-1)y  Bomn J\€//m o//m (y//n)-1

0 0 0

=10 0o o0} (5.12)

QQI(H)/—I//”)

W1 Wy w3

where

W1 = (E//Vl)ﬁp(n,Z) + (6//77)/5‘0(71,71—1) + (E//Tl)ﬁp(n,n)
wy = (/M) Bpwm,z) + (B//M)Bpmn-1) + (8//1)Bp(n,n)
w3 = (Qb//ﬂ)ﬂn,Z + (a//r/)ﬁp(n,n—l) +((y//n) - 1)Igp(n,n)f
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and
0 0 0
QOQ =10 0 0 | (5.13)
00 ﬁp(n,n)
So, we have

(Hy_1//tr)Qq (Hy /) = Qo= (Hy1//m")Q1Q = QQ(Hy_1//1) = Q01 Q

Bzz  Bzn1  Bzn 0 0 m 0 0 0 0 0
= ﬁn—l,Z ﬁn—l,n—l ﬁn—l,n —10 0 my|—] 0 0 0]-]10 0
ﬂn,Z ﬁn,n—l ﬁn,n 0 0 ms Wi wy w3 0 0 ﬁp(n,n)
Bzz Bzn-1 Bzn—my
= /37171,2 ﬁrzfl,nfl ﬁnfl,n ]
ﬁn,Z —Wp ﬁn,n—l —wy ﬂn,n — M3 - w3 — ﬁp(n,n)
But from Equation 5.9,
1 t
—€ 1 0 0
S(y)y/mt V!
H | = 4 Sgo o 1 o0 (5.15)
0 0 1 - —-a 1-y
and
1 0 —¢//q
S/
Hy,1//n=10 1 -a//y 0 | (5.16)
0 0 1-y//y ﬁe//n ﬁb‘//q 1
Notice that
1 0 0 1 0 —¢//y Bozzy  Bpzm-1) h
0 1 0 (|0 1 —a//n [=|Bom-1.2) PBotn-in-1) S|
¢ -a l-y 0 0 1=/ f fa fs

where f1, f», f3 and f, are entries resulting from the matrix multiplication which can be ignored. It follows

from Equation 5.14, Equation 5.15 and Equation 5.16 that

<S<y>//mf)[ foizzy Btz ]<s<y>/m> :[ Prz Pz ]

ﬁp(n—l,Z) ﬁp(n—l,n—l) ﬁn—l,Z ﬁn—l,n—l

after the renaming (), t, — ty(y). Thatis, S(y)// to(n) tn > tp(n)is unitary with respect to the matrices
[ Boiz.z)  Bozmn-1)

ﬁp(n—l,Z) ﬂp(n—l,n—l) /371—1,2 ﬁn—l,n—l
for the intersection product on the spaces X; and X respectively after stitching. This shows that the unitary

Bzz  Bzn-1
] // tp(n)r t, & tp(n) and "

], which are the corresponding matrices
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condition is preserved after the stitching operation. We have proved the following theorem, which is an

alternative prove of Theorem 5.18:

Theorem 5.20. Let L be an (n + 1)-string link whose strands are labeled by T = 0,1,---,n . Suppose L is
the partial closure of an (n+ 1) braid p. If the homology Gassner invariant G,(B) of B is unitary with respect
to the intersection products Qg and 3y, then Gy (L) is also unitary with respect to the intersection products

[ Boiz.z)  Bozn-1) 1 i s > o and[ Bzz  Bzn-1 ]
/))p(n—l,Z) ﬁp(n—l,n—l) ﬁn—l,Z ﬁn—l,n—l

]

Example 5.21 (The homology Gassner invariant of L, is unitary). In Example 4.6, we computed te homology

X
|

Gassner invariant of the string link L4, which is

1

tlfl _ t
trty—ti =t tyty—t1 =ty

trt;—t1—2tr+1 (t2—1)t2
r _ trty—t;—t trty—t;—t
gh(L4) - 20172 21—

The local efficient system here is F = Q(#(, t1, ). Since the string link L, induces the identity permutation,

then the matrices corresponding to the intersection products on Xy and X; are the same:

(to—1)(t1 —1)(1—tot;) (to—1)(t1—1)(t-1)
toty ty
(=)t =1)(t2=1)  (tg=1)(t2=1)(1—tgts) |
toty toty
We have
(to—1)(t1=1)(A-toty)  (fo=1)(t1=1)(f2-1) (to=1)(1=1)(A-toty)  (to=1)(t1=1)(f2-1)
T t tOtl tz r — tOtl tz
(gh(L4)//m) (=)t =1)(t2=1)  (to=1)(t2—-1)(1-tot3) (gh(L4)//’7)_ (=)t =1)(t2=1)  (fo=D)(t2=1)(1—tota) |
totq tots toty tots

This shows that the homology Gassner invariant for the string link L, is unitary with respect to the matrix

toty ty
(to=D)(t1=1)(t2=1)  (to=1)(t2—1)(1-tpt2)
toty toty

[(to—l)(h—l)(l—fofl) (to—l)(fl—l)(fz—l)]



5.6. A MATHEMATICA IMPLEMENTATION OF THE UNITARY PROPERTY 88

5.6 A Mathematica implementation of the unitary property

In this section, we implement the unitary condition using Mathematica. Referring to the notations from
Section 3.5, we define a Mathematica function y := (—, —) for the intersection product on X, and Xj. This
function takes two parameters, h[T,L1] and h[T, L2]. We then test the unitary condition for the homology
Gassner invariant of the braid § and the string link L, presented below. Note that when computing the
intersection product, we do not ignore the strand labeled 0. A reader with Mathematica can get the notebook

by clicking the following link: GassnerInvariantMathematicaN otebook.nb

The intersection product

n621:= u[h[T_, LI_1, h[T_, L2_]] i= Factor[Expand[Ll (L2 /. {t; »t3, Bi =»B:})] /.

[ on [erpgt) roerpy) L
fotr[1] "
{67y ) 2 ) () '}
i By tT|[j]| J
“ttod [ ) (o)
fetri]

Example of intersection product on X and X;

X

Xo

Here, we compute the matrices of intersection products on X and X; corresponding to the braid generator

01. The matrices are not equal since the induced permutation is not the identity permutation.

In[234]:= OHy, = Table[”[h[{ls 2}, Bil, h[{ls 23, Bj]]s {1, 1, 2}, {3, 1, 2}];
Table[#[h[{zs 1}, Bil, h[{Z, 13, Bj]]s {1, 1,2}, {3, 1, 2}];

Oy,

In[236]:= {o'.ut,(9 // MatrixForm, Oy, /7 Matr'ixForm}

[—l—tg; I—l—tl] -1_—1+t@ t1) t—l+tg) [—l—tl; I—l—tz] \ f :_—1+t@| -:—l+t2] l_—l+t0 ta) [—l—tg) [—l—tll -:—l+t2]
. gty - © . tp t2 R o
Out[2361= { (-1+tg) (-1l+ty) (-1+t) (-l+tp) (-1l+tp) (-l+tg to) ? (-1+tg) - (-1l+ty) (-1+tD) (-l+tp) (-1+t7)  (-1l+tg t1)
B Tt - to T2 B to T2 ) tata


https://drive.google.com/file/d/1gLg1aEBLqLOwptO7nfAgMmhrAIvbBkpJ/view?usp=sharing
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Here, we test the unitary condition for the homology Gassner invariant of the braid generators o7 and o !

using matrices.

n[245]:= Oy, = Transpose[Mi[{1, 2}]].0ux, - (M1[{1, 2}] /. ti > t;l) /7 Simplify

out[245]= True

In[246]:= OMy, = Transpose [M;[{1, 2}]] - Oy, - (Ma[{1, 2}1 /. t; = t;‘) // Simplify

out[246]= True

Unitary property for g;(gk), k=1,2,3

Here, we test the unitary condition for the homology Gassner invariant of the braid generators o, k =

1,2, 3. Note that they all evaluate to true.

inr1241:= Table[
Table|
u[hr{1, 2, 3, 4}, Bi1// ok, h[{1, 2, 3, 4}, By] // o] =u[h[{1, 2, 3}, Bi1, h[{1, 2, 3}, Bi]],
{i, 1, 3}, {Jj, 1, 3}
]| 77 simplify // MatrixForm,
{k, 3}

]

True True True
True True True
True True True

 True True True
True True True
True True True

True True True
True True True

Out[124]=

2

[True True True
2

Unitary property for G, ()

1

Bl T

ofl /
I 5}
1 2

8= 02017 09

3
1

Here, we compute the matrices of intersection products on Xy and X; corresponding to the braid . Note
that the matrices are not equal since the induced permutation is not the identity permutation. We then test

the unitary condition for the homology Gassner invariant of .
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In[71]:= an = Table[u[h[{]-, 2, 3}, Bil, h[{l, 2, 3}, nej]]’ {1, 1,3}, {3, 1, 3}];
My, = Table[u[h[{3, 2, 1}, B:il, h[{3, 2, 1}, B;]], (i, 1,3}, {3, 1, 3}];

In©0l:= My, // MatrixForm

Qut[90]/MatrixForm=

f—l‘?tg:‘ (—lvtl: [—l—tg t) -]:—lv-tgj f—lftl:l (—lvtzj lf—l-rton f—l‘?tl:\ (—1+t3)
ot L) t3
‘:—lft@\ -:j—lw-tl) f—lvtz:w (—lvt@: [—1—t2) [—l—tE. t) lf—l-rton (—l‘?tz] (—1+t3)
- tp t] B tg T3 - t3
(-l+tg) (-l+tq) (-1l+tg) (-letg) (-letg) (-1+t3) (-l:tp) (-l+tz) (-litpty)
B tot1 B to t2 - Tot3
in(91]:= My, // MatrixForm
Out[91]//MatrixForm=
(-l+tg) (-1+t3) (-l+tg t3) (-1+tg) (-1+%7) - (-1+t3) (-1+tg) (-1+t7)  (-1+t3)
- Tot3 ) L) - T
(-l+tp) (-1l+t) (-1+13) (-l+tg) (-1l+ty) (-l+tgty) (-l+tg)  (-l+ty) (-1+t3)
B tpt3 h to T2 - Bl
(-l+tg) (-l+tq) (-1l+tg) (-letg) (-1l+Ty) (-1+t9) (-l:tp) (-1l+ty) (-letgty)
N to t3 - to t2 N to t1

90

4= Mg = M2 143, 1, 21170141, 3, 2}1.M2[(1, 2, 3} // Simplify;
In[75):= My = Transpose[Mg] .Mx,. (Mg /. ti_ = t}l) // Simplify

out[75]= True

Unitary property for G (L4)

XY
|

Here, we compute the matrices of intersection products on X, and X; corresponding to the braid L4. Note

1

that the matrices are not equal since the induced permutation is not the identity permutation. We then test
the unitary condition for the homology Gassner invariant of L.
In2541:= Lpy, = Table[u[h[{1, 2}, Bi1, h[{1, 2}, B;]], {1, 1,2}, {3, 1, 2}];
Luy, = Table[u[h[{l, 2}, Bil, h[{ls 2}, B]’]] » {1, 1,2}, {3, 1, 2}];

ini2561:= {Luy, // MatrixForm, Luy, // MatrixForm}

B [—l—tB) [—l—tlu :—1+t@ t) B c71+t@) [—l—tl; [—1—‘(2\ ~ -:}1+t@\ :—1+t1) -&Ltg t1) B [—l—tg; [—l—tlw -:j—1+t2)
Outi256]= { To t1 2 To t1 2 }
N B _ (letg) (-lety) (-1+tp) C(-letg) (-lety) (“letpty) |7 o (letg) (~letg) (14t _ (-litg) (-lety) (-litptp)
To t1 To t2 To t1 to t2
ty ty-t3-21t5+1 ty (tp-1)
Ty tT2-t1-T3 Ty Ta-t-T)
In[2571:= My, = -1 t H
t1 ta-t-1 B Ty -1t

in2581:= Lyg = Transpose[Mi,] .Luy, - (M, /. ti_ = t}l) // Simplify

out[258]= True



Chapter 6

Concluding Remarks

The research presented in this thesis has made substantial contribution to knot theory, specifically to the
understanding of the Gassner invariant for string links and braids, and the verification of the unitary

condition. The key results can be summarized as follows:

1. Utilizing the (co)homological approach presented in [KLW98], we have derived matrices (formulas)

0 trr; trfis1y—1
Gn(oi) = " {and 6o ) = lem
LT =trfi) e

for both the homology and cohomology Gassner invariants base on the topological properties of string
links and braids. These matrices can be derived from each other by taking the inverse transpose in
appropriate basis, offering a wider perspective on the Gassner invariant and broadening its potential

applications.

2. We have introduced the concept of "flying cars", which assigns an invariant C(L) to a labeled (n+1)-
component string link L. We have also established a connection between the homology Gassner

invariant and of flying cars:

SL,

Mat,(F’) s Mat,(F’)

Dn(_)D;l//pcal//mt

In [BNb] and [BNS13], the author introduces a tangle invariant known as I'-Calculus, which is further

discussed in [Hal16] and [Vo18]. This invariant applies to both string links (tangles) and w-tangles

91
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(a more generalized form of string links) and is represented as an n x n matrix. Interestingly, the
matrices derived from flying cars are transposes of those obtained from I'-Calculus. This establishes a
connection between the homology Gassner invariant and I'-Calculus through their respective relationships

with flying cars.
3. Additionally, this thesis provides formulas for the intersection product
pi=(=—)  Hi(X; F)x H (X;; F) > F,

defined on the cycles of the homology group H; (Xj; F) for j = 0, 1. The formulas are:

(to—1)(tr(i)—1)(1—totTi))
totTi]

, i=j (self —intersection)

= 5 (to=1)(trpi=1)(tr(j)—1) ..
Bubi)=q =i i<

_ (fo=D)(tr(i)—1)(¢rpj—1) L
totr(j) ’ r>J

Recall that in [Abd97] and [BN14], the authors explicitly define different Hermitian matrices to prove
the unitary condition, but they do not provide details on how these matrices were derived. In contrast,
we have not only provided formulas that define Hermitian matrices, but we have also demonstrated
their natural origins. The cup product offers an even more natural method to obtain a Hermitian

matrix, presenting an area for further exploration.

4. Furthermore, we have confirmed that the homology Gassner invariant is unitary with respect to the
Hermitian matrices derived from the intersection product. This verification opens new avenues for

exploring the analytic properties of the Gassner invariant.

In conclusion, the findings of this research not only enhance our understanding of the Gassner invariant
and its computation, but also offer the flexibility to work with either the homology or cohomology Gassner
invariant. The provided formulas facilitate the use of computer programs to simplify computations. The

insights gained from this thesis hold the potential to inspire and guide future advancements in the field.
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