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Abstract

Let H and G be connected reductive groups over a local field F of characteristic

zero, with G quasisplit. For each tempered injective L-homomorphism LH → LG,

the local Langlands correspondence determines a functorial transfer map between

the sets of stable tempered characters of H and G. In 2013, Langlands posed the

question of whether the functorial transfer map can be interpolated by the transpose

of a continuous linear operator between the spaces of stable orbital integrals of test

functions on G(F ) and H(F ). Langlands introduced these stable transfer operators as

the central local ingredient of Beyond Endoscopy, the strategy proposed by Langlands

in 2000 for proving the Principle of Functoriality using Arthur’s stable trace formula.

For a general connected reductive group over F , we prove stable Paley–Wiener

theorems characterising the image under the stable Fourier transform of the spaces of

stable orbital integrals of test functions, K-finite test functions, and Harish-Chandra

Schwartz functions. In the case of test functions and K-finite functions on quasisplit

groups, the stable Paley–Wiener theorem was established by Moeglin–Waldspurger

and Arthur for real and p-adic groups, respectively. For p-adic groups, we prove

that stable tempered characters span a weak-∗ dense subspace of the space of stable

tempered distributions, a result established in the case of real groups by Shelstad in

1979. Using these results in stable harmonic analysis, we prove that stable transfer

operators exist, preserve K-finiteness, and extend continuously to linear operators

between spaces of stable orbital integrals of Harish-Chandra Schwartz functions. The
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proof involves a finiteness property of functorial transfer maps, which we establish.

We provide formulas for stable transfer operators when both groups are either tori or

complex groups.
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1 Introduction

1.1 The Principle of Functoriality
The Principle of Functoriality, introduced by Langlands in his 1967 Letter to Weil
[DS15], is the central foundational conjecture of the Langlands program. Let F be
a number field, let G be a quasisplit connected reductive groups over F , and let
LG = G∨oWF be the L-group of G, where G∨ is the complex Langlands dual group
of G and WF is the Weil group of F . The Principle of Functoriality asserts that if
H is a connected reductive group over F , for every L-homomorphism ξ : LH → LG

there is a natural correspondence (relation) between automorphic representations of
H(AF ) and those on G(AF ), where AF denotes the ring of adèles of F . A strong
form of the Principle of Functoriality is the global Langlands correspondence, which
states that this correspondence is governed by a natural classification of automorphic
representations. More specifically, the global Langlands correspondence is a natural
surjective reciprocity map

recH : Πaut(H) −→ Φ(H)

from the set of equivalence classes of automorphic representations of H to the set
of L-parameters of H, which are H∨-conjugacy classes of relevant L-homomorphisms
φ : LF → LH, where LF is the global Langlands group, a hypothetical locally com-
pact extension of the Weil group WF . Said differently, the L-parameters φ ∈ Φ(H)

parametrise a natural partition of Πaut(H) into sets Πϕ called L-packets. The corre-
spondence of automorphic representations conjectured by the Principle of Functorial-
ity is the correspondence determined by this parametrisation: for every L-parameter
φ : LF → LH, the representations in Πϕ and Πξ◦ϕ are in correspondence.

The global Langlands correspondence should be compatible with the local Lang-
lands correspondence. For each place v of F , a global L-parameter φ : LF → LH

determines a local L-parameter φv : LFv → LHv of Hv = HFv . Here, LFv is the local

1



1.2. BEYOND ENDOSCOPY 2

Langlands group, which is defined to be the local Weil group WFv if Fv is archimedean
and the Weil–Deligne group SL2(C)×WFv if Fv is non-archimedean. The local Lang-
lands correspondence is a natural surjective reciprocity map

recHv : Π(Hv) → Φ(Hv)

from the set of equivalence classes of irreducible admissible representations of Hv(Fv) =

H(Fv) to the set of L-parameters of Hv. An automorphic representation π ∈ Πaut(H)

decomposes as a tensor product π =
⊗

v πv with πv ∈ Π(Hv), and the compatibil-
ity between the local and global Langlands correspondences is: recH(π)v = recHv(πv).
The local Langlands correspondence was established by Langlands in the archimedean
case [Lan89] and is still partly conjectural in the non-archimedean case.

We refer the reader to [Art21; Art24; Art02a] for more background on the Principle
of Functorial and the global Langlands correspondence, which we are only discussing
for motivation. The local Langlands correspondence will be reviewed in detail in the
body of this thesis.

1.2 Beyond Endoscopy
The most general tool for attacking the Principle of Functoriality is Arthur’s (twisted)
trace formula and its stabilisation due to Arthur and Moeglin–Waldspurger [Art02b;
MW16a]. However, applications of the trace formula to Functoriality are currently
limited to the cases that belong to the theory of endoscopy, in which H is a (twisted)
endoscopic group of G. These cases constitute only a small piece of the full Principle
of Functoriality. In 2000, Langlands introduced a research program for using the
stable trace formula to prove the Principle of Functoriality in general, including the
cases that lie beyond the theory of Endoscopy [Lan] (see also [Lan04; Lan07]). This
program is called Beyond Endoscopy.

The theory of endoscopy has global and local parts. The global part is mainly
concerned with the stabilisation of the (twisted) trace formula. The local part is
mainly concerned with the local Langlands correspondence (which is still partially
conjectural for non-archimedean local fields) and the theory of endoscopic transfer.
In moving beyond endoscopy, one must first have a completed theory of endoscopy for
the groups under consideration. We assume this for the remainder of this introductory
chapter.

Part of the local Langlands correspondence, as we shall recall below, is the as-



1.2. BEYOND ENDOSCOPY 3

signment of a stable tempered distribution Θϕv on H(Fv) to each local tempered
L-parameter φv ∈ Φtemp(Hv). The tempered L-parameters are those whose L-packets
consist of tempered representations, and these are the representations necessary for
harmonic analysis on H(Fv).

In Arthur’s elaboration of the strategy of Beyond Endoscopy [Art17; Art18c;
Art18b], there are two main global problems. The first global problem is to develop
a new trace formula for G, called the r-trace formula, for each L-homomorphism
r : LG → LGLN . This would be an identity SG,r

geom(f) = SG,r
spec(f) of stable distri-

butions on G(AF ), such that the contribution from tempered discrete automorphic
representations of G(A) to the spectral side SG,r

spec(f) could be expressed as∑
ϕ∈Φ2,temp(G)

mϕ(r)m(φ)Θϕ(f)

if the global Langlands correspondence were known. The set Φ2,temp(G) is the set of
tempered discrete L-parameters of G. The distribution Θϕ(f) is the stable tempered
character attached to φ, and satisfies Θϕ(f) =

∏
v Θϕv(fv) for f =

∏
v fv with fv ∈

C∞
c (G(F )v)). The constant m(φ) is the multiplicity of φ in the spectral side of the

stable trace formula for G and mϕ(r) is the pole order − ords=1 L(s, r ◦ φ) of the L-
function L(s, r ◦ φ). In the case r = 1, we have mϕ(r) = 1 and the tempered discrete
contribution to SG,1

spec(f) becomes the tempered discrete contribution to the spectral
side SG

spec(f) of the stable trace formula for G.
The strategy for developing the r-trace formula is to obtain it as a limit of av-

erages of stable trace formulas applied to functions obtained by modifying f using
r. Before one can pass to the limit, non-tempered spectral terms must be cancelled
with geometric terms. Besides the above references related to Beyond Endoscopy, the
problem of developing the r-trace formula has been studied [FLN10; Alt15; Alt17;
Alt20; Lar22; Esp+; Art18a] for GLn and SLn, mostly in the case n = 2.

Once the r-trace formula is established, the second global problem would then
be to “primitivise” the r-trace formula for G [Art17; Mok18]. The purpose of the
pole orders mϕ(r) in the r-trace formula is that as r varies, they detect whether φ

factors through a proper L-embedding H ↪→ LG. As in the case of endoscopy, one
must consider groups H that are not L-groups and use the technical device of z-
extensions. For simplicity, we ignore this complication and suppose that H = LH is
an L-group. A tempered discrete L-parameter, as well as its corresponding tempered
discrete automorphic representations, is said to be primitive (also thick or hadronic
[Lan11; Lan12]) if it does not factor through a proper L-embedding. To primitivise
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the r-trace formula is to express it as a linear combination

SG,r
? (f) =

∑
H

ι(r,H)PH
? (Tξf) , ? ∈ {geom, spec},

of new “primitive” (stable) trace formulas

PH
geom = PH

spec

for certain groups H with a tempered L-embedding ξ : LH ↪→ LG (ignoring technicali-
ties involving z-extensions), such that PH

spec only contains contributions from primitive
automorphic representations of H(AF ). A correspondence (relation) f 7→ {Tξf} be-
tween C∞

c (H(AF )) and C∞
c (G(AF )) is required in the primitivisation identity above

in order to pull back the stable distribution PH
? on H(AF ) to a stable distribution on

G(AF ). For f ∈ C∞
c (H(AF )), we write {Tξf} for the set of elements of C∞

c (G(AF ))

that are in correspondence with f .
The correspondence Tξ is defined to be compatible with locally defined corre-

spondences fv 7→ {Tξvfv} between C∞
c (H(Fv)) and C∞

c (G(Fv)) attached to the local
tempered L-embeddings ξv : LHv ↪→ LGv for each place v of F in the sense that
when f decomposes as f =

∏
v fv with fv ∈ C∞

c (G(Fv)), then {Tξf} =
∏

v{Tξvfv}.
The temperedness condition on ξv is to guarantee that the associated pushforward of
local L-parameters ξv,∗ : Φ(Hv) → Φ(Gv) defined by ξv,∗(φv) = ξv ◦ φv restricts to a
map ξv,∗ : Φtemp(H) → Φtemp(G) of local tempered L-parameters. The local corre-
spondence fv 7→ {Tξvfv} is defined as follows. For fv ∈ C∞

c (G(Fv)), the set {Tξfv}
consists of all functions Tξfv ∈ C∞

c (H(Fv)) such that

Θϕv(Tξvfv) = Θξv◦ϕv(fv)

for all tempered local L-parameters φv ∈ Φ(Hv). Temperedness of the stable tempered
character Θϕv means that it extends to a continuous linear functional of the (Harish-
Chandra) Schwartz space C(H(Fv)). Thus, the definition of the local fv 7→ {Tξvfv}
extends naturally to a correspondence between the Schwartz spaces C(G(Fv)) and
C(H(Fv)). For fv ∈ C(G(Fv)), the functions functions Tξvfv in {Tξvfv} ⊆ C(H(Fv))

are said to be stable transfers of fv. Stable transfer has also been called functorial
transfer [Art08] and stable-stable transfer [Tho20] in order to avoid confusion with
endoscopic transfer.

An extension of Beyond Endoscopy aimed at the relative Principle of Functoriality
with an accompanying notion of stable transfer was introduced by Sakellaridis [Sak13;
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Sak19a; Sak19b; Sak]. Understanding stable transfer is the main local problem of
Beyond Endoscopy.

1.3 Stable transfer
Let F now denote a local field of characteristic zero. Let H and G be connected
reductive groups over F with G quasisplit, and let ξ : LH → LG be an injective
tempered L-homomorphism. (As remarked above, eventually a more elaborate setting
will be required, but this is the essential case.) We continue to assume the local
Langlands correspondence. We write C∞

c (G) = C∞
c (G(F )) and C(G) = C(G(F )).

The first question about the stable transfer correspondence Tξ that must be ad-
dressed is whether for each f ∈ C∞

c (G), a stable transfer Tξf ∈ C∞
c (H) exists. Lang-

lands posed this as Questions A and B in [Lan13], where he initiated the study of
stable transfer. Langlands showed that this question has an affirmative answer when
G = SL2, H is a maximal torus of G, and ξ is a natural L-embedding [Lan13, §2.1–
2.4 (p. 182–210)]. Johnstone gave an affirmative answer in the case when G = SLℓ

or G = GLℓ with ` an odd prime, H is an unramified elliptic maximal torus of G,
and ξ is a natural L-embedding [Joh17; Joh]. The arguments in these works involve
detailed computations with explicit stable character formulas, which are not available
in general. The existence of stable transfer of test functions has also been explored
in [JL; Tho20]. Stable transfers in the relative extension of Beyond Endoscopy have
been been shown to exist in low rank cases [Sak13; Sak19a; Sak19b; Sak22a; Sak22b].
More generally, one can ask whether for each f ∈ C(G) there exists a stable transfer
Tξf ∈ C(H).

The existence of stable transfers is useful in global applications of the stable trace
formula that lie outside the theory of Endoscopy but do not belong to the program of
Beyond Endoscopy. For example, in [DG] stable transfers are used to prove statistics
of automorphic representations for unramified unitary groups, with applications to
the Sato–Tate Conjecture, the Sarnak–Xue Conjecture, and the cohomology of lo-
cally symmetric spaces. Extensions of this work to general unitary groups and other
classical groups require more general existence results and a better understanding
of the properties of stable transfer. We expect that stable transfer may have other
applications outside of Beyond Endoscopy, both in global and local harmonic analysis.

Although the stable Fourier transforms of f and Tξf are related in a simple way,
the relation between the stable orbital integrals of f and Tξf is much more compli-
cated. In order to establish the primitivisation of the geometric side of the r-trace



1.4. STABLE HARMONIC ANALYSIS 6

formula, one will need a deep geometric understanding of stable transfer. Since little
is known about the geometric side of the r-trace formula, we do not know what pre-
cisely will be required. Further progress on developing the r-trace formula will give us
more guidance. In the other direction, explicit formulas for the orbital integrals of Tξf

in terms of those of f might help guide the development of the r-trace formula. Such
formulas are very complicated in general. They include formulas for stable tempered
characters in the case when H = 1. However, in some cases they are more simple. In
the case when H is a Levi subgroup of G and ξ belongs to the natural G∨-conjugacy
class of L-embedding, then Tξ is simply parabolic descent. In the case considered by
Langlands in [Lan13], there is a formula for stable transfer Tξf in terms of those of
f , which is originally due to Gelfand and Graev [GG63]. There are major hurdles to
generalising the Gelfand–Graev formula (cf. [Joh17; Joh]). Sakellaridis gave a differ-
ent proof of the Gelfand–Graev formula in [Sak22b] and has established formulas for
various cases of the relative version stable transfer [Sak13; Sak19b; Sak22a; Sak23].
We refer the reader to [Sak] for a survey of these works.

1.4 Stable harmonic analysis
The natural context in which to study the stable transfer correspondence Tξ is stable
harmonic analysis, which is concerned with the stable Fourier transform for a (not
necessarily quasisplit) connected reductive group G over a local field of characteristic
zero.

For f ∈ C(G), the stable Fourier transform of f is the function fG : Φtemp(G) → C
defined by fG(φ) = Θϕ(f) for all φ ∈ Φtemp(G). We define ŜC(G) to be the space
of fG of functions f ∈ C(G), which can be regarded as the quotient of C(G) by the
closed subspace of f ∈ C(G) with fG(φ) = 0 for all φ ∈ Φtemp(G). The stable Fourier
transform is a continuous linear map F st : C(G) → ŜC(G). The stable Fourier
transform φ 7→ fG(φ) of f ∈ C(G) only depends on the normalised stable orbital
integrals fG(δ) = |DG(δ)|1/2 SOδ(f) of f . We define SC(G) to be the space of stable
orbital integrals fG of functions f ∈ C(G), which is also naturally a quotient space of
C(G). The stable Fourier transform F st descends to a continuous linear operator

F st : SC(G) −→ ŜC(G).

As in classical harmonic analysis, a foundational problem in stable harmonic analysis
to establish that this operator F st is an isomorphism of topological vector spaces and
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characterise its image ŜC(G). We refer to this as a stable Paley–wiener theorem for
Schwartz functions, and the injectivity of F st as stable spectral density for Schwartz
functions.

Replacing C(G) with C∞
c (G) above, we obtain definitions of ŜC∞

c (G) and SC∞
c (G).

The stable Fourier transform restricts to a continuous linear operator

F st : SC∞
c (G) −→ ŜC∞

c (G)

A stable Paley–Wiener theorem for test functions asserts that this linear operator
is an isomorphism of topological vector spaces and characterises its image ŜC∞

c (G).
This has been established for quasisplit G by Arthur when F is non-archimedean
[Art96] and by Moeglin and Waldspurger when F is archimedean [MW16a, Ch. IV].
The space ŜC∞

c (G) is characterised as a space of “Paley–Wiener type” functions on
Φtemp(G). Stable spectral density for test functions, i.e. the injectivity of this operator
can be extended to the case of non-quasisplit groups using the results of [Var, §3.2].

Returning to the notation used in the preceding section, for f ∈ C(G) the functions
{Tξf} are not specified directly in terms of f , but their stable Fourier transforms all
coincide and are expressed directly in terms of the stable Fourier transform of f since
(Tξf)

H(φ) = fG(ξ∗φ) for all φ ∈ Φtemp(G).

1.5 Results
We continue with F a local field of characteristic zero. In this thesis, we study
stable harmonic analysis and its application to stable transfer. We work under un-
der a hypothesis on the local Langlands correspondence in the case when F is non-
archimedean (Hypothesis 4.4.1), which is known in many cases. Our main result is
the following.

Theorem 1.5.1. Let H and G be connected reductive groups over F with G quasisplit,
and let ξ : LH → LG be an injective tempered L-homomorphism. For each f ∈ C(G),
a stable transfer Tξf ∈ C(H) exists, and the stable transfer correspondence f 7→ Tξf

descends to a continuous linear operator

Tξ : SC(G) −→ SC(H).

It is uniquely characterised by T ′
ξΘϕ = Θξ∗ϕ for all φ ∈ Φtemp(H). Moreover, the



1.5. RESULTS 8

operator Tξ restricts to a continuous linear operator

Tξ : SC∞
c (G) −→ SC∞

c (H).

In particular, this answers Questions A and B of Langlands from [Lan13] in the
affirmative. The above theorem is proved in Chapter 5 as part of Corollary 5.1.2.
One of the main ingredients in the proof is a finiteness property of the map ξ∗ :

Φ(H) → Φ(G), which is also established in Chapter 5 (cf. Theorem 5.2.2) and may
be of independent interest. The other main ingredients in the proof are stable Paley–
Wiener theorems.

In Chapter 4, we give proofs of various stable Paley–Wiener theorems for (not-
necessarily quasisplit) connected reductive groups G groups under our hypothesis on
the local Langlands correspondence when F is non-archimedean. This includes a
new stable Paley–Wiener theorem for Schwartz functions, characterising the image
ŜC(G) of the stable Fourier transform as a natural space S st(G) of “Schwartz type”
functions on Φtemp(G). In particular, we establish stable spectral density for Schwartz
functions. The proof builds on Arthur’s invariant (or trace) Paley–Wiener theorem for
Schwartz functions, which concerns the invariant Fourier transform [Art94b]. As we
discussed above, Arthur and Moeglin–Waldspurger established stable Paley–Wiener
theorems for quasisplit groups. Moeglin–Waldspurger work in a more general twisted
setting and Arthur establishes a more general result on collective endoscopic transfer.
Our proof follows the strategy of Moeglin–Waldspurger. Their proof simplifies in the
non-twisted setting since one can use stable spectral density for test functions.

Our theorem on stable transfer given above boils down to showing that pullback
along ξ∗ : Φtemp(H) → Φtemp(G) gives a well-defined continuous linear operator

ξ∗ : ŜC(G) −→ ŜC(H)

which restricts to a continuous linear operator

ξ∗ : ŜC∞
c (G) −→ ŜC∞

c (H)

(cf. Theorem 5.1.1). It is here that the finiteness property of ξ∗ mentioned above is
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used. Then, the operator Tξ can be defined to make the following diagram commute

SC(G) SC(H)

ŜC(G) ŜC(H)

Tξ

Fst Fst

ξ∗

and it has the properties claimed. We note that this diagram is an analogue of
the Fourier-slice theorem for the classical Radon transform. In this way, the stable
transfer operator Tξ can be thought of as an analogue in stable harmonic analysis of
a Radon projection.

For applications of stable transfer operators to Beyond Endoscopy, more than
just the existence and properties of stable transfer established in this thesis will be
required. In Chapter 5, we establish formulas for the stable orbital integrals Tξf in
terms of those of f when H and G are either both tori or both complex groups.
The formulas obtained are rather simple and reinforce the analogy with the classical
Radon transform, but in general stable operators are much more complicated.

1.6 Guide to the reader
We have attempted as much as possible to give a leisurely exposition of background
material with graduate student reader in mind. Chapter 2 contains various prelimi-
naries that we use throughout. Chapter 3 is on invariant harmonic analysis, includ-
ing Arthur’s virtual tempered representations and invariant Paley–Wiener theorems.
These invariant Paley–Wiener theorems are formulated in terms of abstract spaces of
“Schwartz type” and “Paley–Wiener type” functions. In Chapter 3, we define these
Schwartz and Paley–Wiener spaces and give basic properties of them. They are used
in Chapters 4 and 5. In the first part of Chapter 4, we review the basic objects of
stable harmonic analysis.

Someone more familiar with the invariant harmonic analysis and the Langlands
program can skip much of the above mentioned background material. We suggest
reading §3.3, where the Schwartz and Paley–Wiener spaces we use are defined; then
moving to §4.4, where our hypothesis on the local Langlands correspondence for p-
adic groups is formulated; and then proceeding from there, consulting earlier sections
as necessary.



2 Preliminaries

2.1 The group
Unless otherwise stated, F will denote a local field of characteristic zero. We fix an
algebraic closure F of F . If F is non-archimedean, we denote its ring of integers by
OF , the unique maximal ideal of OF by pF , the characteristic of the residue field
OF/pF by p, and the cardinality of the residue field by qF = |OF/pF |. We say that
F is a p-adic field when F is non-archimedean and has residual characteristic p.

Let | · |F denote the canonical absolute value of F , which is defined for all a ∈ F

by d(ax) = |a|F dx, where dx is any Haar measure of F . We also denote the canonical
absolute value on F by | · |F .

Let G be a connected reductive group over F . We will say that G is a real group
if F is archimedean and a p-adic group if F is a p-adic field. We will use X∗(G) (resp.
X∗(G)) to denote the group of algebraic characters G → Gm (resp. cocharacters
Gm → G) over F . Thus, the group of algebraic characters (resp. cocharacters) of the
base change GF will be denoted by X∗(GF ) (resp. X∗(GF )).

We have the real vector spaces

aG = HomZ(X
∗(G),R)

and
a∗G = X∗(G)⊗Z R.

Note that we have a natural perfect pairing between aG and a∗G, realising a∗G as the dual
space of aG. Let AG be the split component of the centre of G. The restriction gives
an injective homomorphism X∗(G) → X∗(AG) with finite cokernel. By functoriality,
we obtain isomorphisms aAG

∼−→ aG and a∗G
∼−→ a∗AG

. In this way we identify aAG
= aG

and a∗AG
= a∗G.

We have the Harish-Chandra logarithm homomorphism HG : G(F ) → aG defined

10
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by 〈HG(x), χ〉 = log |χ(x)|F for all x ∈ G(F ) and χ ∈ X∗(G). Let

G(F )1 = kerHG =
⋂

χ∈X∗(G)

ker |χ|F .

Note that HAG
is the restriction of HG. Therefore AG(F )1 = AG(F ) ∩G(F )1. Let

aG,F = HG(G(F )) = G(F )/G(F )1

and
ãG,F = aAG,F = HG(AG(F )) = AG(F )/AG(F )1.

We define
a∨G,F = HomZ(aG,F , 2πiZ)

and similarly
ã∨G,F = HomZ(ãG,F , 2πiZ).

We have the inclusions
ãG,F ⊆ aG,F ⊆ aG.

If F is archimedean, then ãG,F = aG,F = aG and ã∨G,F = a∨G,F = 0. If F is non-
archimedean, then aG,F and ãG,F are (full) lattices in aG, and a∨G,F ⊆ ã∨G,F are lattices
in ia∗G.

A (continuous) character χ : G(F ) → C× of G(F ) is said to be unramified
if χ(G(F )1) = 1. Thus, the unramified characters of G(F ) are the characters of
G(F )/G(F )1 = aG,F . We denote the group of unramified characters of G(F ) by
Xnr(G) = Hom(G(F )/G(F )1,C×) and the subgroup of unitary unramified characters
by Xnr(G)1 = Hom(G(F )/G(F )1,C1).

We have a surjective homomorphism

a∗G,C −→ Xnr(G)

defined by λ 7→ | · |λG, where |g|λG = e⟨λ,HG(g)⟩. If λ = θ ⊗ s ∈ a∗G,C = X∗(G) ⊗Z C,
then |g|λG = |θ(g)|s. The surjection a∗G,C → Xnr(G) descends to an isomorphism
a∗G,C/a

∨
G,F → Xnr(G). Thus, if F is archimedean, then the map a∗G,C → Xnr(G) is an

isomorphism and Xnr(G) is a complex vector space. If F is non-archimedean, then
Xnr is a complex torus and the homomorphism a∗G,C → Xnr(G) factors through the
complex torus a∗G,C/

2πi
log qF

X∗(G) with finite kernel a∨G,F/
2πi

log qF
X∗(G).
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2.1.1 Parabolic and Levi subgroups

We call a Levi factor of a parabolic subgroup of G a Levi subgroup of G. Let M be
a Levi subgroup of G. We recall the following standard notation.

• P(M) = PG(M) is the set of parabolic subgroups of G with M as a Levi factor;

• L(M) = LG(M) is the set of Levi subgroups of G containing M ; and

• F(M) = FG(M) is the set of parabolic subgroups of G containing M .

If P is a parabolic subgroup of G, we denote the unipotent radical of P by NP .
We refer to a pair (P,M) consisting of a Levi subgroup M of G and a parabolic
subgroup P ∈ P(M) as a parabolic pair of G. Any two Levi factors of a parabolic
subgroup P are P (F )-conjugate. If M is a Levi factor of P , then NNP (F )(M) = 1

and NP (F )(M) = M(F ). Thus, any two Levi factors of a parabolic subgroup are
conjugate by a unique element of NP (F ).

Two parabolic subgroups are said to be associate if they have conjugate Levi fac-
tors, and two parabolic pairs are associate if their Levi subgroups are conjugate. There
is a natural bijection between the set of G(F )-conjugacy classes of Levi subgroups of
G and the set of associate classes of parabolic subgroups of G.

Fix a minimal parabolic pair (P0,M0) of G. We will often use a subscript or
superscript “0” instead of “M0” to indicate dependence on M0 or P0. For example,
we write N0 = NP0 and A0 = AM0 . With respect to M0, a parabolic subgroup P of G
is called standard (resp. semistandard) if it contains P0 (resp. M0). A Levi subgroup
of G is said to be semistandard if it contains M0.

If P is a semistandard parabolic, then it has a unique semistandard Levi factor MP .
In this way, every semistandard parabolic P determines a parabolic pair (P,MP ). A
Levi subgroup of G is called standard if it is of the form MP for a standard parabolic
P . Note that FG(M0) (resp. LG(M0)) is the set of semistandard parabolic (resp.
Levi) subgroups of G.

A parabolic pair (P,M) is said to be semistandard if M (and thus P ) is semis-
tandard, and is said to be standard if furthermore P is standard (and thus M = MP

is standard). A standard parabolic pair (P,M) is uniquely determined by either P

or M . Thus, standard parabolic subgroups are in bijection with standard parabolic
pairs. Every Levi subgroup is conjugate to a standard Levi subgroup. Every parabolic
subgroup (resp. parabolic pair) is conjugate to a unique standard parabolic subgroup
(resp. standard parabolic pair).
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Recall that for every split torus S in G, the group CG(S) is a Levi subgroup of
G. Let M be a Levi subgroup of G. Then M = CG(AM). Note that if M1 and M2

are Levi subgroups of G, then M1 ⊆ M2 if and only if AM2 ⊆ AM1 . Consequently, we
have that A0 is a maximal split torus of G and conversely the centraliser of a maximal
split torus of G is a minimal Levi subgroup of G.

Let M ⊆ G be a Levi subgroup of G. We have AG ⊆ AM . The restriction
homomorphism X∗(G) → X∗(M) is injective, so gives rise to a linear injection

a∗G = X∗(G)⊗Z R −→ a∗M = X∗(M)⊗Z R

and a dual linear surjection

aM = HomZ(X
∗(G),R) −→ aG = HomZ(X

∗(M),R).

The restriction homomorphism X∗(AM) → X∗(AG) is surjective, so gives rise to a
linear surjection

a∗M = X∗(AM)⊗Z R −→ a∗G = X∗(AG)⊗Z R

and a dual linear injection

aG = HomZ(X
∗(AG),R) −→ aM = HomZ(X

∗(AM),R).

Let aGM = ker(aM → aG). The homomorphism aG → aM is a section of aM → aG.
Thus, we have a split short exact sequence

0 aGM aM aG 0

and aM = aGM ⊕ aG. We also have the dual exact sequence

0 a∗G a∗M (aGM)∗ 0

and a∗M = (aGM)∗ ⊕ a∗G.
Let (P,M) be a parabolic pair. We denote the set of simple roots of (P,AM) (or

equivalently (NP , AM)) by ∆(P,M), which is a basis of (aGM)∗. There is an associated
set of simple coroots ∆(P,M)∨, which is a basis of aGM , and there is a bijection
∆(P,M) → ∆(P,M)∨, α 7→ α∨. For (P,M) semistandard, we write ∆P = ∆(P,M)

and ∆∨
P = ∆(P,M). (Cf. [MW18, §1.3].)
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2.1.2 Maximal compact subgroups

A maximal compact subgroup K of G(F ) is said to be in good position (or admissible)
relative to a Levi subgroup M of G if the following holds.

• When F is archimedean, the Lie algebra of K and AM(F ) are orthogonal with
respect to the Killing form of G.

• When F is non-archimedean, K is the stabiliser of a special vertex in the apart-
ment attached to a maximal split torus of M .

We recall from [Art81, §1] that if K is in good position relative to M , then

1. G(F ) = P (F )K for any P ∈ P(M);

2. any coset in G(F )/M(F ) which normalises M has a representative in K;

3. P (F ) ∩K = (MP (F ) ∩K)(NP (F ) ∩K) for any P ∈ F(M); and

4. if L ∈ L(M), then KL := K ∩ L(F ) is a maximal compact subgroup of L(F )

that is in good position relative the Levi subgroup M of L.

If K is in good position relative to M , then K is in good position relative to every
Levi subgroup containing M .

Fix a maximal compact subgroup K of G(F ) that is in good position relative to
our fixed minimal Levi subgroup M0 of G. In particular, the Iwasawa decomposition
G(F ) = P0(F )K holds.

Let P ∈ F(M0). We can extend HMP
: MP (F ) → aMP

to a homomorphism
HP : P (F ) → aMP

by composing with P (F ) → MP (F ). We have the decompositions
G(F ) = P (F )K = MP (F )NP (F )K. For each x ∈ G(F ) we choose elements pP (x) ∈
P (F ) and kP (x) ∈ K such that x = pP (x)kP (x), and let mP (x) ∈ MP (F ) and
nP (x) ∈ NP (F ) be the unique elements such that pP (x) = mP (x)nP (x). We extend
HP to a function HP : G(F ) → aMP

by HP (x) = HP (pP (x)) = HMP
(mP (x)).

Let ∆0 = ∆P0 , the set of simple roots of A0 associated with its action on P0

(or equivalently N0). Let a≥0
0 be the set of H ∈ a0 such that 〈α,H〉 ≥ 0 for all

α ∈ ∆0, and define M0(F )≥0 to be the set of m ∈ M0(F ) such that H0(m) = a0.
Then G(F ) = KM0(F )≥0K. (See [MW18, §1.1])

2.1.3 Weyl Groups

For T a torus of G, we define the following Weyl groups:
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• the absolute Weyl group W (G, T ) := NG(T )/CG(T );

• the relative Weyl group WF (G, T ) := NG(F )(T )/CG(F )(T ); and

• the stable Weyl group W (G, T )(F ) := (NG(T )/CG(T ))(F ).

Note that NG(F )(T ) = NG(T )(F ) and CG(F )(T ) = CG(T )(F ). We have

WF (G, T ) ⊆ W (G, T )(F ) ⊆ W (G, T ).

By Galois descent, we can express the stable Weyl group in the following ways:

W (G, T )(F ) = {g ∈ NG(T )(F ) : gσ(g)−1 ∈ CG(T )(F ), ∀σ ∈ ΓF}/CG(T )(F )

= {w ∈ W (G, T )(F ) : Int(w−1) : CG(T )F → CG(T )F is defined over F}

If T is a maximal torus of G, then CG(T ) = T and one has WF (G, T ) = W (G(F ), T (F )) :=

NG(F )(T (F ))/CG(F )(T (F )). For a Levi subgroup M of G, we write WG(M) for the
relative Weyl group WF (G,AM). That is,

WG(M) = NG(F )(AM)/CG(F )(AM) = NG(F )(M)/M(F ).

The Weyl group WG(M0) is the relative Weyl group of G, and we abbreviate it by
WG

0 .
Let w ∈ WG(M) and let w̃ ∈ NG(F )(M) be a representative of w. Since w̃−1 ·

A0 = w̃−1A0w̃ is a maximal split torus of M , there exists m ∈ M0(F ) such that
m · A0 = w̃−1 · A0. Then w̃m · A0 = A0. Consequently, w̃m ∈ NG(F )(A0). Therefore
w is represented by an element of NG(F )(A0). It follows that

WG(M) = {w̃ ∈ NG(F )(A0) : w̃ ·M = M}/M(F )

and we have a canonical isomorphism

WG(M) = {w ∈ WG
0 : w ·M = M}/WM

0 .

Fix a WG
0 -invariant inner product 〈·, ·〉 on a0, with associated norm denoted by ‖·‖.

This restricts to a WG(M)-invariant inner product on aM for each semistandard Levi
subgroup M of G, and is transported by conjugation to all non-semistandard Levi
subgroups of G. We obtain WG(M)-invariant inner product on the complexifications
aM,C. We may use these inner products to identify aM = a∗M and aM,C = a∗M,C. The
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decomposition aM = aGM ⊕ aG is orthogonal with respect to the inner product on aM .
We will fix normalisations of Haar measures as in [Art94a]. However, the precise

normalisation has little import on our results.

2.1.4 The universal enveloping algebra

Let g be a complex reductive Lie algebra. We denote the centre of U(g) by Z(g). We
recall that

Z(g) = U(g)ad(g) = U(g)e
ad(g)

= U(g)Int(g),

where Int(g) is the group of inner automorphisms of g, that is, the connected subgroup
of Aut(g) with Lie algebra ad(g).

For each Levi subalgebra m of g there is a canonical Harish-Chandra homomor-
phism ξgm : Z(g) → Z(m). (See Definition 6.3 in [Vog87].) The construction of
ξgm uses a choice of a parabolic subalgebra p with Levi factor m, but ξgm does not
depend on this choice. The Harish-Chandra homomorphism is injective and has
image Z(m)W (g,m). The isomorphism ξgm : Z(g) → Z(m)W (g,m) is often called a Harish-
Chandra isomorphism. The Harish-Chandra homomorphisms are functorial in the
sense that if l ⊆ m are two Levi subalgebras of g, then ξgl = ξml ◦ ξgm. When m = t

is a maximal toral subalgebra, then Z(t) = U(t) = Sym(t) and the Harish-Chandra
isomorphism ξgt : Z(g) → Sym(t)W (g,t) is the one found most often in the literature.
If t is contained in m, then it follows from functoriality of the Harish-Chandra homo-
morphisms that the following diagram commutes

Z(g) Z(m)

Sym(t)W (g,t) Sym(t)W (m,t)

ξgm

ξgt ξmt

That is, if we identify Z(g) = Sym(t)W (g,t) and Z(m) = SymW (m,t) using the Harish-
Chandra isomorphisms, then the Harish-Chandra homomorphism ξgm : Z(g) → Z(m)

is simply the inclusion Sym(t)W (g,t) ↪→ Sym(t)W (m,t).
If G is a real Lie group, then

U(gC)
Ad(G◦) = U(gC)

Ad(exp(g)) = U(gC)
ead(g)

= U(gC)
ad(g) = U(gC)

ad(gC) = Z(gC).
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Consequently, we have U(gC)
Ad(G) ⊆ Z(gC). If Ad(G) ⊆ Int(gC), then

Z(gC) = U(gC)
Int(gC) ⊆ U(gC)

Ad(G)

and Z(gC) = U(gC)
Ad(G). If G belongs to the Harish-Chandra class, in particular, if G

is the group of R-points of a connected reductive group over R, then Ad(G) ⊆ Int(gC).
We will need a “norm” on the set HomC−alg(Z(gC),C) of infinitesimal characters

of G. Choose a maximal torus T of GC. By the Harish-Chandra isomorphism, we
may identify HomC−alg(Z(gC),C = t∗/W (GC, T ). We fix a W (GC, T )-invariant inner
product on t∗. Then, for µ ∈ t∗/W (GC, T ) the resulting norm ‖µ‖ = ‖µ‖G is well-
defined. Different choices of inner products or maximal tori result in a function ‖ · ‖′

on the set of infinitesimal characters of G with ‖ · ‖′ � ‖ · ‖. Since we will only use
‖ · ‖ in estimates, definitions made using ‖ · ‖ will not depend on the choices made to
define it. Note that if M is a Levi subgroup of G, then ‖ · ‖M � ‖ · ‖G.

2.1.5 Group norms

We recall the notion of norms on affine varieties over local fields from [Kot05, §18],
which are used to capture polynomial growth and decay. Let X be a set. An abstract
norm on X is a function ‖ · ‖ : X → R≥1. Let ‖ · ‖1, ‖ · ‖2 be abstract norms on X.
We write ‖ · ‖1 � ‖ · ‖2 if there exist M > 0 such that ‖ · ‖1 � ‖ · ‖M2 . The abstract
norms ‖ · ‖1, ‖ · ‖2 are said to be equivalent and we write ‖ · ‖1 ≈ ‖ · ‖2 if ‖ · ‖1 � ‖ · ‖2
and ‖ · ‖2 � ‖ · ‖1.

Let X be an affine scheme of finite type over F . There is a canonical equiva-
lence class of abstract norms on X(F ), defined as follows. For any set of generators
f1, . . . , fm of the F -algebra OX(X), of regular functions on X, we have an abstract
norm ‖ · ‖ on X(F ) defined by

‖x‖ := sup{1, |f1(x)|F , . . . , |fm(x)|F}.

The equivalence class of ‖ ·‖ does not depend on the choice of f1, . . . , fm. We call any
abstract norm in the equivalence class of ‖ · ‖ a norm on X(F ). For the definition
of norms on X(F ) when X is a non-affine scheme of finite type over F , see [Kot05,
§18.5].

Let G be a linear algebraic group over F . By [Kot05, Proposition 18.1 (7)], if Ω
is a bounded (relatively compact) subspace of G(F ), for every norm ‖ · ‖ on G(F )

there exist C,M > 0 such that ‖ω1gω2‖ ≤ C‖g‖M for all ω1, ω2 ∈ Ω and g ∈ G(F ).
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We may construct a norm on G(F ) as follows. Let ι : G → GL(V ) be a faithful
algebraic representation of G on a finite-dimensional vector space V over F . Choose
a vector space norm ‖ · ‖ on V that is compatible with the canonical absolute value
| · |F on F . For example, if e1, . . . , en is a basis of V and v =

∑n
i=1 aiei, we can take

‖v‖ = maxi=1,...,n{|ai|F}. We equip End(V ) with the corresponding operator norm,
which we also denote by ‖ · ‖. Define ‖g‖ = max(‖ι(g)‖, ‖ι(g−1)‖) for all g ∈ G(F ).
Then ‖ · ‖ : G → R≥1 is a norm on G(F ) that satisfies the following properties:

1. ‖ · ‖ is continuous;

2. ‖g1g2‖ ≤ ‖g1‖‖g2‖ for all g1, g2 ∈ G(F );

3. ‖g−1‖ = ‖g‖ ≥ 1 for all g ∈ G(F );

4. for all R ≥ 0, the subspace BR = {g ∈ G(F ) : ‖g‖ ≤ R} is compact.

Since ‖ · ‖ is a norm on G(F ), changing ι or the choice of vector space norm on V

results in an equivalent norm on G(F ). We call the norms ‖ · ‖ on G(F ) that are
obtained from the above construction group norms.

If Ω1,Ω2 are bounded subsets of G(F ), then ‖ω1xω2‖ � ‖x‖ for x ∈ G(F ) and
ωi ∈ Ωi. This follows from

‖x‖ = ‖y−1
1 y1xy2y

−1
2 ‖ ≤ ‖y−1

1 ‖‖y1xy2‖‖y−1
2 ‖

and ‖y1xy2‖ ≤ ‖y1‖‖x‖‖y2‖ for all x, y1, y2 ∈ G(F ).
Now suppose that G is our connected reductive group. We fix a group norm

‖ · ‖ = ‖ · ‖G on G(F ) and define the non-negative function σ = σG := log ‖ · ‖.
For a closed central subgroup Z of G(F ), we define σZ = σZ

G : G(F ) → R≥0 by
σZ(g) = infz∈Z σ(zg). We will use this to define growth properties modulo Z. If Z
is of the form Z = Z(F ) for a subgroup Z ⊆ ZG, we will write σZ = σZ

G instead of
σZ = σZ

G to simplify the notation.
Recall that we have fixed a WG

0 -invariant inner product on a0. There exist con-
stants C1, C2 > 0 such that

C1(1 + ‖H0(m0)‖) ≤ 1 + σ(m0) ≤ C2(1 + ‖H0(m0)‖)

for all m0 ∈ M0(F ). That is, 1 + σ(m0) � 1 + ‖H0(m0)‖ for m0 ∈ M0(F ).
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2.2 Functions and distributions
Let M be a (second countable) smooth manifold. We assume the reader is familiar
with the Fréchet space C∞(M), and the LF-space C∞

c (M).
For each locally compact (Hausdorff) group G, Bruhat defined locally convex

space C∞
c (G) and C∞(G) in a way that extends the definition for Lie groups. These

constructions behave best when G is second countable. We recall that for a locally
compact Hausdorff space X, the following are equivalent: (i) X is second count-
able; (ii) X is metrisable and countable at infinity; (iii) X is Polish (separable and
completely metrisable) and countable at infinity.

We define a td space to be a second countable totally disconnected locally compact
Hausdorff space. We define a td group to be a topological group that is a td space.
Besides the case of Lie groups, we will only need Bruhat’s definition of C∞

c (G) and
C∞(G) for td groups. More generally, we can define C∞(X) and C∞

c (X) for a td space
X. First, we recall that for any set S a function f : X → S is said to be smooth if it
is locally constant. If X is a td group, we say that f : G → S is uniformly smooth if
there exists an open neighbourhood U of the identity such that f is constant on UgU

for all g ∈ G; one may take U to be a compact open subgroup. The space C∞(X)

is the space of locally constant C-valued functions on X and C∞
c (X) is the subspace

of compactly supported smooth functions. The space C∞
c (X) has a countable basis.

The natural topology on C∞
c (X) is the finest locally convex topology.

We recall that the finest locally convex topology on a complex vector space V is
the topology defined by all seminorms on V , and it is a Hausdorff topology. The finest
locally convex topology on V can also be characterised as the topology that makes
every linear map from V to a locally convex space continuous. Colimits of finite-
dimensional locally convex spaces in the category of locally convex spaces have the
finest locally convex topology. If V has the finest locally convex topology, then it is
the colimit in the category of locally convex spaces of its finite-dimensional subspaces.
If moreover V has at most countable dimension, or equivalently is an increasing union
of a sequence of finite-dimensional spaces, then then V is a nuclear strict LF-space.

Since C∞
c (X) has the finest locally convex topology, we have C∞

c (X)′ = C∞
c (X)∗

as vector spaces (i.e. continuous linear functionals are the same as linear functionals
on C∞

c (X)). For this reason, many authors state that C∞
c (X) is not given a topology.

However, the natural topology is important for some purposes. Indeed, since C∞
c (X)

is reflexive, the (standard) strong dual topology on C∞
c (X)′ of uniform convergence

on bounded subsets is not the finest locally convex topology unless C∞
c (X) is finite-
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dimensional.
We have C∞(X) = limC C∞

c (C) in the category of vector spaces, where C runs
over the compact subspaces of X and the structure maps are given by restriction.
We give C∞(X) the locally convex limit topology so that the above limit is in the
category of locally convex spaces. We can take C to run over the compact open
subspaces of X in the above limits. Note that C∞(X) = C∞

c (X) if X is compact.

2.2.1 Equivariant test functions and distributions

For this and the next subsection, we let G be a Lie group or a td group. Let Z
denote a closed central subgroup of G equipped with a choice of Haar measure and
let ζ : Z → C× be a character of Z. The pair (Z, ζ) is called a central character
datum or simply a central datum of G. We say that a central datum (Z, ζ) is unitary
if ζ is unitary. The trivial central datum is the one with Z = 1. Later, we will
only use unitary central data and only consider the cases Z = 1 or Z is the split
component of the centre of the F -points of a connected reductive group over F .

We define C∞
c (G, ζ) to be the space of all functions f : G → C that are ζ−1-

equivariant (i.e. f(zg) = ζ(z)−1f(g) for all z ∈ Z and g ∈ G) and whose support is
compact modulo Z. The space C∞

c (G, ζ) has a natural topology.
Suppose that G is a Lie group. Let B be a closed subspace of G that is Z-

stable and compact modulo Z. Define C∞
B (G, ζ) to be the subspace of functions in

C∞
c (G, ζ) whose support is contained in B. We give C∞

B (G, ζ) the Fréchet space
topology defined by the family of seminorms

‖f‖D := sup
g∈G

|Df(g)|

for D a Z-invariant differential operator on D. We have C∞
c (G, ζ) =

⋃
B C∞

B (G, ζ)

and give C∞
c (G, ζ) the inductive limit topology in the category of locally convex

spaces, making it a strict LF-space.
If G is a td group, we give C∞

c (G, ζ) the finest locally convex topology. We
explain why this is natural in terms of the structure of C∞

c (G, ζ). Since Z is a td
group, the continuous character ζ : Z → C× is automatically smooth. For each
compact open subgroup K0 of G, let C∞

c (K0\G/K0, ζ) be the subspace of left and
right K0-invariant functions in C∞

c (G, ζ). Note that C∞
c (K0\G/K0, ζ) = 0 unless

ζ(Z ∩K0) = 1. Choose a compact open subgroup K0 of G that is sufficiently small
so that ζ(Z ∩K0) = 1. Let K1 ⊇ K2 ⊇ · · · be a deceasing sequence of compact open
subgroups of K0 with

⋂∞
i=1 Ki = 1. Then C∞

c (G, ζ) is the increasing union C∞
c (G, ζ) =
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⋃∞
i=1 C

∞
c (Ki\G/Ki, ζ). For each i, let Bi,1 ⊆ Bi,2 ⊆ · · · be an increasing sequence of

subspaces of G that are left and right Ki-invariant, Z-invariant, compact modulo Z,
and such that G =

⋃∞
j=1 Bi,j. Define C∞

Bi,j
(Ki\G/Ki, ζ) to be the finite-dimensional

subspace of functions in C∞
c (Ki\G/Ki, ζ) whose support is contained in Bi,j. Then

C∞
c (Ki\G/Ki, ζ) is the increasing union C∞

c (Ki\G/Ki, ζ) =
⋃∞

j=1 C
∞
Bi,j

(Ki\G/Ki, ζ).
Since C∞

Bi,j
(Ki\G/Ki, ζ) is finite-dimensional, it has a unique locally convex topology.

We give C∞
c (Ki\G/Ki, ζ) and C∞

c (G, ζ) the locally convex topologies that make the
increasing unions above colimits in the category of locally convex spaces. Thus, the
at most countable dimensional spaces C∞

c (Ki\G/Ki, ζ) and C∞
c (G, ζ) are both given

finest locally convex topologies.
We define the space of ζ-equivariant distributions on G(F ) to be C∞

c (G, ζ)′, the
continuous dual with the (standard) strong dual topology. The transpose of the
continuous surjection C∞

c (G) → C∞
c (G, ζ) is a continuous injection C∞

c (G, ζ)′ →
C∞

c (G)′, which allows us to identify ζ-equivariant distributions with distributions on
G(F ) that are ζ-equivariant with respect to a natural action of Z.

For f ∈ Cc(G), define f ζ : G → C by

f ζ(g) =

∫
Z
ζ(z)f(zg) dz.

Then f ζ lies in Cc(G, ζ), the space of continuous ζ−1-equivariant functions that are
compactly supported modulo Z. The linear map C∞

c (G) → C∞
c (G, ζ) is a surjection.

It is continuous with respect to the natural strict LF-space topologies on C∞
c (G) and

C∞
c (G, ζ), but we will not need this fact. Further more, it restricts to a continuous

linear surjection C∞
c (G) → C∞

c (G, ζ).

2.2.2 K-finite functions

We continue with G a Lie group or a td group and (Z, ζ) a central character of G
for the remainder of this subsection. Let K be a compact subgroup of G. We let
C∞

c (G, ζ,K) denote the subspace of left and right K-finite functions in C∞
c (G), i.e.

(K ×K)-finite vectors for the natural representation of K ×K on C∞
c (G). If G is a

td group, then C∞
c (G, ζ,K) = C∞

c (G, ζ).
Suppose that G is a Lie group. Then C∞

c (G, ζ,K) is a dense subspace of C∞
c (G, ζ).

The space C∞
c (G, ζ,K) naturally colimit [Art89, §11]. Indeed, let Γ ⊆ K̂ be a

finite set of irreducible representations of K. We define C∞
c (G, ζ,K)Γ to be the sub-

space of functions in C∞
c (G, ζ,K) that transform on each side under K according
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to a finite direct sum of representations in Γ. For each compact subspace B of G,
we define C∞

B (G, ζ,K)Γ = C∞
B (G, ζ) ∩ C∞

c (G, ζ,K)Γ, which is a closed subspace of
C∞

B (G, ζ) and thus a Fréchet space. We have C∞
c (G, ζ,K)Γ = colimB C∞

B (G, ζ,K)Γ

and C∞
c (G, ζ,K) = colimΓ C

∞
c (G, ζ,K)Γ, and we give each the locally convex col-

imit topology, which makes them strict LF-spaces. The inclusion C∞
c (G, ζ,K) →

C∞
c (G, ζ) is continuous.

2.2.3 Harish-Chandra Schwartz functions

We return to our general context of G being a connected reductive group over F .
Recall that we have fixed a minimal parabolic P0 of G, a Levi factor M0 of P0,
and maximal compact subgroup K of G(F ) in good position relative to M0. Thus,
the Iwasawa decomposition G(F ) = P0(F )K holds. Let e : G(F ) → R>0 be the
unique function satisfying e(K) = 1 and e(p0g) = δ

1/2
P0

(p0)e(g) for all p0 ∈ P0(F )

and g ∈ G(F ). That is, e is the unique smooth vector of the parabolically induced
representation IGM0,P0

(1M0) satisfying e(K) = 1. (See below for our notation and
conventions on parabolic induction.) Note that e is ZG(F )-invariant and right K-
invariant. Although e depends on the choice of P0 and K, it does not depend on the
choice of M0. We define Ξ = ΞG : G(F ) → R>0 by

Ξ(g) =

∫
K

e(kg) dk

for all g ∈ G(F ). (That is, Ξ(g) = 〈IGM0,P0
(1, g)e, e〉K in our notation introduced

below.) Note that Ξ is ZG(F )-invariant and bi-K-invariant. Recall that for x ∈ G(F ),
we choose elements p0(x) = pP0(x) ∈ P0(F ) and k0(x) = kP0(x) ∈ K such that
x = p0(x)k0(x). We have Ξ(g) =

∫
K
δ
1/2
P0

(p0(kg)) dk.
Although Ξ depends on the choices of P0 and K, different choices result in a Xi-

function Ξ′ with Ξ � Ξ′. Since we will only use Ξ in estimates, the choices made in
the definition of Ξ will have no impact on definitions made in terms of it.

Let Z be a closed central subgroup of G(F ). A continuous function f : G(F ) → C
is said to be rapidly decreasing modulo Z if |f | is Z-invariant and it satisfies one of
the following equivalent conditions [Vig94, §5].

1. For all N ∈ N, we have

‖f‖N := sup
g∈G(F )

|f(g)|(1 + σZ(g))NΞ−1(g) < ∞.
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2. For all N ∈ N, we have f ∈ L2(G(F )/Z, (1 + σZ(g))N dg).

We now define the Harish-Chandra Schwartz space of C(G, ζ) for a unitary central
datum (Z, ζ) of G(F ).

Suppose that F is non-archimedean, the Harish-Chandra Schwartz space C(G, ζ)

is the space of uniformly smooth complex-valued functions on G(F ) that are ζ−1-
equivariant and rapidly decreasing modulo Z (cf. [Sil79, §4.4] and [Vig94, §5]). Let
K0 be a compact open subgroup of G(F ) that is sufficiently small so that ζ(Z∩K0) =

1. For each compact open subgroup K of K0, let CK(G, ζ) denote the subspace of
C(G, ζ) that are left and right K-invariant. Then C(G, ζ) =

⋃
K CK(G, ζ). The spaces

CK(G, ζ) are Fréchet spaces when given the topology determined by the seminorms
‖ · ‖N(f) = supg∈G(F ) |f(g)|(1 + σZ(g))NΞ(g)−1 for N ∈ N. The space C(G) is given
the inductive limit topology in the category of locally convex Hausdorff topological
vector spaces and is an LF-space.

Suppose that F is archimedean. The Harish-Chandra Schwartz space C(G, ζ) is
defined to be the space of all smooth functions f on G(F ) such that all derivatives ufv
for u, v ∈ U(gC) are rapidly decreasing modulo Z. Given u, v ∈ U(gC) and N ∈ N,
for each f ∈ C∞(G(F )), we define

‖f‖u,v,N = ‖ufv‖N = sup
g∈G(F )

|ufv(g)|Ξ(g)−1(1 + σZ(g))N .

Then C(G) is a Fréchet space when given the topology determined by the seminorms
‖ · ‖u,v,N .

There are other Schwartz spaces of G(F ) in the literature, but since we will only
use the Harish-Chandra Schwartz space we will often refer to it as simply the Schwartz
space and its elements as Schwartz functions.

The other characterisation given above of a function being rapidly decreasing
modulo Z, leads to a different way of defining the topology on the Schwartz space
C(G, ζ). Denote the L2-norm on L2(G(F )/Z, (1 + σZ(g))N dg) by ‖ · ‖2,N . Replacing
‖ · ‖N with ‖ · ‖2,N in the definition of the topology on C(G, ζ) given above results in
the same topology.

We will write Cc(G, ζ) = C∞
c (G, ζ) and we will write C(c)(G, ζ) as a short hand

for C(G, ζ) (resp. Cc(G, ζ)) so that we can make statements about both spaces at the
same time.

We define the space of tempered ζ-equivariant distributions to be C(G, ζ)′. Since
we have a the inclusion C∞

c (G, ζ) → C(G, ζ) is continuous with dense image, we
have a continuous injection C(G, ζ)′ → C∞

c (G, ζ)′. Thus, we may identify tempered
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distributions with distributions, and a distribution Θ ∈ C∞
c (G, ζ)′ is tempered if and

only if it extends to a continuous linear functional Θ : C(G, ζ) → C.

2.3 Conjugacy classes
We begin by recalling some basic facts about conjugacy classes from [Kot05]. Let
x ∈ G(F ). We denote the centraliser of x in G by Gx = CG(x) and we denote
the connected centraliser (Gx)◦ = CG(x)

◦ by Gx. We denote the conjugacy class
of x in G by xG and the conjugacy class of x in G(F ) by xG(F ). We have that xG

is a locally closed subset of G in the Zariski topology, it is defined over F , and it is
naturally isomorphic to Gx\G. The F -points xG(F ) ∼= (Gx\G)(F ) form an F -analytic
manifold. Moreover, we have a natural isomorphism of locally compact Hausdorff
spaces xG(F ) ∼= Gx(F )\G(F ). It follows that xG(F ) is an F -analytic submanifold of
G(F ) (see [Ser06, Part II, Ch. IV, §5]). Moreover, xG(F ) is a union of G(F )-conjugacy
classes yG(F ). It follows from the exact sequence of pointed sets

1 −→ Gx(F ) −→ G(F ) −→ (Gx\G)(F ) −→ H1(ΓF , G
x(F )) −→ H1(ΓF , G(F ))

that we have a bijection from the set of G(F )-conjugacy classes in xG(F ) to

ker[H1(ΓF , G
x(F )) → H1(ΓF , G(F ))].

By [Ser02, §4.3, Theorem 4] we have that H1(ΓF , G
x(F )) is finite, so there are finitely

many G(F )-conjugacy classes in xG(F ). It follows that the G(F )-conjugacy classes
in xG(F ) are all open and thus all closed in xG(F ). Moreover, xG(F ) and the G(F )-
conjugacy classes in xG(F ) are locally closed in G(F ), and thus locally compact.
When x is semisimple, then xG is closed in G [Bor91, Theorem 9.2], and consequently
xG(F ) the G(F )-conjugacy classes yG(F ) ⊆ xG(F ) are closed in G(F ).

The group Gx(F ), and thus Gx(F ), is unimodular. This is easily established when
x is semisimple, for then Gx is reductive (but not necessarily connected), and thus
Gx(F ) is unimodular. It was proved in general by Springer and Steinberg in [SS70,
Chapter E, Remark 3.27 (b)], even when F is allowed to have positive characteristic.
They remark that Harish-Chandra proved it for characteristic zero. See also [Kot05,
§3.3, §17.3].
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2.3.1 Orbital integrals

Fix a non-zero right G(F )-invariant Radon measure on Gx(F )\G(F ) (that is, a quo-
tient of Haar measures). The pushfoward of the measure on Gx(F )\G(F ) to G(F ) is
a Borel measure on G(F ) supported on xG(F ). Ranga Rao and Deligne proved that
it is a Radon measure, that is, for each f ∈ Cc(G(F )), the integral∫

Gx(F )\G(F )

f(g−1xg) dg

converges absolutely [Ran72; DKV84]. This is immediate in the case when x is
semisimple, since then xG(F ) is closed and the support of f meets xG(F ) in a compact
subset. Consequently, the integral

Ox(f) =

∫
Gx(F )\G(F )

f(g−1xg) dg = |Gx(F )/Gx(F )|
∫
Gx(F )\G(F )

f(g−1xg) dg

converges absolutely for all f ∈ Cc(G(F )). This integral is called the orbital integral
of f at x with respect to the chosen measure. If f ∈ Cc(G(F ), ζ), the space of
ζ−1-equivariant continuous functions on G(F ) that are compactly supported modulo
Z, then the integral defining Ox(f) converges absolutely and defines a ζ-equivariant
distribution Ox ∈ C∞

c (G, ζ)′. This can be proved using the continuous surjection
Cc(G) → Cc(G, ζ) as in [DKV84, A.2.b].

We will mainly be concerned with orbital integrals at regular semisimple elements,
and even strongly regular (semisimple) elements. Recall that an element x ∈ G is
regular if its centraliser Gx has least possible dimension, which is the rank r of G.
The set of regular elements of G forms an open subvariety Greg. An element x ∈ G is
semisimple if and only if x lies in maximal torus of G, and is regular semisimple if and
only if it lies in a unique maximal torus of G (namely Gx). The Weyl discriminant is
the regular function DG on G defined by

det(t− (Ad(g))− 1) ∈ DG(g)trk(G) + tr+1OG(G)[t].

Elements of the open subvariety G′ = Grs = {g ∈ G : DG(g) 6= 0} are the regular
semisimple elements of G. In older literature they are often simply referred to as
regular elements elements of G, and the elements of the closed subvariety Gsing =

G\Grs are said to be singular. We will still refer to the elements of G\Grs as singular.
If T ⊆ G is a maximal torus of G and t ∈ T , then DG(t) = det(1 − Ad(t)|g/t). An
element x ∈ G is strongly regular if Gx is a maximal torus of G. Note that strongly
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regular elements are regular semisimple. We denote the open subvariety of strongly
regular elements of G by Gsr ⊆ Grs.

If H ⊆ G, we say that an element is G-regular (resp. G-singular, etc.) if it
is regular (resp. singular, etc) as an element of G. We will use subscripts G-reg
(resp. G-sing, etc.) to indicate that we are restricting to G-regular (resp. G-singular)
elements.

If x ∈ Grs(F ), then our fixed a Haar measures on the maximal torus Gx(F ) and
G(F ) determine a G(F )-invariant Radon measure on Gx(F )\G(F ), which we use to
define Ox.

For x regular semisimple, the integral defining Ox(f) even converges absolutely
for f ∈ C(G, ζ) and defines a ζ-equivariant tempered distribution. This was proved
by Harish-Chandra. (See [Var77, Part II, §12, Theorem 6] for the case of real groups
and [Har73] for p-adic groups). For p-adic groups, this was extended to arbitrary
x ∈ G(F ) by Clozel [Clo91, Theorem 2] using the Howe conjecture and the Shalika
germ expansion.

We have
Grs(F ) =

∐
T

TG-reg(F )G(F )

where the disjoint union is over some choice of representatives of the G(F )-conjugacy
classes of maximal tori of G. Moreover, For each maximal torus T of G, the map

TG-reg(F )× T (F )\G(F ) −→ TG-reg(F )G(F )

(t, g) 7−→ g−1tg

is a surjective local diffeomorphism, and thus TG-reg(F )G(F ) is an open subset of G(F ).
Its fibres have cardinality |WF (G, T )| and the change of variables formula results in
the Weyl integration formula∫

G(F )

f(x) dx =
∑
T

|WF (G, T )|−1

∫
T (F )

|DG(t)|Ot(f) dt,

whenever one side and hence the other converges. We write Γ(G) for the set of
conjugacy classes of G(F ). We write

Γss(G) ⊇ Γrs(G) ⊇ Γsr(G)

for the sets of semisimple, regular semisimple, and strongly regular conjugacy classes



2.3. CONJUGACY CLASSES 27

in G(F ).
We give Γ(G) the quotient topology from G(F ). This makes Γrs(G) and Γsr(G)

open dense locally compact Hausdorff subspaces of Γ(G), and Γsr(G) is naturally an
F -analytic manifold. For f ∈ Cc(G(F ), ζ) or f ∈ C(G, ζ), the function γ 7→ Oγ(f) is
a continuous on Γrs(G). The Weyl integration formula makes it natural to define a
Radon measure dγ on Γrs(G) by∫

Γrs(G)

ϕ(γ) dγ =
∑
T

|W (G, T )|−1

∫
T (F )

ϕ(t) dt,

for all ϕ ∈ Cc(Γrs(G)), where the sum runs over as set of representatives of the
conjugacy classes of maximal tori of G. The Weyl integration formula then becomes∫

G(F )

f(x) dx =

∫
Γrs(G)

|DG(γ)|Oγ(f) dγ.

Note that Γsr(G) has comeasure zero in Γrs(G).
A maximal torus T of G is said to be elliptic if T/AG is anisotropic, or equivalently

AT = AG. A semisimple element x ∈ G(F ) is said to be elliptic if x ∈ T (F ) for some
elliptic maximal torus T of G. We define G(F )rs,ell (resp. G(F )sr,ell) to be the open
subsets of regular semisimple (resp. strongly regular) elliptic elements of G(F ), and
we define Γrs,ell(G) (resp. Γsr,ell(G)) to be their open images in Γ(G). The Radon
measure dγ restricts to a Radon measure on Γrs,ell(G) satisfying∫

Γrs,ell(G)

ϕ(γ) dγ =
∑
T ell

|W (G, T )|−1

∫
T (F )

ϕ(t) dt

for all ϕ ∈ Cc(Γrs,ell(G)), where the sum is over a set of representatives for the G(F )-
conjugacy classes of elliptic maximal tori. Using the decomposition

Γ(G) =
∐

M∈LG(M0)/WG
0

ΓG-rs,ell(M)/WG(M)

one obtains ∫
Γrs(g)

ϕ(γ) dγ =
∑

M∈LG(M0)/WG
0

|WG(M)|−1

∫
Γrs,ell(M)

ϕ(γ) dγ.
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One can thus express the Weyl integration formula in the form:∫
G(F )

f(x) dx =
∑

M∈LG(M0)/WG
0

|WG(M)|−1

∫
Γrs,ell(M)

|DG(γ)|Oγ(f) dγ.

The appearance of the Weyl discriminant in the Weyl integration formula makes
it natural to introduce the normalised orbital integrals fG(γ) = |DG(γ)|1/2Oγ(f).
For f ∈ C(G, ζ), the normalised orbital integrals of f define a continuous function
fG : Γrs(G) → C, which is smooth on Γsr, and locally bounded. We define the spaces
of orbital integrals I(G, ζ) and Ic(G, ζ) by

I(c)(G, ζ) = {fG : Γsr(G) → C : f ∈ C(c)(G, ζ)}

= C(c)(G, ζ)/AnnC(c)(G,ζ)({Oγ : γ ∈ Γsr(G)})

with their natural quotient topologies. We define the space Ic(G, ζ,K) of orbital
integrals of elements of C∞

c (G, ζ,K) in an analogous way. This space does not depend
on the choice of K. For non-archimedean F , this is because C∞

c (G, ζ,K) = C∞
c (G, ζ).

For archimedean F , it follows from the fact that all maximal compact subgroups of
G(F ) are G(F )-conjugate. Thus, we will write If (G, ζ) = Ic(G, ζ,K).

We recall that a function f ∈ C(G, ζ) is said to be cuspidal if fG(γ) = 0 for
all γ ∈ Γsr(G) \ Γell(G), or equivalently for all γ ∈ Γrs(G) \ Γell(G). We denote
the subspace of cuspidal functions in C(c)(G, ζ) by C(c),cusp(G, ζ), and we denote its
image in I(c)(G, ζ) by I(c),cusp(G, ζ). We denote the subspace of cuspidal functions in
C∞

c (G, ζ,K) by C∞
c,cusp(G, ζ,K), and its image in If (G, ζ) by If,cusp(G, ζ).

We refer to elements of Ic(G, ζ)′ (resp. I(G, ζ)′) as invariant ζ-equivariant dis-
tributions (resp. invariant tempered ζ-equivariant distributions). Note that we have
a continuous linear injection Ic(G, ζ) → I(G, ζ) with dense image. Its transpose is
a continuous linear injection I(G, ζ)′ → Ic(G, ζ)′, which enables us to identify each
tempered ζ-equivariant invariant distribution with a ζ-equivariant invariant distribu-
tion.

We may identify Ic(G, ζ)′ with a subspace of C(c)(G, ζ)′ via the transpose of the
quotient map C(c)(G, ζ) → I(c)(G, ζ). As vector spaces, we have

I(c)(G, ζ)′ = AnnC(c)(G,ζ)′(AnnC(c)(G,ζ)({Oγ : γ ∈ Γsr(G)}))

= clC(c)(G,ζ)′,weak-∗({Oγ : γ ∈ Γsr(G)}).

That is, an distribution in C(c)(G, ζ)′ belongs to I(c)(G, ζ)′ if and only if it lies in the
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weak-∗ closure in C(c)(G, ζ)′ of the linear span of the set of strongly regular orbital
integrals of G. A locally integrable function Θ on G(F ) that is continuous on Gsr(F )

defines an invariant distribution if and only if Θ is conjugation invariant on Gsr(F ).
One can also define the notion of conjugation invariant distributions. For y ∈

G(F ) and f ∈ C(c)(G, ζ), we define yf ∈ C(c)(G, ζ) by yf(x) = f(y−1xy). This defines
a left action of G(F ) on C(c)(G, ζ). The left action of G(F ) on C(c)(G, ζ) in turn leads
to a right action of G(F ) on the associated space of distributions: for all y ∈ G(F )

and u ∈ C(c)(G, ζ)′, we define uy ∈ C(c)(G, ζ)′ by uy(f) = u(yf).
Let C(c)(G, ζ)G denote the quotient of C(c)(G, ζ) by the smallest closed subspace

of C(c)(G, ζ) containing all functions of the form yf − f for y ∈ G(F ) and f ∈
C(c)(G, ζ). We define (Cc(G, ζ)G)

′ (resp. (C(G, ζ)G)
′) to be the space of conjugation

invariant distributions (resp. tempered distributions). We have a natural injection
(C(c)(G, ζ)G)

′ → C(c)(G, ζ)′, and its image is the subspace of distributions in C(c)(G, ζ)′

such that uy = u.
Every orbital integral is conjugation invariant. Thus, if f ∈ C(c)(G, ζ) is anni-

hilated by all conjugation invariant functions, then it is annihilated by all orbital
integrals. It follows that the quotient C(c)(G, ζ) → I(c)(G, ζ) descends to a quotient
C(c)(G, ζ)G → I(c)(G, ζ). It is known that for f ∈ Cc(G), if f is annihilated by all
strongly regular orbital integrals, then f is annihilated by all conjugation invariant
distributions. This was proved for real groups by Bouaziz [Bou94, Theorem 3.2.1] and
for p-adic groups by Harish-Chandra [Har99, Theorem 10]. Thus, Cc(G)G = Ic(G),
and conjugation invariant distributions are the same as invariant distributions.

2.4 Representations
Our representations π = (π, Vπ) of G(F ) will be assumed to be continuous and com-
plex unless indicated otherwise. We use the term module instead of representation
instead to emphasise that we are talking about an algebraic object whose morphisms
have no continuity condition. We recall that a representation π has an underlying in-
finitesimal module, which belongs to a purely algebraic category in the sense that the
morphisms have no continuity condition imposed on them. For archimedean F , the
underlying infinitesimal module of π is the (g, K)-module (or Harish-Chandra mod-
ule) (π∞,(K), V

∞,(K)
π ) of smooth K-finite vectors of π. For F non-archimedean, the

underlying infinitesimal module of π is the G(F )-module of smooth (hence K-finite)
vectors (π∞, V ∞

π ) of π. Passing to underlying infinitesimal modules is a functor. Two
admissible representations are said to be equivalent (or infinitesimally equivalent)
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if their underlying infinitesimal modules are isomorphic. This equivalence relation
is coarser than isomorphism and is the one used in the classification of irreducible
admissible representations. Every admissible representation of finite length is equiv-
alent to a Hilbert space representation. If π has a central character, we denote it by
ζπ. If F is archimedean and π has an infinitesimal character, we denote it by µπ. For
λ ∈ a∗G,C, we denote by πλ = π ⊗ | · |λG the unramified twist of π by λ.

Let (Z, ζ) be a central datum of G(F ). We denote by Π(G, ζ) the set of equivalence
classes of irreducible admissible representations π of G(F ) with Z-character ζπ|Z = ζ.
We have the subsets

Πu(G, ζ) ⊇ Πtemp(G, ζ) ⊇ Π2(G, ζ)

of equivalence classes of irreducible unitary, tempered, and square-integrable repre-
sentations, respectively. (These are only non-empty if ζ is unitary.) If the central
datum (Z, ζ) is trivial in the sense that Z = 1, we may omit (Z, ζ) from notation and
write Π(G) = Π(G, ζ). We call the elements of Π2(G) discrete series representations
of G(F ). The space of virtual representations of G(F ) with Z-character ζ is the
complex vector space Dspec(G, ζ) = CΠ(G, ζ) with basis Π(G, ζ). Inside of it sits the
space Dtemp(G, ζ) = CΠtemp(G, ζ) of virtual tempered representations of G(F ) with
Z-character ζ.

2.4.1 Characters

Let (π, V ) be a finite-length admissible representation of G(F ) with Z-character ζ.
For each f ∈ C∞

c (G, ζ), we can form the operator

π(f) =

∫
G(F )/Z

f(g)π(g) dg.

Note that this depends on the measure on G(F )/Z, thus on the Haar measures on
G(F ) and Z, which we have fixed. Suppose that f ∈ C∞

c (G, ζ,K). Then f ∈
C∞

c (G, ζ,K)Γ for some finite set Γ ⊆ K̂ and the image of π(f) is contained in VΓ =∑
δ∈Γ Vδ. Thus, π(f) has finite rank and Θπ(f) := tr π(f) is well-defined. The linear

functional Θπ = tr π : C∞
c (G, ζ,K) → C is continuous and is called the character of

π. Equivalent admissible representations of finite length have the same character.
If F is non-archimedean, then C∞

c (G, ζ,K) = C∞
c (G, ζ), so Θπ is a ζ-equivariant

distribution. Suppose that F is archimedean. Then Θπ has a (unique) continuous
extension to a ζ-equivariant distribution. We may assume that π is a Hilbert space
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representation by replacing it with an equivalent representation. Harish-Chandra
proved that for all f ∈ C∞

c (G), the operator π(f) is of trace class and the linear func-
tional Θπ = tr π : C∞

c (G) → C defined by Θπ(f) = tr π(f) is continuous. The proof
of this uses the Harish-Chandra subquotient theorem to show that K is uniformly
large in G(F ) in the sense of [GV88]. For all f ∈ C∞

c (G), we have π(f ζ) = π(f).
Since the map f 7→ f ζ is a continuous surjection C∞

c (G) → C∞
c (G, ζ), it follows that

for all f ∈ C∞
c (G, ζ), the operator π(f) is of trace class and the linear functional

Θπ = tr π : C∞
c (G, ζ) → C is continuous, hence a ζ-equivariant distribution.

The map π 7→ Θπ is exact in the sense that it is additive on short exact se-
quences. Consequently, the character of π only depends on its semisimplification.
Harish-Chandra proved that the characters of the infinitesimal equivalence classes of
irreducible admissible representations are linearly independent. (See [Har54, §7] for
real groups and [Sil79, Lemma 1.13.1] for p-adic groups). Consequently, the charac-
ter of a finite length admissible representation determines its semisimplification. We
often identify semisimple representations with their characters.

We define the character of a virtual representation π =
∑m

i=1 ciπi to be Θπ =∑m
i=1 ciΘπi

, and we call it a virtual character. We may and do identify virtual rep-
resentations with their characters. Thus, the space Dspec(G, ζ) is identified with a
subspace of the space of ζ-equivariant distributions on G(F ). For π ∈ Πtemp(G, ζ) its
Θπ is a ζ-equivariant tempered distribution. Thus, the space Dtemp(G, ζ) of virtual
tempered representations sits inside the space of ζ-equivariant tempered distributions
on G(F ). We call the characters of virtual tempered representations virtual tempered
characters.

Let π be a finite-length admissible representation of G(F ) with Z-character ζ.
Harish-Chandra’s regularity theorem tells us that Θπ is a smooth—even analytic
if F is archimedean—conjugation invariant ζ-equivariant function on Grs(F ); that
Θπ ∈ L1

loc(G(F )); and that the normalised character IG(π, x) = |DG(x)|1/2Θπ(x) is
locally bounded on G(F ). The following lemma is an immediate consequence of the
Harish-Chandra regularity theorem and the Weyl integration formula.

Lemma 2.4.1. If f ∈ Cc(G, ζ) with fG(γ) = 0 for all γ ∈ Γsr(G), then fG(π) = 0 for
all π ∈ Π(G, ζ). Consequently, Θπ ∈ Ic(G, ζ)′ for all π ∈ Π(G, ζ)

If ζ is unitary and f ∈ C(G, ζ) with fG(γ) = 0 for all γ ∈ Γsr(G), then fG(π) = 0

for all π ∈ Πtemp(G, ζ). Consequently, Θπ ∈ Ic(G, ζ)′ for all π ∈ Πtemp(G, ζ).

Now suppose that ζ is unitary. Let f ∈ C(G, ζ). The operator-valued Fourier
transform of f is the section of

∐
π∈Πtemp(G,ζ) End(Vπ) → Πtemp(G, ζ) defined by π 7→
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π(f). It is the subject of harmonic analysis on G(F ), upon which invariant harmonic
analysis is built. Invariant harmonic analysis is the study of the invariant (or scalar-
valued) Fourier transform of f is the function fG : Πtemp(G, ζ) → C defined by
fG(π) = tr π(f).

We have the space of invariant Fourier transforms

Î(c)(G, ζ) = {fG : f ∈ C(c)(G, ζ)}

= C(c)(G, ζ)/AnnC(c)(G,ζ)({Θπ : π ∈ Πtemp(G, ζ)})

with its natural quotient topology. We define the space Îc,f (G, ζ) = Îc(G, ζ,K) of
invariant Fourier transforms of elements of C∞

c (G, ζ,K) in an analogous way. The
space Îc,f (G, ζ) does not depend on the choice of K and Îc,f (G, ζ) = Îc(G, ζ) if F is
non-archimedean.

The invariant Fourier transform

C(c)(G, ζ) −→ Ĉ(c)(G, ζ)

is a surjective linear map by definition of Ĉ(G, ζ). Since tempered characters are
invariant, it descends to a continuous surjective linear map

F : I(c)(G, ζ) −→ Î(c)(G, ζ).

This restricts to a continuous surjective linear map

F : Ic,f (G, ζ) −→ Îc,f (G, ζ).

In the next chapter we will give a reformulation of the invariant Fourier transform
due to Arthur and recall the results from invariant harmonic analysis that we need.
Before turning to that, we will recall some background on parabolic induction.

2.5 Parabolic induction
Let (P,M) be a parabolic pair of G. We have the (normalised) continuous parabolic
induction functor IGM,P defined on continuous representations (σ, Vσ) of M(F ) by

IGM,P (Vσ) = {f ∈ C(G(F ), Vπ) :f(mng) = σ(m)δ
1/2
P (m)f(g),

∀m ∈ M(F ), n ∈ N(F )g ∈ G(F )}
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with G(F ) acting by right translation: IGM,P (σ, g0)f(g) = f(gg0) for all g0, g ∈ G(F )

and f ∈ IGM,P (Vσ). (If we extend σ to P (F ) using the quotient homomorphism
P (F ) → P (F )/N(F ) ∼= M(F ), then we can write f(pg) = σ(p)δP (p)

1/2f(g) for all p ∈
P (F ) and g ∈ G(F ) in the definition.) The vector space IGM,P (Vπ) inherits a topology
from C(G(F ), Vσ), which is equipped with the topology of uniform convergence on
compact subspaces.

Parabolic induction is exact, preserves admissibility, temperedness, and preserves
finite length. For all λ ∈ a∗G,C there is a natural isomorphism IGM,P (σ)λ

∼= IGM,P (σλ)

defined by f 7→ | · |λGf . If σ has a central character ζσ, then the central character of
IGM,P is ζπ = ζσ|ZG(F ). If F is archimedean and σ has an infinitesimal character µσ,
then the infinitesimal character of π is µσ ◦ ξGM , where ξGM : Z(gC) → Z(mC) is the
Harish-Chandra homomorphism. (See [Vog87, Prop. 6.7] and [KV95, Prop. 11.43].)
Let T be a maximal torus of M . Then we have Harish-Chandra isomorphisms Z(gC) ∼=
Sym(tC)

W (GC,TC) and Z(mC) ∼= Sym(tC)
W (MC,TC). Identifying infinitesimal characters

of G and M with elements of t∗C/W (GC, TC) and t∗C/W (MC, TC) respectively, we have
that µπ ∈ t∗C/W (GC, TC) is the image of µσ ∈ t∗C/W (MC, TC) under the natural
quotient map t∗C/W (MC, TC) → t∗C/W (GC, TC).

The smooth vectors IGM,P (σ)
∞ of IGM,P (σ) can be obtained by applying the (nor-

malised) smooth parabolic induction functor IG,∞
M,P to the smooth vectors σ∞ of σ.

(See [BW00, §7.11] for the case of real groups.) If F is archimedean, the underlying
(g, K)-module IGM,P (σ)

∞,(K) of smooth K-finite vectors of IGM,P (σ) can be described in
terms of the underlying (m,M(F )∩K)-module σ∞,(M(F )∩K) of smooth (M(F )∩K)-
finite vectors of σ using the (normalised) parabolic induction functor I

(g,K)
(m,M(F )∩K),p of

Harish-Chandra modules [KV95, Ch. XI, §2]. It follows that equivalence class of
IGM,P (σ) only depends on the equivalence class of σ.

Let K be any maximal compact subgroup of G(F ) with G(F ) = P (F )K and fix
the normalised Haar measure on K. We have the (normalised) Hilbert space induction
functor IGM,P,K . If σ is a Hilbert space representation of G, then IGM,P,K(Vσ) is defined
to be the completion of IGM,P (Vσ) with respect to the inner product

〈f1, f2〉K :=

∫
K

〈f1(k), f2(k)〉 dk.

Alternatively, IGM,P,K(Vσ) is the space of equivalence classes of measurable functions
f : G(F ) → Vσ such that f(pg) = σ(p)δP (p)

1/2f(g) for all p ∈ P (F ) and g ∈ G(F ),
and

‖f‖K :=

∫
K

‖f(k)‖ dk < ∞.
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The space IGM,P,K(Vσ) is a Hilbert space with respect to the inner product 〈·, ·〉K . The
representation IGM,P,K(σ) of G(F ) on IGM,P,K(Vσ) by right translation is a continuous
representation and its restriction to K is unitary. Moreover, IGM,P,K(σ) is unitary if
σ is. We have IGM,P,K(σ)

∞ = IGM,P (σ)
∞. Consequently, IGM,P,K(σ) is equivalent to

IGM,P (σ), and the equivalence class of IGM,P,K(σ) only depends on the infinitesimal
equivalence class of σ. In particular, the infinitesimal equivalence class of IGM,P,K(σ)

does not depend on K.
We also have the so-called “compact picture” or “compact model” of IGM,P,K(σ).

Let KP = P (F ) ∩ K. Let IGM,P,K(Vσ)|K be the space of all equivalence classes of
measurable functions f : K → Vσ such that f(pk) = σ(p)f(k) for all p ∈ KP and
k ∈ K, and ‖f‖K < ∞. Then IGM,P,K(Vσ)|K is a Hilbert space with the inner product
〈·, ·〉K . It is a representation of G(F ) with the action IGM,P,K(σ, g0)|Kf(k) = (kkP (g0)).
Moreover, restriction gives a unitary isomorphism IGM,P,K(Vσ) → IGM,P,K(Vσ)|K , f 7→
fKP

. Transporting the representation IGM,P,K(σ) along this unitary isomorphism gives
an isomorphic representation IGM,P,K(σ)K on IGM,P,K(Vσ)K defined by

(IGM,P,K(σ, g0)Kf)(k) = σ(mP (kg0))f(kP (kg0)).

Note that if χ : M(F ) → C is a multiplicative character that is trivial on KM =

M(F ) ∩ K, then IGM,P,K(Vσ)K = IGM,P,K(Vσ⊗χ)K . (Note that this does not say that
IGM,P,K(σ)K = IGM,P,K(σ ⊗ χ)K). In particular, we have IGM,P,K(Vσ)K = IGM,P,K(Vσλ

)K

for all λ ∈ a∗M,C. Thus, using the compact picture, the parabolically induced repre-
sentations IGM,P,K(σλ)K are all realised on the same Hilbert space IGM,P,K(Vσ)K , the
unramified twist by λ only affects the action of G(F ). This is important for the
construction of standard intertwining operators.

2.5.1 Standard intertwining operators

Let M be a Levi subgroup of G, let σ ∈ Πtemp(M), and let P,Q ∈ P(M). Recall
that ∆(P,AM) the set of simple roots associated with (P,AM). For λ ∈ a∗M,C with
Re〈λ, α∨〉 sufficiently large for all α ∈ ∆(P,AM), the integral

(JQ|P (σλ)f)(g) =

∫
NP (F )∩NQ(F )\NQ(F )

f(ng) dn
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is absolutely convergent for all f ∈ IGM,P (σλ) and g ∈ G(F ), and defines a (continuous)
intertwining operator

JQ|P (σλ) : I
G
M,P,K(σλ) −→ IGM,Q,K(σλ).

We may transport this intertwining operator to an operator on the compact models

JQ|P (σλ) : I
G
M,P,K(Vσ)K −→ IGM,Q,K(Vσ)K

which intertwines IGM,P,K(σλ)K with IGM,Q,K(σλ)K . The resulting operator-valued func-
tion λ 7→ JQ|P (σλ) has meromorphic continuation to a∗M,C. (This is [Wal92, Theorem
10.1.6] for real groups and [Wal03, p. IV.1.1] for p-adic groups.)

There exists a scalar meromorphic function λ 7→ rQ|P (σλ) on a∗M,C, called a scalar
normalising factor, such that the function

λ 7−→ RQ|P (σλ) := rQ|P (σλ)
−1JQ|P (σλ)

is a holomorphic operator valued function on a∗M,C. Scalar normalising factors are not
unique. They can be chosen to satisfy several conditions, including the conditions
(R1)–(R8) of [Art94a, Theorem 2.1]. We will make use of some of these properties
below and will recall them there.

We will often simply use the notation IGM,P to refer to any of the parabolic induc-
tion functors, allowing context to disambiguate them. Moreover, this causes no harm
especially since we are for the most part only concerned with infinitesimal equivalence
classes of representations.

2.5.2 Parabolic descent

Let (P,M) be a parabolic pair. For f ∈ C(c)(G, ζ) (assuming ζ is unitary in the case
of Schwartz functions), one defines f (P ) : M(F ) → C by

f (P )(m) = δP (m)1/2
∫
NP

∫
K

f(k−1mnk) dn dk.

Then f (P ) ∈ C(c)(M, ζ). Note that f (P ) depends on the choice of K. This results in a
continuous linear operator C(c)(G, ζ) → C(c)(M, ζ) called parabolic descent.

If σ is a finite-length admissible representation of M(F ) with Z-character ζ, then

〈Θσ, f
(P )〉 = 〈ΘIGM,P σ, f〉
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for all f ∈ C∞
c (G, ζ). If σ is tempered, then this holds for all f ∈ C(G, ζ).

The parabolic descent map f 7→ f (P ) descends to a continuous map I(c)(G, ζ) →
I(c)(M, ζ)W

G(M), which we write as fG 7→ fM and also call parabolic descent. Let
ΓG-rs(M) denote the set of G-regular semisimple conjugacy classes in M(F ). For all
γ ∈ ΓG-rs(M) we have fM(γ) = fG(γ). Consequently, although f (P ) depends on the
choice of P and K, the function fM does not. For f ∈ C(G, ζ), we have that f is
cuspidal if and only if fM = 0 for all M ∈ LG(M0) with M 6= G.

The transpose of parabolic descent I(c)(G, ζ) → I(c)(M, ζ)W
G(M) is a continuous

linear map IGM : I(c)(M, ζ)′/WG(M) → I(c)(G, ζ)′, which we call parabolic induction
since it extends the parabolic induction of characters. If f ∈ Ccusp(G, ζ), then every
invariant distribution that is parabolically induced from a proper Levi of G annihilates
f .

2.5.3 The Langlands and Harish-Chandra classifications

The Langlands classification gives a classification of Π(G) in terms of the sets Πtemp(M)

for M a Levi subgroup of G. For a parabolic pair (P,M), we define (a∗M)P,+ = {λ ∈
a∗M : 〈λ, α∨〉 > 0, ∀α ∈ ∆(P,AM)}. A Langlands datum is defined to be a triple
((P,M), σ, σ, λ), where (P,M) is a parabolic pair, σ ∈ Πtemp(M), and λ ∈ (a∗M)P,+.
Given a Langlands datum ((P,M), σ, λ), the equivalence class of IGM,P (σλ) is uniquely
determined and called a standard representation of G(F ). The Langlands classifica-
tion is the following theorem, due to Langlands for real groups [Lan89] and Silberger,
Borel–Wallach, and Konno for p-adic groups [Kon03].

Theorem 2.5.1. 1. For each Langlands datum ((P,M), σ, λ), the induced rep-
resentation IGM,P (σλ) is indecomposable and has a unique irreducible quotient
J((P,M), σ, λ) ∈ Π(G), called the Langlands quotient.

2. The map ((P,M), σ, λ) 7→ J((P,M), σ, λ) is a bijection from the set of G(F )-
conjugacy classes of Langlands data to Π(G).

The Harish-Chandra classification is a classification of Πtemp(G) in terms of the
sets Π2(M) for M a Levi subgroup of G. Let M be a Levi subgroup of G and let
P ∈ P(M). Let σ be a finite length admissible representation of M(F ). Then IGM,P (σ)

is a finite length admissible representation of M(F ). Suppose that σ is unitary. Then
so is IGM,P (σ) and it is thus a finite direct sum of irreducible unitary representations
of G(F ). Its isomorphism class does not depend on P and we will thus omit it
from the notation. Moreover, the isomorphism class of IGM(σ) only depends on the
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G(F )-conjugacy class of the pair (M,σ). Let Π(M,σ)(G) denote the set of (equivalence
classes of) irreducible subrepresentations of IGM(σ). Then Π(M,σ)(G) = Πg·(M,σ)(G) for
all g ∈ G(F ), and we may write this set as ΠG(F )·(M,σ)(G). If σ ∈ Πtemp(M), then
IG
M(σ) is tempered and therefore all of its subrepresentations are tempered. Harish-

Chandra and Langlands proved the following.

Theorem 2.5.2. We have the disjoint union

Πtemp(G) =
∐

G(F )·(M,σ),
σ∈Π2(M)

ΠG(F )·(M,σ)(G).

Harish-Chandra proved that the union exhausts Πtemp(G) and Langlands proved
that the union is disjoint using Harish-Chandra’s asymptotic estimates for matrix
coefficients. We refer to this decomposition as Harish-Chandra’s classification of
tempered representations. (See [Art93, §1] for pointers to the literature.)

We may describe this decomposition using only semistandard Levi subgroups and
orbits of pairs under the Weyl group WG

0 . Indeed, each Levi is conjugate to a semi-
standard Levi. The group NG(F )(M0) acts on the set of pairs (M,σ) consisting of
a semistandard Levi subgroup M of G and σ ∈ Π(M) by conjugation and descends
to an action of WG

0 = NG(F )(M0)/M0(F ). Suppose that (M,σ), (M ′, σ′) are two
G(F )-conjugate pairs. and let g ∈ G(F ) with (M ′, σ′) = g · (M,σ). Then there
exists m ∈ M(F ) such that gm ∈ NG(F )(M0). Since m · (M,σ) = (M,σ), we have
(M ′, σ′) = (gm) · (M,σ). Let w ∈ WG

0 be the element represented by (gm). Then
(M ′, σ′) = w · (M,σ). It follows that we have the disjoint union

Πtemp(G) =
∐

WG
0 ·(M,σ),

M∈LG(M0), σ∈Π2(M)

ΠWG
0 ·(M,σ)(G).

The parametrisation of the elements of Πtemp(G) thus boils down to parametrisa-
tion of the elements of Π2(M) and the elements of the finite sets ΠG(F )·(M,σ)(G). The
latter problem is solved by the theory of R-groups (reducibility groups) introduced
by Knapp and Stein, and these play a crucial role in invariant harmonic analysis.



3 Invariant Harmonic Analysis

In this Chapter we recall the invariant Paley–Wiener theorems that we will stabilise.
These invariant Paley–Wiener theorems are formulated in terms of Arthur’s virtual
tempered representations, which are in turn based on the theory of the R-group.

3.1 Theory of the R-group
Recall that we have fixed a maximal compact subgroup K of G(F ) that is in good
position relative to M0. For M ∈ LG(M0) and σ a Hilbert space representation of
M(F ), we use K to form compact models of the Hilbert spaces for the (normalised)
parabolically induced representations IGM,P (σ) = IGM,P,K(σ). Since M is uniquely
determined by any P ∈ P(M0) and since we are only considering parabolic induction
to G(F ), we will write IP = IGM,P for brevity.

Let σ be a discrete series representation of M(F ). Then the representation IP (σ)

decomposes into a finite direct sum of irreducible tempered representations of G(F )

and the theory of the R-group introduced by Knapp and Stein gives a parametrisation
of the irreducible summands of IP (σ). We follow the presentation in [MW18, §1.9–
1.11] with some minor modifications.

We write w̃ ∈ NG(F )(M) for an element with image w ∈ WG(M). We have a
unitary intertwining operator

w̃ : IP (σ) −→ Iw·P (w̃ · σ)

defined by φ 7→ φ(w̃−1·). Let NG(F )(M)σ = {w̃ ∈ NG(F )(M) : w̃ · σ ∼= σ}. Suppose
that w̃ ∈ NG(F )(M)σ. For each unitary intertwining operator A : w̃ · σ → σ, we have
a unitary intertwining operator

Iw·P (A) : Iw·P (w̃ · σ) −→ Iw·P (σ)

38
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since Iw·P is a functor.
We define the unitary intertwining operator RP (A, w̃) : IP (σ) → IP (σ) to be the

composition RP (A, w̃) = RP |w·P (σ) ◦ Iw·P (A) ◦ w̃:

RP (A, w̃) : IP (σ) Iw·P (w̃ · σ) Iw·P (σ) IP (σ).
w̃ Iw·P (A) RP |w·P (σ)

Recall that RP |w·P (σ) : Iw·P (σ) → IP (σ) is a normalised standard intertwining oper-
ator, which depends on a choice of scalar normalising factors rQ|P (σ).

Define NG(σ) to be the set of pairs (A, w̃) where w̃ ∈ NG(F )(M)σ and A : w̃ ·
σ → σ is a unitary intertwining operator. The set NG(σ) is naturally a group
with multiplication defined by (A1, w̃1)(A2, w̃2) = (A1A2, w̃1w̃2). The map M(F ) →
NG(σ),m 7→ (σ(m),m) is an injective homomorphism with normal image, and we
denote the resulting quotient group by WG(σ) = NG(σ)/M(F ). Note that for each
(A, w̃) ∈ NG(σ), the intertwining operator Iw·P (A) ◦ w̃ : IP (σ) → Iw·P (σ), and thus
also RP (A, w̃), only depends on the image of (A, w̃) in WG(σ). The map RP from
WG(σ) to the group of unitary intertwining operators on IP (σ) is a homomorphism.
This follows from the following facts.

1. For each (A, w̃) ∈ NG(σ) and P,Q ∈ PG(M), we have

w̃ ◦RQ|P (σ) = Rw·Q|w·P (w̃ · σ) ◦ w̃.

2. For each unitary intertwining operator A : σ′ → σ unitary representations σ′, σ

of M(F ) and for each P,Q ∈ PG(M), we have

IQ(A) ◦RQ|P (σ
′) = RQ|P (σ) ◦ IP (A).

3. For each (A1, w̃1), (A2, w̃2) ∈ WG(σ), we have

(Iw1w2·P (A1) ◦ w̃1) ◦ (Iw2·P (A2) ◦ w̃2) = Iw1w2·P (A1A2) ◦ w̃1w̃2.

4. For each P,Q, S ∈ PG(M), we have

RS|Q(σ) ◦RQ|P (σ) = RS|P (σ).

Items 1, 2, and 4 rely on the choice of scalar normalising factors used to define the
normalised standard intertwining operators. Applying these facts in turn, we obtain
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for all (A1, w̃1), (A2, w̃2) ∈ WG(σ) that

RP (A1, w̃2) ◦RP (A2, w̃2)

= RP |w1·P (σ) ◦ Iw1·P (A1) ◦ w̃1 ◦RP |w2·P (σ) ◦ Iw2·P (A2) ◦ w̃2

= RP |w1·P (σ) ◦ Iw1·P (A1) ◦Rw1·P |w1w2·P (w̃1 · σ) ◦ w̃1 ◦ Iw2·P (A2) ◦ w̃2

= RP |w1·P (σ) ◦Rw1·P |w1w2·P (σ) ◦ Iw1w2·P (A1) ◦ w̃1 ◦ Iw2·P (A2) ◦ w̃2

= RP |w1w2·P (σ) ◦ Iw1w2·P (A1A2) ◦ w̃1w̃2

= RP (A1A2, w̃1w̃2).

Thus, RP is indeed a homomorphism from WG(σ) to the group of unitary intertwining
operators on IP (σ).

For each z ∈ C1, we have that (z, 1) lies in the centre of NG(σ). Note that the
maps C1 → NG(σ) and C1 → WG(σ) are injective homomorphisms. Let

WG(σ) = {w ∈ WG(M) : w · σ ∼= σ}
∼= {w ∈ WG

0 : w ·M = M,w · σ ∼= σ}/WM
0 .

We have a canonical surjective homomorphism WG(σ) → WG(σ) with kernel C1.
Thus, we have the central extension

1 −→ C1 −→ WG(σ) −→ WG(σ) −→ 1.

Consequently, WG(σ) is naturally a compact group. Moreover, RP is a (continuous)
unitary representation of WG(σ) on IP (Vσ) through which C1 acts by multiplication.

The definition of RP depends in a simple manner on the choice of normalising
factors and the parabolic subgroup P ∈ PG(M). Consider a different choice of
normalising factors and the resulting a representation RP of WG(σ). There exists a
unitary character χ of WG(σ) such that for all (A, w̃) ∈ WG(σ) we have RP (A, w̃) =

χ(A, w̃)RP (A, w̃). We can define an automorphism αχ of WG(σ) by αχ(A, w̃) =

(χ(A, w̃)A, w̃). Then RP = RP ◦ αχ. If P ′ ∈ PG(M) is another choice of parabolic,
then RP |P ′(σ)◦RP ′(A, w̃) = RP (A, w̃)◦RP |P ′(σ) for all w ∈ WG(σ), so RP ′ is unitarily
equivalent to RP . Consequently, the kernel WG(σ)0 of RP is independent of the choice
of normalising factors and parabolic P ∈ PG(M).

The subgroup WG(σ)0 of WG(σ) injects into WG(σ), and we also denote its image
by WG(σ)0. We define RG(σ) = WG(σ)/WG(σ)0. The Knapp–Stein R-group of σ is
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defined to be RG(σ) = WG(σ)/WG(σ)0. We thus have a central extension

1 −→ C1 −→ RG(σ) −→ RG(σ) −→ 1.

Since C1 acts by multiplication through RP , the representation RP of WG(σ) descends
to a representation RP of RG(σ) through which C1 acts by multiplication.

We denote by Π(RG(σ), idC1) the set of irreducible representations of RG(σ)

through which C1 acts by multiplication. Let RP denote the representation of
RG(σ)×G(F ) on IGP (Vσ) defined by RP (r̃, x) = RP (r̃)IP (σ, x).

Harish-Chandra’s commuting algebra theorem ([Har76, Theorem 38.1] for real
groups and [Sil79, Theorem 5.5.3.2] for p-adic groups) states that the operators
{RP (r̃) : r̃ ∈ RG(σ)} span End(IP (σ)). The dimension theorem (due to Knapp–
Stein for real groups [KS75, Theorem 2], [KS80, Theorem 13.4] and Silberger for
p-adic groups [Sil78]) states that the dimension of End(IP (σ)) is the cardinality of
RG(σ)/C1 = RG(σ), and thus

End(IP (σ)) =
⊕

C1r̃∈RG(σ)/C1

CRP (r̃).

As a corollary, one obtains the main theorem of the theory of R-groups, namely
that that there is a bijection ρ 7→ πρ between Π(RG(σ), idC1) and the set Πσ(G) of
irreducible summands of IGP (σ) characterised by the decomposition

R ∼=
⊕

ρ∈Π(RG(σ),idC1 )

ρ⊠ πρ.

If P ′ ∈ PG(M), then RP |P ′(σ) intertwines the representation RP ′ with RP , so the
bijection ρ 7→ πρ is independent of the choice of P ∈ PG(M). Consider a different
choice of normalising factors and the resulting representation RP , which is of the form
RP = χRP for a unitary character χ of WG(σ) as above. The resulting representation
RP := RP IP (σ) = χRP of RG(σ)×G(F ) decomposes as⊕

ρ∈Π(RG(σ),idC1 )

χρ⊠ πρ,

and therefore determines the bijection ρ 7→ πχ−1ρ.
The group NG(σ) and the related objects depend on the representation σ itself,

not just its isomorphism class. This point is often glossed over in the literature.
However, suppose that T : σ → σ′ is an isomorphism of unitary representations.
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Then we obtain an isomorphism

T : NG(σ) −→ NG(σ′)

(A, w̃) 7−→ (T ◦ A ◦ T−1, w̃)

that induces isomorphisms WG(σ) → WG(σ′), WG(σ)0 → WG(σ′)0, RG(σ) →
RG(σ′), and RG(σ) → RG(σ′), which we also denote by T . Moreover, we have the
following commutative diagram

RG(σ) RG(σ′)

IP (σ) IP (σ
′)

T

RP RP

IP (T )

3.2 Arthur’s virtual tempered representations
Fix a unitary central datum (Z, ζ) and let f ∈ C(G, ζ). The invariant Fourier
transform fG : Πtemp(G, ζ) → C of f has a unique extension to a C-linear form
fG : Dtemp(G, ζ) → C on the space of virtual tempered representations Dtemp(G, ζ).
The invariant Fourier transform is just the representation of this linear form fG with
respect to the basis Πtemp(G, ζ) of Dtemp(G, ζ). In [Art93], Arthur defines a set of
virtual tempered representations {πτ}τ∈Ttemp(G,ζ) parametrised by a set Ttemp(G, ζ)

of WG
0 -orbits of equivalence classes of certain triples. These virtual representations

arise naturally in the theory of the R-group. There is a natural action of C1 on
Ttemp(G, ζ), and the assignment τ 7→ πτ is equivariant with-respect to the action.
That is, πzτ = zπτ for all z ∈ C1 and τ ∈ Ttemp(G, ζ). A choice of representative τ for
each C1-orbit C1τ in Ttemp(G, ζ)/C1 gives a basis {πτ}C1τ∈Ttemp(G,ζ)/C1 of CΠtemp(G).
For some purposes, the virtual tempered representations {πτ}τ∈T̃temp(G,ζ) are more nat-
ural than Πtemp(G, ζ) and can be regarded as the spectral objects that play the role
dual to conjugacy classes in invariant harmonic analysis (cf. [Art94a]). It is useful to
view the Fourier transform of f as the C1-equivariant function fG : Ttemp(G, ζ) → C
defined by fG(τ) = fG(πτ ). This representation of the Fourier transform allows for
more natural formulations of Paley–Wiener theorems.

We will review what we need to know about Arthur’s virtual tempered represen-
tations. The original reference is [Art93] and other useful references in the work of
Arthur are [Art94b; Art94a; Art96]. We follow the presentation in [MW18, §1.9–1.11]
with some minor modifications.
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Consider the set of triples τ = (M,σ, r̃), where M ∈ LG(M0), σ is a discrete
series representation of M(F ), and r̃ ∈ RG(σ). We define two triples (M,σ, r̃) and
(M,σ′, r̃′) to be equivalent if there exists a unitary isomorphism T : σ → σ′ such that
T (r̃) = r̃′.

Let g ∈ NG(F )(M0) and consider g·M ∈ LG(M0) and g·σ. We have an isomorphism

NG(σ) −→ NG(g · σ)

(A, w̃) 7−→ g · (A, w̃) = (A, gw̃g−1)

and this determines isomorphisms WG(σ) → WG(g · σ), WG(σ) → WG(g · σ),
RG(σ) → RG(g · σ), and RG(σ) → RG(g · σ). Thus, the group NG(F )(M0) acts
on the set of triples τ = (M,σ, r̃) by g · τ = (g ·M, g · σ, g · r̃). This descends to an
action on the set of equivalence classes of triples through which M0(F ) acts trivially.
Thus, we obtain an action of WG

0 on the set of equivalence classes of triples.
Let τ = (M,σ, r̃) be a triple and recall the representation R from the previous

section, with its decomposition

R ∼=
⊕

ρ∈Π(RG(σ),idC1 )

ρ⊠ πρ.

Define the virtual tempered representation

πτ =
∑

ρ∈Π(RG(σ),idC1 )

tr(ρ(r̃))πρ.

The invariant tempered distribution character of πτ is given by

Θτ (f) = tr(RP (r̃)IP (f)) =
∑

ρ∈Π(RG(σ),idC1 )

tr(ρ(r̃))Θπρ(f), f ∈ C(G).

The irreducible tempered representations πρ all have the central character ζσ. We
write ζτ = ζσ and call it the central character of τ . In particular, τ has a well-defined
Z-character, namely the restriction ζτ |Z , and πτ ∈ Dtemp(G, ζτ |Z).

In the archimedean case, the representation IP (σ) has an infinitesimal charac-
ter obtained from µσ in the manner described in our review of parabolic induction.
Thus, the irreducible tempered representations πρ have all have the same infinitesimal
character, which we call the infinitesimal character of τ and denote by µτ .

The virtual tempered representation πτ only depends on the WG
0 -orbit of the
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equivalence class of τ . Moreover, πτ does not depend on the choice of parabolic
P ∈ P(M), but it does depend on the choice of normalising factors. A different
choice of normalising factors results in the virtual tempered representation χ(r̃)πτ

for some unitary character χ of WG(σ). Thus, πτ is uniquely determined up to
multiplication by an element of C1.

The group C1 acts on the set of triples by z(M,σ, zr̃) = (M,σ, zr̃), and this
descends to an action on equivalence classes that commutes with the action of WG

0 .
The map τ 7→ πτ is equivariant with respect to the action of C1 action: πzτ = zπτ .

Consider an equivalence class of triples τ . It can happen that there exists a
nontrivial z ∈ C1 such that zτ = w · τ for some w ∈ WG

0 . When this happens, we
have zπτ = πzτ = πτ , and thus πτ = 0. One says that τ is essential if this does not
happen. The set of essential equivalence classes of triples is stable under the actions
of WG

0 and C1. We define T̃temp(G, ζ) to be the set of essential equivalence classes
of triples (M,σ, r̃) with Z-character ζ, and we define Ttemp(G, ζ) = T̃temp(G, ζ)/WG

0 .
When Z is trivial, we omit ζ from the notation. Arthur proved the following (cf.
[MW18, Proposition 2.9]).

Proposition 3.2.1. For each τ ∈ Ttemp(G, ζ), we have πτ 6= 0, and the space of
virtual tempered representations of G(F ) is

Dtemp(G, ζ) =
⊕

C1τ∈Ttemp(G,ζ)/C1

Cπτ .

In particular, the C1-equivariant map Ttemp(G) → Dtemp(G), τ 7→ πτ is injective.
We will identify τ with πτ , and thus also Θτ .

Suppose that L ∈ LG(M0). We can relate Ttemp(L, ζ) and Ttemp(G, ζ) for L ∈
LG(M0) in the following way. If M ∈ LL(M0) and σ be a discrete series representation
of M(F ), then there is a natural injective homomorphism RL(σ) → RG(σ). This gives
rise to a embedding

ιGL : T̃temp(L, ζ) −→ T̃temp(G, ζ)

that is equivariant with respect to the action of C1 and the action of WL
0 ⊆ WG

0 .
This map descends to a C1 equivariant map

ιGL : Ttemp(L, ζ) −→ Ttemp(G, ζ).

The group WG(L) acts on Ttemp(L, ζ) and this map is the quotient for this action. This
map is compatible with parabolic induction in the following sense. If τ ∈ Ttemp(L, ζ),
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then
IGL (πτ ) = πιGL (τ).

3.2.1 Arthur’s elliptic virtual tempered representations

We say that τ ∈ T̃temp(G, ζ) is elliptic if it does not lie in the image of ιGL : T̃temp(L, ζ) →
T̃temp(G, ζ) for any L 6= G. Let T̃ell(G, ζ) denote the set of elliptic elements in
T̃temp(G, ζ) and let Tell(G, ζ) = T̃ell(G, ζ)/WG

0 . We can also define elliptic triples
as follows. Let τ = (M,σ, r̃) ∈ T̃temp(G, ζ) and let r ∈ RG(σ) be the image of r̃ in
RG(σ). We define WG

reg(σ) to be the set of w ∈ WG(σ) such that the space awM of
w-invariants in aM is equal to aG. Then τ is elliptic if and only if WG(σ)0 = 1 (in
which case RG(σ) = WG(σ), so r ∈ WG(σ)) and r ∈ WG

reg(σ) (i.e. arM = aG).
We have

T̃temp(G, ζ) =
∐

L∈LG(M0)

T̃ell(L, ζ)

and

Ttemp(G, ζ) =

( ∐
L∈LG(M0)

Tell(L, ζ)

)WG
0

=
∐

L∈LG(M0)/WG
0

Tell(L, ζ)/W
G(L).

We define Dell(G, ζ) to be the subspace of Dtemp(G, ζ) generated by Tell(G, ζ),
that is,

Dell(G, ζ) =
⊕

C1τ∈Tell(G,ζ)/C1

Cτ.

3.2.2 The space of Arthur’s virtual tempered characters

For λ ∈ ia∗G, the map

NG(σ) −→ NG(σλ)

(A, n) 7−→ (Ae⟨λ,HG(n)⟩, n)

is an isomorphism. It descends to an isomorphism RG(σ) → RG(σλ), r̃ 7→ r̃λ com-
patible with R(σ) = R(σλ).

We obtain an action of ia∗G on the set of triples τ = (M,σ, r̃) defined by

(λ, τ) 7−→ τλ = (M,σλ, r̃λ),
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for all λ ∈ ia∗G. This gives rise to an action of ia∗G on the set T̃temp(G) of equivalence
classes of triples, which preserves T̃ell(G).

We have encountered three actions on T̃ell(G), namely the actions of ia∗G, WG
0 , and

C1. Let us summarise these here. If τ = [(M,σ, (A, n))] ∈ T̃ell(G), λ ∈ ia∗G, w ∈ WG
0 ,

and z ∈ C1, then

τλ = [(M, | · |λMσ, (|n|λGA, n))]

w · τ = [(wMw−1, σ ◦ Int(w−1), (A,wnw−1))]

z · τ = [(M,σ, (zA, n))].

Each pair of the above three actions commute with each other. We thus, have com-
muting actions of ia∗G and C1 on Tell(G).

We define
T̃ell(G)C = T̃ell(G)×ia∗G

a∗G,C = T̃ell(G)× a∗G,C/ ∼,

where ∼ is the equivalence relation generated by (τ0, λ0 + λ1) ∼ ((τ0)λ0 , λ1) for all
τ0 ∈ T̃ell(G), λ0 ∈ ia∗G, and λ1 ∈ a∗G,C. For τ = (τ0, λ1) ∈ T̃ell(G)C and λ ∈ a∗G,C, we
define τλ = (τ0, λ1 + λ). This defines an action of a∗G,C on T̃ell(G)C. The commuting
actions of WG

0 and C1 on T̃ell(G) determine commuting actions on T̃ell(G)C, which
also commute with the action of a∗G,C. The injection T̃ell(G) → T̃ell(G)C, τ 7→ (τ, 0) is
equivariant with respect to the actions of ia∗G, WG

0 , and C1. We identify T̃ell(G) with
its image in T̃ell(G)C. We define

Tell(G)C = T̃ell(G)C/W
G
0 = Tell(G)×ia∗G

a∗G,C,

which inherits commuting actions of a∗G,C and C1. The injection T̃ell(G) → T̃ell(G)C

descends to an injection Tell(G) → Tell(G)C, which is equivariant with respect to the
actions of ia∗G and C1.

The action of a∗G,C on Π(G) extends to a linear action of Dspec(G), and the action
of ia∗G preserves Dtemp(G). The injection Tell(G) → Dell(G), τ 7→ πτ is equivariant
with respect to the actions of ia∗G and C1. To extend this to Tell(G)C, for each
τ = (τ0, λ1) ∈ Tell(G)C, we define the virtual representation πτ ∈ Dspec(G) by πτ =

(πτ0)λ1 . The distribution character of τ is defined to be Θτ = Θπτ , and thus Θτ (x) =

Θτ0(x)e
⟨λ1,HG(x)⟩. The map Tell(G)C → Dspec(G)C, τ 7→ πτ is injective and equivariant

with respect to the actions of a∗G,C and C1.
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Let τ ∈ Tell(L)C. We denote the isotropy subgroup of τ in a∗L,C by a∨L,τ . We have

a∨L,F ⊆ a∨L,τ ⊆ ã∨L,F .

Thus, if F is archimedean we have a∨L,τ = 0, and if F is non-archimedean we have that
a∨L,τ is a full lattice in ia∗L. The set Tell(L) is naturally a smooth manifold with un-
countably many connected components ia∗L ·τ = ia∗L/a

∨
L,τ , which are Euclidean spaces

if F is archimedean and compact tori if F is non-archimedean. The manifold Tell(L)

has uncountably many components because of the action of C1. Moreover, Tell(L)C is
the complexification of Tell(L) with connected components a∗L,C · τ = a∗L,C/a

∨
L,τ . Since

Ttemp(G) =
∐

L∈LG(M0)/WG
0

Tell(L)/W
G(L),

we have that Ttemp(G) is naturally a topological space. We say that a function on
Ttemp(G) is smooth if its pullback to each Tell(L) is smooth.

3.2.3 The elliptic inner product

We recall the elliptic inner product from [MW18, p. 7.3]. For each γ ∈ Γsr,ell(G),
define m(γ) = vol(Gγ(F )/AG(F )). There is a canonical measure on Γsr,ell(G)/AG(F )

defined by∫
Γsr,ell(G)/AG(F )

m(γ)−1a(γ) dγ =
∑
T

|WF (G, T )|−1 vol(T (F )/AG(F ))

∫
T (F )/AG(F )

a(t) dt

for all a ∈ Cc(Γsr,ell(G)/AG(F )), where T runs over the conjugacy classes of elliptic
maximal tori of G.

Let ζ be a unitary character of AG(F ). For ζ-equivariant functions a, b : Γell(G) →
C, we define

〈a, b〉ell =

∫
Γsr,ell(G)/AG(F )

a(γ)b(γ) dγ,

provided the integral converges. For π, π′ ∈ CΠell(G, ζ), we define

〈π, π′〉ell = (|DG|1/2Θπ, |DG|1/2Θπ′).

For τ = (M,σ, r̃) ∈ Tell(G), one defines ι(τ) = | det(1 − r̃)|aGM |−1. We have the
following orthogonality relations due to Arthur [MW18, Theorem 7.3].
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Theorem 3.2.2. Let τ, τ ′ ∈ Tell(G, ζ). We have

〈τ, τ ′〉ell = |WG(τ)|ι(τ)−1δτ,τ ′ .

It follows that 〈·, ·〉ell extends to an inner product (positive-definite Hermitian) on
Dell(G, ζ) and that the decomposition

Dell(G, ζ) =
⊕

C1τ∈Tell(G,ζ)/C1

Cτ

is an orthogonal direct sum. It follows from the above theorem that {‖τ‖ell : τ ∈
Tell(G)} is bounded. Note that when τ = π ∈ Π2(G), that is, τ = (G, π, 1), we have
‖π‖ell = 1.

We have Dell(G) =
⊕

ζ Dell(G, ζ). Thus, we obtain an inner product 〈·, ·〉ell on
Dell(G) as the orthogonal direct sum of the inner products on the summands. This
inner product is called the elliptic inner product.

3.3 Paley–Wiener and Schwartz spaces
In this section we define abstract Paley–Wiener spaces and Schwartz spaces of the
sort needed for the invariant and stable harmonic analysis. See [MW16a, Ch. IV]
for a similar presentation of abstract Paley–Wiener spaces suitable for invariant and
stable harmonic analysis on a real group.

Let V be a Euclidean space and let Λ = {Λe}e∈E be a countable family of one of
the following types:

1. archimedean type: for each e ∈ E, Λe = iV ∗ equipped with a non-negative real
number ‖e‖.

2. non-archimedean type: for each e ∈ E, Λe = iV ∗/Γ∨
e , where Γe is a lattice in V

and Γ∨
e = Hom(Γe, 2πiZ). Thus, Λe is a compact torus of dimension dimV .

The terminology comes from the types of spaces that appear in Paley–Wiener theo-
rems for G when F is archimedean or non-archimedean. We will also use Λ denote the
disjoint union Λ =

∐
e∈E Λe. The function spaces we define will be spaces of certain

smooth functions on Λ.
Note that for each e ∈ E, the space Λe has a natural complexification Λe,C, which

is V ∗
C in the archimedean case and V ∗

C/Γ
∨
e in the non-archimedean case. Thus, the

space Λ has a natural complexification ΛC =
∐

e∈E Λe,C. For each e ∈ E, we extend
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the inner product on V to a Hermitian inner product on VC. Note that a function
ϕ : Λ → C can be identified with a family of functions {ϕe}e∈E.

We define the Paley–Wiener space PW (Λ) on Λ to be the vector space of smooth
functions ϕ : Λ → C such that the following hold.

1. In the non-archimedean case we require that ϕ is supported on finitely many
connected components Λe.

2. ϕ extends to an entire function on ΛC.

3. ϕ satisfies a growth condition:

(a) in the archimedean case we require that there exists r > 0 such that for
all N ∈ N we have that

‖ϕ‖r,N := sup
e∈E,λ∈Λe,C

|ϕ(λ)|(1 + ‖e‖+ ‖λ‖)Ne−r∥Re(λ)∥

is finite;

(b) In the non-archimedean case we require that there exists r > 0 such that

‖ϕ‖r := sup
λ∈ΛC

|ϕ(λ)|e−r∥Re(λ)∥

is finite.

We now define a locally convex topology on PW (Λ). Suppose first that we are in
the archimedean case. For each r > 0, we define PW r(Λ) to be the subspace of all
ϕ ∈ PW (Λ) such that ‖ϕ‖r,N < ∞ for all N ∈ N, and we give PW r(Λ) the topology
defined by the family of norms ‖ · ‖r,N with N ∈ N. It is a Fréchet space. We give
PW (Λ) =

⋃
r PW r(Λ) the inductive limit topology in the category of locally convex

spaces, making it a strict LF-space.
In general, we define PWf (Λ) to be the linear subspace of PW (Λ) consisting

of all ϕ ∈ PW (Λ) that are supported on finitely many components Λe. Note that
in the non-archimedean case we have PWf (Λ) = PW (Λ). We topologise PWf as
follows. First, for each finite set E0 ⊆ E, define PWE0(Λ) to be the subspace of all
ϕ ∈ PW (Λ) that are supported on

∐
e∈E0

Λe. For each r > 0, define PW r
E0
(Λ) to

be the subspace of all ϕ ∈ PWE0(Λ) such that ‖ϕ‖r < ∞ in the non-archimedean
case and ‖ϕ‖r,N < ∞ for all N ∈ N in the archimedean case. We give PW r

E0
(Λ) the

Banach space topology defined by the norm ‖ · ‖r in the non-archimedean case and
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the Fréchet space topology defined by the family of norms ‖ · ‖r,N in the archimedean
case. We give PWE0(Λ) =

⋃
r PW r

E0
(Λ) the inductive limit topology in the category

of locally convex spaces, making it a strict LF-space. Finally, we give PWf (Λ) =⋃
E0

PWE0(Λ) the inductive limit topology in the category of locally convex spaces,
making it also a strict LF-space. In the archimedean case, the topology on PWf (Λ) is
at least as fine as the subspace topology inherited from PW (Λ), that is, the injection
PWf (Λ) → PW (Λ) is continuous.

We have defined the topology on PWf (Λ) in an analogous way to how the topology
is defined on C∞

c (G,K). A simpler way of describing the topology on PWf (Λ) is as
follows. We write PWe(Λ) = PW{e}(Λ). The subspace PWe(Λ) is the classical
Paley–Wiener space PW (Λe) on Λe. Observe that we have the locally convex direct
sum decomposition PWE0(Λ) =

⊕
e∈E0

PWe(Λ), where PWe(Λ) = PW{e}(Λ). This
can be shown by checking that PWE0(Λ) satisfies the correct universal property.
Alternatively, this follows from the fact that

⊕
e∈E0

PWe(Λ) is a Fréchet space (even
a Banach space in the non-archimedean case) and applying the a suitable version of
the open mapping theorem to the continuous bijection

⊕
e∈E0

PWe(Λ) → PWE0(Λ).
Choosing an enumeration e1, e2, . . . of E0, we have that

PWf (Λ) =
∞⋃
n=1

PW{e1,...,en}(Λ) =
∞⋃
n=1

n⊕
i=1

PWei(Λ)

with the inductive limit topology in the category of locally convex spaces, and con-
sequently we have the locally convex direct sum decomposition

PWf (Λ) =
⊕
e∈E

PWe(Λ).

To define the Schwartz space S (Λ) on Λ, in the archimedean case we need to
make use of certain constant coefficient differential operators on Λ. Recall in the
archimedean case we have an identification of each Λe with a fixed vector space iV ∗.
Thus, we have a notion of a differential operator on Λ that is the same on almost all
(all but finitely many) components Λe.

We define the Schwartz space S (Λ) on Λ to be the space of smooth functions
ϕ : Λ → C such that the following holds.

1. In the non-archimedean case we require that ϕ is supported on finitely many
connected components Λe.

2. ϕ satisfies a decay condition:
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(a) In the archimedean case, we require that for each differential operator D

on Λ that is the same on almost all components and for each N ∈ N, we
have that

‖ϕ‖D,N := sup
e∈E,λ∈Λe

|Dϕ(λ)|(1 + ‖e‖+ ‖λ‖)N

is finite.

(b) In the non-archimedean case, we require that for each differential operator
D on Λ, we have that

‖ϕ‖D := sup
λ∈Λ

|Dϕ(λ)|

is finite.

In the archimedean case, S (Λ) is a Fréchet space with the topology defined by the
family of seminorms ‖ · ‖D,N . Note that in the definition of S (Λ) in the archimedean
case, we could have restricted attention to differential operators D that are the same
on all components of Λ; this is how such Schwartz spaces are often defined in the
literature.

For each finite set E0 ⊆ E we define SE0(Λ) to be the subspace of all ϕ ∈ S (Λ)

that are supported on
∐

e∈E0
Λe. In the archimedean case, SE0(Λ) is closed subspace

of S (Λ) and is thus a Fréchet space with respect to the topology defined by the
family of seminorms ‖ · ‖D,N . In the non-archimedean case, we give SE0(Λ) the
topology defined by the family of seminorms ‖ · ‖D. It is a Fréchet space. We define
Se(Λ) = S{e}(Λ). Note that Se(Λ) is the classical Schwartz space S (Λe) on Λe.

In the non-archimedean case, we give S (Λ) =
⋃

E0
SE0(Λ) the inductive limit

topology in the category of locally convex spaces, making it a strict LF-space. We
have S (Λ) = C∞

c (Λ).
We could also define a space Sf (Λ) in the archimedean case in a manner similar to

how we defined PWf (Λ), although we will not make use of this space. Such Schwartz
spaces would presumably be used in an invariant Paley–Wiener theorem for K-finite
Schwartz functions, but to our knowledge such a theorem has not yet been established.

3.3.1 The Fourier transform

Fix a space Λ as above. It is naturally dual to the space X =
∐

e∈E Xe, where Xe = V

in the archimedean case and Xe = Γe in the non-archimedean case.
We will define function spaces C∞

c (X) and S (X) and a Fourier transform that
gives isomorphisms of topological vector spaces C∞

c (X) → PW (Λ) and S (X) →



3.3. PALEY–WIENER AND SCHWARTZ SPACES 52

S (Λ). We remark that in the archimedean case, C∞
c (X) will not be the space of

compactly supported smooth functions on X if X has infinitely many components.
First, we define the spaces C∞

c (X) and S (X) in the non-archimedean case. We
define S (X) =

⊕
e∈E S (Γe), where S (Γe) is the space of functions φ : Γe → C that

are rapidly decreasing, i.e. for all N ∈ N we have that

‖φ‖N := sup
x∈X

|φ(x)|(1 + ‖x‖)N < ∞.

The space S (Γe) is a Fréchet space with respect to the topology defined by the
seminorms ‖ · ‖N , and S (X) is a strict LF-space.

We define C∞
c (X) =

⊕
e∈E C∞

c (Γe). Here, C∞
c (Γe) is the space of compactly

supported (i.e. finitely supported) functions on Γe equipped with the finest locally
convex topology. Thus, C∞

c (X) also has the finest locally convex topology. For
r > 0, we define C∞

r (Γe) to be the space of functions on Γe with support contained
in {x ∈ Γe : ‖x‖ ≤ r}. It is a finite-dimensional space, and we give it the locally
convex topology. Then C∞

r (Γe) is a closed subspace of C∞
c (Γe). Moreover, we have

an increasing union C∞
c (Γe) =

⋃
r>0 C

∞
r (Γe) and C∞

c (Γe) is the inductive limit of
the C∞

r (Γe) in the category of locally convex spaces. It is a strict LF-space. We
define C∞

r (X) =
⊕

e∈E C∞
r (Γe). Again, we have that C∞

c (X) is the increasing union
C∞

c (X) =
⋃

r>0 C
∞
r (X), it is the inductive limit of the C∞

r (X) in the category of
locally convex spaces, and it is a strict LF-space.

Now, we treat the archimedean case. We may view V = i(iV ∗)∗, and thus we
have a definition of S (X) (and also PW (X), but we will not need it). It remains for
us to define C∞

c (X) in the archimedean case. For r > 0, we define C∞
r (X) to be the

space of smooth functions φ : X → C such that:

1. the support of φe is contained in the closed ball of radius r in Xe;

2. for all N > 0 and all differential operators D that are the same on almost all
components Xe, we have that

‖φ‖D,N := sup
e∈E,x∈Xe

‖Dφe(x)‖(1 + ‖e‖)N

is finite.

We give C∞
r (X) the topology defined by the family of seminorms ‖·‖D,N , which makes

C∞
r (X) a Fréchet space. (Note that in the definition of C∞

r (X) and its topology, it
suffices to use differential operators that are the same on all components of X.) We
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define C∞
c (X) to be the increasing union C∞

c (X) =
⋃

r>0 C
∞
r (X) and we give it the

inductive limit topology in the category of locally convex spaces, making it a strict
LF-space.

Note that C∞
c (X) is a dense subspace of S (X) in all cases and the inclusion map

C∞
c (X) → S (X) is continuous.

We now fix measures on X and Λ. We fix dual measures on V and iV ∗. These de-
termine dual measures on Xe and Λe in the archimedean case. In the non-archimedean
case, we give each Xe = Γe the counting measure and Λe = iV ∗/Γ∨

e the dual measure.
For φ ∈ S (X), we define its Fourier transform φ̂ = (φ̂e)e∈E : Λ → C by taking

the Fourier transform on each component Xe, that is, φ̂e(λ) =
∫
Xe

φe(x)e
−2π⟨x,λ⟩ dx.

Lemma 3.3.1. The Fourier transform gives isomorphisms of topological vector spaces
S (X) → S (Λ), C∞

r/2π(X) → PW r(Λ), and C∞
c (X) → PW (Λ).

This follows easily from the classical version of this lemma when E is a singleton,
together with the following basic inequalities: (1+x+y) ≤ (1+x)(1+y) ≤ (1+x+y)2

for x, y ≥ 0; and for N ∈ N, we have (1 + x)N � (1 + x2)N � (1 + x)2N for x ≥ 0.

Corollary 3.3.2. PW (Λ) is a dense subspace of S (Λ) and the inclusion map

PW (Λ) −→ S (Λ)

is continuous.

3.3.2 Pullback mappings

Let V1 and V2 be Euclidean spaces and let T : iV ∗
1 → iV ∗

2 be an injective linear
map. Then pullback defines continuous linear maps T ∗ : S (iV ∗

2 ) → S (iV ∗
1 ) and T ∗ :

PW (iV ∗
2 ) → PW (iV ∗

1 ). Similarly, if Γ1 and Γ2 are lattices in V1 and V2, respectively,
and T : iV ∗

1 /Γ
∨
1 → iV ∗

2 /Γ
∨
2 is a smooth homomorphism, then pullback along T defines

continuous linear maps T ∗ : S (iV ∗
2 /Γ

∨
2 ) → S (iV ∗

1 /Γ
∨
1 ) and T ∗ : PW (iV ∗

2 /Γ
∨
2 ) →

PW (iV ∗
1 /Γ

∨
1 ).

There is a simple generalisation of this to the Schwartz and Paley–Wiener spaces
S (Λ), PW (Λ), and PWf (Λ) defined above.

Lemma 3.3.3. For i = 1, 2, let Λi =
∐

e∈Ei
Λe be a space as defined above in relation

to Vi.
Let TE : E1 → E2 be a partially defined map and let TV : iV ∗

1 → iV ∗
2 be a linear

map. In the archimedean case, assume that ‖TE(e1)‖ � ‖e1‖ and that TV is injective.
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In the non-archimedean case, assume that TE has finite fibres and that TV (Γ
∨
1 ) ⊆ Γ∨

2

so that TV descends to a smooth homomorphisms TV : iV ∗
1 /Γ

∨
1 → iV ∗

2 /Γ
∨
2 .

Let ϕ = (ϕe2)e2∈E2 ∈ S (Λ2). Define T ∗ϕ = ((T ∗ϕ)e1)e1∈E1 by (T ∗ϕ)e1 = 0 if
TE(e1) is undefined and (T ∗ϕ)e1 = T ∗

V ϕTE(e1) otherwise. To simplify notation, we
write ϕTE(e1) = 0 if TE(e1) is not defined. Then (T ∗ϕ)e1 = T ∗

V ϕTE(e1) for all e1 ∈ E1.
For all ϕ ∈ S (Λ2), we have T ∗ϕ ∈ S (Λ1) and

T ∗ : S (Λ2) −→ S (Λ1)

is a continuous linear map. Moreover, T ∗ restricts to a continuous linear map

T ∗ : PW (Λ2) −→ PW (Λ1).

In the archimedean case, if TE in addition has finite fibres, then T ∗ restricts further
to a continuous linear map

T ∗ : PWf (Λ2) −→ PWf (Λ1).

Proof. The non-archimedean case and the last claim is straightforward. We prove the
first claim of in the archimedean case, the second being similar. Let D be an invariant
differential operator on iV ∗

1 and let N ∈ N. We will also use D to denote the extension
of D along TV to an invariant differential operator on iV ∗

2 . Let ϕ ∈ S (Λ2). We have

‖T ∗ϕ‖D,N = sup
e1∈E1
λ∈Λe1

|DϕTE(e1)(TV λ)|(1 + ‖e1‖+ ‖λ‖)N .

For all N ′ ∈ N, we have

|DϕTE(e1)(TV λ)| ≤ ‖ϕ‖D,N ′(1 + ‖TEe1‖+ ‖TV λ‖)−N ′
.

Since TV : iV ∗
1 → iV ∗

2 is injective, we have that λ 7→ ‖TV λ‖ is a norm on iV ∗
1 and

thus ‖TV λ‖ � ‖λ‖. Since ‖TEe1‖ � ‖e1‖, we have that

(1 + ‖TEe1‖+ ‖TV λ‖)−N ′ � (1 + ‖e1‖+ ‖λ‖)N

for N ′ sufficiently large. Thus,

‖T ∗ϕ‖D,N � ‖ϕ‖D,N ′
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for N ′ sufficiently large. Thus, we have T ∗ϕ ∈ S (Λ1) and T ∗ defines a continuous
linear map T ∗ : S (Λ2) → S (Λ1). That T ∗ restricts to a continuous linear map
T ∗ : PW (Λ2) → PW (Λ1) follows in a similar way.

The proof of Theorem 5.1.1, from which the existence of stable transfer follows,
makes use of this lemma.

3.4 Invariant Paley-Wiener theorems
As remarked above, we view the invariant Fourier transform of f ∈ C(G) as the C1-
equivariant function fG : Ttemp(G) → C defined by fG(τ) = fG(πτ ). We thus view
the space of invariant Fourier transforms of elements of I(c)(G) defined above as

Î(c)(G) = {fG : Ttemp(G) → C : f ∈ C(c)(G)}

= C(c)(G)/AnnC(c)(G)(Ttemp(G)).

The invariant Paley–Wiener theorem for I(c)(G) asserts that the invariant Fourier
transform F : I(c)(G) → Î(c)(G) is an isomorphism of topological vector spaces and
gives a characterisation of Î(c)(G) as a Schwartz (resp. Paley–Wiener) space. In
this section we review this and other invariant Paley–Wiener theorems that we will
stabilise.

Let L ∈ LG(M0). Recall that if F is archimedean we have define a “norm” on the
set of infinitesimal characters of L. We define ‖τ‖ = ‖µτ‖ for all τ ∈ T̃ell(L).

For any countable set E ⊆ Tell(L), we have a Schwartz space S (Λ) and a Paley–
Wiener space PW (Λ) defined on the space Λ =

∐
τ∈E Λτ with Λτ = ia∗L/a

∨
L,τ .

We define Sell(L) to be the space of smooth C1-equivariant functions ϕ : Tell(L) →
C such that for some (and hence any) choice of representatives Eell(L) ⊆ Tell(L) for
the connected components of Tell(L)/C1, we have

ϕ ∈ S

( ∐
τ∈Eell(L)

ia∗L/a
∨
L,τ

)
.

We define PWell(L) (resp. PWell,f (L)) in the same way as Sell(L), except that we
replace S (·) by PW (·) (resp. PWf (·)). We define

S (G) =

( ⊕
L∈LG(M0)

PWell(L)

)WG
0

=
⊕

L∈LG(M0)/WG
0

PWell(L)
WG(L)
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and similarly we define PW (G) and PWf (G). It follows from the decomposition of
Ttemp(G) in terms of the Tell(L), that S (G), PW (G), and PWf (G) are naturally
spaces of smooth C1-equivariant functions on Ttemp(G). We have the following invari-
ant Paley–Wiener theorems.

Theorem 3.4.1. The invariant Fourier transform is an isomorphism of topological
vector spaces

I(G) −→ S (G).

It restricts to isomorphism of topological vector spaces

Ic(G) −→ PW (G).

This further restricts to an isomorphism of topological vector spaces

If (G) −→ PWf (G)

Thus, we have Î(G) = S (G), Îc(G) = PW (G), and Îf (G) = PWf (G).

Injectivity of the first map is equivalent to the assertion that for f ∈ C(G), if if
fG vanishes on Dtemp(G), then fG(γ) = 0 for all γ ∈ Γrs(G). This is called spectral
density. Kazhdan proved spectral density follows for p-adic groups [Kaz86, Theorem
J.(a)]. Spectral density for both real and p-adic groups can also be seen as a corollary
of Arthur’s Fourier inversion theorem for orbital integrals [Art94a, Theorem 4.1 with
M = G], which we will recall in a moment. The first map in the theorem was proved
to be an open continuous surjection by Arthur in [Art94b]. For real groups, the second
statement in the theorem is proved in a more general twisted form in [MW16a] using
a twisted invariant Paley–Wiener theorem due Renard, which generalises a theorem
due to Bouaziz in the non-twisted case. For p-adic groups, the second statement is
proved in [Art93]. The third statement is only different from the second in the case
of real groups, and it is also proved in [Art93]. (See also [MW18, §6.2].)

To state Arthur’s Fourier inversion theorem for orbital integrals, we need a mea-
sure on Ttemp(G)/C1. First, we define a measure on Tell(L)/C1 for each L ∈ LG(M0)

by ∫
Tell(L)/C1

α(τ) dτ =
∑

τ∈Tell(L)/(C1×ia∗L)

∫
ia∗L/a

∨
L,τ

α(τλ) dλ,

for all α ∈ Cc(Tell(L)/C1), where the measure dλ is determined by a choice of Haar
measure on ia∗L and the counting measure on a∨L,τ . Then, we define a measure on



3.4. INVARIANT PALEY-WIENER THEOREMS 57

Ttemp(G)/C1 by∫
Ttemp(G)/C1

α(τ) dτ =
∑

L∈LG(M0)/WG
0

|WG(L)|−1

∫
Tell(L)/C1

α(τ) dτ

for all α ∈ Cc(Ttemp(G)/C1). The following is Arthur’s Fourier inversion theorem for
orbital integrals.

Theorem 3.4.2. Let f ∈ C(G). There exists a smooth function IG(γ, τ) on Γsr(G)×
Ttemp(G), which satisfies IG(γ, zτ ) = z−1IG(γ, τ) for all z ∈ C1, and satisfies

fG(γ) =

∫
Ttemp(G)/C1

IG(γ, τ)fG(τ) dτ

for all γ ∈ Γsr(G).

This is [Art94a, Theorem 4.1 with M = G]. See the discussion before Lemma 6.3
in [Art96], where this specialisation of [Art94a, Theorem 4.1] is discussed.

Let Icusp(G) (resp. Ic,cusp(G), If,cusp(G)) denote the image of Ccusp(G) (resp.
C∞

c,cusp(G), C∞
c,cusp(G,K)) in I(G) (resp. Ic(G), Ic(G,K)).

For f ∈ C(G) it follows from spectral density that f ∈ Ccusp(G) if and only if its
invariant Fourier transform is supported on Tell(G). We obtain the following invariant
Paley–Wiener theorems for cuspidal functions as a corollary of the above invariant
Paley–Wiener theorem.

Corollary 3.4.3. The invariant Fourier transform is an isomorphism of topological
vector spaces

Icusp(G) −→ Sell(G).

It restricts to isomorphisms of topological vector spaces

Ic,cusp(G) −→ PWell(G)

and
If,cusp(G) −→ PWell,f (G).

3.4.1 Pseudocoefficients

Let ζ be a unitary character of AG(F ). The finite group ã∨G,F/a
∨
G,F acts on Tell(G, ζ)

and the ia∗G-orbits in Tell(G) meet Tell(G, ζ) in (ã∨G,F/a
∨
G,F )-orbits. Thus, it is natural
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to regard Tell(G, ζ) as a discrete space. Define PWell,f (G, ζ) to be the space of all
C1-equivariant functions ϕ : Tell(G, ζ) → C that are supported on finitely many C1-
orbits. Let Eell(G, ζ) ⊆ Tell(G, ζ) be a set of representatives for the countable set
Tell(G, ζ)/C1. Then we have an identification

PWell,f (G, ζ) =
⊕

τ∈Eell(G,ζ)

C,

defined by mapping ϕ to (ϕ(τ))τ∈Eell(G,ζ). The direct sum
⊕

τ∈Eell(G,ζ) C can be
thought of as the PWf -space on the countable 0-dimensional manifold Eell(G, ζ).
Recall that C1Π2(G, ζ) ⊆ Tell(G, ζ). Thus, we may and will assume that Π2(G, ζ) ⊆
Eell(G, ζ).

There is a Paley–Wiener theorem for the invariant Fourier transform on If,cusp(G, ζ),
which we now recall from [MW18, §7.2].

Theorem 3.4.4. The invariant Fourier transform gives an isomorphism of topological
vector spaces

If,cusp(G, ζ) −→ PWell,f (G, ζ).

A consequence is that for each τ ∈ Tell(G, ζ), there exists a unique function
f [τ ]G ∈ If,cusp(G, ζ) such that f [τ ]G(zτ) = z‖τ‖ell for z ∈ C1, and f [τ ]G(τ

′) = 0 for
τ ′ ∈ Tell(G, ζ) with τ ′ 6∈ C1τ . The function f [τ ]G is called the pseudocoefficient of τ in
If,cusp(G, ζ). Note that for all τ ∈ Tell(G, ζ) and z ∈ C1, we have f [zτ ]G = z−1f [τ ]G.
Moreover, the set {f [τ ]G}τ∈Eell(G,ζ) is a basis of If,cusp(G, ζ). It follows from the simple
form of the local trace formula that for γ ∈ Γsr,ell(G) we have

f [τ ]G(γ) = m(γ)−1|DG(γ)|1/2Θτ (γ).

Recall that m(γ) = vol(Gγ(F )/AG(F )). (See [MW18, §7.2].)
Since {f [τ ]G}τ∈Eell(G,ζ) is a basis of If,cusp(G, ζ), there is a unique conjugate-linear

isomorphism
Dell(G, ζ) −→ If,cusp(G, ζ)

given on the basis Eell(G, ζ) by τ 7→ f [τ ]G. By conjugate-linearity, for all z ∈ C1

we have zτ 7→ z−1f [τ ]G = f [zτ ]G. Consequently, the isomorphism does not depend
on the choice of representatives Eell(G, ζ). For all π ∈ Dell(G, ζ) we write f [π]G ∈
If,cusp(G, ζ) for the corresponding element under the above isomorphism. We call
f [π]G the pseudocoefficient of π in If,cusp(G, ζ).

For all π ∈ Dell(G, ζ), we have 〈mfG,mf [π]G〉ell = fG(π). Indeed, it suffices



3.4. INVARIANT PALEY-WIENER THEOREMS 59

to check this for π = τ ∈ Tell(G, ζ), and this in turn follows from the formula for
f [τ ]G given above. Note that the map π 7→ mf [π]G is unitary with respect to the
elliptic inner product in the sense that for all π1, π2 ∈ Dell(G, ζ), we have 〈π1, π2〉ell =

〈mf [π1]G,mf [π2]G〉ell. If B is an orthogonal basis of Dell(G, ζ) (with respect to the
elliptic inner product), then for all b, b′ ∈ B, we have

f [b]G(b
′) = 〈mf [b]G,mf [b′]G〉ell = 〈b, b′〉ell = ‖b‖ellδb(b

′).



4 Stable Harmonic Analysis

The local version of the Principle of Functoriality is concerned with the relation-
ship between irreducible admissible representations of different groups H and G over
F whose L-groups are related by an L-homomorphism LH → LG (notions that we
will define below). In this case, one has (conjecturally for non-archimedean F ) a
correspondence between irreducible admissible representations of H and G. This cor-
respondence is more directly expressed as a map from the set of L-packets of H to
the set of L-packets of G. An L-packet is the set of irreducible admissible representa-
tions that are L-indistinguishable in the sense that they have the same L-parameter,
an arithmetic invariant that determines the local L-function of an irreducible ad-
missible representation. The packaging of admissible representations into L-packets
determined by their L-parameters is the (conjectural for non-archimedean F ) local
Langlands correspondence. Part of the local Langlands correspondence also attaches
virtual representations with positive coefficients to L-packets of tempered represen-
tations, and the associated virtual tempered characters are called stable tempered
characters. They are stable in the sense that they are constant not just on regular
semisimple conjugacy classes but on certain finite unions of regular semisimple con-
jugacy classes called regular semisimple stable conjugacy classes. This leads to the
notion of stable orbital integrals and a stable Fourier transform defined in terms of
stable tempered characters. This is the subject of stable harmonic analysis, which
plays a central role in the Langlands program.

We will recall the foundations of stable harmonic analysis and then prove stable
Paley–Wiener theorems. These will be used to establish the existence and basic
properties of stable transfer in the next chapter.

4.1 Stability
We begin by recalling stable conjugacy. For a reference, see [Kot82, §3]. Let x, x′ ∈
G(F ). If there exists g ∈ G(F ) such that x′ = g−1xg, then gσ(g)−1 ∈ Gxs(F ), where

60
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xs is the semisimple component of x in its Jordan decomposition. The elements
x, x′ ∈ G(F ) are said to be stably conjugate if there exists g ∈ G(F ) such that
x′ = g−1xg and gσ(g)−1 ∈ Gxs(F ) for all σ ∈ ΓF . Stable conjugacy is an equivalence
relation on G(F ), and each stable conjugacy class is a finite union of G(F )-conjugacy
classes. Note that for complex groups, stable conjugacy is the same as conjugacy.
The set of stable conjugacy classes in G(F ) is usually denoted by ∆(G). We write

∆ss(G) ⊃ ∆rs(G) ⊃ ∆sr(G)

for the sets of semisimple, regular semisimple, and strongly regular stable conjugacy
classes in G(F ). The relation of stable conjugacy is intermediate in strength between
G(F )-conjugacy and G(F )-conjugacy. Two strongly regular elements of G(F ) are
stably conjugate if and only if they are G(F )-conjugate, and thus the stable conjugacy
class of a strongly regular element x ∈ G(F ) is simply the intersection xG ∩G(F ) of
its G(F )-conjugacy class with G(F ). The Weyl discriminant DG is stably invariant.
If T is a maximal torus of G, then two G-regular elements of T (F ) are conjugate if
and only if they lie in the same orbit of the stable Weyl group W (G, T )(F ) of T .
A function on a subset of G(F ) is said to be stably invariant if it is constant on all
stable conjugacy classes in its domain.

The stable orbital integral at δ ∈ ∆ss(G) is defined in [Kot86, §5.2] by

SOδ =
∑

γ∈Γ(G)

cδ,γOγ,

where cδ,γ = 0 unless γ ⊆ δ, in which case

cδ,γ = e(G◦
γ)| ker[H1(F,G◦

γ, Gγ)]|,

where e(G◦
γ) is the Kottwitz sign of G◦

γ (see [Kot83]). Note that SOδ(f) converges for
f ∈ Cc(G, ζ) and f ∈ C(G, ζ) and defines a tempered distribution. The normalised
stable orbital integral of f ∈ C(G, ζ) is defined by

fG(δ) = |DG(δ)|1/2SOδ(f) =
∑

γ∈Γ(G)

cδ,γfG(γ).

If δ ∈ ∆rs(G), then cδ,γ = 1 if γ ⊆ δ, and thus

SOδ =
∑
γ⊆δ

Oγ,
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where the sum is over all conjugacy classes γ in δ. Therefore

fG(δ) =
∑
γ⊆δ

fG(δ)

for all δ ∈ ∆rs(G).
We give ∆(G) the quotient topology from G(F ). Then ∆rs(G) and ∆sr(G) are

open dense locally compact Hausdorff subspaces of ∆(G), and Γsr(G) is naturally an
F -analytic manifold. For f ∈ Cc(G(F ), ζ) or f ∈ C(G, ζ), the function δ 7→ SOδ(f)

is a continuous on ∆rs(G).
Two maximal tori T, T ′ of G are said to be stably conjugate if the exists g ∈ G(F )

such that Int(g) : T → T ′ is defined over F . We have a stable version of the Weyl
integration formula:∫

G(F )

f(x) dx =
∑
T

|W (G, T )(F )|−1

∫
T (F )

|DG(t)|SOt(f) dt,

whenever one side and hence the other converges, where the sum is over a set of
representatives of stable conjugacy classes of maximal tori of G. As in the invariant
case, one can define a Radon measure dδ on ∆rs(G) by∫

∆rs(G)

ϕ(δ) dδ =
∑
T

|W (G, T )(F )|−1

∫
T (F )

ϕ(t) dt,

for all ϕ ∈ Cc(Γrs(G)), where the sum runs over a set of representatives of the stable
conjugacy classes of maximal tori of G. The stable Weyl integration formula then
becomes ∫

G(F )

f(x) dx =

∫
∆rs(G)

|DG(δ)|SOδ(f) dδ.

Note that ∆sr(G) has comeasure zero in ∆rs(G). This restricts to a Radon measure
measure on the set ∆rs,ell(G) of elliptic regular semisimple stable conjugacy classes
of G. One can rewrite the stable Weyl integration formula in terms of conjugacy
classes semistandard Levi subgroups a similar way as the Weyl integration formula
was rewritten.

We define the subspace of unstable functions in C(c)(G, ζ) by

Cunst
(c) (G, ζ) = AnnC(c)(G,ζ)({SOδ : δ ∈ ∆sr(G)})

= {f ∈ C(c)(G, ζ) : fG(δ) = 0, ∀δ ∈ ∆sr(G)}
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and its image in I(c)(G, ζ),

Iunst
(c) (G, ζ) = AnnI(c)(G,ζ)({SOδ : δ ∈ ∆sr(G)}).

We define the space of stable orbital integrals

S(c)(G, ζ) = {fG : f ∈ C(c)(G, ζ)}.

We have
S(c)(G, ζ) = C(c)(G, ζ)/Cunst

(c) (G, ζ) = I(c)(G, ζ)/Iunst
(c) (G, ζ)

and we give it the natural quotient topology. We also define the spaces Cunst
c (G, ζ,K),

Iunst
f (G, ζ) = Iunst

c (G, ζ,K), and Sf (G, ζ) = Sc(G, ζ,K) in a similar way.
The space of ζ-equivariant stable distributions is defined to be Sc(G, ζ)′ and the

space of tempered ζ-equivariant stable distributions is defined to be S(G, ζ)′. Note
that we have a continuous linear injection Sc(G, ζ) → S(G, ζ) with dense image. Its
transpose is a continuous linear injection S(G, ζ)′ → Sc(G, ζ)′, which enables us to
identify each tempered ζ-equivariant stable distribution with a ζ-equivariant stable
distribution.

We may identify S(c)(G, ζ)′ with a subspace of I(c)(G, ζ)′ via the transpose of
the quotient map I(c)(G, ζ) → S(c)(G, ζ). Thus, we have a further identification of
S(c)(G, ζ)′ as a subspace of C(c)(G, ζ)′. As vector spaces, we have

S(c)(G, ζ)′ = AnnC(c)(G,ζ)′(AnnC(c)(G,ζ)({SOδ : δ ∈ ∆sr(G)}))

= clC(c)(G,ζ)′,weak-∗({SOδ : δ ∈ ∆sr(G)}).

That is, an distribution in C(c)(G, ζ)′ belongs to S(c)(G, ζ)′ if and only if it lies in the
weak-∗ closure in C(c)(G, ζ)′ of the linear span of the set of strongly regular stable
orbital integrals of G. A locally integrable function Θ on G(F ) that is continuous
Gsr(F ) defines a stable distribution of G if and only if Θ is stably invariant on Gsr(F ).

We say that a virtual representation is stable if its character, which we identify
it with, is stable. We define Dst

spec(G, ζ) (resp. Dst
temp(G, ζ), Dst

ell(G, ζ)) to be the
subspace of stable elements in Dspec(G, ζ) (resp. Dtemp(G, ζ), Dell(G, ζ)).

The parabolic descent map I(c)(G, ζ) → I(c)(M, ζ)W
G(M) descends to a continuous

map S(c)(G, ζ) → S(c)(M, ζ)W
G(M), which we write as fG 7→ fM and also call parabolic

descent. Thus, the parabolic induction map IGM : I(c)(M, ζ)′/WG(M) → I(c)(G, ζ)′

restricts to a continuous map IGM : S(c)(M, ζ)′/WG(M) → S(c)(G, ζ)′, namely the
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transpose of the parabolic descent map S(c)(G, ζ) → S(c)(M, ζ)W
G(M). Consequently,

parabolic induction IGM preserves stability of distributions and in particular of virtual
characters. Let ∆G-rs(M) denote the set of G-regular semisimple stable conjugacy
classes in M(F ). For all δ ∈ ∆G-rs(M) we have fM(δ) = fG(δ).

4.2 L-groups
In order to define the spectral objects in stable harmonic analysis on G, we need
the notion of the L-group of G. We give a review of L-groups emphasising the
functoriality of various constructions. A similar exposition is given in [Ngô20]. Other
useful references on L-groups are [Bor79; Kot84; MW16a; SZ18; Var]. A reader
familiar with the subject can safely skip to Section 4.2.3, where we introduce some
notation and terminology that is not standard.

4.2.1 Based root data

Let k be a field and let G be a connected reductive group over k. We begin by focusing
on the case when G is split. For each Borel pair (B, T ) of G, we have a (reduced)
based root datum

Ψ(G,B, T ) = (X∗(T ),Φ(G, T ),∆(B, T ), X∗(T ),Φ
∨(G, T ),∆∨(B, T )).

We will usually write Φ(G,B, T ) = (X∗(T ),∆(B, T ), X∗(T ),∆
∨(B, T )) since the right

hand side determines Φ(G,B, T ).
Any two Borel pairs (B1, T1), (B2, T2) of G are G(k)-conjugate. Moreover, up to

multiplication on the right by an element of T1(k) there is a unique g ∈ G(k) such
that (B2, T2) = (gB1g

−1, gT1g
−1). Thus, we obtain a canonical isomorphism

Int(g) : T1 −→ T2.

The adjoint isomorphisms Int(g)∗ : X∗(T2)
∼−→ X∗(T1) and Int(g)∗ : X∗(T1)

∼−→ X∗(T2)

form a canonical isomorphism Ψ(G,B1, T1)
∼−→ Ψ(G,B2, T2) of based root data.

The canonical based root datum Ψ(G) of G is defined to be the limit Ψ(G) =

lim(B,T ) Ψ(G,B, T ) in the category whose objects are of based root data and whose
morphisms are isomorphisms of based root data. By definition, for each Borel pair
(B, T ) of G there is a canonical isomorphism Ψ(G) ∼= Ψ(G,B, T ). We write Ψ(G) =

(XG,ΦG,∆G, X
∨
G,Φ

∨
G,∆

∨
G), or more briefly, Ψ(G) = (XG,∆G, X

∨
G,∆

∨
G). We also write
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X(G) = XG, etc. if it is preferable. We omit “G” from this notation if it is clear from
context. We recall that the Existence Theorem states that for any based root datum
Ψ there exists a split connected reductive group G over k such that Ψ(G) ∼= Ψ.

We will now discuss the functoriality of G 7→ Ψ(G). Suppose that (G,B, T ),
(G′, B′, T ′) are two split connected reductive groups with Borel pairs over k. Every
homomorphism η : (G,B, T ) → (G′, B′, T ′) gives rise to a pair of homomorphisms
η∗ : X∗(T ′) → X∗(T ) and η∗ : X∗(T ) → X∗(T

′). The homomorphisms η∗ and
η∗ are adjoint with respect to the canonical perfect pairings between character and
cocharacter groups of split tori: 〈η∗(α′), β∨〉 = 〈α′, η∗(β)〉 for all α′ ∈ X∗(T ′) and
β ∈ X∗(T ). Thus, η∗ determines η∗ and vice versa.

If η is an isomorphism, then η∗ (or the pair (η∗, η∗)) is an isomorphism Ψ(G,B, T ) →
Ψ(G′, B′, T ′) of based root data. Therefore, every isomorphism η : (G,B, T ) →
(G′, B′, T ′) gives rise to an isomorphism Ψ(η) : Ψ(G,B, T ) → Ψ(G′, B′, T ′) and thus
an isomorphism Ψ(η) : Ψ(G) → Ψ(G′). For each t′ ∈ (T ′/ZG′)(k), we have an in-
ner automorphism Int(t′) : (G′, B′, T ′) → (G′, B′, T ′), and Ψ(Int(t′)) is the identity
automorphism of Ψ(G,B, T ).

The Isomorphism Theorem asserts that η 7→ Ψ(η) is a bijection

Ψ : (Isom((G,B, T ), (G′, B′, T ′))/ ∼) −→ Isom(Ψ(G),Ψ(G′)),

where in the domain we identify isomorphisms that differ by an inner automorphism
Int(t′) with t′ ∈ (T ′/ZG′)(k). It follows that we obtain a bijection

Ψ : (Isom(G,G′)/ ∼) −→ Isom(Ψ(G),Ψ(G′)),

where in the domain we identify automorphisms that differ by an inner automorphism
of G′, that is an automorphism of the form Int(g′) with g′ ∈ G′

ad(k) = (G′/ZG′)(k).
A corollary is that we have the following short exact sequence

1 −→ Int(G) −→ Aut(G) −→ Aut(Ψ(G)) −→ 1,

where Int(G) = Int(Gad(k)). Thus, Out(G) = Aut(Ψ(G)).
Recall that a pinning {Xα}α∈∆(B,T ) of (G,B, T ) is a choice of a nonzero element

Xα ∈ gα for each α ∈ ∆(B, T ). For α ∈ Φ(G, T ), the isomorphisms xα : Ga
∼−→ Uα,

where Uα is the root subgroup of G attached to α, are in bijective correspondence
with non-zero elements Xα ∈ gα via dxα(1) = Xα. Thus, one may define a pinning
using isomorphisms xα : Ga

∼−→ Uα instead. We also call (B, T, {Xα}α) a pinning of G
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if {Xα}α is a pinning of (G,B, T ). We call (G,B, T, {Xα}α) a pinned split connected
reductive group over k. Fix pinnings {Xα}α and {X ′

α′}α′ for (G,B, T ) and (G′, B′, T ′)

respectively. Then the map η 7→ Ψ(η) restricts to a bijection

Isom((G,B, T, {Xα}α), (G′, B′, T ′, {X ′
α′}α′)) −→ Isom(Ψ(G),Ψ(G′)).

In particular, a choice of pinning (B, T, {Xα}α) of G determines a splitting

Aut(Ψ(G)) −→ Aut(G)

of the above short exact sequence, and thus a semidirect product decomposition
Aut(G) = Int(G)o Aut(Ψ(G)).

There is a generalisation of the Isomorphism Theorem called the Isogeny Theorem,
and yet a further generalisation involving homomorphisms with normal image. Let
η : G → G′ be a homomorphism. We call η a normal homomorphism if η(G) normal
is in G′. We say that η is separable if η : G → η(G) is separable. Recall the
homomorphism η∗ and its adjoint η∗ defined above. Write Ψ(G) = (X,∆, X∨,∆∨)

and Ψ(G′) = (X ′,∆′, (X ′)∨, (∆′)∨). Let ∆1 = ∆ ∩ im η∗ and ∆2 = ∆ \ ∆1. Let
∆′

2 = ∆′ ∩ ker η∗ and ∆′
1 = ∆′ \ ∆′

2. Let p be the characteristic exponent of k. As
stated in [Spr79, §2.11], the homomorphism η∗ satisfies the following properties.

1. The decompositions ∆ = ∆1

∐
∆2 and ∆′ = ∆′

1

∐
∆′

2 are orthogonal (that is
〈∆1,∆

∨
2 〉 = 〈∆2,∆

∨
1 〉 = 0 and 〈∆′

1, (∆
′
2)

∨〉 = 〈∆2, (∆
′
1)

∨〉 = 0).

2. There is a bijection ∆1 → ∆′
1, α 7→ α′ and a function q : ∆1 → pZ≥0 such that

for all α ∈ ∆1, η∗(α′) = q(α)α and η∗(α
∨) = q(α)(α′)∨.

3. η∗(∆′
2) = 0 and η∗(∆2) = 0.

These properties define what we call a p-morphism

η∗ : (X,∆, X∨,∆∨) −→ (X ′,∆′, (X ′)∨, (∆′)∨)

of based root data. We remark that often p-morphism has a more restricted meaning.
We will denote by Ψ(η) : Ψ(G) → Ψ(G′) the p-morphism η∗ determined by a normal
homomorphism η : G → G′. We say that a p-morphism is separable if q(α) = 1

for all α ∈ ∆1. Note that the notion of separable p-morphisms does not depend on
p, so we will also call them simply morphisms of based root data. We have that a
normal homomorphism is separable if and only if Ψ(η) is separable. We say that a
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p-morphism η∗ is surjective if ∆′
1 = ∆′, and η∗ is injective, and we call η∗ a p-isogeny

if furthermore ∆1 = ∆ and im η∗ has finite index in X. In [Spr79], p-isogenies are
called p-morphisms and the notion of p-morphism given here is not named.

By [Spr79, §2.9, §2.10(ii)], the map η 7→ Ψ(η) is a bijection from the set of G′
ad(k)-

conjugacy classes of isogenies η : G → G′ to the set of p-isogenies Ψ(G) → Ψ(G′),
and the separable p-isogenies correspond to G′

ad(k)-conjugacy classes of separable
(or equivalently central) isogenies. More generally, Steinberg proved that the map
η 7→ Ψ(η) is a bijection from the set of G′

ad(k)-conjugacy classes of surjective homo-
morphisms η : G → G′ to the set of surjective p-morphisms η∗ : Ψ(G) → Ψ(G′) [Ste99,
§5]. By using almost direct product decompositions, it follows that the map η 7→ Ψ(η)

is a bijection from the set of G′
ad(k)-conjugacy classes—or as we shall simply, equiv-

alence classes—of normal homomorphisms η : G → G′ to the set of p-morphisms
Ψ(G) → Ψ(G′). We obtain a functor Ψ : Splk → BRDp from the category Splk of split
connected reductive groups over k and normal homomorphisms to the category BRDp

of based root data and p-morphisms. It restricts to a functor Ψ : Splsep
k → BRD, where

in the domain we restrict to separable normal homomorphisms and in the codomain
we restrict to (separable) morphisms of based root data. These functors are essen-
tially surjective by the Existence Theorem. We use a subscript “Out” to indicate
that we identify equivalent morphisms. For example, we write Splk,Out and Splsep

k,Out

to indicate the categories obtained by identifying equivalence classes of normal ho-
momorphisms. We have an equivalence of categories Ψ : Splk,Out → BRDp, which
restricts to an equivalence of categories Ψ : Splsep

k,Out → BRDp.

The general case

We now treat arbitrary connected reductive groups over k. Let ks be a separable
closure of k and let Γk = Γks/k. If G is any connected reductive group over k, we can
apply the above to the split connected reductive group Gks . Let (B, T ) be a Borel
pair of Gks . For each σ ∈ Γk, we have an isomorphism σ : X∗(T ) → X∗(σG(T ))

defined by χσ = σGm ◦ χ ◦ σ−1
G . This defines an isomorphism

σ : Ψ(Gks , B, T ) −→ Ψ(Gks , σG(B), σG(T )),

and thus an automorphism σ ∈ Aut(Ψ(Gks)). This defines a continuous right action
of Γk on Ψ(Gks), that is a homomorphism Γk → Aut(Ψ(Gks))

op, which is continuous
with respect to the discrete topology on Aut(Ψ(Gks))

op. (If k′/k is a finite Galois
subextension of ks/k that splits G, then the open subgroup Γks/k′ of Γk acts trivially
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on Ψ(Gks).) We prefer to work with the corresponding continuous left action Γk →
Aut(Ψ(Gks)). We write Ψ(G) as a shorthand for Ψ(Gks) together with the continuous
left action of Γk. If G′ is another connected reductive group over k, we have Ψ(G) ∼=
Ψ(G′) if and only if G and G′ are inner forms of each other.

If η : G → G′ is a normal homomorphism, then Ψ(η) : Ψ(Gks) → Ψ(G′
ks
) inter-

twines the actions of Γk. Thus, Ψ is a functor from the category Redk (resp. Redsep
k ) of

connected reductive groups over k and normal homomorphisms (resp. separable nor-
mal homomorphisms) to the category BRDk,p (resp. BRDk) of based root data with
continuous left actions of Γk and Γk-equivariant p-morphisms (resp. morphisms of
based root data). The functor Ψ identifies equivalent normal homomorphisms and is
exact. We thus have exact functors Ψ : Redk,Out → BRDk,p and Ψ : Redsep

k,Out → BRDk,
however these are typically not equivalences. We will show that these functors admit
natural sections.

Let QSplk (resp. QSplsep
k ) denote the category of quasisplit connected reduc-

tive groups over k and (resp. separable) normal homomorphisms. Let QSplk,Out

(resp. QSplsep
k,Out) denote the categories obtained by identifying equivalent morphisms.

Let Pink (resp. Pinsep
k ) denote the category of pinned connected reductive groups

(G,B, T, {Xα}α) over k and (resp. separable) normal homomorphisms

(G,B, T, {Xα}) → (G′, B′, T ′, {X ′
α′}α′).

The forgetful functors Pink → QSplk,Out (resp. Pinsep
k → QSplsep

k,Out) are equivalences
and so are their compositions with QSplk,Out → BRDk,p (resp. QSplsep

k,Out → BRDk).
In summary, we have following commutative diagram

QSplsep
k Redsep

k

Pinsep
k BRDk

QSplsep
k,Out Redsep

k,Out

∼

∼

and this commutative diagram extends to the commutative diagram obtained by
removing all occurrences of “sep” and replacing BRDk with BRDk,p. We call the
inverse functor of Ψ : QSplsep

k,Out → BRDk, which is unique up to isomorphism, the
realisation functor Re : BRDk → QSplsep

k,Out.
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The relative root datum, and parabolic and Levi subgroups

Let G be a connected reductive group over k. We will recall the relative root datum
Ψk(G) of G and some basic facts about parabolic subgroups and Levi subgroups in
relation to the Ψk(G) and Ψ(G). Since we assumed that based root data are reduced,
we will use the term “relative based root datum” to mean a not necessarily reduced
based root datum.

Let (P0,M0) be a minimal parabolic pair of G. Let A0 be the split component
of the centre of M0, which is a maximal split torus of G. Then M0 = CG(A0). Let
N0 denote the unipotent radical of P0. We denote the relative based root datum of
(G,P0,M0) by

Ψk(G,P0,M0) = (X∗(A0),Φk(G,A0),∆k(P0, A0), X∗(A0),Φ
∨
k (G,A0),∆

∨
k (P0, A0)).

The set of positive roots determined by P0 is the set of relative roots of (P0, A0) or
equivalently (N0, A0), which we denote by Φk(P0, A0) = Φk(N0, A0).

Let (P ′
0,M

′
0) be another minimal parabolic pair and define A′

0 and N ′
0 as above.

There exists g ∈ G(k) such that g · (P0,M0) = (P ′
0,M

′
0) and M ′

0(k)g is unique. It
follows that we have a canonical isomorphism Int(g) : A0 → A′

0, and the canonical
isomorphism Int(g)∗ : X∗(A′

0) → X∗(A0) is an isomorphism of relative based root
data Ψk(G,P0,M0) → Ψk(G,P ′

0,M
′
0). We define the relative based root datum of G

to be the limit Ψk(G) = lim(P0,M0) Ψk(G,P0,M0) with respect to the above canonical
isomorphisms. We write

Ψk(G) = (Xk,G,Φk,G,∆k,G, X
∨
k,G,Φ

∨
k,G,∆

∨
k,G)

and omit “G” if it is clear from context. We also write Xk(G) = Xk,G, if it is
preferable.

Note that when G is split, we have Ψ(G) = Ψk(G). In general, the relative
based root datum of G is related to the based root datum Ψ(G) of G by a canonical
surjective homomorphism X → Xk. Fix a minimal parabolic pair (P0,M0) of G and
a Borel pair (B, T ) of Gks with P0,k)s ⊇ B and M0,ks ⊇ T , which we abbreviate
as (P0,M0) ⊇ (B, T ). Then T ⊇ A0,ks , restriction of characters defines a surjective
homomorphism X∗(T ) → X∗(A0), and this determines a surjective homohomorphsim
X → Xk. To see that this homomorphism is canonical, suppose that we replace
(P0,M0) ⊇ (B, T ) by a different choice (P ′

0,M
′
0) ⊇ (B′, T ′). There exists g ∈ G(ks)

such that g · (P0,ks ,M0,ks , B, T ) = (P ′
0,ks

,M ′
0,ks

, B′, T ′), and T (ks)g is unique. Thus
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the isomorphism Int(g)∗ : X∗(T ′) → X∗(T ) is one of the canonical isomorphisms
used to define Ψ(G). Let g0 ∈ G(k) such that g0 · (P0,M0) = (P ′

0,M
′
0). Then g0 ·

(P0,ks ,M0,ks) = (P ′
0,ks

,M ′
0,ks

). It follows that M0(ks)g = M0(ks)g0, so the isomorphism
Int(g)∗ : X∗(A′

0) → X∗(A0) is one of the canonical isomorphisms used to define
Ψk(G). Since the diagram

X∗(T ′) X∗(T )

X∗(A′
0) X∗(A0)

Int(g)∗

Int(g)∗

it follows that the homomorphism X → Xk is canonical.
Define ∆0 = ∆ ∩ ker(X → Xk) and Φ0 = Φ ∩ ker(X → Xk). The sets ∆0 and

Φ0 are Γk stable, and thus so are ∆ \∆0 and Φ \ Φ0. The homomorphism X → Xk

restricts to a surjective maps ∆ \∆0 → ∆k and Φ \Φ0 → Φk, and the fibres of these
maps are the Γk-orbits.

We recall that a subset S of a root system Φ is said to be closed if α+ β ∈ S for
all α, β ∈ S with α + β ∈ Φ; symmetric if S = −S; a subsystem if S is closed and
symmetric; parabolic if S is closed and S ∪ (−S) = Φ. If S ⊆ Φ is a parabolic subset,
then S∩(−S) is a subsystem and we call it its associated Levi subsystem. For a subset
S ⊆ Φ we will write Φ+

S = Φ∩Z≥0S, Φ−
S = Φ∩Z≤0S, and ΦS = Φ∩ZS. By Proposition

20 and Corollary 6 of [Bou02, Ch. VI, §1, no. 7], a subset S ⊆ Φ is parabolic if and
only if there exists a base ∆ ⊆ Φ and a subset I ⊆ ∆ such that S = Φ+

∆ ∪Φ−
I , and in

this case I is a a base of the Levi subsystem S∩(−S) = ΦI = Φ+
I ∪Φ−

I . Let ∆ ⊆ Φ be
a fixed base. For each I ⊆ ∆, we have a parabolic subset Φ+

∆ ∪Φ−
I and its associated

Levi subsystem is ΦI = Φ+
I ∪Φ−

I and has I as a base. We call these parabolic subsets
and Levi subsystems standard (with respect to ∆).

Fix a minimal Levi subgroup M0 of G. For each semistandard parabolic (resp.
Levi) subgroup of G its set of relative roots with respect to A0 is a parabolic subset
(resp. Levi subsystem) of Φk(G,A0). Moreover, the map P 7→ Φk(P,A0) (resp.
M 7→ Φk(M,A0)) from the set of semistandard parabolic (resp. Levi) subgroups of
G to the set of parabolic subsets (resp. Levi subsystems) of Φ(G,A0) is a bijection.
A semistandard parabolic subgroup P (resp. Levi subgroup M) is recovered as the
subgroup of G generated by M0 and the relative root subgroups Uk,α for α ∈ Φ(P,A0)

(resp. α ∈ Φ(M,A0)). If N is the unipotent radical of a semistandard parabolic
subgroup P , then Φ(N,A0) = Φ(P,A0) \ Φ(M,A0) and N is the subgroup of G

generated by Uk,α for α ∈ Φ(N,A0). The split component AM of the centre of a
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semistandard Levi subgroup M is the reduced identity component of
⋂

α∈Φ(M,A0)
kerα.

If we fix a minimal parabolic pair (P0,M0), then the standard parabolic (resp. Levi)
subgroups of G correspond to the standard parabolic subsets (resp. Levi subsystems)
of Φk(G,A0) with respect to the base ∆k(P0, A0).

Let (P,M) be a parabolic pair of G. Choose a minimal parabolic pair (P0,M0) ⊆
(P,M) of G. Then (M ∩ P0,M0) is a minimal parabolic pair of M . We have iso-
morphisms Ψk(G) ∼= Ψk(G,P0,M0) and Ψk(M) ∼= Ψk(M,M ∩ P0,M0). Moreover,
the (co)roots and simple (co)roots of Ψk(M,M ∩ P0,M0) are subsets of those of
Ψk(G,P0,M0). Let

Ψk(G)(P,M) = (Xk(G),Φk(G)(P,M),∆k(G)(P,M), X
∨
k (G),Φ∨

k (G)(P,M),∆
∨
k (G)(P,M))

be the relative based root datum obtained from Ψk(M,M ∩ P0,M0) and the isomor-
phism Ψk(G) ∼= Ψk(G,P0,M0) by transport of structure. By construction, we have
isomorphisms

Ψk(M) ∼= Ψk(M,M ∩ P0,M0) ∼= Ψk(G)(P,M).

Moreover, Ψk(G,M)(P,M) and the composite isomorphism Ψk(M) ∼= Ψk(G)(P,M) does
not depend on the choice of (P0,M0) ⊆ (P,M). Indeed, suppose that (P ′

0,M
′
0) ⊆

(P,M) is another choice of minimal parabolic pair. It suffices to show that there
exists m ∈ M(k) with m · (P0,M0) = (P ′

0,M
′
0). There exists p ∈ P (k) such that

p · (P0,M0) = (P ′
0,M

′
0). Then M and p ·M are both Levi factors of P containing the

minimal Levi M ′
0. Since there is a unique such Levi factor we have p ·M = M , and

thus p ∈ M(k). The isomorphism Ψ(M) → Ψ(G)(P,M) determines an isomorphism
of their relative Weyl groups Wk(M) → Wk(G)(P,M) ⊆ W (G). The isomorphism is
compatible with the bijection Φk(M) → Φk(G)(P,M) and Wk(G)(P,M) is the subgroup
of W (G) generated by the reflections corresponding to roots in Φk(G)(P,M). Suppose
that (P,M) and (P ′,M ′) are conjugate parabolic pairs of G and let g ∈ G(k) such that
g ·(P,M) = (P ′,M ′). Then M ′(k)g is uniquely determined, and thus the isomorphism
Int(g)∗ : Ψk(M) → Ψk(M

′) is canonical. It relates the isomorphisms Ψk(M) →
Ψk(G)(P,M) and Ψk(M

′) → Ψ(G)(P ′,M ′).
For each I ⊆ ∆k(G), we have a corresponding standard Levi subsystem Φk(G)I

of Φk(G), and a relative based root datum

Ψk(G)I = (Xk(G),Φk(G)I , I,X
∨
k (G),Φ∨

k (G)I∨ , I
∨).

Fix a minimal parabolic pair (P0,M0) of G. For each standard parabolic P of G with
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standard Levi factor MP , write Ψk(G)P = Ψk(G)(P,MP ) and let ∆k(G)P be its set of
simple roots. The map P 7→ ∆k(G)P from the set of standard parabolic subgroups
of G (with respect to P0) to the set of subsets of ∆k(G) is a bijection.

We can apply the above considerations to Gks and Ψ(G) = Ψks(Gks). Let (P,M)

be a parabolic pair of G. We will write

Ψ(G)(P,M) = (X(G),∆(G)(P,M), X
∨(G),∆∨(G)(P,M))

for Ψks(Gks)Pks ,Mks
. The isomorphisms Ψ(M) → Ψ(G)(P,M) and Ψk(M) → Ψk(G)(P,M)

are compatible with respect to X(G) → Xk(G). It follows that Ψ(G)(P,M) inherits a
continuous action of Γk from Ψ(G) and that the isomorphism Ψk(M) → Ψk(G)(P,M)

is Γk-equivariant. The Levi subsystems of Φ(G) that arise from Levi subgroups M of
G are those that are Γk-stable and contain Φ0(G). It follows that G is quasisplit if
and only if Φ0(G) = ∅, or equivalently ∆0(G) = ∅.

Let (P,M) be a parabolic pair of G. The isomorphism Ψ(M) → Ψ(G)(P,M) gives
Γk-equivariant isomorphism of their Weyl groups W (M) → W (G)(P,M) ⊆ W (G). We
have W (M)Γk ∼= Wk(M) and W (G)Γk

(P,M)
∼= Wk(G)(P,M), and the restricted isomor-

phism W (M)Γk → W (G)Γk

(P,M) coincides with the isomorphism Wk(M) → Wk(G)(P,M)

above.

4.2.2 Dual groups

Let C be a field. Let G be a split connected reductive group over C. We define
an L-action to be a continuous left action Γk → Aut(G) that preserves a pinning.
Let Splsep

C,Γk
denote the category whose objects are split connected reductive groups

G over C with a continuous actions Γk → Aut(G) and whose morphisms are Γk-
equivariant separable normal homomorphisms. Let Splsep

C,L denote the full subcategory
of objects whose continuous action of Γk is an L-action. We have a functor Ψ :

Splsep
C,Γk

→ BRDk. (If the characteristic of C is equal to the characteristic of k, this
extends to a functor from the category SplC,Γk

obtained from Splsep
C,Γk

by dropping
the separability requirement on morphisms to the cateogry BRDk,p, and there are
evident generalisations of what follows.) We define the equivalence class of a Γk-
equivariant homomorphism G → G′ to be its G′

ad(C)Γk-conjugacy class. The above
functor identifies equivalent Γk-equivariant separable normal homomorphisms. Thus,
we have a functor Ψ : Splsep

C,Γk,Out → BRDk, where Splsep
C,Γk,Out is obtained from Splsep

C,Γk

by identifying equivalent morphisms.
We remark that if C is algebraically closed and G is a connected reductive group



4.2. L-GROUPS 73

over C with an L-action of Γk, then the canonical homomorphism GΓk → GΓk
ad is

surjective and the pinnings of G that are Γk-stable are all GΓk-conjugate by [Kot84,
§1.6, §1.7].

The restricted functor Ψ : Splsep
C,L → BRDk is an equivalence. Indeed, let PinSplsep

C,Γk

whose objects are pinned split connected reductive groups (G,B, T, {Xα}α) over C

with a continuous action Γk → Aut(G,B, T, {Xα}α) and whose morphisms are Γk-
equivariant separable normal homomorphisms. The forgetful functor PinSplsep

C,Γk
→

Splsep
C,L,Out is an equivalence and so is its composition with Ψ : Splsep

C,L,Out → BRDk. We
have the following commutative diagram of functors

Splsep
C,L Splsep

C,Γk

PinSplsep
C,Γk

BRDk

Splsep
C,L,Out Splsep

C,Γk,Out

∼

∼

We call the inverse functor of Ψ : Splsep
C,L,Out → BRDk, which is unique up to isomor-

phism, the realisation functor Re : BRDk → Splsep
C,L,Out.

There is a natural duality operation on based root data: (X,∆, X∨,∆∨) 7→
(X∨,∆∨, X,∆). It defines a contravariant equivalence from BRDp (resp. BRD) to
itself. The duality functor further determines contravariant equivalences from BRDk,p

(resp. BRDk) to itself. Applying the duality functor to Ψ(G), we obtain Ψ(G)∨ and
a continuous homomorphism Γk → Aut(Ψ(Gks)

∨). We write Ψ(G)∨ as a shorthand
for Ψ(Gks)

∨ together with the continuous left action of Γk. The composite

Redsep
k,Out BRDk BRDk Splsep

C,L,Out
Ψ (·)∨ Re

is an exact contravariant functor called the Langlands dual group functor. We denote
it on objects by G 7→ G∨ and on morphisms by η 7→ η∨. Note that G∨ comes with an
L-action ρG : Γk → Aut(G∨) and a Γk-equivariant isomorphism ηG : Ψ(G)∨ → Ψ(G∨).
The L-action ρG is trivial if G is split and G∨ = (G∨, ρG, ηG) only depends on the
inner class of G. Note that the dual group functor has a natural section

Splsep
C,L,Out BRDk BRDk QSplsep

k,Out
Ψ (·)∨ Re

There is a canonical Γk-equivariant isomorphism X∗(Gks) → X∗(Z(G
∨)◦) defined
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as follows. The isomorphism ηG : Ψ(G)∨ → Ψ(G∨) gives us a Γk-equivariant iso-
morphism X(G) ∼= X∨(G∨) and a compatible isomorphism W (G) ∼= W (G∨). Fixing
Borel pairs (B, T ) and (B0, T 0) for G and G∨, respectively, we obtain a Γk-equivariant
isomorphism X∗(T )W (Gks ,T ) ∼= X∗(T 0)W (G∨,T 0), where the action of Γk on the left is
inherited from the action of Γk on X(G). We have Z(G∨)◦ = ((T 0)W (G∨,T 0))◦, and
thus X∗(T 0)W (G∨,T 0) = X∗(Z(G

∨)◦). Moreover, restriction gives us an isomorphism
X∗(Gks) → X∗(T )W (Gks ,T ). (See [SZ18, §4.1.1] or [KS13, Lemma 13].) Thus, we
obtain an isomorphism X∗(Gks)

∼= X∗(Z(G
∨)◦) and this is seen to not depend on the

choices of Borel pairs (B, T ) and (B0, T 0). The isomorphism X∗(Gks)
∼= X∗(Z(G

∨)◦)

is Γk-equivariant for the action of Γk on X∗(Gks) obtained by transporting the action
of Γk on X(G), and this is the same as the usual Γk-action on X∗(Gks). By passing
to Γk-invariants and using X∗(Z(G

∨)◦)Γk = X∗(Z(G
∨)Γk,◦), we obtain an isomorphism

X∗(G) −→ X∗(Z(G
∨)Γk,◦),

which we write as θ 7→ θ∨.

Duality and Levi subgroups

Suppose that (P0,M0) is a Γk-stable parabolic pair of G∨. Then Ψ(G∨)(P0,M0) inherits
a continuous Γk-action from Ψ(G∨), and Ψ(G∨)(P0,M0) is the relative based root datum
associated to the Γk-stable subset ∆k(G

∨)(P0,M0) of ∆k(G
∨). Conversely, suppose

that I ⊆ ∆k(G
∨) is Γk stable, then the relative based root datum Ψ(G∨)I inherits a

continuous Γk-action from Ψ(G∨). Moreover, there exists a Γk-stable parabolic pair
(P0,M0) of G∨ such that Ψ(G∨)I = Ψ(G∨)(P0,M0). For example, let (B0, T 0) be a
Γk-stable Borel pair of G∨ and let (P0,M0) be the standard parabolic pair of G∨

coresponding to I. Since P0 (resp. M0) is generated by T 0 and the root subgroups
of G∨ attached to the roots in Φ(G∨)+ ∪ I (resp. I), and since this is Γk-stable, it
follows that P0 (resp. M0) is Γk-stable.

Now, let (P,M) be a parabolic pair of G. The isomorphism ηG : Ψ(G)∨ → Ψ(G∨)

and the based root datum Ψ(G)(P,M) determines a based root datum Ψ(G∨)(P,M)

that inherits a continuous Γk-action from Ψ(G∨) and a Γk-equivariant isomorphism
ηG : Ψ(G)∨(P,M) → Ψ(G∨)(P,M). Let (P0,M0) be a Γk-stable parabolic pair of G∨

such that Ψ(G∨)(P,M) = Ψ(G∨)(P0,M0). We say that M0 is a Γk-stable G-relevant
Levi subgroup of G∨. The Γk-stable G-relevant Levi subgroups of G∨ are precisely
the Γk-stable Levi subgroups M0 of G∨ such that for some, and hence any, Γk-stable
parabolic subgroup P0 with Levi factor M0 the set Φ(G∨)(P0,M0) contains the set of
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roots corresponding to Φ(G)∨0 under ηG. More generally, we say that a Levi subgroup
of G∨ is G-relevant if it is conjugate to a Γk-stable G-relevant Leci subgroup. Note
that if M0 is a G-relevant Levi subgroup of G∨ and L0 is a Levi subgroup of G∨

with containing M0, then L is G-relevant. We have a Γk-equivariant isomorphism
fP,P0 : Ψ(M∨) → Ψ(M0) defined to be the composite of

Ψ(M∨) Ψ(M)∨ Ψ(G)∨(P,M) Ψ(G∨)(P0,M0) Ψ(M0).
η−1
M ηG

Let fP,P0 : M∨ → M0 denote the corresponding equivalence class of Γk-equivariant
isomorphisms.

Suppose that (Pi,Mi), (P0
i ,M0

i ) for i = 1, 2 are parabolic pairs as above. Let

WG(L1, L2) = {g ∈ G(k) : g · L1 = L2}/L1(k)

and
WG(M0

1,M0
2) = {g ∈ G∨(C) : g · M0

1 = M0
2}/M0

1(C).

There is a unique bijection WG(M1,M2) → WG(M0
1,M0

2) compatible with the iso-
morphisms fPi,P0

i
. A proof of this is given in [Var, Lemma 2.4.8]. It follows from

the proof, which makes use of the argument in the proof of [Bor79, §6.2], that the
elements of W (M0

1,M0
2) have Γk-fixed representatives.

It follows from this and the bijection WG(M1,M2) → WG(M0
1,M0

2) that M1 and
M2 are G(k)-conjugate if and only if M0

1 and M0
2 are G∨(C)Γk-conjugate.

Consequently, for each equivalence class of Γk-equivariant isomorphisms fP,P0 :

M∨→ M0, composing with the Γk-equivariant embedding M0 → G∨ gives an equiv-
alence class ιGM : M∨→ G∨ of Γk-equivariant embeddings that does not depend on P

or P0, and identifies M∨ with a Γk-stable G-relevant Levi subgroup of G∨. The map
M 7→ ιGM(M) defines a bijection between the set of G(F )-conjugacy classes of Levi
subgroups of G and G∨(C)Γk-conjugacy classes of Γk-stable G-relevant Levi subgroups
of G∨. If L ⊆ M are Levi subgroups of G, then ιGM ◦ ιML = ιGL . (See [Var, Proposition
2.4.15].)

4.2.3 L-groups and λ-groups

Now, we assume that k = F is a local or global field of arbitrary characteristic. From
now on, we take C = C in any discussion of Langlands dual groups. We define the
L-group of G to be LG = G∨oWF , where WF acts by the composition of WF → ΓF
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and ρG : ΓF → Aut(G∨). The L-group LG is a locally compact group. Note that
L1 = WF .

Given a surjective homomorphism G → WF , we will write G0 = ker(G → WF ).
Note that we have used a superscript “0” instead of a superscript “◦”, which we use
to denote identity components.

Let G be a second countable locally compact group together with a continuous
surjective homomorphism G → WF . By the open mapping theorem, the continuous
surjective homomorphism G → WF is open. Suppose that the kernel G0 = ker(G →
WF ) is the group of C-points of a connected reductive group G0 over C and that
for all g ∈ G the automorphism Int(g)|G0 : G0 → G0 is algebraic. The resulting
homomorphism G → Aut(Ψ(G0)) then factors through WF . Suppose that it further
factors through WF/WK = ΓK/F for some finite Galois subextension K/F of Fs/F ,
and thus extends to a continuous homomorphism ΓF → Aut(Ψ(G0)) along WF → ΓF .
We then say that G → WF , or just G, is a λ-group. We say that a λ-group is
global or local according to whether F is global or local. We denote the preimage of
W 1

F = ker(WF → ΓF ) in G by G1.
An element g ∈ G is said to be semisimple if Int(g)|G0 is a semisimple auto-

morphism of G0 (after embedding G0 in a general linear group it can be realised as
conjugation by a semisimple element). If g ∈ G0, then g is semisimple as an element
of G if and only if it is semisimple as an element of G0. If G and G ′ are λ groups,
an isomorphism of topological groups G → G ′ over WF maps semisimple elements to
semisimple elements.

Note that an L-group LG = G∨o WF of a connected reductive group G over F

together with the projection LG → WF is a λ-group. The semisimple elements of LG

are those of the form (g, w), where g is a semisimple element of G∨.
Suppose that G is a global λ-group. For each place v of F , choose an embedding

F v → F over F . This determines a continuous injective homomorphism ΓFv → ΓF

whose ΓF -conjugacy class does not depend on the choice of F v → F . There exists
a continuous injective homomorphism WFv → WF such that the following diagram
commutes

WFv ΓFv

WF ΓF

and the W 1
F -conjugacy class of WFv → WF does not depend on the choice of F v → F .

(See [Tat79] for more details.) Let Gv → WFv be the pullback of G → WF along
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WFv → WF . It provides us with a commutative diagram of second countable locally
compact groups

1 G0
v Gv WFv 1

1 G0 G WF 1

where G0
v → G0 is an isomorphism of topological groups and Gv → G is a continuous

injection. We have that Gv is a λ-group and the G1-conjugacy class of Gv → G does
not depend on the choice of F v → F .

If H,G are global λ-groups, a continuous homomorphism of ξ : H → G over WF

pulls back to a continuous homomorphism ξv : Hv → Gv over WFv , that is, making
the diagram

Hv Gv

H G

ξv

ξ

commute, and the G0
v -conjugacy class of ξv only depends on the G0-conjugacy class

of ξ.
Let H,G be two λ-groups. A continuous homomorphism ξ : H → G over WF is

said to be an L-homomorphism if its restriction ξ0 : H0 → G0 is algebraic and it is
locally semisimple, which means the following: if F is local, then ξ maps semisimple
elements to semisimple elements, and if F is global, then all localisations ξv of ξ map
semisimple elements to semisimple elements. Two L-homomorphisms ξ, ξ′ : H → G
are said to be equivalent if there exists g ∈ G0 such that ξ′ = Int(g) ◦ ξ. We define
a morphism of λ-groups to be an equivalence class of L-homomorphisms and denote
the category of λ-groups by λGp. We call an L-homomorphism ξ : H → G an L-
embedding if it is a topological embedding, in which case ξ(H) is a closed subgroup
of G and ξ0 : H0 → G0 is a closed embedding of algebraic groups. We will often switch
between thinking of ξ as an equivalence class and a single L-homomorphism

For a separable normal homomorphism η : G → G′, we have an equivalence class of
L-homomorphisms Lη = η∨o idWF

: LG′ → LG and this gives an exact contravariant
functor Redsep

F,Out → λGp from the category Redsep
F,Out whose objects are connected

reductive groups over F and whose morphisms are equivalence classes (codomain
conjugacy classes) separable normal homomorphisms. We denote its essential image
by LGp and call it the category of L-groups. A λ-group G lies in LGp if and only if



4.2. L-GROUPS 78

there is a splitting c : WF → G (i.e. continuous homomorphic section of G → WF )
such that the action ρc : WF → Aut(G0) defined by ρc(w) = Int(c(w))|G0 preserves a
pinning, in which case ρc factors through ΓK/F if WF → Aut(Ψ(G0)) does.

Suppose that H is a closed subgroup of LG that surjects onto WF and H0 =

ker(H → WF ) is connected reductive group. Then the homomorphism WF →
Aut(H∨) factors through WF/WK = ΓK/F for some finite Galois subextension K/F

of Fs/F , and thus H is a λ-group and the inclusion H → LG is an L-embedding. (See
p. 24 of [KS99] where a similar fact is proved for the subgroups H that appear in
endoscopy. The key idea is the introduction of a subgroup U ⊆ H as in the proof of
[KS99, Lemma 2.2.A].)

Every L-homomorphism ξ : LH → LG can be written in the form ξ(h,w) =

(ξ0(h)aξ(w), w), where ξ0 : H∨ → G∨ is a morphism of algebraic groups and aξ ∈
Z1

c (WF , G
∨). The cohomology class aξ ∈ H1

c (WF , G
∨) only depends on the equivalence

class of ξ. One says that ξ is tempered (or bounded, or of unitary type) if the image
of aξ in G∨ is bounded, that is, has compact closure. We will use the notation aξ and
ξ0 without comment. Sometimes we write ξ0 for ξ0.

Parabolic and Levi subgroups of L-groups

A parabolic subgroup LG is defined to be a closed subgroup P that maps onto WF

such that P0 is a parabolic subgroup of G∨. (Recall that P0 = ker(P → WF ) as
defined above.) We have P = NLG(P0). The unipotent radical NP of P is defined to
be the unipotent radical NP0 of P0. It is a normal subgroup of P . A Levi factor of
P is defined to be a closed subgroup M of LG such that M maps onto WF and M0

is a Levi factor of P0. We have M = NP(M0) and P = MnNP . A Levi subgroup
of LG is a defined to be a Levi factor of a parabolic subgroup of LG, that is, a closed
subgroup M of LG such that M maps onto WF and M0 is a Levi subgroup of G∨.
We say that a Levi subgroup M of LG is G-relevant if M0 is G-relevant. Note that if
M is a G-relevant Levi subgroup of LG and if L is a Levi subgroup of LG containing
M, then L is G-relevant.

If S0 ⊆ G∨ is a torus such that CLG(S0) maps onto WF , then CLG(S0) is a Levi
subgroup of LG. Moreover, each Levi subgroup M of LG is obtained in this way since
M = CLG(Z(M0)ΓF ,◦). (See [SZ18, §5.4].)

If P is a parabolic subgroup of LG and P0 is ΓF -stable, then P = P0 o WF .
Conversely, if P0 is a ΓF -stable parabolic subgroup of G∨, then P0oWF is a parabolic
subgroup of LG. Suppose that P0 is ΓF -stable parabolic subgroup of G∨, and let
P = P0oWF . If M is a Levi factor of P and M0 is ΓF -stable, then M = M0oWF .
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Conversely, if M0 is a ΓF -stable Levi factor of P0, then MoWF is a Levi factor of
P .

Fix a ΓF -stable Borel pair (B0, T 0) of G∨. We refer to parabolic and Levi subgroups
of LG containing T 0 oWF as semistandard, and we refer to a parabolic subgroups of
LG containing B0 oWF as standard. The semistandard parabolic (resp. Levi) sub-
groups of LG are those of the form P0oWF (resp. M0oWF ), where P0 (resp. M0) is
a ΓF -stable semistandard parabolic (resp. Levi) subgroup of G∨. Every semistandard
parabolic subgroup P0 o WF of LG has a unique semistandard Levi factor, namely
M0 oWF , where M0 is the unique semistandard Levi factor of P0. We refer to the
semistandard Levi factor of a standard parabolic subgroup of LG as standard. Every
parabolic subgroup of LG is G∨-conjugate to a unique standard parabolic subgroup
of LG, and every Levi subgroup of LG is G∨-conjugate to a standard Levi subgroup
of LG.

Recall that for each Levi subgroup M of G, we have a canonical equivalence
class of ΓF -equivariant embeddings ιGM : M∨→ G∨, identifying M∨ with a ΓF -stable
Levi subgroup M0 of G∨. Consequently, we have a canonical equivalence class of L-
embeddings ιGM : LM → LG, identifying LM with a G-relevant Levi subgroup of LG.
The map M 7→ ιGM(LM) defines a bijection between the set of G(F )-conjugacy classes
of Levi subgroups of G and the G∨-conjugacy classes of relevant Levi subgroups of
LG. If L ⊆ M are Levi subgroups of G, then ιGM ◦ ιML = ιGL .

Let H be a subgroup of LG that maps onto WF . By [Bor79, Proposition 3.6] the
Levi subgroups MH of LG that contain H minimally are all conjugate by CG∨(H). We
say that H is G-relevant if H is only contained in G-relevant Levi subgroups of LG,
or equivalently if MH is G-relevant. We say that H is elliptic if it is not contained in
a proper Levi subgroup of LG. If H is a λ-group, an L-homomorphism ξ : H → LG

is said to be G-relevant (resp. elliptic) if its image is G-relevant (resp. elliptic), and
we write Mξ = Mξ(H).

4.3 L-parameters
We return to assuming that F is a local field of characteristic zero. Let LF denote
the local Langlands group, which is defined by

LF =

L1 = WF if F is archimedean,
LPGL2 = SL2(C)×WF if F is non-archimedean.
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We write the homomorphism LF → WF as l 7→ w(l). For an L-homomorphism
φ : LF → L(G), we write φ(l) = (aϕ(l), w(l)). We denote by Φ̃(G) the set of G-
relevant L-homomorphisms φ : LF → LG. An L-parameter of G is a G∨-conjugacy
class in Φ̃(G), and we denote the set of L-parameters of G by Φ(G). We denote the
set of tempered or bounded elements of Φ̃(G) by Φ̃temp(G), and we denote its image
in Φ(G) by Φtemp(G). We call the elements of Φtemp(G) tempered L-parameters.
Furthermore, we define Φ̃2(G) to be the subset of all elliptic elements of Φ̃temp(G),
and we denote its image in Φtemp(G) by Φ2(G). We call the elements of Φ2(G) discrete
L-parameters.

4.3.1 Central and cocentral characters, and the Langlands
pairing

In order to formulate various properties of the local Langlands correspondence we need
two constructions originally due to Langlands [Lan89]. A more intrinsic approach is
given by Kaletha in [Kal15] using the cohomology of crossed modules. The first is
the central character map

H1
c (WF , G

∨) −→ Π(ZG(F )).

The classes H1
c,bdd(WF , G

∨) represented by bounded 1-cocycles map into the group
Πu(ZG(F )) of unitary central characters. We have a map Φ(G) → H1

c (WF , G
∨) defined

by φ 7→ aϕ, and this restricts to a map Φ(G) → H1
c,bdd(WF , G

∨). Thus, we have a
central character map Φ(temp)(G) → Π(u)(ZG(F )), which we write as φ 7→ ζϕ. For a
central datum (Z, ζ) of G(F ), we can thus define Φ(G, ζ) = {φ ∈ Φ(G) : χϕ|Z = ζ}.
We define Φtemp(G, ζ) = Φtemp(G) ∩ Φ(G, ζ) and Φ2(G, ζ) = Φ2(G) ∩ Φ(G, ζ), which
are empty unless ζ is unitary.

The second construction is a the cocentral character homomorphism

H1
c (WF , Z(G

∨)) −→ Homc(G(F ),C×)

a 7−→ χa

The corresponding pairing H1
c (WF , Z(G

∨)) × G(F ) → C× is called the Langlands
pairing. (See also [KS99, §5.1], Appendix A by Labesse and Lapid in [LM15].) Let
Z(G∨)1 denote the maximal compact subgroup of Z(G∨). The above homomorphism
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restricts to a homomorphism

H1
c (WF , Z(G

∨)1) −→ Homc(G(F ),C1)

and thus we have the corresponding pairing H1
c (WF , Z(G

∨)1) × G(F ) → C1. Fol-
lowing [KP23], we write G(F )♮ = im(Gsc(F ) → G(F )), where Gsc → Gder is the
simply connected cover of the derived group of G. The construction in [Kal15]
makes it clear that the map H1

c (WF , Z(G
∨)) → Homc(G(F ),C×) factors the group

Homc(G(F )/G(F )♮,C×) of cocentral characters of G(F ). This explains the terminol-
ogy.

The cocentral character homomorphism and its unitary restriction are isomor-
phisms if G is quasisplit, in particular if G is a torus. The homomorphism is injective
if F is non-archimedean. It is surjective if Gsc(F ) is perfect, or equivalently if F is
archimedean or Gsc does not contain a simple factor of the form ResE/F (SL1(D)) for
a finite-dimensional non-commutative division algebra D over a finite separable (this
works over positive characteristic) extension E of F . (See Appendix A by Labesse
and Lapid in [LM15].)

4.3.2 The local Langlands correspondence for tori

Suppose that G = T is a torus. Then we have a bijection Φ(T ) ∼= H1
c (WF , T

∨)

defined by φ 7→ aϕ, and we transport the group structure from H1
c (WF , T

∨) to Φ(T )

so that this bijection becomes a group isomorphism. It restricts to a isomorphism
Φtemp(T ) = H1

c (WF , (T
∨)1), where (T∨)1 is the maximal compact subgroup of T∨.

Furthermore, we have Π(T ) = Homc(T (F ),C×) and Πtemp(T ) = Homc(T (F ),C1).
The cocentral character homomorphism in this case thus gives us an isomorphism
recT : Φ(T ) → Π(T ), which restricts to an isomorphism recT : Φtemp(T ) → Πtemp(T ).
It is called the local Langlands correspondence or local reciprocity map for tori and
was first constructed in [Lan97]. (See [Bor79, §9] for an overview and [Lab85] for a
slightly different approach.)

4.3.3 Unramified characters

Consider the subgroup

H1
c (WF , Z(G

∨)ΓF ,◦) = Homc(WF , Z(G
∨)ΓF ,◦)
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of H1
c (WF , Z(G

∨)). The unramified elements of this group are by definition those that
are trivial on W 1

F = ker(| · | : WF → R>0), that is, the elements of

H1
c (WF/W

1
F , Z(G

∨)ΓF ,◦) = Homc(WF/W
1
F , Z(G

∨)ΓF ,◦).

We call the homomorphism

H1
c (WF/W

1
F , Z(G

∨)ΓF ,◦) −→ H1
c (WF , Z(G

∨)) −→ Homc(G(F ),C×)

the unramified cocentral character homomorphism. We will show that its image is
the group Xnr(G) of unramified characters of G by relating it to the isomorphism
a∗G,C/a

∨
G,F → Xnr(G), λ 7→ | · |λG.

Recall that there is a surjective homomorphism a∗G,C → Xnr(G), λ 7→ | · |λG, where
|g|λG = e⟨λ,HG(g)⟩. Further, recall the canonical isomorphism

X∗(G) −→ X∗(Z(G
∨)ΓF ,◦)

θ 7−→ θ∨

which we defined above. This induces an isomorphism

a∗G,C = X∗(G)⊗Z C X∗(Z(G
∨)ΓF ,◦)⊗Z C = Lie(Z(G∨)ΓF ,◦),∼

which we write as λ 7→ λ∨. Here, we have used that for any complex torus T we have
identifications

X∗(T )⊗Z C× T

X∗(T )⊗Z C Lie(T )

∼

∼

id⊗exp exp

For λ ∈ a∗G,C, we define ‖ · ‖λ∨ ∈ H1
c (WF/W

1
F , Z(G

∨)ΓF ,◦) by

‖w‖λ∨
= exp((log ‖w‖)λ∨)

for all w ∈ WF . This determines a homomorphism

a∗G,C −→ H1
c (WF/W

1
F , Z(G

∨)ΓF ,◦).
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For λ ∈ a∗G,C, let aλ be the image of ‖ · ‖λ∨ in H1
c (WF , Z(G

∨)). We have

χaλ = | · |λG.

(See the discussion below 4.7 in [SZ18].) It follows that the unramified cocentral
character homomorphism maps into Xnr(G) and the following diagram commutes

a∗G,C

H1
c (WF/W

1
F , Z(G

∨)ΓF ,◦) Xnr(G)

As a consequence, one obtains that the bottom homomorphism is surjective.
Suppose that F is archimedean. We have WF/W

1
F = R>0, and therefore the homo-

morphism λ 7→ ‖ · ‖λ∨ can be viewed as an isomorphism a∗G,C → Lie(Z(G∨)ΓF ,◦). The
homomorphism a∗G,C → Xnr(G) is also an isomorphism. Consequently the unramified
cocentral character homomorphism

Lie(Z(G∨)ΓF ,◦) = H1
c (WF/W

1
F , Z(G

∨)ΓF ,◦) −→ Xnr(G)

is an isomorphism. Moreover, the homomorphism

H1
c (WF/W

1
F , Z(G

∨)ΓF ,◦) → H1
c (WF/W

1
F , Z(G

∨))

is easily seen to be injective, so the homomorphism λ 7→ aλ is injective.
Suppose that F is non-archimedean. We have W 1

F = IF and WF/W
1
F = 〈Fr〉 and

the norm ‖·‖ : WF/W
1
F → qZF is defined by ‖Fr‖ = qF . The homomorphism λ 7→ ‖·‖λ∨

can be viewed as a surjective homomorphism a∗G,C → Z(G∨)ΓF ,◦, which descends to
an isomorphism a∗G,C/

2πi
log qF

X∗(G) → Z(G∨)ΓF ,◦. The homomorphism a∗G,C → Xnr(G)

has kernel a∨G,F , and the kernel of the unramified cocentral character homomorphism

Z(G∨)ΓF ,◦ = H1
c (WF/IF , Z(G

∨)ΓF ,◦) −→ Xnr(G)

is the finite subgroup of H1
c (WF/IF , Z(G

∨)ΓF ,◦) isomorphic to a∨G,F/
2πi

log qF
X∗(G). As

in [Hai14, §3.3], we can describe the image of λ 7→ aλ using Kottwitz homomorphism
for G.

The Kottwitz homomorphism was introduced in [Kot97]. See [KP23, Ch. 11] for a
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detailed exposition. The Kottwitz homomorphism for G is a surjective homomorphism

κG : G(F ) (X∗(Z(G∨))IF )
Fr = (X∗((Z(G∨)IF )Fr).

We define G(F )1 = kerκG ⊆ G(F )1. The open subgroup G(F )1 of G(F ) is the
subgroup of G(F ) generated by its parahoric subgroups. A (continuous) character of
G(F ) is said to be weakly unramified if it is trivial on G(F )1. We denote the group of
weakly unramified characters of G(F ) by Xwnr(G) = Hom(G(F )/G(F )1,C×). Since
Kottwitz homomorphism is functorial and trivial on simply connected groups [KP23,
Proof of Prop. 11.5.4], it follows that G(F )♮ ⊆ G(F )1. Therefore weakly unramified
characters are cocentral. By definition we have an isomorphism

κG : G(F )/G(F )1 (X∗((Z(G∨)IF )Fr).
∼

Consequently, we obtain an isomorphism

(Z(G∨)IF )Fr Hom((X∗((Z(G∨)IF )Fr),C×) Xwnr(G).∼ κ∗
G

We also have the following homomorphism obtained from inflation homomorphism
and the cocentral character homomorphism

(Z(G∨)IF )Fr = H1
c (WF/IF , Z(G

∨)IF ) H1
c (WF , Z(G

∨)) Homc(G(F ),C×).

Thus, we have two methods parametrising cocentral characters of G(F ) by (Z(G∨)IF )Fr,
one from the Kottwitz homomorphism and one from Langlands’s cocentral character
homomorphism. As explained in [Hai14, §3.3.1], it follows from [Kal15, Prop. 4.5.2]
these two methods are the same.

The Kottwitz homomorphism induces an isomorphism

κG : G(F )/G(F )1 X∗((Z(G∨)IF )Fr)/Tor = X∗((Z(G∨)IF )◦Fr),
∼

where Tor denotes the torsion subgroup and (Z(G∨)IF )◦Fr := ((Z(G∨)IF )Fr)
◦. Therefore

we obtain an isomorphism

(Z(G∨)IF )◦Fr Hom(X∗((Z(G∨)IF )◦Fr),C×) Xnr(G).∼ κ∗
G

giving a description of Xnr(G). By the compatibility of the cocentral character homo-
morphism with the Kottwitz homomorphism above, we obtain that this isomorphism
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coincides with the homomorphism

(Z(G∨)IF )◦Fr = H1
c (WF/IF , (Z(G

∨)IF )◦Fr) H1
c (WF , Z(G

∨)) Homc(G(F ),C×)

obtained from inflation and the cocentral character homomorphism. This is also
proved [Var, Lemma 2.5.8]. Consequently, we have the following factorisation of the
unramified cocentral character homomorphism

a∗G,C

Z(G∨)ΓF ,◦ = H1
c (WF/IF , Z(G

∨)Γ,◦) Xnr(G)

(Z(G∨)IF )◦Fr = H1
c (WF/IF , (Z(G

∨)IF )◦Fr) Hom(X∗(Z(G∨)IF )◦Fr),C×)∼

κ∗
G

Composing the arrows on the left with the natural injection

(Z(G∨)IF )◦Fr = H1
c (WF/IF , (Z(G

∨)IF )◦Fr) (Z(G∨)IF )Fr = H1
c (WF/IF , Z(G

∨)IF )

and the inflation homomorphism

(Z(G∨)IF )Fr = H1
c (WF/IF , Z(G

∨)IF ) H1
c (WF , Z(G

∨)).

gives the homomorphism aG,C∗ → H1
c (WF , Z(G

∨)), λ 7→ aλ. As a consequence, we
obtain that the homomorphism λ 7→ aλ has image (Z(G∨)IF )◦Fr ↪→ H1

c (WF , Z(G
∨))

and kernel a∨G,F , which will be important in what follows.

4.3.4 Twists

Let a ∈ Z1
c (WF , Z(G

∨)) and φ ∈ Φ̃(G). Recall that we write φ(l) = (aϕ(l), w(l)). We
define a · φ ∈ Φ̃(G) by (a · φ)(l) = (a(w(l))aϕ(l), w(l)). This gives an action of the
group Z1

c (WF , Z(G
∨)) on the pointed set Φ̃(G), and the action of Z1

c (WF , Z(G
∨)1)

preserves Φ̃2(G) and Φ̃temp(G). This action descends to a well-defined action of the
group H1

c (WF , Z(G
∨)) on the pointed set Φ(G), and the action of H1

c (WF , Z(G
∨)1)

preserves Φ2(G) and Φtemp(G).
Pulling back along homomorphism a∗G,C/a

∨
G,F → H1

c (WF , Z(G
∨)), λ 7→ aλ, we

obtain an action of a∗G,C/a
∨
G,F on Φ(G), and the action of ia∗G/a∨G,F preserves Φ2(G)
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and Φtemp(G). We define

Φtemp(G)C = a∗G,C · Φtemp(G) , Φ2(G)C = a∗G,C · Φ2(G).

The set Φ2(G)C is precisely the set of elements of Φ(G) that are elliptic but not nec-
essarily tempered. We call the elements of Φ2(G)C essentially discrete L-parameters
and the elements of Φtemp(G)C essentially tempered L-parameters. We caution the
reader that sometimes in the literature Φ2(G)C and Φ2(G) are denoted by Φ2,temp(G)

and Φ2,temp(G), respectively.

4.3.5 Infinitesimal characters and L-parameters of real groups

Assume that G is a real group. Let φ ∈ Φ(G). As explained in [Lan89], one can attach
an infinitesimal character µϕ ∈ HomC−alg(Z(gC),C) of G to φ as follows. Choose a
Borel pair (B, T ) of GC and a ΓR-stable Borel pair (B0, T 0) of G∨. We choose a rep-
resentative of φ such that φ(C×) ⊆ T 0. There exists µ, ν ∈ X∗(T 0) ⊗Z C = Lie(T 0)

with µ− ν ∈ X∗(T 0) such that φ(z) = zµzν for all z ∈ C×. The W (G∨, T 0)-orbit of µ
does not depend on the choice of representative of φ. The Borel pairs and the isomor-
phism ηG : Ψ(G)∨ → Ψ(G∨) give us an isomorphism X∗(T 0) ∼= X∗(T ) and a compat-
ible isomorphism W (G∨, T 0) ∼= W (GC, T ). Using the identification t∗ = Lie(T )∗ with
X∗(T )⊗ZC, we obtain an isomorphism Lie(T 0)/W (G∨, T 0) ∼= t∗/W (GC, T ). Thus, we
obtain an element µϕ ∈ t∗/W (GC, T ). Recall that the Harish-Chandra isomorphism
Z(gC) ∼= Sym(t)W (GC,T ) gives an isomorphism HomC−alg(Z(gC),C) ∼= t∗/W (GC, T ).
Thus, we have an infinitesimal character µϕ of G. It does not depend on any of the
choices made.

4.3.6 Classification of L-parameters

For each M ∈ LG(M0), the conjugacy class of L-homomorphisms LM → LG gives
rise to a map

Φ2(M)C → Φ(G),

which restricts to a map
Φ2(M) → Φtemp(G).

These are both quotients for the natural actions of WG(M). We have a decomposition

Φ(G) =
∐

M∈LG(M0)/WG
0

Φ2(M)C/W
G(M)
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(cf. [Var, Lemma 2.10.6, Corollary 2.10.7]) and this restricts to a decomposition

Φtemp(G) =
∐

M∈LG(M0)/WG
0

Φ2(M)/WG(M).

(cf. the proof of [Var, Theorem 2.10.10]). This latter decomposition is an analogue
for tempered L-parameters of the Harish-Chandra classification of irreducible tem-
pered representations. The first decomposition is analogous to the classification of
irreducible admissible representations obtained by combining the Langlands classifi-
cation with the Harish-Chandra classification.

Implicit in [Lan89] is a classification of Φ(G) that is analogous to the Langlands
classification of Π(G). This was elaborated on and given an explicit formulation and
detailed proof in [SZ18]. We define a Langlands datum for L-parameters to be a triple
((P,M), φ, λ), where (P,M) is a parabolic pair, σ ∈ Πtemp(M), and λ ∈ (a∗M)P,+. To
each Langlands datum ((P,M), φ, λ), we may assign an L-parameter ιGM(φλ) ∈ Φ(G)

and the Langlands classification for L-parameters asserts that this gives a bijection
between the set of G(F )-conjugates of Langlands data and Φ(G). See [SZ18] for more
details and a description of the inverse of this bijection.

4.4 The local Langlands correspondence
The local Langlands correspondence for G, which is still hypothetical for p-adic groups
in general, is a natural surjective “local reciprocity” map

recG : Π(G) −→ Φ(G)

with finite fibres. The fibre of recG above an L-parameter φ ∈ Φ(G) is called the
L-packet of φ and denoted by Πϕ. The local reciprocity map recG is natural in the
sense that it satisfies several desiderata, which say that recG is compatible with vari-
ous structures. Among these, is the assertion that recG is a a natural transformation
of functors from the underlying groupoid of Redsep

k,Out to Set. The following is a partial
list of desiderata.

Desiderata.

1. Compatibility with central characters: for each π ∈ Π(G), we have ζπ = ζϕπ .

2. Compatibility with by cocentral twists: for each π ∈ Π(G) and a ∈ H1(WF , Z(G
∨)),
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we have φπ⊗χa = a · φπ. In particular, we have compatibility with unramified
twists: for each π ∈ Π(G) and λ ∈ a∗G,C, we have φπλ

= (φπ)λ.

3. Compatibility with temperedness and discreteness: for π ∈ Π(G), we have π ∈
Πtemp(G) (resp. π ∈ Π2(G)) if and only if φπ ∈ Φtemp(G) (resp. φπ ∈ Φ2(G)).

4. Naturality: if η : G → H is a separable normal homomorphism with abelian
kernel and cokernel and if π ∈ Π(H), then the irreducible constituents of the
restriction π ◦ η, which is a direct sum of finitely many irreducible admissible
representations of G(F ), all belong to ΠLη◦ϕ. In particular, if η : G → H is an
isomorphism, then the following diagram commutes:

Π(H) Π(G)

Φ(H) Φ(G)

Π(η)

recH recG
Φ(η)

where Π(η) = η∗ and Φ(η) = (Lη)∗.

5. Compatibility with Weil restriction: If K/F is a finite subextension of Fs/F ,
G′ is a connected reductive group over K, and G = ResK/F G′, then we have a
commutative diagram

Π(G′) Π(G)

Φ(G′) Φ(G)

∼

recG′ recG

∼

where the upper horizontal arrow is the isomorphism coming from the identi-
fication G(F ) = G′(K) and the lower horizontal arrow is a canonical bijection
coming from Shapiro’s lemma. See [Bor79, §4, §5, §8.4] for more details.

6. Compatibility with the Langlands classification: if ((P,M), φ, λ) is a Langlands
triple, then ΠιGM (ϕ) is the set of Langlands quotients J((P,M), σ, λ) ∈ Π(G), for
σ ∈ Πϕ.

7. Compatibility with the Harish-Chandra classification: if M is a Levi subgroup
of G and φ ∈ Φ2(M), then ΠιGM (ϕ) is the set of irreducible subrepresentations of
the various parabolically induced representations IGM(σ) for σ ∈ Πϕ.

8. Stable tempered characters: for each φ ∈ Φtemp(G), there exists a stable virtual
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tempered representation
πϕ =

∑
π∈Πϕ

cϕ,ππ

with cϕ,π ∈ Z>0 for all π ∈ Πϕ, such that the following properties hold:

(a) Compatibility with parabolic induction: If M is a Levi subgroup of G and
φ ∈ Φtemp(M), then IGM(πϕ) = πιGM (ϕ)

(b) The set {πϕ : φ ∈ Φtemp(G)} is a basis of the space Dst
temp(G) of stable

tempered virtual representations of G. Consequently, the set {πϕ : φ ∈
Φ2(G)} is a basis of the space Dst

ell(G).

The character Θϕ = Θπϕ
of πϕ is a stable tempered distribution called the

stable tempered character of φ, and called a stable discrete series character if
φ ∈ Φ2(G). Note that the stable tempered virtual representations are linearly
independent. We will often identify φ = πϕ = Θϕ.

9. Compatibility with infinitesimal characters in the case F = R: for each π ∈
Π(G), we have µπ = µϕπ .

It follows from desideratum 5 that the local Langlands correspondence for groups
over arbitrary fields is determined by and can be constructed from the local Lang-
lands correspondence for groups over F = R or F = Qp for a prime p. It fol-
lows from the Langlands classification of admissible representations and the paral-
lel Langlands classification of L-parameters, that a local Langlands correspondence
recG : Π(G) → Φ(G) satisfying the above desiderata is determined by its restricted
tempered local Langlands correspondence recG : Πtemp(G) → Φtemp(G). Furthermore,
it follows from what we have called the Harish-Chandra classification of tempered rep-
resentations and the parallel Harish-Chandra classification of tempered L-parameters
that a local Langlands correspondence satisfying the above desiderata is determined
by its restricted discrete local Langlands correspondence recG : Π2(G) → Φ2(G). Con-
versely, given a discrete local reciprocity map recG : Π2(G) → Φ2(G) satisfying the
above desiderata in the forms that make sense, one can construct a local reciprocity
map recG : Π(G) → Φ(G) satisfying the above desiderata. (See [Bor79, §11.7], [KT,
§6.1.2], [Var, p. 2.10] for more on this.)

Note that Πϕ can be recovered from Θϕ since the characters of irreducible admissi-
ble representations are linearly dependent. Thus the local Langlands correspondence
is determined by the stable discrete series characters and can be constructed by
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defining stable discrete series characters in such a way that the associated discrete
reciprocity map satisfies the above desiderata.

For real groups, and thus for complex groups by restriction of scalars, Langlands
constructed the local Langlands correspondence in this way. Suppose that G is a
connected reductive group over R and φ ∈ Φ2(G). Langlands showed that G has an
elliptic maximal torus T . Moreover, a choice of a Borel subgroup B of GC containing
T determines an L-embedding LT → LG through which φ factors as a tempered
L-parameter of φT ∈ Φtemp(T ). The unitary character of θϕ of T (R) corresponding
to φT under the local Langlands correspondence for tori is dominant with respect to
B and its orbit under the absolute Weyl group W (G, T ) does not depend on B. In
Harish-Chandra’s papers on discrete series, he defined a stable tempered distribution
Θθϕ that is uniquely determined by its formula on the set T (R)′ of regular elements
in T (R):

Θθϕ(t) = (−1)q(G)
∑

w∈W (G,T )

θϕ(w
−1 · t)∏

α>B0(1− α(w−1 · t)−1)
,

where q(G) = 1/2 dim(G(R)/K) for any maximal compact subgroup K of G(R)
and α >B 0 indicates that α is a positive root with respect to the positive system
determined by B. Harish-Chandra showed that Θθϕ is the sum of Θπ for all π ∈ Π2(G)

with ζπ = θϕ|ZG(R) and µπ = dθϕ. Note that we have ζϕ = θϕ|ZG(R) and µϕ = dθϕ.
Langlands constructed the local Langlands correspondence for G by requiring that
Θϕ = Θθϕ . Consequently, we have that Πϕ consists of all π ∈ Π2(G) with infinitesimal
character µπ = µϕ and central character ζπ = ζϕ, and we have Θϕ =

∑
π∈Πϕ

Θπ.
In fact, in [AV16] Adams and Vogan prove that Πϕ consists of all π ∈ Π2(G) with
infinitesimal character µπ = µϕ and what they call “split radical character” ζπ|AG(R) =

ζϕ|AG(R). For φ ∈ Φ2(G), the cardinality of Πϕ is bounded by |W (G, T )/WR(G, T )|,
where T is an elliptic torus of G. For φ ∈ Φtemp(G), we also have πϕ =

∑
π∈Πϕ

π.
This follows as in the proof of [She79, Lemma 3.1] using [Kna76, Theorem] and
[SV80, Theorem 2.9]. Desideratum 8.(b) is a corollary of [ABV92, Lemma 18.11],
which follows from the proof of [She79, Lemma 5.2].

For non-archimedean groups, it is expected that stable discrete series characters
Θϕ can be constructed directly in terms of φ, as was the case for real groups. This
would then give rise to characterisation of the local Langlands correspondence and a
characterisation of it. (See [Kal; Kal23] for further discussion.)

We will make use of the following hypothesis on the local Langlands correspon-
dence for non-archimedean groups.

Hypothesis 4.4.1. Let G be a connected reductive group over a non-archimedean local
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field F . The group G and its Levi subgroups have local reciprocity maps satisfying the
following subset of the above desiderata: 1, 2 in the special case of unramified twists,
3, 4 in the special case when η is of the form Int(g) : M → g ·M for g ∈ G(F ) and
M a Levi subgroup of G, 6, 7, and 8.

We remark that by [Var, §2.7.7], we have that for non-archimedean groups the
first sentence of Desideratum 8 follows from the second sentence of Desideratum 8 in
Hypothesis 4.4.1.

Hypothesis 4.4.1 is known for tori. The local reciprocity map is the cocentral char-
acter isomorphism given by the Langlands pairing and the stable tempered character
of a tempered L-parameter can be taken to simply be the corresponding character.

In the case G = GLn, Hypothesis 4.4.1 was proved by Harris and Taylor, Henniart,
and Scholze [HT01; Hen00; Sch13]. The L-packets are singletons and the stable
tempered characters are simply the irreducible tempered characters.

If G is an inner form of a quasisplit symplectic, odd special orthogonal, unitary, or
odd general spin group, then Hypothesis 4.4.1 is satisfied. (See [Var, Theorem 7.3.3].)
This follows from the works of Arthur, Mok, and Moeglin [Art13; Mok15; Mœg14],
which use the theory of twisted endoscopy and the local Langlands correspondence
for GLn.

From now on, if F is non-archimedean we assume we assume Hypothesis 4.4.1 for
all connected reductive groups over F .

4.4.1 Infinitesimal characters for p-adic groups

Suppose that F is archimedean. An infinitesimal character (also called an infinitesimal
parameter) of G is defined to be a G∨-conjugacy class of L-homomorphisms µ : WF →
LG. This notion originates in [Vog93]. Another useful reference is [Cun+22]. Every L-
parameter φ : LF = SL2(C)×WF → LG of G has an associated infinitesimal character
µϕ : WF → LG defined by µϕ(w) = φ(dw, w), where dw = diag(‖w‖1/2, ‖w‖−1/2). Each
φ ∈ Φtemp(G) can be recovered from its infinitesimal character µϕ [Var, Lemma 2.9.5].
In general, there are at most finitely many elements of Φ(G) with a given infinitesimal
character [Vog93, Corollary 4.6].

For each π ∈ Π(G), we define its infinitesimal character µπ by µπ = µϕπ . It follows
from the finiteness of L-packets that for each infinitesimal character µ of G, there are
finitely many π ∈ Π(G) with µπ = µ.

Let M be a Levi subgroup of G. If µ is an infinitesimal characters of M , then
ιGM ◦ µ is an infinitesimal characters of G. Moreover, if µ1 and µ2 are infinitesimal
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characters of M , then ιGM ◦ µ1 = ιGM ◦ µ2 if and only if µ1 and µ2 are in the same
WG(M)-orbit.

For each τ = (M,σ, r̃) ∈ Ttemp(G), we define its infinitesimal character to beµτ =

ιGM ◦ µσ. Note that µτ only depends on the image of τ in Ttemp(G)/C1. There are at
most finitely many elements in Ttemp(G)/C1 with a given infinitesimal character.

We have an action of a∗G,C/a
∨
G,F on the set of infinitesimal characters by (λ, µ) 7→

aλ ·µ. The assignment of infinitesimal characters to elements of Π(G) (resp. Ttemp(G))
is equivariant with respect to the actions of ia∗G (resp. a∗G,C).

4.5 The stable Fourier transform

For f ∈ C(G, ζ), we define its stable Fourier transform to be the function fG :

Φtemp(G, ζ) → C defined by fG(φ) = Θϕ(f).
We define the space of stable Fourier transforms

Ŝ(c)(G, ζ) = {fG : f ∈ C(c)(G, ζ)}.

We have

Ŝ(c)(G, ζ) = C(c)(G, ζ)/AnnC(c)(G,ζ)({Θϕ : φ ∈ Φtemp(G, ζ)})

and we give it the natural quotient topology. The stable Fourier transform is a
continuous surjective linear map F st : C(c)(G, ζ) → Ŝ(c)(G, ζ).

The following lemma is an immediate consequence of the Harish-Chandra regu-
larity theorem and the stable Weyl integration formula

Lemma 4.5.1. If f ∈ Cunst
c (G, ζ), then fG(φ) = 0 for all φ ∈ Φ(G, ζ). Consequently,

Θϕ ∈ Sc(G, ζ)′ for all φ ∈ Φ(G, ζ). (Here ζ does not need to be unitary.)
If f ∈ Cunst(G, ζ), then fG(φ) = 0 for all φ ∈ Φtemp(G, ζ). Consequently, Θϕ ∈

S(G, ζ)′ for all φ ∈ Φtemp(G, ζ).

It follows that the stable Fourier transform F st : C(c)(G, ζ) → Ŝ(c)(G, ζ) descends
to a continuous surjective linear map

F st : S(c)(G, ζ) −→ Ŝ(c)(G, ζ).

We call the property of injectivity of this map stable spectral density for S(c)(G, ζ).
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Stable spectral density for S(c)(G, ζ) is equivalent to

Cunst
(c) (G, ζ) = AnnC(c)(G,ζ)({Θϕ : φ ∈ Φtemp(G, ζ)}).

It follows from stable spectral density for C(c)(G, ζ) that a distribution in C(c)(G, ζ)′

is stable if and only if it lies in the weak-∗ closure the linear span of {Θϕ}ϕ∈Φtemp(G,ζ).
For archimedean F , stable spectral density for C(G, ζ) was proved by Shelstad in

[She79, Lemma 5.3] for Z = 1 and in [She08, Theorem 4.1] for Z = Z(F ), where Z

is a central torus of G. For non-archimedean F , stable spectral density for Cc(G, ζ)

was proved by Arthur in [Art96] when Z = Z(F ) for Z a central induced torus of G.
The proof uses a global argument and is generalised in [MW16b, p. XI.5.2] in the case
Z = 1. In particular, we have stable spectral density for Cc(G) and C∞

c,cusp(G, ζ,K)

and we will use these below to prove the stable Paley–Wiener theorems below. Stable
spectral density for C(G) in the non-archimedean case does not appear to be in the
literature. It is established below (Theorem 4.6.16) in the course of the proof of the
stable Paley–Wiener theorem for C(G).

4.6 Stable Paley–Wiener theorems
In this section, we will give various stable Paley–Wiener theorems, the main ones
being for the stable Fourier transforms on the spaces S(c)(G) and Sf (G).

4.6.1 The space of L-parameters

Recall that we have an action of a∗G,C on Φ(G), and that the action of ia∗G preserves
Φtemp(G) and Φ2(G). We denote the isotropy subgroup of φ ∈ Φ(G, ζ) in a∗G,C by
a∨G,τ . Just as was the case for a∨G,τ , we have

a∨G,F ⊆ a∨G,ϕ ⊆ ã∨G,F

Thus, if F is archimedean we have a∨G,ϕ = 0, and if F is non-archimedean we have
that a∨G,ϕ is a full lattice in ia∗G. Consequently, Φ2(G) is naturally a smooth manifold
with countably many components ia∗G ·φ = ia∗G/a

∨
G,ϕ, which are Euclidean spaces if F

is archimedean and compact tori if F is non-archimedean. Moreover, Φ2(G)C is the
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complexification of Φ2(G) with connected components a∗G,C · φ = a∗G,C/a
∨
G,ϕ. Since

Φtemp(G) =
∐

L∈LG(M0)/WG
0

Φ2(L)/W
G(L),

we have that Φtemp(G), and similarly Φ(G) is naturally a topological space. We say
that a function on Φtemp(G) is smooth if pulls back to a smooth function on each
Φ2(L).

4.6.2 The stable Paley–Wiener theorems

We define ‖φ‖ = ‖µϕ‖ in the archimedean case. Note that for any countable set E ⊆
Φ2(L), we have Paley–Wiener and Schwartz spaces defined on the space Λ =

⋃
ϕ∈E Λϕ

with Λϕ = ia∗L/a
∨
L,ϕ.

We define S st
ell(L) to be the space of smooth functions ϕ : Φ2(L) such that for some

(and hence any) set of representatives Bst
ell(L) ⊆ Φ2(L) for the connected components

of Φ2(L), we have

ϕ ∈ S

( ∐
ϕ∈Bst

ell(G)

ia∗L/a
∨
L,ϕ

)
.

We define PW st
ell(L) (resp. PW st

ell,f (L)) in the same way as S st
ell(L), except that we

replace S (·) by PW (·) (resp. PWf (·)).
We define

S st(G) =

( ⊕
L∈LG(M0)

S st
ell(L)

)WG
0

=
⊕

L∈LG(M0)/WG
0

S st
ell(L)

WG(L)

and similarly we define PW st(G) and PW st
f (G). These are naturally spaces of smooth

functions on Φtemp(G). The aim of this section is to prove the following stable Paley–
Wiener theorems.

Theorem 4.6.1. The stable Fourier transform is an isomorphism of topological vector
spaces

S(G) −→ S st(G)

and restricts to isomorphisms of topological vector spaces

Sc(G) −→ PW st(G)
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and
Sf (G) −→ PW st

f (G).

Example 4.6.2. We describe the above spaces explicitly in the case when G = SL2

and F = R. Let T be the maximal anisotropic torus of SL2 with T (R) consisting of
elements of the form

t(θ) =

(
cos θ − sin θ

sin θ cos θ

)
.

Let S be the subgroup of diagonal elements of SL2, a split maximal torus. For a ∈ R×,
we write s(x) = diag(x, x−1) ∈ S(R). The set {S, SL2} is a set of representatives for
the conjugacy classes of Levi subgroups of G. The Weyl group WG

0 = WG(S) is of
order two, with the non-trivial element acting by s(x−1) 7→ s(x−1).

The space Φ2(G) = {φn}∞n=1 is countable and discrete, with φn denoting the L-
parameter of the whose L-packet consists of the discrete series representations Θ±n,
whose characters are given on the regular elements of T (R) by the formula

Θ±n(t(θ)) = − ±e±inθ

eiθ − e−iθ
.

The stable discrete series character of φn is

Θϕn(t(θ)) = −einθ − e−inθ

eiθ − e−iθ
.

We identify Φ2(G) = Z≥1 via φn 7→ n. We have

S st
ell(G) = PW st

ell(G) = S (Z≥1),

the space of rapidly decreasing functions ϕ : Z≥1 → C. Furthermore,

PW st
ell,f (G) = Cc(Z≥1),

the space of finitely supported functions ϕ : Z≥1 → C.
By the local Langlands correspondence for S, we may identify Φ2(S) with Πu(S),

the set of unitary characters of S(R). The unitary unramified characters of S(R) are
those of the form s(x) 7→ |x|iλ for λ ∈ R. A general unitary character of S(R) can be
written as

χm,λ(s(x)) = sgn(x)m|x|iλ,

for unique m ∈ {0, 1} and λ ∈ R. The non-trivial element of WG(S) acts Πu(S) by
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χm,λ 7→ χm,−λ. We identify Φ2(S) = {0, 1}×R = R
∐

R via χm,λ 7→ (m,λ). We have
Φ2(S)/W

G
0 = R/{±1}

∐
R/{±1} = R≥0

∐
R≥0. We have

S st
ell(S) = S (R)⊕ S (R)

and
S st

ell(S)
WG(S) = S (R){±1} ⊕ S (R){±1}.

Similarly, we have

PW st
ell(S) = PW st

ell,f (S) = PW (R)⊕ PW (R)

and
PW st

ell(S)
WG(S) = PW st

ell,f (S)
WG(S) = PW (R){±1} ⊕ PW (R){±1}.

Finally, we have

S st(G) = S (Z≥1)⊕ S (R){±1} ⊕ S (R){±1},

PW st(G) = S (Z≥1)⊕ PW (R){±1} ⊕ PW (R){±1},

PW st
f (G) = Cc(Z≥1)⊕ PW (R){±1} ⊕ PW (R){±1}.

Arthur proved the stable Paley–Wiener theorem for test functions on a quasisplit
group as a consequence of his more general result [Art96, Theorem 6.1] on collective
endoscopic transfer (see the discussion below the statement of Theorem 6.2 in [Art96]).
Moeglin–Waldspurger proved the stable Paley–Wiener theorem for test functions on
a quasisplit real group. In fact, they work in the more general setting of twisted
spaces (also called twisted groups). Generalising Arthur’s proof to Schwartz functions
would require generalising several results that we do not need. Instead, we follow the
argument of Moeglin–Waldspurger to prove the above theorem. Since we work with
groups (and not general twisted groups), there are some simplifications. We also
consider groups that are not quasisplit.

4.6.3 Stable and unstable elliptic tempered characters

Recall that the stable tempered characters are linearly independent and that we iden-
tify tempered L-parameters φ ∈ Φtemp(G, ζ) with their associated virtual tempered
representations πϕ =

∑
π∈Πϕ

cϕ(π)π and with their stable tempered distribution char-
acters Θϕ =

∑
π∈Πϕ

cϕ(π)Θπ.
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By our hypothesis, we have Dst
temp(G, ζ) = CΦtemp(G, ζ) and Dst

ell(G, ζ) = CΦ2(G, ζ).
We define the space Dunst

ell (G, ζ) to be the subspace of Dell(G, ζ) consisting of all ele-
ments orthogonal to Dst

ell(G, ζ) with respect to the elliptic inner product.

Lemma 4.6.3. We have Dell(G, ζ) = Dst
ell(G, ζ)⊕Dunst

ell (G, ζ).

Let us set some notation and terminology. Let V be an inner product space (not
necessarily complete) and let W be a subspace of V . We say that W has an orthogonal
complement in V if there exists a subspace X of V such that X is orthogonal to W

and V = W ⊕X, in which case X is

W⊥ = AnnV (W ) = {v ∈ V : (W, v) = 0}

the largest subspace of V orthogonal to W . If V is complete and W is closed (in
particular, if V is finite-dimensional), then W has an orthogonal complement in V .

Proof. We have Dst
ell(G, ζ) = CΦ2(G, ζ) =

⊕
ϕ∈Φ2(G,ζ) Cφ. For each φ ∈ Φ2(G, ζ), the

space Cφ has an orthogonal complement in the finite-dimensional space CΠϕ. Since

CΠ2(G, ζ) =
⊕

ϕ∈Φ2(G,ζ)

CΠϕ.

it follows that Dst
ell(G, ζ) has an orthogonal complement in CΠ2(G, ζ), namely

AnnCΠ2(G,ζ)(D
st
ell(G, ζ)) =

⊕
ϕ∈Φ2(G,ζ)

AnnCΠϕ
(Cφ).

Since
Dell(G, ζ) = CΠ2(G, ζ)⊕ C(Tell(G, ζ) \ C1Π2(G, ζ))

it follows that

Dunst
ell (G, ζ) = AnnCΠ2(G,ζ)(D

st
ell(G, ζ))⊕ C(Tell(G, ζ) \ C1Π2(G, ζ))

and that Dell(G, ζ) = Dst
ell(G, ζ)⊕Dunst

ell (G, ζ).

4.6.4 Stable pseudocoefficients

Let ζ be a unitary character of AG(F ). Recall the Paley–Wiener space PWell,f (G, ζ).
Fix a set of representatives Eell(G, ζ) ⊆ Tell(G, ζ) for Tell(G, ζ)/C1 such that Π2(G, ζ) ⊆
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Eell(G, ζ). Then Eell(G, ζ) is a basis for Dell(G, ζ). As explained above, we have an
identification PWell,f (G, ζ) =

⊕
τ∈Eell(G,ζ) C defined by ϕ 7→ (ϕ(τ))τ∈Eell(G,ζ).

Let Bst
ell(G, ζ) = Φ2(G, ζ), which is an orthogonal basis of Dst

ell(G, ζ) (with re-
spect to the elliptic inner product). Let Bunst

ell (G, ζ) be an orthogonal basis for
Dunst

ell (G, ζ) and define Bell(G, ζ) = Bst
ell(G, ζ) ∪ Bunst

ell (G, ζ), which is an orthogonal
basis of Dell(G, ζ). Define PW ?

ell,f (G, ζ) =
⊕

b∈B?
ell(G,ζ) C, where ? = st, unst.

We identify an element of PWell,f (G, ζ) (resp. PW ?
ell,f (G, ζ)) with the linear

functional on Dell(G, ζ) (resp. D?
ell(G, ζ)) it defines by linear extension. Thus, for

each ϕ ∈ PWell,f (G, ζ) the value ϕ(b) is defined for all b ∈ Bell(G, ζ). Explic-
itly, for each b ∈ Bell(G, ζ), let us write b =

∑
τ∈Eell(G,ζ) cb,ττ for cb,τ ∈ C. Then

ϕ(b) =
∑

τ∈Eell(G,ζ) cb,ττ . We have an isomorphism

PWell,f (G, ζ) PW st
ell,f (G, ζ)⊕ PW unst

ell,f (G, ζ)∼

defined by (ϕ(τ))τ∈Eell(G,ζ) 7→ (ϕ(b))b∈Bell(G,ζ) = ((ϕ(b))b∈Bst
ell(G,ζ), (ϕ(b))b∈Bunst

ell (G,ζ)),
that is, by change-of-basis. We identify PWell,f (G, ζ) = PW st

ell,f (G, ζ)⊕PW unst
ell,f (G, ζ)

via the above isomorphism. Note that PW unst
ell,f (G, ζ) is the subspace of functions in

PWell,f (G, ζ) that vanish on Dst
ell(G, ζ) and thus does not depend on the choice of

Bunst
ell (G, ζ).

Let Ist
f,cusp(G, ζ) be closed subspace of If,cusp(G, ζ) consisting of all functions that

are constant on strongly regular stable classes. Let Iunst
f,cusp(G, ζ) be the kernel of the

quotient
If,cusp(G, ζ) −→ Sf,cusp(G, ζ).

Note that Ist
f,cusp(G, ζ) ∩ Iunst

f,cusp(G, ζ) = 0.

Proposition 4.6.4. The invariant Fourier transform

If,cusp(G, ζ) PWell,f (G, ζ)∼

restricts to isomorphisms

I?
f,cusp(G, ζ) PW ?

ell,f (G, ζ)∼

Consequently, we have

If,cusp(G, ζ) = Ist
f,cusp(G, ζ)⊕ Iunst

f,cusp(G, ζ).

Proof. It suffices to prove that the subspace of If,cusp(G, ζ) corresponding to PW ?
ell,f (G, ζ)
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lies in I?
f,cusp(G, ζ).

Let b ∈ B?
ell(G, ζ). The inverse invariant Fourier transform of δb = (δb,b′)b′∈Bell(G,ζ) ∈

PW ?
ell,f (G, ζ) is the normalised pseudocoefficient ‖b‖−1

ell f [b]G ∈ If,cusp(G, ζ) of b. Thus,
it suffices to prove that the pseudocoefficient f [b]G lies in I?

f,cusp(G, ζ)

If b ∈ Bunst
ell (G, ζ), then f [b]G(φ) = 0 for all φ ∈ Φ2(G, ζ) = Bst

ell(G, ζ), and thus
f [b]G ∈ Iunst

f,cusp(G, ζ) by stable spectral density for C∞
c,cusp(G, ζ,K).

Suppose that b ∈ Bst
ell(G, ζ) = Φ2(G, ζ) and let us write b = φ and f [b]G = f [φ]G.

Let γ ∈ Γsr(G). If γ is non-elliptic, then f [φ]G(γ) = 0. If γ is elliptic, then

f [φ]G(γ) = m(γ)−1|DG(γ)|1/2Θϕ(γ).

We have that DG and Θϕ are constant on stable strongly regular classes. Thus, it
suffices to show that m(γ) is constant on stable strongly regular classes. By definition,
we have m(γ) = vol(Gγ(F )/AG(F )). Suppose that γ′ is stably conjugate to γ. Then
there exists g ∈ G(F ) such that Int(g) : Gγ → Gγ′ is defined over F . The Haar
measures on Gγ(F ) and Gγ′(F ) are normalised so that they correspond under Int(g),
and thus m(γ) = m(γ′).

We obtain the following stable Paley–Wiener theorem as a corollary

Corollary 4.6.5. The stable Fourier transform gives an isomorphism

Sf,cusp(G, ζ) PW st
ell,f (G, ζ).∼

Proof. The composition of the invariant Fourier transform

F : If,cusp(G, ζ) −→ PWell,f (G, ζ)

with the natural projection PWell,f (G, ζ) → PW st
ell,f (G, ζ) is the stable Fourier trans-

form. It is surjective and its kernel is Iunst
f,cusp(G, ζ) by Proposition 4.6.4, so it descends

to an isomorphism Sf,cusp(G, ζ) → PW st
ell,f (G, ζ).

4.6.5 The cuspidal case

Let ζ be a unitary character of AG(F ) and let µ be an infinitesimal character of G.
We denote by Tell(G, ζ, µ) the set of τ ∈ Tell(G, ζ) with µτ = µ. Define Dell(G, ζ, µ) =

CTell(G, ζ, µ).

Lemma 4.6.6. The quotient Tell(G, ζ, µ)/C1 is finite. If F is archimedean, then its
cardinality is bounded independently of (ζ, µ).
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Proof. If F is non-archimedean, there are finitely many elements of Ttemp(G)/C1 with
a given infinitesimal character.

Suppose that F is archimedean. We may assume that F = R. Since LG(M0)/W
G
0

is finite, it suffices to show that for each M ∈ LG(M0), the number of possibil-
ities for σ ∈ Π2(M) such that (M,σ, r̃) ∈ Tell(G, ζ, µ) is bounded independently
of (ζ, µ). There are at most |W (G, T )/W (M,T )| possibilities for µσ since it maps
to µ. Consider the restriction ζσ|AM (R)◦ of the central character of σ to AM(R)◦.
Since HM : AM(R)◦ → aM is an isomorphism, we have ζσ|AM (R)◦ = e⟨λ,HM (·)⟩ for
some λ ∈ ia∗M . Every element of WG

reg(σ) fixes ζσ|AM (R)◦ . Since WG
reg(σ) is the sub-

set of w ∈ WG
reg(σ) such that awM = aG, we have λ ∈ ia∗G. At the same time,

ζ|AG(R)◦ = ζσ|AG(R)◦ = e⟨λ,HG(·)⟩. It follows that λ and thus ζσ|AM (R)◦ is determined by
ζ. There are |AM(R)/AM(R)◦| ways that ζσ|AM (R) can extend ζσ|AM (R)◦ , so there are
|AM(R)/AM(R)◦| possibilities for ζσ|AM (R). As remarked above, in [AV16] Adams and
Vogan prove that there are finitely many discrete series representations with a fixed
infinitesimal character and split radical character and these representations form a
discrete series L-packet. (The group AM(R) is the split radical of M(R).) Since the
cardinality of discrete series L-packets of M is bounded, the lemma follows.

Fix a set of representatives X G for the set of ia∗G-orbits of unitary characters of
AG(F ). We denote the ia∗G-orbit of a pair (ζ, µ) by [ζ, µ]. Fix a set of representatives
PG for the set of orbits [ζ, µ], such that for each (ζ, µ) ∈ PG we have ζ ∈ X G.

Let Tell(G, [ζ, µ]) be the subspace of all τ ∈ Tell(G) such that (ζτ |AG(F ), µτ ) ∈ [ζ, µ].
Let a∨G,µ denote the isotropy subgroup of µ in a∗G,C. We have

a∨G,F ⊆ a∨G,µ ⊆ ã∨G,F .

Each connected component of Tell(G, [ζ, µ])/C1 has a representative in the quotient
Tell(G, ζ, µ)/C1, and two elements of Tell(G, ζ, µ)/C1 lie in the same connected compo-
nent of Tell(G, [ζ, µ])/C1 if and only if they are in the same orbit under the finite group
a∨G,µ/a

∨
G,F . Let Eell(G, ζ, µ) ⊆ Tell(G, ζ, µ) be a set of representatives for the connected

components of Tell(G, [ζ, µ])/C1, or equivalently a set of representatives for the a∨G,µ-
orbits in Tell(G, ζ, µ)/C1. Then the set of translates a∨G,µ · Eell(G, ζ, µ) ⊆ Tell(G, ζ, µ)

contains an orthogonal basis Eell(G, ζ, µ) of Dell(G, ζ, µ).
We define Φ2(G, ζ, µ) to be the set of φ ∈ Φ2(G, ζ) with µϕ = µ, and we de-

fine Φ2(G, [ζ, µ]) to be the set of all φ ∈ Φ2(G) with (ζϕ|AG(F ), µϕ) ∈ [ζ, µ]. Then
Dst

ell(G, ζ, µ) = CΦ2(G, ζ, µ). Let Dunst
ell (G, ζ, µ) be the orthogonal complement of

Dst
ell(G, ζ, µ) in Dell(G, ζ, µ) with respect to the elliptic inner product. (Recall that
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Dell(G, ζ, µ) is finite-dimensional.) Let Bst
ell(G, ζ, µ) ⊆ Φ2(G, ζ, µ) be a set of repre-

sentatives for the ia∗G-orbits in Φ2(G, [ζ, µ]), or equivalently a set of representatives
for the a∨G,µ-orbits in Φ2(G, ζ, µ). Then a∨G,µ · Bst

ell(G, ζ, µ) = Φ2(G, ζ, µ). We write
Bst

ell(G, ζ, µ) = Φ2(G, ζ, µ). The unitary representation of the finite group a∨G,µ/a
∨
G,F

on Dell(G) stabilises Dunst
ell (G, ζ, µ). Let Bunst

ell (G, ζ, µ) = Bunst
ell (G, ζ, µ) be an orthonor-

mal eigenbasis of Dunst
ell (G, ζ, µ) for this representation. Define

Bell(G, ζ, µ) = Bst
ell(G, ζ, µ) ∪ Bunst

ell (G, ζ, µ)

and
Bell(G, ζ, µ) = Bst

ell(G, ζ, µ) ∪ Bunst
ell (G, ζ, µ).

Define Eell(G) =
∐

(ζ,µ)∈PG Eell(G, ζ, µ), and define Eell(G), B?
ell(G), and B?

ell(G)

similarly. Let Bell(G) = Bst
ell(G) ∪Bunst

ell (G) and Bell(G) = Bst
ell(G) ∪ Bunst

ell (G).
In order to be able to treat the case of test functions and Schwartz functions at

the same time, we write F = C(c), IF = I(c), and SF = S(c). We also write F̂ = S

(resp. F̂ = PW ) if F = C (resp. F = Cc).
By definition, we have identifications

F̂ell(G) = F̂

( ∐
τ∈Eell(G)

ia∗G · τ

)
, F̂ st

ell(G) = F̂

( ∐
b∈Bst

ell(G)

ia∗G · b

)
.

Let F̂ell(G, [ζ, µ]) (resp. F̂ st
ell(G, [ζ, µ])) be the subspace of F̂ell(G) (resp. F̂ st

ell(G))
consisting of functions supported on Tell(G, [ζ, µ]) (resp. Φ2(G, [ζ, µ])). The above
identifications restrict to identifications

F̂ell(G, [ζ, µ]) = F̂

( ∐
τ∈Eell(G,ζ,µ)

ia∗G ·τ

)
, F̂ st

ell(G, [ζ, µ]) = F̂

( ∐
b∈Bst

ell(G,ζ,µ)

ia∗G ·b

)
.

We define

F̂ unst
ell (G) = F̂

( ∐
b∈Bunst

ell (G)

ia∗G · b

)
, F̂ unst

ell (G, [ζ, µ]) = F̂

( ∐
b∈Bunst

ell (G,ζ,µ)

ia∗G · b

)
.

We have two orthogonal bases Eell(G) and Bell(G) of
⊕

(ζ,µ)∈PG Dell(G, ζ, µ). We
define change-of-basis matrices

b =
∑

τ∈Eell(G)

cb,ττ , τ =
∑

b∈Bell(G)

cτ,bb.



4.6. STABLE PALEY–WIENER THEOREMS 102

It follows from the decompositions

Eell(G) =
∐

(ζ,µ)∈PG

Eell(G, ζ, µ) , Bell(G) =
∐

(ζ,µ)∈PG

Bell(G, ζ, µ)

into orthogonal bases of Dell(G, ζ, µ) that these change-of-basis matrices are block-
diagonal. Let ϕ = (ϕτ )τ∈Eell(G) ∈ F̂ell(G). We identify ϕ with its linear extension to
Dell(G). For τ ∈ Eell(G) and b ∈ Bell(G), we write ϕτ (λ) = ϕ(τλ) and ϕb(λ) = ϕ(bλ).
Each element of τ ∈ Eell(G) (resp. b ∈ Bell(G)) is a translate of an element of
τ ∈ Eell(G) (resp. b ∈ Bell(G)) by an element of λ0 ∈ ã∨G,F , and thus ϕτ (λ) =

ϕτ (λ + λ0) (resp. ϕb(λ) = ϕb(λ + λ0)). For b ∈ Bell(G) and λ ∈ ia∗G, we have
bλ =

∑
τ∈Eell(G) cb,ττλ, and therefore

ϕb(λ) =
∑

τ∈Eell(G)

cb,τϕτ (λ) =
∑
τ ,λ0

cb,τλ0ϕτ (λ+ λ0).

Consider the linear map ϕ 7→ (ϕb)b∈Bell(G) = (ϕst, ϕunst), where ϕ? = (ϕb)b∈B?
ell(G). For

each (ζ, µ) ∈ PG, this linear map restricts to an isomorphism of topological vector
spaces

F̂ell(G, ζ, µ) −→ F̂ st
ell(G, ζ, µ)⊕ F̂ unst

ell (G, ζ, µ).

with inverse
ϕτ (λ) =

∑
b∈Bell(G)

cτ,bϕb(λ) =
∑
b,λ0

cτ,bλ0ϕb(λ+ λ0).

This follows easily since the spaces F̂ell(G, ζ, µ), F̂ st
ell(G, ζ, µ), and F̂ unst

ell (G, ζ, µ) are
each finite direct sums of classical F̂ -spaces.

Lemma 4.6.7. We have an isomorphism of topological vector spaces

F̂ell(G) −→ F̂ st
ell(G)⊕ F̂ unst

ell (G)

ϕ 7−→ (ϕst, ϕunst)

The argument is similar to that in [MW16a, Ch. IV, §1.5 and §2.2].

Proof. First consider the case where F is non-archimedean. In this case, we have
locally convex direct sum decompositions

F̂ell(G) =
⊕

(ζ,µ)∈PG

F̂ell(G, ζ, µ) , F̂ ?
ell(G) =

⊕
(ζ,µ)∈PG

F̂ ?
ell(G, ζ, µ).
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Thus, it suffices to show that the columns of the change-of-basis matrices have finitely
many non-zero entries. This is true since they are block-diagonal as remarked above
and the dimension of Dell(G, ζ, µ) is finite for each (ζ, µ) ∈ PG.

Now consider the archimedean case. As in [MW16a, Ch. IV, §1.5 and §2.2], it
suffices to show that: (1) the number of nonzero entries in a column of the change-
of-basis matrices is bounded; and (2) the entries of the change of basis matrices
are bounded. Property (1) follows since the dimension of Dell(G, ζ, µ) is bounded
independently of (ζ, µ) by Lemma 4.6.6. For property (2), recall that we have seen
that {‖τ‖ell : τ ∈ Tell(G)} is bounded. Moreover, by construction ‖b‖ell = 1 for
b ∈ Bunst

ell (G). Suppose that b ∈ Bst
ell(G) = Φ2(G) and write b = φ. We have φ =∑

π∈Πϕ
π. Therefore ‖φ‖ell =

∑
π∈Πϕ

‖π‖ell. As mentioned above, for π ∈ Π2(G) we
have ‖π‖ell = 1. (See the discussion after the orthogonality relations Theorem 3.2.2.)
Therefore ‖π‖ell = |Πϕ|, which is bounded.

We will identify F̂ell(G) = F̂ st
ell(G)⊕ F̂ unst

ell (G) via the above isomorphism. Note
that the subspace F̂ unst

ell (G) of F̂ell(G) consists of those functions ϕ whose linear
extension to Dell(G) vanishes on Dst

ell(G). Thus, it does not depend on any of the
choices made above.

Define IF st
cusp(G) to be the closed subspace of IFcusp(G) consisting of normalised

invariant orbital integrals that are constant on strongly regular stable classes. Define
IF unst

cusp (G) to be the kernel of the quotient IFcusp(G) → SFcusp(G). Note that
IF st

cusp(G) ∩ IF unst
cusp (G) = 0.

Proposition 4.6.8. The invariant Fourier transform

IFcusp(G) F̂ell(G)∼

restricts to isomorphisms

IF ?
cusp(G) F̂ ?

ell(G).∼

Consequently, we have

IFcusp(G) = IF st
cusp(G)⊕ IF unst

cusp (G).

Corollary 4.6.9. The stable Fourier transform gives an isomorphism

SFcusp(G) F̂ st
ell(G).∼
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We start with the following lemma which we will use to construct functions in
F (G).

Lemma 4.6.10. Let f ∈ C∞
c (G, ζ) and let φ ∈ C∞

c (aG,F ) (resp. φ ∈ S (aG,F )). The
function fϕ := f · (φ ◦HG) lies in C∞

c (G) (resp. C(G)).

Note that if f is K-finite, then so is fϕ.

Proof. Let fϕ = f · (φ ◦HG). Evidently, fϕ is smooth. Let C ⊆ G(F ) be a compact
subspace such that supp(f) = CAG(F ).

First, we suppose that φ ∈ C∞
c (aG,F ). We have

supp(fϕ) ⊆ supp(φ ◦HG) ∩ supp(f) ⊆ H−1
G (supp(φ)) ∩ CAG(F ).

Thus, to show that supp(fϕ) is compact, it suffices to show that H−1
G (suppφ) ∩

CAG(F ) is compact. Let x ∈ H−1
G (supp(φ)) ∩ CAG(F ) and write x = ca, where

c ∈ C and a ∈ AG(F ). Then HG(a) = HG(x) − HG(c), which lies in the compact
subspace supp(φ) −HG(C) of aG,F . Let C̃ = ãG,F ∩ (supp(φ) −HG(C)), a compact
subspace of ãG,F . Then a ∈ HG|−1

AG(F )(C̃), and x ∈ CHG|−1
AG(F )(C̃) Thus,

H−1
G (supp(φ)) ∩ CAG(F ) ⊆ CHG|−1

AG(F )(C̃).

Therefore it suffices to show that HG|−1
AG(F )(C̃) is compact. This follows since HG|AG(F ) :

AG(F ) → ãG,F is proper, as it is a continuous surjective homomorphism with compact
kernel AG(F )1.

For the rest of the proof, we suppose that φ ∈ S (aG,F ). First we show that fϕ

is rapidly decreasing. Let r > 0. We must show that |fϕ(g)| � Ξ(g)(1 + σ(g))−r.
Recall the decomposition G(F ) = KM0(F )K, that Ξ is bi-K-invariant, and that
1 + σ(k1m0k2) � 1 + σ(m0) and 1 + σ(m0) � 1 + ‖H0(m0)‖ for k1, k2 ∈ K and
m0 ∈ M0(F ). Therefore, it suffices to show |fϕ(k1m0k2)| � Ξ(m0)(1 + ‖H0(m0)‖)−r.

Since f ∈ C(G, ζ), we have that |f(g)| � Ξ(g)(1 + σAG(g))−r. We have 1 +

σAG(k1m0k2) � 1 + σAG(m0), and therefore |f(k1m0k2)| � Ξ(m0)(1 + σAG(m0))
−r.

Since φ ∈ S (aG,F ), we have |φ(X)| � (1 + ‖X‖)−r. Therefore

|fϕ(k1m0k2)| � Ξ(m0)(1 + ‖HG(m0)‖)−r(1 + σAG(m0))
−r.

Decompose H0(m0) ∈ aM0,F as H0(m0) = HG(m0) + H0(m0)
G according to the de-
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composition aM0,F = aG,F ⊕ aGM0,F
. Since 1 + σ(m0) � 1 + ‖H0(m0)‖, we have

1 + σAG(m0) � 1 + inf
a∈AG(F )

‖H0(a) +H0(m0)‖.

Since aM0,F/ãG,F = aG,F/ãG,F ⊕ aGM0,F
and aG,F/ãG,F is finite, we obtain

1 + inf
a∈AG(F )

‖H0(a) +H0(m0)‖ � 1 + ‖H0(m0)
G‖.

Therefore
1 + σAG(F )(m0) � 1 + ‖H0(m0)

G‖.

Thus, we have

|fϕ(k1m0k2)|/Ξ(m0) � (1 + ‖HG(m0)‖)−r(1 + ‖H0(m0)
G‖)−r � (1 + ‖H0(m0)‖)−r

as required.
Suppose that F is non-archimedean. In this case, we must show that there exists

a compact open subgroup K0 of G(F ) such that fϕ is bi-K0-invariant. Since F is non-
archimedean, supp(f) is open and has compact open image in G(F )/AG(F ). Thus,
we may take C to be compact open. Then there exists a compact open subgroup
K0 of G(F ) such that K0CK0 = C and f is constant on the K0 double cosets in C.
Since f is zero outside of CAG(F ), it suffices to show that f is bi-K0-invariant on
CAG(F ). Write C =

⋃M
i=1 K0giK0 and define ci = f(K0giK0) for i = 1, . . . ,M . Then

f(k0gik
′
0a) = ζ(a)−1ci for all k0, k′

0 ∈ K0, i = 0, . . . ,M , and a ∈ AG(F ). For any
k′′
0 , k

′′′
0 we have

f(k′
0k0gik

′
0ak

′′
0) = f(k′

0k0gik
′
0k

′′′
0 a) = ζ(a)−1ci = f(k0gik

′
0a).

Therefore f is bi-K0-invariant. Since HG is zero on all compact subgroups of G(F ),
we have that fϕ is bi-K0-invariant.

Now assume that F is archimedean. We must show that for all X,Y ∈ U(gC), the
function L(X)R(Y )fϕ is rapidly decreasing. For X ∈ g, we have

(R(X)fϕ)(g) = [Dφ(HG(g)) · (R(X)HG)(g)
]
f(g) + (R(X)f)ϕ(g),

and therefore R(X)fϕ is a linear combination of functions of the form fϕ. A similar
formula hods for L(X). It follows that for all X,Y ∈ U(gC), the function L(X)R(Y )fϕ

is a linear combination of functions of the form fϕ, and is thus rapidly decreasing by
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what we have already shown.

Define B?
ell(G, ζ) =

⋃
(ζ,µ)∈PG B?

ell(G, ζ, µ), and define Bell(G, ζ) = Bst
ell(G, ζ) ∪

Bunst
ell (G, ζ). Let b ∈ Bell(G, ζ). Since the elements of Bell(G) are mutually orthogonal,

the pseudocoefficient f [b]G satisfies∫
G(F )/AG(F )

Θb′(x)f [b](x) dx = ‖b‖ellδb(b
′),

for all b′ ∈ Bell(G, ζ). The domain of integration G(F )/AG(F ) fibres over the finite
set aG,F/ãG,F with open fibres. We will need the following formula for the integral of
Θb′(x)f [b](x) on a single fibre in the case when b ∈ Bst

ell(G, ζ).

Proposition 4.6.11. Let b ∈ Bst
ell(G, ζ). For b′ ∈ Bell(G, ζ) and X ∈ aG,F/ãG,F , we

have ∫
H−1

G (X+ãG,F )/AG(F )

Θb′(x)f [b](x) dx = ‖b‖ell|aG,b/ãG,F |−1δb(b
′)1aG,b/ãG,F

(X).

Proof. Let b′ ∈ Bell(G, ζ). For X ∈ aG,F/ãG,F , define

fb,b′(X) =

∫
H−1

G (X+ãG,F )/AG(F )

Θb′(x)f [b](x) dx.

We will calculate the Fourier transform of fb,b′ . The Pontryagin dual of aG,F/ãG,F is
ã∨G,F/a

∨
G,F . For λ ∈ ã∨G,F/a

∨
G,F we have

f̂b,b′(λ) =
∑

X∈aG,F /ãG,F

e−⟨λ,X⟩fb,b′(X)

=
∑

X∈aG,F /ãG,F

e−⟨λ,X⟩
∫
H−1

G (X+ãG,F )/AG(F )

Θb′(x)f [b](x) dx

=
∑

X∈aG,F /ãG,F

∫
H−1

G (X+ãG,F )/AG(F )

e−⟨λ,HG(x)⟩Θb′(x)f [b](x) dx

=
∑

X∈aG,F /ãG,F

∫
H−1

G (X+ãG,F )/AG(F )

Θb′(x)f [bλ](x) dx

=

∫
G(F )/AG(F )

Θb′−λ
(x)f [b](x) dx

= 〈b, b′−λ〉ell

If b′ ∈ Bunst
ell (G, ζ), then b′−λ ∈ Dunst

ell (G, ζ) and thus 〈b, b′−λ〉ell = 0. If that b′ ∈
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Bst
ell(G, ζ) ⊆ Φ2(G, ζ), then b′−λ ∈ Φ2(G, ζ) and 〈b, b′−λ〉ell = ‖b‖ellδb(b

′
−λ). Thus, we

have f̂b,b′(λ) = ‖b‖ellδb(b
′
−λ).

Suppose b = b′−λ. Then µb = (−λ) · µb′ . It follows that [ζ, µb] = [ζ, µb′ ]. Since
(ζ, µb), (ζ, µb′) ∈ PG, it follows that µb = µb′ . Consequently, λ lies in the the stabiliser
a∨G,b of b in ã∨G,F . Moreover, since b, b′ ∈ Bst

ell(G, ζ, µb) and b = b′−λ, we have b = b′. It
follows that δb(b

′
−λ) = δb(b

′)1a∨G,b/a
∨
G,F

(λ).
Thus, we have shown that

f̂b,b′ = ‖b‖ellδb(b
′)1a∨G,b/a

∨
G,F

.

When b′ 6= b, we obtain fb,b′ = 0 as claimed. It remains to be shown that

fb,b = ‖b‖ell|aG,b/ãG,F |−1
1aG,b/ãG,F

.

We have
f̂b,b = ‖b‖ell1a∨G,b/a

∨
G,F

.

Thus, we must show that the Fourier transform of 1aG,b/ãG,F
on aG,F/ãG,F is |aG,b/ãG,F |·

1a∨G,b/a
∨
G,F

. This follows from the general formula for the Fourier transform of a char-
acteristic function of a subgroup of a finite abelian group. Let A be a finite abelian
group and let B be a subgroup of A. Then for χ ∈ B̂, we have

1̂B(χ) =
∑
a∈A

χ(a)−1
1B(a)

=
∑
b∈B

χ(b)−1

= |B| · 1A⊥(χ),

where A⊥ = {χ ∈ Â : χ|B = 1}. If we take A = aG,F/ãG,F and B = aG,b/ãG,F , then
A⊥ = a∨G,b/a

∨
G,F , and we obtain that and we obtain the desired result.

For b ∈ Bell(G), define F̂ell(G)b to be the subspace of all ϕ = (ϕb′)b′∈Bell(G) in
F̂ell(G) with ϕb′ = 0 for b′ 6= b.

Proposition 4.6.12. Let b ∈ Bst
ell(G) and let ϕ = (ϕb′)b′∈Bell(G) ∈ F̂ell(G)b. Regarding

ϕb ∈ F̂ (ia∗G/a
∨
G,b) as an element of F̂ (ia∗G/a

∨
G,F ), let φb ∈ F (aG,F ) be its Fourier

transform. The inverse invariant Fourier transform of ϕ is

vol(AG(F )1)−1‖b‖−1
ell

|aG,b/ãG,F |
|a∨G,b/a

∨
G,F |

φb(HG(γ))f [b]G(γ)
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and this lies in IF st
cusp(G).

Proof. Let ζ = ζb be the AG(F )-character of b. Choose a function f [b] ∈ C∞
c,cusp(G, ζ)

representing the pseudocoefficient f [b]G ∈ IC∞
c,cusp(G, ζ) of b. Define f : G(F ) → C

by
f(x) = φb(HG(x))f [b](x).

By Lemma 4.6.10, we have that f ∈ F (G). We have fG(γ) = φb(HG(γ))f [b]G(γ),
which does not depend on the choice of f [b] and lies in IFcusp(G). By Proposi-
tion 4.6.4, we have f [b]G ∈ IC∞,st

c,cusp(G, ζ). That is, f [b]G(γ) is constant on strongly
regular stable classes. Since HG is constant on elements of G(F ) that lie in the same
G(F )-conjugacy class, we have that fG is constant on strongly regular stable classes,
i.e. fG ∈ IF st

cusp(G).
It remains for us to show that for all b′ ∈ Bell(G) and λ ∈ ia∗G we have

fG(b
′
λ) = vol(AG(F )1)‖b‖ell

|a∨G,b/a
∨
G,F |

|aG,b/ãG,F |
ϕb(λ)δb(b

′).

Let ζ ′ = ζb′ be the AG(F )-character of b′. We have

fG(b
′
λ) =

∫
G(F )

e⟨λ,HG(x)⟩Θb′(x)φb(HG(x))f [b](x) dx

=

∫
G(F )/AG(F )

∫
AG(F )

e⟨λ,HG(xa)⟩Θb′(xa)φb(HG(xa))f [b](xa) da dx

=

∫
G(F )/AG(F )

e⟨λ,HG(x)⟩Θb′(x)f [b](x)∫
AG(F )

e⟨λ,HG(a)⟩ζ ′(a)ζ(a)−1φb(HG(xa)) da dx.

The inner integral in the third equality is equal to∫
AG(F )/AG(F )1

∫
AG(F )1

e⟨λ,HG(aa1)⟩ζ ′(aa1)ζ(aa1)−1φb(HG(xaa
1)) da1 da

=

∫
AG(F )/AG(F )1

e⟨λ,HG(a)⟩ζ ′(a)ζ(a)−1φb(HG(xa))

∫
AG(F )1

ζ ′(a1)ζ(a1)−1 da1 da.

Now, ∫
AG(F )1

ζ ′(a1)ζ(a1)−1 da1 = vol(AG(F )1)δζ|AG(F )1
(ζ ′|AG(F )1),

which is equal to 1 if ζ, ζ ′ lie in the same ia∗G-orbit, and 0 otherwise. Since ζ, ζ ′ lie in
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our set X G of representatives of ia∗G-orbits, we obtain∫
AG(F )1

ζ ′(a1)ζ(a1)−1 da1 = vol(AG(F )1)δζ(ζ
′)

Therefore we have that fG(b
′
λ) = 0 if ζ ′ 6= ζ. Thus, we may assume that that ζ ′ = ζ.

Then vol(AG(F )1)−1fG(b
′
λ) is equal to∫

G(F )/AG(F )

Θb′(x)f [b](x)∫
AG(F )/AG(F )1

e⟨λ,HG(x)+HG(a)⟩φb(HG(x) +HG(a)) da dx

=

∫
G(F )/AG(F )

Θb′(x)f [b](x)

∫
ãG,F

e⟨λ,HG(x)+X̃⟩φb(HG(x) + X̃) dX̃ dx

=
∑

X∈aG,F /ãG,F

∫
H−1

G (X+ãG,F )

Θb′(x)f [b](x)

∫
ãG,F

e⟨λ,HG(x)+X̃⟩φb(HG(x) + X̃) dX̃ dx

=
∑

X∈aG,F /ãG,F

∫
H−1

G (X+ãG,F )

Θb′(x)f [b](x)

∫
ãG,F

e⟨λ,X+X̃⟩φb(X + X̃) dX̃ dx

Consequently, by Proposition 4.6.11, we have

fG(b
′
λ) = vol(AG(F )1)‖b‖ell|aG,b/ãG,F |−1δb(b

′)∑
X∈aG,b/ãG,F

∫
ãG,F

e⟨λ,X+X̃⟩φb(X + X̃) dX̃

= vol(AG(F )1)‖b‖ell|aG,b/ãG,F |−1δb(b
′)

∫
aG,b

e⟨λ,X⟩φb(X) dX.

For X ∈ aG,F , we have

φb(X) =

∫
ia∗G/a∨G,F

e−⟨λ,X⟩ϕb(λ) dλ

=

∫
ia∗G/a∨G,b

∑
λ̃∈a∨G,b/a

∨
G,F

e−⟨λ+λ̃,X⟩ϕb(λ+ λ̃) dλ

=

∫
ia∗G/a∨G,b

e−⟨λ,X⟩ϕb(λ)
∑

λ̃∈a∨G,b/a
∨
G,F

e−⟨λ̃,X⟩ dλ

=

∫
ia∗G/a∨G,b

e−⟨λ,X⟩ϕb(λ)|a∨G,b/a
∨
G,F |1aG,b

(X) dλ

= |a∨G,b/a
∨
G,F |1aG,b

(X)ϕ̂b(X).
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Therefore∫
aG,b

e⟨λ,X⟩φb(X) dX = |a∨G,b/a
∨
G,F |

∫
aG,b

e⟨λ,X⟩ϕ̂b(X) dX = |a∨G,b/a
∨
G,F |ϕb(λ).

Thus, we have

fG(b
′
λ) = vol(AG(F )1)‖b‖ell

|a∨G,b/a
∨
G,F |

|aG,b/ãG,F |
ϕb(λ)δb(b

′)

as required.

Recall that we denote the invariant Fourier transform by F . Stable spectral
density for Fcusp(G) is equivalent to the assertion that F−1(F̂ unst

ell (G)) ⊆ IF unst
cusp (G).

We have stable spectral density for Cc,cusp(G).

Lemma 4.6.13 (Stable spectral density for Ccusp(G)). We have F−1(S unst
ell (G)) ⊆

Iunst
cusp(G).

Proof. By stable spectral density for C∞
c (G), we have F−1(PW unst

ell (G)) ⊆ Iunst
c,cusp(G).

Since PW unst
ell (G) is dense in S unst

ell (G) and Iunst
cusp(G) is closed in Icusp(G), it follows

that F−1(S unst
ell (G)) ⊆ Iunst

cusp(G).

We now prove Proposition 4.6.8.

Proof. Let ϕ ∈ F̂ st
ell(G). Write Bst

ell(G) as a countable increasing union of finite sets
Bst

ell(G) =
⋃∞

i=1 B
st
ell,i(G). For each i, define ϕi = (ϕi,b)b∈Bell,i(G) ∈ F̂ st

ell(G) by ϕi,b = ϕb

if b ∈ Bell,i(G) and ϕi,b = 0 otherwise. Then limi ϕi = ϕ. By Proposition 4.6.12, we
have F−1(ϕi) ∈ IF st

cusp(G). Since IF st
cusp(G) is closed in IFcusp(G), it follows that

F(ϕ) ∈ IF st
cusp(G). Therefore F−1(F̂ st

ell(G)) ⊆ IF st
cusp(G).

Since F̂ell(G) = F̂ st
ell(G)⊕ F̂ unst

ell (G), we have

IFcusp(G) = F−1(F̂ st
ell(G))⊕F−1(F̂ unst

ell (G))

⊆ IF st
cusp(G)⊕ IF unst

cusp (G)

⊆ IFcusp(G).

Therefore F−1(F̂ ?
ell(G)) = IF ?

cusp(G) as required.

K-finite functions

If we trace through the above replacing IF with If , SF with Sf , and F̂ with PWf ,
we obtain a proof of the following.
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Proposition 4.6.14. The invariant Fourier transform

If,cusp(G) PWell,f (G)∼

restricts to isomorphisms

I?
f,cusp(G) PW ?

ell,f (G).∼

Consequently, we have

If,cusp(G) = Ist
f,cusp(G)⊕ Iunst

f,cusp(G).

Corollary 4.6.15. The stable Fourier transform gives an isomorphism

Sf,cusp(G) PW st
ell,f (G).∼

4.6.6 Proof of the main stable Paley–Wiener theorems

We apply the constructions and results of the preceding subsection to each semistan-
dard Levi L ∈ LG(M0). We may therefore define

F̂ unst(G) =

( ⊕
L∈LG(M0)

F̂ unst
ell (L)

)WG
0

=
⊕

L∈LG(M0)/WG
0

F̂ unst
ell (L)W

G(L).

We have decompositions

F̂ (G) =

( ⊕
L∈LG(M0)

F̂ell(G)

)WG
0

=
⊕

L∈LG(M0)/WG
0

F̂ell(L)
WG(L)

and F̂ell(L) = F̂ st
ell(L)⊕ F̂ unst

ell (L) for each L ∈ LG(M0). Thus, we obtain a decompo-
sition F̂ (G) = F̂ st(G) ⊕ F̂ unst(G). By Corollary 3.3.2 the inclusion PW unst(G) →
S unst(G) is continuous with dense image.

We can now deduce the full stable spectral density theorem for C(G) from the
stable spectral density theorem for C∞

c (G).

Theorem 4.6.16 (Stable spectral density). Let f ∈ C(G). If fG(φ) = 0 for all
φ ∈ Φtemp(G), then fG(δ) = 0 for all δ ∈ ∆sr(G). Equivalently, F−1(S unst(G)) ⊆
ICunst(G).
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Proof. By stable spectral density for C∞
c (G), we have F−1(PW unst(G)) ⊆ IC∞,unst

c (G).
Since PW unst(G) is dense in S unst(G) and ICunst(G) is closed in IC(G), it follows
that F−1(S unst(G)) ⊆ ICunst(G).

Note that F(IF unst(G)) ⊆ F̂ unst(G) follows immediately from the definitions.
Thus, we have F−1(F̂ unst(G)) = IF unst(G).

We now prove the main stable Paley–Wiener theorems.

Proof. The stable Fourier transform F st : IF (G) → F̂ st(G) is the composition of
the invariant Fourier transform F and the projection onto F̂ st(G). The kernel is
IF unst(G), so it descends to a continuous bijection F st : SF (G) → F̂ st(G). Since
its inverse is the composition of continuous maps

F̂ st(G) F̂ (G) IF (G) SF (G)F−1

the stable Fourier transform F st : SF (G) → F̂ st(G) is a topological isomorphism.
In the same way, one can prove that the stable Fourier transform restricts to an

isomorphism of topological vector spaces F st : Sf (G) → PW st
f (G).

Note that the stable Paley–Wiener theorems for Sf,cusp(G, ζ) and SFcusp(G) given
above can be proved in a similar way. The proof given above gives more information,
namely that the subspace Ist

f,cusp(G, ζ) (resp. IF st
cusp(G)) corresponds to F̂ st

ell,f (G, ζ)

(resp. F̂ st
ell(G)) under the invariant Fourier transform.

Using the stable Paley–Wiener Theorem for S(G), a Fourier inversion formula
for elements of S(G) can be obtained from Arthur’s Fourier inversion formula for
elements of I(G). The argument is the same as the one used by Arthur to prove
[Art96, p. 6.3].



5 Stable Transfer

In this chapter we prove that stable transfer operators exist and preserve K-finiteness.
We also compute some examples of stable transfer operators.

5.1 The theorem
Let F be a local field of characteristic zero, let H and G be connected reductive
groups over F , and let ξ : LH → LG be an equivalence class of L-homomorphism.
Assume that G is quasisplit so that G-relevance is automatic. Then we have a map

ξ∗ : Φ(H) −→ Φ(G)

defined by ξ∗(φ) = ξ ◦ φ. This restricts to a map

ξ∗ : Φtemp(H) −→ Φtemp(G)

if and only if ξ is tempered. Suppose that ξ is injective and tempered. In [Lan13,
Question A & B], Langlands asked whether for each fG ∈ Sc(G) there exists fH ∈
Sc(H) such that

fH(φ) = fG(ξ∗(φ))

for all φ ∈ Φtemp(H). Note that if fH exists it is uniquely determined by stable
spectral density for test functions. More generally, one can ask whether for each
fG ∈ S(G) there exists fH ∈ S(H) with the above property, which would also be
uniquely determined by spectral density. The function fH is called the stable transfer
of fG along ξ and we denote it by Tξf

G. It has also been called the functorial transfer
of fG, or to avoid with endoscopic transfer the stable-stable transfer of fG.

We will prove the following.

Theorem 5.1.1. Let ξ : LH → LG be an equivalence class of injective tempered
L-homomorphisms. Then pullback along ξ∗ gives a well-defined continuous linear

113
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map
ξ∗ : S st(G) −→ S st(H).

Furthermore, it restricts to continuous linear maps

ξ∗ : PW st(G) −→ PW st(H)

and
ξ∗ : PW st

f (G) −→ PW st
f (H).

It follows that stable transfer along ξ can be constructed by taking the stable
Fourier transform, pulling back along ξ∗, and then taking the inverse stable Fourier
transform:

S(G) S(H)

S (G) S (H)

Tξ

Fst Fst

ξ∗

As a corollary, we obtain the following, which answers [Lan13, Question A & B] in
the affirmative.

Corollary 5.1.2. Let ξ : LH → LG be an equivalence class of injective tempered
L-homomorphisms. For each fG ∈ S (G), the stable transfer Tξf

G ∈ S(H) of fG

along ξ exists. Moreover,
Tξ : S (G) −→ S (H)

is a continuous linear map, which restricts to continuous linear maps

Tξ : Sc(G) −→ Sc(H)

and
Tξ : Sf (G) −→ Sf (H).

5.2 Proof of the theorem

Let ξ : LH → LG be an equivalence class of injective tempered L-homomorphisms.
To prove the first claim in Theorem 5.1.1 and thus that stable transfer along ξ exists,
we must show that pullback along ξ∗ : Φtemp(H) → Φtemp(G) gives a well-defined
continuous linear map

ξ∗ : S st(G) −→ S st(H).
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Recall that we have decompositions

Φtemp(G) =
∐
MG

Φ2(MG)/W
G(MG) , Φtemp(H) =

∐
MH

Φ2(MH)/W
G(MH)

and corresponding decompositions

S st(G) =
⊕
MG

S st
ell(MG)

WG(MG) , S st(H) =
⊕
MH

S st
ell(MH)

WH(MH).

Thus, it suffices to show that for each MH and MG, pullback along the partially
defined map

ξMH ,MG
∗ : Φ2(MH)/W

H(MH) → Φ2(MG)/W
G(MG)

and extension by zero gives a well-defined continuous linear map

ξ∗MH ,MG
: S st

ell(MG)
WG(MG) −→ S st

ell(MH)
WH(MH).

In turn, it suffices to show that pullback along the partially defined map ξMH ,MG
∗ :

Φ2(MH) → Φ2(MG) and extension by zero gives a well-defined continuous linear map

ξ∗MH ,MG
: S st

ell(MG) −→ S st
ell(MH).

We will do show by showing that we can apply Lemma 3.3.3, and this will establish
Theorem 5.1.1 in full. We will now turn to an examination of the partially defined
map ξMH ,MG

∗ : Φ2(MH) → Φ2(MG) in more detail.
Let G be a λ-group. The outer action ΓF → Out(G0) determines an action ΓF →

Aut(Z(G0)). We write AG = Z(G0)ΓF ,◦.

Lemma 5.2.1. Let ξ : LH → LG be an equivalence class of elliptic L-homomorphisms.
Then ξ restricts to a homomorphism

ξ : ALH −→ ALG.

Proof. Let M = CLG(ξ(ALH)) = CLG(ξ(Z(H
∨)ΓF ,◦)). Since Z(H∨)ΓF = CH∨(LH), we

have ξ(LH) ⊆ M. Therefore M maps onto WF . Since ξ(ALH) is a torus in G∨, we
have that M is Levi subgroup of LG. Since ξ is elliptic, we have M = LG, or in other
words ξ(ALH) ⊆ (CG∨(LG)) = Z(G∨)ΓF . The claim follows.

To simplify notation, for a Levi subgroup M of G we write the canonical equiv-
alence class of L-embeddings ιGM : LM → LG as an inclusion LM ↪→ LG. Fix
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φ ∈ Φ2(MH) and suppose that ξ∗(φ) ∈ Φ2(MG). That is, φ is in the domain of the
partially defined map ξMH ,MG

∗ : Φ2(MH) → Φ2(MG).
Let MH,ξ be the Levi subgroup of G determined up to G(F )-conjugacy by the

property that LMH,ξ belongs to the G∨-conjugacy class Levi subgroups of LG that
contains ξ(LMH) minimally. Then ξ factors through LMH,ξ ↪→ LG as an equivalence
class of injective elliptic L-homomorphisms ξ : LMH → LMH,ξ. The above lemma
gives us an injection ξ : ALMH

→ ALMH,ξ
.

Recall that we have an identification Lie(ALMH
) = X∗(ALMH

) ⊗Z C. Under this
identification, we have that the injection Lie(ξ) : Lie(ALMH

) → Lie(ALMH,ξ
) is the

map ξ∗ ⊗ id, where ξ∗ : X∗(ALMH
) → X∗(ALMH,ξ

). We thus write ξ∗ = Lie(ξ). We
have the commutative diagram

Lie(ALMH
) Lie(ALMH,ξ

)

X∗(ALMH) X∗(ALMH,ξ
)

ξ∗

ξ∗

Recall that we have a canonical isomorphism X∗(MH) ∼= X∗(ALMH
) and that we

write its extension a∗MH ,C
∼= Lie(ALMH

) as λ 7→ λ∨. Thus, we may view the above
commutative diagram as the commutative diagram

a∗MH ,C a∗MH,ξ,C

X∗(MH) X∗(MH,ξ)

ξ∗

ξ∗

Note that the injection ξ∗ : a
∗
MH ,C → a∗MH,ξ,C restricts to injections ξ∗ : a

∗
MH

→ a∗MH,ξ

and ξ∗ : ia
∗
MH

→ ia∗MH,ξ
.

Since ξ∗(φ) ∈ Φ2(MG) it follows that LMG ↪→ LG factors through LMH,ξ ↪→ LG.
Thus, we may assume that MG ⊆ MH,ξ, and therefore that MG is a Levi subgroup of
MH,ξ. Then a∗MH,ξ

⊆ a∗MG
and we have ξ∗ : ia

∗
MH

→ ia∗MG
. Now, for all λ ∈ a∗MH ,C, we

have
ξ∗(φλ) = ξ∗(φ)ξ∗(λ).

This explains how ξ∗ behaves on the component of φ.
Suppose that F is archimedean. We may assume that F = R by restriction of

scalars. We must show that ‖ξ∗φ‖MG
� ‖φ‖MH

for all φ in the domain of the partially
defined map ξMH ,MG

∗ : Φ2(MH) → Φ2(MG). Since ‖ ·‖MG
� ‖·‖G and ‖ ·‖MH

� ‖·‖H ,
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it suffices to show that ‖ξ∗φ‖G � ‖φ‖H for φ ∈ Φtemp(H).
Let T 0

H and T 0
G be ΓR-stable maximal tori of H∨ and G∨, respectively. Choose

a representative L-homomorphism ξ such that ξ0(T 0
H) ⊆ T 0

G . Note that aξ(C×) ⊆
CG∨(ξ0(T 0

H)). Since ξ0(T 0
H) ⊆ T 0

G , we have T 0
G ⊆ CG∨(ξ0(T 0

H)). Therefore T 0
G is a

maximal torus of CG∨(ξ0(T 0
H)). By replacing ξ by a CG∨(ξ0(T 0

H))-conjugate, we may
assume that both ξ(T 0

H) and aξ(C×) are contained in T 0
G . Recall how the infinites-

imal character attached to an L-parameter is defined. We may identify µϕ with an
element of Lie(T 0

H)/W (H∨, TH). Let µξ = µξ|WR
denote the infinitesimal character

attached to the L-parameter ξ|WR . We may identify µξ∗ϕ and µξ with elements of
Lie(T 0

G)/W (G∨, TG). We have µξ∗ϕ = Lie(ξ)µϕ +µξ. Fix a W (H∨, TH)-invariant inner
product on Lie(T 0

H) and a W (G∨, TG)-invariant inner product on Lie(T 0
G), and denote

the associated norms by ‖ · ‖H∨ and ‖ · ‖G∨, respectively. We have ‖φ‖H � ‖µϕ‖H∨

and ‖ξ∗φ‖G � ‖µξ∗ϕ‖G∨, so it suffices to prove that ‖µξ∗ϕ‖G∨ � ‖µϕ‖H∨. We have

‖µξ∗ϕ‖G∨ = ‖Lie(ξ)µϕ + µξ‖G∨ � ‖Lie(ξ)µϕ‖G∨.

Since Lie(ξ) : Lie(T 0
H) → Lie(T 0

G) is injective, we have that ‖Lie(ξ)(·)‖G∨ is a norm
on Lie(T 0

H), and is thus equivalent to ‖ · ‖H∨. Thus,

‖µξ∗ϕ‖G∨ � ‖µϕ‖H∨

as required.
In order to show that we can apply Lemma 3.3.3, and thus conclude the proof

of Theorem 5.1.1, all that remains is for us to show that the partially defined map
ξ
MH ,M)G
∗ : Φ2(MH) → Φ2(MG) maps at most finitely many connected components to

a given connected component. The next section is devoted to this.

5.2.1 A finiteness property of functoriality

In this section we prove the following finiteness property of functoriality.

Theorem 5.2.2. Let H and G be connected reductive groups over F with G quasisplit.
If ξ : LH → LG is an injective L-homomorphism, then the preimage of a connected
component of Φ(G) under ξ∗ : Φ(H) → Φ(G) is a finite union of connected components
of Φ(H), or in other words π0(ξ∗) : π0(Φ(H)) → π0(Φ(G)) has finite fibres.

Since the restriction of ξ∗ to a connected component of Φ(H) is injective in the
archimedean case and a quotient by a finite group action in the non-archimedean
case, we obtain the following corollary.
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Corollary 5.2.3. The map ξ∗ : Φ(H) → Φ(G) has finite fibres.

We also obtain the following corollary in the tempered case, which gives what we
need to conclude the proof of Theorem 5.1.1.

Corollary 5.2.4. If ξ : LH → LG be a tempered injective L-homomorphism, then
the preimage of a connected component of Φtemp(G) under ξ∗ : Φtemp(H) → Φtemp(G)

is a finite union of connected components of Φtemp(H), i.e. π0(ξ∗) : π0(Φtemp(H)) →
π0(Φtemp(G)) has finite fibres.

We now begin the proof of Theorem 5.2.2. We write write L1
F for the preimage

of W 1
F in LF . If F is non-archimedean, we have L1

F = SL2 ×W 1
F = SL2 ×IF . If F

archimedean, we have LF = WF , and thus L1
F = W 1

F = S1∪S1j ⊆ H×. We also write
LG1 = G∨oW 1

F .
For φ ∈ Φ(G), we refer to φ|L1

F
as its inertial L-parameter. (See [Lat] for a

discussion of inertial L-parameters for p-adic groups.) For λ ∈ a∗G,C, its associated
cohomology class aλ ∈ H1

c (WF , Z(G
∨)) is trivial on W 1

F . Consequently, for φ ∈ Φ(G)

and λ ∈ a∗G,C we have φλ|L1
F

= φ|L1
F
, that is, φλ and φ have the same inertial L-

parameter. Thus, the restriction map

Φ(G) −→ Homc,W 1
F
(L1

F ,
LG1)/G∨

is constant on connected components. Here, we have written Homc,W 1
F
(L1

F ,
LG1) to

denote the set of continuous homomorphisms L1
F → LG1 over W 1

F . We will use similar
notation below.

Proposition 5.2.5. Let G be a connected reductive group over F . The fibres of the
restriction map

Φ(G) −→ Homc,W 1
F
(L1

F ,
LG1)/G∨

are finite unions of connected components. When F is archimedean, the fibres are the
connected components of Φ(G).

When F is non-archimedean, the fibres can indeed be unions of more than one
connected component. Suppose that G is anisotropic modulo its centre. Then G(F )1

is the unique maximal compact subgroup of G(F ) and G(F )1 is the unique Iwahori
subgroup of G(F ) [Hai14, §3.3.1]. Suppose further that G is a torus. Note 1 at the
end of [Rap05] gives a description of G(F )1 and G(F )1. The discussion there initially
concerns a complete discretely valued field L with algebraically closed residue field,
however at the end of Note 1, Rapoport explains the necessary changes when L is
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replaced by a discretely valued field F with perfect residue field. The group G has an
lft Néron model G over SpecOF . Let G1 be the maximal subgroup scheme of finite
type over SpecOF . Let G1,◦ be the identity component of G1. Then G1(OF ) = G(F )1,
G1,◦(OF ) = G(F )1, and G(F )1 has finite index in G(F )1. Identify Φ(G) with Π(G)

using the local Langlands correspondence for tori. The fibre in the proposition con-
taining a the trivial character 1 : G(F ) → C× contains the group of weakly unram-
ified characters Xwnr(G) = Homc(G(F )/G(F )1,C×), but the connected component
of 1 is the group of unramified characters Xnr(G) = Homc(G(F )/G(F )1,C×). If
G(F )1 ( G(F )1, then Xwnr(G) ⊇ Xnr(G).

The following proof was inspired by the proof of [Var, Lemma 4.2.3].

Proof. The fibres are unions of connected components. We must show that the fibres
contain only finitely many connected components. Fix φ ∈ Φ(G) and let φ0 : L1

F →
LG denote the restriction of φ. Let φ′ ∈ Φ(G) be in the fibre containing φ. By
replacing φ′ by a G∨(C)-conjugate if necessary, we may assume that φ′ restricts to φ0.

Assume that F is non-archimedean. Then L1
F = SL2 ×IF . Let

Cϕ0 = CG∨(φ0(SL2 ×IF )) = CG∨(φ0(IF )) ∩ CG∨(φ0(SL2)).

Both CG∨(φ0(IF )) and CG∨(φ0(SL2)) are reductive groups by Lemma 10.2.2 and the
proof of Lemma 10.1.1 in [Kot84]. Therefore Cϕ0 is reductive.

Both φ(Fr) and φ′(Fr) normalise φ0(SL2 ×IF ), and therefore also normalise Cϕ0 .
Let θ, θ′ ∈ Aut(Cϕ0) denote the automorphisms defined by Int(φ(Fr)) and Int(φ′(Fr)).
Since φ(Fr) and φ′(Fr) are semisimple elements of LG, the automorphisms θ, θ′ are
semisimple. Therefore they each preserve a Borel pair of Cϕ0 by [Ste68, Theorem 7.5].
By replacing φ, φ′ by Cϕ0-conjugates if necessary, we may assume that θ, θ′ preserve
the same Borel pair (B, T ) of C◦

ϕ0
.

Let x = φ′(Fr)−1φ(Fr) ∈ G∨. Since φ(Fr) and φ′(Fr) act on φ0(SL2 ×IF ) in
the same way, we have that x acts trivially on φ0(SL2 ×IF ), and thus x ∈ Cϕ0 .
Moreover, x ∈ NCϕ0

(B, T ). We have NCϕ0
(B, T )/T ' Cϕ0/C

◦
ϕ0

as explained in [DM94,
§1]. Fix representatives c1, . . . , cN of NCϕ0

(B, T )/T . For each i = 1, . . . , N , let
φi : SL2 ×WF× → LG be the extension of φ0 that satisfies φi(Fr) = ciφ(Fr). We will
show that φ′ lies in the component of φi for some i = 1, . . . , N .

Let M = CLG(T θ′,◦). Then M is a Levi subgroup of LG containing the image of
φ′. Let M′ ⊆ M be a minimal Levi of LG containing the image of φ′. Then we have
T θ′,◦ ⊆ AM′ . Therefore, it suffices to show that there exists t0 ∈ T θ′,◦ and t1 ∈ T
such that t0t1φ

′(Fr)t−1
1 = ciφ(Fr) for some i = 1, . . . , N . Indeed, this says that the
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unramified twist of φ′ by t1 ∈ AM′ = H1
c (WF/IF , AM′) is equivalent to φi, so that φ′

lies in the connected component of φi.
We may write x = tci for some t ∈ T and some i = 1, . . . , N . Then t−1φ′(Fr) =

ciφ(Fr). Let (1 − θ′)T = {tθ′(t)−1 : t ∈ T }. It follows from the Smith normal form
that the homomorphism

T θ′,◦ × (1− θ′)T −→ T

given by multiplication in T is surjective. Therefore, we may write t−1 = t0t1θ
′(t1)

−1

for some t0 ∈ T θ′,◦ and t1 ∈ T . Then

ciφ(Fr) = t0t1θ
′(t1)

−1φ′(Fr)
= t0t1φ

′(Fr)t−1
1 φ′(Fr)−1φ′(Fr)

= t0t1φ
′(Fr)t−1

1 .

This concludes the proof in the non-archimedean case.
Now assume that F is archimedean. By restriction of scalars, we may assume

that F = R. Recall that LR = WR = W 1
R × R>0. Since R>0 lies in the centre

of WR and acts trivially on G∨, we obtain that both aϕ(R>0) and aϕ′(R>0) centralise
φ0(W

1
R). Therefore aϕ(R>0) and aϕ′(R>0) are contained in Cϕ0

:= CG∨(φ0(W
1
R)). Since

aϕ(R>0) and aϕ′(R>0) are connected abelian subgroups of Cϕ0 consisting of semisimple
elements, they are contained in maximal tori of Cϕ0 . Let T be a maximal torus of Cϕ0 .
By replacing φ, φ′ by Cϕ0-conjugates if necessary, we may assume that aϕ(R>0) and
aϕ′(R>0) are both contained in T . For each w ∈ WR, define a(w) = φ′(w)φ(w)−1. For
w ∈ W 1

R we have a(w) = 1, and for r ∈ R>0 we have a(r) = aϕ′(r)aϕ(r)
−1. Therefore

a ∈ Homc(WR/W
1
R, T ).

Since aϕ(R>0) ⊆ T , it follows that that φ(R>0) centralises T . Since φ(W 1
R) =

φ0(W
1
R) also centralises T , we have that φ(WR) is contained in M := CLG(T ).

Now, M is a Levi subgroup of LG containing the image of φ. Let Mϕ ⊆ M be
a minimal Levi of LG containing the image of φ. Then T ⊆ AMϕ

. Therefore
a ∈ Homc(WR/W

1
R, AMϕ

) and φ′ = a · φ, an unramified twist of φ. Thus, φ′ lies
in the same connected component as φ.

We have the following commutative diagram

Φ(H) Φ(G)

Homc,W 1
F
(L1

F ,
LH)/H∨ Homc,W 1

F
(L1

F ,
LG)/G∨

ξ∗

ξ∗
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The right vertical arrow maps each connected component to a point. The fibres of
the left vertical arrow are finite unions of connected components. Therefore to prove
Theorem 5.2.2, it suffices to show that the bottom map has finite fibres. To do so,
we will make use of the following theorem of Vinberg [Vin96, Theorem 1].

Theorem 5.2.6. Let k be an algebraically closed field of characteristic zero. Let
ξ : H → G be an embedding of (not necessarily connected) reductive groups over k.
For each n ∈ Z≥0, the natural morphism

ξ∗ : Hn//H −→ Gn//G

is finite. (The quotients are GIT quotients with respect to the conjugation actions.)

Proposition 5.2.7. Let k be an algebraically closed field of characteristic zero. Let
ξ : H → G be an embedding of (not necessarily connected) reductive groups over k.
Equip H and G with a topology that is at least as fine as the Zariski topology. The
pushforward map of conjugacy classes of continuous homomorphisms

ξ∗ : Homc(Γ,H)/H −→ Homc(Γ,G)/G

has finite fibres.

Proof. Let HZar and GZar denote H and G equipped with the Zariski topology. We
have a commutative diagram

Homc(Γ,H)/H Homc(Γ,G)/G

Homc(Γ,HZar)/H Homc(Γ,G)Zar)/G

ξ∗

ξ∗

where the vertical arrows are inclusions. It follows that it suffices to show that the
bottom arrow has finite fibres. We may thus assume that H and G are equipped with
the Zariski topology.

Let γ1, . . . , γn be a set of topological generators for Γ. This determines a commu-
tative diagram

Homc(Γ,H)/H Homc(Γ,G)/G

Hn//H Gn//G

ξ∗

ξ∗
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The bottom arrow has finite fibres by Theorem 5.2.6, and therefore so does the top
arrow, as claimed.

Proposition 5.2.8. Let H and G be connected reductive groups over F . Let ξ :
LH → LG be a continuous injective homomorphism over WF such that the restriction
ξ0 : H

∨→ G∨ is algebraic. The map

ξ∗ : Homc,W 1
F
(L1

F ,
LH1)/H∨−→ Homc,WF

(L1
F ,

LG1)/G∨

has finite fibres.

Recall that we write ξ(h,w) = (ξ0(h)aξ(w), w) for all w ∈ WF . Note that we can
identify the map ξ∗ with the map

ξ∗ : H
1
c (L

1
F , H

∨) −→ H1
c (L

1
F , G

∨)

defined by ξ∗a = ξ0,∗a ·aξ, that is, ξ∗a(l) = ξ0∗(a(l))aξ(w(l)). We will identify aξ with
its inflation to LF and thus simply write aξ(l) = aξ(w(l)). It will be convenient to
view ξ∗ in this way in order to save space and use language from group cohomology.

Proof. Let a ∈ H1
c (L

1
F , H

∨). We will show that ξ−1
∗ (ξ∗a) is finite.

Assume that F is non-archimedean. Then W 1
F = IF and L1

F = SL2 ×IF . There
exists a compact open normal subgroup J of IF such that J acts trivially on H∨ and
G∨, and a(J) = aξ(J) = 1. Since aξ(J) = 1, the homomorphism ξ : H∨o W 1

F →
G∨oW 1

F descends to a homomorphism

ξ : H∨oW 1
F/J → G∨oW 1

F/J.

We have a commutative diagram

H1
c (L

1
F/J,H

∨) H1
c (L

1
F/J,H

∨)

H1
c (L

1
F , H

∨) H1
c (L

1
F , H

∨)

ξ∗

ξ∗

where the vertical arrows are the injective inflation maps.
Since ξ∗a = ξ0,∗a · aξ, we have ξ∗a(J) = 1. Let a′ ∈ ξ−1

∗ (ξ∗a). Then there exists
g ∈ G∨ such that

ξ0(a
′(l))aξ(l) = ξ∗a

′(l) = gξ∗a(l)
l
g−1,
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for all l ∈ L1
F . Since ξ∗(J) = aξ(J) = 1, we have ξ(a′(J)) = 1. Since ξ is injective, we

obtain a′(J) = 1. Thus, we have that ξ−1
∗ (ξ∗a) lies in H1

c (L
1
F/J,H

∨) ↪→ H1
c (L

1
F , H

∨).
Consequently, we obtain the commutative diagram

ξ−1
∗ (ξ∗a) {ξ∗a}

H1
c (L

1
F/J,H

∨) H1
c (L

1
F/J,G

∨)

ξ∗

ξ∗

and it suffices to show that the bottom map has finite fibres. This map can be viewed
as the map

Homc,IF /J(L
1
F/J,H

∨o IF/J)/H
∨ Homc,IF /J(L

1
F/J,G

∨o IF/J)/G
∨ξ∗

where we are writing Homc,IF /J to indicate continuous homomorphisms over IF/J .
We have the commutative diagram

Homc,IF /J(L
1
F/J,H

∨o IF/J)/H
∨ Homc,IF /J(L

1
F/J,G

∨o IF/J)/G
∨

Homc,IF /J(L
1
F/J,H

∨o IF/J)/conj Homc,IF /J(L
1
F/J,G

∨o IF/J)/conj

Homc(SL2 ×IF/J,H
∨o IF/J)/conj Homc(SL2 ×IF/J,G

∨o IF/J)/conj

ξ∗

ξ∗

ξ∗

where we have written “/conj” to indicate quotients by conjugacy of the codomain.
The fibres of the upper vertical arrow on the left are finite as they are the sets of
H∨-conjugacy classes that comprise a conjugacy class under H∨o IF/J and IF/J is
finite. Since the bottom arrow has finite fibres by Proposition 5.2.7, it follows that
the top arrow does and therefore ξ−1

∗ (ξ∗a) is finite.
Now, assume that F is archimedean. By restriction of scalars, we may assume

that F = R. Recall that LR = WR = C× ∪ C×j and L1
R = W 1

R = S1 ∪ S1j. We have
WR = W 1

R × R>0. We have an extension of topological groups

1 {±1} S1 o 〈j〉 W 1
R 1

where the homomorphism {±1} → S1o〈j〉 is the diagonal embedding and the homo-
morphism S1 o 〈j〉 → W 1

R is given by multiplication in W 1
R. We have a commutative
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diagram
H1

c (W
1
R, H

∨) H1
c (W

1
R, G

∨)

H1
c (S

1 o 〈j〉, H∨) H1
c (S

1 o 〈j〉, G∨)

ξ∗

ξ∗

where the vertical arrows are the inflation maps. Thus, it suffices to show that the
bottom map has finite fibres. This map can be viewed as the pushforward map

ξ∗ : Homc,⟨j⟩(S
1 o 〈j〉, H∨o 〈j〉)/H∨−→ Homc,⟨j⟩(S

1,o〈j〉, G∨o 〈j〉)/G∨

where Homc,⟨j⟩ indicates continuous homomorphisms over 〈j〉. We have the commu-
tative diagram

Homc,⟨j⟩(S
1 o 〈j〉, H∨o 〈j〉)/H∨ Homc,⟨j⟩(S

1,o〈j〉, G∨o 〈j〉)/G∨

Homc,⟨j⟩(S
1 o 〈j〉, H∨o 〈j〉)/conj Homc,⟨j⟩(S

1 o 〈j〉, G∨o 〈j〉)/conj

Homc(S
1 o 〈j〉, H∨o 〈j〉)/conj Homc(S

1 o 〈j〉, G∨o 〈j〉)/conj

ξ∗

ξ∗

ξ∗

As above, the left vertical map has finite fibres. By Proposition 5.2.7, the bottom
map has finite fibres. Consequently, the top map has finite fibres.

This completes the proof of Theorem 5.2.2 and thus Theorem 5.1.1 and its corol-
lary Corollary 5.1.2, which in particular answers Questions A and B of [Lan13] in the
affirmative.

5.3 Examples
We conclude by computing stable transfer in some cases. Let H and G be connected
reductive groups over a local field F of characteristic zero with G quasisplit, and let
ξ : LH → LG be an equivalence class of injective tempered L-parameters. First, we
note some cases that go back to the work of Harish-Chandra.

Suppose that H = 1. We have LH = WF and ξ is just a tempered L-parameter
of G. Let fG ∈ S(G). Then the function Tξf

G on H(F ) = 1 is just the constant
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fG(ξ) = Θξ(f
G). That is, Tξ is given by

Tξf
G =

∫
∆sr(G)

|DG(δ)|1/2Θξ(δ)f
G(δ) dδ.

To obtain a formula for Θξ(δ), it suffices to treat the case when ξ is discrete by the
formula for parabolically induced characters [Sil79, Lemma 4.7.6]. Harish-Chandra
obtained formulas for stable discrete series characters of real groups (see [GKM97]).
For p-adic groups, formulas for stable discrete series characters are not known in
general. See [Kal23] for the current state of the art.

Suppose that H is a Levi subgroup M of G and ξ : LM → LG is the canonical
equivalence class of L-embeddings. Then Tξ : S(G) → S(M) is parabolic descent.
Thus, stable transfer coincides with suitably normalised endoscopic transfer in this
case [AMV, §1]. If f ∈ S(G), then for G-regular semisimple elements m ∈ M(F ), we
have (Tξf

G)(m) = fG(m).
Suppose G = H∗ is the quasisplit inner form of H and ξ : LH → LH∗ is the

identity. Endoscopic transfer TEnd : I(H) → S(H∗) descends to a continuous linear
map T H∗

H : S(H) → S(H∗). Furthermore, it can be normalised so that (T H∗
H fH)(φ) =

fH(φ) for all φ ∈ Φ(H). This is proved for real groups in [She79] and is part of the
refined local Langlands conjecture for p-adic groups [Kal16]. For fH ∈ S(H) and
φ ∈ Φ(H) we have (TξT H∗

H fH)(φ) = (T H∗
H fH)(φ) = fH(φ), and thus TξT H∗

H fH = fH

by spectral density. That is, endoscopic transfer gives a a section for stable transfer
along ξ.

In general, stable transfer is not the same as endoscopic transfer. Indeed, the
adjoint of stable transfer maps stable distributions to stable distributions, whereas
the adjoint to endoscopic transfer does not do so in general.

5.3.1 Tori

Let S and T be tori over F and let ξ : LS → LT be an injective tempered L-
embedding. Since T∨ is abelian, the restriction ξ0 : S

∨→ T∨of ξ is WF -equivariant, or
equivalently ΓF -equivariant. Let ξ∗0 : T → S be the homomorphism with (ξ∗0)

∨ = ξ0.
Then ξ0,∗ : H1

c (WF , S
∨(1)) → H1

c (WF , T
∨(1)) and ξ∗0 : T (F ) → S(F ) are adjoint with

respect to the Langlands pairings for S and T .
Let a ∈ H1

c (WF , S
∨1) = Φtemp(S). We have ξ∗(a) = aξ · (ξ0,∗a), where aξ ∈

Z1
c (WF , T

∨1) is the 1-cocycle determined by ξ. For t ∈ T (F ), we have

χξ∗(a)(t) = 〈ξ∗(a), t〉 = 〈aξ, t〉〈(ξ0,∗a), t〉 = 〈aξ, t〉〈a, ξ∗0(t)〉 = χaξχa(ξ
∗
0(t)).
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We will write χξ = χaξ a for brevity.
Since ξ0 is injective, ξ∗0 : T → S is a quotient homomorphism. The Haar measure

dt on T (F ) disintegrates into measures µs on the fibres (ξ∗0)
−1(s) such that∫

T (F )

dt =

∫
S(F )

∫
(ξ∗0)

−1(s)

dµs(t) ds.

We can describe the measures µs concretely as follows. Let D = ker(ξ∗0 : T (F ) →
S(F )). If s = ξ∗0(t) we have (ξ∗0)

−1(s) = tD and the measure µs on (ξ∗0)
−1(s) is

obtained by transporting a suitably normalised Haar measure on D along the map
D → tD, d 7→ td.

Let f ∈ S(T ) = C(T ). For all a ∈ H1
c (WF , S

∨1) = Φtemp(S), we have∫
S(F )

χa(s)(Tξf)(s) ds = (Tξf)(a)

= f(ξ∗(a))

=

∫
T (F )

χξ∗(a)(t)f(t) dt

=

∫
T (F )

χξ(t)χa(ξ
∗
0(t))(t)f(t) dt

=

∫
S(F )

χa(s)

∫
(ξ∗0)

−1(s)

χξ(t)f(t) dµs(t) ds.

It follows that for all s ∈ S(F ) we have

(Tξf)(s) =

∫
(ξ∗0)

−1(s)

χξ(t)f(t) dµs(t)

=

∫
T (F )

χξ(t)f(t) dµs(t)

where we have used µs to also denote the pushforward of µs to T (F ).

5.3.2 Complex groups

Let H,G be connected reductive groups over C and let ξ : LH → LG be an equivalence
class of injective tempered L-homomorphism. Let S be a minimal Levi subgroup
(maximal torus) of H and let T be a minimal Levi subgroup (maximal torus) of G.
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We have a commutative diagram

LH LG

LS LT

ξ

ξ

of equivalence classes of L-homomorphisms. We may apply the considerations of the
preceding subsection to ξ : LS → LT .

Define s ∈ S to be ξ-regular if

dim(TG-sing ∩ (ξ∗0)
−1(s)) < dim((ξ∗0)

−1(s))

and ξ-singular otherwise. Let Sξ-reg (resp. Sξ-sing) denote the set of ξ-regular (resp. ξ-
singular) elements of S. If s ∈ Sξ-reg, then µs(TG-sing∩(ξ∗0)−1(s)) = 0. Let D = ker(ξ∗0).
We have a direct product decomposition D = AD◦ for a finite subgroup A ⊆ D.

Lemma 5.3.1. We have Sξ-sing =
⋃

a∈A
⋃

α∈Φ(G,T ),α(D◦)=1 ξ
∗
0(a kerα). Furthermore,

Sξ-sing is a closed subvariety of S of positive codimension.

Proof. Suppose that s ∈ Sξ-sing, that is s ∈ S with

dim(TG-sing ∩ (ξ∗0)
−1(s)) = dim((ξ∗0)

−1(s)).

Then TG-sing contains an irreducible component of (ξ∗0)−1(s) of maximum dimension.
Write (ξ∗0)

−1(s) = tD. Then there exists a ∈ A such that taD◦ ⊆ TG-sing. Let
α ∈ Φ(G, T ) be a root such that α(taD◦) = 1. Then α(ta) = 1 and α(D◦) = 1. It
follows that s ∈

⋃
a∈A

⋃
α∈Φ(G,T ),α(D◦)=1 ξ

∗
0(a kerα).

Conversely, suppose that s ∈
⋃

a∈A
⋃

α∈Φ(G,T ),α(D◦)=1 ξ
∗
0(a kerα). There exist a ∈

A, α ∈ Φ(G, T ) with α(D◦) = 1, and c ∈ kerα such that s = ξ∗0(ak). Then (ξ∗0)
−1(s) =

akD. Now, kD◦ is an irreducible component of (ξ∗0)−1(s) of maximum dimension that
is contained in kerα, and thus TG-sing. Therefore s ∈ Sξ-sing.

We have shown that Sξ-sing =
⋃

a∈A
⋃

α∈Φ(G,T ),α(D◦)=1 ξ
∗
0(a kerα). Now, ξ∗0(a kerα) =

ξ∗0(a)ξ
∗
0(kerα), and ξ∗0(kerα) is a closed subgroup of S. Therefore Sξ-sing is a closed
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subvariety of S. Moreover, we have

dim ξ∗0(a kerα) = dim kerα− dim ker ξ∗0
≤ dimT − 1− dim ker ξ∗0
= dimS − 1.

Thus, Sξ-sing has positive codimension in S.

Let fG ∈ S(G) and write fH , fT , fS for its associated stable transfers to H, T ,
and S, respectively. Let s ∈ SH-reg. We have fH(s) = fS(s) by parabolic descent.
Using the notation of the preceding subsection, we obtain

fH(s) =

∫
T

χξ(t)f
T (t) dµs(t).

Suppose further that s ∈ Sξ-reg. Then µs(TG-sing ∩ (ξ∗0)
−1(s)) = 0, and

fH(s) =

∫
TG-reg

χξ(t)f
T (t) dµs(t).

Parabolic descent gives us

fH(s) =

∫
TG-reg

χξ(t)f
G(t) dµs(t)

Let cG : TG-reg → TG-reg/W (G, T ) = ∆rs(G) be the natural map. Then

fH(s) =

∫
∆rs(G)

fG(δ) d(cG)∗(χξµs)(δ)

Since SH-sing ∪Sξ-sing is a closed subvariety of S of positive codimension, the set of
H-regular and ξ-regular elements of S is an open dense subset. Its image ∆rs,ξ-reg(H)

in ∆rs(H) is an open dense subset. Thus, the above formula determines fH .
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