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Abstract

We define a notion of modularity for a function on the symmetric space Dm = G/K for

G = O(m,m). We define symplectic theta functions which are functions on Dm × Hn,

where Hn is the Siegel upper half space of genus n, which are modular in both variables.

We pair these symplectic theta functions with modular forms on Hn to obtain modular

forms on Dm, and we compute their Fourier coefficients. We do this for cusp forms and

weakly holomorphic modular forms in the case when n = 1, and for cusp forms when n > 1.

In the case where n = 2 we obtain complete explicit formulas, and in the case where n > 2

we reduce the computation of the Fourier coefficients to the calculation of a single integral.
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Chapter 1

Introduction

This thesis concerns automorphic forms for the split algebraic group Om,m defined over Q,

from a classical point of view. Denote by G the real points of Om,m:

G = O(m,m) =

{
g =

(
a b

c d

)
: Q[g] = Q

}

where Q =

(
1m

1m

)
, and for matrices A and B, we write A[B] = tBAB, where tB

denotes the transpose of B. The corresponding Riemannian symmetric space has a model

given by:

D = {ξ = X + Y ∈Mm(R) : tX = −X, tY = Y, Y > 0}.

and the action of G on D is given by

g · ξ = (aξ + b)(cξ + d)−1.

and this action has a pair of factors of automorphy,

j±(g, ξ) = cξ± + d

where ξ± = X ± Y . By a modular form for G we will mean a function Φ : D → Vρ, where

Vρ is a representation of GLm(R), that transforms under translations by γ ∈ Γ = Om,m(Z)

as:

Φ(γξ) = ρ(j−(γ, ξ))Φ(ξ) (1.1)

(More generally we could have a representation ρ of GLm(R)×GLm(R) and take modular

to mean Φ(γ, ξ) = ρ
(
j+(γ, ξ), j−(γ, ξ)

)
Φ(ξ), but in this work we will consider ones that

only depend on j−). We compare this to the case of classical and Siegel modular forms. In
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CHAPTER 1. INTRODUCTION 7

that case we have the group G′ = Spn(R), given by:

G′ =

{
g =

(
a b

c d

)
: J [g] = J

}

where J =

(
1n

−1n

)
. This group has a Hermitian symmetric space H:

H = {τ = x+ iy ∈Mn(C) : tx = x, ty = y, y > 0}

with the action of G′ on H given by

g · τ = (aτ + b)(cτ + d)−1.

This action has the GLn(C) valued factor of automorphy j(g, τ) = cτ + d. A modular

form for Spn(R) is then a holomorphic function f : H → Vκ, where κ is a holomorphic

representation of GLn(C), that satisfies:

f(γτ) = κ(j(γ, τ))f(τ) (1.2)

for γ ∈ Γ′ = Spn(Z), together with a finiteness condition at the cusp when n = 1. The most

commonly studied are the scalar valued modular forms that satisfy f(γτ) = (cτ + d)κf(τ)

or f(γτ) = det(cτ + d)κf(τ) when n = 1 or n > 1, respectively. We seek to provide

classical formulas for modular forms for Om,m(R) in analogy to the theory for Spn(R).

More specifically, we will construct modular forms on D by integrating modular forms on

H against a theta kernel.

In Chapter 2 we will fix some notation about G and G′, and also discuss this space D
in more detail, as well as some natural functions associated to this space. There is another

notion of factors of automorphy on D valued in O(m) × O(m) that essentially come from

the Cartan decomposition of G, which we will denote by k±(g, ξ), and we will describe

their relation to j±(g, ξ). We will describe a set of generators of Γ. We will also recall a

low dimensional exceptional isomorphism SO0(2, 2) ∼= SL2(R)×±1 SL2(R) that leads to an

identification D2
∼= H1 ×H1.

In Chapter 3 we will discuss modular forms on H of full level Γ′ = Spn(Z), and in

particular the theory of Hecke operators. Most of this will be review of the standard theory,

however we will also look at a less common class of Hecke operators that change the level of

a modular form. We will call these operators T (D) (Definition 3.2.7) indexed by diagonal

matrices D whose entries are positive integers that satisfy a certain divisibility condition.

Next we will define the notion of a modular form for O(m,m) (1.1). Just as with Siegel

modular forms these functions have a Fourier expansion, except in this case it is with respect

to skew symmetric matrices:
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Φ(ξ) =
∑

S∈Skewm(Z)

eπi trSXaS(Y )

where aS : Sym+
m(R) → Vρ are some functions of a positive definite matrix variable. We

will also describe how to convert between the notion of modularity in (1.1) and a notion of

modularity with respect to the factors of automorphy k±.

We will describe how the two notions of modularity on D2
∼= H1 ×H1 in the senses of

(1.2) and (1.1) are related (in this case it is more convenient to use the notion of modularity

on O(2, 2) with respect to k±). In particular for a modular form Φ̃ on D2 that satisfies

Φ̃(γξ) = ρ
(
k+(γ, ξ), k−(γ, ξ)

)
Φ̃(ξ), we will describe how to obtain a function F (τ1, τ2) on

H1 ×H1 that satisfies F (γ1τ1, γ2τ2) = j(γ1, τ1)κ1j(γ2, τ2)κ2F (τ1, τ2), where (κ1, κ2) are two

integers depending on the representation ρ.

In the last section of chapter 3, we will define a class of functions on D ×H which we

will call symplectic theta functions:

Definition 1.0.1 (Symplectic Theta Functions - Definition 3.4.1). For ξ = X + Y ∈ D,

τ = x+ iy ∈ H, and p ∈ C[Mm,n(C)] a polynomial of an m× n matrix variable, define:

Θ(ξ, τ ; p) =
∑

w∈Mm,2n(Z)

p(ητ (w))eπi trX〈w,w〉e−π trY (w,w)τ (1.3)

where 〈w,w〉 = wJ tw is an integral skew symmetric matrix, and (w,w)τ is an m × m

symmetric matrix depending on τ and w such that tr(w,w)τ is a positive definite symmetric

bilinear form on Mm,2n(R). This defines a function Θ : D ×H → C[Mm,n(C)]∗.

Theorem 1.0.2 (Theorem 3.4.2). These functions are modular on both D and H, in the

sense that:

Θ(γξ, γ′τ ; p) = | det j−(γ, ξ)|nΘ
(
ξ, τ ; σ

(
j−(γ, ξ), j(γ′, τ)

)−1
p
)

(1.4)

where σ is the representation of GLm(C)×GLn(C) on C[Mm,n(C)] given by σ(α, a)p(η) =

p(α−1ηa), and ητ (w) = w1τ + w2.

The proof is similar to the proof of modularity for the classical theta function and

is proved by an application of Poisson summation. Θ(ξ, τ) takes values in an infinite

dimensional vector space C[Mm,n(C)]∗. We have that C[Mm,n(C)] ∼=
⊕

κ(V(m)
κ )∗ ⊗ V(n)

κ

where V(n)
κ is an irreducible representation of GLn(C), and V(m)

κ is the corresponding rep-

resentation of GLm(C). We can then take projections in C[Mm,n(C)]∗ to obtain functions

Θκ : D ×H → V(m)
κ ⊗ (V(n)

κ )∗. These functions satisfy:

Θκ(γξ, γ′τ) = | det j−(γ, ξ)|n
(
κ(m)(j−(γ, ξ))

)
⊗
(
(κ(n))∗(j(γ, τ))

)
Θκ(ξ, τ)

In chapters 4 and 5 we will pair Θκ(ξ, τ) with a modular form f(τ) of weight κ, to
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obtain a function invariant under Γ′ in τ which we will denote by (f,Θ)(ξ, τ), given by the

natural pairing between Vκ and V∗κ. We will then define the theta lift of f to be:

Φf (ξ) =

∫
Γ′\H

(f,Θ)(ξ, τ)
dxdy

det yn+1
(1.5)

(see Definitions 4.1.1, 4.2.3, and 5.1.1 for the precise definitions in context). The function

Φf (ξ) is an example of a modular form on D of weight ρκ = | det |n ⊗ κ(m) and we will

endeavor to find explicit formulas for it, in particular for its Fourier coefficients. We identify

the underlying space Vρκ that Φf takes values in with HomGLn(C)(Vκ,C[Mm,n(C)])∗, and

will often express formulas for Φf in terms of its evaluation on a P : Vκ → C[Mm,n(C)].

Given a P ∈ HomGLn(C)(Vκ,C[Mm,n(C)]) we have P (fτ)) ∈ C[Mm,n(C)], and we have:

Φf (ξ;P ) =

∫
Γ′\H

∑
w∈Mm,2n(Z)

P (f(τ))(ητ (w))eπi trX〈w,w〉e−π trY (w,w)τ det y−1−ndxdy

When n = 1 or κ is a scalar representation we have that HomGLn(C)(Vκ,C[Mm,n(C)]) ∼=
C[Mm,n(C)]κ, the κ isotypic component of C[Mm,n(C)], and we will write p for a polynomial

in place of P . In this case we have simply that P (f(τ))(η) = f(τ)p(η)

In Chapter 4 we will consider theta lifts of modular forms from SL2(R) (n = 1). We

will do this for both cusp forms and for weakly holomorphic modular forms, where we allow

for a pole at the cusp. The latter will require a regularized integral in equation 1.5, and

we follow [1] for this (see Definition 4.2.3). We will define functions τ1(ξ, w), τ2(ξ, w) ∈ H1

that depend on a ξ ∈ D and a w ∈ Mm,2(R) of rank 2. For such w = (w1, w2) we will also

define η(ξ, w) = τ2(ξ, w)w1 + w2.

Theorem 1.0.3 (Theorem 4.1.16). Suppose that f is a Hecke cusp form of weight κ. Then

for p ∈ C[Cm]κ we have:

Φf (ξ; p) = 2
∑
S0∈S1
µ>0

eπi trµS0Xaµp
(
η(Y,w0)

)
y1(Y,w0)−1e−2πµy1(Y,w0)f

(
τ2(Y,w0)

)
(1.6)

where S1 is the set of primitive rank 2 matrices in Skewm(Z), and for S0 ∈ S1, w0 ∈
Mm,2(Z) is such that 〈w0, w0〉 = S0, and we have written τ2(Y,w0), etc. in place of τ2(ξ, w0),

etc to emphasize that those terms depend only on the Y variable of ξ, and y1(Y,w0) for the

imaginary part of τ1(Y,w0).

The expression in the theorem above hints at a relationship between the lift to O(m,m)

and the lift to O(2, 2). We can express this more precisely with a general theorem that will

hold for lifts of cusp forms from any Spn(R), which states roughly that the lift to O(m,m)

for m > 2n is “comes from” by the lift to O(2n, 2n). More precisely:
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Theorem 1.0.4 (Theorems 4.1.17 and 5.2.1). Suppose that f is a cusp form on Hn of weight

κ, and write Φ
(m)
f for the lift to O(m,m) (1.5). If m < 2n, then Φ

(m)
f is identically 0. For

m > 2n, denote by P 2n(Z) ⊂ GLm(Z) the subgroup P 2n(Z) =

(
GL2n(Z)

∗ GLm−2n(Z)

)
.

For ξ ∈ Dm, denote by [ξ]m,2n ∈ D2n the matrix obtained by taking the top left 2n × 2n

minor of ξ. We will write V(m)
ρκ for the domain of Φ

(m)
f . We will also define a certain

map [−]m,2n : V(2n)
ρκ → V(m)

ρκ (this map is essentially the dual to the map C[Mm,n(C)] �

C[M2n,n(C)] obtained by setting the bottom m− 2n rows to 0). Then we have

Φ
(m)
f (ξ) =

∑
A∈P 2n(Z)\GLm(Z)

ρκ(tA)[Φ
(2n)
f ([Aξ tA]m,2n)]m,2n (1.7)

We will then describe what Φf (ξ) is on D2 in terms of the exceptional isomorphism

D2
∼= H1 ×H1. As we described earlier we have a way of going from Φf , a modular form

on D2, to Ff , a modular form on H1 ×H1. This function Ff is given by:

Theorem 1.0.5 (Theorem 4.1.18 ). When f(τ) is a Hecke eigenform, we that the Theta

lift of f to H1 ×H1 is

Ff (τ1, τ2) = f(τ1)f(τ2)

The main computations involve a two step unfolding process. From its definition (1.5),

Φf is immediately expressible as a sum over w ∈ Mm,2(Z) of integrals over a fundamental

region. The first step is to group these w according to right SL2(Z) orbits, which has the

effect of enlarging the domain of integration (Lemma 4.1.3). Due to f being a cusp form

all terms except those corresponding to w of rank 2 integrate to 0. We then obtain that

each Fourier coefficient is expressible as a finite sum of integrals over H. This finite sum

can then be grouped together for the effect of acting on f by a Hecke operator (Lemma

4.1.13). Ultimately the result is to condense many integrals into a single integral which is

evaluated. This process is mirrored in chapter 5 where we examine lifts of cusp forms from

Spn(R) to O(m,m).

In the second part of Chapter 4 we handle the lifts of weakly holomorphic modular

forms. These are modular functions on H1 that are allowed to have a pole at the cusp,

while otherwise being holomorphic on the interior of H1. In this case the integral defining

Φf does not converge, so we follow the regularization procedure used in [1] to define the theta

lift Φf (Definition 4.2.3). These give modular forms on Dm with singularities along sub-

manifolds Dλ, corresponding to positive length vectors λ ∈ Zm,m, such that a−(λ,λ)/2 6= 0 in

the Fourier expansion of f , (Theorem 4.2.5). In this case the unfolding method gives two

classes of orbits corresponding to w ∈Mm,2(Z) of rank 1 and 2, and we will separate their

sums to define Φf,1 and Φf,2 with Φf = Φf,1 + Φf,2. The function Φf,1 is the constant term

of the Fourier expansion of Φf . For z ∈ C with Re(z) large and Y ∈ Sym+
m(R), we define

Epstein zeta functions (Definition 4.2.13):
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ζ(z, Y ; p) =
∑

u∈Zm\{0}

p(u)

(tuY u)z
(1.8)

In Lemma 4.2.14 we follow the same steps as [2] (Theorem 3 of §1.5) to prove a meromorphic

continuation and functional equation for these functions without the assumption that p is

Y -spherical. This was likely known but was not written down due to being unwieldy, but

it is necessary for us to input arbitrary polynomials into these Zeta functions. These zeta

functions are used to express Φf,1.

We then examine the rank 2 pieces, Φf,2. We show that on a region of D where the

minimal eigenvalue of Y is bounded below by some number depending on f that Φf,2 defines

a real analytic function of ξ. On that region we have:

Theorem 1.0.6 (Theorem 4.2.26). Suppose that the weakly holomorphic modular form f

has the Fourier expansion f(τ) =
∑

n≥−n0
ane

2πinτ . The on a region of the form

R = {ξ ∈ D : tuY u > Cf for all u ∈ Z\{0}}

(where Cf is some positive constant depending on f), the regularized lift Φf : D → Vρκ
(4.2.3) has the Fourier expansion:

Φf (ξ; p) = a0
1

π
ζ(1, Y ; p)

+ 2
∑
S0∈S1
µ>0

eπiµ trXS0p(η(Y,w0))y1(Y,w0)e−2πµy1(Y,w0)
∞∑

n=−∞
cµ,ne

2πinτ2(ξ,S0)

where ζ(1, Y ; p) is the Epstein zeta function (where we take the constant term at z = 1 in

case m = 2 and ζ(z, Y ; p) has a pole at z = 1), and cµ,n are some coefficients given as finite

sums of the coefficients of f .

Under the correspondence for modular forms on D2 and H1 × H1 these together give

what Borcherds calls the Singular Shimura Correspondence in Chapter 14 of [1].

Theorem 1.0.7 (Theorem 4.2.27). When f is a weakly holomorphic modular form, the

Singular Shimura Correspondence to O(2, 2) is:

Ff (τ1, τ2) = a0
(κ− 1)!ζ(κ)

iκπκ
Eκ(τ2) + 2κ+1

∑
m>0
n≥−n0

cm,ne
2πinτ1e2πimτ2 (1.9)

where cm,n are some coefficients defined in terms of the coefficients of f , and Eκ is the weight

κ holomorphic Eisenstein series. This is a modular form of weight (κ, κ) on H1×H1, with

singularities that are poles of weight κ along the divisors τ1 = γτ2 for γ ∈ M2(Z) with

det γ = n > 0 and the −n Fourier coefficient of f non-zero.
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This theorem exists implicitly in [1], however it is not given explicitly for the correspon-

dence to O(2, 2), and we come about this formula in a different way.

In Chapter 5 we will pair the theta functions with Siegel cusp forms, where we will

be able to lift arbitrary holomorphic Siegel cusp forms, including the more exotic vector

valued ones where Vκ is not a one dimensional representation of GLn(C). To calculate the

Fourier coefficients aS(Y ) of Φf , we follow a similar two step unfolding procedure as in the

previous chapter. First we show that all orbits except for those with rank w = 2n integrate

to 0 in Lemmas 5.1.7 and 5.1.9. This is crucial in the proof of Theorem 1.0.4 and in the

calculation of the Fourier coefficients for the lift to O(2n, 2n), which are then obtained by

the sum of a finite number of integrals over Hn. The modularity of Φf implies relationships

between the Fourier coefficients, and so it is sufficient to calculate aD(Y ) := aJ(D)(Y ),

where J(D) =

(
D

−D

)
for D diagonal and integral. For D0 = diag(d1, . . . , dn−1, 1),

with dn−1| . . . |d1, we define:

φf,D0(ξ) =

∞∑
d=1

eπi tr dJ(D0)XadD0(Y ), (1.10)

and then we have another expression for Φf :

Φf (ξ) =
∑
D0

∑
A∈GL2n(Z)/Spn(Z;D0)

ρκ(A)φf,D0(ξ[A])

Where D0 ranges over matrices as given above, and

Spn(Z;D0) = {γ ∈ GL2n(Z) : J(D0)[tγ] = J(D0)}

The second step of the unfolding procedure involves grouping all of the integrals giving

aD(Y ) for the effect of acting on f by a Hecke operator. We define a particular integral

I(Y ; f ;P )

I(Y ; f ;P ) =

∫
H
P (f(τ))(ητ (1))e−π trY (1,1)τ det y−1−ndxdy

We have that a1(Y ;P ) = 2I(Y ; f ;P ), and more generally:

Lemma 1.0.8 (Lemma 5.3.4).

aD(Y ;P ) = 2µ(D)n(n+1)/2I
(
T (D)f ; µ(D)YD′ ; PD′

)
(1.11)

where T (D) is the Hecke operator associated to the matrix D (Definition 3.2.7), and YD0

and PD0 are some slightly modified versions of Y and P depending on D0. When D = dIn

is a scalar matrix these are simply the usual degree d Hecke operators, and when f is a

Hecke eigenform the Hecke eigenvalues of f will appear in this way.
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When n = 2 we are able to completely evaluate I(Y ; f ;P ) to obtain explicit formulas

for aD(Y ). The key integration is performed in Lemma 5.3.9. Despite being significantly

more complicated than the main integration in chapter 4 in Lemma 4.1.12, it follows a

similar path. In this case matrix argument K-Bessel functions come up, and again there is

a useful special form for K
(2)
1/2(z) due to Herz [3]. It is also a key feature here that the N

that appears as the summation index for the modular form f(τ) =
∑

N aNe
2πi trNτ appears

linearly inside an exponential in the final formula, allowing for us to deal with polynomial

factor cleanly 5.3.12. The integration involved in the lift from n = 2 is similar in many key

aspects to the lift from n = 1, which leads to hope that the pattern can be extended to

n > 2. Unfortunately we are not yet able to work out the integral when n > 2, stopping

further progress in calculating the Fourier coefficients for n > 2.

Theorem 1.0.9 (Theorem 5.3.13). Suppose that f scalar is a Hecke eigenform of genus 2

with Hecke eigenvalues T (d)f = λ(d)f . Then:

adI2(Y ; p) = λ(d)
e−2πd tr |M(Y )|

2 detY 1/2 tr |M(Y )|
E(Y ; p)f

(
τ(Y )

)
where τ(Y ) and M(Y ) are certain H2 and M2(R) valued functions of Y (Definition 5.3.7),

and E(Y ; p) is a function given by evaluating the polynomial p at a matrix η(Y ) depending

on Y (Definition 5.3.11).

The functions φf,D0(ξ) have a relationship to the Spin L-function of f .

Theorem 1.0.10 (Theorem 5.3.19). For Y and p fixed, consider t3φI2(tY ; p) as a function

of t ∈ R>0. Its Mellin transform with respect to t is

Mt(t
3φI2(tY ; p))(s) =

f(τ(Y ))E(Y ; p)

2 detY 1/2 tr |M(Y )|
× Γ(s)L(s; f ; spin)

(2π tr |M(Y )|)sζ(2s− 2κ+ 4)
(1.12)

Where L(s, f ; Spin) is the Spin L-function of f .

We hope that deeper investigation of the Hecke operators T (D) for D0 not equal to I2

can reveal similar formulas for φf,D0 , possibly involving other L-functions of f .

This work takes place within the wider context of the Theta correspondence where

extensive work has been done for a few decades at least. This thesis distinguishes itself

from the existing work by its focus on obtaining explicit formulas for the functions obtained

via the theta lift. In the literature most work is framed in terms of the representation

theoretic aspect of the correspondence. Given a holomorphic cuspidal Hecke eigenform, f ,

on Hn, this determines in a standard way a cuspidal automorphic representation of Spn(A),

πf . This representation factors as πf =
⊗

p≤∞ πf,p. The Archimedean place, πf,∞ is a

discrete series representation determined by the weight of f , and the p-adic factors are

spherical representations whose Satake parameters are related to the Hecke eigenvalues of

f . The corresponding representation, θ(πf ) of Om,m(A) under the Theta correspondence is
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then determined as the product of local correspondences: θ(πf ) =
⊗

p≤∞ θ(πf,p). It long

understood how these correspondences go, see for example [4] for p =∞ and [5] for p <∞.

This does not shed light on what sort of functions actually live inside of θ(πf ), however.

This thesis hopes to shed light on an answer at least when n = 1 and n = 2.

It should also be noted that the vanishing of the lift to O(m,m) for m < 2n (part of

theorem 1.0.4) is known due to the vanishing of the lift of the holomorphic discrete series

from Spn(R) to O(m,m) with m < 2n.



Chapter 2

Symplectic and Orthogonal Groups

2.1 Orthogonal Groups

Denote by Q =

(
0 1m

1m 0

)
, and V the vector space R2m (written as column vectors) with

symmetric bilinear form given by Q which we will denote by (v, v′) = tvQv. We will usually

write elements v ∈ V as

(
v1

v2

)
, so that (v, v′) = tv1v

′
2 + tv2v

′
1. We will also write Rm,m to

denote the same space. Define the group G by:

G = O(m,m) =

{
g =

(
a b

c d

)
∈ GL2m(R) : Q[g] = Q

}
(2.1)

the group of orthogonal transformations preserving the bilinear form on V . We will think

of G as acting on vectors in V on the left. We mention this in contrast to later when we

will define Spn(R) that will be thought of as acting on row vectors on the right. We will

define P to be the maximal parabolic subgroup stabilizing the maximal isotropic subspace

spanned by the columns of

(
1m

1

)
. P has a Levi decomposition P = NM with:

M =

{
m(α) =

(
α

tα−1

)
: α ∈ GLm(R)

}
,

N =

{
n(β) =

(
1 β

1

)
: β ∈ Skewm(R)

} (2.2)

Where Skewm(R) denotes the set of skew symmetric matrices with entries in R. We also

define the maximal compact subgroup:

K =

{
(k+, k−) =

1

2

(
k+ + k− k+ − k−
k+ − k− k+ + k−

)
: k+, k− ∈ O(m)

}
. (2.3)

15
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We haveK = K+×K− whereK± is the subgroup with k∓ = 1, with both factors isomorphic

to O(m). We define K∆ ⊂ K as the subgroup with k+ = k−, and we have K∆ = K ∩M .

Definition 2.1.1 (The Symmetric Space Dm). Define Dm to be:

Dm = {ξ = X + Y ∈Mm(R) : X ∈ Skewm(R), Y ∈ Sym+
m(R)} (2.4)

Where Sym+
m(R) denotes the set of positive definite symmetric matrices. For ξ ∈ Dm, write:

ξ± = X ± Y

We will write D without the subscript if we are not worried about ambiguity.

Lemma 2.1.2. Points ξ ∈ D correspond to pairs (V +
ξ , V

−
ξ ) where V ±ξ are maximal ±-

definite subspaces of V , are mutually perpendicular, and we have that V = V +
ξ ⊕ V

−
ξ is an

orthogonal decomposition of V . The space V ±ξ is given by:

V ±ξ = colspan

(
ξ±

1

)
(2.5)

Proof. Suppose first that we have a maximal positive definite subspace of V . Choose some

basis of that space and write it as the columns of the matrix

(
v1

v2

)
. Consider now the

linear (but not orthogonal) projection V → Rm given by

(
v′1
v′2

)
7→ v′2. Its kernel is spanned

by the columns of

(
1m

0

)
, which is isotropic. Thus the kernel of this map and our positive

definite subspace must intersect only trivially, so that we conclude that the projection is

surjective, and so v2 is invertible. Then the columns of

(
v1

v2

)
v−1

2 =

(
v1v
−1
2

1

)
also span the

same maximal positive definite subspace, as they are an invertible linear combination of the

original columns. Thus we have seen that any maximal positive definite subspace can be

given as the column span of a matrix of the form

(
ξ

1

)
for some ξ ∈Mm(R).

Now we will consider which such ξ = X+Y with X ∈ Skewm(R) and Y ∈ Symm(R) may

appear. As the space is maximal positive definite, the matrix of bilinear products between

the basis vectors must be a positive definite matrix. This product is

((
ξ

1

)
,

(
ξ

1

))
=

ξ + tξ = 2Y . Thus the condition is that Y must be positive definite, i.e. Y ∈ Sym+
m(R).

Likewise the columns span of any matrix of the form

(
ξ

1

)
will be a maximal positive definite

subspace so long as Y > 0, and this subspace will be uniquely specified by ξ.

Thus suppose we have some maximal positive definite subspace V +
ξ specified. Denote
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by V −ξ its perpendicular, which will be a maximal negative definite subspace. We can see

that

((
ξ+

1

)
,

(
ξ−

1

))
= tξ+ +ξ− = 0, so that V −ξ is spanned by the columns of

(
ξ−

1

)
.

From the interpretation of D given in the previous lemma, D inherits an action of G via

the action of G on subspaces of V .

Lemma 2.1.3. The action of G on D is given by:(
a b

c d

)
· ξ = (aξ + b)(cξ + d)−1 (2.6)

Proof. From the previous lemma we write V +
ξ = colspan

(
ξ

1

)
. Then we have:

(
a b

c d

)(
colspan

(
ξ

1

))
= colspan

(
aξ + b

cξ + d

)
= colspan

(
(aξ + b)(cξ + d)−1

1

)

We will record the action of some particular elements of G on D:

m(α) · ξ = αξ tα = ξ[tα]

n(β) · ξ = ξ + β

Q · ξ = ξ−1

(2.7)

and also

K = stab G(1) (2.8)

Define a subgroup B0,0 ⊂ GLm(R) as:

B0,0 = {α ∈ GLm(R) : α is lower triangular with positive diagonal entries} (2.9)

And define a subgroup B0 ⊂ P :

B0 = {n(β)m(α) : β ∈ Skewm(R), α ∈ B0,0} (2.10)

We have that B0 ∩K = {1}, and G = B0K, so that every g ∈ G can be uniquely written

as g = bk with b ∈ B0, k ∈ K. We also obtain an identification of B0 with D:

Definition 2.1.4 (gξ). For ξ = X+Y ∈ D, let α be the unique α ∈ B0,0 such that α tα = Y .
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Then define:

gξ =

(
1 X

1

)(
α

tα−1

)
(2.11)

so that we have gξ · 1 = ξ.

The group G has 4 connected components, corresponding to the connected components

of K, with π0(G) ∼= {±1}2. The map sending g ∈ G to the element of π0(G) corresponding

to its connected component is given by π0(g) = (det k+,det k−) for g = bk with b ∈ B0 and

k ∈ K. We will write G0 = SO0(m,m) for the connected component of the identity. For

m(α) ∈M , we have π0(m(α)) = (sgn detα, sgn detα), and we have π0(Q) = (1, (−1)m).

We define Γ ⊂ G to be the subgroup of integral matrices:

Γ = GL2m(Z) ∩O(m,m). (2.12)

Equivalently, Γ is the stabilizer of the lattice Z2m ⊂ R2m. Define subgroups of Γ: PΓ = Γ∩P ,

MΓ = Γ ∩M , and NΓ = Γ ∩N , so that:

MΓ =

{(
α

tα−1

)
: α ∈ GLm(Z)

}

NΓ =

{(
1 S

1

)
: S ∈ Skewm(Z)

} (2.13)

and PΓ = NΓMΓ. We will also define some elements related to the Weyl group of G. For

I ⊆ {1, . . . ,m}, define 1I to be the m×m matrix:

(1I)ij =

1 i = j, and i ∈ I

0 otherwise

This is an m×m identity matrix with diagonal entries whose indices are in I replaced by

0. Let I = {1, . . . ,m} − I. Define QI ∈ O(m,m) by:

QI =

(
1I 1I

1I 1I

)
(2.14)

When I = ∅ have QI = 1, and when I = {1, . . . ,m} we have QI = Q. We have π0(Q) =

(1, (−1)|I|).

Lemma 2.1.5. Γ is generated by the subgroups MΓ and NΓ, and the elements QI . More

specifically Γ is generated by the subgroups MΓ, NΓ, and the element QI with I = {1}.

Proof. Suppose that we have

(
a b

c d

)
∈ Γ. We may multiply on the left and right by

elements of MΓ so that w.l.o.g. we may assume that c is in Smith normal form, so that the
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matrix is: 
a11 a12 b11 b12

a21 a22 b21 b22

D 0 d11 d12

0 0 d21 d22


with D = diag(c1, . . . , cr) with cr| . . . |c1, each positive and non-zero. As this matrix is in

O(m,m), we may infer that a11 = a12 = b12 = 0, and Db11 = 1r. Thus we have that D = 1r

as b11 and D are integral. Thus the matrix is:
0 0 1 0

a12 a22 b12 b22

1 0 d11 d12

0 0 d21 d22


after which left multiplication by QI with I = {1, . . . , r} puts it in MΓ. Finally to show

that just Q{1} is sufficient, if σ is a permutation of {1, . . . ,m} we will identify it with its

m ×m permutation matrix. Then we have that conjugating QI by m(σ) gives QσI . Thus

from Q{1} and these permutation matrices we can obtain all other QI with I a singleton.

Finally we have that QIQI′ = QI4I′ where here we use I4I ′ for the symmetric difference

of I and I ′, so that we can obtain any QI .

2.1.1 Factors of Automorphy and Majorized Inner Products

Definition 2.1.6 (Factors of Automorphy for the action of G on D valued in GLm(R)).

For g =

(
a b

c d

)
∈ G and ξ ∈ D, define:

j±(g, ξ) = cξ± + d (2.15)

(recall ξ± = X ± Y ).

Remark 2.1.7. These functions j±(g, ξ) are analogous to the standard factor of automor-

phy (and its complex conjugate) for the action of Spn(R) on Hn, the Siegel upper half space,

which we will review in the next section.

Lemma 2.1.8. j±(g, ξ) are factors of automorphy for the action of G on D. That is we

have:

j±(gg′, ξ) = j±(g, g′ξ)j±(g′, ξ) (2.16)

Proof. Consider the action of a g ∈ G on the matrix

(
ξ±

1

)
. We have that

g

(
ξ±

1

)
=

(
aξ± + b

cξ± + d

)
=

(
(gξ)±

1

)
j±(g, ξ).
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It follows that we have:(
((gg′)ξ)±

1

)
j±(gg′, ξ) =

(
(g(g′ξ))±

1

)
j±(g, g′ξ)j±(g′, ξ)

and so (2.16) follows as

(
(gg′ξ)±

1

)
is full rank.

We will record some special values for j±(g, ξ) below:

Lemma 2.1.9. Suppose that k = (k+, k−) ∈ K, m(α) ∈M for α ∈ GLm(R), and n(β) ∈ N
for β ∈ Skewm(R). Then:

j±(k, 1) = k±

j±(m(α), ξ) = tα−1

j±(n(β), ξ) = 1

j±(Q, ξ) = (ξ±)−1

(2.17)

Remark 2.1.10. We can ask as well what component of GLm(R) these automorphy factors

live in. Recall that π0(GLm(R)) = {±1}, with the map given by π0(α) = sgn detα. The

maps j± : G×D are continuous, so that we have that π0 ◦ j± is constant on the connected

components of G. From the top line of (2.17) we have that (det j+(g, ξ), det j−(g, ξ)) =

π0(g). We also have a formula for evaluating π(j±(g, ξ)) directly by evaluating at ξ = 1,

where we obtain that:

sgn det j±(g, ξ) = sgn det(d± c) (2.18)

There are a number of natural functions associated to ξ ∈ D that have transformation

properties with respect to these j±.

Lemma 2.1.11. The function ξ 7→ Y on D transforms as:

Y (gξ) = Y (ξ)[j±(g, ξ)−1] (2.19)

where ± should be chosen consistently in this formula. One consequence of this formula is:

|det j+(g, ξ)| = |det j−(g, ξ)|. (2.20)

Proof. ((
ξ±

1

)
,

(
ξ±

1

))
= ±2Y (ξ).
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Thus we have

±2Y (g · ξ) =

((
(gξ)±

1

)
,

(
(gξ)±

1

))

= tj±(g, ξ)−1

((
ξ±

1

)
,

(
ξ±

1

))
j±(g, ξ)−1

= ±2Y (ξ)[j±(g, ξ)−1]

using that (gv, gv′) = (v, v′).

We now define some functions from V to Rm that depend on ξ.

Definition 2.1.12 (ν±ξ ). For ξ ∈ D, define functions ν±ξ : V → Rm by:

ν±ξ (v) :=

((
ξ±

1

)
, v

)
= v1 + tξ±v2 = v1 + (±Y −X)v2 (2.21)

These functions are the products v with the basis of V ±ξ we have defined (2.5). They

satisfy a transformation property with respect to G:

ν±ξ (g−1v) = tj±(g, ξ)ν±gξ(v) (2.22)

Denote by pr±ξ the orthogonal projection to V ±ξ . We can express this in terms of ν±ξ :

pr±ξ (v) = ±1

2

(
ξ±

1

)
Y −1ν±ξ (v) (2.23)

Definition 2.1.13 (Majorized Bilinear Form on V ). For ξ ∈ D, define a positive definite

symmetric bilinear form by:

(v, v′)ξ = (v, v′)+
ξ + (v, v′)−ξ (2.24)

where (v, v′)±ξ are the positive semi-definite bilinear forms defined by:

(v, v′)±ξ = ±(pr±ξ (v), pr±ξ (v′)) (2.25)

We have that (v, v′) = (v, v′)+
ξ − (v, v′)−ξ , so that another way to write (v, v′)ξ is

(v, v′)ξ = (v, v′) + 2(v, v′)−ξ

These can be expressed in terms of ν±ξ as well:

(v, v′)±ξ =
1

2
tν±ξ (v)Y −1ν±ξ (v′) (2.26)
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and

(v, v)ξ =
1

2

(
tν+
ξ (v)Y −1ν+

ξ (v) + tν−ξ (v)Y −1ν−ξ (v)
)

= t(v1 −Xv2)Y −1(v1 −Xv2) + tv2Y v2

(2.27)

These bilinear forms satisfy a transformation property with respect to the action of G:

(g−1v, g−1v′)ξ = (v, v′)gξ,

(g−1v, g−1v′)±ξ = (v, v′)±gξ

(2.28)

We also extend ν±ξ and all the products associated to V to elements in M2m,n(R) ∼= V n,

thought of as row vectors of elements of V . Then for v, v′ ∈ V n, (v, v′), (v, v′)ξ, etc. will be

n× n matrices, and ν±ξ (v) will be an m× n matrix. When we do this we have that (2.22),

(2.27), and (2.28) all continue to hold.

We will also define some factors of automorphy for the action of G on D that are valued

in K. These are the standard K valued factors of automorphy for D ∼= G/K associated to

the Cartan decomposition.

Before consideringG andD, first consider the (transitive) action ofGLm(R) on Sym+
m(R)

given by A·Y = Y [tA]. For each Y there is a unique α(Y ) ∈ B0,0 such that α(Y ) tα(Y ) = Y .

We have that B0,0 ∩ O(m) = {1} and GLm(R) = B0,0O(m) so that any A ∈ GLm(R) can

be uniquely written as A = αK with α ∈ B0,0 and k ∈ O(m). Thus we define:

Definition 2.1.14 (Factor of Automorphy for the action of GLm(R) on Sym+
m(R)). For

A ∈ GLm(R) and Y ∈ Sym+
m(R), define k(A, Y ) ∈ O(m) by:

Aα(Y ) = α(A · Y )k(A, Y ) (2.29)

It is straightforward to check that this is a factor of automorphy, i.e. that k(AA′, Y ) =

k(A,A′ · Y )k(A′, Y ).

In the same way we define a K valued factor of automorphy for the action of G on D:

Definition 2.1.15 (Factor of Automorphy for the action of G on D). For g ∈ G and ξ ∈ D,

define k(g, ξ) ∈ K by:

ggξ = gg·ξk(g, ξ) (2.30)

and define k±(g, ξ) ∈ K± by

k(g, ξ) = (k+(g, ξ), k−(g, ξ)) (2.31)

We will record some special values for these factors of automorphy:
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Lemma 2.1.16. Suppose that k = (k+, k−) ∈ K, m(α) ∈M , n(β) ∈ N , and ξ ∈ D. Then:

k(k, 1) = k

k±(k, 1) = k±

k(m(α), ξ)) = (k(α, Y ), k(α, Y ))

k(n(β), ξ) = 1

We also have a way to relate the two pairs of factors of automorphy that we have defined

for the action of G on D.

Proposition 2.1.17. The factors of automorphy j±(g, ξ) and k±(g, ξ) have the following

relationship with each other:

tα(gξ)j±(g, ξ) = k±(g, ξ) tα(ξ) (2.32)

Proof. We have that:

j±(g, ξ) = j±(g, gξ · 1)

= j±(ggξ, 1)j±(gξ, 1)−1

= j±(ggξ, 1)j±(k(g, ξ), 1)j±(gξ, 1)−1

From (2.17) we have that this is tα(gξ)−1k±(g, ξ) tα(ξ), which gives the result.

2.2 Symplectic Groups

Denote by J =

(
0 1n

−1n 0

)
and by W the vector space isomorphic to R2n, written as

row vectors, with the alternating form 〈w,w′〉 = wJ tw′. We will write elements of W as

w = (w1, w2), and then 〈w,w′〉 = w1
tw′2 − w2

tw′1. Write G′ to be the group of symplectic

linear transformations of this space:

G′ = Spn(R) =

{
g =

(
a b

c d

)
∈ GL2n(R) : J [g] = J

}

which acts on W on the right. Define P ′ to be the Siegel parabolic subgroup, the maximal

parabolic subgroup consisting of elements of the form

(
∗ ∗
∗

)
. We will define M ′ and N ′
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to be its subgroups:

M ′ =

{
m(a) =

(
a

ta−1

)
: a ∈ GLn(R)

}

N ′ =

{
n(b) =

(
1 b

1

)
: b ∈ Symn(R)

}

so that P ′ = N ′M ′. Let K ′ be the maximal compact subgroup given by elements of the

form:

K ′ =

{(
a b

−b a

)
∈ G′

}
Let Hn be the genus n Siegel upper half space:

Hn = {τ = x+ iy : x ∈ Symn(R), y ∈ Sym+
n (R)}

We will drop the subscript n unless we feel it necessary to avoid ambiguity. The group G′

acts on H via: (
a b

c d

)
· τ = (aτ + b)(cτ + d)−1 (2.33)

The subgroup K ′ is the stabilizer of iIn ∈ H. The action has a factor of automorphy valued

in GLn(C) given by:

j(g, τ) = cτ + d (2.34)

The factor of automorphy gives an isomorphism K ′ ∼= U(n), the group of unitary matrices

in GLn(C), via j(−, iIn):

j

((
a b

−b a

)
, iIn

)
= a− ib

Definition 2.2.1 (gτ ). For τ = x + iy ∈ H, let a be the unique element of B0,0 such that

a ta = y. Then define:

gτ =

(
1 x

1

)(
a

ta−1

)
(2.35)

Define B′0 to be the subgroup of P ′ consisting of elements n(b)m(a) for a ∈ B0,0. The

elements gτ defined above give an identification between H and B′0. We note that this

allows to a way to define a factor of automorphy for the action of G′ on H valued in K ′ by

ggτ = ggτk(g, τ).

Using τ ∈ Hn we can define an identification between W and Cn as follows:

Definition 2.2.2 (ητ (w) and ητ (w)). For w = (w1, w2) ∈W and τ ∈ H, define:

ητ (w) = w1τ + w2, ητ (w) = −w1τ + w2 (2.36)
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These functions satisfy transformation properties with respect to G′:

ητ (wg) = ηgτ (w)j(g, τ), ητ (wg) = ηgτ (w)j(g, τ) (2.37)

For τ ∈ H, we also define an element in Jτ ∈ G′:

Jτ = gτJg
−1
τ (2.38)

We have gJτg
−1 = Jgτ . The element Jτ gives a complex structure on W as J2

τ = −1, and

is compatible with the above identifications of W with Cm:

ητ (wJτ ) = (−i)ητ (w), ητ (wJτ ) = iητ (w) (2.39)

They can also be used to form a positive definite inner product on W .

Definition 2.2.3 (Positive Definite Product on W ). For τ ∈ H, define the positive definite

product:

(w,w′)τ := 〈w,w′Jτ 〉 = wgτ
tgτ

tw′ (2.40)

If w = (w1, w2), then we have:

(w,w)τ = w1y
tw1 + (w1x+ w2)y−1 t(w1x+ w2)

This product has a transformation property given by:

(wg,w′g)τ = (w,w′)gτ (2.41)

We will also use ητ and the products 〈w,w′〉 and (w,w′)τ to denote similar things on

Wm ∼= Mm,2n(R), thought of as column vectors of m elements in W , so that ητ (w) will be

an m× n complex matrix, and 〈w,w′〉 and (w,w′)τ are m×m matrices. Then we have:

ητ (w)y−1 tητ (w) = 〈w,w〉+ i(w,w)τ

where 〈w,w〉 will be a skew symmetric matrix, and (w,w)τ a positive semi-definite matrix.

We will also make use of the group GSpn(R):

GSpn(R) =

{
g =

(
a b

c d

)
∈ GL2n(R) : J [g] = µ(g)J

}
for a homomorphism µ : GSpn(R)→ R× called the similitude of g. We will write GSp+

n (R)

for the subgroup with µ(g) > 0. GSp+
n (R) contains G′ = Spn(R) as the subgroup of

elements with µ(g) = 1. GSp+
n (R) acts on H via the same formula as (2.33), and has the

same factor of automorphy as in (2.34). Formulas (2.37) and (2.38) also hold, and we have:
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〈wg,w′g〉 = µ(g)〈w,w′〉, (wg,w′g)τ = µ(g)(w,w′)gτ

2.3 Exceptional Isomorphism SL2(R)×±1 SL2(R) ∼= SO0(2, 2)

Define two embeddings ι1, ι2 : SL2(R) ↪→ O(2, 2) by:

ι1

((
a b

c d

))
=


a −b

a b

c d

−c d


ι2(g) =

(
tg−1

g

)

These two embeddings commute, and so define a map SL2(R) × SL2(R) to O(2, 2). The

kernel of this map is {(1, 1), (−1,−1)}. Define SL2(R) ×±1 SL2(R) to be the quotient

of SL2(R) × SL2(R) by this subgroup, so that ι = ι1 × ι2 defines an isomorphism of

SL2(R) ×±1 SL2(R) onto its image, which is SO0(2, 2). The maximal compact subgroup

SO(2)×±1 SO(2) is carried into K, so that ι1 × ι2 descends to a map H1 ×H1
∼= D2. The

map can be described explicitly:

ξ(τ1, τ2) = X(τ1) + Y (τ1, τ2) = −x1J + y1
tg−1
τ2 g
−1
τ2

=

(
−x1

x1

)
+
y1

y2

(
1 −x2

−x2 x2
2 + y2

2

)
,

(τ1(ξ), τ2(ξ)) =

(
−X12 + i

√
detY ,−Y12

Y11
+ i

√
detY

Y11

) (2.42)

Furthermore, we have:

ι1(gτ1)ι2(gτ2) = gξ(τ1,τ2) (2.43)

it will also be worthwhile to record α(τ1, τ2), the unique lower triangular matrix with positive

diagonal entries so that α(τ1, τ2) tα(τ1, τ2) = Y (τ1, τ2):

α(τ1, τ2) =
√
y1

tg−1
τ2 =

√
y1

y2

(
1

−x2 y2

)
(2.44)

The isomorphism can be described in another way. Consider the vector space M2(R)

with the bilinear form defined by polarizing (v, v) = 2 det v. Then if we write v =
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(
v11 v12

−v22 v21

)
, we have det v = v11v21 +v12v22, giving an isometry with V = R2,2. SL2(R)×

SL2(R) acts on M2(R) by (g1, g2)v = g1vg
−1
2 , which is identified with the embeddings ι1, ι2

under the isometry. From this it is clear that the isomorphism takes SL2(Z) ×±1 SL2(Z)

into SO0(2, 2) ∩ Γ.

As mentioned the image of SL2(R)×±1 SL2(R) is only the connected component of the

identity of O(2, 2), and it it worth recording how the other connected components of O(2, 2)

act on H1 ×H1. Write ε ∈ O(2) for the element:

ε =

(
−1

1

)

We have the elements (ε, ε), (ε, 1) ∈ K in the (−1,−1) and (−1, 1) components of G, re-

spectively, and their action in terms of τ is given by:

(ε, ε) · ξ(τ1, τ2) = ξ(−τ1,−τ2)

(ε, 1) · ξ(τ1, τ2) = ξ(τ2, τ1)
(2.45)

As mentioned above, the maximal compact subgroup SO(2) ×±1 SO(2) ⊂ SL2(R) ×±1

SL2(R) is mapped isomorphically onto K0
∼= SO(2) × SO(2) ⊂ SO0(2, 2). Writing an

element of SO(2) as:

kθ =

(
cos θ sin θ

− sin θ cos θ

)
we have that:

ι(kθ1 , kθ2) = (kθ2−θ1 , kθ1+θ2) (2.46)

There are potentially 3 different choices of factors of automorphy that could apply. First

there is the standard factor of automorphy on H1 ×H1 for the action of SL2(R)× SL2(R)

given by j

((
a b

c d

)
, τ

)
= cτ+d in each factor. Then there is also the factor of automorphy

valued in K ∼= O(2) × O(2) for the action of O(2, 2) on D2, and the factors j± valued in

GL2(R).

To begin with, given the standard factor of automorphy on H1 for the action of SL2(R),

we can construct a U(1) ∼= SO(2) valued factor by:

χ(g, τ) =
j(g, τ)

|j(g, τ)|

We will fix an isomorphism between U(1) and SO(2) such that eiθ is identified with kθ. We

will write k(eiθ) = kθ for one direction and χ(kθ) = eiθ for the other. Recall that we have
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ggτ = ggτk(g, τ) for some k(g, τ) ∈ SO(2). This is given specifically by:

ggτ = ggτk

(
j(g, τ)

|j(g, τ)|

)−1

,

and matrix k
(
j(g,τ)
|j(g,τ)|

)
is equal to:

k

(
j(g, τ)

|j(g, τ)|

)
=

1

|j(g, τ)|

(
cx+ d cy

−cy cx+ d

)
We can thus describe the relationship between k on D2 and (j1, j2) on H1 × H1, in the

following:

Lemma 2.3.1. for (g1, g2) ∈ SL2(R)×±1 SL2(R) and (τ1, τ2) ∈ H1 ×H1, we have:

k
(
ι(g1, g2), ξ(τ1, τ2)

)
=

(
k

(
j(g1, τ1)

|j(g1, τ1)|

)
k

(
j(g2, τ2)

|j(g2, τ2)|

)−1

, k

(
j(g1, τ1)

|j(g1, τ1)|

)−1( j(g2, τ2)

|j(g2, τ2)|

)−1
)

Proof. As we have ι restricts to an isomorphism between the maximal compact subgroups

and we have equation 2.43, we have:

ι(g1, g2)gξ(τ1,τ2) = gξ(g1τ1,g2τ2)k(ι(g1, g2), ξ(τ1, τ2))

on one hand, and

ι(g1, g2)gξ(τ1,τ2) = ι(g1gτ1 , g2gτ2) = ι(gg1τ1 , gg2τ2)ι

(
k

(
j(g1, τ1)

|j(g1, τ1)|

)−1

, k

(
j(g2, τ2)

|j(g2, τ2)|

)−1
)

on the other. Thus we have

k(ι(g1, g2), ξ(τ1, τ2)) = ι

(
k

(
j(g1, τ1)

|j(g1, τ1)|

)−1

, k

(
j(g2, τ2)

|j(g2, τ2)|

)−1
)

and the result follows from equation 2.46.

We can also express the factors of automorphy j±, and we have:

j±
(
ι(g1, g2), ξ(τ1, τ2)

)
=
(
c1 (x1 ± y1Jg2τ2) + d1

)
g2

If we examine the first part
(
c1

(
x1 ± y1Jg2τ2

)
+ d1

)
, this is an element of GL2(R), and

if we identify R2 with C via the complex structure given by Jg2τ2 , this is multiplication

by c1τ1 + d1 or c1τ1 + d1, depending on whether ± = + or −, respectively. Thus we can

think of the factors of automorphy j± as the usual factor of automorphy for the first H1

(or it’s complex conjugate), with the complex structure modified by the second H1, up to
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this factor g2 on the right.



Chapter 3

Modular Forms

3.1 Modular Forms on SL2(R)

Definition 3.1.1 (Modular Forms on H1). We will say that a function f : H → C is

modular of weight κ ∈ Z if it satisfies:

f(γτ) = j(γ, τ)κf(τ). (3.1)

for all γ ∈ Γ′ = SL2(Z). If f is holomorphic on H1, then it has a Fourier expansion of the

form:

f(τ) =
∑
n

ane
2πinτ

We will say that f is a holomorphic modular form if we have an = 0 for all n < 0, a

cusp form if further an = 0, and a weakly holomorphic modular form if there is an n0 > 0

so that a−n0 6= 0 and an = 0 for all n < −n0. In this case we will say that the weakly

holomorphic modular form has a pole of order n0 at ∞.

If f is holomorphic on H, We will denote by Sκ(Γ′) the space of cusp forms of weight κ

for Γ′, and M !
κ(Γ′) the space of weakly holomorphic modular forms for Γ′. Note that Sκ(Γ′)

is always finite dimensional, while M !
κ(Γ′) is infinite dimensional, but has a filtration by

finite dimensional subspaces given by bounding the order of the pole at the cusp. Denote

by Mµ
2 (Z) = {γ ∈ M2(Z) : det γ = µ}, and M+

2 (Z) = M2(Z) ∩ GL+
2 (R){γ ∈ M2(Z) :

det γ > 0}. For g ∈ GL+
2 (R), define the slash operator:

f |κg (τ) = (det g)κ−1j(g, τ)−κf(gτ) (3.2)

We have that f |κγ = f for all γ ∈ Γ′. For µ ∈ Z>0, define the Hecke operators on H1 to be:

T (µ) =
∑

γ∈Γ′\Mµ
2 (Z)

f |κγ(τ) (3.3)

30
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These operators are endomorphisms of Sκ(Γ′), and set {T (µ) : µ ∈ Z>0} is a commuting

set of operators. Sκ(Γ′) has a simultaneous eigenbasis for this action, and we will call an

simultaneous eigenvector for all of the operators T (µ) an eigenform. We will assume that

an eigenform is normalized so that a1 = 1. For such a form we have that

T (µ)f = aµf (3.4)

so that the coefficients of f coincide with the eigenvalues of the Hecke operators.

3.2 Siegel Modular Forms

Definition 3.2.1 (Siegel Modular Form). Suppose that (Vκ, κ) is a holomorphic represen-

tation of GLn(C). We will say that a function f : Hn → Vκ is modular of weight κ and

level Γ′ = Spn(Z) if we have:

f(γτ) = κ(j(γ, τ))f(τ) (3.5)

for all γ ∈ Γ′ and τ ∈ Hn. We say that it is a Siegel modular form if moreover it is

holomorphic. The special case where Vκ = C and κ is a power of the determinant will be

called a classical Siegel modular form.

For a classical Siegel modular form we will slightly abuse notation and also write κ for

the power of the determinant, so that a classical Siegel modular form satisfies the more

familiar equation:

f(γτ) = det(cτ + d)κf(τ)

A Siegel modular form has a Fourier series:

f(τ) =
∑

N∈Symn(Z)∗

aNe
2πi trNτ (3.6)

where Symn(Z)∗ is the dual to Symn(Z) under the trace form, consisting of symmetric

matrices whose diagonals are integral and whose non-diagonal entries are in 1
2Z. The

coefficients aN ∈ Vκ are constant with respect to τ due to holomorphicity. The Koecher

principle implies that aN = 0 unless N ≥ 0, and we say that f is a cusp form if aN = 0

unless N > 0. We will denote by Sκ(Γ′) the space of cusp forms of weight κ. The action of

matrices of the form

(
tα−1

α

)
for α ∈ GLn(Z) implies relations between the coefficients:

κ(α)aN = aαN tα

The irreducible representations κ of GLn(C) are parameterized by non-increasing sequences

of integers κ1 ≥ . . . ≥ κn. The representation detκ corresponds to the sequence (κ, . . . , κ).
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Define the total weight of κ to be:

d(κ) =
∑
i

κi (3.7)

We have that for scalar matrices zIn ∈ GLn(C) that κ(zIn) = zd(κ).

Remark 3.2.2. There is a positivity condition on the weights κ that can occur for a non-

zero cusp form. Namely we have Sκ(Γ′) = {0} unless κn > 0 (see for example proposition

1 on page 192 of [6]).

3.2.1 Hecke Operators

Definition 3.2.3 (Slash Operator). For A ∈ GSpn(R), and f : Hn → Vκ, define the slash

operator of weight κ associated to A to be:

f |κA(τ) = µ(A)d(κ)−n(n+1)/2κ(j(A, τ)−1)f(Aτ) (3.8)

We will omit κ when it is clear from context.

Remark 3.2.4. For a classical Siegel modular form of weight detκ we have that (3.8) is

f |κA(τ) = µ(A)nκ−n(n+1)/2 det j(A, τ)−κf(Aτ)

The slash operator gives a right action of GSp+
n (R) on the space of functions on Hn,

i.e. (f |κg1)|κg2 = f |κg1g2 for all g1, g2 ∈ GSp+
n (R). This action preserves holomorphicity of

f . Suppose that f is modular of weight κ with respect to a subgroup Γ′′ ⊂ Spn(R), (i.e.

that it satisfies 3.5 for γ ∈ Γ′′). We have first of all that f |γ = f , for all γ ∈ Γ′′, and if

A ∈ GSp+
n (R), we have that f |A is modular of weight κ for AΓ′′A−1.

When A ∈ GSpn(Q) has the form A =

(
µm

tm−1

)
for a m ∈ GLn(Q), and f is a

Siegel modular form whose Fourier expansion is given in (3.6), then f |A also has a Fourier

expansion:

f |A(τ) = µd(κ)−n(n+1)/2
∑

N∈µ tmSymn(Z)∗m

κ(tm)aµ−1 tm−1Nm−1e2πi trNτ

Another special case is:

f |κrI2n(τ) = rd(κ)−n(n+1)f(τ)

Define GSpn(Z) = GSpn(Q) ∩GL2n(Z) and for µ ∈ Z,
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GSpµn(Z) = {g ∈ GSpn(Z) : µ(g) = µ}

GSp+
n (Z) = {g ∈ GSpn(Z) : µ(g) > 0}

(3.9)

GSpn(Z) is a monoid under multiplication, and we haveGSpµ1n (Z)·GSpµ2n (Z) = GSpµ1µ2n (Z).

Γ′ = GSp1
n(Z) is the set of invertible elements of GSp+

n (Z). It is a standard fact that for a

given µ we have:

Γ′\GSpµn(Z)/Γ′ =



a1

. . .

an

d1

. . .

dn


: ai, di > 0, aidi = µ, a1| . . . |an|d1| . . . |dn


.

(3.10)

In particular Γ′\GSpµn(Z)/Γ′ has finitely many elements. We can consider these double

cosets to be the orbits of Γ′ acting on Γ′\GSp+
n (Z) on the right. it is another standard fact

that each of these orbits are finite, namely:

Γ′gΓ′ =
⊔
i

Γ′gi (3.11)

where i ranges over some finite index set and gi are representatives for the action of Γ′

on Γ′\GSp+
n (Z). We have as well that the representatives of Γ′\GSp+

n (Z) may be taken to

be elements of the form (
a b

0 d

)
(3.12)

with a upper triangular, and b is unique modulo Symn(Z)d. Define Hn to be the set of

formal Z-linear sums of double cosets:

Hn = Z{Γ′\GSp+
n (Z)/Γ′} (3.13)

Definition 3.2.5 (Hecke Operators). For g ∈ GSp+
n (Z), define T (g) to be the element of

Hn given by the double coset Γ′gΓ′. For µ ∈ Z>0, we define:

T (µ) =
∑

g∈Γ′\GSpn(Z)/Γ′

T (g) (3.14)
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We will call T (µ) the total Hecke operator of degree µ.

It is well known that Hn may be given a commutative algebra structure, and it acts on

the space Sκ(Γ′) by:

T (g)f(τ) =
∑
i

f |gi(τ) (3.15)

where the gi are the representatives in (3.11). In particular, the total Hecke operators act

as:

T (µ)f(τ) =
∑

g∈Γ′\GSpµn(Z)

fg(τ) (3.16)

The action of Hn on Sκ(Γ′) has a common eigenbasis, and we call a simultaneous

eigenvector for the action of Hn a Hecke eigenform. Unlike when n = 1, the Hecke theory

is more complicated and there is not a straightforward relationship between the coefficients

of f and the eigenvalues of Hecke operators. Given a Hecke eigenform, f , we will define it’s

µ-total Hecke eigenvalue to be the λ(µ) such that:

T (µ)f = λ(µ)f (3.17)

We will be led to consider some more uncommon spaces of Hecke operators that change

the level of a modular form. Suppose now that Γ′′ is a finite index subgroup of Γ′. Denote

by Hn(Γ′,Γ′′) the module of Z linear combinations of double cosets:

Hn(Γ′,Γ′′) = Z{Γ′\GSp+
n /Γ

′′} (3.18)

As Γ′′ is finite index, we have as well that:

Γ′ · g · Γ′′ =
⊔
i

Γ′ · gi (3.19)

for i ranging over some finite index subset and gi representatives of Γ′\GSp+
n (Z).

Lemma 3.2.6 (Level Changing Hecke Operators). Suppose that g ∈ GSp+
n (Z). Define

T (g; Γ′,Γ′′) ∈Hn(Γ′,Γ′′) to be Γ′gΓ′′. Hn(Z) defines elements of Hom(Sκ(Γ′), Sκ(Γ′′)) by:

T (g; Γ′,Γ′′)f =
∑
i

f |gi (3.20)

Proof. It is quick to verify that T (g; Γ′,Γ′′)f is modular of weight κ for Γ′′. For γ ∈ Γ′′, we

have that γ permutes the cosets Γ′gi, so that:

(T (g; Γ′,Γ′′)f)|γ =
∑
i

f |giγ =
∑
i

f |γigi =
∑
i

f |gi = T (g; Γ′,Γ′′)f
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where γi are some elements in Γ′.

We will be particularly interested in such Hecke operators for certain paramodular sub-

groups we will denote by Γ′(D′). Given a diagonal matrix D′ with positive integral entries

D′ = diag(d′1, . . . , d
′
n) with di|di+1, we define Γ′(D′) to be:

Γ′(D′) = Γ′ ∩

(
D′

1

)−1

GL2n(Z)

(
D′

1

)
(3.21)

These groups Γ′(D′) are finite index subgroups of Γ′, and we can give a concrete description

of them:

Γ′(D′) =

{(
a b

c d

)
∈ Γ′ : c(D′)−1 ∈Mn(Z), D′a(D′)−1 ∈Mn(Z)

}
(3.22)

Definition 3.2.7 (D-total Hecke operator). Suppose that D is a positive integral diagonal

matrix D = diag(d1, . . . , dn) with di+1|di. 1 For such a D define µ(D) = d1. Define the

D-total Hecke operator to be:

T (D)f =
∑

g∈Γ′\GSpµ(D)
n (Z)

µ(D)−1g11D∈Mn(Z)

f |g (3.23)

where g =

(
g11 g12

g22

)
is a representative for Γ′\GSpµ(D)

n (Z) of the form (3.12).

For a diagonal matrix D as defined above, we will define D′ = µ(D)D−1. Then D′ =

diag(1, d′2, . . . , d
′
n) with di|di+1. Each D is given uniquely as D = dD0 with d = dn and

D0 = diag(d1/dn, . . . , 1). We have that D′ = D′0, so this assignment D 7→ D′ depends only

on D0.

Lemma 3.2.8. The total Hecke operator T (D) is an element of Hn

(
Γ′,Γ′(D′)

)
.

Proof. We have (D′)−1 = µ(D)−1D. Thus we need to show that the set{(
g11 g12

g22

)
: g11(D′)−1 ∈Mn(Z)

}
(3.24)

is right Γ′(D′) stable. Suppose that g =

(
g11 g12

g22

)
, and γ ∈ Γ′(D′), so that

γ =

(
D′

1

)−1

γ′

(
D′

1

)
1Note the opposite order to the definition of D′ above. In general we will use the apostrophe (D′) when

the condition is increasing divisibility down the diagonal and no apostrophe (D) when the condition is
decreasing divisibility
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for some γ′ ∈ GL2n(Z). Let g′ =

(
g′11 g′12

g′22

)
be the representative of the class of gγ, so

that g′ = γ′′gγ for some γ′′ ∈ Γ′. We have that g11 = g′′11D
′ for an integral matrix g′′11 by

supposition, so that we have:(
g′11 g′12

g′22

)
= γ′′

(
g′′11D

′ g12

g22

)(
D′

1

)−1

γ′

(
D′

1

)
= γ′′

(
g′′11 g12

g22

)
γ′

(
D′

1

)

We have that γ′′

(
g′′11 g12

g22

)
γ′ is integral as each matrix in the product is, so that it follows

that g′11(D′)−1 is integral as well.

Remark 3.2.9. We note that when D = diag(d, . . . , d) is a scalar matrix we have Γ′(D′) =

Γ′ so that T (D) = T (d) ∈Hn is the degree d total Hecke operator (3.14).

We have for f ∈ Sκ(Γ′), that T (D)f ∈ Sκ(Γ′(D′)). As we mentioned D′ depends only

on D0, so for D0 = diag(d1, . . . , dn−1, 1) any positive integral diagonal matrix with di+1|di,
varying d ∈ Z>0 gives a sequence of operators T (dD0) ∈ Hom

(
Sκ(Γ′), Sκ(Γ′(D′0)

)
.

We have that Hn(Γ′,Γ′(D′)) is a right module for Hn(Γ′), with the action given by

precomposition. We will not at this time explore this in detail, however we note that when

gcd(µ(D), µ) = 1 that we have T (D)T (µ) = T (µD).

3.3 Modular Forms on O(m,m)

Definition 3.3.1 (Modular forms on D). Suppose that (Vρ, ρ) is an algebraic representation

of GLm(R). Then we say that a function f : D → Vρ is modular of weight ρ if:

Φ(γξ) = ρ(j−(γ, ξ))Φ(ξ) (3.25)

for all γ ∈ Γ = Om,m(Z). We we will say moreover that Φ is a modular form if it is also

smooth.

Example 3.3.2. The function Φ(ξ) = detY on D is a modular form of weight | det |−2,

i.e. we have Φ(γξ) = | det j−(γ, ξ)|−2Φ(ξ) for all γ ∈ Γ, ξ ∈ D.

Remark 3.3.3. Earlier we defined two factors of automorphy, j±(g, ξ) on D that are

valued in GLm(R). We can use both of these to define a wider class of functions as modular

forms, namely if ρ is a representation of GLm(R)×GLm(R) we would instead require that

a function transform as:

Φ(γξ) = ρ
(
j+(γ, ξ), j−(γ, ξ)

)
Φ(ξ) (3.26)
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We have that |det j+(γ, ξ)| = |det j−(γ, ξ)| so that if Φ is modular of weight ρ, is it also

automatically modular of weight ρ⊗(|det |s⊗| det |−s), where | det |s⊗| det |−s is understood

to be the GLm(R)×GLm(R) representation give by (α1, α2) 7→ |detα1|s|detα2|−s.

We have that j±(n(S), ξ) = 1 for all n(S) =

(
1 S

1

)
, so that if Φ is modular of weight

ρ, then we have that Φ(ξ) = Φ(ξ+S) for all S ∈ Skewm(Z). Thus Φ has a Fourier expansion

in the X variable. For ξ = X + Y , we have:

Φ(ξ) =
∑

S∈Skewm(Z)

eπi trXSaS(Y ) (3.27)

where aS : Sym+
m(R)→ Vρ are the Fourier coefficients. Note that the dual of Skewm(Z) un-

der the trace pairing is 1
2Skewm(Z), which is why there is no factor of 2 in the exponent. The

modularity of Φ implies some relations between certain Fourier coefficients. We have that

j±
(
m(tA−1, ξ)

)
= A for m(A) =

(
tA−1

A

)
so that applying the modularity condition

with elements of the form m(tA−1) for A ∈ GLm(Z) implies that Φ(ξ[A−1]) = ρ(A)Φ(ξ).2

Then we have:

aS[tA](Y ) = ρ(A)aS(Y [A]) (3.28)

for all A ∈ GLm(Z). For a diagonal matrix D we will define J(D) to be the skew-symmetric

matrix:

J(D) =

 D

−D
0

 (3.29)

Definition 3.3.4 (Skew Normal Form). We say that S ∈ Skewm(Z) is in skew normal form

if S = J(D) for a matrix D = diag(d1, . . . , dr) with 2r = rank S, and d1, . . . , dr positive

integers with dn| . . . |d1.

We have that GLm(Z) acts on Skewm(Z) by A · S = S[tA], and we have (for example

from [7], page 57) that each GLm(Z) orbit on Skewm(Z) contains exactly one element in

skew normal form.

Definition 3.3.5 (Symplectic Divisors). For S ∈ Skewm(Z), we say that S has symplectic

divisors D if S = J(D)[tA] for some A ∈ GLm(Z). In this case we write sd(S) = D.

Because of the relations between the Fourier coefficients (3.28), all of the Fourier coef-

ficients are determined by the coefficients for S in skew normal form

2If we were to use the notion of modularity in (3.26) then we understand A to be in the diagonally
embedded GLm(R)
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Definition 3.3.6 (Representative Fourier Coefficients). For D = diag(d1, . . . , dr) with 2r ≤
m, and d1, . . . , dr positive integers with dr| . . . |d1, we will define the representative Fourier

coefficient aD(Y ) to be defined by:

aD(Y ) = aJ(D)(Y ) (3.30)

Remark 3.3.7 (Modular forms with respect to the factors of automorphy k±). We will

also note that it is possible to alternatively define the notion of a modular form on D in

terms of the factors of automorphy k±(g, ξ) defined in definition 2.1.15. Let (Vρ̃, ρ̃) be a

representation of O(m)×O(m). We will say that a smooth function Φ̃ : D → Vρ̃ is modular

with respect to the factors of automorphy k± of weight ρ̃ if it satisfies

Φ̃(γξ) = ρ̃
(
k+(γ, ξ), k−(γ, ξ)

)
Φ̃(ξ) (3.31)

for all γ ∈ Γ and ξ ∈ D. This is related to the notion of modular with respect to the factors

of automorphy j± in (3.26). Suppose that ρ is a representation of GLm(R)×GLm(R), and

define ρ̃ to be the representation of O(m)×O(m) obtained by restricting ρ to the subgroup

O(m)×O(m) ⊂ GLm(R)×GLm(R). Suppose that Φ : D → Vρ is a modular form of weight

ρ. Then define a function Φ̃ : D → Vρ by:

Φ̃(ξ) = ρ(tα(ξ))Φ(ξ) (3.32)

where tα(ξ) is the element of B0,0 such that α(ξ) tα(ξ) = Y , and is embedded into GLm(R)×
GLm(R) diagonally. Then we have as a consequence of (2.32) that Φ̃ is a modular form of

weight ρ̃ in the sense of (3.31). As we have k±(n(S), ξ) = 1 we have a Fourier expansion

for Φ̃:

Φ̃(ξ) =
∑

S∈Skewm(Z)

eπi trSX ãS(Y ) (3.33)

for Fourier coefficients ãS : Sym+
m(R)→ Vρ̃. If Φ and Φ̃ are related via (3.32), then we have

ãS(Y ) = ρ(tα(Y ))aS(Y ). We also have relations between the Fourier coefficients similar to

(3.28):

ãS(Y [tA]) = ρ̃(k(A, Y ))ãS[A](Y ) (3.34)

where k(A, Y ) ∈ O(m) is embedded diagonally in to O(m)×O(m).

We will make two notes about this idea of obtaining this Φ̃ from Φ. First of all, even

if a GLm(R) representation is irreducible, it will usually decompose into many different

O(m) representations, including ones of different irreducible types. Thus one can obtain

many different Φ̃ from taking projections onto different O(m)×O(m) sub-representations,

all of which will be modular forms. Functions obtained this way need not have any relations

between them; it could be the case that some of them are identically 0 while others are not.

Second, it is possible to do this process in reverse. Namely if Φ̃ is a modular form
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of weight ρ̃ with respect to the factors of automorphy k±, and ρ is a representation of

GLm(R) ×GLm(R) that restricts to ρ̃, then we can define Φ(ξ) = ρ(tα(ξ)−1)Φ̃, which will

be modular of weight ρ with respect to the factors of automorphy j±. This process is not

as straightforward, however, as many GLm(R) representations can restrict to a given O(m)

representation, so that there is no notion of uniqueness in terms of which GLm(R) we should

lift to.

3.3.1 Modular Forms on O(2, 2)

We will now look more closely at modular forms for O(2, 2). In this section we will use

the notion of modular on D2 as in (3.31). We have that K ∼= O(2) × O(2), and as O(2)

is closely related to the abelian SO(2), the representation theory of O(2) is significantly

different from that of O(m) for m > 2. The irreducible representations of SO(2) are given

by Vn = C for n ∈ Z, with kθ =

(
cos θ sin θ

− sin θ cos θ

)
acting on Vn by einθ. We will also write

χn for the character χn(kθ) = einθ of SO(2). We have that O(2) ∼= SO(2) o 〈ε〉 where

ε =

(
−1

1

)
and εkθε = k−θ. We will fix a basis vector vn of Vn, so that kθ · vn = χn(kθ)vn = einθvn.

The irreducible representations of O(2) are classified by non-negative integers, n, and we

will write them as V|n|. When n = 0 the representation V|0| is the trivial representation, and

for n ≥ 1, V|n| decomposes as V−n ⊕ Vn under the restriction to SO(2), with the element ε

interchanging the factors: ε · v±n = v∓n.

Now suppose that Vρ is an irreducible representation of O(2)×O(2) where Vρ ∼= V|κ+|⊗
V|κ−| for κ+, κ− non-negative integers, and Φ̃ : D2 → Vρ is a modular form of weight ρ on

D2 in the sense of (3.31). We will denote by Φ̃±1,±2 the coefficients of Φ when written in

the basis we have fixed:

Φ̃ = Φ̃+,+(vκ+⊗vκ−)+Φ̃+,−(vκ+⊗v−κ−)+Φ̃−,+(v−κ+⊗vκ−)+Φ̃−,−(v−κ+⊗v−κ−) (3.35)

where we miss out the certain subscripts and terms if κ+ or κ− are 0. When γ ∈ Γ0 we

have that k(γ, ξ) ∈ SO(2)× SO(2) and we have:

Φ̃±1,±2(γξ) = χ±1κ+(k+(γ, ξ))χ±2κ−(k−(γ, ξ))Φ̃±1,±2(ξ). (3.36)

We will describe now how the notion of modular on D2 translates to the notion of

modular on H1 ×H1.

Lemma 3.3.8 (Correspondence between modular forms on D2 and H1×H1). Suppose that

Φ̃(ξ) is a modular form in the sense of definition 3.31 on D2 of weight ρ = V|κ+| ⊗ V|κ−|.
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Define κ1 = κ− − κ+ and κ2 = κ+ + κ−. Then the function F (τ1, τ2) defined by:

F (τ1, τ2) = y
−κ1/2
1 y

−κ2/2
2 Φ̃−,−(ξ(τ1, τ2)) (3.37)

is modular in the sense of (3.1) with weight (κ1, κ2), i.e.:

F (γ1τ1, γ2τ2) = j(γ1, τ1)κ1j(γ2, τ2)κ2F (τ1, τ2)

for all (τ1, τ2) ∈ H1 ×H1 and (γ1, γ2) ∈ SL2(Z)× SL2(Z).

Proof. Suppose that (γ1, γ2) ∈ Γ′ × Γ′. Then we have

F (γ1τ1, γ2τ2) = |j(γ1, τ1)|κ1 |j(γ2, τ2)|κ2y−κ1/21 y
−κ2/2
2 Φ̃−,−(ξ(γ1τ1, γ2τ2))

We have that ι(γ1, γ2) ∈ Γ0, so that by lemma 2.3.1 and (3.36), we have

Φ̃−,−(ξ(γ1τ1, γ2τ2)) =

(
j(γ1, τ1)

|j(γ1, τ1)|

)κ1 ( j(γ2, τ2)

|j(γ2, τ2)|

)κ2
Φ̃−,−(ξ(τ1, τ2))

showing the lemma.

Remark 3.3.9. In particular when ρ is trivial with respect to the K+ factor, the F in the

lemma above will be modular of weight κ− in both variables.

Remark 3.3.10. We can also do lemma 3.3.8 in reverse to explain how to obtain a modular

form for D2 from a modular form on H1×H1. Suppose that κ1 and κ2 are integers with κ2 ≥
max(κ1, 0) and κ1 +κ2 even. Then define κ± = (κ2∓κ1)/2, which will both be non-negative

integers by the hypothesis. Then define Φ̃−,−(ξ) = y1(ξ)κ1/2y2(ξ)κ2/2F (τ1(ξ), τ2(ξ)), and

obtain the other components in (3.35) via (2.45).

3.4 Symplectic Theta Functions

There is a class of functions on D×H called Siegel theta functions that are simultaneously

modular in both variables. The simplest example of such a function is:

∑
v∈M2m,n(Z)

det ym/2eπi tr(v,v)xe−π tr(v,v)ξy =
∑

v∈M2m,n(Z)

eπi tr((v,v)ξ+τ−(v,v)ξ−τ) (3.38)

for (ξ, τ) ∈ D×H, where (v, v) is the split bilinear form on V from Section 2.1, and (v, v)ξ is

the majorized inner product define in Definition 2.1.13. It can be modified by adding some

appropriate choice of polynomial factors to obtain functions that transform with respect to

other weights. We will take a different perspective on these sorts of functions. In particular

we note that in this function τ appears R-linearly in the exponent, so that the Fourier
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expansion with respect to the x variable of τ is straightforward. In comparison, the formula

for (v, v)ξ in terms of ξ is fairly complicated, and as a consequence it is not readily apparent

what the Fourier expansion is with respect to the X variable of ξ.

We will describe a class of functions that we will call symplectic theta functions. At the

end of this section we will show how to translate between them and Siegel theta functions.

Definition 3.4.1 (Symplectic Theta Functions). Let p(η) ∈ C[Mm,n(C)] be any polynomial,

and ξ = X+Y ∈ D, τ = x+iy ∈ H. For w = (w1, w2) ∈Mm,2n(R), define ητ (w) = w1τ+w2

as in Definition 2.2.2. We define the symplectic theta function:

Θ(ξ, τ ; p) =
∑

w∈Mm,2n(Z)

p(ητ (w))eπi tr ξητ (w)y−1 tητ (w)

=
∑

w∈Mm,2n(Z)

p(ητ (w))etrX〈w,w〉e−π trY (w,w)τ
(3.39)

where (w,w)τ is the majorized symmetric bilinear form on W described in definition 2.2.3.

This defines a function Θ : Dm ×Hn → C[Mm,n(C)]∗ given by Θ(ξ, τ)(p) = Θ(ξ, τ ; p).

When p = 1, we can compare this to the function 3.38. It appears that the variables ξ

and τ have switched places, with ξ now appearing linearly in the exponent, and τ appearing

in a complicated formula giving a majorized symmetric bilinear form. First of all we note

that as 〈w,w〉 ∈ Skewn(Z), we have that Θ(ξ + S, τ ; p) = Θ(ξ, τ ; p) for all S ∈ Skewn(Z).

One of these advantages of these symplectic theta functions is that the Fourier expansion

with respect to the X variable of ξ is apparent:

Θ(ξ, τ ; p) =
∑

S∈Skewm(Z)

eπi trXS

 ∑
w∈Mm,2n(Z)
〈w,w〉=S

p(ητ (w))e−π trY (w,w)τ

 (3.40)

We will describe how these symplectic theta functions change under the action of Γ×Γ′ on

Dm×Hn. To do so, first we note that the vector space C[Mm,n(C)] carries a representation

of Gm(C)×GLn(C) by left and right translation, respectively, which we will denote by σ:

(
σ(α, a)p

)
(η) = p(α−1ηa) (3.41)

This induces a representation of GLm(C)×GLn(C) on C[Mm,n(C)]∗ given by

(
σ∗(α, a)Θ

)
(p) = Θ(σ(α, a)−1p) (3.42)

for Θ ∈ C[Mm,n(C)]∗.

Theorem 3.4.2 (Modularity of Symplectic Theta Functions). Recall the standard factor

of automorphy on H given by j(g′, τ) = c′τ + d′ ∈ GLn(C), and we defined a factor of
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automorphy on D valued in GLm(C) given by j−(g, ξ) = cξ− + d, described in Definition

2.1.6. Then for all (γ, γ′) ∈ Γ× Γ′ and (ξ, τ) ∈ D ×H, we have:

Θ(γξ, γ′τ ; p) = |det j−(γ, ξ)|nΘ
(
ξ, τ ;σ

(
j−(γ, ξ), j(γ′, τ)

)−1
p
)

(3.43)

or in other words:

Θ(γξ, γ′τ) = |det j−(γ, ξ)|nσ∗
(
j−(γ, ξ), j(γ′, τ)

)
Θ(ξ, τ) (3.44)

Remark 3.4.3. The appearance of det j−(γ, ξ) inside of absolute values may seem some-

what strange. In light of remark 2.1.10, if we restrict to γ ∈ Γ0 = Γ ∩ G0, we can

do away with the absolute values as det j−(γ, ξ) > 0 there. Alternately we may define

ε(g) = sgn det(d − c) (2.18), and then we have |det j−(γ, ξ)|n = ε(γ)n det j−(γ, ξ)n. The

character ε(γ) of Γ depends only on the second component of the connected component

homomorphism π0 : G→ π0(G).

Remark 3.4.4. The Fourier coefficients in (3.40) themselves also transform modularly

as functions on H with respect to Γ′, as can be inferred from a slight modification in the

following proof and the fact that 〈wγ′, wγ′〉 = 〈w,w〉. They are not in any sense modular

with respect to Γ.

Proof. First we show the transformation property for τ . From (2.37) and (2.41) we have

for γ′ ∈ Γ′ and τ ∈ H:

ηγ′τ (w) = ητ (wγ′)j(γ′, τ)−1

ηγ′τ (w)(Im γ′τ)−1 tηγ′τ (w) = ητ (wγ′)y−1 tητ (wγ′)

so that we have:

Θ(ξ, γ′τ ; p) =
∑

w∈Mm,2n(Z)

p
(
ητ (wγ′)j(γ′, τ)−1

)
eπi tr ξητ (wγ′)y−1 tητ (wγ′)

= Θ
(
ξ, τ ;σ(j(γ′, τ))−1p

)
as w 7→ wγ′ simply permutes the terms of the sum. Now for the action of Γ on D. First

of all we note that it suffices to show it for elements m(A) for A ∈ GLm(Z), n(S) for

S ∈ Skewm(Z), and Q1 := Q{1} (2.14) as by lemma 2.1.5 these elements generate Γ. As we

already observed we have that Θ(ξ + S, τ) = Θ(ξ, τ), proving it for elements n(S). Next,
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we have

Θ(ξ[tA], τ ; p) =
∑

w∈Mm,2n(Z)

p(ητ (w))eπi trAξ
tAητ (w)y−1 tητ (w)

=
∑

w∈Mm,2n(Z)

p
(
tA−1ητ (tAw)

)
eπi tr ξητ (tAw)y−1 tητ (tAw)

= Θ
(
ξ, τ ;σ(tA)p

)
Where the second equality comes from w 7→ tAw simply permutes the terms in the sum on

w. Thus we have Θ
(
m(A) · ξ, τ

)
= σ∗(tA−1)Θ(ξ, τ) = σ∗

(
j−(m(A), ξ)

)
Θ(ξ, τ), showing the

claim for elements m(A). Finally we seek to show it for the element Q1. It is interesting to

note that the proof is almost identical to the proof of showing modularity of the standard

theta function. Namely we will perform a Fourier transform and apply Poisson summation.

We will write ξ in block form:

ξ =

(
ξ11 ξ12

ξ21 ξ22

)
=

(
0 X12

− tX12 X22

)
+

(
Y11 Y12

tY 12 Y22

)
with ξ11 a 1×1 matrix and ξ22 an (m−1)× (m−1) matrix (similarly for the X’s and Y ’s).

We have that:

Q1 · ξ =

(
1

ξ21 ξ22

)(
ξ11 ξ12

1

)−1

X(Q1 · ξ) =

(
0 −Y −1

11 Y12

Y −1
11

tY 12 X22 + Y −1
11 (tX12Y12 − tY 12X12)

)
,

Y (Q1 · ξ) =

(
Y −1

11 −Y −1
11 X12

−Y11
tX12 Y22 + Y −1

11 (tX12X12 − tY 12Y12)

)

and

j−(Q1, ξ) =

(
−Y11 X12 − Y12

1m

)
, j−(Q1, ξ)

−1 =

(
−Y −1

11 Y −1
11 (X12 − Y12)

1m

)

Along with this decomposition of ξ, will write elements of W ∼= Mm,2n(R) as

(
w

w

)
=(

w1 w2

w1 w2

)
with w = (w1, w2) ∈ R2n and w = (w1,w2) ∈Mm−1,2n(R). For p ∈ C[Mm,n(C)]

some polynomial, define the function:
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h

((
w

w

))
=

∫
R2n

e2πi〈w′,w〉p

(
ητ

(
w′

w

))
exp

[
πi trX

〈(
w′

w

)
,

(
w′

w

)〉]
×

× exp

[
−π trY

(
w′

w

)
gτ

tgτ
t

(
w′

w

)]
dw′

(3.45)

Next, we will write u = wgτ , u = wgτ , and perform the change of variables w′ 7→ w′g−1
τ ,

and then (3.45) is:

∫
R2n

e2πi〈w′,u〉p

((
iw′1 + w′2
iu1 + u2

)
ta−1

)

× exp

[
πi trX

〈(
w′

u

)
,

(
w′

u

)〉
− π trY

(
w′

u

)
t

(
w′

u

)]
dw′

where a ∈ GLn(R) is such that a ta = y. We have that:

trX

〈(
w′

u

)
,

(
w′

u

)〉
= 2w′2

tu1
tX12 − 2w′1

tu2
tX12 + trX〈u,u〉

and

trY

(
w′

u

)
t

(
w′

u

)
= Y11(w′1

tw′1 + w′2
tw′2) + 2(w′1

tu1
tY 12 + w′2

tu2
tY 12) + trY22u

tu

so that we have:

trY

(
w′

u

)
t

(
w′

u

)
− i trX

〈(
w′

u

)
,

(
w′

u

)〉
= trY22u

tu− i trX22〈u,u〉

+ Y11

(
w′1 + Y −1

11 (Y12u1 + iX12u2)
)
t
(
w′1 + Y −1

11 (Y12u1 + iX12u2)
)

+ Y11

(
w′2 + Y −1

11 (Y12u2 − iX12u1)
)
t
(
w′2 + Y −1

11 (Y12u2 − iX12u1)
)

− Y −1
11 (Y12u1 + iX12u2) t(Y12u1 + iX12u2)− Y −1

11 (Y12u2 − iX12u1) t(Y12u2 − iX12u1)

and then performing the change of variables w′1 7→ w′1 − Y −1
11 (Y12u1 + iX12u2)

)
, w′2 7→

w′2 − Y
−1

11 (Y12u2 − iX12u1)
)
, and collecting out terms that do not depend on w′, the (3.45)

is:
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exp

[
πi trX(Q1 · ξ)

〈(
u

u

)
,

(
u

u

)〉
− π trY (Q1 · ξ)

(
u

u

)
t

(
u

u

)
+ π trY −1

11 u tu

]

×
∫
Rn+iY −1

11 X12u2

∫
Rn−iY −1

11 X12u1

e2πi(w′1
tu2−w′2 tu1)

× p

((
iw′1 + w′2 + Y −1

11 (X12 − Y12)(iu1 + u2)

iu1 + u2

)
ta−1

)
e−πY11(w′1

tw′1+w′2
tw′2) dw′1dw

′
2

(3.46)

We note that by the contour integration trick for Gaussians the domain of integration can

be converted back into an integration over R2n. We also use another trick related to Fourier

transforms and polynomials. If p′(w′1, w
′
2) is some polynomial in w′1, w

′
2, then

∫
Rn

∫
Rn
e2πi〈w′,u〉p′(w′1, w

′
2)ϕ(w′1, w

′
2)dw′1dw

′
2

= p′
(

1

2πi

∂

∂u2
,− 1

2πi

∂

∂u1

)∫
Rn

∫
Rn
e2πi〈w′,u〉ϕ(w′1, w

′
2)dw′1dw

′
2

where p′
(

1
2πi

∂
∂u2

,− 1
2πi

∂
∂u1

)
is the differential operator obtained by replacing the w′ variables

by the prescribed differentiation with respect to u. It is characterized by:

p′
(

1

2πi

∂

∂u2
,− 1

2πi

∂

∂u1

)
e2πi〈w′,u〉 = p′(w′1, w

′
2)e2πi〈w′,u〉

We thus obtain that the integral in (3.46) is:

Y −n11 p

((
1

2π

(
−i ∂

∂u1
+ ∂

∂u2

)
+ Y −1

11 (X12 − Y12)(iu1 + u2)

iu1 + u2

)
ta−1

)
e−πY

−1
11 u tu

Next, we have that for p′′ ∈ C[Cn], that

p′′
(

1

2π

(
−i ∂
∂u1

+
∂

∂u2

))
e−πY

−1
11 u tu = p′′

(
− Y −1

11 (iu1 + u2)
)

since we have
1

2

(
−i ∂
∂u1

+
∂

∂u2

)
eu

tu = (iu1 + u2)eu
tu

and further that
1

2

(
−i ∂
∂u1

+
∂

∂u2

)
(iu1 + u2) = 0.

Then, after putting the u and u terms back in terms of w and w, we obtain:
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h

((
w

w

))
= Y −n11 p

(
j−(Q1, ξ)

−1ητ (w)
)
e−π trX(Q1·ξ)〈w,w〉e−π trY (Q1·ξ)(w,w)τ

Thus by Poisson summation applied to (3.45) we have that:∑
w∈Mm,2n(Z)

p(ητ (w))eπi trX(ξ)〈w,w〉e−π trY (ξ)(w,w)τ

= | det j−(Q1, ξ)|n
∑

w∈Mm,2n(Z)

p
(
j−(Q1, ξ)

−1ητ (w)
)
eπi trX(Q1·ξ)〈w,w〉e−π trY (Q1·ξ)(w,w)τ

so that |det j−(Q1, ξ)|nΘ
(
Q1 ·ξ, τ ;σ(j−(Q1, ξ))p

)
= Θ(ξ, τ ; p), which finishes the proof upon

replacing p with σ(j−(Q1, ξ))
−1p and dividing by | det j−(Q1, ξ)|n.

The function Θ(ξ, τ) so far constructed takes values in an infinite dimensional vector

space. This is undesirable and we will now describe how we can use it to make some

functions that take values in finite dimensional vector spaces.

There is a sesquilinear form on C[Mm,n(C)] given by (p(η), q(η)) = q
(
∂
∂η

)
p
∣∣∣
η=0

where

q denotes the polynomial obtained by conjugating the coefficients of q. If ηI , ηI
′

are mono-

mials, then we have (ηI , ηI
′
) = |I|δI,I′ , so that the monomials provide an orthogonal ba-

sis with respect to this Hermitian form. This gives a (sesquilinear) isomorphism between

C[Mm,n(C)] and C[Mm,n(C)]∗, and under this isomorphism we get σ∗(α, a) = σ(tα−1, ta−1).

Now, consider the representation σ′ of GLn(C)×GLm(C) on C[Mm,n(C)] given by:

σ′(α, a)p(η) = p(tαηa) (3.47)

From the preceding discussion we have that σ′|GLm(R) = (σ|GLm(R))
∗. For κ = (κ1, . . . , ) we

will say that κ ≥ 0 if κi ≥ 0 for all i, and if κ ≥ 0, we define len(κ) to be the greatest i

so that κi 6= 0. If κ ≥ 0 and len(κ) ≤ min(m,n) we can interpret κ as a weight for both

GLm(C) and GLn(C) by having 0’s in the appropriate number of places, and we will denote

by V(m)
κ and V(n)

κ the corresponding irreducible representations of GLm(C) and GLn(C),

respectively. It is a standard result that we have:

(C[Mm,n(C)], σ′) ∼=
⊕
κ≥0

len(κ)≤min(m,n)

V(m)
κ ⊗ V(n)

κ (3.48)

and so we have:

(C[Mm,n(C)], σ|GLm(R)×GLn(C)) ∼=
⊕
κ≥0

len(κ)≤min(m,n)

(V(m)
κ )∗ ⊗ V(n)

κ (3.49)

where we interchangeably use V(m)
κ for the representation of GLm(C) and its restriction to

GLm(R). We will denote by:
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C[Mm,n(C)]κ

The κ isotypic component (as a representation of GLn(C)). We have that C[Mm,n(C)]κ ∼=
(V(m)
κ )∗ ⊗ V(n)

κ is spanned by the GLm(C)×GLn(C) translates of the function:

∆κ(η) =

min(m,n)∏
j=1

det


η11 . . . η1j

...
. . .

...

ηj1 . . . ηjj


κj−κj+1

(3.50)

We obtain GLm(R)×GLn(C) linear projections C[Mm,n(C)]∗ � V(m)
κ ⊗ (V(n)

κ )∗ dual to the

inclusions (V(m)
κ )∗ ⊗ V(n)

κ ↪→ C[Mm,n(C)].

Definition 3.4.5 (The symplectic theta functions Θκ). For each κ ≥ 0 with len(κ) ≤
min(m,n), define Θκ : D × H → V(m)

κ ⊗ (V(n)
κ )∗ to be the composition of Θ with the

projection map C[Mm,n(C)]∗ � V(m)
κ ⊗ (V(n)

κ )∗.

Remark 3.4.6. The function Θ defined above is essentially the direct sum off all of the

functions Θκ as κ ranges over the κ with κ ≥ 0 and len(κ) ≤ min(m,n).

Lemma 3.4.7. The functions Θκ defined above are modular of weight |det |n ⊗ κ(m) on D
and (κ(n))∗ on H, i.e. for (γ, γ′) ∈ Γ× Γ′ we have:

Θκ(γξ, γ′τ) = |det j−(γ, ξ)|n
((
κ(m)(j−(γ, ξ))

)
⊗
(
(κ(n))∗(j(γ′, τ))

))
Θκ(ξ, τ)

The proof of this is immediate from theorem 3.4.2 and the above discussion. For brevity

we will give a special name to the representation | det |n ⊗ V(m)
κ

Definition 3.4.8 (The representation (Vρκ , ρκ) of GLm(R)). For κ a representation of

GLn(C), with κ ≥ 0 and len(κ) ≤ min(m,n), define the representation (Vρκ , ρκ) of GLm(R)

by:

(Vρκ , ρκ) =
(
V(m)
κ , |det |n ⊗ (κ(m)|GLm(R))

)
(3.51)

Remark 3.4.9. Thus we can rephrase lemma 3.4.7 as:

Θκ(γξ, γ′τ) =
(
ρκ(j−(γ, ξ))⊗ (κ(n))∗(j(γ′, τ))

)
Θκ(ξ, τ) (3.52)

These functions Θκ can be paired with modular forms of the appropriate weight.

Definition 3.4.10 (The pairing (f,Θκ)). Suppose that f : H → V(n)
κ is a function that is

modular of weight κ. There is a natural pairing V(n)
κ × (V(n)

κ )∗ that is invariant under the

action of GLn(C), so we can pair Θκ and f . we will write:

(f,Θκ) : D ×H → Vρκ (3.53)
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to be the function obtained by this pairing.

We have immediately that

Lemma 3.4.11. The function (f,Θκ) defined in definition 3.4.10 transform as:

(f,Θκ)(γξ, γ′τ) = ρκ(j−(γ, ξ))(f,Θκ)(ξ, τ) (3.54)

for (γ, γ′) ∈ Γ× Γ′. In particular we note that this invariant under Γ′.

We will now describe how to have a more concrete handle on this function (f,Θκ). We

identified (V(m)
κ )∗ ⊗ V(n)

κ with C[Mm,n(C)]κ, the κ-isotypic component of C[Mm,n(C)]. We

have an identification:

C[Mm,n(C)]κ ∼= HomGLn(C)(Vκ,C[Mm,n(C)])⊗ V(n)
κ

and so as a vector space:

Vρκ ∼= HomGLn(C)(Vκ,C[Mm,n(C)])∗ (3.55)

Thus we can describe the pairing (f,Θκ)(ξ, τ) by its values on GLn(C) linear maps P :

Vκ → C[Mm,n(C)]. Generally we will use the capital letter P when we are referring to these

maps. In the case where dimV(n)
κ = 1 these maps are identified with individual polynomials

and we will use a lowercase p. We have:

(f,Θκ)(ξ, τ)(P ) =
∑

w∈Mm,2n(Z)

P (f(τ))(ητ (w))eπi trX〈w,w〉e−π trY (w,w)τ (3.56)

where P (f(τ)) will be a polynomial in C[Mm,n(C)], and can be evaluated at elements in

Mm,n(C). For scalar Vκ this is simply:

(f,Θκ)(ξ, τ)(p) =
∑

w∈Mm,2n(Z)

f(τ)p(ητ (w))eπi trX〈w,w〉e−π trY (w,w)τ (3.57)

We note that the expression P (f(τ)) transforms as:

P (f(γτ)) = σ(j(γ, τ))P (f(τ))

for all γ ∈ Γ′.

We will now discuss how these functions are related to the more usual Siegel theta

functions like the function in (3.38). This will be useful to us for locating the singularities

of the regularized lift of weakly holomorphic modular forms from SL2(R) which we will

look at in latter half of the next chapter. We will derive the following equality directly via

Poisson summation here.
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Lemma 3.4.12. For Y ∈ Sym+
m(R), define4Y

ij to be the differential operator on C[Mm,n(C)]

defined by:

4Y
ij =

m∑
s,t=1

(Y −1)s,t
∂2

∂ηs,i∂ηt,j
(3.58)

and write 4Y for the n×n matrix of differential operators with entries 4Y
ij. Then we have:

Θ(ξ, τ ; p) =

det ym/2

detY n/2

∑
v∈M2m,n(Z)

(
exp

(
1

4π
tr4Y y

)
p

)(
− iY −1ν−ξ (v)y

)
eπi tr(v,v)xe−π tr(v,v)ξy

(3.59)

where ν−ξ is as in (2.21).

Proof. Again we will use Poisson summation, this time with the Fourier transform:∫
Mm,n(R)

e−2πi trw2
tv1p(v2τ + w2)eπi trX

〈
(v2,w2),(v2,w2)

〉
e
−π trY

(
(v2,w2),(v2,w2)

)
τdw2 (3.60)

we have
(
(v2, w2), (v2, w2)

)
τ

= v2y
tv2 + (v2x + w2)y−1 t(v2x + w2). We can perform the

translation w2 7→ w2 − v2x and we obtain that (3.60) is:

e2πi tr tv1v2xe−π trY v2y tv2

×
∫
Mm,n(R)

e−2πi trw2
tv1p(iv2y + w2)e2πi trw2

t(Xv2)e−π trY w2y−1 tw2dw2

as we have 〈
(v2, w2 − v2x), (v2, w2 − v2x)

〉
=
〈
(v2, w2), (v2, w2)

〉
and

trX
〈
(v2, w2), (v2, w2)

〉
= 2 trw2

t(Xv2)

We can complete the square in the exponent:

e−2πi trw2
tv1+2πi trw2

t(Xv2)−π trY w2y−1 tw2

= e−π trY −1(v1−Xv2)y t(v1−Xv2)e−π trY
(
w2+iY −1(v1−Xv2)y

)
y−1 t

(
w2+iY −1(v1−Xv2)y

)
then translate w2 7→ w2− iY −1(v1−Xv2)y, and perform the same contour integration trick

as in the proof of theorem 3.4.2 to obtain that (3.60) is:

e2πi tr tv1v2xe−π trY v2y tv2−π trY −1(Xv2−v1)y t(Xv2−v1)

×
∫
Mm,n(R)

p
(
iv2y − iY −1(v1 −Xv2)y + w2

)
e−π trY w2y−1 tw2dw2
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We have that Y −1(v1 −Xv2)− v2 = Y −1ν−ξ (v), and from (2.27):

e2πi tr tv1v2xe−π trY v2y tv2−π trY −1(Xv2−v1)y t(Xv2−v1) = eπi tr(v,v)xe−π tr(v,v)ξy

and finally we have that:∫
Mm,n(R)

p′(w2)e−π trY w2y−1 tw2dw2 = detY −n/2 det ym/2 exp

(
1

4π
tr4Y y

)
p′
∣∣∣∣
η=0

Thus we get that (3.60) is equal to:(
exp

(
1

4π
tr4Y y

)
p

)
(−iα−1ν−ξ (v)y)eπi tr(v,v)xe−π tr(v,v)ξy

and by applying Poisson summation we have the result.

We will now describe how we can interpret these symplectic theta functions as modular

functions in the sense of (3.31). For p ∈ C[Mm,n(C)] and (ξ, τ) ∈ D ×H, define:

Θ̃(ξ, τ ; p) = detY n/2
∑

w∈Mm,2n(Z)

p(tαητ (w))eπi trX〈w,w〉e−π trY (w,w)τ (3.61)

where α ∈ B0,0 is such that α tα = Y . This is obtained from Θ by the process outlined in

remark 3.3.7, and the function satisfies

Θ̃(γξ, γ′τ ; p) = Θ̃
(
ξ, τ ;σ−1(k−(γ, ξ), j(γ′, τ))p

)
(3.62)

For Vρ̃ a subrepresentation of V(m)
κ |O(m), we can define functions Θ̃ρ̃,κ : D × H →

Vρ̃⊗ (V(n)
κ )∗. We will also describe some of the structure of the GLm(R) representations we

have in terms of how they restrict to O(m) representations. To begin with, for 1 ≤ i, j ≤ n,

we have the differential operators 4ij on C[Mm,n(C)] given by:3

4ij =

m∑
s=1

∂2

∂ηs,i∂ηs,j
(3.63)

These differential operators commute with the action of O(m).

Remark 3.4.13. We also have a version of lemma 3.4.12 for Θ̃ρ̃,κ. For p ∈ C[Mm,n(C)],

we have:

Θ̃(ξ, τ ; p) = det ym/2
∑

v∈M2m,n(Z)

(
exp

(
1

4π
tr4y

)
p

)
(−iα−1ν−ξ (v)y)eπi tr(v,v)xe−π tr(v,v)ξy

(3.64)

We will call a p ∈ C[η] pluriharmonic if 4ijp = 0 for all 1 ≤ i, j ≤ n, and we define:

3this is the same as 41
ij defined in lemma 3.4.12
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H [Mm,n(C)] = {p ∈ C[Mm,n(C)] : 4ijp = 0 for 1 ≤ i, j ≤ n} (3.65)

to be the space of pluriharmonic polynomials. The space H [Mm,n(C)] is O(m)×GLn(C)

stable under the restriction of σ to O(m) × GLn(C) on C[Mm,n(C)]. Note that it is not

GLm(C) stable. Define I [Mm,n(C)] to be the subspace of C[Mm,n(C)] generated by the

coefficients of tηη. Equivalently I [Mm,n(C)] is the space of O(m) invariants. We have

H ∩ I = C · 1, and H · I = C[Mm,n(C)]. For κ a GLn(C) representation, denote by

H [Mm,n(C)]κ the κ isotypic component of H [Mm,n(C)]. We have a description of the

space of pluriharmonic polynomials:

Lemma 3.4.14 (From [8]). Suppose that m ≥ n, and κ ≥ 0. Then there is a unique

representation ρ̃(κ) of O(m) so that:

H [Mm,n(C)]κ ∼= Vρ̃(κ) ⊗ Vρ (3.66)

We have further than HomO(m)×GLn(C)(Vρ̃(κ) ⊗ Vκ,C[Mm,n(C)]) = 1. When m ≥ 2n, we

can describe this space as follows. Define the function ∆κ ∈ C[Mn,n(C)] by:

∆κ(x) =
n∏
i=1

det


x11 . . . x1n

...
. . .

...

xn1 . . . xnn


κi−κi+1

(3.67)

Then the space H κ is spanned by the O(m)×GLn(C) translates of

pκ0(η) = ∆κ
((

1n i1n 0
)
η
)

Example 3.4.15 (n = 1). When n = 1, representations of GL1(C) correspond to integers

κ ∈ Z. The representation κ occurs in C[Mm,1(C)] ∼= C[Cm] iff κ ≥ 0, in which case C[Cm]κ

consists of the homogeneous polynomials of degree κ. We will say u ∈ Cm is isotropic if
tuu = 0. This is equivalent to u = u1 + iu2 with u1, u2 ∈ Rm and tu1u2 = 0, tu1u1 = tu2u2.

The space H [Cm]κ is spanned by the polynomials pκu(η) = (tuη)κ with u isotropic. The

action of O(m)×GL1(C) for these polynomials is simple to describe:

σ(k, a)pκu = aκpκku (3.68)

The subspace I is given by the powers of tηη, and we have:

C[Cm]κ =

bκ/2c⊕
k=0

(tηη)kH [Cm]κ−2k (3.69)

When m = 2, then up to a scalar there are only two isotropic vectors: u± =

(
∓i
1

)
. We
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define corresponding polynomials:

pκ±(η) = pκu±(η) =

(
tη

(
∓i
1

))κ
(3.70)

Recall that O(2) is generated by elements of the form:

kθ =

(
cos θ sin θ

− sin θ cos θ

)
, ε =

(
−1

1

)

with the kθ forming a subgroup isomorphic to SO(2). We have:

σ(kθ)p
κ
± = e±iκθpκ±

σ(ε)pκ± = pκ∓

As a O(2) representation, the space H [C2]κ is isomorphic to V|κ| defined in section 3.3.1.

The dual space (H [C2]κ)∗ is also isomorphic to V|κ|, with the basis {pκ−, pκ+} having dual

basis {vκ+,vκ−} (note the order).

Example 3.4.16 (Scalar GLn(C) representations). We have non-trivial scalar valued rep-

resentations of GLn(C) inside of C[Mm,n(C)] iff m ≥ n. The scalar representations of

GLn(C) are given by integers κ ∈ Z, corresponding to powers of the determinant, with detκ

occurring in C[Mm,n(C)] iff κ ≥ 0. In this case C[Mm,n(C)]κ will occur within the subspace

of homogeneous polynomials of degree κn, but it will not be all of these polynomials. Given

any matrix u ∈Mm,n(C), define the polynomial:

pκu(η) = det(tηu)κ (3.71)

As u varies over the elements of Mm,n(C), these polynomials span C[Mm,n(C)]κ. They

transform as

σ(α, a)pκu = det aκpκtα−1u

We now will suppose as well that m ≥ 2n, and we will describe the space H [Mm,n(C)]κ.

We will call u = u1 + iu2 ∈ Mm,n(C) isotropic if tu1u2 = 0 and tu1u1 = tu2u2. This

implies that tuu = 0, however the converse is not true as tuu only implies that tu1u2 is

skew-symmetric, not necessarily 0. As u varies over the isotropic matrices, the polynomials

pκu span the space H [Mm,n(C)]κ. They transform under O(m)×GLn(C) as:

σ(k, a)pκu = det aκpκku

Example 3.4.17 (Non-scalarGLn(C) representations). Suppose now that κ is not necessar-

ily a scalar representation of GLn(C). We have that C[Mm,n(C)]κ is spanned by polynomials
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of the form:

pκu = ∆κ(tηu) (3.72)

as u varies over elements of Mm,n(C). This reduces to (3.71) in the case that κ is scalar.

They transform as:

σ(α, a)pκu = det aκpκtα−1u

If we suppose that m ≥ 2n, then again we have that H [Mm,n(C)]κ is spanned by polyno-

mials of the form pκu where u varies over isotropic matrices. For such polynomials we have

σ(k)pκu = pκku for k ∈ O(m).



Chapter 4

Theta Lifts from SL2(R)

4.1 Lifts of Cusp Forms

In this chapter we will be exploring theta lifts of modular forms from H = H1 to D = Dm.

First we will examine the lifts of cusp forms. Let f : H → C be a cusp form for SL2(Z) = Γ′

of weight κ:

f(γτ) = j(γ, τ)κf(τ)

for all γ ∈ Γ′. Suppose as well that f has the Fourier expansion:

f(τ) =
∞∑
n=1

ane
2πinτ

Recall in the last chapter we defined functions Θκ : D × H → Vρκ where Vρκ (3.51) is

the representation of GLm(R) given by ρκ = |det | ⊗ κ(m), where κ(m) is the irreducible

representation of GLm(R) with highest weight (κ, 0, . . . , 0). We have:

Θκ(γξ, γ′τ) = j(γ′, τ)−κρκ
(
j−(γ, ξ)

)
Θ(ξ, τ)

for (γ, γ′) ∈ Γ× Γ′. We can pair this with f(τ) to obtain a function that is invariant under

τ 7→ γ′τ (3.53).

Definition 4.1.1 (Theta lift for SL2(Z) cusp forms). With f a cusp form, define:

Φf (ξ) =

∫
F

(f,Θκ)(ξ, τ)
dxdy

y2
(4.1)

where F is a fundamental domain for the action of SL2(Z) on H.

The integral will converge due to f being a cusp form and the moderate growth of Θκ.

Proposition 4.1.2 (Modularity of Φf ). The function Φf is modular of weight ρκ with

54
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respect to Γ. In other words, we have Φf : Dm → Vρκ, and for all γ ∈ Γ, we have:

Φf (γξ) = ρκ(j−(γ, ξ))Φf (ξ) (4.2)

Proof. This proposition follows immediately from the same transformation property for

(f,Θκ) in (3.54).

Recall we have an identification Vρκ ∼= HomGLn(C)(Vκ,C[Cm])∗ ∼= (C[Cm]κ)∗ (where

C[Cm]κ is the subspace of homogeneous polynomials of degree κ). Thus we can describe Φf

by its evaluation on polynomials p(η) ∈ C[Cm]κ. This is given by:

Φf (ξ; p) =

∫
F
f(τ)

∑
w∈Mm,2(Z)

eπi trX〈w,w〉p(ητ (w))e−π trY (w,w)τ dxdy

y2
(4.3)

where 〈w,w〉 and (w,w)τ are as in 2.2.3. It is our goal to calculate explicit formulas for

these theta lifts. The introduction of the symplectic theta functions serves two purposes.

First, as mentioned earlier, the lifts Φf have a readily apparently Fourier expansion with

respect to the X variable of ξ due to the same for the symplectic theta function Θκ. Second,

they also allow for a process we will call unfolding that allows us to transform the integrals

over F into integrals over simpler regions.

We note that due f being a cusp form we are able to interchange the order of integration

and summation, and so we can write out the Fourier expansion of Φf (ξ):

Φf (ξ; p) = a0(Y ; p) +
∑

S∈Skewm(Z)
rank S=2

eπi trSXaS(Y ; p) (4.4)

where aS : Sym+
m(R)→ (C[Cm]κ)∗ are the Fourier coefficients, given by:

aS(Y ; p) =
∑

w∈Mm,2(Z)
〈w,w〉=S

∫
F
f(τ)p(ητ (w))e−π trY (w,w)τ dxdy

y2
(4.5)

Note as well that the sum is only over skew symmetric matrices of rank at most 2 as that is

the maximum rank of 〈w,w〉 for w ∈Mm,2(Z). We can further refine these sums into more

tractable integrals to consider:

Lemma 4.1.3 (Unfolding for SL2(Z)). For w ∈ Mm,2(Z), and w 6= 0. Write Γ′w for the

stabilizer of w inside of Γ′, and write Fw for a fundamental domain for the action of Γ′w

on H. Then we have: ∑
w′∈w·Γ′

∫
F
f(τ)p(ητ (w′))e−π trY (w′,w′)τ dxdy

y2

= 2

∫
Fw

f(τ)p(ητ (w))e−π trY (w,w)τ dxdy

y2
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Proof. Let {γ′i} denote a set of representatives for Γ′w\Γ′. Then we have the left hand side

is: ∑
i

∫
F
f(τ)p(ητ (wγi))e

−π trY (wγi,wγi)τ
dxdy

y2

This is: ∑
i

∫
F
f(τ)p

(
ηγiτ (w)j(γi, τ)

)
e−π trY (w,w)γiτ

dxdy

y2

and we have that f(τ)p
(
ηγiτ (w)j(γi, τ)

)
= j(γi, τ)κf(τ)p(ηγiτ (w)) so this is:

∑
i

∫
γiF

f(τ)p(ητ (w))e−π trY (w,w)τ dxdy

y2

Then as γi ranges over the set of representatives we will double cover Fw as −1 6∈ Γ′w.

When w = 0 we have that −I is in Γ′w = Γ′, however we have that p(ητ (0)) = 0 as p is

non-constant homogeneous.

Thus we are able to group together terms corresponding to w in the same Γ′ orbit in

4.5 into terms with easier integrals. We will first classify the orbits of Mm,2(Z) under Γ′.

Lemma 4.1.4 (SL2(Z) orbits of Mm,2(Z)). Suppose that [w] ∈ Mm,2(Z)/SL2(Z). Then

either:

1. w = 0, in which case Fw = F and Γ′w = Γ′.

2. rank w = 1, in which case we may take the representative w to be (0, u), where u

ranges over Zm/{0}, u unique up to multiplication by ±1. In this case Γ′w =

(
1 ∗

1

)
,

and Fw = {τ ∈ H1 : 0 ≤ x ≤ 1}. We have 〈w,w〉 = 0.

3. rank w = 2, in which case Γ′w = {1} and Fw = H. In this case w can be taken to be:

w = Aw±0 γa,b,d

where A ∈ GLm(Z)/P2(Z), where:

P2(Z) =

(
GL2(Z) ∗

GLm−2(Z)

)

w±0 is the matrix:

w±0 =



±1 0

0 1

0 0
...

0 0


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and γa,b,d =

(
a b

d

)
with a, b, d ∈ Z, a, d ≥ 0, and 0 ≤ b < a. In this case

〈w,w〉 = ±A


0 ad . . . 0

−ad 0
...

. . .

0 0

 tA

We will offer another description of the orbits in the rank 2 case that provides a somewhat

more intrinsic characterization. First of all, we will denote by OS :

OS = {w ∈Mm,2(Z) : 〈w,w〉 = S}/SL2(Z) (4.6)

From the above considerations when S is a rank 2 matrix in Skewm(Z) we have that OS

is a finite set. We will define M+
m,2(Z) to be the subset of rank 2 elements of Mm,2(Z),

and M1
m,2(Z) to be the subset of w ∈ M+

m,2(Z) that can be completed to an element of

GLm(Z). We will also call such w primitive. Similarly we will denote by Skew1
m(Z) the

subset of S ∈ Skewm(Z) such that 1
nS ∈ Skewm(Z) iff n ∈ {1,−1}. This is equivalent to

sd(S) = 1 (Definition 3.3.5). We will call S ∈ Skew1
m(Z) primitive as well. For a primitive

S0 ∈ Skew1
m(Z), there is a primitive w0 ∈M1

m,2(Z) so that S0 = 〈w0, w0〉. From the lemma

this w0 is unique up to action of SL2(Z) on the right. We have OS0 = {w0}.
Given any S ∈ Skewm(Z) of rank 2, there is a unique S0 ∈ Skew1

m(Z) and µ ∈ Z>0 so

that S = µS0, and we have

OS = {w0γa,b,d : a, b, d ∈ Z≥0, ad = µ, 0 ≤ b < a} (4.7)

Corollary 4.1.5. The constant Fourier coefficient is given by:

a0(Y ; p) =

∫
F
p(0)f(τ)

dxdy

y2
+

′∑
u∈Zm

∫ ∞
0

∫ 1

0
p(0, u)f(τ)e−π

tuY uy dxdy

y2
(4.8)

where the apostrophe (′) on the sum denotes excluding u = 0. The non-constant coefficients

are given by:

aS(Y ; p) = 2
∑
w∈OS

∫
H
p(ητ (w))f(τ)e−π trY (w,w)τ dxdy

y2
(4.9)

Note, in the sum of the rank 1 terms we dropped the coefficient of 2 in lemma 4.1.3 by

summing both u and −u, which are included in the same Γ′ orbit. When f is a cusp form

we have:

Lemma 4.1.6. Suppose that f is a cusp form. Then the constant term of Φf is 0, i.e.,

a0(Y ; p) = 0 identically for all p ∈ C[Cm]κ.
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Proof. As we noted before, we have that as p is a homogeneous non-constant polynomial

we have p(0) = 0, so that the rank 0 term contributes 0. Next, we have that the only

dependence in the integrand on x of:∫ ∞
0

∫ 1

0
p(0, u)f(τ)e−π

tuY uy dxdy

y2

is in f(τ), and as f is a cusp form the integral
∫ 1

0 f(τ)dx = 0, so that the rank 1 terms

contribute 0 as well.

We will now define some quantities that will come up in the computation of the rank 2

Fourier coefficients of Φf .

Definition 4.1.7. Write M+
m,2(R) for the subset of Mm,2(R) of matrices of rank 2. For

w = (w1, w2) ∈M+
m,2(R) and ξ ∈ Dm, define τ1(ξ, w), τ2(ξ, w) ∈ H1 to be:

τ1(ξ, w) =
1

2
trX〈w,w〉+ i

√
det twY w

τ1(ξ, w) = −
tw1Y w2

tw1Y w1
+ i

√
det twY w
tw1Y w1

(4.10)

and define η(ξ, w) to be:

η(ξ, w) = τ2(ξ, w)w1 + w2 (4.11)

Remark 4.1.8. We will write y1(ξ, w) and y2(ξ, w) for the imaginary parts of τ1(ξ, w) and

τ2(ξ, w), respectively. We will also use y1(Y,w), τ2(Y,w), and η(Y,w) with Y in the place

of ξ since these quantities are independent of X.

We will describe how these quantities change under the right action of GL2(R) on

Mm,2(R). First of all, for g ∈ GL+
2 (R), and ε =

(
−1

1

)
we have:

τ1(ξ, wg) = (det g)τ1(ξ, w)

τ2(ξ, wg) = g−1 · τ2(ξ, w)

τ1(ξ, wε) = −τ1(ξ, w)

τ2(ξ, wε) = −τ2(ξ, w)
(4.12)

and we have:

η(ξ, wg) = j
(
g−1, τ2(ξ, w)

)−1
η(ξ, w), η(ξ, wε) = η(ξ, w) (4.13)

Remark 4.1.9. When m = 2, and w = 12, these reduce to the identification (τ1, τ2) : D2
∼=

H1 ×H1, and η =

(
τ2

1

)
. We will examine this in more detail when we discuss specializing

the lift to m = 2 later in this section.
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We will provide an interpretation of what these quantities are. For w = (w1, w2) ∈
Mm,2(Z), w being primitive is equivalent to {w1, w2} being a Z basis of UZ(w). Otherwise

and otherwise the columns span a full rank sub-lattice of UZ(w).

Next, ξ ∈ Dm provides a positive definite bilinear form on Rm, which we will denote

by (u, u′)Y = tuY u′, and a (possibly degenerate) alternating form which we will denote by

〈u, u′〉X = tuXu′. We can restrict both of these forms to the lattice UZ(w) to obtain a

positive definite bilinear form and an alternating form on UZ(w), which we will denote by

the same. We have

det twY w = det

(
(w1, w1)Y (w1, w2)Y

(w2, w1)Y (w2, w2)Y

)
which is the determinant of the lattice spanned {w1, w2} with respect to (−,−)Y . The vector

η(ξ, w) is an element of UZ(w) ⊗ C = C{w1, w2}, and is isotropic with respect to (−,−)Y .

Its real and imaginary parts have length
√
y1(ξ, w)y2(ξ, w) with respect to (−,−)Y . The

imaginary part of η(ξ, w) is in the w1 direction, and the real part is in the direction of the

projection with respect to (−,−)Y of w2 onto the perpendicular of w1.

As we mentioned the space UZ(w) is a Z2 lattice equipped with a positive definite

symmetric bilinear form (−,−)Y , a (possibly degenerate) alternating form 〈−,−〉X , and an

orientation determined by the ordering w1, w2. A different choice of oriented basis {w1, w2}
of UZ(w) amounts to acting on w by a γ ∈ SL2(Z) on the right which we saw (4.12) leaves

τ1 invariant and acts on τ2 by γ−1. Thus the τ1 and τ2 variables give an invariant of this

triple of data that is valued in H× (H/Γ′).

Lemma 4.1.10. Suppose that w ∈M+
m,2(R), and ξ ∈ D, and p ∈ C[Cm]κ. Then we have:

eπi trX〈w,w〉
∫
H
f(τ)p(ητ (w))e−π trY (w,w)−τy−2dxdy

= y1(ξ, w)−1p
(
η(ξ, w)

)
e2πiτ1(ξ,w)f(τ2(ξ, w))

(4.14)

Remark 4.1.11. We could ask the question what happens to the formula in (4.14) when w

is replaced by wγ for γ ∈ SL2(Z). From (4.12) we have that for γ ∈ SL2(Z) we have that

τ1(ξ, wγ−1) = τ1(ξ, w), τ2(ξ, wγ−1) = γ · τ2(ξ, w) and η(ξ, wγ−1) = j(γ, τ2(ξ, w))−1η(ξ, w).

Then when we consider (4.14) under w 7→ wγ−1, and using that p is homogeneous of degree

κ, we have:

y1(ξ, wγ−1)−1p
(
η(ξ, wγ−1)

)
e2πiτ1(ξ,wγ−1)f(τ2(ξ, wγ−1))

= y1(ξ, w)−1j(γ, τ2(ξ, w))−κp
(
η(ξ, w)

)
e2πiτ1(ξ,w)j(γ, τ2(ξ, w))κf(τ2(ξ, w))

= y1(ξ, w)−1p
(
η(ξ, w)

)
e2πiτ1(ξ,w)f(τ2(ξ, w))

for all γ ∈ SL2(Z), so that (4.14) is independent of the choice of representative for the
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SL2(Z) action on Mm,2(R).

Before we prove lemma 4.1.10 we will prove the following lemma about the integral at

the heart of the matter.

Lemma 4.1.12. Suppose that p(τ) is a polynomial in τ , and that A,B,C ∈ R are such

that Ax2 + 2Bx+ C > 0 for all x ∈ R, and n > 0. Then∫
H
p(τ)e2πinτe−πAy−π(Ax2+2Bx+C)y−1

y−2dxdy

=
1√

AC −B2
p

(
−B
A

+ i

√
AC −B2

A

)
e−2πinBA−1

e−2πA−1(n+A)
√
AC−B2

Proof. First we note that this integral may be obtained from a simpler integral via differ-

entiation with respect to n:

p

(
1

2πi

d

dn

)∫
H
e2πinτe−πAy−π(Ax2+2Bx+C)y−1

y−2dxdy

Looking at just the integral now, we complete the square in x to obtain:∫ ∞
0

∫ ∞
−∞

e2πinτe−πAy−π
(
A(x+B)2+(C−B2/A)

)
y−1

y−2dxdy

=A−1/2e−2πinBA−1

∫ ∞
0

y−3/2e−πA
−1(n+A)2y−π(C−B2/A)y−1

dy

as the integral over x amounts to a Fourier transform of a Gaussian. For the integral on y,

we use the following two formulas (Kν is the modified Bessel function of the second kind of

order ν): ∫ ∞
0

e−πE
2y−πF 2y−1

y−ν−1dy = 2

(
E

F

)ν
Kν(2πEF )

K1/2(2πr) =
1

2
√
r
e−2πr

so that we get:
1√

AC −B2
e−2πinBA−1

e−2πA−1(n+A)
√
AC−B2

and then differentiation gives the formula.

of lemma 4.1.10. First we have that tr(w,w)τ = tw1Y w1 + t(xw1 + w2)Y (xw1 + w2), and

we can apply lemma 4.1.12 with A = tw1Y w1, B = tw1Y w2 and C = tw2Y w2 and p′(τ) =

p(ητ (w)). We then plug these values to obtain that:
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∫
H
p(ητ (w))e2πinτe−π trY (w,w)τ y−2dxdy

=
1

y2(ξ, w)
p

(
i

√
det twY w

(w1, w1)Y
w1 + w2 −

(w1, w2)Y
(w1, w1)Y

w1

)
e−2πy1(ξ,w)e2πinτ2(ξ,w)

=
1

y2(ξ, w)
p
(
η(ξ, w)

)
e−2πy1(ξ,w)e2πinτ2(ξ,w)

We obtain the lemma by summing over n with f(τ) =
∑

n ane
2πinτ .

By this point we have described each of the terms in the sum giving aS(Y ; p) in (4.9).

We will now discuss how we can simplify these further. Let S ∈ Skewm(Z) be rank 2, and

let S0 and w0 be as in the discussion after lemma 4.1.4, with S = µS0. Then we have:

aµS0(Y ; p) = 2
∑
a,b,d
ad=µ

0≤b<a

∫
H1

p(ητ (w0γa,b,d))f(τ)e−π trY (w0γa,b,d,w0γa,b,d)τ dxdy

y2
(4.15)

We can handle these sums tidily with the following lemma.

Lemma 4.1.13. Recall we denote by T (µ) the degree µ Hecke operator (3.14). Then if

w ∈M+
m,2(R) we have:

∑
a,b,d∈Z
a,d>0
ad=µ

0≤b<a

∫
H
p
(
ητ (wγa,b,d)

)
f(τ)e−π trY (wγa,b,d,wγa,b,d)τ y−2dxdy

= µ

∫
H
p
(
ητ (w)

)(
T (µ)f

)
(τ)e−πµ trY (w,w)τ y−2dxdy

(4.16)

Proof. Write Mµ
2 (Z) for the set of integral 2× 2 matrices with determinant µ. Recall:

T (µ)f(τ) = µκ−1
∑

γ∈SL2(Z)\Mµ
2 (Z)

j(γ, τ)−κf(γτ)

The expression on the left hand side of (4.16) is equal to:

∑
γ∈Mµ

2 (Z)/SL2(Z)

∫
H
p
(
ητ (wγ)

)
f(τ)eπi tr ξητ (wγ)(Im τ)−1ητ (wγ)y−2dxdy

We have ητ (wγ)(Im τ)−1ητ (wγ) = µηγτ (w)(Im γτ)−1ηγτ (w) so that after performing the
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change of variables τ 7→ γ−1τ , it is:

∑
γ∈Mµ

2 (Z)/SL2(Z)

∫
H
p
(
ητ (w)j(γ−1, τ)−1

)
f(γ−1τ)eµπi tr ξητ (w)(Im τ)−1ητ (w)y−2dxdy

We note that as γ ranges over Mµ
2 (Z)/SL2(Z), µγ−1 ranges over SL2(Z)\Mµ

2 (Z), so the

above is: ∑
γ∈SL2(Z)\Mµ

2 (Z)

∫
H
p
(
ητ (w)j(µ−1γ, τ)−1

)
f(µ−1γτ)eµπi tr ξητ (w)(Im τ)−1ητ (w)y−2dxdy

We have j(µ−1γ, τ)−1) = µj(γ, τ)−1 and µ−1γτ = γτ , and p is a homogeneous degree κ

polynomial, so that

p(ητ (w)j(µ−1γ, τ)−1)f(µ−1γτ) = µp
(
tαητ (w)

)(
µκ−1j(γ, τ)−κf(γτ)

)
and summing over γ we obtain µT (µ)f .

Corollary 4.1.14. Suppose that w0, S0 are as above, and f is a cusp form. We have:

aµS0(Y ; p) = 2y1(ξ, w0)−1p
(
η(ξ, w0)

)
e2πiµτ1(ξ,w0)(T (µ)f)(τ2(ξ, w0)) (4.17)

Proof. This is just an application of (4.15) and lemma 4.1.13, and we use the fact that

τ2(µξ,w0) = τ2(ξ, w0) and τ1(µξ,w0) = µτ1(ξ, w0).

Remark 4.1.15. Instead of (4.17) we could write:

aµS0(Y ; p) = 2y1(ξ, S0)−1p
(
η(ξ, S0)

)
e2πiµτ1(ξ,S0)(T (µ)f)(τ2(ξ, S0)) (4.18)

as in light of remark 4.1.11, we have that this formula is invariant of substitutions w0 7→ w0γ

for γ ∈ SL2(Z), so it depends only on the class S0 ∈ Skew1
m(Z).

Putting this all together we obtain:

Theorem 4.1.16. Suppose that f =
∑

n ane
2πinτ is a Hecke cusp eigenform, i.e. that

T (µ)f = aµf for all µ > 0. Write Skew1
m(Z) for the set of primitive elements rank 2

of Skewm(Z), and for S0 ∈ Skew1
m(Z) we will write τ1(ξ, S0), etc. for τ1(ξ, w0) where

w0 ∈M1
m,2(Z) is such that 〈w0, w0〉 = S0. Then we have that

Φf (ξ; p) = 2
∑

S0∈Skew1
m(Z)

p
(
η(ξ, S0)

)
y1(ξ, S0)−1f

(
τ1(ξ, S0)

)
f
(
τ2(ξ, S0)

)
(4.19)

note that the Fourier expansion of Φf is contained in that of f(τ2(ξ, S0)). If we write out
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the Fourier expansion explicitly it is:

Φf (ξ; p) = 2
∑

S0∈Skew1
m(Z)

µ>0

eπi trµS0Xaµp
(
η(Y, S0)

)
y1(Y, S0)−1e−2πµy1(Y,S0)f

(
τ2(Y, S0)

)
(4.20)

where we have written τ2(Y, S0), etc. in place of τ2(ξ, S0) to emphasize that those terms

depend only on the Y variable of ξ, so that the aµS0 Fourier coefficient is:

aµS0(Y ; p) = 2aµp
(
η(Y, S0)

)
y1(Y, S0)−1e−2πµy1(Y,S0)f

(
τ2(Y, S0)

)
(4.21)

It is also of interest to consider how these lifts are related when we vary m. For m ≥ 2,

denote by Φ
(m)
f the theta lift of f to Dm. We define a function [ξ]m,2 from Dm to D2 obtained

by taking the top left 2 × 2 minor of ξ. In terms of the variables X and Y is also simply

amounts to taking the top 2×2 minor. Each minor of a skew symmetric matrix will be skew

symmetric, and each minor of a positive definite matrix is positive definite, verifying that

[ξ]m,2 is in D2. Next, for a polynomial p ∈ C[Cm], define [p]m,2 ∈ C[C2] to be the polynomial

obtained by setting all variables except the first two to 0, i.e. the map dual to the inclusion

C2 ↪→ Cm. If p ∈ C[Cm]κ, then [p]m,2 ∈ C[C2]κ. We then obtain a map in the reverse

direction between dual spaces which we will also denote by [−]m,2 : C[C2]∗ → C[Cm]∗. This

map sends (C[C2]κ)∗ into (C[Cm]κ)∗, and is given by [Φ]m,2(p) = Φ([p]m,2) for Φ ∈ C[C2]∗

and p ∈ C[Cm]. Note that we are using the notation [−]m,2 for 3 different maps, but we

hope from context it is clear what is meant.

We will also define P 2(Z) ⊂ GLm(Z) to be the subgroup:

P 2(Z) =

(
GL2(Z)

∗ GLm−2(Z)

)
(4.22)

With this setup we have the following theorem relating the lifts Φ
(m)
f to Φ

(2)
f :

Theorem 4.1.17.

Φ
(m)
f (ξ) =

∑
A∈P 2(Z)\GLm(Z)

ρκ(tA)
[
Φ

(2)
f ([Aξ tA]m,2)

]
m,2

or, evaluated on a polynomial:

Φ
(m)
f (ξ; p) =

∑
A∈P 2(Z)\GLm(Z)

Φ
(2)
f

(
[Aξ tA]m,2; [σ(tA−1)p]m,2

)
Proof. For this proof only we will sometimes write w±0,m and w±0,2 for the matrix w±0 defined
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in lemma 4.1.4 for Mm,2(Z) and M2,2(Z), respectively. From that same lemma we have:

Φ
(m)
f (ξ; p) =∑

A∈GLm(Z)/P2(Z)

∑
a,b,d∈Z
a,d>0
0≤b<a
±=+,−

∫
H
p(ητ (Aw±0 γa,b,d))f(τ)eπi tr ξητ (Aw±0 γa,b,d)(Im τ)−1ητ (Aw±0 γa,b,d)y−2dxdy

(4.23)

Looking at at single one of these terms, we can move A around and get:∫
H

(σ(A−1)p)(ητ (w±0 γa,b,d))f(τ)eπi tr
tAξAητ (w±0 γa,b,d)(Im τ)−1ητ (w±0 γa,b,d)y−2dxdy

Then we have w±0 γa,b,d is zero in all except for the top two rows, so that

σ(A−1)p(w±0,mγa,b,d) = [σ(A−1)p]m,2(ητ (w±0,2γa,b,d)

Then similarly we have that ητ (w±0,mγa,b,d)y
−1 tητ (w0,mγa,b,d)) is 0 except in the top 2 × 2

block, so that

tr tAξAητ (w±0,mγa,b,d)y
−1 tητ (w±0,mγa,b,d)) = tr[tAξA]m,2ητ (w±0,2γa,b,d)y

−1 tητ (w±0,2γa,b,d))

thus the inside sum of equation (4.23) is

Φ
(2)
f ([tAξA]m,2)([σ(A)−1p).

Then as A ranges over GLm(Z)/P2(Z), tA ranges over P 2(Z)\GLm(Z).

The previous theorem implies that the essential case for the lift to O(m,m) from SL2(R)

is at m = 2. To finish off this section we will examine the m = 2 case more closely here

in the context of the identification D2
∼= H1 × H1 and the correspondence of modular

forms for O(2, 2) and SL2(R) ×±1 SL2(R) described in section 3.3.1. This is achieved by

first converting Φf into Φ̃f , which is modular with respect to the O(m) valued factors of

automorphy k± on D2, and then converting that into Ff (τ1, τ2) as in Section 3.3.1.

Given Φf (ξ), we obtain Φ̃f (ξ) = ρκ(tα(ξ))Φf (ξ) as in 3.32. Combined with (4.19) when

f is a Hecke eigenform, we have that evaluating Φ̃f on a polynomial is:

Φ̃f (ξ; p) = detY 1/2
∑

S0∈Skew1
m(Z)

p
(
tα(ξ)η(ξ, S0)

)
y1(ξ, S0)−1f

(
τ1(ξ, S0)

)
f
(
τ2(ξ, S0)

)

When m = 2, there are only S0 = ±J in (4.19). We have w±0 =

(
±1

1

)
, with
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〈w±0 , w
±
0 〉 = ±J . As we noted before, under the identification D2

∼= H1 ×H1, we have:

τ1(ξ(τ1, τ2), w+
0 ) = τ1

τ2(ξ(τ1, τ2), w+
0 ) = τ2

τ1(ξ(τ1, τ2), w−0 ) = −τ1

τ2(ξ(τ1, τ2), w−0 ) = −τ2

(4.24)

We have

η(ξ(τ1, τ2), w±0 ) =

(
τ±2
1

)
(4.25)

(where τ±2 means τ2 for ± = + and −τ2 when ± = −. Combined with (2.44), we have

tα(ξ(τ1, τ2))η(ξ(τ1, τ2)) = y
1/2
1 y

1/2
2

(
±i
1

)

We also have detY (ξ(τ1, τ2))1/2 = y1, so that:

Φ̃f (ξ(τ1, τ2); p) = 2y
κ/2
1 y

κ/2
2

(
f(τ1)f(τ2)p

(
i

1

)
+ f(−τ1)f(−τ2)p

(
−i
1

))
(4.26)

Next, recall the decomposition of C[C2]κ into O(m) irreducible representations. We

have polynomials pκ±(η) =

(
tη

(
∓i
1

))κ
of weight ±κ with respect to SO2(R). They span

the O(2) irreducible subspace H [C2]κ of harmonic polynomials of degree κ. We have

C[C2]κ =
⊕bκ/2c

k=0 (tηη)κH [C2]κ−2k. If we evaluate any polynomial that is divisible by tηη at(
±i
1

)
we obtain 0, due to those vectors being isotropic. Thus the lift (4.26) is identically

0 except for polynomials p ∈ H [C2]κ, so we will simply assume that Φ̃f takes values in

(H [C2]κ)∗. If we denote by {vκ−,vκ+} the dual basis to {pκ+, pκ−} (note the sign flip), we

have that vκ± are weight ±κ with respect to SO(2), and also that

pκ±1

(
±2i

1

)
=

2κ ±1 = ±2

0 ±1 = ∓2

and so we can write (4.26) as:

Φ̃f (ξ(τ1, τ2)) = 2κ+1y
κ/2
1 y

κ/2
2

(
f(τ1)f(τ2)vκ− + f(−τ1)f(−τ2)vκ+

)
(4.27)

Putting this all together we have:

Theorem 4.1.18. From the correspondence between modular forms on D2 and H1 × H1

outlined in section 3.3.1, when f is a Hecke cusp form for SL2(Z), the lift Φf (ξ) on D2
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corresponds to:

Ff (τ1, τ2) = 2κ+1f(τ1)f(τ2) (4.28)

on H1 ×H1.

Remark 4.1.19. When f is not a normalized Hecke cusp form this formula does not apply

(indeed the lift is linear and this formula is clearly not). Hecke cusp forms provide a basis

for Sκ(Γ′) so that the above formula extends linearly to give the lift for cusp forms that are

not Hecke eigenforms. Alternately a slight modification of the above argument and using

(4.17) we obtain that the lift is:

Ff (τ1, τ2) = 2κ+1
∑
µ>0

e2πiµτ1(T (µ)f)(τ2)

which reduces to (4.28) when f is a normalized Hecke cusp form.

4.2 Theta Lifts of Weakly Holomorphic Modular Forms

In [1], the theta lift is extended to modular forms that are allowed to have singularities at

the cusp. This process requires a regularization procedure as the defining integral for the

lift no longer converges due to the singularity at i∞. After this regularization process, the

resulting function on D obtains the transformation properties from the theta function as

before. In general the lifts will have singularities along submanifolds of D, whose locations

correspond to vectors in the lattice Λ with certain positive lengths that are controlled by the

order of the pole at the cusp of the modular form input. Borcherds considers functions on

Dm+,m− ×H (where Dm+,m− is the Grassmannian of maximal negative definite subspaces

in Rm+,m−) of the form:

θ(ξ, τ ; Λ, λ, p) =
∑

v∈λ+Λ

(
exp

(
− 4

8πy

)
p

)
(νξ(v))eπi(v,v)xe−π(v,v)ξy (4.29)

where Λ is an even integral lattice in Rm+,m− and Λ∗ is its dual, λ ∈ Λ∗, p is a polynomial

on Rm++m− , and νξ is an identification between Rm+,m− and Rm++m− that depends on

ξ. These functions are modular in τ and have transformation properties with respect to

analogues of the K valued factors of automorphy we have considered. By varying the lattice

Λ the level can be changed, and by varying p the weight may be changed.

These functions are essentially the right hand side of (3.64) when m+ = m− = m and

Λ = Zm,m.

Borcherds develops a general theory for pairing (4.29) with functions on H with sin-

gularities at the cusp, and develops the theory for a fairly wide class of functions having

Fourier expansions of the form
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f(τ) =
∑
n�0,

0≤k≤K

an,ky
−ke2πinτ

and computes the Fourier expansion of the regularized lift with respect to a unipotent group

stabilizing an isotropic line. One point of departure we have here is that we are instead

calculating the expansion with respect to the stabilizer of a maximal isotropic plane. One

of the main results of [1] is that when p = 1 in 4.29, m+ = 2, and f is weakly holomorphic

with integral coefficients, the non-constant terms of the Fourier expansion of the lift can be

interpreted as the logarithm of the modulus of a modular form on O(2,m−), which carries

a Hermitian structure. This provides a product expansion for a large class of modular

forms on O(2,m−) that have prescribed singularities, and whose weight is determined by

the constant term of f .

Borcherds also defines a correspondence he calls the Singular Shimura correspondence,

which is a linear map from weakly holomorphic modular forms on H to meromorphic mod-

ular functions on O(2,m−), by taking p to be certain specifically chosen harmonic polyno-

mials in (4.29). These polynomials are essentially the pκ+ in example 3.4.15. In example

14.4 of [1] the correspondence is worked out for O(2, 1), which is related to SL2(R) by a

double cover SL2(R) → SO0(2, 1), obtaining a Fourier expansion for the image under the

correspondence. Implicit in the formulas that Borcherds develops is the lift to O(2,m−) for

other m−, however it is not written explicitly.

Using our expansion along a parabolic stabilizing a maximal isotropic plane we will work

out this correspondence for O(2, 2), related to SL2(R) ×±1 SL2(R) by (2.42), and obtain

the Fourier expansion for it. We will also work out what the image of the regularized theta

lift is to O(m,m). As in the case of lifting cusp forms there is a phenomenon where the

O(m,m) case with m > 2 is obtained from lifts to groups with smaller m. Unlike for the

cusp forms the orbits of rank 1 will not simply contribute 0.

Definition 4.2.1 (Weakly Holomorphic Modular Form). A weakly holomorphic modular

form of weight κ is a holomorphic function f : H → C such that:

1. f(γτ) = (cτ + d)κf(τ) for γ ∈ SL2(Z),

2. f has a Fourier expansion:

f(τ) =
∑

n≥−n0

ane
2πi trnτ (4.30)

for some n0 ≥ 0.

We will generally assume that the n0 in the above Fourier expansion is the least such possible

n0, so that a−n0 6= 0 but an = 0 for n < −n0.

We then want to form theta lifts using Θκ similar to the previous chapter:
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Φf (ξ) =

∫
F
f(τ)Θκ(ξ, τ)

dxdy

y2

This runs into the issue that this integral is not convergent, due to the singularity of f .

Following [1] we use the following regularization procedure.

Definition 4.2.2 (Regularized Integral). For T ≥ 1, define the truncated fundamental

domain: FT = {τ ∈ F : Im(τ) ≤ T}. Next, suppose that φ(τ) is an SL2(Z) invariant

function on H, and that for Re(s) ≥ s0, that:

lim
T→∞

∫
FT
φ(τ)

dxdy

y2+s

exists and defines and entire function of s on that region. If we can meromorphically extend

this in s to s = 0, then we define the regularized integral to be the constant term of the

Laurent expansion at s = 0:∫ reg

F
φ(τ)

dxdy

y2
:= CTs=0

[
lim
T→∞

∫
FT
φ(τ)

dxdy

y2+s

]
(4.31)

Definition 4.2.3 (Regularized Theta Lift). Suppose that f is a weakly holomorphic modular

form of weight κ. Define the regularized theta lift of f to be:

Φf (ξ) :=

∫ reg

F
f(τ)Θκ(ξ, τ)

dxdy

y2
(4.32)

for all ξ where the regularized integral exists.

Similar to the previous section this will define a function Φf : D → Vρκ ∼= (C[Cm]κ)∗

that transforms as

Φf (γξ) = ρκ(j−(γ, ξ))Φf (ξ) (4.33)

for all γ ∈ Γ. It is evaluated on a p ∈ C[Cm]κ by:

Φf (ξ; p) =

∫ reg

F
f(τ)Θκ(ξ, τ ; p)

dxdy

y2
(4.34)

For the values of ξ where this integral exists, and the transformation property is:

Φf (γξ; p) = |det j−(γ, ξ)|Φf

(
ξ;σ(j−(γ, ξ)−1)p

)
(4.35)

The regularized integral will have singularities occurring along sub-manifolds of Dm given

by lower dimensional Grassmannians. For λ ∈ Zm,m a vector of with (λ, λ) > 0, define Dλ
to be the submanifold consisting of points ξ that correspond to negative definite subspaces

perpendicular to λ:
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Dλ := {ξ ∈ D : ξ ⊥ λ}. (4.36)

We can identify Dλ in a non-canonical way with Dm−1,m, the Grassmannian of negative

definite m-planes in Rm−1,m. It is a (real) co-dimension m submanifold. Given a weakly

holomorphic modular form f , define: I (f) to be the (negative of) the indices in the Fourier

expansion corresponding to poles of f :

I (f) := {n ∈ N : a−n 6= 0}

This is a finite set whose maximal element is n0. Define Df to be:

Df :=
⋃

n∈I (f)
λ∈Zm,m
(λ,λ)=2n

Dλ

and define a ξ ∈ D to be regular with respect to f if is not contained in Df . Note that if

ξ ⊥ λ, then ξ ⊥ cλ for all scalars non-zero c, so Dλ = Dcλ, so that the same Dλ may appear

multiple times on the right. It is not hard to show that any compact set will intersect only

finitely many of the Dλ appearing in Df . For ξ ∈ D, define Λ(ξ) to be the set:

Λ(ξ) = {λ ∈ Zm,m : ξ ⊥ λ}

We have that Λ(ξ) = iff ξ is regular, and from the previous observation for any ξ ∈ Df the

set Λ(ξ) has only finitely many elements modulo scaling. If we define:

Λf (ξ) = {λ ∈ Zm,m : ξ ⊥ λ, a−(λ,λ)/2 6= 0}

Then Λf (ξ) is actually finite.

Definition 4.2.4 (Singularities). If Φ is a function on D and ξ′ ∈ D, then we will say that

Φ has a singularity of type Ψ if Φ−Ψ is the restriction (to the intersection of the domains

of Φ and Ψ) of a real analytic function defined in a neighborhood of ξ′.

Proposition 4.2.5 (Singularities of Φf , from [1]). Suppose that p ∈ C[Cm]κ, and f is a

weakly holomorphic modular form of weight κ. Then Φf defines a real analytic function for

ξ that are regular with respect to f . For ξ′ ∈ Df , we have that Φf (ξ; p) has a singularity of

type:

detY −1/2
∑

λ∈Λf (ξ)

bκ/2c∑
k=0

a−(λ,λ)/2
1

k!

((
4Y

4π

)k
p

)
(−iY −1ν−ξ (λ))

Γ(m/2− 1 + κ− k)

(2π(λ, λ)−ξ )m/2−1+κ−k

(4.37)

for ξ near ξ′.
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Remark 4.2.6. Note that as ξ → λ⊥, we have (λ, λ)−ξ → 0, leading to a singularity given

by negative powers of (λ, λ)−ξ , but also ν−ξ (λ)→ 0, so that the polynomial term is going to 0

as well, leading to some cancellation in the singularity. We will explore this in more detail

in example 4.2.7.

We will outline the proof of this, missing out some details as they are covered in [1].

Some notes about comparison to [1]: we interpret Dm as the space of maximal negative

definite subspaces, while Borcherds interprets it as the space of maximal positive definite

subspaces, leading to the differences between the above theorem and Theorem 6.2 in [1].

We also have a slightly different theta function (compare (3.59) in ours to (4.29)).

Proof. From (3.59), we have that Φf (ξ; p) is the constant term at s = 0 of the meromorphic

continuation of:

detY −1/2 lim
T→∞

∫
FT

∑
n,v

an

(
exp

(
1

4π
4Y y

)
p

)
(−iyY −1ν−ξ (v))

× e2πi(n+ 1
2

(v,v))xe−2π(n+ 1
2

(v,v)ξ)y
dxdy

y2+s−m/2

The factor of detY −1/2 will not effect anything so we will drop it throughout the proof and

remember to put it back on at the end. If we write FT = F1 ∪ F ′T where F ′T = {x + iy :

|x| ≤ 1/2, 1 ≤ y ≤ T}, then we have
∫
FT =

∫
F1

+
∫
F ′T

, with the latter integral being an

integration over a rectangular region. We note that it is only this latter integral that may

contribute to singularities, as the integral over F1 is an integral over a compact region that

does not change as T increases. Thus the singularities will all come from (the constant term

at s = 0) of:

lim
T→∞

∫ T

1

∫ 1

0

∑
n,v

an

(
exp

(
1

4π
4Y y

)
p

)
(−iyY −1ν−ξ (v))

× e2πi(n+ 1
2

(v,v))xe−2π(n+ 1
2

(v,v)ξ)y
dxdy

y2+s−m/2

The integration over x kills off all terms except where (v, v) = −2n, so this is:

lim
T→∞

∫ T

1

∑
1
2

(v,v)=−n

an

(
exp

(
1

4π
4Y y

)
p

)
(−iyY −1ν−ξ (v))e−2π(n+ 1

2
(v,v)ξ)y

dy

y2+s−m/2

The possibility of divergence will ultimately come from whether (n + 1
2(v, v)ξ) > 0 or not.

For the terms with n > 0 this will never happen, and when n = 0 we have (v, v)ξ = 0 iff

v = 0, but this term is killed off by the polynomial factor, as the polynomial is homogeneous

of positive degree. Thus there can only be divergences from the n < 0 terms. Then due to

the restriction of summation that 1
2(v, v) = −n, we have n + 1

2(v, v)ξ = −(v, v)ξ− , so that

we will only get divergences when this is 0, or equivalently that ξ ⊥ v, or in other words,
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v = λ ∈ Λ(ξ). These singular terms are then:

∑
λ∈Λ(ξ)

∫ ∞
1

a−(λ,λ)/2

(
exp

(
1

4π
4Y y

)
p

)
(−iyY −1ν−ξ (λ))e−2π(λ,λ)−ξ )yym/2−2−sdy

Note that if p is homogeneous of degree κ, (4Y )kp is homogeneous of degree κ− 2k. Thus

we can extract the y from inside the polynomial and it appears as yκ−2k on the outside.

Then when we take the constant term at s = 0, this is:

∑
λ∈Λ(ξ)

∑
k

a−(λ,λ)/2
1

k!

((
4Y

4π

)k
p

)
(−iY −1ν−ξ (λ))CTs=0

[∫ ∞
1

e−2π(λ,λ)−ξ yym/2−2−s+κ−kdy

]

The singularity is coming from (λ, λ)−ξ → 0, and Lemma 6.1 of [1]calculates that the

integral is a singularity of type:

(2π(λ, λ)−ξ )s+1−m/2−κ+kΓ(m/2− 1 + κ− k − s)

provided m/2− 1 + κ− k − s is not a non-positive integer. So long as κ+m/2 > 1, which

will happen if κ ≥ 1 or m ≥ 2, and k ≤ κ/2, we may simply take s = 0 in this formula and

get that the singularities of Φf at the point in question are as claimed.

Example 4.2.7 (Singularities for Φf (ξ; pκu)). Suppose that p(η)pκu = (tηu)κ for some u ∈
Cm. Such polynomials span the space C[Cm]κ. We have that:

4Y (tηu)κ = κ(κ− 1)(tuY −1u)(tηu)κ−2

Plugging this in to (4.37), we have that the singularities of Φf (ξ; pκu) are of the type:

detY −1/2
∑

λ∈Λ(ξ)

a−(λ,λ)/2

bκ/2c∑
k=0

κ!Γ(m/2− 1 + κ− k)

(4π)kk!(κ− 2k)!

(tuY −1u)k
(
− i tν−ξ (λ)Y −1u

)κ−2k(
π tν−ξ (λ)Y −1ν−ξ (λ)

)m/2−1+κ−k

(4.38)

We have:

(tuY −1u)k
(
− i tν−ξ (λ)Y −1u

)κ−2k(
π tν−ξ (λ)Y −1ν−ξ (λ)

)m/2−1+κ−k

=
(tuY −1u)k(

π tν−ξ (λ)Y −1ν−ξ (λ)
)m/2−1+κ/2

 −i tν−ξ (λ)Y −1u(
π tν−ξ (λ)Y −1ν−ξ (λ)

)1/2
κ/2−2k

with the first factor blowing up at ξ ⊥ λ, and the second factor being bounded but discon-

tinuous along Dλ.
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Example 4.2.8 (Singularities of Φ̃f (ξ)). Recall we defined Φ̃f (ξ) = ρκ(tα(ξ))Φf (ξ) in

(3.32). We have then that Φ̃f (ξ; p) has singularities of type:

∑
λ∈Λ(ξ)

∑
k

a−(λ,λ)/2
1

k!

((
4
4π

)k
p

)(
− iα−1ν−ξ (λ)

) Γ(m/2− 1 + κ− k)

(2π(λ, λ)−ξ )m/2−1+κ−k (4.39)

Note in particular that there is no Y dependence for 4 for this formula. One advantage

of this is that the operator 4 annihilates the subspace H κ ⊂ C[Cm]κ, so that for p ∈ H κ

the singularities of Φ̃f (ξ, p) are simply:

∑
λ∈Λ(ξ)

a−(λ,λ)/2p
(
− iα−1ν−ξ (λ)

) Γ(m/2− 1 + κ)

(2π(λ, λ)−ξ )m/2−1+κ
(4.40)

Example 4.2.9 (Singularities with the identification D2
∼= H1 × H1). To begin with we

will look more at the singularities of Φ̃f (ξ) given in (4.39) for m = 2. Recall we defined

the polynomials pκ±(η) =

(
tη

(
∓i
1

))κ
= (±iη1 + η2)κ as in example 3.4.15. We have that

p+(η)p−(η) = tηη and so

C[C2]κ =
⊕

κ1+κ2=κ

C · pκ1+ (η)pκ2− (η)

It is a straightforward verification that we have:

4
(
(tηη)κ1pκ2± (η)

)
= 2κ1(κ1 + κ2)(tηη)κ1−1pκ2± (η).

We can adapt (4.39) to see that Φf

(
ξ; (tηη)κ1pκ2± (η)

)
, with κ = 2κ1 + κ2, has a singularity

of the form:

∑
λ∈Λ(ξ)

a−(λ,λ)/2

κ1∑
k=0

1

(2π)k
κ1!(κ1 + κ2 − 1)!

(κ1 − k)!

pκ2±
(
− iα−1ν−ξ (λ)

)(
π tν−ξ (λ)Y −1νξ(λ)

)κ1+κ2
(4.41)

Now recall we have the identification D2
∼= H1 × H1. We will phrase the above in terms

of (τ1, τ2). We have that

(
λ1

λ2

)
= λ ⊥ ξ when λ1 = ξλ2. If we write λ1 =

(
a

b

)
, λ2 =(

d

−c

)
, then 1

2(λ, λ) = det

(
a b

c d

)
= det γ, and using 2.42, we have that λ1 = ξ(τ1, τ2)λ2

iff λ1 = (−x2J + y1
tg−1
τ2 g
−1
τ2 )λ2, which is equivalent to y

1/2
2

tgτ2λ1 =

(
y1 −x1

x1 y1

)
g−1
τ2 λ2.

Expanding out this out, the first and second components give the real and imaginary parts
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of the equality aτ2 + b = τ1(cτ2 + d), so that we have:

τ1 =

(
a b

c d

)
τ2 = γτ2

Thus we have that Φf has a singularity along the divisors τ1 = γτ2 for γ ∈ M2(Z) with

det γ = n for all the n with a−n 6= 0. In other words ξ(τ1, τ2) is not regular with respect to

f if there is some γ ∈M+
2 (Z) with τ1 = γτ2, and a− det γ 6= 0.

We have:

α−1ν−ξ (λ) = (y1y2)−1/2

(
Im
(
(aτ2 + b)− τ1(cτ2 + d)

)
Re
(
(aτ2 + b)− τ1(cτ2 + d)

))
so that with pκ± as above, we have:

pκ±
(
− iα−1ν−ξ (λ)

)
=

(y1y2)−κ/2
(
− ((aτ2 + b)− τ1(cτ2 + d))

)κ ± = +

(y1y2)−κ/2
(
(aτ2 + b)− τ1(cτ2 + d)

)κ ± = −

and

2(λ, λ)−ξ = tν−ξ (λ)Y −1ν−ξ (λ) =
1

y1y2
|(aτ2 + b)− τ1(cτ2 + d)|2

Thus if ξ(τ ′1, τ
′
2) is not regular with respect to f , we have that Φ̃f

(
ξ(τ1, τ2), (tηη)κ1pκ2± (η)

)
has a singularity of type:

∑
γ∈M+

2 (Z)
τ ′1=γτ ′2

cκ1,κ2a− det γ(y1y2)κ/2

(γτ2 − τ1)κ2 |γτ2 − τ1|2κ1j(γ, τ2)κ2 |j(γ, τ2)|2κ1
if ± = +

∑
γ∈M+

2 (Z)
τ ′1=γτ ′2

cκ1,κ2a− det γ(y1y2)κ/2

(τ1 − γτ2)κ2 |τ1 − γτ2|2κ1j(γ, τ2)κ2 |j(γ, τ2)|2κ1
if ± = −

(4.42)

near ξ(τ ′1, τ
′
2), where cκ1,κ2 is a constant depending only on κ1 and κ2. In particular when

κ1 = 0, we can form Ff (τ1, τ2) as in section 3.3.1 and the end of the last section on cusp

forms, and then Ff (τ1, τ2) has a singularity of type

∑
γ∈M+

2 (Z)
τ ′1=γτ ′2

a− det γ
(κ− 1)!

πκ(τ1 − γτ2)κj(γ, τ2)κ
(4.43)

near (τ ′1, τ
′
2). We note that these are poles of order κ on H ×H. We also note that it

is possible for a point (τ1, τ2) to lie on multiple divisors of the form τ1 = γτ2. If we have

τ ′1 = γτ ′2 and τ ′1 = γ′τ ′2, then we have γ−1γ′ ∈ stab (τ ′2), so this can potentially occur for

any points τ2 whose stabilizer intersects non-trivially (i.e. not just ±1) with GL+
2 (Q)
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Lemma 4.2.10. Suppose that n0 is the greatest positive integer n for which a−n 6= 0. Then

Φf has no singularities in the region

{
ξ ∈ Dm : tuY u > n0 for all u ∈ Zm/{0}

}
(4.44)

Remark 4.2.11. A priori this is a region defined by an infinite amount of inequalities,

however we can guarantee being in this region by bounding the minimal eigenvalue of Y

from below.

Proof. Suppose that λ ⊥ ξ for some λ ∈ Z2m with 1
2(λ, λ) = tλ1λ2 = n > 0. As λ ⊥ ξ we

have λ1 = (X + Y )λ2, and plugging this into the previous equation we have tλ2Y λ2 = n.

Thus if tuY u > n0 for all u ∈ Zm, it would be impossible to find such a λ.

Now we will move to calculation of the regularized lift. We again will break the sum-

mation over w ∈Mm,2(Z) that defines the symplectic theta function according to the rank

of w.

Definition 4.2.12. For r = 0, 1, 2, define:

Φf,r(ξ)(p) :=

∫ reg

F

∑
w∈Mm,2(Z)
rank w=r

f(τ)p(ητ (w))eπi trX〈w,w〉e−π trY (w,w)τ dxdy

y2
(4.45)

Note the the integrand is Γ′ invariant (Remark 3.4.4). We have clearly that Φf =

Φf,0 + Φf,1 + Φf,2. We also have that Φf,0(ξ) = 0 identically in what we are considering

since the polynomials have no constant term. To calculate these pieces, we will do a similar

unfolding procedure as in the previous section. Again we use the characterization of orbits

under SL2(Z) in 4.1.4. We note as well that the constant term of Φf is equal to Φf,1.

4.2.1 Rank 1 Terms

Definition 4.2.13 (Epstein Zeta Functions). Suppose that Y ∈ Sym+
m(R), v, w ∈ Rm, and

p ∈ C[Cm]. Define the Epstein Zeta function for z with Re z large as:

ζ(Y, z; p, v, w) =

′∑
u∈Zm

e2πi tuv p(u+ w)(
Y [u+ w]

)z (4.46)

If v and w are 0 we leave them out, and if p = 1 we leave it out.

A priori this function converges absolutely uniformly in z for all z in any closed half

plane to the right of Re(z) = m
2 + κ

2 , where κ = deg p. Note that this definition differs from

the more common definition (see for example §1.5 in [2]) in that we allow for p to by any

polynomial, instead of only homogeneous polynomials that are harmonic with respect to

Y (i.e. 4Y p = 0), and we have not made the common normalization (it is more common
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to write (Y [u + w])z+κ/2 in the denominator instead). In [2] it is proven that these zeta

functions (with the mentioned restrictions) can be extended to meromorphic functions that

have a single pole at m/2 if p is constant and v ∈ Zm, and are entire otherwise, as well as

satisfy a reflection formula in z. This is unsatisfactory for our purposes for two reasons.

First of all we will desire to input in arbitrary polynomials p as these zeta functions will

come up in the evaluation of Φf,1(ξ; p), and also we have in mind that we want to allow Y

to vary, so that the set of polynomials that are harmonic with respect to Y will change. We

will adapt the proof in [2] to obtain the following lemma:

Lemma 4.2.14. Suppose that p is a polynomial of degree κ, and write p(η) =
∑κ

j pj(η)

with pj(η) homogeneous of degree j. Then ζ(z, Y ; p, v, w) has a meromorphic continuation

in z to all C. If v 6∈ Zm then it is entire, and otherwise it has a simple pole at z = m
2 + k

for k ∈ {0, . . . , bκ2 c} such that
(
(4Y )kp2k

)
(0) 6= 0, where it has a residue of:

πm/2

4kk!Γ
(
m
2 + k

)
detY 1/2

(
(4Y )kp2k

)
(0) (4.47)

and ζ satisfies a functional equation of the form:

Γ(z)

πz
ζ(z, Y ; p(η), v, w) =

e−2πi tvw

detY 1/2

κ∑
j=0

bj/2c∑
k=0

(−i)j−2kΓ
(
m
2 + j − k − z

)
4kk!πm/2+j−z

× ζ
(m

2
+ j − k − z, Y −1;

(
(4Y )kpj

)
(Y −1η),−w, v

)
(4.48)

Remark 4.2.15. Under the assumption that p is homogeneous of degree κ and is harmonic

with respect to Y , this reduces to:

Γ(z)

πz
ζ(z, Y ; p(η), v, w) =

e−2πi tvw

detY 1/2

Γ
(
m
2 + κ− z

)
πm/2+κ−z ζ

(m
2

+ κ− z, Y −1; p(Y −1η),−w, v
)

which is Theorem 3 in §1.5 of [2] after accounting for our difference of convention.

Proof. We follow the same structure as §1.5 in [2], making appropriate changes. Define:

g(Y, p; v, w) =
∑
u∈Zm

e−πY [u+w]+2πi tvup(u+ w)

If we calculate the Fourier transform:∫
Rm

e2πi txye−πY [x+w]+2πi tvxp(x+ w) dx

= detY −1/2e−2πi tvwe−πY
−1[y+v]−2πi twy

(
exp

(
1

4π
4Y

)
p

)
(−iY −1(y + v))
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so that by Poisson summation we have:

g(Y, p(η); v, w) = e−2πi tvw detY −1/2g(Y −1, (e4
Y /4πp)(−iY −1η);−w, v)

We use the fact that: ∫ ∞
0

tze−πAt
dt

t
= π−zΓ(z)A−z

So that we have for z in a closed half plane to the right of Re(x) = m
2 + κ

2 :

Γ(z)

πz
ζ(z, Y ; p, v, w) =

′∑
u∈Zm

e2πi tvu

∫ ∞
0

tz+
κ
2 e−πtY [u+w]dt

t

=

∫ ∞
0

tz+
κ
2

′∑
u∈Zm

e−πtY [u+w]+2πi tvudt

t

(4.49)

where we may interchange the sum and integral due to the absolute convergence of the sum

in this right half plane. The expression inside the integral is almost equal to g(Y, p; v, w)

we defined above, except possibly the term where u+ w = 0. Define:

k(w) =

1 w ∈ Zm

0 w 6∈ Zm

then we have that:

′∑
u∈Zm

e−πtY [u+w]+2πi tvu = g(Y, p; v, w)− e−2πi tvwp(0)k(w)

We break the integral over t from 0 to ∞ into one from 0 to 1 and another from 1 to ∞,

and then (4.49) is:

∫ ∞
1

tz
′∑

u∈Zm
e−πtY [u+w]+2πi tvudt

t
+

∫ 1

0
tz+

κ
2

(
g(tY, p; v, w)− e−2πi tvwk(w)p(0)

)dt
t

=

∫ ∞
1

tz
′∑

u∈Zm
e−πtY [u+w]+2πi tvudt

t
+ e−2πi tvwk(w)p(0)

∫ 1

0
tz
dt

t
+

+

∫ 1

0
tz−

m
2 detY −1/2e−2πi tvw

(
g
(
t−1Y −1, (e4

tY /4πp)(−it−1Y −1η);−w, v
))dt

t

The first integral defines an entire function of z, and the second is easily evaluated as:

e−2πi tvwk(w)p(0)

∫ 1

0
tz
dt

t
= e−2πi tvwk(w)p(0)z−1
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For the third integral, consider that 4tY = t−14Y , and we have:

(e4
Y /4πtp)(−it−1Y −1η) =

κ∑
j=0

bj/2c∑
k=0

(−i)j−2k

(4π)kk!
tk−j

(
(4Y )kpj

)
(Y −1η)

The constant term of this is:
bκ/2c∑
k=0

(
(4Y )kp2k

)
(0)

(4π)kk!
t−k

so that we have that the third integral is equal to:

∫ 1

0
tz−

m
2 detY −1/2e−2πi tvw

′∑
u∈Zm

e−2πi tuw−πt−1Y −1[u+v]

×
∑
j,k

(−i)j−2k

(4π)kk!
tk−j

(
(4Y )kpj

)(
Y −1(u+ v)

)dt
t

+ k(u) detY −1/2

bκ/2c∑
k=0

(
(4Y )kp2k

)
(0)

(4π)kk!

∫ 1

0
tz−

m
2
−k dt

t

Thus, we have:

ζ(z, Y ; p, v, w) =

πz

Γ(z)

(
− e−2πi tvwk(w)p(0)z−1 +

k(u)

detY 1/2

bκ/2c∑
k=0

(
(4Y )kp2k

)
(0)

(4π)kk!

(
z − m

2
− k
)−1

+

+

∫ ∞
1

tz
′∑

u∈Zm
e−πtY [u+w]+2πi tvudt

t

+
e−2πi tvw

detY 1/2

∑
j,k

(−i)j−2k

(4π)kk!

∫ ∞
1

t
m
2

+k−j−z

×
′∑

u∈Zm
e−2πi tuw−πtY −1[u+v]

(
(4Y )kpj

)
(Y −1(u+ v))

dt

t

)
(4.50)

We have that the pole from z−1 cancels with the 0 from 1
Γ(z) , and we are left with all the

poles coming from:

k(u)

detY 1/2

bκ/2c∑
k=0

(
(4Y )kp2k

)
(0)

(4π)kk!

(
z − m

2
− k
)−1

due to the two integrals defining an entire function of z. We are also able to deduce the

functional equation from this line as well. If we start with the right hand side of (4.48) and

perform the same steps we will arrive the right hand side of (4.50).
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Theorem 4.2.16. The rank 1 piece is given by:

Φf,1(ξ; p) = a0CTz=1

[
Γ(z)

πz
ζ(z, Y ; p)

]
(4.51)

where ζ is the Epstein zeta function defined above.

We will give some examples where we can provide a more explicit formula for this after

the proof.

Proof. We can group terms in (4.45) according to lemma 4.1.4, and we have the rank 1

term is the constant term at s = 0 of:

lim
T→∞

∫
FT

′∑
w=(0,u)
u∈Zm

∑
γ∈Γ′/Γ′w

∫
FT
f(τ)p(ητ (wγ))e−π trY (wγ,wγ)τ dxdy

y2+s

in the same way as in the proof of lemma 4.1.3, this is:

lim
T→∞

′∑
w=(0,u)
u∈Zm

∑
γ∈Γ′/Γ′w

∫
γFT

f(τ)p(ητ (w))e−π trY (w,w)τ |j(γ−1, τ)|2sdxdy
y2+s

For w = (0, u), we have (w,w)τ = uy−1 tu, and ητ (w) = u, so that this is:

lim
T→∞

′∑
u∈Zm

∑
γ∈Γ′/Γ′w

∫
γFT

f(τ)p(u)e−π
tuY uy−1 |j(γ−1, τ)|2sdxdy

y2+s
(4.52)

which differs from :

′∑
u∈Zm

lim
T→∞

∫ T

0

∫ 1/2

−1/2
f(τ)p(u)e−π tr tuY uy−1 dxdy

y2+s
(4.53)

by an entire function of s that goes to 0 at s = 0. We will take a minute to verify this

claim. We consider that (4.52) and (4.53) are the same on the region with y ≥ 1 (as this is

contained in the region with γ = 1 in the first expression), so that their difference is:

lim
T→∞

∑
γ∈Γ′/Γ′w
γ 6=1

∫
γFT

f(τ)p(u)e−π
tuY uy−1

(1− |j(γ−1, τ)|2s)dxdy
y2+s

(4.54)

We note that |j(γ, γ−1τ)| = |j(γ−1, τ)|, and when τ ∈ γF , we have |j(γ−1, τ)| < 1, so that

this integral is dominated by: ∫ 1

0

∫ 1

0
|f(τ)|e−π tuY uy−1 dxdy

y2+s
(4.55)
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We have that f(−τ−1) = τκf(τ), so that we have for y near 0, f(x+iy) = (x+iy)−κf(−x+iy
x2+y2

).

As y → ∞ we have that |f(τ)| = O(e2πn0y), so that as y → 0, and so we have |f(τ)| =

O(y−κe2πn0y−1
). Thus so long as Y is in the region where tuY u > 2n0 for all u ∈ Zm−{0},

we have that (4.55) converges on this region. Then we have that (4.54) gives an entire

function of s that goes to 0 at s = 0.

Thus we consider now (4.53). We can integrate in x which kills off all terms from f(τ)

except for the constant term, and then taking the limit as T →∞, so that we have:

Φf,1(ξ; p) = CTs=0

[
a0

′∑
u∈Zm

∫ ∞
0

p(u)e−π tr tuY uy−1 dy

y2+s

]

This integral over y is easily seen to be:∫ ∞
0

p(u)e−π tr tuY uy−1 dy

y2+s
=

Γ(1 + s)

π1+s

p(u)

(tuY u)1+s
Γ(s+ 1)

and summing over u we obtain:

′∑
u∈Zm

Γ(1 + s)

π1+s

p(u)

(tuY u)1+s
=

Γ(1 + s)

π1+s
ζ(1 + s, Y ; p)

From the previous lemma this can be meromorphically continued to all of C, and taking

the constant term at s = 0 amounts to taking the constant term at z = 1. We note that

the right hand side of (4.51) is real analytic for on all of Sym+
m(R), so that since the two

sides agree on the region described in the proof, they agree on all of Sym+
m(R).

Example 4.2.17 (m ≥ 3). When m ≥ 3, the function ζ(z, Y ; p) is regular at z = 1 due

to all potential singularities being at z = m/2 and to the right of it, so that we may simply

evaluate at z = 1 and we have:

Φf,1(ξ; p) = a0
ζ(1, Y ; p)

π
(4.56)

where a0 is the constant coefficient of f . In some cases we can do better than this and obtain

a more explicit formula. The sum defining ζ(z, Y ; p) for z large (4.46) does not converge at

z = 1. Instead, we can use the reflection formula (4.48), to have:

ζ(1, Y ; p(η))

π

=
(−1)κ/2 detY −1/2

πm/2+κ−1

κ/2∑
k=0

Γ
(
m
2 + κ− k − 1

)
4kk!

ζ
(m

2
+ κ− k − 1, Y −1;

(
(4Y )kp

)
(Y −1η)

)
(4.57)
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the sums in the definition of the zeta function above are:

′∑
u∈Zm

(
(4Y )kp

)
(Y −1u)

(Y −1[u])
m
2

+κ−k−1
(4.58)

and the summand is on the order of ||u||−m−κ+2, so that when κ ≥ 3, the sum converges,

giving:

Φf,1(ξ; p) = a0
(−1)κ/2

πm/2+κ−1 detY 1/2

κ/2∑
k=0

Γ
(
m
2 + κ− k − 1

)
4kk!

′∑
u∈Zm

(
(4Y )k)p

)
(Y −1u)

(tuY −1u)m/2+κ−k−1
(4.59)

Example 4.2.18 (Φ̃f,1). We will work out some more explicit formulas for evaluating

Φ̃f,1(ξ; p). We have first that:

Φ̃f,1(ξ; p) = detY 1/2CTz=1

[
Γ(z)

πz
ζ
(
z, Y ;σ(tα−1)p

)]
(4.60)

The advantage to this form of the function is that the operator 4Y behaves much more

nicely in this case, due to the fact that 4Y σ(tα−1p) = σ(tα−1)4p. Recall we have the

decomposition:

C[Cm]κ =

bκ/2c⊕
k=0

(tηη)kH [Cm]κ−2k (4.61)

where H [Cm]κ is the subspace of harmonic polynomials that are homogeneous of degree κ.

The space H [Cm]κ is spanned by polynomials of the form

pκu(η) = t(ηu)κ

where u ∈ Cm is an isotropic vector. We have that

4
(
(tηη)κ1pκ2u (η)

)
= 2κ1(κ1 + κ2)(tηη)κ1−1pκ2u (η) (4.62)

(the same holds for p ∈H [Cm]κ2). For p ∈H [Cm]κ2 we have that

4k
(
(tηη)κ1p

)
(0) =

2κ1(κ1!)2 κ2 = 0 and κ1 = k

0 otherwise
(4.63)

Thus we have that ζ
(
z, Y, (tηη)κ1p

)
is entire in z unless p = 1, in which case it has a pole of

order 1 at m
2 +κ1 of residue πm/2κ1!

2κ1Γ(m2 +κ1)
. Again we can use the reflection formula to obtain

that if κ ≥ 3, and p ∈ C[Cm]κ of the form p(η) = (tηη)κ1p0(η) with p0(η) ∈ H [Cm]κ2 and

2κ1 + κ2 = κ, we have:
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Φ̃f,1

(
ξ; (tηη)κ1p0(η)

)
= a0Cκ1,κ2

′∑
u∈Zm

p0(α−1u)

(Y −1[u])m/2+κ1+κ2−1
(4.64)

where Cκ1,κ2 is the constant:

Cκ1,κ2 =
(−1)κ1

iκ2πm/2+κ−1

κ1∑
k=0

(−1)kΓ(m/2 + κ− k − 1)

2k

(
κ1

k

)
(κ1 + κ2)!

(κ1 + κ2 − k)!

Example 4.2.19 (Identification D2
∼= H1 ×H1). We have from (2.44) that:

α(τ1, τ2)−1

(
u1

u2

)
=

1

(y1y2)1/2

(
y2u1

x2u1 + u2

)
so that

(
(tηη)κ1pκ2±

)(
α(τ1, τ2)

(
u1

u2

))
= (y1y2)−κ/2|τ2u1 + u2|2κ1 ×

(τ2u1 + u2)κ2 ± = +

(τ2u1 + u2)κ2 ± = −

and we have Y (τ1, τ2)−1[u] = (y1y2)−1|τ2u1 + u2|2. Thus, for κ ≥ 3 we have:

Φ̃f,1

(
ξ(τ1, τ2); pκ+

)
= a0

(y1y2)κ/2(κ− 1)!

iκπκ

′∑
u∈Z2

1

(τ2u1 + u2)κ
(4.65)

If we write Eκ(τ) for the rank κ holomorphic Eisenstein series, normalized so that is has

constant term 1, this is :

Φ̃f,1

(
ξ(τ1, τ2); pκ+

)
= a0y

κ/2
1 y

κ/2
2

(κ− 1)!ζ(κ)

iκπκ
Eκ(τ2) (4.66)

After we have calculated the rank 2 piece as well we will return to this to give an expression

for Ff (τ1, τ2).

4.2.2 Rank 2 Terms

We move on to the calculation of the rank 2 piece, Φf,2. We will first need to do some

preparation to deal with the regularization process and perform the unfolding. To begin

with, recall we have:

Φf,2(ξ; p) = CTs=0

 lim
T→∞

∫
FT

∑
w∈Mm,2(Z)
rank w=2

f(τ)p(ητ (w))eπi trX〈w,w〉e−π trY (w,w)τ dxdy

y2+s


(4.67)

Let RA to be the region in Sym+
m(R) defined by:
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RA = {Y ∈ Sym+
m(R) : tuY u > A for all u ∈ Zm\{0}} (4.68)

We remark that this region is a cone in Sym+
m(R) in the sense that if Y ∈ RA then tY ∈ RA

for any t ∈ R≥1. Also note that this is the region described in Lemma 4.2.10 if we take

A = n0. For f a weakly holomorphic modular form, we have a positive constant cf such

that |f(τ)| . max(ecfy, ecfy
−1

), where f . g means that f ≤ cg for some constant c.

Lemma 4.2.20. Let cf > 0 be a positive constant such that |f(τ)| . max(ecfy, ecfy
−1

).

Then for Y ∈ R4cf/3π, we have that Φf,2(ξ; p) is real analytic and is given by:

Φf,2(ξ; p) =
∑

S∈Skewm(Z)
rank S=2

eπi trSXaS(Y ; p)

where aS(Y ; p) is the constant term at s = 0 of:

aS(Y ; p; s) = 2
∑

a,b,d∈Z≥0

ad=µ
0≤b<a

∫
H
f(τ)p(ητ (w0γa,b,d))e

−π trY (w0γa,b,d,w0γa,b,d)τ dxdy

y2+s

where S = µS0 with S0 primitive, and w0 ∈M1
m,2(Z) is such that 〈w0, w0〉 and Im τ2(Y,w0) ≥√

3/2. This is an entire function in s.

Proof. Suppose that Y is in R4cf/3π, and consider the expression

lim
T→∞

∫
FT

∑
w∈Mm,2(Z)
rank w=2

f(τ)p(ητ (w))eπi trX〈w,w〉e−π trY (w,w)τ dxdy

y2+s
(4.69)

for s is in some right half plane Re(s) ≥ s0. We have the estimate π trY (w,w)τ >

π tw1Y w1y > cfy, so that for Y ∈ R4cf/3π, we have |f(τ)|e−π trY (w,w)τ . e−C1π trY (w,w)τ for

some positive constant C1. Thus we may interchange the sum and the limit in the above

expression. Define a′S(Y ; p; s) to be:

a′S(Y ; p; s) =
∑

w∈Mm,2(Z)
〈w,w〉=S

∫
F
f(τ)p(ητ (w))e−π trY (w,w)τ dxdy

y2+s

and so we have that (4.69) is equal to:

∑
S∈Skewm(Z)

rank S=2

eπi trXSa′S(Y ; p; s)

Now we consider these individual pieces a′S . By the same unfolding process as in the proof

of theorem 4.2.16, we have that
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a′S(Y ; p; s) =
∑

[w]∈OS

∑
γ∈SL2(Z)

∫
γF
f(τ)p(ητ (w))e−π trY (w,w)τ |j(γ−1, τ)|2sdxdy

y2+s
(4.70)

Note that
∑

γ∈SL2(Z)

∫
γF is actually

∫
H, but we have written it like this because of the

presence of |j(γ−1, τ)|2s. Also, we note that the sum [w] ∈ OS is finite. For a given

S ∈ Skewm(Z) with rank S = 2, there is a unique S0 that is primitive and S = µS0 for

some µ ∈ Z>0. There is also a w0 ∈M+
m,2(Z) so that 〈w0, w0〉 = S0, and then the elements

of OµS0 have representatives of the form w0γa,b,d (γa,b,d =

(
a b

d

)
), where a, d > 0, ad = µ,

and 0 ≤ b < a. Define aS(Y ; p; s) to be:

aS(Y ; p; s) =
∑

[w]∈OS

∫
H
f(τ)p(ητ (w))e−π trY (w,w)τ dxdy

y2+s
(4.71)

and

a′′S(Y ; p; s) =
∑

[w]∈OS

∫
H
|f(τ)p(ητ (w))|e−π trY (w,w)τ dxdy

y2+s

We have that the integrand in the definition of a′′S is non-negative and dominates that of

aS and a′S (this is obvious for aS and for a′S we use that |j(γ−1, τ)| < 1). We will show

that for Y in the region described it converges absolutely uniformly on compact subsets of

Y for all values of s, and so defines an entire function of s. After we have shown this we

obtain the same for a′S and aS , and since their difference goes to 0 at s = 0, we have that

aS(Y ; p; 0) = aS(Y ; p; s). Now to show that the integral for a′′S converges for all s.

We will choose the representative w0 = (w0,1, w0,2) for OS0 such that

y2(ξ, w0) =

√
det tw0Y w0

tw0,1Y w0,1
≥
√

3

2

(y2(ξ, w0) is the imaginary part of τ2(ξ, w0)). We may do this since a different choice of

representative amounts to multiplying w0 on the right by an element of SL2(Z), which

amounts to acting on τ2(ξ, w0) by the inverse of that element. Thus by choice of represen-

tative we can fix it so that τ2(ξ, w0) is in the fundamental region for the action of SL2(Z)

on H, where Im τ ≥
√

3/2.

Now, we have that

trY (w,w)τ = tw1Y w1y + tw1Y w1

(
x+

tw1Y w2

tw1Y w1

)2

y−1 +

(
tw2Y w2 −

(tw1Y w2)2

tw1Y w1

)
y−1
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If we have that w = w0γa,b,d then we have that

tw1Y w1 = a2 tw0,1Y w0,1,(
tw2Y w2 −

(tw1Y w2)2

tw1Y w1

)
= d2

(
tw0,2Y w0,2 −

(tw0,1Y w0,2)2

tw0,1Y w0,1

)
Now, since Y is in R4cf/3π, we have that πw0,1Y w0,1 > cf , and also that

π

(
tw0,2Y w0,2 −

(tw0,1Y w0,2)2

tw0,1Y w0,1

)
= πy2(ξ, w0)2 tw0,1Y w0,1 > cf

Thus we can find some C2 so that |f(τ)e−π trY (w,w)τ | . e−C2 trY (w,w)τ , and so we have

|f(τ)p(ητ (w))e−C2 trY (w,w)τ y−2−s| . |yl−se−C2 trY (w,w)τ |

for some integer l, depending on the degree of p, whose integral converges uniformly for all

s in any compact region of C and Y in a compact subset of R4cf/3π.

Remark 4.2.21. It is important that we can choose w0 such that τ2(ξ, w0) is in the funda-

mental region for the action of SL2(Z) on H to obtain the estimate we use. We are unable

to do the estimate without this as there will be no way to guarantee |f(τ)| . e−π trY (w,w)τ

for some fixed Y and arbitrary w. If we do not carefully choose w this way we will have the

problem that
(
tw2Y w2 − (tw1Y w2)2

tw1Y w1

)
can be arbitrarily small.

We have:

Theorem 4.2.22.

Φf,2(ξ; p) =
∑

S0∈Skew1
m(Z)

φf,S0(ξ, ; p)

where

φf,S0(ξ; p) = 2
p
(
η(ξ, w0)

)
y1(ξ, w0)

∞∑
m=1

∞∑
n=−∞

cm,ne
2πimτ1(ξ,w0)e2πinτ2(ξ,w0) (4.72)

where cm,n are coefficients given by:

cm,n =
∑

d| gcd(m,n)

dκ−1amn/d2 (4.73)

Proof. Fix some S0 ∈ Skew1
m(Z), and w0 ∈ M+

m,2(Z) as in the previous lemma, so that

〈w0, w0〉 = S0. Then we have that a set of representatives for OµS0 is given by {w0γa,b,d :

a, d > 0, ad = µ, 0 ≤ b < a}. From the same calculation that shows (4.14) we get
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CTs=0

[∫
H
f(τ)p(ητ (w))e−π trY (w,w)τ dxdy

y2+s

]
=
p
(
η(ξ, w)

)
y1(ξ, w)

e2πiτ1(ξ,w)f(τ2(ξ, w))

(4.74)

Next we consider what happens to the above expression when we replace w with wγa,b,d.

From (4.12) and (4.13) We have that:

τ1(ξ, wγa,b,d) = adτ1(ξ, w), τ2(ξ, wγa,b,d) =
dτ2(ξ, w)− b

a
, η(ξ, wγa,b,d) = dη(ξ, w)

so that replacing w with wγa,b,d in (4.74) is:

dκ−1

a

p
(
η(ξ, w)

)
y1(ξ, w)

e2πiadτ1(ξ,w)f

(
dτ2(ξ, w)− b

a

)
We have thus that:

φS0(ξ, ; p) = 2
p
(
η(ξ, w0)

)
y1(ξ, w0)

∞∑
µ=1

∑
a,b,d∈Z≥0

ad=µ
0≤b<a

dκ−1

a
e2πiµτ1(ξ,w0)f

(
dτ2(ξ, w0)− b

a

)
(4.75)

Now consider the expression:

∑
a,b,d∈Z≥0

ad=µ
0≤b<a

dκ−1

a
f

(
dτ2(ξ, w0)− b

a

)
=

∑
a,b,d∈Z≥0

ad=µ
0≤b<a

∑
n≥−n0

dκ−1

a
ane

2πin
dτ2(ξ,w0)−b

a

For fixed a, d, n, when we sum over b we get 0 unless a|n, in which case the sum over b

contributes a. Thus the above is

∑
n,d∈Z≥0

ad=µ
a|n

dκ−1ane
2πin

a
dτ2(ξ,w0)

Thus we get that (4.75) is:

2
p
(
η(ξ, w0)

y1(ξ, w0)

∑
n≥−n0
a,d>0
ad
a|n

ane
2πiadτ1(ξ,w0)e2πin

a
dτ1(ξ,w0)

and by relabeling ad as m, and n
a as n, and collecting coefficients together, we obtain the
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result.

Remark 4.2.23. This route provides an alternate way to prove theorem 4.1.16. For a Hecke

eigenform form f =
∑∞

n=1 ane
2πinτ and a1 = 1, we have that cm,n = anam. Alternately we

also have the expression φf,S0(ξ; p) = 2p(η(ξ,S0))
y1(ξ,S0) e

2πiµτ1(ξ,S0)(T (µ)f)(τ2(ξ, S0)) but we eschew

this for weakly holomorphic modular forms as the Hecke operators increase the order of the

pole at infinity so that there are no Hecke eigenforms (see the summation from −∞ to ∞
in n (4.72).

We have a similar result as theorem 4.1.17, where the rank 2 piece for the lift to O(m,m)

is obtained from the rank 2 piece for the lift to O(2, 2). The proof is identical.

Corollary 4.2.24. Using the same notation as in theorem 4.1.17, we have:

Φ
(m)
f,2 (ξ) =

∑
A∈P 2(Z)\GLm(Z)

ρκ(tA)
[
Φ

(2)
f,2([tAξA]m,2)

]
m,2

Remark 4.2.25. Note that it is not all of Φ
(m)
f that is obtained from Φ

(2)
f , as we do not get

the constant term in this way, only the non-constant term. The rank 1 piece can be thought

of as a lift from the degenerate O(1, 1). D1
∼= R>0, parameterized by a single variable

Y ∈ R>0. When we calculate the rank 1 piece we get Φ
(1)
f,1(Y ) = 2ζ(2)

πY . Then summing over

P 1(Z)\GLm(Z) is essentially breaking up the sum defining ζ(z, Y ; p) into lines through the

origin. We will not treat this idea in detail since it is a small aside.

We combine Theorems 4.2.16 and 4.2.22

Theorem 4.2.26 (Expression for the Regularized Lift Φf (ξ)). Suppose that f : H → C is a

weakly holomorphic modular form of weight κ, with Fourier expansion f(τ) =
∑

n ane
2πinτ .

Then the regularized lift Φf : D → Vρκ (4.2.3) has the Fourier expansion:

Φf (ξ; p) = a0
1

π
ζ(1, Y ; p)

+ 2
∑

S0∈Skew1
m(Z)

µ>0

eπiµ trXS0p(η(Y, S0))y1(Y, S0)e−2πµy1(Y,S0)
∞∑

n≥=−∞
cµ,ne

2πinτ2(Y,S0)

where ζ(1, Y ; p) is the Epstein zeta function (4.2.13), (where we take the constant term at

z = 1 in case m = 2 and ζ(z, Y ; p) has a pole there), and cµ,n are the coefficients defined in

(4.73). The constant term of the Fourier expansion is a0
1
π ζ(1, Y ; p) and the µS0-th Fourier

coefficient is:

aµS0(Y ; p) = 2eπiµ trXS0p(η(Y, S0))y1(Y, S0)e−2πµy1(Y,S0)
∞∑

n≥=−∞
cµ,ne

2πinτ2(Y,S0)
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Theorem 4.2.27 (Singular Shimura Correspondence). If f(τ) =
∑

n≥−n0
ane

2πinτ is a

weakly holomorphic modular form of weight κ, then the singular Shimura lift of f to SO0(2, 2)
∼= SL2(R)×±1 SL2(R), as defined in [1] is given by:

Ff (τ1, τ2) = a0
(κ− 1)!ζ(κ)

iκπκ
Eκ(τ2) + 2κ+1

∞∑
m=1

∞∑
n=−∞

cm,ne
2πimτ1e2πinτ2 (4.76)

where Eκ is the weight κ holomorphic Eisenstein series (normalized with constant coefficient

1), and cm,n are the constants defined in (4.73).

In particular this is a meromorphic modular function on H1×H1 with respect to SL2(Z)×
SL2(Z) of weight (κ, κ), and it has singularities along the divisors τ1 = γτ2 that are poles

of order κ for all γ ∈M2(Z) with det γ = n > 0 and a−n 6= 0. At a point (τ ′1, τ
′
2) on such a

divisor, the singularity is given as:

∑
γ∈M+

2 (Z)
τ ′1=γτ ′2

a− det γ
(κ− 1)!

πκ(τ1 − γτ2)κj(γ, τ2)κ

Proof. Most of the proof of this is contained in example 4.2.9 (for the singularities), and

example 4.2.19 (for the rank 1 piece giving the term with the Eisenstein series). To obtain

the sum in (4.76) we follow the same process as we obtained theorem 4.1.18.



Chapter 5

Lifting Cusp Forms of Genus 2 and

Higher

5.1 Fourier Coefficients of Lifts

In this section we will write H for Hn, except when later on we will be specifically referring

to n = 2. We will also write f for a Siegel cups form f : H → Vκ weight κ, with (Vκ, κ)

an irreducible representation holomorphic of GLn(C). Recall in definition 3.4.5, we defined

functions Θκ : D × H → Vρκ ⊗ V∗κ, where Vρκ (3.51) is the GLm(R) representation whose

underlying space is HomGLn(C)(Vκ,C[Mm,n(C)]κ)∗, whose action is given by (ρκ(α)P )(v) =

|detα|nσ(α)−1P (v) for v ∈ Vκ, P ∈ HomGLn(C)(Vκ,C[Mm,n(C)]), where σ is the action on

C[Mm,n(C)] given by σ(α)p(η) = p(α−1η).

The function Θκ is modular for Γ× Γ′ on D ×H of weight (ρκ, κ
∗), i.e.:

Θκ(γξ, γ′τ) =
(
ρκ(j−(γ, ξ))⊗ κ∗(j(γ′, τ))

)
Θκ(ξ, τ)

and can pair with f to obtain a function (f,Θκ) : D ×H → Vρκ that is modular of weight

(ρκ, 1). We recall that P (f(τ)) ∈ C[Mm,n(C)], and (3.56) says:

(f,Θκ)(ξ, τ)(P ) =
∑

w∈Mm,2n(Z)

P (f(τ))(ητ (w))eπi trX〈w,w〉e−π trY (w,w)τ

Definition 5.1.1 (Theta Lift of f to O(m,m)). Define the Theta lift of f to O(m,m) to

be Φf : D → Vρκ to be the function:

Φf (ξ) =

∫
F

(f,Θκ)(ξ, τ) det y−n−1dxdy

where F is a fundamental domain for the action of Γ′ = SPn(Z) on H.

This converges without issue as f is a cusp form.

88
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Remark 5.1.2. Note that a priori that the minimum m for which we can lift f to O(m,m)

is m = n, due to the weight of f being κ = (κ1, . . . , κn) with κn 6= 0. We will see that indeed

for cusp forms the lifts are identically 0 until we reach m = 2n.

Proposition 5.1.3. The function Φf : D → Vρκ defined in the previous definition is

modular on D of weight ρκ:

Φf (γξ) = ρκ(j−(γ, ξ))Φf (ξ)

for all γ ∈ Γ, ξ ∈ D. In terms of evaluation of Φf (ξ) on P ∈ HomGLn(C)(Vκ,C[η]κ), we

have:

Φf (γξ;P ) = |det j−(γ, ξ)|nΦf

(
ξ;σ(j−(γ, ξ))−1P

)
From the modularity of Φf we have that it has a Fourier expansion:

Φf (ξ) =
∑

S∈Skewm(Z)

eπi trXSaS(Y ) (5.1)

for some aS(Y ) taking values Vρκ . We will write aS(Y ;P ) for evaluating aS(Y ) at a specific

P . We obtain an expression for the Fourier coefficients immediately from the definition of

Θκ:

aS(Y ;P ) =
∑

w∈Mm,2n(Z)
〈w,w〉=S

∫
F
P (f(τ))(ητ (w))e−π trY (w,w)τ det y−1−ndxdy (5.2)

We will now seek to obtain more explicit expressions for these Fourier coefficients. To begin

the calculation of the Fourier coefficients we will record the following lemma. It is a simple

calculation but it will be used frequently in this section.

Lemma 5.1.4. Suppose that f : H → Vκ is modular of weight κ, g ∈ GSP+
n (R), R ⊆ H,

P ∈ HomGLn(C)(Vκ,C[Mm,n(C)]κ), and w ∈Mm,2n(R). Then:∫
R
P (f(τ))(ητ (wg))e−π trY (wg,wg)τ det y−n−1dxdy

=µ(g)d(κ)−n(n+1)/2

∫
gR
P (f |g−1(τ))(ητ (w))e−πµ(g) trY (w,w)τ det y−n−1dxdy

(5.3)

where f |g is the slash operator of weight κ for g applied to f (3.8).

Proof. First recall we have ητ (wg) = ηgτ (w)j(g, τ) and (wg,wg)τ = µ(g)(w,w)gτ . Then in

the left hand side of (5.3) we change variables τ 7→ g−1τ , giving:∫
gR
P (f(g−1τ))

(
ητ (w)j(g, g−1τ)

)
e−πµ(g) trY (w,w)τ det y−n−1dxdy
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We have j(g, g−1τ) = j(g−1, τ)−1 so that

P (f(g−1τ))
(
ητ (w)j(g, g−1τ)

)
= P

(
κ(j(g−1, τ))−1f

)
(ητ (w))

Then finally we use that κ(j(g−1, τ))−1f = µ(g)d(κ)−n(n+1)/2f |g−1 .

We can now collect terms together in the sum on w in (5.2) according to their Γ′ orbits.

First we introduce some notation. For S ∈ Skewm(Z), define:

MS,j
m,2n = {w ∈Mm,2n(Z) : 〈w,w〉 = S, rank w = rank S + j}

OS,j = MS,j
m,2n/Γ

′
(5.4)

We will write elements of OS,j as either w or [w], depending on whether we want to value

simpler notation, or to emphasize that they are orbits of Mm,2n(Z). We can rephrase (5.2)

in these terms:

aS(Y ;P ) =
∑
j

∑
[w]∈OS,j

∑
w′∈[w]

∫
F
P (f(τ))(ητ (w′))e−π trY (w′,w′)τ det y−1−ndxdy (5.5)

For D a diagonal matrix, we will also write OD, OD,j , MD
m,2n(Z) and MD,j

m,2n(Z) for OJ(D),

OJ(D),j , M
J(D)
m,2n (Z) and M

J(D),j
m,2n (Z), respectively, where J(D) =

 0 D 0

−D 0 0

0 0 0

, so that the

representative Fourier coefficients (Definition 3.3.6) are given as:

aD(Y ;P ) =
∑
j

∑
[w]∈OD,j

∑
w′∈[w]

∫
F
P (f(τ))(ητ (w′))e−π trY (w′,w′)τ det y−1−ndxdy

We will now prove a lemma that allows us to group together the inside sums in (5.5). Given

a w ∈Mm,2n(Z), we will write

Γ′w = stab Γ′(w) (5.6)

and Fw for a fundamental domain inside of Hn for the action of Γ′w.

Lemma 5.1.5 (Unfolding). Suppose that [w] ∈Mm,2n(Z)/Γ′, we have:

∑
w′∈[w]

∫
F
P (f(τ))(ητ (w′))e−π trY (w′,w′)τ det y−n−1dxdy

= 2

∫
Fw

P (f(τ))(ητ (w))e−π trY (w,w)τ det y−n−1dxdy

(5.7)
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Proof. The proof is essentially the same as Lemma 4.1.3, but we will write it out anyways.

Let γi range over a set of representatives for Γ′w\Γ′. We have then that if h is some function

of w′: ∑
w′∈[w]

h(w′) =
∑
i

h(wγi)

By Lemma 5.1.4 we get that the left hand side of (5.7) is

∑
i

∫
γ−1
i F

P (f(τ))(ητ (w))e−π trY (w,w)τ det y−n−1dxdy

Their union of the regions γ−1
i F gives Fw. We have that the integral with w = 0 is identically

0 since the polynomial P (f(τ)) has no constant term, so that all of the stabilizers do not

contain −1. Thus both γi and −γi appear in the sum over i, so that we are double counting

the region Fw, giving the coefficient of 2.

In light of the lemma we can then refine (5.5):

aS(Y ;P ) = 2
∑
j

∑
w∈OS,j

∫
Fw

P (f(τ))(ητ (w))e−π trY (w,w)τ det y−n−1dxdy (5.8)

We have an action of GLm(Q) and Spn(Q) on Mm,2n(Q) on the left and the right, respec-

tively. Given w ∈ Mm,2n(Q) we can form colspanQ(w) ⊆ Qm and rowspanQ(w) ⊆ Q2n.

For A ∈ GLn(Q) and g ∈ Spn(Q), we have colspanQ(Awg) = A(colspanQ(w)), and

rowspanQ(Awg) = (rowspanQ(w))g.

Proposition 5.1.6. Suppose that w ∈ OS,j, with rank S = 2r and sd(S) = D. Then there

is an A ∈ GLm(Z) and g ∈ Spn(Q) so that w = AwD,jg where:

wD,j =


D 0 0 0 0 0

0 0 0 1r 0 0

0 0 0 0 1j 0

0 0 0 0 0 0



Proof. We can find an A1 ∈ GLm(Z) so that A1w =

(
w1

0

)
has the bottom m− 2r− j rows

zero, and the rows of w1 linearly independent. Then the top 2r + j rows of A1w. Then we

can choose A2 ∈ GL2r+j(Z) so that A2〈w1, w1〉 tA2 is in skew normal form. Then writing

A−1 =

(
A2

1

)
A1, we have that A−1w =

(
w2

0

)
with the rows of w2 linearly independent

and 〈w2, w2〉 = J(D). If we consider the matrix w3 =

D 0 0 0 0 0

0 0 0 1r 0 0

0 0 0 0 1j 0

, then we
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have 〈w3, w3〉 = 〈w2, w2〉, and since both matrices have linearly independent rows, there is

a g ∈ Spn(Q) so that w3g = w2. Then we have wD,j =

(
w3

0

)
and w = AwD,jg.

We will call a w ∈ Mm,2n(Z) degenerate if rank w > rank 〈w,w〉. This is equivalent to

the rows of w spanning a degenerate symplectic subspace of R2n. It is immediate that one

w in a Γ′ orbit is degenerate iff all members of that orbit are degenerate, and we will call a

Γ′ orbit degenerate if its elements are degenerate.

Lemma 5.1.7 (Degenerate Orbits Contribute 0). Suppose that w ∈Mm,2n(Z) is degenerate.

Then: ∫
Fw

P (f(τ))(ητ (w))e−π trY (w,w)τ det y−n−1dxdy = 0 (5.9)

Proof. Suppose that w ∈Mm,2n(Z) is degenerate. We have that w ∈ OS,j for some S with

rank S = 2r and j > 0. From the lemma above there is an A ∈ GLm(Z), a g ∈ SPn(Q)

such that w = AwD,jg. Then we have by Lemma 5.1.4 that the left hand side of (5.9) is:∫
F ′
P ′
(
f |g−1(τ)

)
(ητ (wD,j))e

−π trY ′(wD,j ,wD,j)τ det y−n−1dxdy (5.10)

where Y ′ = Y [A], P ′ = σ(A)−1P , and F ′ = gFw is a fundamental domain for gΓ′wg
−1. We

have that g(Γ′)g−1 ∩Γ′ is finite order in both g(Γ′)g−1 and Γ′ so that there is a finite order

subgroup S ⊆ Symn(Z) so that gΓ′g−1 ∩

(
1 Symn(Z)

1

)
=

(
1 S

1

)
. Let S∗ be the dual to

S under the trace pairing. We have that f |g−1 has a Fourier expansion with respect to S∗:

f |g−1(τ) =
∑
N∈S∗+

a′Ne
2πi trNτ

where the expansion will only be over positive definite elements of S∗ as f is a cusp form.

We have that g(Γ′w)g−1 ⊂ stab SPn(Q)(wD,j), and that stab SPn(Q)(wD,j) is generated by

the elements:
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m(g′) =



1

1

a′ b′

1

1

c′ d′


,

n(x, y) =



1

1 x22 x23

1 tx23

1

1

1





1

1 y

1

1

1

− ty 1



for g′ =

(
a′ b′

c′ d′

)
∈ SPn−r−j(Q), y ∈Mj,n−r−j(Q), x22 ∈ Symj(Q) and x23 ∈Mj,n−r−j(Q).

Let S22 be defined by 0 0 0

0 S22 0

0 0 0

 = S ∩

0 0 0

0 ∗ 0

0 0 0


We have that S22 is a finite order subgroup of Symj(Z). We describe the action of m(g′)

and n(x, y) on H:

m(g′) · τ =

τ11 − τ13j(g
′, τ33)−1c′τ31 τ12 − τ13j(g

′, τ33)−1c′τ32 τ13j(g
′, τ33)−1

τ21 − τ23j(g
′, τ33)−1c′τ31 τ22 − τ23j(g

′, τ33)−1c′τ32 τ23j(g
′, τ33)−1

a′τ31 − (g′ · τ33)c′τ31 a′τ32 − (g′ · τ33)c′τ32 g′ · τ33


and

n(x, y) · τ =

 τ11 τ12 + τ13
ty τ13

τ21 + yτ31 τ22 + yτ32 + τ23
ty + yτ33

ty + x22 τ23 + yτ33 + x23

τ31 τ32 + tyτ33 + tx23 τ33



Suppose now that γτ = τ +

0 0 0

0 s22 0

0 0 0

 for some s22 ∈ S22 and γ ∈ gΓ′wg
−1. Then we

have γ = n(x, y)m(g′) for some x, y, g′. Since (γτ)33 = τ33 we have that g′ = ±1, and then

(γτ)31 = τ31 so that (unless τ is in a set of measure 0), we have that a′ = 1, so that g′ = 1.
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Then, looking at τ12 and τ23 we have that y = 0 and x23 = 0, (again unless τ is in a set of

measure 0). Thus if h is some function on F ′, we can write:∫
F ′
h(τ)dτ =

∫
F ′/n(Symj(R))

∫
Symj(R)/S22

h(n(x22)τ ′)dx22dτ
′

where dτ = dxdy is the usual volume element on H, and dτ ′ =
∏
ij 6=22 dxij

∏
ij dyij . We

have that ηn(x22)·τ (wD,j) = ητ (wD,j) and (wD,j , wD,j)n(x22)·τ = (wD,j , wD,j)τ , so that in the

integration

∫
Symj(R)/S22

P ′
(
f |g−1(n(x22) · τ ′)

)(
ηn(x22)·τ ′(wD,j)

)
e−π trY ′(wD,j ,wD,j)n(x22)·τ ′ det y−n−1dx22

all of the terms except f |g−1(n(x22) · τ ′) are independent of x22. We have that

P ′
(
f |g−1(n(x22) · τ ′)

)
=
∑
N∈S∗+

P ′(a′N )e2πi trNτ ′e2πi trN22x22

Since N is positive definite we have that N22 > 0, so we have∫
Symj(R)/S22

e2πi trN22x22dx22 = 0

so that (5.10) is 0.

It follows from this lemma that

Corollary 5.1.8. The contribution to the Fourier coefficients of Φf is entirely from the

non-degenerate orbits:

aS(Y ;P ) =
∑
w∈OS

∫
Fw

P (f(τ))(ητ (w))e−π trY (w,w)τ det y−1−ndxdy

We will say that w is full rank if rank w = 2n (when m < 2n there are no possible

full rank w). When w is full rank we have that Γ′w = 1 and Fw = Hn, but when w is not

full rank these stabilizers will be non-trivial and the fundamental domains Fw will be more

complicated. We are lucky then that we have the following lemma.

Lemma 5.1.9 (Non Full Rank Fourier Coefficients are 0). Suppose that w ∈ Mm,2n(Z) is

non-degenerate and not full rank, and f is a cusp form. Then∫
Fw

P (f(τ))(ητ (w))e−π trY (w,w)τ det y−n−1dxdy = 0 (5.11)

The proof will follow from a series of smaller lemmas related to the structure of Fw and

the corresponding integral.
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Lemma 5.1.10. Suppose that w ∈ Mm,2n(Z) is non-degenerate and rank w = 2r < 2n.

Then there is a Mw ∈ SPn(Q), such that wMw is of the form:

wMw =
(
∗ 0 ∗ 0

)
where the ∗ blocks are r entries wide and the 0 blocks are n− r entries wide. We have that:

Fw = M−1
w ·

{(
τ11 τ12

tτ12 τ22

)
: τ22 ∈ F ′w, τ12 ∈Mr,n−r(C), τ11 ∈ Hr, y11 > y−1

22 [ty12]

}

where F ′w is a fundamental domain inside of Hn−r for a subgroup of SPn−r(Q) that is

commensurate with SPn−r(Z).

Proof. To begin, we may find a Mw in SPn(Q) so that

rowspanQ(wMw) = rowspanQ

(
1r 0 0 0

0 0 1r 0

)

as the former is a 2r-dimensional non-degenerate subspace of Q2n. Write Γ′n−r(Q) for the

subgroup:

Γ′n−r(Q) =




1

a b

1

c d

 :

(
a b

c d

)
∈ SPn−r(Q)


Then Γ′n−r(Q) = stab SPn(Q)

(
1r 0 0 0

0 0 1r 0

)
so that Γ′w ⊂ M−1

w Γ′n−r(Q)Mw. Consider

the subgroup of SPn−r(Q) identified with MwΓ′wM
−1
w ∩Γ′n−r(Q), which we will call Γ′n−r,w.

We claim that this subgroup is commensurate with SPn−r(Z). Suppose it were not. Let

Γ′′w = M−1
w Γ′wMw ∩ Γ′n−r(Z). We have that M−1

w Γ′Mw ⊂ M−1
w SPn(Z)Mw and further

that Γ′w = SPn(Z)∩MwΓ′n−r(Z)M−1
w . Thus we have that Γ′′ = M−1

w SPn(Z)Mw∩SPn(Z)∩
Γ′n−r(Q). We have thus that if [Γ′′ : M−1

w Γ′wMw] =∞ or [Γ′′ : Γn−r(Z)] =∞, then we would

have that M−1
w SPn(Z)Mw and SPn(Z) are not commensurable, which is a contradiction.

Via a similar argument as in lemma 5.1.7, we have that M−1
w Γ′wMw has a fundamental

domain given of the form:{(
τ11 τ12

tτ12 τ22

)
: τ22 ∈ F ′w, τ12 ∈Mr,n−r(C), τ11 ∈ Hr, y11 > y−1

22 [ty12]

}

and then translating this by M−1
w gives a fundamental domain for Γ′w.
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Lemma 5.1.11. Suppose that 0 < r < n and w ∈M2r,2n(Q) is of the form:

w =

(
w1 0 0 0

0 0 w2 0

)

is non-degenerate and has rank 2r. Let R ⊂ Hn be a region of the form:

R =

{(
τ11 τ12

tτ12 τ22

)
: τ22 ∈ F ′w, τ12 ∈Mr,n−r(C), τ11 ∈ Hr, y11 > y−1

22 [ty12]

}

where F ′w is a fundamental domain inside of Hn−r for a subgroup of SPn−r(Q) that is

commensurate with SPn−r(Z). Suppose as well that Y ∈ Sym+
2r(R) and N =

(
N11 N12

tN12 N22

)
is symmetric positive definite of the same dimensions of τ . Then the integral:∫

R
e2πi trNτe−π trY (w,w)τ det y−n−1dxdy (5.12)

is independent of N12.

Proof. To begin, write W =

(
w1

w2

)
and replace Y by Y [W−1] so that (5.12) is

∫
R
e2πi trNτe−π trY (w′,w′)τ det y−n−1dxdy (5.13)

with w′ =

(
1 0 0 0

0 0 1 0

)
, and we will prove the statement for (5.13). We will write Y =(

Y11 Y12

tY 12 Y22

)
with each block being r × r. We have:

Y (w′, w′)τ = trY11y11 + trY11
t

((
tx11

tx12

)
+

(
tY 12Y

−1
11

0

))
y−1

((
tx11

tx12

)
+

(
tY 12Y

−1
11

0

))
+ tr(Y22 − Y −1

11 [Y12])(y11 − y−1
22 [ty12])−1

where we use:

y−1 =

(
(y11 − y−1

22 [ty12])−1

y−1
22

)[(
1 −y12y

−1
22

1

)]
Now we move on the integration. We will write S = Symr(R), P = Sym+

r (R),M = Mr,r(R),

M′ = Mr,n−r(R), and A = Skewr(R). The integration is:
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∫
F ′w

∫
M′

∫
P+y−1

22 [ty12]

∫
S×M′

e2πi trNτ

× exp

[
−π trY11

t

((
tx11

tx12

)
+

(
tY 12Y

−1
11

0

))
y−1

((
tx11

tx12

)
+

(
tY 12Y

−1
11

0

))]
× exp

[
−π tr

(
y11Y11 + (Y22 − Y −1

11 [Y12])(y11 − y−1
22 [ty12])−1

)]
× det y−n−1d(x11, x12)dy11dy12d(x22, y22)

The variable x11 is a symmetric matrix, which complicates the integral. We will use a

trick that will come up again later, where we interpret the x11 as variable in M whose A
coordinate is 0. With this perspective we use the Fourier inversion theorem to introduce

another variable s in A, and the integral is:

=

∫
F ′w

∫
M′

∫
P+y−1

22 [ty12]

∫
A

∫
M×M′

e2πs tx11e2πi trNτ

× exp

[
−π trY11

t

((
tx11

tx12

)
+

(
tY 12Y

−1
11

0

))
y−1

((
tx11

tx12

)
+

(
tY 12Y

−1
11

0

))]
× exp

[
−π tr

(
y11Y11 + (Y22 − Y −1

11 [Y12])(y11 − y−1
22 [ty12])−1

)]
× det y−n−1d(x11, x12)dsdy11dy12d(x22, y22)

We now integrate the x11 and x12 variables. We can interpret them together as a variable in

Mr,n(R), and then after translating x11 7→ x11−Y −1
11 Y12 this is simply the Fourier transform

of the Gaussian exp

(
−π trY11

(
x11

x12

)
y−1 t

(
x11

x12

))
, and after integrating x11 and x12, we

get

= detY
−n/2

11

∫
F ′w

∫
M′

∫
P+y−1

22 [ty12]

∫
A

e−2πi tr(N11+s) tY 12Y
−1
11 e2πi trN22τ22

× exp

[
−π trY −1

11
t

(
N11 + s
tN12

)
y

(
N11 + s
tN12

)
− π tr y11Y11 − 2π tr(y11N11 + y12

tN12)

]
× exp

[
− π tr(Y22 − Y −1

11 [Y12])(y11 − y−1
22 [ty12])−1

]
det y−n−1+r/2dsdy11dy12d(x22, y22)

We move the integral over A further into the integration, and we translate y11 by y−1
22 [ty12],

and then we can shift the integration over y12 to happen first. We arrange terms to collect

terms with y12 together, and obtain:



CHAPTER 5. LIFTING CUSP FORMS OF GENUS 2 AND HIGHER 98

= detY
−n/2

11

∫
F ′w

∫
A

∫
P

∫
M

e−2πi tr(N11+s) tY 12Y
−1
11 e2πi trN22τ22

× exp

[
− π tr

(
Y −1

11
t(N11 + s)y11(N11 + s) + (Y11 + 2N11)y11 + (Y22 − Y −1

11 [Y12])y−1
11

)]
× exp

[
− π tr

(
Y −1

11
t(N11 + s)y12y

−1
22

ty12(N11 + s) + 2Y −1
11

t(N11 + s)y12
tN12

)]
× exp

[
− π tr

(
Y −1

11 N12y
−1
22

tN12 + 2y12
tN12 + 2y12y

−1
22

ty12N11 + Y11y12y
−1
22

ty12

)]
× det y

−n−1+r/2
11 y

−n−1+r/2
22 dy12dsdy11d(x22, y22)

We have that:

tr
(
Y −1

11
t(N11 + s)y12y

−1
22

ty12(N11 + s) + 2Y −1
11

t(N11 + s)y12
tN12 + Y −1

11 N12y
−1
22

tN12

)
+ tr

(
2y12

tN12 + 2y12y
−1
22

ty12N11 + Y11y12y
−1
22

ty12

)
= tr tCY −1

11 C
(
y12 + C−1N12y12

)
y−1

22
t
(
y12 + C−1N12y12

)
where C = Y11 +N11 + s, which we note is invertible as is has positive definite symmetric

part. Integrating over y12 amounts to integrating a Gaussian, and we get:

= detY
−r/2

11

∫
F ′w

∫
A

∫
P

e−2πi tr(N11+s) tY 12Y
−1
11 e2πi trN22τ22

× exp

[
− π tr

(
Y −1

11
t(N11 + s)y11(N11 + s) + Y11y11 + 2N11y11 + (Y22 − Y −1

11 [Y12])y−1
11

)]
× det(Y11 +N11 + s)−n+r det y

−n−1+r/2
11 y−n−1+r

22 dsdy11d(x22, y22)

This integral is manifestly independent of N12.

Proof of lemma 5.1.9. Suppose that w ∈Mm,2n(Z) is non-degenerate and not full rank. We

can find an A ∈ GLm(Z) and a g ∈ SPn(Q) so that w = Aw′g, with:

w′ =

w
′
1 0 0 0

0 0 w′2 0

0 0 0 0


for some full rank w′1, w

′
2 ∈Mr(Z). Write Y ′ = tAY A, and P ′ = σ(A)−1P . Then we have:
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∫
Fw

P (f(τ))(ητ (w))e−π trY (w,w)τ det y−n−1dxdy

=

∫
g−1Fw

P ′
(
f |g−1(τ)

)
(ητ (w′))e−π trY ′(w′,w′)τ det y−n−1dxdy

(5.14)

The function f |g−1(τ) has a Fourier decomposition:

f |g−1(τ) =
∑
N

a′Ne
2πi trNτ

where a′N are some coefficients in Vκ and N ranges over positive definite matrices in some

lattice. Write p′N for P ′(a′N ), so that (5.14) is:

∑
N

∫
g−1Fw

p′N (ητ (w′))e2πi trNτe−π trY ′(w′,w′)τ det y−n−1dxdy (5.15)

We have:

ητ (w′) =

w
′
1τ11 w′1τ12

w′2 0

0 0

 (5.16)

The polynomials p′N are contained inside of the GLm(C) × GLn(C) translates of ∆κ(η)

(3.50). As f has weight κ = (κ1, . . . , κn) with κn > 0 (this is true for all Siegel modular

forms, see remark 3.2.2), we have that p′N will be a sum of terms, each of which has some

factor of ∆(1,...,1)(A′η) for some A′ ∈ GLm(C). When we evaluate ∆(1,...,1)(A′ητ (w′)) we

see that as a polynomial of τ , it is contained in the ideal generated by the variables of τ12.

Thus so is p′N (ητ (w′)), so that p′N (ητ (w′)) is either 0 or has non-trivial dependence on some

entry of τ12. The integrals in (5.15) are obtained from:∫
g−1Fw

e2πi trNτe−π trY ′(w′,w′)τ det y−n−1dxdy (5.17)

by differentiation:∫
g−1Fw

p′N (ητ (w′))e2πi trNτe−π trY ′(w′,w′)τ det y−n−1dxdy

= p′′N

(
∂

∂N

)∫
g−1Fw

e2πi trNτe−π trY ′(w′,w′)τ det y−n−1dxdy

(5.18)

with the differential operator p′′N
(
∂
∂N

)
defined by:

p′′N

(
∂

∂N

)
e2πi trNτ = p′N (ητ (w′))e2πi trNτ
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As the previous lemma shows that (5.17) is independent of any of the variables occurring

in N12, however the differentiation in (5.18) involves differentiation with respect to some

number of entries in N12 which yields 0.

Corollary 5.1.12. Suppose that f is a cusp form on Hn, and Φf is the theta lift to O(m,m).

1. If m < 2n, then Φf = 0 identically.

2. If m ≥ 2n, then:

Φf (ξ) =
∑

S∈Skewm(Z)
rank S=2n

eπi trSXaS(Y )

and

aS(Y ;P ) =
∑
w∈OS

∫
H
P (f(τ))(ητ (w))e−π trY (w,w)τ det y−n−1dxdy (5.19)

(i.e.: all Fourier non-zero coefficients are full rank and are given entirely by the non-

degenerate w).

Remark 5.1.13. The sums in (5.19) are finite; that is |OS | <∞. This is not immediately

obvious but it follows from the discussion in the proof of lemma 5.3.4 in the next section.

5.2 Relations Between the Lift for Different m

We have a fact analogous to Theorem 4.1.17 that states that the lift to O(m,m) for m > 2n

“comes from” the lift to O(2n, 2n). The setup and proof is much the same, but we will

write it out in full here. Define subgroups of GLm(Z):

P2n(Z) =

(
GL2n(Z) ∗

GLm−2n(Z)

)
, P 2n(Z) = tP 2n(Z) =

(
GL2n(Z)

∗ GLm−2n(Z)

)

Next, for ξ ∈ Dm, let [ξ]m,2n be the top left 2n × 2n minor of ξ, which is an element of

D2n, and for P ∈ HomGLn(C)(Vκ,C[Mm,n(C)]κ), let [P ]m,2n ∈ HomGLn(C)(Vκ,C[M2n,n(C)]κ)

given by composition with the map C[Mm,n(C)]→ C[M2n,n(C)] given by setting the bottom

m− 2n rows equal to 0. For Φ ∈ C[M2n,n(C)]∗ denote by [Φ]m,2n ∈ C[Mm,2n(C)]∗ the dual

map, so that we have [Φ]m,2n(P ) = Φ([P ]m,2n). Write Φ
(m)
f for the lift of f to O(m,m) and

Φ
(2n)
f for the lift to O(2n, 2n).

Theorem 5.2.1. If m < 2n then the lift to O(m,m) of a cusp form for SPn(R) is 0. If

m > 2n, then we have:

Φ
(m)
f (ξ) =

∑
A∈P 2n(Z)\GLm(Z)

ρκ(tA)
[
Φ

(2n)
f ([Aξ tA]m,2n)

]
m,2n
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or, evaluated on a P ∈ HomGLn(C)(Vκ,C[Mm,2n(C)]):

Φ
(m)
f (ξ;P ) =

∑
A∈P 2n(Z)\GLm(Z)

Φ
(2n)
f

(
[Aξ tA]m,2n; [σ(tA−1)P ]m,2n

)

Proof. That Φ
(m)
f is 0 identically when m < 2n is the first statement of Corollary 5.1.12.

For the rest of the statement, we have that:

Φ
(m)
f (ξ;P ) =

∑
S∈Skewm(Z)
rank S=2n

aS(Y ;P )eπi trSX

Let Gr2n,m(Q) be the space of 2n dimensional subspaces of Qm. We have a transitive action

of GLm(Z) on Gr2n,m(Q), and if we fix the base point W0 = colspan

(
12n

0

)
we have:

GLm(Z)/P2n(Z) ∼= Gr2n,m(Q)

where A ∈ GLm(Z) is sent to AW0. Given W ∈ Gr2n,m(Q), define:

SkewW
m (Z) = {S ∈ Skewm(Z) : image(S) = W}

We have that SkewAW
m (Z) = A(SkewW

m (Z)) tA. For S ∈ Skew2n(Z), write S′ =

(
S 0

0 0

)
∈

Skewm(Z). If rank S = 2n then we have that image(AS′ tA) = AW0. We can group Fourier

coefficients of Φ
(m)
f according to image(S):

Φ
(m)
f (ξ;P ) =

∑
A∈GLm(Z)/P2n,m(Z)

∑
S∈Skew2n(Z)
rank S=2n

aAS′ tA(Y ;P )eπi trAS
′ tAX

we have that:

aAS′ tA(Y ;P ) = aS′
(
tAY A;σ(A−1)P

)
and further that eπi trAS

′ tAX = eπi trS[tAXA]m,2n . We have that:

aS′
(
tAY A;σ(A−1)P

)
= 2

∑
w∈M2n,2n(Z)/SPn(Z)

rank w=2n
〈w,w〉=S∫

H
(σ(A)−1P )(f(τ))

(
ητ

(
w

0

))
exp

(
−π tr tAY A

((
w

0

)
,

(
w

0

))
τ

)
det y−n−1dxdy

(5.20)
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We have that

tr tAY A

((
w

0

)
,

(
w

0

))
τ

= tr[tAY A]m,2n(w,w)τ

and

(σ(A)−1P )(f(τ))

(
ητ

(
w

0

))
=
[
(σ(A)−1P )(f(τ))

]
m,2n

(ητ (w))

due to the presence of the 0’s. Thus we have that

aAS′ tA(Y ;P ) = aS
(
[tAY A]m,2n; [σ(A)−1P ]m,2n

)
Finally, we note that summing tA over GLm(Z)/P2n,m(Z) is equivalent to instead summing

A over P 2n,m(Z)\GLm(Z).

Remark 5.2.2. It is interesting to see how the choice of representatives of P 2n(Z)\GLm(Z)

do not matter in the above formula. We have that if A =

(
A11

A21 A22

)
∈ P 2n(Z), we have

[Aξ tA]m,2n = A11[ξ]m,2n
tA11, and [σ(A)−1P ]m,2n = σ(A11)−1[P ]m,2n. This has the effect

of permuting the w in the sum (5.20) by A11 which cancels with the action on P .

Remark 5.2.3. If is interesting to note that Lemmas 5.1.7 and 5.1.9 are essential for the

above result. We could define pieces

Φf,r,j(ξ;P ) =
∑

S∈Skewm(Z)
rank S=2r

eπi trXS
∑

[w]∈OS,j
2

∫
Fw

P (f(τ))(ητ (w))e−π trY (w,w)τ det y−1−ndxdy

so that Φf =
∑

r,j Φf,r,j. Each Φf,r,j is not modular for O(m,m), but their sum is (they do

transform modularly for γ ∈ NΓMΓ (2.13), but only their sum is guaranteed to be modular

for all of Γ). Following the same proof we have above, we would have that Φ
(m)
f,r,j “comes

from” Φ
(2r+j)
f,r,j in the same sense as the theorem. Thus it is due to the lemmas that Φf,r,j = 0

identically unless j = 0 and r = n that we get that the entirety of Φ
(m)
f “comes from” Φ

(n)
f .

5.3 Fourier Coefficients of the Lift to O(2n, 2n)

Now we will move on to calculation of the full rank Fourier coefficients. In light of Theorem

5.2.1, the key case to consider is the lift from SPn(R) to O(2n, 2n), and from Lemma 5.1.9

and Lemma 5.1.7, the only non-zero Fourier coefficients come from the full rank orbits, so

that we have:

Φf (ξ;P ) =
∑

S∈Skew2n(Z)
rank S=2n

aS(Y ;P )eπi trXS

with the Fourier coefficients give by:
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aS(Y ;P ) = 2
∑
w∈OS

∫
H
P (f(τ))(ητ (w))e−π trY (w,w)τ det y−n−1dxdy

From (3.28) there are relations between the Fourier coefficients. For each S we have that

there is a unique representative Fourier coefficient (3.3.6), aD(Y ), whereD = diag(d1, . . . , dn)

is diagonal with positive integral entries along the diagonal and dn| . . . |d1. For such D we

defined J(D) =

(
D

−D

)
, and the coefficient aD is given by:

aD =
∑
w∈OD

∫
H
P (f(τ))(ητ (w))e−π trY (w,w)τ det y−n−1dxdy

where MD
2n(Z) = {w ∈ M2n(Z) : 〈w,w〉 = J(D)}, and OD = MD

2n(Z)/Γ′. For any

S ∈ Skew2n(Z) of full rank we have that there is some A ∈ GL2n(Z) so that

aS(Y ;P ) = aD(Y [A];σ(A)−1P )

where and S = J(D)[tA]. The A is unique as a class in GL2n(Z)/Spn(Z;D), where:

Spn(Z;D) = {γ ∈ GL2n(Z) : J(D)[tγ] = J(D)} (5.21)

Note that we have Spn(Z;µD) = Spn(Z;D) for all positive integers µ, so that Spn(Z;D) de-

pends only on D0 = d−1
n D. We can arrange the representative Fourier coefficients according

to which D0 they correspond to.

Definition 5.3.1. For D0 = diag(d1, . . . , dn−1, 1) with d1, . . . , dn−1 ∈ Z>0 with dn−1| . . . |d1,

define φf,D0(ξ;P ) by:

φf,D0(ξ;P ) =

∞∑
d=1

eπi tr dJ(D0)XadD0(Y ;P ) (5.22)

The following proposition is simply an arrangement of the terms in the Fourier series

for Φf according to which D0 they correspond to:

Proposition 5.3.2. With D0, Spn(Z;D0) and φf,D0 as above, we have:

Φf (ξ;P ) =
∑
D0

∑
A∈GL2n(Z)/Spn(Z;D0)

∞∑
d=1

eπi tr dJ(D0)X[A]adD0(Y [A];σ(A)−1P )

and grouping the inside sum together, we have:

Φf (ξ;P ) =
∑
D0

∑
A∈GL2n(Z)/Spn(Z;D0)

φf,D0(ξ[A];σ(A)−1P )

where the outside sum ranges over D0 = diag(d1, . . . , dn−1, 1) as in the previous definition.



CHAPTER 5. LIFTING CUSP FORMS OF GENUS 2 AND HIGHER 104

Remark 5.3.3. Instead of summing over cosets of GL2n(Z)/Spn(Z;D0), we could instead

define an S0 ∈ Skew2n(Z) to be primitive if for all µ ∈ Z we have µS0 ∈ Skewn(Z) iff

µ ∈ {−1, 0, 1}. Then for S0 primitive we define:

φf,S0(ξ) =

∞∑
µ=1

eπiµ trXS0aµS0(Y )

and then we have

Φf (ξ) =
∑

S0∈Skew2n(Z)
rank S0=2n
S0 primitive

φf,S0(ξ)

For such an S0 we have that S0 = AJ(D0) tA for some unique A ∈ GL2n(Z)/Spn(Z;D0),

so that the space of primitive elements of Skewm(Z) of rank 2n is identified with the disjoint

union of all of the GLm(Z)/Spn(Z;D0).

Now, we move on to evaluation of the representative Fourier coefficients aD. We will

define the following integral:

I(f ;Y ;P ) =

∫
H
P (f(τ))(ητ (1))e−π trY gτ tgτ det y−n−1dxdy (5.23)

We note first of all that we have:

a1(Y ;P ) = 2I(f ;Y ;P ) (5.24)

as O1 = {1}. The key to our calculations of the Fourier coefficients is that we will be able

to trade the sum over OS in (5.3) for a Hecke operator acting on f , so that we will be able

to relate all the coefficients to I(f ;Y ;P ) in a similar way to (5.24).

Lemma 5.3.4. For D = diag(d1, . . . , dn) with d1| . . . |dn positive integers, recall the D-total

Hecke operator, T (D), defined in definition 3.2.7, and define µ(D) = d1, D′ = µ(D)D−1,

and ∆D′ =

(
1

D′

)
. For convenience we will also define

YD′ := ∆−1
D′ Y∆−1

D′ = Y [∆−1
D′ ] (5.25)

as it will appear frequently in the formulas we have later. Then the Fourier coefficient aD

is given by:

aD(Y ;P ) = 2µ(D)n(n+1)/2I
(
T (D)f ; µ(D)YD′ ; σ(∆D′)P

)
(5.26)

Remark 5.3.5. The D′ defined here will be D′ = diag(1, d′2, . . . , d
′
n), with d′2| . . . |d′n. Note

that for D we have that the diagonal entries decrease in divisibility as we go down the

diagonal, but for D′ it is the opposite where they increase. Also we note that D′ depends

only on D0, so that we have:
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φf,D0(ξ;P ) = 2
∞∑
d=1

dn(n+1)/2µ(D0)n(n+1)/2eπi tr dXJ(D0)I
(
T (dD0)f ; dµ(D0)YD′0 ; σ(∆D′0

)P
)

Proof. First, we will describe a set of representatives for OD, analogous to (3.11). More pre-

cisely, we claim that each class of OD is represented by an element of the form

(
w11 w12

w22

)
,

where w11 is in (column) Hermite normal form such that w22 = D tw−1
11 is integral, and w12

is determined uniquely modulo w22Symn(Z). Note, taking D = µIn gives a set of represen-

tatives for GSPµn (Z)/Γ′. This is essentially the transpose of (3.11).

To prove the claim, suppose that w ∈ MD
2n(Z). As 〈w,w〉 =

(
0 D

−D 0

)
, the bottom n

rows of w span an n-dimensional isotropic subspace, so that there is some γ ∈ Γ′ so that

wγ is of the form

(
w11 w12

w22

)
. Next, acting by

(
a

ta−1

)
∈ Γ′ for some a ∈ GLn(Z) has

the effect of sending w11 to w11a. Thus we may put w11 in (column) Hermite normal form

so that w11 is lower triangular. Then it follows from w11
tw22 = D that w22 = D tw−1

11 is

uniquely determined by w11 and in upper triangular form. The Hermite normal form of

w11 is unique, and acting by

(
1 ∗

1

)
makes w12 unique modulo w22Symn(Z), proving the

claim.

Now, for w ∈ MD
2n(Z), we have that ∆D′w ∈ GSp

µ(D)
n (Z), and the map w 7→ ∆D′w

descends to an injective map OD to GSp
µ(D)
n (Z)/Γ′. The image of this map can be described

in terms of representatives by:

∆D′OD =

{(
g11 g12

g22

)
∈ GSpµ(D)

n (Z)/Γ′ : (D′)−1g22 ∈Mn(Z)

}
(5.27)

Now, when we consider the integrals involved, we have:

∫
H
P (f(τ))(ητ (w))e−π trY (w,w)τ det y−n−1dxdy

=

∫
H
P (f(τ))

(
∆−1
D′ ητ (∆D′w)

)
e−πYD′ (∆D′w,∆D′w)τ det y−n−1dxdy

= µ(D)d(κ)−n(n+1)/2

∫
H
P
(
f |κ(∆D′w)−1(τ)

)(
∆−1
D′ ητ (1)

)
e−πµ(D)YD′ (1,1)τ det y−n−1dxdy

= µ(D)n(n+1)/2

∫
H
P
(
f |κµ(D)(∆D′w)−1(τ)

)(
∆−1
D′ ητ (1)

)
e−πµ(D) trYD′gτ

tgτ det y−n−1dxdy

Where the first equality is simply multiplying and dividing by ∆D in certain positions,

and the second is using lemma 5.1.4, and the third by the fact that for r ∈ R>0 and

g ∈ GSp+
n (R), we have f |κrg = rd(κ)−n(n+1)f |κg , and that (1, 1)τ = gτ

tgτ .
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Next, we claim that the map g 7→ µg−1 is an involution on GSpµn(Z) that descends

to a bijection between GSpµn(Z)/Γ′ and Γ′\GSpµn(Z). To show the first point, note that

gJ tg = µJ for g ∈ GSpµn(Z), so that µg−1 = J tgJ−1, showing that µg−1 is integral, and

then we note that µ(µg−1) = µ2µ(g)−1 = µ. Next, to show the second point, note that

µ× (gγ)−1 = γ−1(µg−1) for γ ∈ Γ′, so that the map interchanges the right and left action

of Γ′ on GSpµn(Z).

It will be helpful to note what the map g 7→ µ(g)g−1 does to representatives of the form

(5.27). We have:

g =

(
g11 g12

g22

)
, µ(g)g−1 =

(
tg22 − tg12

tg11

)
so that:

µ(D)(∆DOD)−1 =

{(
g11 g12

g22

)
∈ Γ′\GSpµ(D)

n (Z) : g11(D′)−1 ∈Mn(Z)

}
We note that this is exactly the set described in (3.24). Then, we have:

aD(Y ;P ) = 2

∫
H
P (f(τ))(ητ (w))e−π trY (w,w)τ det y−n−1dxdy

= 2µ(D)n(n+1)/2
∑
w∈OD

∫
H
P
(
f |κµ(D)(∆D′w)−1(τ)

)(
∆−1
D′ ητ (1)

)
e−πµ(D) trYD′gτ

tgτ det y−n−1dxdy

and so the summation over w ∈ OD gives the summation in the definition of T (D) (3.23)

so that

aD(Y ;P ) = 2µ(D)n(n+1)/2

∫
H
P
(
T (D)f(τ)

)(
∆−1
D ητ (1)

)
e−π tr(µ(D)YD′ )gτ

tgτ det y−n−1dxdy

proving the proposition.

Corollary 5.3.6. Suppose that f is a Hecke eigenfunction, that is T (d)f = λ(d)f for some

scalars λ(d). Then we have:

adIn(Y ;P ) = dn(n+1)/2λ(d)aIn(dY ;P ) (5.28)

(compare to 5.24). More generally, if gcd(d, µ(D0)) = 1, then we have

adD0(Y ;P ) = dn(n+1)/2λ(d)aD0(dY ;P )

as T (dD0) = T (D0)T (d) in this case.
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Next, we move on the calculation of these I(f ;Y ;P ). We have only been able to obtain

a full calculation of these integrals for n = 2. One path for the calculation of these integrals

is a manipulation involving Fourier inversion similar to the proof of Lemma (5.1.11) to

obtain the integral formula for a matrix argument K-Bessel function as in [3]. When n = 2

there are identities available from [3] to evaluate the K-Bessel function in our formulas that

allow for simplifications.

To express the result of the integral we will introduce some new coordinates on Sym+
2n(R).

Definition 5.3.7. For Y = α tα with α =

(
α11

α21 α22

)
, define the following quantities:

β(Y ) = tα11α21

δ(Y ) = (tα11α22
tα22α11)1/2

τ(Y ) = tα−1
11

(
−β(Y )+ +

1

(tr δ(Y ))2
[β(Y )−, δ(Y )2] + i

tr |δ(Y ) + β(Y )−|
tr δ(Y )

δ(Y )

)
α−1

11

M(Y ) = δ(Y ) + β(Y )−

(5.29)

where for a square matrices C, we let |C| := (tCC)1/2, the symmetric positive semi-

definite square root of tCC, and C± denotes the symmetric and skew symmetric parts of

C, respectively, and [C,C ′] = CC ′ − C ′C denotes the commutator of C and C ′.

Remark 5.3.8. As we mention these give a system of coordinates on Sym+
2n(R) consisting

of a τ ∈ Hn and M = δ + β− ∈ Mn(R) with δ positive definite symmetric and β− skew

symmetric. Given τ(Y ), and M(Y ) we can work backwards to obtain the entries α, using

that α11 and α22 are assumed lower triangular with positive diagonal entries to obtain Y ,

so that we have Sym+
2n(R) ∼= Hn ×Dn.

We will build up the calculation of I(f ;Y ;P ) in three steps. First we will calculate an

analogous integral with e2πi trNτ in place of P (f(τ)). We will differentiate that with respect

to N to obtain the integral with a polynomial p′(τ) in place of P (f(τ)), and finally the full

integral I(f ;Y ;P ) by summing over N .

Lemma 5.3.9. Suppose that Y = α tα with α =

(
α11

α21 α22

)
, and N is positive definite.

Then: ∫
H2

e2πi trNτe−π trY gτ tgτ det y−3dxdy

=
1

detY 1/2 tr |M(Y )|
e2πi tr τ(Y )Ne−2π tr |M(Y )|

(5.30)

Remark 5.3.10. It is crucial for us that N appears linearly in the exponent
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Proof. We can expand out the term in the second exponential of the integral as:

trY gτ
tgτ = tr

(
α11

tα11y + α11
tα11

t(x+ α21α
−1
11 )y−1(x+ α21α

−1
11 ) + α22

tα22y
−1
)

We can then transform the integral by the change of variables: τ 7→ tα−1
11 τα

−1
11 , to obtain

that the integral we are seeking to calculate is:

∫
H2

e2πi trα−1
11 N

tα−1
11 τe−π tr(y+t(x+tα11α21)y−1(x+tα11α21)+(tα11α22

tα22α11)y−1) det y−3dxdy

Writing tα11α22 = β(Y ) = β(Y )+ + β(Y )− we can perform the change of variables x 7→
x− β+(Y ), and write δ(Y )2 = tα11α22

tα22α11 so that the above is:

e−2π tr tα−1
11 β(Y )+α−1

11 N

∫
H2

e2πi trα−1
11 N

tα−1
11 τe−π tr(y+t(x+β(Y )−)y−1(x+β(Y )−)+δ(Y )2y−1) det y−3dxdy

Thus we will seek to calculate that:

∫
H2

e2πi trNτe−π tr(y+t(x+A)y−1(x+A)+B2y−1
det y−3dxdy

=
1

4 detB tr |B +A|
e−2πi(trB)−2 tr[A,B2]Ne−2π

tr |B+A|
trB

trBN−2π tr |B+A|
(5.31)

For B a positive definite symmetric matrix and A a skew symmetric matrix. We obtain our

result by replacing N , A, and B with α−1
11 N

tα−1
11 , β(Y )−, and δ(Y ), respectively.

To calculate (5.31), first we take advantage of the Fourier inversion theorem to change

the integral over symmetric 2 × 2 matrices into an integral over all matrices. Write P2

for the space of 2 × 2 positive definite symmetric matrices, S2 for the space of symmetric

matrices, and M2 for the space of all 2 × 2 matrices. Write R =

(
r

−r

)
= rJ and

S =

(
s/2

−s/2

)
= s

2J (where J =

(
1

−1

)
). We have the integral is:

∫
P2

∫
S2

∞∫
−∞

∞∫
−∞

e−2πi tr tSRe2πi trNτe−π tr(y+t(x+R+A)y−1(x+R+A)+B2y−1) det y−3drdsdxdy

(5.32)

As x spans over S and R spans over the space of skew matrices, x+R spans overM2. We

can absorb the A into R and then write x + R = M , and then dxdr = 2−1dM , so that

above is:
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1

2

∞∫
−∞

∫
P2

∫
M2

e2πi tr tSAe2πi tr t(N+S)Me−π tr(y+2Ny+tMy−1M+B2y−1) det y−3dMdsdy

Integrating over M2 is a Fourier transform of a Gaussian and gives:

1

2

∫ ∞
−∞

∫
P2

e2πi tr tSAe−π tr(y+2Ny t(N+S)y(N+S)+B2y−1) det y−2dsdy

We can collect: tr(y + 2Ny + t(N + S)y(N + S)) = tr t(1 + N + S)y(1 + N + S) due to

the skew symmetry of S. Note that (1 + N + S) is invertible for all S as its symmetric

part is positive definite. For brevity we will write N ′ for N + 1. We note that the quantity

det y−3/2dy is invariant under transformations y 7→ ay ta. After such a change of variables

in y, the above integral is:

1

2

∫ ∞
−∞

∫
P2

e2πi tr tSAdet(N ′ + S)1/2

detB1/2
e−π tr(y+y−1)(t(N ′+S)B2(N ′+S))

1/2

det y−2dyds (5.33)

In [3] functions K
(n)
ν (Z) of a positive definite n× n matrix Z are defined:

K(n)
ν (Z) = 2−n

∫
Pn
e−

1
2

tr(y+y−1)Z det yν
dy

det y(1+n)/2
(5.34)

Using this, we have that (5.33) is:∫ ∞
−∞

e2πi tr tSAdet(N ′ + S)1/2

detB1/2
K

(2)
1/2

(
2π(t(N ′ + S)B2(N ′ + S))1/2

)
ds (5.35)

Also from [3] we have the formula:

K
(2)
1/2(2πZ) =

1

2
detZ−1/2K

(1)
0 (2π trZ) (5.36)

and so (5.35) is:

1

2 detB

∫ ∞
−∞

e2πi trSAK
(1)
0

(
2π tr(t(N ′ + S)B2(N ′ + S))1/2

)
ds (5.37)

For a 2 × 2 positive definite matrix C we have: trC1/2 =
√

trC + 2 detC1/2. We have as

well that det(N ′+S) = detN ′+ detS, which is true for 2× 2 matrices with one symmetric

and the other skew symmetric. We have:
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(
tr(t(N ′ + S)B2(N ′ + S))1/2

)2

= tr tSB2S + 2 detS detB + trN ′[S,B2] + trN ′B2N ′ + 2 detB detN ′

rewriting S = s
2J and completing the square this is:

(trB)2

4

(
s+

trN ′[J,B2]

(trB)2

)2

+ trN ′B2N ′ + 2 detB detN ′ − 1

4

(trN ′[J,B2])2

(trB)2

Consider now the term:

trN ′B2N ′ + 2 detB detN ′ − 1

4

(trN ′[J,B2])2

(trB)2
(5.38)

These formulas are invariant under any transformation N ′, B 7→ kN ′k−1, kBk−1 for k ∈

O(2), so w.l.o.g. we may assume that B =

(
b1

b2

)
with b1, b2 > 0. If we then write

N ′ =

(
n11 n12

n12 n22

)
, we have:

trN ′B2N ′ = b21n
2
11 + (b21 + b22)n2

12 + b22n
2
22

detB detN ′ = b1b2(n11n22 − n2
12)

trN ′[J,B2] = 2(b21 − b22)n12

trB = b1 + b2

and so after some simplifications (5.38) is (b1n11 + b2n22)2 = (trBN ′)2. It is somewhat

miraculous that this gives the square of a linear function of N , and this is crucial for later

steps. Writing A = aJ , we have that (5.37) is:

1

2 detB

∫ ∞
−∞

e2πisaK
(1)
0

2π

√
(trB)2

4

(
s+

trN ′[J,B2]

(trB)2

)2

+ (trBN ′)2

 ds (5.39)

from [9] we have the formula:∫ ∞
−∞

e2πixyK
(1)
0

(
2πp

√
x2 + q2

)
dx =

1

4
(y2 + p2)−1/2e−2πq(y2+p2)1/2 (5.40)

so that (5.39) is:
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1

4 detB
√

(trB)2 + 4a2
e
−2πia

trN′[J,B2]

(trB)2 exp

(
−2π

√
(trB)2 + 4a2

trB
trBN ′

)
Next, we note that tr tAA = 2a2 and detA = a2, so that

(trB)2 + 4a2 = trB2 + 2 detB + tr tAA+ 2 detA

= tr t(B +A)(B +A) + 2 det(B +A)

=
(

tr(t(B +A)(B +A))1/2
)2

Where we need that A and B are 2× 2 and alternating and symmetric, respectively. Thus

we have √
(trB)2 + 4a2 = tr |B +A|

We have that tr[J,B2] = 0 so that trN ′[J,B2] = trN [J,B2], so that a trN ′[J,B2]
(trB)2

= trN [A,B2]
(trB)2

.

Finally we have √
(trB)2 + 4a2

trB
trBN ′ =

tr |B +A|
trB

trBN + tr |B +A|

This shows the equality in (5.31).

Next, for convenience of expressing the final form of the Fourier coefficients we will

define the following functions.

Definition 5.3.11. Define a map E : Sym+
2n(R)→ C[M2n,n(C)]∗ by:

E(Y ; p) = p

((
τ(Y )

1

))
(5.41)

where τ(Y ) is from (5.29), and we will also define η(Y ) to be:

η(Y ) =

(
τ(Y )

1

)
(5.42)

so that E(Y ; p) = p(η(Y )).

Lemma 5.3.12. Suppose that f : H2 → Vκ is a function that has a Fourier series f(τ) =∑
N aNe

2πi trNτ that is uniformly convergent on any compact subset in H. Then

I(f ;Y ;P ) =
1

4
E
(
Y ;P

(
f
(
τ(Y )

))) e−2π tr |M(Y )|

detY 1/2 tr |M(Y )|
(5.43)

Proof. With f(τ) =
∑

N aNe
2πi trNτ , write pN (η) ∈ C[M4,2(C)] to be pN = P (aN ). Then

we have:
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I(f ;Y ;P ) =
∑
N

∫
H2

pN (ητ (1))e2πi trNτe−π trY gτ tgτ det y−3dxdy (5.44)

We have that ητ (1) =

(
τ

1

)
. For p′(τ) a polynomial in C[Sym2(C)], denote by p′

(
1

2πi
∂
∂N

)
the differential operator defined by:

p′
(

1

2πi

∂

∂N

)
e2πi trNτ = p(τ)

Writing τ =

(
τ11 τ12

τ12 τ22

)
and N =

(
N11 N12

N12 N22

)
, this differential operator can be explicitly

obtained by replacing each power of τ11, τ12, and τ22 with the same power of 1
2πi

∂
∂N11

,
1

4πi
∂

∂N12
, and 1

2πi
∂

∂N22
, respectively. We then have:

∫
H2

p′(τ)e2πi trNτe−π trY gτ tgτ det y−3dxdy

= p′
(

1

2πi

∂

∂N

)∫
H2

e2πi trNτe−π trY gτ tgτ det y−3dxdy

=
p′(τ(Y ))

4 detY 1/2 tr |M(Y )|
e2πi tr τ(Y )Ne−2π tr |M(Y )|

with the last equality following from (5.30). Then we get (5.44) is

1

4

∑
N

pN

((
τ(Y )

1

))
e2πi tr τ(Y )N e

−2π tr |δ(Y )+β(Y )−|

detY 1/2 tr |M(Y )|

and the result is obtained by summing over N .

From the above results we have calculated the representative Fourier coefficients explic-

itly in the case where n = 2. We summarize them in the following.

Theorem 5.3.13 (Fourier Coefficients for the Theta lift when n = 2). Suppose that f :

H2 → Vκ is a weight κ cusp form of full level and genus 2. For Y ∈ Sym+
4 (R), define τ(Y ),

δ(Y ) and β(Y ) as in (5.29), and YD′ and ∆D′ as in Lemma 5.3.4, and E as in definition

5.3.11. Then the representative Fourier coefficients of Φf are given by:

aD(Y ;P ) =
detD′

2 detY 1/2
E
(
YD′ ;

(
σ(∆D′)P

)((
T (D)f

)(
τ(YD′)

)))e−2πµ(D) tr |M(YD′ )|

tr |M(YD′)|

=
detD′

2 detY 1/2

e−2πµ(D) tr |M(YD′ )|

tr |M(YD′)|
× P

((
T (D)f

)(
τ(YD′)

))(τ(YD′)

(D′)−1

)
(5.45)

Where T (D) is the D-total Hecke operator defined in Definition 3.2.7.
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Proof. The proof is essentially just combining Lemma 5.3.12 and Lemma 5.3.4. Combining

them immediately gives:

aD(Y ;P )

=
µ(D)3

2 det(µ(D)YD′)1/2
E
(
µ(D)YD′ ;

(
σ(∆D′)P

)((
T (D)f

)(
τ(µ(D)YD′)

)))e2π tr |M(µ(D)YD′ )|

tr |M(µ(D)YD′)|

And then we also use that for r > 0 we have that M(rY ) = rM(Y ) and τ(rY ) = τ(Y ), and

det(µ(D)YD′) = µ(D)4(detD′)−2 detY .

Now we will describe a parameterization of the subset of Y such that β−(Y ) = 0 that

leads to a nice interpretation of the Fourier coefficients aD(Y ;P ) in the above theorem.

Just as in the case when n = 1, we may define embeddings ι1, ι2 : Spn(R) ↪→ O(2n, 2n) by:

ι1

((
a b

c d

))
=


a b

a −b
−c d

c d


ι2(g) =

(
tg−1

g

) (5.46)

unlike when n = 1, the images of these embeddings do not commute, and so there is no

sense in which we have some sort of identification of Spn(R) ×±1 Spn(R) with a subgroup

of O(2n, 2n). We can however note that these embeddings carry the maximal compact

subgroup of Spn(R) into that of O(2n, 2n), and induce embeddings Hn ↪→ D2n which we

will denote by the same symbols. We have:

ι1(τ) =

(
x

−x

)
+

(
y

y

)

ι2(τ) = tg−1
τ g−1

τ =

(
y−1 −y−1x

−xy−1y−1x+ y

) (5.47)

We note that ι2 carries all of Spn(R) into the Levi subgroup M ⊂ O(2n, 2n), so that it

embeds Hn entirely inside of the submanifold of D2n where X = 0, which we identify with

Sym+
2n(R).

Definition 5.3.14 (Embedding Sym+
n (R) × Hn ↪→ Sym+

2n(R)). For y1 ∈ Sym+
n (R) and

τ2 = x2 + iy2 ∈ Hn, with yj = aj
taj, aj lower triangular with positive diagonal entries,
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define:

Y (y1, τ2) = ι2(gτ2)ι1(giy1) · 1 =

(
ta−1

2 a1
ta1a

−1
2

a2a1
ta1

ta2

)[(
1 −x2

1

)]
(5.48)

Remark 5.3.15. We will write α(y1, τ2) for the unique element of B0,0 such that

α(y1, τ2) tα(y1, τ2) = Y (y1, τ2)

Note that ta−1
2 a1 is not lower triangular. Let k(ta−1

2 a1) ∈ O(n) be the unique element such

that ta−1
2 a1k(ta−1

2 a1) is lower triangular with positive diagonal entries. Then we have:

α(y1, τ2) =

(
1

−x2 1

)(
ta−1

2 a1k(ta−1
2 a1)

a2a1

)
(5.49)

Formulas for the relevant quantities β−, δ, τ in terms of y1 and τ2 can be readily found

from the above expression. To express the all Fourier coefficients in theorem 5.3.13 we will

also need to find these same quantities for Y (y1, τ2)D′ when D′ is non-scalar as well. These

are made difficult for values of τ2 that do not commute with D′ (in particular since β− does

not vanish), so we restrict attention to only such τ2. The following is a simple verification

using (5.49).

Lemma 5.3.16. Suppose that τ2 is such that τ2D
′ = D′τ2. Then we have:

β−(Y (y1, τ2)D′) = 0

δ(Y (y1, τ2)D′) = k(ta−1
2 a1) ta1(D′)−1a1k(ta−1

2 a1)

τ(Y (y1, τ2)D′) = τ2(D′)−1

In particular when D is scalar we have D′ = 1 and simply:

β−(Y (y1, τ2)) = 0

δ(Y (y1, τ2)) = k(ta−1
2 a1) ta1a1k(ta−1

2 a1)

τ(Y (y1, τ2)) = τ2

We can plug in these values with (5.45) to obtain:

Corollary 5.3.17. Suppose that τ2D = Dτ2. Then the value of aD on the subspace of

Sym+
4 (R) consisting of elements of the form Y (y1, τ2) is given by:

aD(Y (y1, τ2);P ) =
µ(D)2 detD−1

2 tr y1 det y1
e−2π tr y1DP

((
T (D)f

)
(µ(D)−1τ2D)

)((τ2

1

)
µ(D)−1D

)

Example 5.3.18 (Scalar Valued Cusp Forms on H2). The simplest case to consider is
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when the input form, f , is a scalar valued cusp form, f(γτ) = det j(γ, τ)κf(τ). As Vκ is

one dimensional in this case, the space HomGLn(C)(Vκ,C[M4,2(C)]) is identified with the

space C[M4,2(C)]κ, the space of polynomials that transform as p(ηa) = det aκp(η) for a ∈
GLn(C). The space C[M4,2(C)]κ is spanned by polynomials of the form pκu(η) = det(tηu)κ

for u =

(
u1

u2

)
∈ M4,2(C). For such polynomials we have σ(α, a)pκu = det aκptα−1u. For

these polynomials (5.45) is:

aD(Y ; pκu) =
detD′

2 detY 1/2

e−2πµ(D) tr |M(YD′ )|

tr |M(YD′)|
det
(
τ(YD′)u1 + (D′)−1u2

)κ(
T (D)f

)(
τ(YD′)

)
We can simplify further with some more assumptions. If Dτ2 = τ2D then in the special

coordinates described above we have that this is:

aD(Y (y1, τ2; pκu) =
µ(D)(detD′)1−κ

2 det y1 tr y1D
e−2π tr y1D det(τ2u1 + u2)κ(T (D)f)(τ2(D′)−1)

and in particular if f is a Hecke eigenform with Hecke eigenvalues T (d)f = λ(d)f , then we

have:

adI2(Y (y1, τ2); pκu) = λ(d)
e−2πd tr y1

2 tr y1 det y1
det(τ2u1 + u2)κf(τ2)

For a function h : R>0 → C, whose argument we will denote by t, the Mellin Transform

of h, denote by (Mth)(s) is defined by:

(Mth(t))(s) =

∫ ∞
0

ts−1h(t) dt (5.50)

When f is a Hecke eigenform form on H1, normalized so that a1 = 1, we have that

(Mtf(it))(s) =
Γ(s)

(2π)s
L(s; f) (5.51)

where L(s; f) is the L-function for f . For n > 1 we have the functions φf,D0(ξ) defined in

(5.22), given by:

φf,D0(ξ) =

∞∑
µ=1

eπiµ trXJ(D0)aµD0(Y )

Scaling Y in (4.19) to tY and taking the Mellin transform would yield (up to a translation

in s) yield terms that look like (5.51). We are able to say something similar for the lift to

H2 for scalar cusp forms:

Theorem 5.3.19. Suppose that f is a scalar Hecke cusp form of weight κ and genus 2. Re-

call we defined functions φf,D0(ξ) in (5.22). Then the the Mellin transform of t3φf,I2(tY ; p)
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is:

Mt(t
3φf,I2(tY ; p))(s) =

f(τ(Y ))E(Y ; p)

2 detY 1/2 tr |M(Y )|
× Γ(s)L(s; f ; spin)

(2π tr |M(Y )|)sζ(2s− 2κ+ 4)
(5.52)

where L(s; f ; spin) is the spin L-function for f . (The factor of t3 is chosen to eliminate a

translation in s).

Proof. First note that we have

t3φf,I2(tY ; p) =
E(Y ; p)

2 detY 1/2 tr |M(Y )|

∞∑
µ=1

(T (µ)f)(τ(Y ))e−2πtµ tr |M(Y )|

For f a Hecke cusp form with Hecke eigenvalues T (µ)f = λ(µ) this is:

f(τ(Y ))E(Y ; p)

2 detY 1/2 tr |M(Y )|

∞∑
µ=1

λ(µ)e−2πtµ tr |M(Y )|

As only the part inside the sum depends on t this is the only part we need to calculate the

Mellin transform of. We have:∫ ∞
0

ts
∞∑
µ=1

λ(µ)e−2πtµ tr |M(Y )|dt

t
=
∞∑
µ=1

λ(µ)

(2π tr |M(Y )|)s
Γ(s)

Then finally we have from [10] (exercise 3.10, page 21) that:

∞∑
µ=1

λ(µ)

µs
=

L(s; f ; spin)

ζ(2s− 2κ+ 4)

5.4 Future Work

There are some obvious further developments to do to achieve a more satisfactory result for

the lifts from Spn(R) to O(2n, 2n) of Siegel cusp forms.

1) We need to evaluate the integral I(Y ; f ;P ) (5.23) for n > 2 as well. For that we have

the following conjecture:

Conjecture 5.4.1. Suppose that Y ∈ Sym+
2n(R) and N ∈ Sym+

n (R). Then∫
Hn

e2πi trNτe−π trY gτ tgτ det y−n−1dxdy = h(Y )e2πi tr τ(Y )Ne−2π tr |M(Y )| (5.53)

where τ : Sym+
2n(R)→ Hn, M : Sym+

2n(R)→ Dn and h : Sym+
2n(R)→ R are functions such

that τ is homogeneous of degree 0, M is homogeneous of degree 1, and h is homogeneous of
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degree −n(n+ 1)/2.

If this conjecture is true we have a result similar to (5.45) to give the Fourier coefficients:

aD(Y ;P ) = h(YD′)E
(
YD′ ;

(
σ(∆D′)P

)((
T (D)f

)(
τ(YD′)

)))
e−2πµ(D) trM(YD′ )

When f is a Hecke eigenform with Hecke eigenvalues λ(µ), we would also have something

analogous to (5.52):

Mt

(
tn(n+1)/2φf,D′(tY ;P )

)
(s) = h(Y )E

(
Y ; P

(
f
(
τ(Y )

))) Γ(s)

(2π trM(Y ))s

∞∑
µ=1

λ(µ)

µs

Towards computing (5.53) we can follow the same steps as in Lemma 5.3.9, and we can get

to: ∫
Hn

e2πi trNτe−π tr(y+t(x+A)y−1(x+A)+By−1
det y−n−1dxdy

=

∫
A
eπi trSA

det(N + 1 + S)1/2

detB1/4
K

(n)
1/2

(
2π(t(N + 1 + S)B(N + 1 + S))1/2

)
dS

One might hope that there is some sort of simplification forK
(n)
1/2(Z) as there is forK

(2)
1/2(Z) =

1
2 detZ−1/2K

(1)
0 (2π trZ) like we used in the proof. The method used in [3] to obtain this

formula does not seem to easily generalize to n > 2, unfortunately. It is clear that K
(n)
ν (Z)

will be some function of the elementary symmetric polynomials in the eigenvalues of Z,

which suggests that even if they do exist for n > 2, the formulas might be unwieldy if they

involve symmetric functions of the eigenvalues other than trZ and detZ.

If we restrict attention to the subset of Y of the form Y (y1, τ2), it is sufficient to calculate

the integral: ∫
Hn

e2πi trNτe−π tr(y+txy−1x+B2y−1) det y−n−1dxdy

for B and N positive symmetric definite, which is somewhat simpler than (5.53). (This is

the n-dimensional version of (5.31) with A = 0).

2) Some further investigation of the module structure of H (Γ′,Γ′(D′)) as a Hn module

would shed more light on how to interpret the T (D)f terms in (5.45) to obtain formulas

like (5.52) for φf,D0 with D0 6= 12, when f is a Hecke eigenform.

We have that H (Γ′,Γ′(D′)) ⊂ Hom
(
Sκ(Γ′), Sκ(Γ′(D′))

)
is a Hn module via precompo-

sition. When gcd(d,D0) = 1 we have that T (D0)T (d) = T (dD0), so that when f is a Hecke

eigenform, we get that:

adD0(Y ) = λ(d)aD0(dY ) (5.54)

Conjecture 5.4.2. Suppose that f is a Hecke eigenform. For a positive natural number,

d, write emax(d) for the highest power of an exponent in the prime factorization of d. For
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each D0 = diag(d1, . . . , dn−1, 1), there is some k > 0 depending on emax(d1) and n such

that we have:

T (dD0) =
∑

µ| gcd(d,d′1)
emax(µ)≤k

∑
µ(g)=µ

cd/µ(g)T (µD0)T (g)

for some constants cd/µ(g).

If this conjecture is true then if f is a Hecke eigenform, we have:

adD0(Y ) =
∑

µ| gcd(d,d′1)
emax(µ)≤k

∑
µ(g)=µ

(
d

µ

)n(n+1)/2

cd/µ(g)λ(g)aµD0(
d

µ
Y )

Where λ(g) is the Hecke eigenvalue of f with respect to T (g). (5.54) is a special case of

this with cd/µ(g) = 0 for µ > 1 and cd(g) = 1 for each g so that
∑

g λ(g) = λ(d). We expect

that formulas similar to (5.52) may be found that relate other L-functions related to f to

the Mellin transforms of φf,D0 .

We expect that this can be worked out locally via H (Γ′,Γ′(D′)) ∼=
⊗

p H (Γ′,Γ′(D′))p

and H ∼=
⊗

p Hp at each prime p.
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Appendix

6.1 Weil Representation

In this section we will describe the Weil representation of G × G′ = O(m,m) × Spn(R)

which underlies the modular properties of the theta functions Θ̃ defined in (3.61). We will

interpret M2m,n(R) as V n, thought of as length n row vectors of elements of V , where V is

Rm,m, the quadratic space whose underlying vector space is R2m together with quadratic the

form given by the matrix Q =

(
0 1

1 0

)
. Given v, v′ ∈ V , we will denote by (v, v′) = tvQv′,

their symmetric bilinear product associated to Q. Writing v =

(
v1

v2

)
, (v, v′) is given by

tv1v
′
2 + tv2v

′
1. We extend this product to V n by taking the matrix of bilinear products

between the different components of elements v ∈ V n. For v, v′ ∈ V n we still have the same

formula for (v, v′) = tv1v
′
2 + tv2v

′
1, but this is an n× n matrix. This product is symmetric

in the sense that t(v, v′) = (v′, v) and in particular we have (v, v) is a symmetric matrix for

all v ∈ M2m,n(R). We have a left action of G and a right action of GLn(R) on M2m,n(R)

given by matrix multiplication.

Definition 6.1.1 (Standard Model Weil Representation). Denote by S = S(M2m,n(R)) the

space of Schwartz functions on M2m,n(R). We have an action of G × G′ on S, which we

will denote by ω whose action is given for elements g ∈ G by:

ω(g)ϕ(v) = ϕ(g−1v) (6.1)

119
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and for elements in the Siegel parabolic subgroup of G′ and J =

(
0 1

−1 0

)
by:

ω

((
a

ta−1

))
ϕ(v) = det amϕ(va)

ω

((
1 b

1

))
ϕ(v) = eπi tr(v,v)bϕ(v)

ω

((
0 1

−1 0

))
ϕ(v) =

∫
M2m,n(R)

e2πi tr(v,v′)ϕ(v′) dv′

(6.2)

A key feature of the Weil representation is the asymmetry between the action of the

orthogonal group and the symplectic group, namely the former acts through a simple trans-

lation of the argument, while the latter acts in a significantly more complicated way. In

particular the action of the maximal compact subgroup of G′ acts in a much more obfuscated

way. Because V is a split quadratic space there is an isomorphic representation that we can

use that switches this dynamic. We will call this the symplectic model Weil representation,

but this is terminology is not common as far as we are aware. We will now describe this

representation.

We will denote by W = R2n, thought of as row vectors with the symplectic product

associated to J =

(
0 1

−1 0

)
which we denote by 〈w,w′〉 = wJ tw′ = w1

tw′2 − w2
tw1. We

will think of Mm,2n(R) as Wm, the space of m-component column vectors of elements of

w. We extend the symplectic product to elements of Mm,2n(R) by taking the matrix of the

symplectic products of the components of w, explicitly: 〈w,w′〉 = wJ tw′. This product is

alternating in the sense that t〈w,w′〉 = −〈w′, w〉, and in particular we have that 〈w,w〉 is a

skew symmetric matrix for all w ∈Wm.

Definition 6.1.2 (Symplectic Model Weil Representation). Define a representation ω′ of

G×G′ on S ′ = S(Mm,2n(R)) as follows. For g ∈ G′:

ω′(g)ϕ′(w) = ϕ′(wg) (6.3)
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and for elements of the Siegel parabolic of G and Q =

(
0 1

1 0

)
by:

ω′

((
a

ta−1

))
ϕ′(w) = |det a|nϕ′(taw)

ω′

((
1 b

1

))
ϕ′(w) = eπi tr b〈w,w〉ϕ′(w)

ω′

((
0 1

1 0

))
ϕ′(w) =

∫
Mm,2n(R)

e2πi tr〈w′,w〉ϕ′(w′) dw′

(6.4)

In these representations we have that G acts by translations through ω, and G′ acts

by translations through ω′, but the other group acts in a more complicated manner. We

note that the elements

(
a

ta−1

)
,

(
1 b

1

)
,

(
0 1

1 0

)
do not generate all of G unlike how

the analogous elements generate G′. We need in addition elements QI as in 2.14, and

they have similar formulas in ω′ as

(
0 1

1 0

)
, where instead we leave out rows not in I

from the integration. This will not be important for our purposes, but we point it out for

thoroughness.

Definition 6.1.3 (Partial Fourier Transform). Define a map F : S → S ′ by:

Fϕ(w1, w2) =

∫
Mm,n(R)

e2πi tr tw2v1ϕ

(
v1

w1

)
dv1 (6.5)

The inverse of F is given by:

F−1ϕ′

(
v1

v2

)
=

∫
Mm,n(R)

e−2πi tr tv1w2ϕ′(v2, w2) dw2 (6.6)

Lemma 6.1.4. The map F is an intertwining isomorphism for the action of G×G′ between

the representations (S, ω) and (S ′, ω′)

We will also record the action of the Lie algebras of G and G′, which we will denote by

g0 = LieG and g′0 = LieG′, respectively. We will generally use the subscript 0 for a real Lie

algebra, and no subscript for its complexification. Also we will write matrices representing

Lie algebra elements with square brackets, and elements in the groups with round brackets

so that

(
a b

c d

)
∈ G while

[
a b

c d

]
∈ g0, for example. We will also write k0 = LieK and

k′0 = LieK ′. We obtain the action of the Lie algebras by differentiating the action described

in Definitions 6.1.1 and 6.1.2. To simplify things we will introduce the following notation.

Use l and r to denote the derivatives of left and right action on a function of a matrix

variable:
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l(a)ϕ(x) =
d

dt
ϕ(etax)

∣∣∣∣
t=0

= tr a(x t∇)ϕ(x)

r(a)ϕ(x) =
d

dt
ϕ(xeta)

∣∣∣∣
t=0

= tr ta(tx∇)ϕ(x)

(6.7)

where we use ∇ to represent the matrix of differential operators:

∇ij =

(
∂

∂xij

)
(6.8)

and we use the shorthand tr a(x t∇) to express the sum
∑

i,j,s aijxjs
∂ϕ
∂xis

. We also define

some operators that are specific to S and S ′. On S we will define 4V , an n× n matrix of

second order differential operators whose ij coordinate is:

4V
ij =

m∑
s=1

∂2

∂(v1)si∂(v2)sj
+

∂2

∂(v1)sj∂(v2)si
(6.9)

This operator is essentially the Laplacian corresponding to the split symmetric bilinear

form (v, v) on V , and is symmetric in the sense that 4V
ij = 4V

ji.

Lemma 6.1.5 (Lie Algebra Action on S). For a ∈ g0, we have:

ω(a)ϕ(v) = −l(a)ϕ(v) (6.10)

Then and for

[
a b

−c − ta

]
∈ g′0, we have:

ω

([
a b

−c − ta

])
ϕ(v) =

(
m tr a+ r(a) + πi tr(v, v)b+

1

4πi
tr c4V

)
ϕ(v) (6.11)

On S ′, we define the differential operator
〈
∂
∂w ,

∂
∂w

〉
as the m×m matrix of second order

differential operators with entries given by:〈
∂

∂w
,
∂

∂w

〉
ij

=
n∑
s=1

∂2

∂(w1)is∂(w2)js
− ∂2

∂(w1)js∂(w2)is
(6.12)

This is something like a Laplacian, but instead of corresponding to a symmetric bilinear

form, it corresponds to an alternating form. In particular the matrix
〈
∂
∂w ,

∂
∂w

〉
is skew

symmetric.

Lemma 6.1.6 (Lie Algebra Action on S ′). For a ∈ g′0, the action on S ′ is given by:

ω′(a)ϕ′(w) = r(a)ϕ′(w) (6.13)
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For

[
a b

c − ta

]
∈ g0 the action on S ′ is given by:

ω′

([
a b

c − ta

])
ϕ′(w) =

(
n tr a+ l(ta) + πi tr b〈w,w〉 − 1

4πi
tr c

〈
∂

∂w
,
∂

∂w

〉)
ϕ′(w)

(6.14)

Definition 6.1.7 (Majorized Gaussians and S0, S ′0). Inside of S and S ′ we define a dis-

tinguished Gaussian function:

ϕ0(v) = e−π tr tvv = e−π tr(v,v)0 ∈ S

ϕ′0(w) = e−π tr tww = e−π tr(w,w)0 ∈ S ′
(6.15)

where (v, v)0 here is the same as (v, v)1 in definition 2.1.13, and (w,w)0 here is the same

as (w,w)i in definition 2.2.3. We also define subspaces S0 ⊂ S and S ′0 ⊂ S ′ by:

S0 = {pϕ0 : p is a polynomial on M2m,n(R)}

S ′0 = {pϕ′0 : p is a polynomial on Mm,2n(R)}
(6.16)

We will write P and P ′ for the spaces of polynomials on M2m,n(R) and Mm,2n(R), respec-

tively. We will interchangeably identify S0 and P as convenient.

Lemma 6.1.8. We have that FS0 = S ′0. For p ∈ P, we will slightly abuse notation and

write Fp ∈ P ′ for the polynomial so that F (pϕ0) = (Fp)ϕ′0. We can explicitly describe

the map F : P ∼−→ P ′:

(Fp)(w1, w2) = exp

(
1

4π
41

)
p

(
iw2

w1

)
(6.17)

where 41 is the differential operator:

41ϕ

(
v1

v2

)
=

m,n∑
i,j=1

∂2

∂(v1)2
i,j

ϕ

(
v1

v2

)
(6.18)

We note that as p as a polynomial the operator exp
(

1
4π41

)
reduces to a finite sum of orders

of the operator 41. The inverse operator is given by:

(F−1p′)

(
v1

v2

)
= exp

(
1

4π
42

)
p′(v2,−iv1) (6.19)

where 42 is the differential operator:

42ϕ
′(w1, w2) =

m,n∑
i,j=1

∂2

∂(w2)2
i,j

ϕ′(w1, w2) (6.20)
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The subspaces S0 and S ′0 are closed under the actions of g0 and g′0. We will denote by

ωP and ω′P the action induced on P and P ′ of the Lie algebras under the identifications

between S0,S ′0 and P,P ′, respectively. The formulas for the action are given by:

Lemma 6.1.9 (Lie Algebra Actions on S0). For x ∈ g0, the action on P is given by:

ωP(x)p(v) = −l(x)p(v) + 2π tr(xv, v)0p(v) (6.21)

For elements in g′0 the actions is given by:

ωP

([
a 0

0 − ta

])
p(v) = m tr ap(v) + tr ta(tv∇)p(v)− 2π(tr(v, v)0a)p(v)

ωP

([
0 b

0 0

])
p(v) = πi(tr(v, v)b)p(v)

ωP

([
0 0

−c 0

])
p(v) =

1

4πi
tr c4V p(v)− πi(tr c(v, v))p(v) + i tr c tvQ∇p(v)

(6.22)

In particular for x ∈ k0 we have the action simplifies to:

ωP(x)p(v) = −l(x)p(v) (6.23)

as tr(xv, v)0 = trxv tv = 0 due to v tv being symmetric and x skew symmetric. For[
a b

−b a

]
∈ k′0, we have that the action simplifies to:

ωP

([
a b

−b a

])
p(v) = r(ta)p(v) + i tr b tvQ∇p(v) +

1

4πi
tr b4V p(v) (6.24)

Lemma 6.1.10 (Lie Algebra Actions on S ′0). For x ∈ g′0, we have:

ω′P(x)p′(w) = (r(x) + tr((wx,w)0)) p′(w) (6.25)

and when x ∈ k′0, the formula simplifies to:

ω′P(x)p′(w) = r(x)p′(w) (6.26)
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For elements in g0, the action is given by:

ω′P

([
a

− ta

])
p′(w) =

(
n tr a+ l(ta)− 2π tr(a〈w,w〉i)

)
p′(w)

ω′P

([
0 b

0 0

])
p′(w) = πi(tr b〈w,w〉)p′(w)

ω′P

([
0 0

c 0

])
p′(w) =

(
−1

4πi
tr c

〈
∂

∂w
,
∂

∂w

〉
− πi tr c〈w,w〉+ i tr c

〈
w,

∂

∂w

〉)
p′(w)

(6.27)

When

[
s1 s2

s2 s1

]
∈ k0, we the formula simplifies to:

ω′P

([
s1 s2

s2 s1

])
p′(w) =

(
−l(s1) +

−1

4πi
tr s2

〈
∂

∂w
,
∂

∂w

〉
+ i tr s2

〈
w,

∂

∂w

〉)
p′(w) (6.28)

We note that as a result of these formulas that the action of k0 × k′0 does not increase

the degree of a polynomial. As such we have that S0 (and S ′0) has a filtration by finite

dimensional subspaces (by degree of polynomials) that are invariant spaces for k0 × k′0. As

such the action can be exponentiated to obtain that S0 (resp. S ′0) are K×K ′ finite vectors.

Indeed, S0 (resp. S ′0) is the underlying (g × g′,K ×K ′) module of S (resp. S ′). We will

use ωP and ω′P as well for the induced actions of K ×K ′ on P and P ′, respectively. It is

difficult to explicitly describe the action of K ×K ′ on P or P ′. In either case one of the

factors simply acts linearly, but the other factor has a much more complicated action. In

particular we have:

ωP(k)p(v) = p(k−1v) for k ∈ K,

ω′P(k′)p′(w) = p′(wk′) for k′ ∈ K ′
(6.29)

We will want to introduce some alternate coordinates to express the polynomials in P
and P ′ that makes the action of K ∼= O(m)×O(m) and K ′ ∼= U(n) more clear.

Definition 6.1.11 (Polynomials Spaces C[ν+, ν−] and C[η+, η−]). For elements v =

(
v1

v2

)
∈ M2m,n(R), denote by ν± the matrices:

ν±(v) = v1 ± v2 (6.30)

and define C[ν+, ν−] to be the space of polynomials in the Mm,n(C) variables ν+, ν−. We

identify this space with P, identifying p(ν+, ν−) ∈ C[ν+, ν−] with the polynomial q(v) ∈ P
given by q(v) = p(v1 + v2, v1 − v2).
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Similarly, for w = (w1, w2) ∈Mm,2n(R), denote by η± the matrices:

η±(w) = ∓iw1 + w2 (6.31)

and define C[η+, η−] to be the space of polynomials in the Mm,n(C) variables η+, η−. We

identify this space with P ′, identifying p(η+, η−) ∈ C[η+, η−] with q(w) ∈ P ′ given by

q(w) = p(−iw1 + w2, iw1 + w2).

The matrices ν± may be thought of as something like the coordinates of V n according to

an orthogonal decomposition of V = V +⊕ V −. These spaces are the ±1 eigenspaces of the

matrix Q =

(
0 1

1 0

)
. As ν± vary over Mm,n(R), the vectors

(
1
2ν

+

1
2ν

+

)
and

(
1
2ν
−

−1
2ν
−

)
span a

maximal positive definite and a perpendicular negative definite subspace, respectively. The

coordinate ν+ is 0 on the negative definite subspace and ν− is 0 on the positive definite

subspace. We denote by C[ν±] the subalgebra consisting of polynomials that only depend

on the ν± variable. In terms of functions on the underlying space, these only depend on

V ± component under the decomposition V = V +⊕ V − above. In particular C[ν±] is equal

to the subspace of polynomials in C[ν+, ν−] that are invariant under precomposition with

projection to V ±, given by the map v 7→ 1
2(v ±Qv).

There is a similar interpretation of η± giving coordinates on the ±i eigenspaces of

W ⊗ C = W+
C ⊕W

−
C with respect to J =

(
0 1

−1 0

)
. In particular, matrices of the form

1
2(±iη±, η±) span the ±i eigenspace of J on Mm,2n(C), and under w 7→ ∓iw1 + w2 these

map to η±, with the other coordinate η∓ = 0. Similar to before we will denote by C[η±]

the subalgebra of polynomials that only depend on the η± variable, and these can be

thought of as polynomials that depend only on the W±C variable in the decomposition

W ⊗ C = W+
C ⊕ W−C . Likewise C[η±] is equal to the subspace of polynomials that are

invariant under precomposition with projection to W±C , given by the map w 7→ 1
2(w∓ iwJ).

The purpose of these coordinates is to simplify the action of the maximal compact

subgroups K and K ′ in the two different models. Suppose that we have k ∈ K identified

with (k+, k−) ∈ O(m)×O(m), and k′ =

(
a b

−b a

)
∈ K ′. Then we have:

ν±(k−1v) = k−1
± ν±(v)

η±(wk) = η±(w)(a± ib)
(6.32)

So that:

Lemma 6.1.12. Consider the identification of P ∼= C[ν+, ν−] (resp. P ′ ∼= C[η+, η−]) above,

and the induced action of K ×K ′ on these C[ν+, ν−] (resp. C[η+, η−]) by the action ωP on
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P (resp. ω′P on P ′). The action of K (resp. K ′) is then given by:

ωP(k)p(ν+, ν−) = p(k−1
+ ν+, k−1

− ν−) for k ∈ K

ω′P(k′)p(η+, η−) = p
(
η+(a+ ib), η−(a− ib)

)
for k′ =

(
a b

−b a

)
∈ K ′

(6.33)

The action of K ′ on C[ν+, ν−] and K on C[η+, η−] is more difficult to explicitly describe

but is obtained from the above via the partial Fourier transform F : P ∼−→ P ′. We will

likewise use F to describe the induced isomorphism F : C[ν+, ν−]
∼−→ C[η+, η−]. A formula

analogous to that in Lemma 6.1.8 may be obtained by translating into the coordinates of

ν± and η±:

Lemma 6.1.13 (Partial Fourier Transform F : C[ν+, ν−]
∼−→ C[η+, η−]). The map F :

C[ν+, ν−]
∼−→ C[η+, η−] is defined by the identifications C[ν+, ν−] ∼= P and C[η+, η−] ∼= P ′,

and translating the formulas in terms of ν± and η±. We have the following:

1. The differential operator 41 on C[ν+, ν−] is given by:

m,n∑
s,i=1

(
∂

∂(ν+)s,i
+

∂

∂(ν−)s,i

)2

=

m,n∑
s,i=1

∂2

∂(ν+)2
s,i

+ 2
∂2

∂(ν+)s,i∂(ν−)s,i
+

∂2

∂(ν−)2
s,i

(6.34)

2. The differential operator 42 on C[η+, η−] is given by:

m,n∑
s,i=1

(
∂

∂(η+)s,i
+

∂

∂(η−)s,i

)2

=

m,n∑
s,i=1

∂2

∂(η+)2
s,i

+ 2
∂2

∂(η+)s,i∂(η−)s,i
+

∂2

∂(η−)2
s,i

(6.35)

3. With 41 and 42 as above, we have that for p ∈ C[ν+, ν−], (Fp) ∈ C[η+, η−] is given

by:

(Fp)(η+, η−) =
(
e

1
4π
41p

)
(iη+, iη−) (6.36)

and for p′ ∈ C[η+, η−], (F−1p′) ∈ C[ν+, ν−] is given by:

(F−1p′)(ν+, ν−) =
(
e

1
4π
42p

)
(−iν+,−iν−) (6.37)

4. We have that F restricts to an isomorphism between C[ν±] and C[η±], i.e.: F (C[ν±])

= C[η±]. Writing 4 for the usual Laplacian operator on C[Mm,n(C)], the transfor-

mations are then:

(Fp)(η±) =
(
e

1
4π
4p
)

(iη±)

(F−1p′)(ν±) =
(
e

1
4π
4p′
)

(−iν±)
(6.38)
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5. When p ∈ C[Mm,n(C)] is harmonic the operator F has a particularly simple form:

(Fp)(η±) = p(iη±)

(F−1p)(ν±) = p(−iν±)
(6.39)

where we interpret p as a polynomial in C[ν±] in the first line and in C[η±] in the

second line.

There is a nice description for the action of g′ on C[η+, η−] that is more explicit than

(6.25). We have the decomposition g′ = p′− ⊕ k′ ⊕ p′+, where

p′± =

{
n±(b) =

1

2

[
b ±ib
±ib −b

]
: b ∈ Symn(C)

}
(6.40)

The action of elements in k′ on C[η+, η−] is obtained by differentiating (6.33). To describe

the action of p′±, first we note that:

r(n±(b))η±(w) = 0

r(n±(b))η∓(w) = −η±(w)b
(6.41)

Next, we can write ϕ′0(w) = e−π tr η+(w) tη−(w). We write ∇± for the gradient associated to

η±. Then we can calculate:

ωP(n±(b))p(η+, η−) =
(
− tr η±b t∇∓ + π tr η±b tη±

)
p(η+, η−) (6.42)

by using (6.33) on p
(
η+(w), η−(w)

)
e−π tr η+(w) tη−(w).

6.2 Theta Distributions and Theta Functions

Definition 6.2.1 (Theta distribution on S and S ′). Denote by D(S) the space of tempered

distributions on S. Define θ ∈ D(S) as:

θ(ϕ) =
∑

v∈M2m,n(Z)

ϕ(v) (6.43)

and θ′ ∈ D(S ′) as:

θ′(ϕ′) =
∑

w∈Mm,2n(Z)

ϕ′(w) (6.44)

We will also write D(S0) and D(S ′0) for the dual spaces of S0 and S ′0, respectively.

The partial Fourier transform F : S ∼−→ S ′ described in the previous section induces a

isomorphism F : D(S ′) ∼−→ D(S). Under this isomorphism θ and θ′ are identified:
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(Fθ′)(ϕ) = θ′(Fϕ) = θ(ϕ) (6.45)

The proof of this fact follows from an application of Poisson summation to (6.5). The groups

G and G′ act on D(S) through their action on S:

(ω∗(g, g′)θ)(ϕ) = θ(ω(g, g′)−1ϕ) (6.46)

and similarly for an action on D(S ′0). As g× g′ and K ×K ′ stabilize S0, they act on D(S0)

as well. For (x, x′) ∈ g× g and (k, k′) ∈ K ×K ′ we have:

(ω∗P(x, x′)θ)(p) = −θ(ωP(x, x′)p),

(ω∗P(k, k′)θ)(p) = θ(ωP(k, k′)−1p)
(6.47)

and similarly for the action of D(S0). We will define some functions on G × G′ that are

valued in D(S0) (or D(S ′0))

Definition 6.2.2 (Theta Functions on G×G′). We define a function Θ : G×G′ → D(S0)

(and Θ′ : G×G′ → D(S ′0)) by:

Θ(g, g′; p) = θ(ω(g, g′)(pϕ0)), Θ′(g, g′; p′) = θ′(ω′(g, g′)(p′ϕ′0)). (6.48)

where we identify S0 and S ′0 with P and P ′, respectively. In light of equation 6.45, we have

that

Θ(g, g′; p) = Θ′(g, g′; Fp) (6.49)

Recall we defined Γ ⊂ G and Γ′ ⊂ G′ as the subgroups Om,m(Z) and Spn(Z), respec-

tively. We have:

Lemma 6.2.3. Suppose that (γ, γ′) ∈ Γ × Γ′, and (k, k′) ∈ K ×K. Then for all (g, g′) ∈
G×G′, we have:

Θ(γgk, γ′g′k′) = ω∗P(k, k′)−1Θ(g, g′)

Θ′(γgk, γ′g′k′) = (ω′P)∗(k, k′)−1Θ′(g, g′)
(6.50)

Proof. The invariance with respect to left translation from (γ, γ′) ∈ Γ × Γ′ follows from γ

permuting the elements in the sum defining θ so that Θ(γg, g′) = Θ(g, g′), and γ′ permuting

the sum defining θ′, so that Θ′(g, γ′g) = Θ(g, g′), and then the equality F (Θ′(g, g′)) =

Θ(g, g′) gives invariance for the other argument. Next, if (k, k′) ∈ K ×K ′, then we have:

Θ(gk, g′k′)(p) = θ(ω(g, g′)ω(k, k′)(pϕ0))

= θ(ω(g, g′)((ωP(k, k′)p)ϕ0))

= Θ(g, g′)(ωP(k, k′)p)
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and similarly for Θ′.

We will now describe how these are related to the function Θ(ξ, τ) described in definition

3.4.1. First, we will denote by σ the action of GLm(C)×GLn(C) on C[η+, η−] given by

σ(α, a)p(η+, η−) = |detα|np(α−1η+ ta−1, α−1η−a) (6.51)

When p depends only on η− this reduces to the action σ in (3.41). Use σ∗ to denote the

dual action on C[η+, η−]∗. Recall for ξ = X + Y ∈ Dm and τ = x + iy ∈ Hn, we have the

elements gξ ∈ G, g′τ ∈ G′ given by:

gξ =

(
1 X

1

)(
α

tα−1

)
, g′τ =

(
1 x

1

)(
a

ta−1

)
(6.52)

where Y = α tα, y = a ta with α, a both lower triangular with positive diagonal entries.

Recall as well that we have factors of automorphy k(g, ξ), and k′(g′, τ) valued in K and K ′,

respectively, defined by:

ggξ = ggξk(g, ξ), g′g′τ = g′g′τk
′(g′, τ) (6.53)

We also have maps η, η : Mm,2n(R) 7→Mm,n(C) by:

ητ (w) = w1τ + w2, ητ (w) = w1τ + w2 (6.54)

More generally than (3.39) we could consider functions of the form:

Θsymp(ξ, τ ; p) =
∑

w∈Mm,2n(Z)

p(ητ (w)y−1, ητ (w))eπi tr ξητ (w)y−1 tητ (w) (6.55)

for p(η, η) ∈ C[Mm,n(C)×Mm,n(C)]. Then we have:

Θsymp(ξ, τ ; p) = σ∗(α, a)Θ′(gξ, g
′
τ ; p) (6.56)
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