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Abstract

We define a notion of modularity for a function on the symmetric space D,, = G/K for
G = O(m,m). We define symplectic theta functions which are functions on D,, x H,,
where H,, is the Siegel upper half space of genus n, which are modular in both variables.
We pair these symplectic theta functions with modular forms on H, to obtain modular
forms on D,,, and we compute their Fourier coefficients. We do this for cusp forms and
weakly holomorphic modular forms in the case when n = 1, and for cusp forms when n > 1.
In the case where n = 2 we obtain complete explicit formulas, and in the case where n > 2

we reduce the computation of the Fourier coefficients to the calculation of a single integral.
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Chapter 1
Introduction

This thesis concerns automorphic forms for the split algebraic group O, , defined over Q,

from a classical point of view. Denote by G the real points of Oy, y,:

G =0(m,m) = {gz (Z Z) : Qlyl ZQ}

, and for matrices A and B, we write A[B] = ‘BAB, where 'B

Ly,
Im
denotes the transpose of B. The corresponding Riemannian symmetric space has a model

where Q =
given by:
D={¢(=X+YeM,(R): '‘X=-X,'Y=Y,Y >0}

and the action of G on D is given by

g-&=(al+b)(cE+d)".

and this action has a pair of factors of automorphy,

§5(g,6) = €& +d

where £+ = X + Y. By a modular form for G we will mean a function ® : D — V,, where
V), is a representation of GL,, (R), that transforms under translations by v € I' = Oy, 1 (Z)

as:

D(v8) = p(i~ (7:€)2(¢) (1.1)

(More generally we could have a representation p of GL,,(R) x GL,,(R) and take modular
to mean ®(v,&) = p(j*‘(%g),j_(%f))@(f), but in this work we will consider ones that

only depend on j7). We compare this to the case of classical and Siegel modular forms. In
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that case we have the group G’ = Sp,,(R), given by:

G/:{g=<z Z) :J[g]=J}

1
where J = ( ) n) . This group has a Hermitian symmetric space H:
—in

H={r=x+iyc M,(C): 'z ==z, 'y=1y, y >0}
with the action of G’ on H given by
g-7=(ar +b)(er +d) L.

This action has the GL,(C) valued factor of automorphy j(g,7) = ¢ + d. A modular
form for Sp,(R) is then a holomorphic function f : H — V,, where & is a holomorphic

representation of GL,(C), that satisfies:

for) = w0y, 7)) f(T) (1.2)

for v € I" = Sp,,(Z), together with a finiteness condition at the cusp when n = 1. The most
commonly studied are the scalar valued modular forms that satisfy f(y7) = (er +d)" f(7)
or f(y7) = det(er + d)*f(7) when n = 1 or n > 1, respectively. We seek to provide
classical formulas for modular forms for Oy, ,,(R) in analogy to the theory for Sp,(R).
More specifically, we will construct modular forms on D by integrating modular forms on
H against a theta kernel.

In Chapter 2 we will fix some notation about G and G’, and also discuss this space D
in more detail, as well as some natural functions associated to this space. There is another
notion of factors of automorphy on D valued in O(m) x O(m) that essentially come from
the Cartan decomposition of G, which we will denote by k*(g,&), and we will describe
their relation to j%(g,&). We will describe a set of generators of I'. We will also recall a
low dimensional exceptional isomorphism SOg(2,2) = SLy(R) x41 SLa(R) that leads to an
identification Dy = Hy x Hy.

In Chapter 3 we will discuss modular forms on H of full level IV = Sp,(Z), and in
particular the theory of Hecke operators. Most of this will be review of the standard theory,
however we will also look at a less common class of Hecke operators that change the level of
a modular form. We will call these operators T'(D) (Definition 3.2.7) indexed by diagonal
matrices D whose entries are positive integers that satisfy a certain divisibility condition.

Next we will define the notion of a modular form for O(m,m) (1.1). Just as with Siegel
modular forms these functions have a Fourier expansion, except in this case it is with respect

to skew symmetric matrices:
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2= Y ()
SeSkewm (Z)
where ag : Sym, (R) — V, are some functions of a positive definite matrix variable. We
will also describe how to convert between the notion of modularity in (1.1) and a notion of
modularity with respect to the factors of automorphy k.

We will describe how the two notions of modularity on Ds = H; x H; in the senses of
(1.2) and (1.1) are related (in this case it is more convenient to use the notion of modularity
on O(2,2) with respect to k¥). In particular for a modular form ® on D, that satisfies
d(y€) = p(k*(v,ﬁ),k*(v,é))ff'(é), we will describe how to obtain a function F(71,72) on
Hi1 x Hi that satisfies F'(y171,727m2) = j (71, 71)" j(v2, 72)"2 F (11, T2), where (K1, k2) are two
integers depending on the representation p.

In the last section of chapter 3, we will define a class of functions on D x ‘H which we

will call symplectic theta functions:

Definition 1.0.1 (Symplectic Theta Functions - Definition 3.4.1). For { = X +Y € D,
T=x+1iy € H, and p € C[My, »(C)] a polynomial of an m x n matriz variable, define:

@(f, T;p) _ Z p(nT(w))em‘tr X(w,w)e—wtr Y (w,w)- (1'3)
weMm,Zn(Z)

where (w,w) = wJ'w is an integral skew symmetric matriz, and (w,w),; is an m X m
symmetric matriz depending on 7 and w such that tr(w, w), is a positive definite symmetric
bilinear form on My, on(R). This defines a function © : D x H — C[M,, ,(C)]*.

Theorem 1.0.2 (Theorem 3.4.2). These functions are modular on both D and H, in the

sense that:

O(16,7'mip) = |det = (1,8)["O (&7 0 (i7(1,€).5(7.7) 'p) (14)

where o is the representation of GLy,(C) x GL,(C) on C[My, ,(C)] given by o(a,a)p(n) =
p(a~na), and n.(w) = w1t + we.

The proof is similar to the proof of modularity for the classical theta function and
is proved by an application of Poisson summation. ©(£,7) takes values in an infinite
dimensional vector space C[M,,,(C)]*. We have that C[M,, ,(C)] = @, ( ,Sm))* ® Y
where V,E") is an irreducible representation of GL,,(C), and V,(.;m) is the corresponding rep-

resentation of GL,,(C). We can then take projections in C[M,,,,(C)]* to obtain functions
O DxH-VW"e (V,S”))*. These functions satisfy:

0" (7€,9'T) = |det j~ (7. )" (+"™ (7 (,€))) ® (") (j (7, 7)) ©"(&,7)

In chapters 4 and 5 we will pair ©%(£,7) with a modular form f(7) of weight &, to
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obtain a function invariant under I'V in 7 which we will denote by (f,©)(&, 7), given by the
natural pairing between V,, and V. We will then define the theta lift of f to be:

dxdy

—_— 1.5
det yn-I—l ( )

)= [ (1.0
I"\H

(see Definitions 4.1.1, 4.2.3, and 5.1.1 for the precise definitions in context). The function
®;(¢) is an example of a modular form on D of weight p, = |det|” ® ™ and we will
endeavor to find explicit formulas for it, in particular for its Fourier coefficients. We identify
the underlying space V,, that ®; takes values in with Homgy, c)(Vs, C[Mpm »(C)])*, and
will often express formulas for ®; in terms of its evaluation on a P : V,, — C[M,, ,(C)].
Given a P € Homgy, () (Vk; C[Mp 1, (C)]) we have P(f7)) € C[M,;, »(C)], and we have:

Ds(&;P) = / Z P(f(1)) (s (w))em tr X waw) g=m rY (ww)r qot =11 gy
T\H e My o (2)

~Y

When n = 1 or & is a scalar representation we have that Homgy,, c)(Vie, C[Mm n(C)]) =
C[Mp, »(C)]", the k isotypic component of C[M,, ,,(C)], and we will write p for a polynomial
in place of P. In this case we have simply that P(f(7))(n) = f(7)p(n)

In Chapter 4 we will consider theta lifts of modular forms from SL2(R) (n = 1). We
will do this for both cusp forms and for weakly holomorphic modular forms, where we allow
for a pole at the cusp. The latter will require a regularized integral in equation 1.5, and
we follow [1] for this (see Definition 4.2.3). We will define functions 71 (&, w), m2(&,w) € Hi
that depend on a £ € D and a w € My, 2(R) of rank 2. For such w = (wy, wz) we will also
define (&, w) = 12(&, w)wy + ws.

Theorem 1.0.3 (Theorem 4.1.16). Suppose that f is a Hecke cusp form of weight . Then
for p € C[C™]* we have:

Qr(&5p) =2 Z e riSoX g p(n(Y, wo))yi (Y, wo)_le_%“yl(y’wo)f(TQ(K wo)) (1.6)
50651

u>0
where St is the set of primitive rank 2 matrices in Skew,,(Z), and for So € S', wg €
My, 2(Z) is such that (wg, wo) = So, and we have written (Y, wo), etc. in place of 2(&,wo),
etc to emphasize that those terms depend only on the Y wariable of £, and y1 (Y, wp) for the
imaginary part of 71 (Y, wp).

The expression in the theorem above hints at a relationship between the lift to O(m, m)
and the lift to O(2,2). We can express this more precisely with a general theorem that will
hold for lifts of cusp forms from any Sp, (R), which states roughly that the lift to O(m,m)
for m > 2n is “comes from” by the lift to O(2n,2n). More precisely:
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Theorem 1.0.4 (Theorems 4.1.17 and 5.2.1). Suppose that f is a cusp form on H,, of weight
K, and write <I>§cm) for the lift to O(m,m) (1.5). If m < 2n, then CIJSCm) is identically 0. For
_ — GLoy (Z

m > 2n, denote by Pon(Z) C GLy(Z) the subgroup Pa,(Z) = 2n(Z)

* GLm72n(Z)

For ¢ € Dy, denote by []m2n € Doy the matriz obtained by taking the top left 2n x 2n
minor of & We will write V,(,T) for the domain of <I>§cm). We will also define a certain
map [—|m2n : V(in) — V,ET) (this map is essentially the dual to the map C[M,, ,(C)] —
C[M2p,n(C)] obtained by setting the bottom m — 2n rows to 0). Then we have

oM (e) = 3 pr (L)@ P ([AE Al 20)]m.2m (1.7)
AEP2, (Z)\GLm (Z)

We will then describe what ®¢(£) is on Dy in terms of the exceptional isomorphism
Dy = Hq x Hi. As we described earlier we have a way of going from ®¢, a modular form

on Dy, to Ff, a modular form on H; x Hi. This function Fy is given by:

Theorem 1.0.5 (Theorem 4.1.18 ). When f(7) is a Hecke eigenform, we that the Theta
lift of f to Hy1 x Hyp is
Fy(m,m2) = f(1)f(72)

The main computations involve a two step unfolding process. From its definition (1.5),
® ¢ is immediately expressible as a sum over w € M,, o(Z) of integrals over a fundamental
region. The first step is to group these w according to right SLo(Z) orbits, which has the
effect of enlarging the domain of integration (Lemma 4.1.3). Due to f being a cusp form
all terms except those corresponding to w of rank 2 integrate to 0. We then obtain that
each Fourier coefficient is expressible as a finite sum of integrals over 7. This finite sum
can then be grouped together for the effect of acting on f by a Hecke operator (Lemma
4.1.13). Ultimately the result is to condense many integrals into a single integral which is
evaluated. This process is mirrored in chapter 5 where we examine lifts of cusp forms from
Spn(R) to O(m,m).

In the second part of Chapter 4 we handle the lifts of weakly holomorphic modular
forms. These are modular functions on H; that are allowed to have a pole at the cusp,
while otherwise being holomorphic on the interior of H;. In this case the integral defining
® s does not converge, so we follow the regularization procedure used in [1] to define the theta
lift ®; (Definition 4.2.3). These give modular forms on D,, with singularities along sub-
manifolds D), corresponding to positive length vectors A € Z™™, such that a_(, »)/2 # 0 in
the Fourier expansion of f, (Theorem 4.2.5). In this case the unfolding method gives two
classes of orbits corresponding to w € M, 2(Z) of rank 1 and 2, and we will separate their
sums to define ®;; and ® o with &y = &1 + P 5. The function Py is the constant term
of the Fourier expansion of ®. For z € C with Re(z) large and Y € Sym;,(R), we define
Epstein zeta functions (Definition 4.2.13):
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(=Yip) = Y (ti’% (18)
weZm\{0}

In Lemma 4.2.14 we follow the same steps as [2] (Theorem 3 of §1.5) to prove a meromorphic
continuation and functional equation for these functions without the assumption that p is
Y -spherical. This was likely known but was not written down due to being unwieldy, but
it is necessary for us to input arbitrary polynomials into these Zeta functions. These zeta

functions are used to express @y ;.
We then examine the rank 2 pieces, ®;o. We show that on a region of D where the
minimal eigenvalue of Y is bounded below by some number depending on f that ®, defines

a real analytic function of £&. On that region we have:

Theorem 1.0.6 (Theorem 4.2.26). Suppose that the weakly holomorphic modular form f

2minT

has the Fourier expansion f(T) =) ane . The on a region of the form

n>—ng
R={e€D: "uYu>Cy for all u € Z\{0}}

(where Cy is some positive constant depending on f), the reqularized lift @y : D — V,,
(4.2.3) has the Fourier expansion:

1
©s(&5p) = a0—¢(L,Y3p)
%
+2 Z ewiutr XSOp(’I’](Y, wO))yl (YV, w0)6727r,uy1 (Yywo) Z cu7n627rin72(5,50)

SpeS!t n=-—0o
u>0

where ((1,Y;p) is the Epstein zeta function (where we take the constant term at z =1 in
case m =2 and ((z,Y;p) has a pole at z = 1), and c,,,, are some coefficients given as finite
sums of the coefficients of f.

Under the correspondence for modular forms on Dy and H; x H; these together give

what Borcherds calls the Singular Shimura Correspondence in Chapter 14 of [1].

Theorem 1.0.7 (Theorem 4.2.27). When f is a weakly holomorphic modular form, the
Singular Shimura Correspondence to O(2,2) is:

k— 1) (K . .
Ff(Tla 7_2) — aO( 7;’{73-’5( )EH(TQ) + 2/€+1 E : Cm7n€27”n7—162mm7-2 (19)
m>0
n>—ng

where ¢, n, are some coefficients defined in terms of the coefficients of f, and Ey; is the weight
k holomorphic Eisenstein series. This is a modular form of weight (k, k) on Hi x H1, with
singularities that are poles of weight k along the divisors 71 = 1o for v € Ma(Z) with

dety =mn > 0 and the —n Fourier coefficient of f non-zero.
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This theorem exists implicitly in [1], however it is not given explicitly for the correspon-
dence to O(2,2), and we come about this formula in a different way.

In Chapter 5 we will pair the theta functions with Siegel cusp forms, where we will
be able to lift arbitrary holomorphic Siegel cusp forms, including the more exotic vector
valued ones where V, is not a one dimensional representation of GL,(C). To calculate the
Fourier coefficients ag(Y") of ®¢, we follow a similar two step unfolding procedure as in the
previous chapter. First we show that all orbits except for those with rank w = 2n integrate
to 0 in Lemmas 5.1.7 and 5.1.9. This is crucial in the proof of Theorem 1.0.4 and in the
calculation of the Fourier coefficients for the lift to O(2n,2n), which are then obtained by
the sum of a finite number of integrals over H,,. The modularity of ®; implies relationships

between the Fourier coefficients, and so it is sufficient to calculate ap(Y) = a;p)(Y),

D
where J(D) = D for D diagonal and integral. For Dy = diag(dy,...,dy-1,1),

with dp,—1]...|d1, we define:
®f,D, &) = Z eWitrdJ(DO)XadDo (Y), (1.10)
d=1

and then we have another expression for ®:

&)= > pa(A)o7. D, (E[A])

Do AeGL2n(Z)/Spn(Z;Dy)

Where Dy ranges over matrices as given above, and

Spn(Z; Do) = {v € GLan(Z) : J(Do)['v] = J(Do)}

The second step of the unfolding procedure involves grouping all of the integrals giving
ap(Y') for the effect of acting on f by a Hecke operator. We define a particular integral
I(Y; f; P)

103 f5P) = [ PUE) ()™ D dety oy

We have that a1 (Y; P) = 21(Y; f; P), and more generally:

Lemma 1.0.8 (Lemma 5.3.4).
ap(Y; P) :2M(D)”(”“)/QI<T(D)f; 1(D)Ypr: PD/) (1.11)

where T'(D) is the Hecke operator associated to the matrix D (Definition 3.2.7), and Yp,
and Pp, are some slightly modified versions of Y and P depending on Dy. When D = dI,,
is a scalar matrix these are simply the usual degree d Hecke operators, and when f is a

Hecke eigenform the Hecke eigenvalues of f will appear in this way.
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When n = 2 we are able to completely evaluate I(Y; f; P) to obtain explicit formulas
for ap(Y). The key integration is performed in Lemma 5.3.9. Despite being significantly
more complicated than the main integration in chapter 4 in Lemma 4.1.12, it follows a
similar path. In this case matrix argument K-Bessel functions come up, and again there is
a useful special form for Kg)z(z) due to Herz [3]. Tt is also a key feature here that the N
that appears as the summation index for the modular form f(7) =5y a NeZTNT appears
linearly inside an exponential in the final formula, allowing for us to deal with polynomial
factor cleanly 5.3.12. The integration involved in the lift from n = 2 is similar in many key
aspects to the lift from n = 1, which leads to hope that the pattern can be extended to
n > 2. Unfortunately we are not yet able to work out the integral when n > 2, stopping

further progress in calculating the Fourier coefficients for n > 2.

Theorem 1.0.9 (Theorem 5.3.13). Suppose that f scalar is a Hecke eigenform of genus 2
with Hecke eigenvalues T'(d)f = X(d)f. Then:

o= 2mdtr [M(Y))|

EY;p)f(r(Y))

where T(Y') and M(Y') are certain Ho and Ma(R) valued functions of Y (Definition 5.5.7),
and E(Y;p) is a function given by evaluating the polynomial p at a matriz n(Y') depending
on'Y (Definition 5.3.11).

The functions ¢¢ p, (&) have a relationship to the Spin L-function of f.

Theorem 1.0.10 (Theorem 5.3.19). ForY and p fived, consider t3¢r,(tY;p) as a function
of t € Ryq. Its Mellin transform with respect to t is

e — _LTOED) D(s)L(s; /;spin)
MUEoR YD) = 3o a1 (v)] e )] 2s — 2w 1 3)

(1.12)

Where L(s, f; Spin) is the Spin L-function of f.

We hope that deeper investigation of the Hecke operators T'(D) for Dy not equal to I
can reveal similar formulas for ¢ p,, possibly involving other L-functions of f.

This work takes place within the wider context of the Theta correspondence where
extensive work has been done for a few decades at least. This thesis distinguishes itself
from the existing work by its focus on obtaining explicit formulas for the functions obtained
via the theta lift. In the literature most work is framed in terms of the representation
theoretic aspect of the correspondence. Given a holomorphic cuspidal Hecke eigenform, f,
on H,, this determines in a standard way a cuspidal automorphic representation of Sp, (A),
m¢. This representation factors as 7y = ®p§00 7fp- The Archimedean place, 7y is a
discrete series representation determined by the weight of f, and the p-adic factors are
spherical representations whose Satake parameters are related to the Hecke eigenvalues of

f. The corresponding representation, 6(7¢) of O, (A) under the Theta correspondence is
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then determined as the product of local correspondences: 0(7f) = @ O(mysp). It long

<oo
understood how these correspondences go, see for example [1] for p = oz_and [5] for p < oo.
This does not shed light on what sort of functions actually live inside of 6(7), however.
This thesis hopes to shed light on an answer at least when n =1 and n = 2.

It should also be noted that the vanishing of the lift to O(m, m) for m < 2n (part of
theorem 1.0.4) is known due to the vanishing of the lift of the holomorphic discrete series

from Sp,(R) to O(m,m) with m < 2n.



Chapter 2

Symplectic and Orthogonal Groups

2.1 Orthogonal Groups

0
Denote by Q = (1

symmetric bilinear form given by Q which we will denote by (v,v") = tvQu. We will usually

1
m), and V the vector space R?™ (written as column vectors) with

v
write elements v € V as [ |, so that (v,v/) = toyvl + togv]. We will also write R™™ to
U2

denote the same space. Define the group G by:

G=0(m,m) = {g = (Z Z) € GLan(R) : Q[g] = Q} (2.1)

the group of orthogonal transformations preserving the bilinear form on V. We will think
of G as acting on vectors in V' on the left. We mention this in contrast to later when we
will define Sp,(R) that will be thought of as acting on row vectors on the right. We will

define P to be the maximal parabolic subgroup stabilizing the maximal isotropic subspace

Im
spanned by the columns of ( ) ) . P has a Levi decomposition P = NM with:

M = {m(a) = (a . _1> tae GLm(R)}7
“ (2.2)
N = {n(ﬁ) = (1 f) : B e Skewm(R)}

Where Skew,,(R) denotes the set of skew symmetric matrices with entries in R. We also

define the maximal compact subgroup:

U (ke + ke ke — ke
K = _)== : _ ) 2.
{(k-i-:k ) 2 <k+ ke k‘+ + k‘) k-‘ra ke O(m)} ( 3)

15
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We have K = KT x K~ where K% is the subgroup with k+ = 1, with both factors isomorphic
to O(m). We define K® C K as the subgroup with k* = k~, and we have K» = K N M.

Definition 2.1.1 (The Symmetric Space D,,). Define Dy, to be:
Dp={=X+Y € My(R): X € Skew,,(R), Y € Sym, (R)} (2.4)
Where Sym! (R) denotes the set of positive definite symmetric matrices. For & € Dy, write:
F=X+Y

We will write D without the subscript if we are not worried about ambiguity.

Lemma 2.1.2. Points & € D correspond to pairs (VJ,V{) where Vgi are mazimal £-
definite subspaces of V', are mutually perpendicular, and we have that V = V;r & V{ s an
orthogonal decomposition of V. The space VgjE s given by:

+ ¢
Ve~ = colspan ) (2.5)

Proof. Suppose first that we have a maximal positive definite subspace of V. Choose some
v

basis of that space and write it as the columns of the matrix ( 1). Consider now the
V2

/

1) — vh. Its kernel is spanned
/

v
linear (but not orthogonal) projection V' — R™ given by (
2

1
by the columns of (gn , which is isotropic. Thus the kernel of this map and our positive

definite subspace must intersect only trivially, so that we conclude that the projection is

-1
L - . v\ _ vV
surjective, and so vg is invertible. Then the columns of Uy - 12 also span the
V2

same maximal positive definite subspace, as they are an invertible linear combination of the

original columns. Thus we have seen that any maximal positive definite subspace can be
given as the column span of a matrix of the form ¢ for some & € M,,(R).

Now we will consider which such £ = X +Y with X € Skew,,(R) and Y € Sym,,(R) may

appear. As the space is maximal positive definite, the matrix of bilinear products between

the basis vectors must be a positive definite matrix. This product is ((f) , (f)) =

€ +'¢ = 2Y. Thus the condition is that Y must be positive definite, i.e. ¥ € Sym} (R).
Likewise the columns span of any matrix of the form f will be a maximal positive definite

subspace so long as Y > 0, and this subspace will be uniquely specified by &.

Thus suppose we have some maximal positive definite subspace V;r specified. Denote
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by V,c._ its perpendicular, which will be a maximal negative definite subspace. We can see

+ — —
that <<€1 ) , (61 >> =1t ¢ =0, so that Ve~ is spanned by the columns of (51 ) O

From the interpretation of D given in the previous lemma, D inherits an action of G via

the action of G on subspaces of V.

Lemma 2.1.3. The action of G on D is given by:

<“C‘ Z) € = (a€ +b)(cE +d)! (2.6)

Proof. From the previous lemma we write Vgr = colspan (f) Then we have:

(a b) < (g)) <a§ + b) ((ag +b)(cE + d)—1>
colspan = colspan = colspan
c d 1 cE+d 1

O
We will record the action of some particular elements of G on D:
m(a) - € = af'a = ¢['a]
n(B)-€ =€+ (2.7)
Q-¢=¢7!
and also
K =stab ¢(1) (2.8)

Define a subgroup By g C GLp,(R) as:

Byp ={a € GL,(R) : « is lower triangular with positive diagonal entries} (2.9)
And define a subgroup By C P:
By = {n(f)m(c) : B € Skew,(R), o € By} (2.10)

We have that By N K = {1}, and G = ByK, so that every g € G can be uniquely written
as g = bk with b € By, k € K. We also obtain an identification of By with D:

Definition 2.1.4 (g¢). For{ = X+Y € D, let a be the unique a € By such that a'a =Y.
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(6

The group G has 4 connected components, corresponding to the connected components
of K, with mo(G) = {£1}2. The map sending g € G to the element of 7o(G) corresponding

Then define:

s0 that we have g¢ -1 = ¢&.

to its connected component is given by my(g) = (det k4, det k_) for g = bk with b € By and
k e K. We will write Go = SOg(m,m) for the connected component of the identity. For
m(a) € M, we have myp(m(a)) = (sgndet o, sgn det «), and we have m(Q) = (1, (—1)™).
We define I' C G to be the subgroup of integral matrices:
' = GLop(Z) N O(m,m). (2.12)

Equivalently, T is the stabilizer of the lattice Z*™ C R?™. Define subgroups of I': Pr = I'NP,
Mr=TNM,and Nr =T'N N, so that:

My = {(O‘ t _1> : aeGLm(Z)}
Nr = {(1 f) VNS Skewm(Z)}

and Pr = NpMr. We will also define some elements related to the Weyl group of G. For

(2.13)

I C{1,...,m}, define 17 to be the m x m matrix:

1 ¢=j,andiel
(1r)ij =
0 otherwise

This is an m X m identity matrix with diagonal entries whose indices are in I replaced by
0. Let I ={1,...,m} — I. Define Q; € O(m,m) by:

17 1,
= 2.14
Qr (11 1}) (2.14)
When I = () have Q; = 1, and when I = {1,...,m} we have Q; = Q. We have 7y(Q) =
(1, (=1)").

Lemma 2.1.5. T" is generated by the subgroups Mt and Nr, and the elements Q7. More
specifically T is generated by the subgroups My, Ny, and the element Qr with I = {1}.

b
Proof. Suppose that we have (a J € I 'We may multiply on the left and right by
c

elements of Mt so that w.l.o.g. we may assume that c¢ is in Smith normal form, so that the
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matrix is:
air aiz b bio
a1 azz bay oo
D 0 dip di2
0 0 do do
with D = diag(ey,...,¢r) with ¢|...|c1, each positive and non-zero. As this matrix is in

O(m,m), we may infer that a1; = a12 = b12 = 0, and Dby; = 1,.. Thus we have that D = 1,

as b1 and D are integral. Thus the matrix is:

0 0 1 0

a2 az bz b
1 0 din dio

after which left multiplication by Q; with I = {1,...,r} puts it in Mp. Finally to show
that just @y is sufficient, if o is a permutation of {1,...,m} we will identify it with its
m X m permutation matrix. Then we have that conjugating Q; by m(o) gives Q7. Thus
from @1y and these permutation matrices we can obtain all other ¢); with I a singleton.
Finally we have that Q;Q = Qrap where here we use IAI' for the symmetric difference
of I and I’, so that we can obtain any Q;. O

2.1.1 Factors of Automorphy and Majorized Inner Products

Definition 2.1.6 (Factors of Automorphy for the action of G on D valued in GL,,(R)).

b
For g = (a d> € G and £ € D, define:
c

7(g.8) =T +d (2.15)

(recall €& = X £Y).

Remark 2.1.7. These functions j5(g,&) are analogous to the standard factor of automor-
phy (and its complex conjugate) for the action of Sp,(R) on H,,, the Siegel upper half space,

which we will review in the next section.

Lemma 2.1.8. j*(g,£) are factors of automorphy for the action of G on D. That is we

have:
7*(99',€) = i (9.9 (d, €) (2.16)

+
Proof. Consider the action of a g € G on the matrix <§1 ) . We have that

&t aft +b O\ .
g ( 1) = <c§i+d> = <(gl) )Ji(%f)-
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It follows that we have:

/ + ! +
(((ggf&) ) Hag ) = ((9(915)) ) 0.4 ()

¢\t
and so (2.16) follows as ((gglf) ) is full rank. O

We will record some special values for j¥(g, &) below:

Lemma 2.1.9. Suppose that k = (k+,k_) € K, m(a) € M fora € GL,(R), andn(B) € N
for B € Skew,,,(R). Then:

5 (k1) =
m(a),§
5 (n(B):€
§

)

) =
(2.17)

) =

75(Q,8) =

(éi)

Remark 2.1.10. We can ask as well what component of GLy,(R) these automorphy factors
live in. Recall that mo(GLy(R)) = {£1}, with the map given by my(a) = sgndet . The
maps j& : G x D are continuous, so that we have that wy o j* is constant on the connected
components of G. From the top line of (2.17) we have that (detj*(g,&),det j=(g,€)) =
70(g). We also have a formula for evaluating w(j*(g,&)) directly by evaluating at € = 1,
where we obtain that:

sgndet j£(g, &) = sgndet(d + c) (2.18)

There are a number of natural functions associated to £ € D that have transformation

properties with respect to these j*.

Lemma 2.1.11. The function £ — Y on D transforms as:

Y(9€) =Y (€)[57(9.6) 7] (2.19)

where + should be chosen consistently in this formula. One consequence of this formula is:

| det 57 (g, )| = [det j~(g.6)]. (2.20)

((T ) | (ii )) = £2Y(6).

Proof.
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Thus we have

using that (gv, gv’) = (v,0'). O
We now define some functions from V' to R™ that depend on &.

Definition 2.1.12 (1/2[) For £ € D, define functions ygt V= R™ by:

N o teE B
vg (v) N vl + v = v + (Y — X)vy (2.21)

These functions are the products v with the basis of V£jE we have defined (2.5). They

satisfy a transformation property with respect to G:

vE(g™ ) = 559, vk (v) (2.22)

Denote by prgIE the orthogonal projection to Vgi. We can express this in terms of Vgcz

+
pri(v) = % (51 ) Y lE(v) (2.23)

Definition 2.1.13 (Majorized Bilinear Form on V). For £ € D, define a positive definite

symmetric bilinear form by:

(v,v’)g = (v,v’)g + (v, U')g (2.24)

where (v,v’)gt are the positive semi-definite bilinear forms defined by:

(v,0')g = £(prg (v), prg (v))) (2.25)
We have that (v,v) = (v, v’)g — (v,v")¢ , so that another way to write (v,v')¢ is

(v,0")e = (v,0) + 2(7},1}’)5

These can be expressed in terms of Vg: as well:

tu?(v)Y_l () (2.26)
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and

(v,v)e = % (tug(v)Y_lug(v) + tyg(v)Y_lz/g (’u))

= t(Ul — XUQ)Y_I(Ul — X’Ug) + t’UQYUQ

(2.27)

These bilinear forms satisfy a transformation property with respect to the action of G:

(670,97 ")e = (0,0)ge. 025)
(670,97 )E = (0,0)%

~

We also extend l/gt and all the products associated to V' to elements in Mo, ,(R) = V",
thought of as row vectors of elements of V. Then for v,v" € V", (v,v"), (v,v)¢, etc. will be
n X n matrices, and 1/2:(1}) will be an m x n matrix. When we do this we have that (2.22),
(2.27), and (2.28) all continue to hold.

We will also define some factors of automorphy for the action of G on D that are valued
in K. These are the standard K valued factors of automorphy for D = G/ K associated to
the Cartan decomposition.

Before considering G and D, first consider the (transitive) action of GL,,(R) on Sym,! (R)
given by A-Y = Y['A]. For each Y there is a unique a(Y) € By g such that a(Y)!a(Y) =Y.
We have that Byo N O(m) = {1} and GL,,(R) = By oO(m) so that any A € GL;,(R) can
be uniquely written as A = oK with a € By and k € O(m). Thus we define:

Definition 2.1.14 (Factor of Automorphy for the action of GL,,(R) on Sym;} (R)). For
A€ GLy(R) and Y € Sym; (R), define k(A,Y) € O(m) by:

Aa(Y) = a(A-Y)k(A,Y) (2.29)

It is straightforward to check that this is a factor of automorphy, i.e. that k(AA"|Y) =
k(A A - Y)E(AY).

In the same way we define a K valued factor of automorphy for the action of G on D:

Definition 2.1.15 (Factor of Automorphy for the action of G on D). For g € G and { € D,
define k(g,§) € K by:
99¢ = 9g6k(9,€) (2.30)

and define k*(g,&) € KT by

k(g,€) = (k™ (g,€), k™ (9,€)) (2.31)

We will record some special values for these factors of automorphy:
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Lemma 2.1.16. Suppose that k = (k4,k-) € K, m(a) € M, n(B) € N, and § € D. Then:

k(k,1) =k
k5 (k1) = ka
k(m(),€)) = (k(a,Y), k(e Y))
k(n(B), &) =1

We also have a way to relate the two pairs of factors of automorphy that we have defined

for the action of G on D.

Proposition 2.1.17. The factors of automorphy j*(g,&) and k*(g,€) have the following

relationship with each other:

(g€ (9,€) = k= (g,€) "a(§) (2.32)

Proof. We have that:

75(9.€) = 75(g.9¢ - 1)

= j5(99¢,1)§F (ge, 1)

% (gg¢. 1) (k(g,€),1)5 (ge, 1) "

From (2.17) we have that this is ‘a(g€)'k* (g, &) ta(€), which gives the result. O

2.2 Symplectic Groups

0 1
Denote by J = ( ;) and by W the vector space isomorphic to R?”, written as
—in

row vectors, with the alternating form (w,w’) = wJ*w’. We will write elements of W as
w = (wy,ws), and then (w,w’) = wy 'wh — we 'w). Write G’ to be the group of symplectic

linear transformations of this space:

G' = Spn(R) = {g = (Z Z) € GLQTL(R) : J[g] = J}

which acts on W on the right. Define P’ to be the Siegel parabolic subgroup, the maximal

* ok
parabolic subgroup consisting of elements of the form . We will define M’ and N’
*
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M = {m(a) - ((l tal) pa € GLn(R)}
N = {n(b) = (1 l;) :be Symn(R)}

so that P" = N'M’. Let K’ be the maximal compact subgroup given by elements of the

o {(3 o

Let H,, be the genus n Siegel upper half space:

to be its subgroups:

form:

Hy,={r=z+1iy: x € Sym,(R), y € Sym:{(]R)}

We will drop the subscript n unless we feel it necessary to avoid ambiguity. The group G’

acts on H via:

(‘C” Z) -7 = (ar + b)(er + d)~! (2.33)

The subgroup K’ is the stabilizer of il,, € H. The action has a factor of automorphy valued
in GL,(C) given by:
jlg,7)=cr+d (2.34)

The factor of automorphy gives an isomorphism K’ 2 U(n), the group of unitary matrices

in GL,(C), via j(—,il,):
a b
. L) = a—ib

Definition 2.2.1 (g,). For 7 =z +iy € H, let a be the unique element of By such that

ala =y. Then define:
1 =z a

Define Bj, to be the subgroup of P’ consisting of elements n(b)m(a) for a € By. The
elements g, defined above give an identification between H and Bj. We note that this
allows to a way to define a factor of automorphy for the action of G’ on H valued in K’ by
997 = 9grk(g, 7).

Using 7 € ‘H,, we can define an identification between W and C" as follows:

Definition 2.2.2 (n,(w) and 77,.(w)). For w = (w1, ws) € W and T € H, define:

Nr(w) = wiT + wa, 7 (w) = —wiT + wo (2.36)
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These functions satisfy transformation properties with respect to G’

nT(wg) = ngT(w)j(gv T)v ﬁr(wg) = ﬁgT(w)j(gv T) (237)

For 7 € H, we also define an element in J, € G":

Jr =g Jg7"! (2.38)

We have gJ,g~ ! = Jgr. The element J. gives a complex structure on W as J? = —1, and

is compatible with the above identifications of W with C™:

ne(wlr) = (=i)n(w), 7 (wly) = i, (w) (2.39)

They can also be used to form a positive definite inner product on W.

Definition 2.2.3 (Positive Definite Product on W). For t € H, define the positive definite
product:
(w, '), := (w,w'J;) = wg, ‘g, 'w (2.40)

If w = (wy,ws), then we have:
(w,w); = w1y ‘wy + (wiz + wo)y L (wiz + wo)

This product has a transformation property given by:

(wg,w'g)r = (w, ) (2.41)

We will also use 7, and the products (w,w’) and (w,w’); to denote similar things on
W™ = M, 2n(R), thought of as column vectors of m elements in W, so that n,(w) will be

an m x n complex matrix, and (w,w’) and (w,w’), are m x m matrices. Then we have:

e (w)y ™! T (w) = (w, w) + i(w, w)-

where (w,w) will be a skew symmetric matrix, and (w,w), a positive semi-definite matrix.

We will also make use of the group GSp,(R):

GSpn(R) = {g = (Z Z) € GLan(R) : J[g] = M(Q)J}

for a homomorphism p : GSp,(R) — R* called the similitude of g. We will write GSp;} (R)
for the subgroup with u(g) > 0. GSp;(R) contains G' = Sp,(R) as the subgroup of
elements with p(g) = 1. GSp;f (R) acts on H via the same formula as (2.33), and has the
same factor of automorphy as in (2.34). Formulas (2.37) and (2.38) also hold, and we have:
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(wg,w'g) = p(g)(w,w’),  (wg,w'g); = p(g)(w,w)y

2.3 Exceptional Isomorphism SLy(R) x11 SLy(R) = SOy(2,2)

Define two embeddings ¢, 2 : SL2(R) — O(2,2) by:

These two embeddings commute, and so define a map SLy(R) x SL2(R) to O(2,2). The
kernel of this map is {(1,1),(—1,—1)}. Define SLy(R) x41 SLa(R) to be the quotient
of SLy(R) x SLy(R) by this subgroup, so that ¢ = ¢; X 1o defines an isomorphism of
SLy(R) x41 SLa(R) onto its image, which is SOp(2,2). The maximal compact subgroup
SO(2) x41 SO(2) is carried into K, so that ¢; X 12 descends to a map H; X Hi = Dy. The

map can be described explicitly:

E(r1,m) = X(1) + Y(r1,72) = —21J +y1 93,1 g,}

x1 Yo \—xy x34y3)’ (2.42)

Y] VdetY
(11(6), 72()) = | —X12 + iVdet Y, — =22 4+ ©
Y Y
Furthermore, we have:
11(gr )t2(9ry) = 9e(r1,m2) (2.43)

it will also be worthwhile to record a(7y, 72), the unique lower triangular matrix with positive

diagonal entries so that a(r, 7)) a(r, ) = Y (11, 7):
t 1 n 1
a1, 72) = Y1 '9r =4/ (244)
Y2 \—x2 ¥y

The isomorphism can be described in another way. Consider the vector space Ma(R)

with the bilinear form defined by polarizing (v,v) = 2detw. Then if we write v =
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v v
( 1 12) , we have det v = v11v21 +v12U20, giving an isometry with V' = R%2, SLy(R) x
—v22 V21

SLy(R) acts on My(R) by (g1, 92)v = g1vgy *, which is identified with the embeddings ¢1, t2
under the isometry. From this it is clear that the isomorphism takes SLa(Z) X411 SLa(Z)
into SOy(2,2) NT.

As mentioned the image of SLa(R) X1 SLa(R) is only the connected component of the
identity of O(2,2), and it it worth recording how the other connected components of O(2, 2)
act on H1 x Hy. Write e € O(2) for the element:

()

We have the elements (e, ¢€), (¢,1) € K in the (—1,—1) and (—1,1) components of G, re-

spectively, and their action in terms of 7 is given by:

(€,€) - &(T1,72) = (=71, —T2)

(2.45)
(6,1)-&(1,72) = &(72, 1)

As mentioned above, the maximal compact subgroup SO(2) x411 SO(2) C SLa(R) x4
SLy(R) is mapped isomorphically onto Ky = SO(2) x SO(2) C SOy(2,2). Writing an

element of SO(2) as:
cosf sinf
ko =
—sinf@ cos6
we have that:

[’(keu k92) = <k9276’17 k91+92) (246)

There are potentially 3 different choices of factors of automorphy that could apply. First
there is the standard factor of automorphy on H; x H; for the action of SLy(R) x SLa2(R)

d
valued in K = O(2) x O(2) for the action of O(2,2) on Dy, and the factors j& valued in

GLy(R).
To begin with, given the standard factor of automorphy on H; for the action of SLs(R),
we can construct a U(1) = SO(2) valued factor by:

a b
given by j ( ( ) , T> = c¢7+d in each factor. Then there is also the factor of automorphy
c

_ Jg:7)
(9,7l

We will fix an isomorphism between U(1) and SO(2) such that ¥ is identified with kg. We
will write k(e??) = kg for one direction and x(kg) = € for the other. Recall that we have

x(9,7)
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997 = 9gk(g,7) for some k(g,7) € SO(2). This is given specifically by:

j(g,7) )

99+ = ggrk ( .
T\ i(g, 7))

and matrix k ( i9:7) ) is equal to:

7(g,7)]
(j(977)> 1 cx+d cy
k| = = —
17(g,7) i@, DI\ —cy cx+d

We can thus describe the relationship between k& on Dy and (ji,j2) on Hi x Hi, in the

following:

Lemma 2.3.1. for (g1,92) € SLa(R) X411 SLa(R) and (11,m2) € H1 X H1, we have:
k((91,92),€(11,72))
_ k(j(91771)>k<j(g277-2)>_1 k<j(glv7-1)>_1<j(9277-2) >_1
17 (g1, 71| i(g2, )1/ 7 \li(g1, )l 17 (g2, T2)|
Proof. As we have ¢ restricts to an isomorphism between the maximal compact subgroups

and we have equation 2.43, we have:

(915 92)Ge(r1,m2) = Ge(gim1,g0m2) K ({91, 92), (71, T2))

on one hand, and

; -1 . -1
J\91, T I g2, T
L(gl’QQ)gg(TlvTZ) - [’(9197'1792972> = L(9917179927'2)L (k <’(11)‘> o <‘(22)> )

j(g1,m) j(g2,72)|

on the other. Thus we have

_ jlgr,m) \ 7 jlgz,m) \ 7
ol ge) ) = (’“ (Gom) +(Gea) )

and the result follows from equation 2.46. O

We can also express the factors of automorphy j*, and we have:

7 (g1, 92), €(11, 7)) = (1 (x1 £ Y1 gems) + d1) g2

If we examine the first part (¢1 (21 £ y1Jgyr ) + di), this is an element of GLy(R), and
if we identify R? with C via the complex structure given by Jgym, this is multiplication
by c171 + dy or ¢;71 + di, depending on whether & = + or —, respectively. Thus we can
think of the factors of automorphy j* as the usual factor of automorphy for the first #;

(or it’s complex conjugate), with the complex structure modified by the second Hi, up to
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this factor go on the right.
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Chapter 3

Modular Forms

3.1 Modular Forms on SLy(R)

Definition 3.1.1 (Modular Forms on #H;). We will say that a function f : H — C is
modular of weight k € Z if it satisfies:

fOyr) =3(y, 7)) f(7). (3.1)

for ally € I"' = SLy(Z). If f is holomorphic on Hy, then it has a Fourier expansion of the

form:

f(T) _ ZaneQﬂ'inT

We will say that f is a holomorphic modular form if we have a, = 0 for alln < 0, a
cusp form if further a, = 0, and a weakly holomorphic modular form if there is an ng > 0
so that a_p, # 0 and a, = 0 for all n < —ng. In this case we will say that the weakly

holomorphic modular form has a pole of order ny at co.

If f is holomorphic on H, We will denote by S, (I") the space of cusp forms of weight
for T', and M.(I") the space of weakly holomorphic modular forms for I'. Note that S, (T")
is always finite dimensional, while M} (T") is infinite dimensional, but has a filtration by
finite dimensional subspaces given by bounding the order of the pole at the cusp. Denote
by My(Z) = {y € Ma(Z) : dety = p}, and My (Z) = Ma(Z) N GLy (R){y € M>(Z) :
dety > 0}. For g € GL] (R), define the slash operator:

Fl5(r) = (det g)* (g, )" f(g7) (3.2)

We have that f|§ = f for all v € I, For pu € Z~g, define the Hecke operators on H; to be:

Tw= Y, fl5n) (3.3)

YT \M(Z)

30
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These operators are endomorphisms of S, (I"”), and set {T'(u) : p € Zso} is a commuting
set of operators. Sk(I”) has a simultaneous eigenbasis for this action, and we will call an
simultaneous eigenvector for all of the operators T'(u) an eigenform. We will assume that

an eigenform is normalized so that a; = 1. For such a form we have that

T(p)f =auf (34)

so that the coefficients of f coincide with the eigenvalues of the Hecke operators.

3.2 Siegel Modular Forms

Definition 3.2.1 (Siegel Modular Form). Suppose that (Vy, k) is a holomorphic represen-
tation of GL,(C). We will say that a function f : H, — Vi is modular of weight k and
level T = Spy(Z) if we have:

foyr) = kG0, 7)) f(7) (3.5)

for ally € TV and 7 € H,. We say that it is a Siegel modular form if moreover it is
holomorphic. The special case where V,, = C and k is a power of the determinant will be

called a classical Siegel modular form.

For a classical Siegel modular form we will slightly abuse notation and also write k for
the power of the determinant, so that a classical Siegel modular form satisfies the more

familiar equation:

f(yr) = det(er +d)" f(7)

A Siegel modular form has a Fourier series:

fr)y = > aye®™UNT (3.6)

NeSym,, (Z)*
where Sym,,(Z)* is the dual to Sym,,(Z) under the trace form, consisting of symmetric
matrices whose diagonals are integral and whose non-diagonal entries are in %Z. The
coefficients ay € Vi are constant with respect to 7 due to holomorphicity. The Koecher
principle implies that ay = 0 unless N > 0, and we say that f is a cusp form if ay = 0

unless N > 0. We will denote by Sy (I"”) the space of cusp forms of weight . The action of

to—1
a
matrices of the form ( ) for & € GL,(Z) implies relations between the coefficients:
o

rR(Q)an = aanta

The irreducible representations x of GL,,(C) are parameterized by non-increasing sequences

of integers K1 > ... > K,. The representation det” corresponds to the sequence (., ..., k).
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Define the total weight of Kk to be:

d(rk) = Z ki (3.7)

We have that for scalar matrices zI,, € GL,(C) that x(zI,) = 24*),

Remark 3.2.2. There is a positivity condition on the weights k that can occur for a non-

zero cusp form. Namely we have Si(I") = {0} unless r, > 0 (see for example proposition
1 on page 192 of [0]).

3.2.1 Hecke Operators

Definition 3.2.3 (Slash Operator). For A € GSp,(R), and f : H, — V,, define the slash

operator of weight k associated to A to be:
FIA(T) = p(A) =D (j(A, 7)1 f (A7) (3.8)

We will omit k when it is clear from context.

Remark 3.2.4. For a classical Siegel modular form of weight det™ we have that (3.8) is
FIA(r) = p(A) 2 det (A, 7) 7" f(AT)

The slash operator gives a right action of GSp; (R) on the space of functions on H,,,
Le. (flgle, = flg g, for all g1,90 € GSp(R). This action preserves holomorphicity of
/. Suppose that f is modular of weight x with respect to a subgroup I'V C Sp,(R), (i.e.
that it satisfies 3.5 for v € I'). We have first of all that f|, = f, for all v € ', and if
A € GSp!(R), we have that f|4 is modular of weight x for AT AL,

uwm

When A € GSp,(Q) has the form A = for a m € GL,(Q), and f is a

tmfl

Siegel modular form whose Fourier expansion is given in (3.6), then f|4 also has a Fourier

expansion:

f|A(T) _ Iud(/{)fn(nJrl)/Q Z K(tm)au*1 tm—le—l(BZm tr N7

NeptmSym,, (Z)*m

Another special case is:

FIig,, () = r2 70 ()

Define GSpn(Z) = GSpn(Q) N GL2,(Z) and for u € Z,
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GSph(Z) = {g € GSpn(Z) : p(g) = u}
GSpi(Z) ={g € GSpn(Z) : p(g) > 0}

GSpn(Z) is a monoid under multiplication, and we have GSph' (Z)-GSph* (Z) = GSph''*(Z).
I = GSpL(Z) is the set of invertible elements of G:Sp;(Z). It is a standard fact that for a

given p we have:

(3.9)

V

I'\GSp,(2)/T" =

( 3
ai

a, (3.10)
d Doaq,di >0, a;d; = p, al\...\an\dl\...\dn .
1

dn

\ 7

In particular I"\GSph(Z)/T" has finitely many elements. We can consider these double
cosets to be the orbits of I acting on I"\GSp, (Z) on the right. it is another standard fact

that each of these orbits are finite, namely:
gl =| |y, (3.11)
i

where ¢ ranges over some finite index set and g; are representatives for the action of I
on I"\GSp; (Z). We have as well that the representatives of I"\GSp, (Z) may be taken to

be elements of the form
a b
3.12
(0 d) 812)

with a upper triangular, and b is unique modulo Sym,(Z)d. Define 4%, to be the set of

formal Z-linear sums of double cosets:

A = T{T\GSpy (2)/T'} (3.13)

Definition 3.2.5 (Hecke Operators). For g € GSp,}(Z), define T(g) to be the element of
2, given by the double coset T'gT". For u € Z~q, we define:

Ty = Y, Ty (3.14)

gE\GSpn (2) /1"
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We will call T(p) the total Hecke operator of degree .

It is well known that .7, may be given a commutative algebra structure, and it acts on
the space Sk (I"”) by:

) =2 fla(7) (3.15)

where the g; are the representatives in (3.11). In particular, the total Hecke operators act

as:

TWi(r)= Y fy(» (3.16)

geT\GSph (Z)

The action of .77, on S.(I') has a common eigenbasis, and we call a simultaneous
eigenvector for the action of J#, a Hecke eigenform. Unlike when n = 1, the Hecke theory
is more complicated and there is not a straightforward relationship between the coefficients
of f and the eigenvalues of Hecke operators. Given a Hecke eigenform, f, we will define it’s
u-total Hecke eigenvalue to be the A(u) such that:

T(p)f = M) f (3.17)

We will be led to consider some more uncommon spaces of Hecke operators that change
the level of a modular form. Suppose now that I'’ is a finite index subgroup of I'. Denote

by 4, (I",T”) the module of Z linear combinations of double cosets:
AT, T") = Z{T'\GSp;; /T"} (3.18)
As T is finite index, we have as well that:

fg-T" = UF’% (3.19)

for i ranging over some finite index subset and g; representatives of I"\GSp; (Z).

Lemma 3.2.6 (Level Changing Hecke Operators). Suppose that g € GSp;(Z). Define
T(g; T, T") € 7,(T',T") to be I"gI". 5, (Z) defines elements of Hom(S,(I"), Sk(I'")) by:

T(g; T, T")f = Z g, (3.20)

Proof. Tt is quick to verify that T'(g; T, T")f is modular of weight x for I'. For v € I, we
have that « permutes the cosets I'g;, so that:

(T(g;T",T") f)] = Zf|gw = Zf’%gz Zf’gi =T(g; 1", T") f
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where ~; are some elements in I". O

We will be particularly interested in such Hecke operators for certain paramodular sub-
groups we will denote by I'(D'). Given a diagonal matrix D’ with positive integral entries
D' = diag(dy,...,d}) with d;|d;1+1, we define I"(D') to be:

/ -1 /
r’(U):r’m(D 1) G Lo (Z) (D 1) (3.21)

These groups IV(D’) are finite index subgroups of I/, and we can give a concrete description
of them:

b

(D)) = {(“ d) el’: ¢(D)' € M, (Z),D'a(D")! € Mn(Z)} (3.22)
c

Definition 3.2.7 (D-total Hecke operator). Suppose that D is a positive integral diagonal

matriz D = diag(dy, ..., d,) with di11|d;. * For such a D define u(D) = dy. Define the

D-total Hecke operator to be:

T(D)f = > flg (3.23)

ger\aspi?) (z)
w(D)"tgr1DeMy(Z)

922
For a diagonal matrix D as defined above, we will define D’ = y(D)D~!. Then D’ =
diag(1,d,,...,d)) with d;|d;+1. Each D is given uniquely as D = dDy with d = d,, and
Dy = diag(di/d,, ...,1). We have that D" = Dy, so this assignment D — D’ depends only
on Do.

where g = <g11 912> s a representative for F’\GSpﬁf(D) (Z) of the form (3.12).

Lemma 3.2.8. The total Hecke operator T(D) is an element of 7, (I',I"(D")).
Proof. We have (D')~! = yu(D)~!D. Thus we need to show that the set

{(9“ 912> Cgu(D) e Mn(Z)} (3.24)
922

g12
g22

)

!'Note the opposite order to the definition of D’ above. In general we will use the apostrophe (D") when
the condition is increasing divisibility down the diagonal and no apostrophe (D) when the condition is
decreasing divisibility

is right IV(D') stable. Suppose that g = (911 ), and v € IV(D'), so that
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/ /

for some v € GL2,(Z). Let ¢ = (gn g}2> be the representative of the class of gv, so
922

that ¢’ = 4"¢g~ for some " € T'. We have that g1; = ¢7; D’ for an integral matrix g{; by

supposition, so that we have:

—1
g 912\ (9D g2\ (D' , (D' gl g2\ (D

/ =7 v =7 v

922 922 1 1 o2 1

/!
We have that ~" (gn 912> ~' is integral as each matrix in the product is, so that it follows
922
that g7,(D’)~! is integral as well. O

Remark 3.2.9. We note that when D = diag(d, ...,d) is a scalar matriz we have I'(D') =
I so that T(D) = T(d) € 4, is the degree d total Hecke operator (5.14).

We have for f € S, (I), that T(D)f € S.(I'(D')). As we mentioned D" depends only
on Dy, so for Dy = diag(dy,...,d,—1,1) any positive integral diagonal matrix with d;;|d;,
varying d € Z gives a sequence of operators T(dDy) € Hom (S, (I"), Sx(I"(Dj)).

We have that J4,(I",T'(D")) is a right module for ., (I"), with the action given by
precomposition. We will not at this time explore this in detail, however we note that when
ged(u(D), u) = 1 that we have T(D)T(u) = T'(uD).

3.3 Modular Forms on O(m,m)

Definition 3.3.1 (Modular forms on D). Suppose that (V,, p) is an algebraic representation
of GLy,(R). Then we say that a function f: D —V, is modular of weight p if:

D(v8) = p(i~ (7:€)2(¢) (3.25)

for all v € I' = Op,(Z). We we will say moreover that ® is a modular form if it is also

smooth.

Example 3.3.2. The function ®(¢) = detY on D is a modular form of weight | det |2,
i.e. we have ®(v€) = |det j~(7,&)|72®(&) for ally €T, £ € D.

Remark 3.3.3. Earlier we defined two factors of automorphy, j(g,€) on D that are
valued in GL,(R). We can use both of these to define a wider class of functions as modular
forms, namely if p is a representation of G Ly, (R) X GLp,(R) we would instead require that

a function transform as:

D(v8) = p(5T(7,€).5~(7.£)®(&) (3.26)
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We have that |det j7(v,€)| = |det 57 (v,€)| so that if ® is modular of weight p, is it also
automatically modular of weight p® (| det |*®|det | %), where | det |*®|det |~ is understood
to be the GLy,(R) X GLp(R) representation give by (aq, o) — | det aq|®| det aa| 7°.

1S
We have that j¥(n(S),&) = 1 for all n(S) = L) s° that if ® is modular of weight

p, then we have that ®(§) = ®({+.5) for all S € Skew,,(Z). Thus ® has a Fourier expansion
in the X variable. For ¢ = X + Y, we have:

o) = Y M FSau(Y) (3.27)
SeSkew, (Z)
where ag : Sym,! (R) — V, are the Fourier coefficients. Note that the dual of Skew,,(Z) un-
der the trace pairing is %Skewm (Z), which is why there is no factor of 2 in the exponent. The
modularity of ® implies some relations between certain Fourier coefficients. We have that
tAfl
JE(m(ATL€)) = A for m(A) = A) so that applying the modularity condition
with elements of the form m(*A~!) for A € GL,,(Z) implies that ®(([AY]) = p(A)®(€).2

Then we have:

asea (V) = p(A)as(¥[A]) (3.28)

for all A € GL,,(Z). For a diagonal matrix D we will define J(D) to be the skew-symmetric

matrix:

J(D)=|-D (3.29)
0

Definition 3.3.4 (Skew Normal Form). We say that S € Skew,,(Z) is in skew normal form
if S = J(D) for a matriz D = diag(dy,...,d,) with 2r = rank S, and dy,...,d, positive
integers with dy| ... |d;.

We have that GL,,(Z) acts on Skew,,(Z) by A-S = S['A], and we have (for example
from [7], page 57) that each GL,,(Z) orbit on Skew,,(Z) contains exactly one element in

skew normal form.

Definition 3.3.5 (Symplectic Divisors). For S € Skew,,(Z), we say that S has symplectic
divisors D if S = J(D)['A] for some A € GLy,(Z). In this case we write sd(S) = D.

Because of the relations between the Fourier coefficients (3.28), all of the Fourier coef-

ficients are determined by the coefficients for S in skew normal form

If we were to use the notion of modularity in (3.26) then we understand A to be in the diagonally
embedded GLn,(R)
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Definition 3.3.6 (Representative Fourier Coefficients). For D = diag(d, ..., d,) with 2r <
m, and dy,...,d, positive integers with d.|...|d1, we will define the representative Fourier
coefficient ap(Y') to be defined by:

ap(Y) = aJ(D)(Y) (3.30)

Remark 3.3.7 (Modular forms with respect to the factors of automorphy k*). We will
also note that it is possible to alternatively define the notion of a modular form on D in
terms of the factors of automorphy k*(g,&) defined in definition 2.1.15. Let (V5,p) be a
representation of O(m) x O(m). We will say that a smooth function ® : D — V; is modular
with respect to the factors of automorphy k* of weight p if it satisfies

B(v€) = p(kF (7,6, k™ (7,€))B(€) (3.31)

forally € T" and & € D. This is related to the notion of modular with respect to the factors
of automorphy j* in (3.26). Suppose that p is a representation of GLy,(R) x GL,(R), and
define p to be the representation of O(m) x O(m) obtained by restricting p to the subgroup
O(m) x O(m) C GLp(R) X GLy,(R). Suppose that ® : D — V, is a modular form of weight
p. Then define a function d:D— V, by:

B(¢) = p('a())@(€) (3.32)

where 'a(€) is the element of By such that a(€)'a(€) =Y, and is embedded into G Ly, (R) x
GL,,(R) diagonally. Then we have as a consequence of (2.32) that ® is a modular form of
weight p in the sense of (3.81). As we have k*(n(S),&) = 1 we have a Fourier expansion
for D:

D)= > MGy (3.33)

SeSkewnm (Z)

for Fourier coefficients ag : Sym,! (R) — Vs. If ® and ® are related via (8.32), then we have
as(Y) = p(ta(Y))as(Y). We also have relations between the Fourier coefficients similar to
(3.28):

as(Y['A]) = p(k(A,Y))asa (Y) (3.34)

where k(A,Y) € O(m) is embedded diagonally in to O(m) x O(m).

We will make two notes about this idea of obtaining this d from ®. First of all, even
if a@ GL,(R) representation is irreducible, it will usually decompose into many different
O(m) representations, including ones of different irreducible types. Thus one can obtain
many different ® from taking projections onto different O(m) x O(m) sub-representations,
all of which will be modular forms. Functions obtained this way need not have any relations
between them; it could be the case that some of them are identically 0 while others are not.

Second, it is possible to do this process in reverse. Namely if ® is a modular form
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of weight p with respect to the factors of automorphy k*, and p is a representation of
GLp(R) X GLy(R) that restricts to p, then we can define ®(€) = p(*ta(€)™1)®, which will
be modular of weight p with respect to the factors of automorphy j*. This process is not
as straightforward, however, as many GL,,(R) representations can restrict to a given O(m)
representation, so that there is no notion of uniqueness in terms of which G L, (R) we should
lift to.

3.3.1 Modular Forms on O(2,2)

We will now look more closely at modular forms for O(2,2). In this section we will use
the notion of modular on Dy as in (3.31). We have that K = O(2) x O(2), and as O(2)
is closely related to the abelian SO(2), the representation theory of O(2) is significantly
different from that of O(m) for m > 2. The irreducible representations of SO(2) are given

cos@ sind

by V, = C for n € Z, with kg = ( > acting on V, by €™, We will also write

—sinf cosf
Xn for the character x,(kg) = ¢™ of SO(2). We have that O(2) = SO(2) x () where

() |

and ekge = k_y. We will fix a basis vector v,, of V,,, so that kg - v, = xn(kg)vn = e™v,,.
The irreducible representations of O(2) are classified by non-negative integers, n, and we
will write them as V|,,|. When n = 0 the representation Vg is the trivial representation, and
for n > 1, V), decomposes as V_,, © V,, under the restriction to SO(2), with the element e
interchanging the factors: € - vy, = vy,

Now suppose that V, is an irreducible representation of O(2) x O(2) where V, £V, | ®
Vik_| for k4, K_ non-negative integers, and d:Dy — V, is a modular form of weight p on
Dy in the sense of (3.31). We will denote by ‘AI;il,ig the coeflicients of ® when written in

the basis we have fixed:

D=0, (Ve, @V )+D (v, ®V_p J+P_ (Vo @V )+P_ (v, ®V_, ) (3.35)

where we miss out the certain subscripts and terms if k4 or k_ are 0. When v € I'g we
have that k(v,&) € SO(2) x SO(2) and we have:

Dy 1y (76) = Xty (K (7, €)X an_ (K7 (7€) Bty 1, (6). (3.36)

We will describe now how the notion of modular on Dy translates to the notion of

modular on Hq x Hj.

Lemma 3.3.8 (Correspondence between modular forms on Dy and Hj X Hi). Suppose that
<T>(£) is a modular form in the sense of definition 3.531 on Dy of weight p = V)., | @ Vj_|-
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Define k1 = k— — ky and k2 = k4 + k—. Then the function F(11,m) defined by:
F(r,m) =y "0 (6, m)) (3.37)
is modular in the sense of (3.1) with weight (k1,k2), i.€.:

F(yim1,72m2) = j(v1, 1) (v, 2) 2 F(11, T2)

for all (11,72) € H1 X Hy and (y1,72) € SLo(Z) x SLy(Z).
Proof. Suppose that (y1,72) € IV x I, Then we have

. PR - 2 — 2%
F(rim,mam2) = (v, 7)1 i (v, m2) 290 ™ s P8 (€(vim1,7272))

We have that ¢(v1,72) € I'g, so that by lemma 2.3.1 and (3.36), we have

J(y1, 1) )“1 < (2, 72)

|7 (71, 71)] |7 (2, 72)]

S_ _(E(nim1,72m)) = < >H2 S_ _(&(T1, 7))

showing the lemma. O

Remark 3.3.9. In particular when p is trivial with respect to the Ky factor, the F' in the

lemma above will be modular of weight k_ in both variables.

Remark 3.3.10. We can also do lemma 3.5.8 in reverse to explain how to obtain a modular
form for Do from a modular form on Hi xHi. Suppose that k1 and ko are integers with kg >
max(r1,0) and k1 + ke even. Then define Kt = (ko FK1)/2, which will both be non-negative
integers by the hypothesis. Then define <AIS_7_(§) = 31(&)"/ 2y (6) 22 F(11(€), m9(€)), and
obtain the other components in (3.35) via (2.45).

3.4 Symplectic Theta Functions

There is a class of functions on D x H called Siegel theta functions that are simultaneously

modular in both variables. The simplest example of such a function is:

Z det ym/267ritr(v,v):1:ef7r tr(v,v)ey Z emtr((v’v)@LT—(’Uﬂ’)gf?) (338)
UGMzmyn(Z) 'UGMQmYn(Z)

for (§,7) € DxH, where (v,v) is the split bilinear form on V' from Section 2.1, and (v, v)¢ is
the majorized inner product define in Definition 2.1.13. It can be modified by adding some
appropriate choice of polynomial factors to obtain functions that transform with respect to
other weights. We will take a different perspective on these sorts of functions. In particular

we note that in this function 7 appears R-linearly in the exponent, so that the Fourier
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expansion with respect to the = variable of 7 is straightforward. In comparison, the formula
for (v,v)¢ in terms of & is fairly complicated, and as a consequence it is not readily apparent
what the Fourier expansion is with respect to the X variable of &.

We will describe a class of functions that we will call symplectic theta functions. At the

end of this section we will show how to translate between them and Siegel theta functions.

Definition 3.4.1 (Symplectic Theta Functions). Let p(n) € C[My,,(C)] be any polynomial,
and{ = X+Y € D, 7 = z+iy € H. Forw = (wy,w2) € My, 2,(R), define n,(w) = wiT+ws
as in Definition 2.2.2. We define the symplectic theta function:

O )= D py(w))ertrém ey i)
WEMp, 2n (Z)
3.39
= Z p(nT(w))ethW,w)efrrtr Y (w,w) - ( )
WEMp, 2n (Z)

where (w,w), is the majorized symmetric bilinear form on W described in definition 2.2.5.

This defines a function © : Dy, x Hy — C[Mp, n(C)]* given by ©(&,7)(p) = O, 73 p).

When p = 1, we can compare this to the function 3.38. It appears that the variables &
and 7 have switched places, with £ now appearing linearly in the exponent, and 7 appearing
in a complicated formula giving a majorized symmetric bilinear form. First of all we note
that as (w,w) € Skew,(Z), we have that ©(£ + S, 7;p) = ©(&, 7;p) for all S € Skew,(Z).
One of these advantages of these symplectic theta functions is that the Fourier expansion

with respect to the X variable of £ is apparent:

O rp) = Y eS| S g (e e | (3.40)
SeSkew, (Z) WEMpm 20 (Z)
(w,w)=S

We will describe how these symplectic theta functions change under the action of I' x I on
Dy, X Hy. To do so, first we note that the vector space C[M,, ,(C)] carries a representation

of Gy, (C) x GL,(C) by left and right translation, respectively, which we will denote by o

(o(ev,a)p) (n) = pla™"na) (3.41)

This induces a representation of GL,,(C) x GL,(C) on C[M,y, ,(C)]* given by

(0" (2, a)®)(p) = O(o(a,a)~'p) (3.42)
for © € C[Mp(C)]*.

Theorem 3.4.2 (Modularity of Symplectic Theta Functions). Recall the standard factor
of automorphy on H given by j(¢’,7) = 7+ d € GL,(C), and we defined a factor of
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automorphy on D wvalued in GLy,(C) given by j~(g,§) = ¢€~ + d, described in Definition
2.1.6. Then for all (v,7") € T x I and (£, 7) € D x H, we have:

O(1€,7'5p) = |det = (1.6)"O (€, 70 (17(1,€).5(+.7) 'p) (3.43)

or in other words:

O(v&,7'1) = |det j~(v,)[" ™ (17 (7,€),5 (/7)) O(&,7) (3.44)

Remark 3.4.3. The appearance of det j~ (7, &) inside of absolute values may seem some-
what strange. In light of remark 2.1.10, if we restrict to v € T'g = I' N Gy, we can
do away with the absolute values as detj~(v,£) > 0 there. Alternately we may define
€(g) = sgndet(d — ¢) (2.18), and then we have |det j=(7,8)|™ = e(v)*det 7~ (v,&)™. The
character €(y) of I' depends only on the second component of the connected component

homomorphism m : G — mo(G).

Remark 3.4.4. The Fourier coefficients in (3.40) themselves also transform modularly
as functions on H with respect to I, as can be inferred from a slight modification in the
following proof and the fact that (wv',wy') = (w,w). They are not in any sense modular

with respect to I'.

Proof. First we show the transformation property for 7. From (2.37) and (2.41) we have
for v €I and 7 € H:

't (w) =Nr (w,}/)] (’7/7 T)_l
Nyre (W) (Im A7) ™ 7 (w) = (wy )y~ T (w)
so that we have:
O, yYmp) = Y. plnr(wy)j(y,m))ertrenwyhy i (wy)

wEMm,Zn(Z)

=0(&m0(i(Y. 7)) 'p)

as w — wy’ simply permutes the terms of the sum. Now for the action of I" on D. First
of all we note that it suffices to show it for elements m(A) for A € GL,,(Z), n(S) for
S € Skew,(Z), and Q1 := Qqqy (2.14) as by lemma 2.1.5 these elements generate I'. As we
already observed we have that ©({ + 5,7) = ©(&, 1), proving it for elements n(S). Next,
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we have

Ol AL TP = D plye(w))em A Al )
’U)EMm,Qn(Z)

= > p(tATn("Aw))ert e AT CA)
WEMp, 2n(Z)

=0(¢m0("A)p)

Where the second equality comes from w — Aw simply permutes the terms in the sum on
w. Thus we have ©(m(A)-&,7) = o*(PA™1O(&,7) = 0* (7 (m(A4),£))O(&, 7), showing the
claim for elements m(A). Finally we seek to show it for the element Q;. It is interesting to
note that the proof is almost identical to the proof of showing modularity of the standard
theta function. Namely we will perform a Fourier transform and apply Poisson summation.

We will write £ in block form:

- STRRSTANE 0 Xi2 N Yii Yo
§21 &2 — X159 Xoo Yig Yoo

with &17 a 1 x 1 matrix and & an (m — 1) x (m — 1) matrix (similarly for the X’s and Y’s).

We have that:
(1 &n G2\
Q= (521 522> ( 1 )

0 ~Y7'Yi
X(ng): —1¢ —1/t M t )
Yii Yz Xoo+ Yy ("X12Yie — V12 X19)
Yt ~Y 7 X1
Y(Qi 9= " et
—Y11 ' X1 Yoo+ Yy ((X12Xi2 — "Yi2Yi2)
and
. Y1 X2 — Yo _ _ -yt Y3 X12 —Yi9)
J (Ql,o:( ) J7(Q1,9) 1:< H
I
Along with this decomposition of &, will write elements of W = M,, 5, (R (w)
w

<w1 w2 with w = (w1, ws) € R?" and w = (w1, ws) € Mp,—1 2n(R). For p € C[M,
W1 W39

some polynomial, define the function:
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(@)= L o () oo e ((2)- ()]
o e () ()]

Next, we will write v = wg,, u = wg,, and perform the change of variables w’ — w'g; !,
and then (3.45) is:

/ e27ri<u/,u>p Zwi + wl2 tg~1
R2n ] + uo
/ / / /
X exp [m’trX<(w> , (w)> —7mtrY (w) t <w>] duw’
u u u u

where a € GL,(R) is such that a‘a = y. We have that:

w' w'
tr X , = 2wh'u; "X 19 — 2w] 'ua P X 1o + tr X (u, u)
u u

(3.45)

and

u u

/ /
trY (w ) ¢ <w ) = Y11 (w] ') + whtwh) + 2(w) fuy 'Y 19 + wh g 'Y 19) + tr Yasu'u

so that we have:

w', [w ) w’ w’
trY —itr X ,
u u u u
= tr Yoou'u — i tr Xop(u, u)
+ Y11 (w'l + Yl_ll(Ylgul + iXuUQ)) t(’wll + Yﬁl(yvlgul =+ inguz))

+ Y11 (wy + Y1 (Yigug — iX1ouy)) “(wh + Y1 (Yigug — iXiouy))
— Y7 (Yiows 4 iX12u2) {(Yigu; +iXjoup) — Yy (Yigug — iXj0up)  (Yigug — iX1ouy)
and then performing the change of variables w] — wj — Yﬁl(Ylgul + inzug)), wh —

wh — Yﬁl(Ymu2 — ingul)), and collecting out terms that do not depend on w’, the (3.45)
is:
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exp [m’trX(Ql =€) <(:61> , (z>> —mtrY(Q1-§) (ﬁ) t (ﬁ) + WtrYlllutu]

X/ / 627ri(w’1tu27w’2iu1)
R”+iY1711X12ug ]R"finllegul

. 1 .
< p wwy +wh + Yy (X2 = Yio) (i +2) | ¢ 1) vyl b ') gt g
iy + uo e

(3.46)

We note that by the contour integration trick for Gaussians the domain of integration can
be converted back into an integration over R?”. We also use another trick related to Fourier

transforms and polynomials. If p/(w], w}) is some polynomial in wf, w}, then

/}/f%W”WWh@wm&@mmwa

1 9
/ _ 27rzw u)
P\ 50w dw'd
P <2m Ous’  2mi 8u1> /n /n p(wh, wy)dw) duwh

where p’ (ﬁ Fug’ ~ Tni dur ) is the differential operator obtained by replacing the w’ variables

by the prescribed differentiation with respect to u. It is characterized by:

1 0 1 0

/ . 2mi(w’ wy e r o 1 2w )
e = p'(w], ws)e
p (2m Ouy’  2mi 8u1> P (wl,wy)

We thus obtain that the integral in (3.46) is:
1 1 .
lenp 2m ( Zaul + auz) + YYH (X12 o }/12)(1111 + u2) tafl efﬂ'Yﬁlutu
iy + ug
Next, we have that for p” € C[C"], that

L0 9N\ oy
(o (0 ) ) = (Y )

since we have

and further that
(- i + — 0 (tug +u2) =0
2 6U1 8UQ ! AR

Then, after putting the v and u terms back in terms of w and w, we obtain:
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w —n - — — —mtr ) (w,w) —mtr £)(w,w
h<< >> :}/11 p(] (th) lnT(w))e t X(Ql £)< ) >€ t Y(Ql 5)( ’ )T

A\%

Thus by Poisson summation applied to (3.45) we have that:

Z p(nT(w))eﬂitrX(éxw,w)efﬂtrY({)(w,’w)T
’UJEMm’Qn(Z)

=|detj (Q1,)|" Z p(ji(Qh é‘)*lnT(w))eTI'itI'X(Ql'é)<w,w>677TtI‘Y(Ql'&)('LUfLU)T
wGMmygn(Z)

so that | det ;7 (Q1, 5)\"@(621 £,10(737(Qq, f))p) = ©(¢, 7; p), which finishes the proof upon
replacing p with o(57(Q1,¢))'p and dividing by | det 5~ (Q1, )|™. O

The function ©(§,7) so far constructed takes values in an infinite dimensional vector
space. This is undesirable and we will now describe how we can use it to make some
functions that take values in finite dimensional vector spaces.

There is a sesquilinear form on C[M,, »(C)] given by (p(n),q(n)) = g (a%) p) . where
/)7:

G denotes the polynomial obtained by conjugating the coefficients of q. If 1, n’ " are mono-
mials, then we have (n',7'") = |I|67,/, so that the monomials provide an orthogonal ba-
sis with respect to this Hermitian form. This gives a (sesquilinear) isomorphism between
C[My,.»(C)] and C[M,y, ,,(C)]*, and under this isomorphism we get o*(v, a) = o(*fa™ 1, ta1).
Now, consider the representation ¢’ of GL,,(C) x GLy,(C) on C[M,, »(C)] given by:

o'(a,a)p(n) = p(‘ana) (3.47)

From the preceding discussion we have that o’'|qr,, ) = (¢lgL,.(®))* For & = (k1,...,) we
will say that k > 0 if k; > 0 for all 4, and if kK > 0, we define len(x) to be the greatest i
so that x; # 0. If kK > 0 and len(x) < min(m,n) we can interpret x as a weight for both
GL,,(C) and GL,(C) by having 0’s in the appropriate number of places, and we will denote
by VI and V™ the corresponding irreducible representations of GL,,(C) and GL,(C),

respectively. It is a standard result that we have:

(CMmn(C),0)= VM evw (3.48)

k>0
len(x)<min(m,n)

and so we have:

(ClMmn(C)], 0laL,, R)xGLa(C)) = b ovm)yevi (3.49)
k>0
len(x)<min(m,n)

where we interchangeably use V™ for the representation of GL,,(C) and its restriction to
GL,,(R). We will denote by:
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ClMp n(C))

The k isotypic component (as a representation of GL,(C)). We have that C[M,, ,,(C)]"* =
(V,gm))* 2 VM is spanned by the GL,,(C) x GL,(C) translates of the function:

Rj—Rj+1
min(m,n) mioeee My
Aty = [ det| : - (3.50)
j=1
J 77]'1 e 77jj

We obtain GL,(R) x GL,(C) linear projections C[M,, »(C)]* — ™ & (vﬁﬁ))* dual to the
inclusions (V,gm))* RV < C[Mp,(C)].

Definition 3.4.5 (The symplectic theta functions ©%). For each k > 0 with len(k) <
min(m,n), define ©° : D x H — GRS (Vé"))* to be the composition of © with the
projection map C[Mp, ,(C)]* — ™ & (V,ﬁ”))*.

Remark 3.4.6. The function © defined above is essentially the direct sum off all of the

functions ©F as Kk ranges over the k with k > 0 and len(xk) < min(m,n).
Lemma 3.4.7. The functions ©% defined above are modular of weight | det |” @ k™ on D
and (k"™)* on H, i.e. for (y,7) € T x I we have:

O (16,9/7) = |detj~ (3, )" (X (7~ (7. ))) @ () (G(+',7))) ) € (€,7)

The proof of this is immediate from theorem 3.4.2 and the above discussion. For brevity

we will give a special name to the representation | det |” ® yim)

Definition 3.4.8 (The representation (V,,,px) of GL,(R)). For k a representation of
GL,(C), with k > 0 and len(x) < min(m,n), define the representation (V,,., pr) of GLy(R)
by:

Vo ox) = (VI [ det [* @ (57|, m)) (3.51)

Remark 3.4.9. Thus we can rephrase lemma 3.4.7 as:
0" (16,7'7) = (px(i~(7:€)) ® (K")*(j(7,7))) ©" (&, 7) (3.52)

These functions ©F can be paired with modular forms of the appropriate weight.

Definition 3.4.10 (The pairing (f,©%)). Suppose that f : H — V™ s a function that is
modular of weight k. There is a natural pairing Vé”) X (V,.E”))* that is invariant under the

action of GL,(C), so we can pair ©% and f. we will write:

(f,0%):DxH—=YV,, (3.53)
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to be the function obtained by this pairing.
We have immediately that

Lemma 3.4.11. The function (f,©%) defined in definition 3.4.10 transform as:

(f,0%) (v, Y1) = pu(3~ (7, E))(f, ©) (&, 7) (3.54)

for (v,7') € T x . In particular we note that this invariant under I".

We will now describe how to have a more concrete handle on this function (f,©"). We
identified (vém))* ® V™ with C[M;,(C)]*, the s-isotypic component of C[M,y, »,(C)]. We

have an identification:

(C[]Wmn((c)yi = HomGLn((C)(Vm (C[Mm,n((c)]) ® V;gn)

and so as a vector space:
V. = Homgr, (c)(Vk, C[Mmn(C)])" (3.55)

Thus we can describe the pairing (f, 0%)(£, 7) by its values on GL,(C) linear maps P :
V. = C[M,,»(C)]. Generally we will use the capital letter P when we are referring to these
maps. In the case where dim Vé”) = 1 these maps are identified with individual polynomials

and we will use a lowercase p. We have:

(fOEDP) = Y P(f(1) (e (w))e™ TR vl ey (0w (3.56)
wEMmgn(Z)
where P(f(7)) will be a polynomial in C[M,, ,(C)], and can be evaluated at elements in
M, »n(C). For scalar V, this is simply:

(£ O)EDP) = Y f()pe(w))em X gz el (3.57)

WE M, 2n(Z)

We note that the expression P(f(7)) transforms as:

P(f(y7)) = a(i(v, 7)) P(f(7))

for all v € TV.

We will now discuss how these functions are related to the more usual Siegel theta
functions like the function in (3.38). This will be useful to us for locating the singularities
of the regularized lift of weakly holomorphic modular forms from SLs(R) which we will
look at in latter half of the next chapter. We will derive the following equality directly via

Poisson summation here.
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Lemma 3.4.12. ForY € Sym,! (R), define A}; to be the differential operator on C[M,y, »(C)]
defined by:

AY = Yy, 3.58
’ s,;l( Jos OMs,iOny j (3.58)

and write AY for the n x n matric of differential operators with entries A}; Then we have:

O m5p) =

detym/2 1 o IR
det Y"/2 Z (exp <47TUAY:U) p) (- lyf (v)y)e tr(v,v)z ,—7 tr(v,v)ey
VEMam n(Z)

(3.59)

where vg s as in (2.21).

Proof. Again we will use Poisson summation, this time with the Fourier transform:

/ o~ 2mitrws tvlp(vg?’ i wz)emtrX<(112,w2),(vz7w2)>e*ﬂ’trY((’Uz,W2)>(vz,w2))_rdw2 (360)
M,n(R)

we have ((vg,wg), (vg,wg))T = voy tvg + (vor + wo)y ™! t(1)2$ + wy). We can perform the

translation wg — we — voxr and we obtain that (3.60) is:

627ri trtvlvzme—ﬂ tr Yuoy tug

1

o ¢ ) ; ¢ _ —1¢
~ / e 211 tr wo Ulp(ZUgy + w2)€27rztrw2 (ng)e mtr Yway wgdw2
M‘IVL,’IL(R)

as we have

{(v2, wa — Vo), (v2, w2 — vax)) = ((v2, w2), (v2, w2))

and
tr X (v, wa), (v2, wa)) = 2trwsy H(X )

We can complete the square in the exponent:

e—27ri tr wg vy 427 tr we t(ng)—Tr tr Yway 1 twg

—mtr Y 71 (v1—Xw2)y t(vl —Xvg) —mtrY (w2+iY_1(v1 7Xv2)y) y~1t (w2+iY_1(v1 7X'L)2)y)

=e€ (&

then translate wy — w9 — z’Y‘l(vl — Xw2)y, and perform the same contour integration trick
as in the proof of theorem 3.4.2 to obtain that (3.60) is:

6271'1' trtvgvex  —mtr Yooy tvg—mtr Y =1 (Xva—v1 )y {(Xva—v1)

e

1

X / p(z’vgy — iYﬁl(vl — Xv)y + wg)efmryww_ t“’?dwg
M n(R)
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We have that Y 1 (v) — Xvg) —vg = Y‘lyf_ (v), and from (2.27):

e?m tr tvlvgace—w tr Yooy tug—mtr Y1 (Xva—v1)y t(XUQ—’Ul) e tr(v,v)me—w tr(v,v)ey

=€

and finally we have that:

/ p/(wz)e—wtrngy’
M n(R)

1

1
02y = det Y2 det y™/2 exp <4 tr Ayy> P
7

n=0
Thus we get that (3.60) is equal to:
1 L1 - ; _
(exp (471_ tr AYy> p> (—ZCt 1V§ (v)y)eﬂztr(v,v)xe mtr(v,v)ey
and by applying Poisson summation we have the result. O

We will now describe how we can interpret these symplectic theta functions as modular
functions in the sense of (3.31). For p € C[M,,,,(C)] and (§,7) € D x H, define:

(:)(57 T;p) — det Yn/? Z p(tanT(w))emtrX<w,w>e—7rtr Y (w,w)- (3.61)
weMm,Qn(Z)

where a € By is such that ala =Y. This is obtained from © by the process outlined in

remark 3.3.7, and the function satisfies

O(1E,7'm3p) = O(&, 730 L (k™ (7,€), 5 (v, 7)p) (3.62)

For V5 a subrepresentation of Vﬁm)b(m), we can define functions 7% : D x H —
V5® (V,E"))*. We will also describe some of the structure of the GL,,(R) representations we
have in terms of how they restrict to O(m) representations. To begin with, for 1 <i,j <n,

we have the differential operators A;; on C[M,, »(C)] given by:?

m 82
Nij=S —F .
! SZ:; 877371'87’5,]' (3 63)

These differential operators commute with the action of O(m).
Remark 3.4.13. We also have a version of lemma 3.4.12 for ©P%. For p € C[Mpmn(C)],

we have:

_ 1 .
. _ m/2 e witr(v,v)x —mtr(v,v
O(&,7;p) = dety™ E (exp (471_ tr Ay) p> (—ic 2 (v)y)e™ HwR)T T ir(vv)ey
VE Mam . (Z)

(3.64)

We will call a p € C[n] pluriharmonic if Ay;jp =0 for all 1 <14, j < n, and we define:

3this is the same as A%j defined in lemma 3.4.12
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H My n(C)] = {p € C[Myn(C)] : Agjp=0for 1 <i,j <n} (3.65)

to be the space of pluriharmonic polynomials. The space J[M,, »(C)] is O(m) x GL,(C)
stable under the restriction of o to O(m) x GL,(C) on C[M,,,(C)]. Note that it is not
GL,,(C) stable. Define .#[M,, (C)] to be the subspace of C[M,, ,(C)] generated by the
coefficients of ‘nn. Equivalently .#[M,,,(C)] is the space of O(m) invariants. We have
H NS =C-1, and H# - & = C[M,,,(C)]. For k a GL,(C) representation, denote by
J| My (C)]* the k isotypic component of J#[M,,,(C)]. We have a description of the

space of pluriharmonic polynomials:

Lemma 3.4.14 (From [3]). Suppose that m > n, and k > 0. Then there is a unique
representation p(k) of O(m) so that:

A [ Mo (C)]" = Vi) @ V) (3.66)

We have further than Homom)xar,(c)(Vak) @ Vi, C[Mmn(C)]) = 1. When m > 2n, we
can describe this space as follows. Define the function A® € C[M, ,(C)] by:

Ri—Kit+1
r11 ... Tin

A“(w)=ﬁdet oo (3.67)
i=1

Tnl -« Ipn

Then the space " is spanned by the O(m) x GL,(C) translates of
pb(m) =" ((1n ila 0)n)

Example 3.4.15 (n = 1). When n = 1, representations of GL1(C) correspond to integers
k € Z. The representation r occurs in C[My, 1(C)] = C[C™] iff k > 0, in which case C[C™]*
consists of the homogeneous polynomials of degree k. We will say u € C™ 1is isotropic if
tuu = 0. This is equivalent to u = uy +iug with ui, us € R™ and 'ujus = 0, tuqug = tugus.
The space F[C™)" is spanned by the polynomials pt(n) = (‘un)® with u isotropic. The

action of O(m) x GL1(C) for these polynomials is simple to describe:
o(k,a)ply = a"piy (3.68)
The subspace Z is given by the powers of ‘nn, and we have:
Lk/2]

CIC™* = D (nm)torfemy2 (3.69)
k=0

i
When m = 2, then up to a scalar there are only two isotropic vectors: uy = <:i ) We
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define corresponding polynomials:

pi(n) =pi,(n) = <tn (?)) (3.70)

Recall that O(2) is generated by elements of the form:

cosf sinf -1
ko = , €=
—sinf cos6 1

with the kg forming a subgroup isomorphic to SO(2). We have:

o(ke)plt = = "p

K

o(e)pl

K
Px

As a O(2) representation, the space F[C?)* is isomorphic to Vix| defined in section 3.5.1.
The dual space ([C%%)* is also isomorphic to V|, with the basis {p~,p%} having dual
basis {v'y,v"} (note the order).

Example 3.4.16 (Scalar GL, (C) representations). We have non-trivial scalar valued rep-
resentations of GLy(C) inside of C[My,,(C)] iff m > n. The scalar representations of
GL,(C) are given by integers k € Z, corresponding to powers of the determinant, with det”
occurring in C[My, ,(C)] iff & > 0. In this case C[My, ,,(C)]* will occur within the subspace
of homogeneous polynomials of degree kn, but it will not be all of these polynomials. Given

any matriz u € My, ,(C), define the polynomial:

pi(n) = det("nu)” (3.71)

As u wvaries over the elements of My, n(C), these polynomials span C[Mp, ,(C)]®. They
transform as
e =

o(a,a)py = deta™pi 1,

We now will suppose as well that m > 2n, and we will describe the space F[Mpy, ,(C)]".
We will call u = wy + iug € Mp,,(C) isotropic if turue = 0 and *uiuy = tugus. This

tuu only implies that *ujug is

implies that fuu = 0, however the converse is not true as
skew-symmetric, not necessarily 0. As u varies over the isotropic matrices, the polynomials

Py span the space F[My, n(C)|*. They transform under O(m) x GL,(C) as:

o(k,a)py = det a"py,

Example 3.4.17 (Non-scalar G L, (C) representations). Suppose now that  is not necessar-

ily a scalar representation of GLy,(C). We have that C[M,y, ,(C)]* is spanned by polynomials
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of the form:

py = A" (“u) (3.72)

as u varies over elements of My, ,(C). This reduces to (3.71) in the case that k is scalar.
They transform as:

o(a,a)py = deta™pi 1,

If we suppose that m > 2n, then again we have that F[Mp, ,(C)|" is spanned by polyno-

mials of the form pi where u varies over isotropic matrices. For such polynomials we have
o(k)pl = pf, for k€ O(m).



Chapter 4

Theta Lifts from SL(R)

4.1 Lifts of Cusp Forms

In this chapter we will be exploring theta lifts of modular forms from H = H; to D = D,,.
First we will examine the lifts of cusp forms. Let f : H — C be a cusp form for SLy(Z) =T"
of weight k:

fOyr) =34(v, )" f(7)

for all v € I'V. Suppose as well that f has the Fourier expansion:

oo
f(T) — Z CLne27rmﬂ'
n=1

Recall in the last chapter we defined functions ©" : D x H — V,_  where V,_  (3.51) is
the representation of GL,,(R) given by p. = |det| ® x(™), where x(™) is the irreducible
representation of GL,,(R) with highest weight (k,0,...,0). We have:

O (v&,v'1) = 3(v, 1) " pe (i (7,€))O(E, T)

for (v,7") € T' x I". We can pair this with f(7) to obtain a function that is invariant under
T+ ~'T (3.53).

Definition 4.1.1 (Theta lift for SL9(Z) cusp forms). With f a cusp form, define:

dxdy
Y2

B(6) = /f (f,0")(E7)

where F is a fundamental domain for the action of SLo(Z) on H.
The integral will converge due to f being a cusp form and the moderate growth of ©F.

Proposition 4.1.2 (Modularity of ®¢). The function ®¢ is modular of weight p, with

54
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respect to I'. In other words, we have @ : Dy, — V,, , and for all v € I', we have:

Dr(vE) = pu(i™ (7,6)Ps(€) (4.2)

Proof. This proposition follows immediately from the same transformation property for
(f,©%) in (3.54). O

Recall we have an identification V,, = Homgy, c)(Vi, C[C™])* = (C[C™]")* (where
C[C™]" is the subspace of homogeneous polynomials of degree ). Thus we can describe ®

by its evaluation on polynomials p(n) € C[C™]"®. This is given by:

fem) = [ 3 ey e e SR ()
wGMm 2(2) y

where (w,w) and (w,w), are as in 2.2.3. It is our goal to calculate explicit formulas for

these theta lifts. The introduction of the symplectic theta functions serves two purposes.

First, as mentioned earlier, the lifts ®; have a readily apparently Fourier expansion with

respect to the X variable of £ due to the same for the symplectic theta function ©*. Second,

they also allow for a process we will call unfolding that allows us to transform the integrals
over F into integrals over simpler regions.

We note that due f being a cusp form we are able to interchange the order of integration

and summation, and so we can write out the Fourier expansion of ®¢(£):

p(&p) =ao(Yip)+ >, e ag(V;p) (4.4)
SeSkewm(Z)
rank S=2

where ag : Sym;! (R) — (C[C™]%)* are the Fourier coefficients, given by:

e~y (ww dxd
as(Yip)= ) /f Y (ww), CY (4.5)
(w, w) S

Note as well that the sum is only over skew symmetric matrices of rank at most 2 as that is
the maximum rank of (w,w) for w € My, 2(Z). We can further refine these sums into more

tractable integrals to consider:

Lemma 4.1.3 (Unfolding for SLy(Z)). For w € My, 2(Z), and w # 0. Write I}, for the
stabilizer of w inside of I, and write F,, for a fundamental domain for the action of T,

on H. Then we have:
sy dxd
S [ s tu e e S

w'ew-I F Yy

2 [ f(pl w20
Fu Y
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Proof. Let {v;} denote a set of representatives for I}, \I'". Then we have the left hand side

is:

Z/ f 777_ w%)) t Y( Yis 'Yz)-r y2

This is: dvd
—mtr Y (w,w)q,» GTAY
Z/ PP (e () (i, 7)Y (0ihir =02

)

and we have that f(T)p(n%T(w)j('yi, 7')) = 7, )" f(T)p(0y;r (w)) so this is:

dxd
> [ F@wl ey o S

Then as 7; ranges over the set of representatives we will double cover F,, as —1 & T,.
When w = 0 we have that —I is in I, = I, however we have that p(n,(0)) = 0 as p is

non-constant homogeneous. O

Thus we are able to group together terms corresponding to w in the same I orbit in

4.5 into terms with easier integrals. We will first classify the orbits of M, 2(Z) under I".

Lemma 4.1.4 (SLy(Z) orbits of My, 2(Z)). Suppose that [w] € My, 2(Z)/SL2(Z). Then

either:
1. w =0, in which case F, = F and T, =T".

2. rank w = 1, in which case we may take the representative w to be (0,u), where u

. . ) 1 x*
ranges over ™ /{0}, u unique up to multiplication by £1. In this case T}, = 1) ,

and Fyy ={1 € H1: 0<x<1}. We have (w,w) = 0.
3. rank w = 2, in which case I, = {1} and F,, = H. In this case w can be taken to be:

n
w = Awy Yab,d

where A € GLy,(Z)/ P2 (Z), where:

wa—L 1s the matriz:
+1

—= O
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b
and Yo.bd = (a d> with a,b,d € Z, a,d >0, and 0 < b < a. In this case

0 ad ... O
—ad 0
(wywy =+A1[ | ' tA
0 0

We will offer another description of the orbits in the rank 2 case that provides a somewhat

more intrinsic characterization. First of all, we will denote by O%:

O% = {w € My, 2(Z) : (w,w) = S}/SLa(Z) (4.6)

From the above considerations when S is a rank 2 matrix in Skew,,(Z) we have that O°
is a finite set. We will define M;;Q(Z) to be the subset of rank 2 elements of My, 2(Z),
and M%%Q(Z) to be the subset of w € Mnt’Q(Z) that can be completed to an element of
GL(Z). We will also call such w primitive. Similarly we will denote by Skew! (Z) the
subset of S € Skew,,(Z) such that 15 € Skew,,(Z) iff n € {1,—1}. This is equivalent to
sd(S) = 1 (Definition 3.3.5). We will call S € Skew},(Z) primitive as well. For a primitive
Sy € Skew? (7Z), there is a primitive wg € M}n’2(Z) so that Sp = (wp, wp). From the lemma
this wg is unique up to action of SLy(Z) on the right. We have 0% = {wq}.

Given any S € Skew,,(Z) of rank 2, there is a unique Sy € Skew’ (Z) and p € Z~q so
that S = uSy, and we have

0 = {woYapd: a,b,d € Z>g, ad =p, 0 <b<a} (4.7)

Corollary 4.1.5. The constant Fourier coefficient is given by:

T ! oo rl ¢ T
w¥in) = [0 f 02+ S0 [T [pompme ol )

Y uezZ™ y

where the apostrophe (1) on the sum denotes excluding uw = 0. The non-constant coefficients

are given by:
dxdy

os(Vin) =2 3 [ plac(uw)) (e oo 2

weOs

(4.9)

Note, in the sum of the rank 1 terms we dropped the coefficient of 2 in lemma 4.1.3 by
summing both u and —u, which are included in the same I orbit. When f is a cusp form

we have:

Lemma 4.1.6. Suppose that f is a cusp form. Then the constant term of ®; is 0, i.e.,
ao(Y';p) = 0 identically for all p € C[C™]".
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Proof. As we noted before, we have that as p is a homogeneous non-constant polynomial
we have p(0) = 0, so that the rank 0 term contributes 0. Next, we have that the only

dependence in the integrand on x of:

0 1 daxd
[ [ st
0 0 Yy

is in f(7), and as f is a cusp form the integral fol f(r)dx = 0, so that the rank 1 terms

contribute 0 as well. O

We will now define some quantities that will come up in the computation of the rank 2

Fourier coefficients of ®.

Definition 4.1.7. Write M;;,Q(R) for the subset of My, 2(R) of matrices of rank 2. For
w = (wy,ws) € M;Q(]R) and & € Dy, define 11(&,w), 2(&,w) € Hy to be:

1
(&, w) = §trX<w,w) +iy/dettwYw
b Y ws N A/dettwYw (4.10)

t’LU1Yw1 twlel

71 (57 w) =

and define n(§,w) to be:
(& w) = m2(§ w)wr + w2 (4.11)

Remark 4.1.8. We will write y1(&, w) and y2(§, w) for the imaginary parts of 7 (&, w) and
T2(€,w), respectively. We will also use y1(Y,w), m2(Y,w), and n(Y,w) with Y in the place

of £ since these quantities are independent of X.

We will describe how these quantities change under the right action of GL2(R) on

-1
M 2(R). First of all, for g € GL3 (R), and € = ( 1) we have:

1 (ga w.g) = (det 9)7—1(& w) 7'1(6, UJE) = —?1(5,11))

. (4.12)
7-2(55 w.g) = g_ : 7—2(55 U}) 7—2(55 U)E) = 7?2(57 U))
and we have:
o -1
n(& wg) = j(g~ ", (& w) " 0 w), (&, we) = n(&, w) (4.13)
Remark 4.1.9. When m = 2, and w = 1o, these reduce to the identification (11, 72) : Dy =
T2

Hi X Hi, andn =

. We will examine this in more detail when we discuss specializing

the lift to m = 2 later in this section.
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We will provide an interpretation of what these quantities are. For w = (wy,wq) €
M, 2(Z), w being primitive is equivalent to {w;,ws} being a Z basis of Uz(w). Otherwise
and otherwise the columns span a full rank sub-lattice of Uz(w).

Next, &€ € D,, provides a positive definite bilinear form on R™, which we will denote
by (u,u')y = 'Y/, and a (possibly degenerate) alternating form which we will denote by
(u,u')x = 'uXu'. We can restrict both of these forms to the lattice Uz(w) to obtain a
positive definite bilinear form and an alternating form on Uyz(w), which we will denote by

the same. We have

dettwYw = det <(w1’ w)y - (wi, wQ)Y)

wo, w1)y  (we,ws)y

which is the determinant of the lattice spanned {w;, ws} with respect to (—, —)y. The vector

n(§, w) is an element of Uz(w) ® C = C{wy, w2}, and is isotropic with respect to (—, —)y.

Its real and imaginary parts have length +/y1 (£, w)ya (€, w) with respect to (—, —)y. The
imaginary part of n(&, w) is in the wy direction, and the real part is in the direction of the
projection with respect to (—, —)y of wy onto the perpendicular of w;.

As we mentioned the space Uz(w) is a Z? lattice equipped with a positive definite
symmetric bilinear form (—, —)y, a (possibly degenerate) alternating form (—, —)x, and an
orientation determined by the ordering wy,ws. A different choice of oriented basis {wq, ws}
of Uz(w) amounts to acting on w by a v € SLy(Z) on the right which we saw (4.12) leaves
71 invariant and acts on 7 by 7_1. Thus the 7 and 75 variables give an invariant of this
triple of data that is valued in H x (H/I").

Lemma 4.1.10. Suppose that w € M;Q(R), and £ € D, and p € C[C™]*. Then we have:

em‘trX(w,w) / f(T)p(nT(w))e—wtrY(w,w)—Ty—le,dy
H

= y1(&,w) " p(n(€, w)) X ED) f(1y(€,w))

(4.14)

Remark 4.1.11. We could ask the question what happens to the formula in (4.14) when w
is replaced by wy for v € SLy(Z). From (4.12) we have that for v € SLy(Z) we have that

n(§wy ) = (6 w), (& wyT) = (€ w) and n(E wyTh) = j (v, 72(8,w)) (€ w).

Then when we consider (4.14) under w + wy~', and using that p is homogeneous of degree

Kk, we have:

y1(&wy ™) p(n(€,wy ™)X ENT f(ry(€, wy )
=W (67 lj(’Ya 2 (fv w))—/@p (77(57 w))e27ri71 (&w)j(’% T2 (57 w))ﬁf(TQ (f? w))
= y1(&,w) " 'p(n(&, w)) e HEY) f(my(¢,w))

w)”
w)”

for all v € SLo(Z), so that (4.14) is independent of the choice of representative for the
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SLy(Z) action on Mp, 2(R).

Before we prove lemma 4.1.10 we will prove the following lemma about the integral at
the heart of the matter.

Lemma 4.1.12. Suppose that p(T) is a polynomial in 7, and that A, B,C € R are such
that Ax? +2Bx 4+ C >0 for allz € R, and n > 0. Then

/ p(T)eQWinTe*ﬂAyfﬂ(Aa:2+QBm+C)y_1y72dxdy
H

1 <_B -m> o~ 2minBA~! ~2x A=) (4 A)AC—B?

T Vac—pl\ A"t a

Proof. First we note that this integral may be obtained from a simpler integral via differ-

entiation with respect to n:

Y / 2T e~ AY (AT 2Be Oy =2 gy gy
21t dn

Looking at just the integral now, we complete the square in x to obtain:

/ / e2minT —71'Ay 71'( (z+B)2+(C— BQ/A)) 2d$dy
oo
1/2 —2minBA~ / 3/2 —7A" Y (n+A)2y—n(C—-B2/A)y! dy
0
as the integral over x amounts to a Fourier transform of a Gaussian. For the integral on y,

we use the following two formulas (K, is the modified Bessel function of the second kind of

order v):

> E2 F2 -1 1 E v
/ e TEYTTEY TV dy = 2 (F) K,(2rEF)
0

1 —27
Ky)p(27r) = 2—\/;6 2mr

so that we get:

1 e—27rmBA*1e—27rA*1(n+A)\/AC—B2
VAC — B?
and then differentiation gives the formula. O

of lemma 4.1.10. First we have that tr(w,w), = ‘w1 Yw; + "(zw; + w2)Y (zwy + ws), and
we can apply lemma 4.1.12 with A = 'w1Yw, B = ‘w1 Yws and C = ‘weYws and p/(7) =
p(n-(w)). We then plug these values to obtain that:
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/ p(ﬂr (w))e27rin7'e—7r tr Y(w’w)Ty_Qd:Edy
H

1 Y det ‘wYw B (w17w2)y —2my1 (€,w) 2minTe (€,w)
)p i i |e e

= w1 + w2
y2(&,w (w1, w1)y (w1, w1)y

- ! (n(&,w)) e~ 2my1(§w) p2minT2 (W)

B y2(£> w>p

We obtain the lemma by summing over n with f(7) =Y, a,e?™"". O

By this point we have described each of the terms in the sum giving ag(Y;p) in (4.9).
We will now discuss how we can simplify these further. Let S € Skew,,(Z) be rank 2, and

let Sy and wg be as in the discussion after lemma 4.1.4, with S = u.Sy. Then we have:

_ dxd
s (Vip) =2 3 / P17 (WorYapa)) S (r)e™ Y (s asresad SEW (g )
a,b,d Y
ad o
0<b<a

We can handle these sums tidily with the following lemma.

Lemma 4.1.13. Recall we denote by T(u) the degree u Hecke operator (3.14). Then if
w e M;;Q(R) we have:

Z / p(n-( w’Yabd )f( Je *WtrY(w'Ya,b,mw“/a,b,d)Ty72dxdy

a,b,deZ
a, d>0
ad:u (416)
0<b<a

=1 /H (1 (w)) (T() f) (7)e ™Y )y =20y,
Proof. Write M} (Z) for the set of integral 2 x 2 matrices with determinant u. Recall:

T f(r)=p" > 7))

~ESLa(Z)\ ML (Z)

The expression on the left hand side of (4.16) is equal to:

Z / 77T UJ’}’ ) mtr{nT(ww)(ImT)’lﬁT(wv)y—2dxdy
~EME(Z)/SLa(Z)

We have 7, (wy)(Im7)~'7, (wy) = pnyr(w)(Im~y7)717,, (w) so that after performing the
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1

change of variables 7 — ~v7 7, it is:

Z / 777' 1’7_)—1)f(,y—l,r)e,mritr{nT(w)(ImT)_lﬁ_r(w)y—2dxdy
~EMIN(Z)/SLy(Z

We note that as  ranges over M} (Z)/SLa(Z), py~! ranges over SLy(Z)\M4(Z), so the

above is:

— i tr w)(Im 1)~ 17 (w), —
> / p(nr(w)j (=, 7)) f () e i e () )= (), =2 sy
YESL2(Z) \M‘u

We have j(u~tv,7)71) = pj(y,7)"! and p~'y7 = 47, and p is a homogeneous degree &

polynomial, so that

PO (w)j (™ oy, 1) f () = pp(Pamy (w) (1 i (v, ) T F (7))
and summing over v we obtain uT'(u)f. O

Corollary 4.1.14. Suppose that wgy, Sy are as above, and f is a cusp form. We have:

sy (Y3p) = 2y1(& wo) " p(n(&, wo)) 2™ &) (T (1) £) (72(€, wo)) (4.17)

Proof. This is just an application of (4.15) and lemma 4.1.13, and we use the fact that
o (1€, wo) = T2(§, wo) and 71 (u&, wo) = pur1(§, wo). 0

Remark 4.1.15. Instead of (4.17) we could write:

auso (Yp) = 201(&, S0) ' p(n(€, S0)) 2™ ESN(T (1) ) (2(€, So)) (4.18)

as in light of remark 4.1.11, we have that this formula is invariant of substitutions wy — woy
for v € SLo(Z), so it depends only on the class Sy € Skew? (Z).

Putting this all together we obtain:

Theorem 4.1.16. Suppose that f = > a, €™ s q Hecke cusp eigenform, i.e. that
T(w)f = auf for all p > 0. Write Skew,ln(Z) for the set of primitive elements rank 2
of Skew,,(Z), and for Sy € Skew. (Z) we will write T1(£,S0), ete. for 11(€,wo) where
wy € M,%’Q(Z) is such that (wg,wo) = So. Then we have that

Pr(&5p) =2 Z p(n(&,50))y1(&,S0) " £(T1(€,90)) £ (12(&, S0)) (4.19)

SoeSkewl, (Z)

note that the Fourier expansion of ® is contained in that of f(12(&,So)). If we write out
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the Fourier expansion explicitly it is:

p(&p)=2 Y emNg p(n(Y, So))yi (Y, So) Tt 2 (50) £ (7 (Y, Sp)) (4.20)
SpeSkew}, (Z)

p>0
where we have written 7(Y,Sy), etc. in place of T2(§, So) to emphasize that those terms

depend only on the Y wariable of &, so that the a,s, Fourier coefficient is:
a5, (Y5 p) = 2a,p(n(Y, So))y1 (Y, So) ~Le 291 (¥:50) £ (7,(Y, Sp)) (4.21)

It is also of interest to consider how these lifts are related when we vary m. For m > 2,
denote by @;m) the theta lift of f to D,,. We define a function [£],y, 2 from D,, to Dy obtained
by taking the top left 2 x 2 minor of £. In terms of the variables X and Y is also simply
amounts to taking the top 2 x 2 minor. Each minor of a skew symmetric matrix will be skew
symmetric, and each minor of a positive definite matrix is positive definite, verifying that
[€]m,2 is in Dy. Next, for a polynomial p € C[C™], define [pl;,, 2 € C[C?] to be the polynomial
obtained by setting all variables except the first two to 0, i.e. the map dual to the inclusion
C? — C™. If p € C[C™], then [p]m2 € C[C?". We then obtain a map in the reverse
direction between dual spaces which we will also denote by [~] 2 : C[C?]* — C[C™]*. This
map sends (C[C?]%)* into (C[C™]*)*, and is given by [®],,2(p) = ®([p]m,2) for & € C[C?]*
and p € C[C™]. Note that we are using the notation [—],, o for 3 different maps, but we
hope from context it is clear what is meant.

We will also define Po(Z) C GLy,(Z) to be the subgroup:

. (GLy()
PZ(Z)_< . GLm_g(Z)>
m) 1o @

With this setup we have the following theorem relating the lifts ® 7 e

(4.22)

Theorem 4.1.17.

o= Y [P (At A, ,
AEP2(Z)\G L (Z)

or, evaluated on a polynomial:

oMEp) = Y P (At A [0 (P AT Pl n)
AEP5(Z)\G L (Z)

Proof. For this proof only we will sometimes write watm and wSEQ for the matrix w(jf defined
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in lemma 4.1.4 for M, 2(Z) and M 2(Z), respectively. From that same lemma we have:

(&) =
Z Z / P (AwEyapa)) f(T)e 7ritr£nT(Aw3E%,b,d)(ImT)*lﬁT(Aw(ﬁa,b,d)y—?dmdy
AEGLm (Z)/P2(Z) a,b,d€L
(()1<b<a
t=+,—

(4.23)

Looking at at single one of these terms, we can move A around and get:
[ @A) (0 ) F () AT )00 )21y
H
Then we have w(jf’ya@d is zero in all except for the top two rows, so that

o (A )p(wg mYasd) = [0(A™)plm2 (- (W55 Va bd)

1t

Then similarly we have that nT(w({m’ya@d)y* T (Wo,mYap,d)) is 0 except in the top 2 x 2

block, so that

1

tr P AE AN, (wy Ya )y e (W Yabd)) = [ AE AL 2mr (WG Yabd)y ™" T (WG 2 Va b))

thus the inside sum of equation (4.23) is

@ (A€ AT 2) (7(A) 'p).
Then as A ranges over G L,,(Z)/Ps(Z), ' A ranges over Py(Z)\G Ly (Z). O

The previous theorem implies that the essential case for the lift to O(m, m) from SLy(R)
is at m = 2. To finish off this section we will examine the m = 2 case more closely here
in the context of the identification Dy = H; x Hi and the correspondence of modular
forms for O(2,2) and SLy(R) x41 SL2(R) described in section 3.3.1. This is achieved by
first converting ®; into d #, which is modular with respect to the O(m) valued factors of
automorphy k* on Dy, and then converting that into Ff(71,72) as in Section 3.3.1.

Given ®£(£), we obtain Cf)f(f) = piu(fa(£))®(€) as in 3.32. Combined with (4.19) when

f is a Hecke eigenform, we have that evaluating ® 7 on a polynomial is:

Op(&p)=det Y2 3" p(ta(€)n(€, S0))yi (6 S0) T (116, S0)) £ (m2(6, S0))

So€Skew}, (Z)

+1
When m = 2, there are only Sy = +J in (4.19). We have wi = ( 1), with
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<w[:)t, w8‘“> = +J. As we noted before, under the identification Dy = H1 x H1, we have:

71(5(71772)7?113):71 m(&(11,72),wy ) = —T1 (4.24)
72(5(71772),w6r)272 T2 (&(T1,72),wy ) = —T2
We have
+ 5
n(€(m1, 72), wy ) = . (4.25)
(where 75° means 73 for +£ = + and —75 when 4+ = —. Combined with (2.44), we have

ol mn(e(n, ) = o1 (ji>

We also have det Y (&(11,72))/? = y1, so that:

by (E(m1,m)ip) = 207 sl (f(Tl)f(Tz)P (i) + f(=T1) f(—T2)p <_12>> (4.26)

Next, recall the decomposition of C[C?]* into O(m) irreducible representations. We
3 K
have polynomials p% (n) = <tn <3T>> of weight +x with respect to SO2(R). They span

the O(2) irreducible subspace #[C?]* of harmonic polynomials of degree x. We have
CIC?r = 1&5:/02 ! (tnn)= A [C2"=2F. If we evaluate any polynomial that is divisible by ‘nn at

41
we obtain 0, due to those vectors being isotropic. Thus the lift (4.26) is identically

0 except for polynomials p € S [C?]", so we will simply assume that ® 7 takes values in
(A[C?]F)*. If we denote by {v",v%} the dual basis to {p7,p"} (note the sign flip), we
have that v/ are weight £« with respect to SO(2), and also that

Py, =
1 0 +1=7F
and so we can write (4.26) as:

&1 (E(T1,m2)) = 25 Py P (F(m) F(r)VE + f(=T0) f(=T2)v) (4.27)

Putting this all together we have:

Theorem 4.1.18. From the correspondence between modular forms on Dy and Hy X Hi
outlined in section 3.3.1, when f is a Hecke cusp form for SLa(Z), the lift (&) on Do
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corresponds to:
Fy(r1,m2) = 277 f(11) f(72) (4.28)

on Hi x Hi.

Remark 4.1.19. When f is not a normalized Hecke cusp form this formula does not apply
(indeed the lift is linear and this formula is clearly not). Hecke cusp forms provide a basis
for S (") so that the above formula extends linearly to give the lift for cusp forms that are
not Hecke eigenforms. Alternately a slight modification of the above argument and using
(4.17) we obtain that the lift is:

Fy(ri,m) = 2570 3 0 (T () ) (72)
u>0

which reduces to (4.28) when f is a normalized Hecke cusp form.

4.2 Theta Lifts of Weakly Holomorphic Modular Forms

In [1], the theta lift is extended to modular forms that are allowed to have singularities at
the cusp. This process requires a regularization procedure as the defining integral for the
lift no longer converges due to the singularity at ioo. After this regularization process, the
resulting function on D obtains the transformation properties from the theta function as
before. In general the lifts will have singularities along submanifolds of D, whose locations
correspond to vectors in the lattice A with certain positive lengths that are controlled by the
order of the pole at the cusp of the modular form input. Borcherds considers functions on
Dyyyym_ X H (where Dy, is the Grassmannian of maximal negative definite subspaces

in R™+™-) of the form:

0(E, 7 AL\, p) = Z <exp ( A )p) (Vg(v))ewi(v,v)xe—w(v,v)w (4.29)

VEAA 87Ty

where A is an even integral lattice in R™+ ™~ and A* is its dual, A € A*, p is a polynomial
on R™++™- "and vg is an identification between R™+™~ and R™+"™~ that depends on
&. These functions are modular in 7 and have transformation properties with respect to
analogues of the K valued factors of automorphy we have considered. By varying the lattice
A the level can be changed, and by varying p the weight may be changed.

These functions are essentially the right hand side of (3.64) when my = m_ = m and
A =7™m,

Borcherds develops a general theory for pairing (4.29) with functions on H with sin-
gularities at the cusp, and develops the theory for a fairly wide class of functions having

Fourier expansions of the form
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)= S eyt

n>0,
0<k<K

and computes the Fourier expansion of the regularized lift with respect to a unipotent group
stabilizing an isotropic line. One point of departure we have here is that we are instead
calculating the expansion with respect to the stabilizer of a maximal isotropic plane. One
of the main results of [1] is that when p =1 in 4.29, m; = 2, and f is weakly holomorphic
with integral coefficients, the non-constant terms of the Fourier expansion of the lift can be
interpreted as the logarithm of the modulus of a modular form on O(2,m_), which carries
a Hermitian structure. This provides a product expansion for a large class of modular
forms on O(2,m_) that have prescribed singularities, and whose weight is determined by
the constant term of f.

Borcherds also defines a correspondence he calls the Singular Shimura correspondence,
which is a linear map from weakly holomorphic modular forms on ‘H to meromorphic mod-
ular functions on O(2, m_), by taking p to be certain specifically chosen harmonic polyno-
mials in (4.29). These polynomials are essentially the p/} in example 3.4.15. In example
14.4 of [1] the correspondence is worked out for O(2,1), which is related to SLy(R) by a
double cover SLa(R) — SOy(2,1), obtaining a Fourier expansion for the image under the
correspondence. Implicit in the formulas that Borcherds develops is the lift to O(2,m_) for
other m_, however it is not written explicitly.

Using our expansion along a parabolic stabilizing a maximal isotropic plane we will work
out this correspondence for O(2,2), related to SLy(R) x41 SL2(R) by (2.42), and obtain
the Fourier expansion for it. We will also work out what the image of the regularized theta
lift is to O(m,m). As in the case of lifting cusp forms there is a phenomenon where the
O(m,m) case with m > 2 is obtained from lifts to groups with smaller m. Unlike for the

cusp forms the orbits of rank 1 will not simply contribute 0.

Definition 4.2.1 (Weakly Holomorphic Modular Form). A weakly holomorphic modular
form of weight k is a holomorphic function f :H — C such that:

1. f(y1) = (et +d)f(T) for v € SLa(Z),

2. f has a Fourier expansion:

fr)= Y ape®™T (4.30)

n>-—ng
for some ng > 0.

We will generally assume that the ng in the above Fourier expansion is the least such possible
ng, so that a_p, # 0 but a, =0 for n < —ny.

We then want to form theta lifts using ©" similar to the previous chapter:
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dxdy
o(¢) = [ fmeren
F 4
This runs into the issue that this integral is not convergent, due to the singularity of f.

Following [1] we use the following regularization procedure.

Definition 4.2.2 (Regularized Integral). For T > 1, define the truncated fundamental
domain: Fp = {r € F : Im(r) < T}. Next, suppose that ¢(T) is an SLo(Z) invariant
function on H, and that for Re(s) > sg, that:

dxdy
(T) y2+s

lim

T—o0 ]:T(b
exists and defines and entire function of s on that region. If we can meromorphically extend
this in s to s = 0, then we define the regqularized integral to be the constant term of the

Laurent expansion at s = 0:

reg drdy i dxdy
/}_ o(7) ke CTs—o [Tlgréo /}_T o(7) y2+5] (4.31)

Definition 4.2.3 (Regularized Theta Lift). Suppose that f is a weakly holomorphic modular
form of weight k. Define the regularized theta lift of f to be:

5(6):= [ e (4.32)

for all & where the reqularized integral exists.

Similar to the previous section this will define a function ®; : D — V, = (C[C™]%)*

that transforms as

Dr(vE) = pu(G (7, )Py (6) (4.33)

for all v € T'. Tt is evaluated on a p € C[C™]" by:

reg dad
Dr(&p) = /F f(m)er (¢, T;p)ﬁy (4.34)

For the values of £ where this integral exists, and the transformation property is:

D (v&;p) = | det i~ (v, O)|Pp (&0 (v.€)  p) (4.35)

The regularized integral will have singularities occurring along sub-manifolds of D,, given
by lower dimensional Grassmannians. For A € Z""™ a vector of with (A, A) > 0, define D)
to be the submanifold consisting of points £ that correspond to negative definite subspaces

perpendicular to A:
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Dy:i={¢eD: ¢ LA} (4.36)

We can identify D) in a non-canonical way with D,,_1 ,,, the Grassmannian of negative
definite m-planes in R™~ ™. Tt is a (real) co-dimension m submanifold. Given a weakly
holomorphic modular form f, define: .#(f) to be the (negative of) the indices in the Fourier

expansion corresponding to poles of f:

F(f)={neN: a_, #0}

This is a finite set whose maximal element is ng. Define Z to be:

Dy = U D
n€s(f)
Agzmsm
(A A)=2n
and define a £ € D to be regular with respect to f if is not contained in Z;. Note that if
& L X, then £ L ¢\ for all scalars non-zero ¢, so Dy = D., so that the same D) may appear
multiple times on the right. It is not hard to show that any compact set will intersect only

finitely many of the Dy appearing in Z;. For £ € D, define A(£) to be the set:

A()={rezZmm: ¢ 1)}

We have that A(§) = iff £ is regular, and from the previous observation for any £ € Z; the

set A(§) has only finitely many elements modulo scaling. If we define:

Ap(§) ={NeZ™™: £ LA a_n2 #0}
Then A (§) is actually finite.

Definition 4.2.4 (Singularities). If ® is a function on D and &' € D, then we will say that
® has a singularity of type V if ® — U is the restriction (to the intersection of the domains
of ® and V) of a real analytic function defined in a neighborhood of £'.

Proposition 4.2.5 (Singularities of ®, from [I]). Suppose that p € C[C™]*, and f is a
weakly holomorphic modular form of weight k. Then ®f defines a real analytic function for

€ that are regular with respect to f. For ' € 9y, we have that ®¢(&;p) has a singularity of
type:

Lk/2) vk
_ 1 A ] — (m/2—-1+k—k)
det Y —1/2 a_(xa)/2— <> p| (=Y luo (V) —

Ae%»:@) l;) (/2 dm ¢ (2m(A A)¢ ym/2m Lk

(4.37)
for & near &'
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Remark 4.2.6. Note that as & — A\, we have (), >‘)§_ — 0, leading to a singularity given
by negative powers of (A, )\)E, but also v (N) = 0, so that the polynomial term is going to 0
as well, leading to some cancellation in the singularity. We will explore this in more detail

m example 4.2.7.

We will outline the proof of this, missing out some details as they are covered in [1].
Some notes about comparison to [!]: we interpret D,, as the space of maximal negative
definite subspaces, while Borcherds interprets it as the space of maximal positive definite
subspaces, leading to the differences between the above theorem and Theorem 6.2 in [1].

We also have a slightly different theta function (compare (3.59) in ours to (4.29)).

Proof. From (3.59), we have that ®((&;p) is the constant term at s = 0 of the meromorphic
continuation of:

1
—1/2 1 Loy L 1. —
detY lim E an, (exp (47rA y) p> (—iyY " ve (v)

T—o0 Fr no

dxdy

% e27ri(n+% (v,v))ze—%r(n—o—%(v,v){)y
y2+37m/2

The factor of det Y ~1/2 will not effect anything so we will drop it throughout the proof and
remember to put it back on at the end. If we write Fp = F; U F, where . = {x + iy :
|| < 1/2,1 <y < T}, then we have f]_-T = ffl —I—ff,T, with the latter integral being an
integration over a rectangular region. We note that it is only this latter integral that may
contribute to singularities, as the integral over Fj is an integral over a compact region that
does not change as T increases. Thus the singularities will all come from (the constant term
at s = 0) of:

[ [ > on (o0 (:270) p) (i )

« 2milnt L)z ~2m(nt L o)ey Y
y2+s—m/2
The integration over z kills off all terms except where (v,v) = —2n, so this is:
L r 1 AY i —2m(n+5 (v,0)e)y dy
o ) an \ €Xp | -5 Y )P (—iy Ve (v))e 2 W

L(ww)=-n

The possibility of divergence will ultimately come from whether (n + (v, v)¢) > 0 or not.
For the terms with n > 0 this will never happen, and when n = 0 we have (v,v)¢ = 0 iff
v = 0, but this term is killed off by the polynomial factor, as the polynomial is homogeneous
of positive degree. Thus there can only be divergences from the n < 0 terms. Then due to
the restriction of summation that §(v,v) = —n, we have n + 3(v,v)e = —(v,v)¢-, so that

we will only get divergences when this is 0, or equivalently that & | v, or in other words,
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v =\ € A(€). These singular terms are then:

o0 1 . o N ) o
Z /1 A—(XN)/2 (exp <47TAYy> p> (—iyY 1,/5 (A))e 2 (AA)g )yy /2254,

AEA(E)

Note that if p is homogeneous of degree x, (AY)*p is homogeneous of degree x — 2k. Thus

rk—2k

we can extract the y from inside the polynomial and it appears as y on the outside.

Then when we take the constant term at s = 0, this is:

Z Z 1 Aiy F (_.Yfl _(A))CT /co —27!'()\,)\)5_3; m/27278+l€fkd
—(AN/27 ar ) P v Ve 5=0 . € Y Y

AEA(E

The singularity is coming from (A,A); — 0, and Lemma 6.1 of [I]calculates that the

integral is a singularity of type:
@27\ A) )2 (/2 — 14k — k= s)

provided m/2 — 1+ k — k — s is not a non-positive integer. So long as k +m/2 > 1, which
will happen if K > 1 or m > 2, and k < k/2, we may simply take s = 0 in this formula and

get that the singularities of ®; at the point in question are as claimed. O

Example 4.2.7 (Singularities for ®(&;pl)). Suppose that p(n)pf = (fnu)* for some u €
C™. Such polynomials span the space C[C™]". We have that:

AY (fp)* = k(k = 1)("ay ") (fpu)*?
Plugging this in to (4.37), we have that the singularities of ®¢(&;pt) are of the type:

Gy Y L”f WD (m)2 — 14 5 — k) (aY Tk (= ity ()Y ~1u)™
—(AN)/2 —
AN/ (4m)kk!(k — 2k)! (r tyg—()\)y—lyg—o\)) /2—1+r—k

AEA(E) k=0
(4.38)
We have:
(fuy tu)*( - z'tzf()\)Y_lu) 2k
(7(' I/ (A)Y 1]/ ()\))m/271+1€7k
K/2—2k

(fuy —tu)* —i'vg (MY
(mtvg (Y=g (N)™2 2 (v ()Y -l (1)

with the first factor blowing up at & L X\, and the second factor being bounded but discon-

tinuous along D.
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Example 4.2.8 (Singularities of &Df(f)) Recall we defined Cff(ﬁ) = pu(fa(§))Pf() in
(3.32). We have then that Cff(f;p) has singularities of type:

AN o I'(m/2—-14+k—k
> Sy ((2)'0) (oo LD

AEA(E) k

Note in particular that there is no Y dependence for /\ for this formula. One advantage
of this is that the operator /\ annihilates the subspace A% C C[C™]*, so that for p € H"
the singularities of ® #(& p) are simply:

1 F'(m/2—-1+k)

1

> a—pwyap(—iaT g () i (4.40)
NEA(E) 2m (A, A)e) /2—-1+

Example 4.2.9 (Singularities with the identification Dy = Hy X Hi). To begin with we
will look more at the singularities of EJf({) given in (4.39) for m = 2. Recall we defined
K

the polynomials p'i(n) = <t77 <:FZ

) )) = (Lin +n2)" as in example 3.4.15. We have that
p+(n)p—(n) = "nn and so

B c pimp=m

K1+K2=K

It is a straightforward verification that we have:

A((gm)™ P2 (n)) = 261(k1 + ) ("nm)™ P2 (n).

We can adapt (4.39) to see that 5 (&; ('nn)™pi2(n)), with k = 2k1 + ke, has a singularity
of the form:

(k1 + kg — 1)! p’f( — o 1/£ ()\))
a_ (AN)/2 P (4.41)
Ae%{) Z @mF (k=R (rt ve MY ~Lue(N)) v

Now recall we have the identification Dy = Hy x Hy. We will phrase the above in terms

) — A L £ when A\ = EXa. If we write A, = (Z) Ay =

A
of (11,72). We have that ()\1

2

d b
( ), then %()\, A) = det (a d) = det~, and using 2.42, we have that A\; = (71, 7T2)\2
—c c

—x

iff M = (—z2d + 11 tg;zlggl))\g, which is equivalent to y;/Q tg A = L 1> g721)\2
1

Ezxpanding out this out, the first and second components give the real and imaginary parts
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of the equality aty + b = 11 (cmo + d), so that we have:

a b
T1 = To = Te
1 ¢ d 2 =72

Thus we have that ®¢ has a singularity along the divisors 71 = y1o for v € My(Z) with
dety = n for all the n with a_,, # 0. In other words £(11,T2) is not reqular with respect to
f if there is some v € My (Z) with 71 = 72, and a_ dety 7 0.
We have:
o g (V) = ()2 (En (a2 +b) = 7i(er2 + d>>>
e ((CLTQ +b) —1i(eme + d))

so that with p§ as above, we have:

(ylyz)_“/Q( — ((are +b) — 11 (c0 + d)))“ + =4+

(=it (V) =
pi( 13 ( )) (y1y2)—n/2((a7-2 + b) — ’7’1(6’7’2 + d))“ + =—

and

_ _ 1 1
2\ A)g = tug WY v (A) = @\(am +b) — 1y (emo + d)[?

Thus if £(11,75) is not regular with respect to f, we have that &Df (&(r1, 72), ("'yn)™p2(n))
has a singularity of type:

Cki,ro0— det’y(yly2>ﬁ/2 f — +
2 (772 — 1" yms — T PR (y ma) 2 () P 0 T
vEM; (Z) ’ ’
=TS
(4.42)
Cki,ko O— det”/(yly2)’i/2 _
VGMZWZ) R PR AR RS FCA S
2
=t

near (11, 74), where ¢, 5, is a constant depending only on k1 and k. In particular when
k1 =0, we can form F(11,72) as in section 3.3.1 and the end of the last section on cusp

forms, and then F¢(11,72) has a singularity of type

> s (1.43)

T — YT2)%7(7y, T2)"
@ 1= 712)"j (v, T2)

/__ /
TI="Tq

near (11,74). We note that these are poles of order k on H x H. We also note that it
is possible for a point (11,72) to lie on multiple divisors of the form 1 = vy1o. If we have
T = y71h and 7] = /74, then we have v~19/ € stab (7}), so this can potentially occur for

any points Ty whose stabilizer intersects non-trivially (i.e. not just £1) with GL3 (Q)
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Lemma 4.2.10. Suppose that ng is the greatest positive integer n for which a_, # 0. Then

@, has no singularities in the region
{€ €Dy 'uYu>ng for allu e Z™/{0}} (4.44)

Remark 4.2.11. A priori this is a region defined by an infinite amount of inequalities,
however we can guarantee being in this region by bounding the minimal eigenvalue of Y

from below.

Proof. Suppose that A\ L £ for some \ € Z?™ with ()\ A)="MAd=n>0. As A L £ we
have A\; = (X + Y)\2, and plugging this into the previous equation we have ‘A3Y Xy = n.

Thus if ‘uY v > ng for all u € Z™, it would be impossible to find such a . ]

Now we will move to calculation of the regularized lift. We again will break the sum-
mation over w € My, 2(Z) that defines the symplectic theta function according to the rank

of w.

Definition 4.2.12. Forr =0,1,2, define:

’TI'ZI' w,w —Tir w,w dxdy
D€ / S Fpe () Xty ) By
wEMmQ(Z) y
rank w=r

Note the the integrand is I invariant (Remark 3.4.4). We have clearly that ®; =
Qo+ @1+ Pro. We also have that ®¢o(£) = 0 identically in what we are considering
since the polynomials have no constant term. To calculate these pieces, we will do a similar
unfolding procedure as in the previous section. Again we use the characterization of orbits

under SLy(Z) in 4.1.4. We note as well that the constant term of ® is equal to @ ;.

4.2.1 Rank 1 Terms

Definition 4.2.13 (Epstein Zeta Functions). Suppose that Y € Sym; (R), v,w € R™, and
p € C[C™]. Define the Epstein Zeta function for z with Re z large as:

(Y, zp,0,w) = Z e2mituy u+w) (4.46)
ot Yu+ w])

If v and w are 0 we leave them out, and if p = 1 we leave it out.

A priori this function converges absolutely uniformly in z for all z in any closed half
plane to the right of Re(z) = %5 + §, where x = degp. Note that this definition differs from
the more common definition (see for example §1.5 in [2]) in that we allow for p to by any
polynomial, instead of only homogeneous polynomials that are harmonic with respect to

Y (i.e. AYp =0), and we have not made the common normalization (it is more common
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to write (Y[u 4 w])***/2 in the denominator instead). In [2] it is proven that these zeta
functions (with the mentioned restrictions) can be extended to meromorphic functions that
have a single pole at m/2 if p is constant and v € Z™, and are entire otherwise, as well as
satisfy a reflection formula in z. This is unsatisfactory for our purposes for two reasons.
First of all we will desire to input in arbitrary polynomials p as these zeta functions will
come up in the evaluation of ®¢;(&;p), and also we have in mind that we want to allow Y
to vary, so that the set of polynomials that are harmonic with respect to Y will change. We

will adapt the proof in [2] to obtain the following lemma:

Lemma 4.2.14. Suppose that p is a polynomial of degree k, and write p(n) = Z;”pj(n)
with pj(n) homogeneous of degree j. Then ((z,Y;p,v,w) has a meromorphic continuation
in z to all C. If v & Z™ then it is entire, and otherwise it has a simple pole at z = 5 + k

for k€ {0,....[5]} such that ((AY)*par)(0) # 0, where it has a residue of:

7rm/2

AREID (% 4 k) det Y'1/2

((AY)*par) (0) (4.47)

and C satisfies a functional equation of the form:

Y e vepta) o) =

o 2mitow K LJ/ZQJ (—i)i=2kT (% +j—k— z) (4.48)

det Y1/? = £~ 4k flgm /2=

X C(% +j—k—2zYh ((Ay)kpj)(Yfln), —w,v)

Remark 4.2.15. Under the assumption that p is homogeneous of degree k and is harmonic

with respect to 'Y, this reduces to:

Y e, vipto), v, w)

—27i tow T (m + K- )
_ € D) KR z m Y .
~ det Y2 gm/24r—z 4(5+“_27Y (Y n),—w,v>
which is Theorem 3 in §1.5 of [2] after accounting for our difference of convention.

Proof. We follow the same structure as §1.5 in [2], making appropriate changes. Define:

g(Y, p;v, w) = Z efﬂ-Y[quwHZwitvup(u +w)
uezZm

If we calculate the Fourier transform:
/ 627ritmye—ﬂY[az—‘rw]—}—Qwith}p(x + ’LU) dr

. . . 1
— dot Y~ 1/2e=2mi vw ,—mY " y+o]—2mi fwy <exp <47TAY> P> (=Y y +v))
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so that by Poisson summation we have:
g()f7 p(n)’ v, 'lU) — 6727Titvw det Yﬁl/zg(Yfl, (eAY/47Tp)(_Z‘Y7177); —w, U)

We use the fact that:
/ t?e” " 7= m T(z)A™~7
0

So that we have for z in a closed half plane to the right of Re(x) = 3 + §:
F(Z) / 2mi tou > 242 —7tY [utw] dt
S Yipvw) = e /0 t**2e —
uezZm™
o , (4.49)
_ / terg Z efﬂtY[u+w}+2ﬂitvu@
0 t
ueczZm

where we may interchange the sum and integral due to the absolute convergence of the sum
in this right half plane. The expression inside the integral is almost equal to g(Y, p;v,w)

we defined above, except possibly the term where u 4+ w = 0. Define:

1 wez™
0 wgzZ™

k(w) =

then we have that:

/
Y el — gy pv,w) — e p(0)k(w)
uezZm

We break the integral over ¢ from 0 to oo into one from 0 to 1 and another from 1 to oo,
and then (4.49) is:

o dt 1 dt
/ t* Z e mtY lutwlt2mitou 2 / U <g(tY,p; v, W) — 6_2”"t”wk(w)2?(0>>*
1 INSYALL t 0 t

® = i . L dt
:/1 +? Z e—th[u+w}+2m vu7+€—2m vwk(w)p(o)/o t27+
uezZm
dt

1
+/ 7% det Y ~1/2e2mitvw (9 (flyfla (2 1) (=it Y ) _w’”> )7
0

The first integral defines an entire function of z, and the second is easily evaluated as:

) Loat St
62ﬂztvwk(w)p(0)/ tz? — 67271'1 vwk(w)p(o)zfl
0
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For the third integral, consider that A? =t"1AY | and we have:

AY [t 1y — - LJ/QJ DU —j Y
(A )ity = 303 o I (AY ) ()
7=0 k=0

The constant term of this is:
K/2
[x/2] ((Ay)kpzk) (O)

—k
anFe

k=0

so that we have that the third integral is equal to:

1 /
/ tzf% detY71/26727ritvw § : 6727rituw77rt_1Y_1[u+v]

0 uezZm

o
x zkj ((473)]%'#“ (Y Vo) (v ) &
LH/QJ

0) (1w
+ k() det Y 172 Z ) ) )/ pgrdt
0

(4m)kk! t

Thus, we have:

((z.Y;p,0,w) =
U”v/2J
7TZ B —2mitow p k’) (O) . @ o -1
F(Z)< ‘ Kw)p(0)2"" detY1/2 Z (4m)kk! (z 2 k) *
/ +? Z e—ﬂtY[u+w]+27rz vud
=, (4.50)

N 6—271'2 vw (—i)j_2k /oo t%—i—k—j—z
det Y172 & (4m)Fk!

/
x Z efZﬂituwfthfl[quv} ((Ay)kpj) (Yﬁl(u 4 U))dt>

t
ueL™

1

We have that the pole from 27" cancels with the 0 from ﬁ, and we are left with all the

poles coming from:

52
ka)(O) m -1
det Y1/2 Z T dn)RR (Z R k)

due to the two integrals defining an entire function of z. We are also able to deduce the
functional equation from this line as well. If we start with the right hand side of (4.48) and

perform the same steps we will arrive the right hand side of (4.50). t



CHAPTER 4. THETA LIFTS FROM SL3(R) 78

Theorem 4.2.16. The rank 1 piece is given by:

Qr1(&5p) = aoCTo=1 [Fi,:)

<<z,Y;p>} (4.51)

where C is the Epstein zeta function defined above.

We will give some examples where we can provide a more explicit formula for this after

the proof.

Proof. We can group terms in (4.45) according to lemma 4.1.4, and we have the rank 1

term is the constant term at s = 0 of:

dxd

lim [ 1wl umem Y e

TS Fr (Ou 'yeF’/F’ Y
ueZm

in the same way as in the proof of lemma 4.1.3, this is:

dxdy
: —mtrY (w,w) 2s
Th_rggO Z > . )p(n-(w))e IV ICEs] s
0 ’u) 'yEF//F/ YST
ueZm

1t

For w = (0,u), we have (w,w); = uy™" ‘u, and n,(w) = u, so that this is:

. _at -1, dxdy
Y Y e S i (g
uEZ™ vl /T, VJ:T Y

which differs from :

1/2
lim / / (wpemtru¥ ™ L20Y (4.53)
T—o00 1/2 Yy s

by an entire function of s that goes to 0 at s = 0. We will take a minute to verify this
claim. We consider that (4.52) and (4.53) are the same on the region with y > 1 (as this is

contained in the region with v = 1 in the first expression), so that their difference is:

ueZ™

o o dxdy
(1 - ‘j(7 177)‘2 )y2+s (454)

lim f(r)p(u)e ™ fuYuy™!
e ~er!/ry, Y FT
7#1

We note that [j(y,7717)| = |i(y~!,7)|, and when 7 € vF, we have |j(y~!,7)| < 1, so that
this integral is dominated by:

Crtuy -1 drdy
/ / (et S (4.55)
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We have that f(—77!) = 7% f(7), so that we have for y near 0, f(x+iy) = (z+iy) " f( ;;’j;g)
As y — oo we have that |f(7)| = O(e?™¥), so that as y — 0, and so we have |f(7)| =
O(y"e2™0v™ ") Thus so long as Y is in the region where ‘uYu > 2ny for all u € Z™ — {0},
we have that (4.55) converges on this region. Then we have that (4.54) gives an entire
function of s that goes to 0 at s = 0.

Thus we consider now (4.53). We can integrate in x which kills off all terms from f(7)

except for the constant term, and then taking the limit as 7" — oo, so that we have:

/ > —mtriuYuy ! dy
ao ) | plue px=

ueZ™

Qr1(&5p) = CTs—o

This integral over y is easily seen to be:

o0
rwtuyuy-! Ay T +s)  plu)
/0 plu)e” MW y+s  gits (tuyu)1+sr(8+1)
and summing over u we obtain:
/
I'(l+s U I'(l+s
S TOts) pw) LSy

— 7Tl—i—s (tuyu) 1+s 7T1+5
u

From the previous lemma this can be meromorphically continued to all of C, and taking
the constant term at s = 0 amounts to taking the constant term at z = 1. We note that
the right hand side of (4.51) is real analytic for on all of Sym; (R), so that since the two
sides agree on the region described in the proof, they agree on all of Sym; (R). O

Example 4.2.17 (m > 3). When m > 3, the function ((z,Y;p) is reqular at z = 1 due
to all potential singularities being at z = m/2 and to the right of it, so that we may simply
evaluate at z =1 and we have:

¢(1,Y;p)
s

Qr1(&p) = ao (4.56)

where ag s the constant coefficient of f. In some cases we can do better than this and obtain
a more explicit formula. The sum defining ((z,Y;p) for z large (4.46) does not converge at

z = 1. Instead, we can use the reflection formula (4.48), to have:

¢(1,Y;p(n))
m
2 ety V2 AT (m 4 e k1
P 28> & on )c(’;”+n—k—1,Y-1;(<Ay>kp)<Y‘1n>)

k=0
(4.57)
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the sums in the definition of the zeta function above are:

S ((AY)) (Y )

A (4.58)
2 T FE
and the summand is on the order of ||u||"™ *%2, so that when k > 3, the sum converges,
giving:
K/2 m —
Br1(Eip) = (—1)%/? Br(eer—k-1) z’: (AR -
FAL85P __aownﬂ2+ﬁfldetyﬂ/2k . AR o (fuY )/
= uezZm

Example 4.2.18 (tiﬁl). We will work out some more explicit formulas for evaluating
E’f,l(ﬁ;p). We have first that:

Oy (&p) = det YV2CT. [F?ff)c(z,Y;aﬁa‘l)p)] (4.60)

The advantage to this form of the function is that the operator AY behaves much more
nicely in this case, due to the fact that AYo(*a~'p) = o(*a')Ap. Recall we have the

decomposition:
[x/2]
C[C™)" = @D (‘gm)* [T (4.61)
k=0
where F[C™|" is the subspace of harmonic polynomials that are homogeneous of degree k.

The space F[C™]* is spanned by polynomials of the form

pi(n) ="'(nu)”

where u € C™ 14s an isotropic vector. We have that

A((m) P2 (m)) = 261 (k1 + K2) ()™~ pi2 (n) (4.62)

(the same holds for p € F£[C™)*2). For p € #[C™]|*? we have that

. 251(k11)2 ke =0 and k1 =k
AF((fm)™p) (0) = . (4.63)
0 otherwise

Thus we have that C(z, Y, (t7777)””1p) is entire in z unless p = 1, in which case it has a pole of
/2541
(G 1)
that if & > 3, and p € C[C™]* of the form p(n) = (‘nn)*po(n) with po(n) € H[C™]"2 and

2K1 4+ Ko = K, we have:

order 1 at 5 + k1 of residue . Again we can use the reflection formula to obtain
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/ 1

&1 (6 () po(n) = a0Crrs 3 (Y_l[ﬁ?)(j/;ﬁm_l (4.64)
uezZm

where Cl, x, 5 the constant:

0141752 =

(—D)" SN (DT (m/2+k —k—1) (k1 (K1 + K2)!
ir2rm/2+6—1 P ok k (Kvl + Ko — k)'

Example 4.2.19 (Identification Dy = Hy x H1). We have from (2.44) that:

Oz(Tl Tg)il u — 71 Y2t
, U2 (9192)1/2 Toul + U2

so that

U (72U1 + UQ)@ + =+

(("gm)™pt2) <04(7'1,T2) (u

Y ) = () TR s+ s
2 (rou1 +ug)™ £ =—

and we have Y (11, 72)  Hu] = (y1y2) "t mous + uz|?. Thus, for k > 3 we have:

(y1y2)"*(k — 1)) 1
Z (

Rk ToU1 —I—UQ)”

1 (E(m,m2);pE) = ao (4.65)

ueZ?

If we write E.(7) for the rank k holomorphic Fisenstein series, normalized so that is has

constant term 1, this is :

~ — |
Dry(E(,m2);pY) = aoyfﬂyg/zwﬂ(ﬁ) (4.66)

After we have calculated the rank 2 piece as well we will return to this to give an expression
for Fy(11,72).
4.2.2 Rank 2 Terms

We move on to the calculation of the rank 2 piece, ®;o. We will first need to do some
preparation to deal with the regularization process and perform the unfolding. To begin

with, recall we have:

. mitr X(w,w) —mtrY (w,w dxd
®r2(¢p) = CTazp | lim / > FIpne (w))eme Xl gy (wanr S
FCIIT e My 2(2) y
rank w=2
(4.67)

Let R4 to be the region in Sym,! (R) defined by:
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Ra={Y € Sym} (R): ‘uYu > A for all u € Z™\{0}} (4.68)

We remark that this region is a cone in Sym;! (R) in the sense that if Y € R4 then tY € Ra
for any t € R>;. Also note that this is the region described in Lemma 4.2.10 if we take
A = ng. For f a weakly holomorphic modular form, we have a positive constant ¢y such

that |f(7)| < max(e“/¥, ey "), where f < g means that f < cg for some constant c.

Lemma 4.2.20. Let ¢y > 0 be a positive constant such that |f(7)| < max(efy, ey "),
Then forY € R4Cf/37r, we have that ®¢o(&;p) is real analytic and is given by:

Oro(ép)= > e ag(Y;p)

SeSkew, (Z)
rank S=2

where as(Y;p) is the constant term at s = 0 of:

as(Yipis) =2 Y / F(O)p0r (wova,,a))e my(wm"’b’d’wm""”d”L:ﬁy
) s
abd€Z>0 y
ad=
0§b<a

where S = Sy with Sy primitive, and wy € M}nz(Z) is such that (wo, wo) and Im 79(Y, wg) >

V/3/2. This is an entire function in s.

Proof. Suppose that Y is in Ry, 1/3m and consider the expression

) dxd
lin F()p1s () X ) =Y G S8 (4.69)
=00 JFr went,, 2(2 Y

rank w=2

for s is in some right half plane Re(s) > so. We have the estimate 7trY (w,w), >

—mtrY (w,w —Cimtr Y (w,2w
(ww)r < =C (ww)r for

mlwiYwiy > cpy, so that for Y € Ry, /3r, we have |f(7)le
some positive constant C;. Thus we may interchange the sum and the limit in the above

expression. Define a's(Y;p; s) to be:

ag(Ysip;s) = Z /f w))e Y )TF

wEMm 2
(w, w) S

and so we have that (4.69) is equal to:

Z eﬂ"LtI‘XS /(Y p; s )

SeSkew, (Z)
rank S=2

Now we consider these individual pieces ay. By the same unfolding process as in the proof
of theorem 4.2.16, we have that
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Wi = 3 Y / P (w) )oY @ade (- T>|2Sjj§fi’ (4.70)

[w]eOS veSLa(Z)

Note that > . SL2 (2 Jo 7 is actually [, but we have written it like this because of the
presence of [j(y~!,7)[**. Also, we note that the sum [w] € OF is finite. For a given
S € Skew,,(Z) with rank S = 2, there is a unique Sy that is primitive and S = uSy for
some u € Z~g. There is also a wg € M:L,Q(Z) so that (wg,wg) = Sp, and then the elements

a b
of O"50 have representatives of the form wWoYa,b.d (Yabd = < d) ), where a,d > 0, ad = p,

and 0 < b < a. Define ag(Y;p; s) to be:

—’TI' I w,w dl'dy
sips) = 3 / f(r Y (ww), e (4.71)
[w]eOs
and
_ dxdy
Y- DS / f mtrY (w,aw),
ag( 2 | w))le e

We have that the integrand in the definition of a is non-negative and dominates that of
as and al (this is obvious for ag and for ay we use that |j(y~1,7)| < 1). We will show
that for Y in the region described it converges absolutely uniformly on compact subsets of
Y for all values of s, and so defines an entire function of s. After we have shown this we
obtain the same for a'y and ag, and since their difference goes to 0 at s = 0, we have that
as(Y;p;0) = as(Y;p;s). Now to show that the integral for a% converges for all s.

We will choose the representative wo = (wo,1, wo,2) for 0% such that

/ t
det ’Ll)oY’wo Z

tZUO’lYU)OJ 2

(&7 wo)

(y2(&,wo) is the imaginary part of 72(&,wp)). We may do this since a different choice of
representative amounts to multiplying wy on the right by an element of SLs(Z), which
amounts to acting on 79(&, wp) by the inverse of that element. Thus by choice of represen-
tative we can fix it so that 72(&, wp) is in the fundamental region for the action of SLo(Z)
on H, where Im7 > \/§/2

Now, we have that

t Y 2 t Y 2
trY (w, w), = "wiYwiy +‘wrYw (@ + L y !+ fwaYwy — (w1 Ywp)® y!
tw Y wy tw Y wy
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If we have that w = w744 then we have that

b1 Ywr = a® w1 Ywo 1,

t 2 t 2
w1 Y wy wo,1Y wo 2
fwoYwy — 7( ) =d? (twg oY woo — —( )
t ) ) t
w1 Y wy wo,1Y wo 1

Now, since Y is in R4cf/3,r, we have that mwo 1Y wo1 > ¢y, and also that

(fwo 1 Ywo 2)?

™ (two,zona - ) = mya (&, wo)* 'wo  Ywo > ¢

fwo,1 Y wo 1

( ) frrtrY(w,w)-r‘ < = C2 trY (w,w)

Thus we can find some Cy so that |f(7)e 7, and so we have

’f(,]_)p(m_ <w))e—02 tr Y(w,w)Ty—2—5| < ‘yl—se—Cg trY (w,w)- ‘
for some integer [, depending on the degree of p, whose integral converges uniformly for all

s in any compact region of C and Y in a compact subset of Ry, ;/3m O

Remark 4.2.21. It is important that we can choose wy such that T2(&, wp) is in the funda-
mental region for the action of SLa(Z) on H to obtain the estimate we use. We are unable
to do the estimate without this as there will be no way to guarantee |f(7)] < e~ ™Y (ww)r

for some fized Y and arbitrary w. If we do not carefully choose w this way we will have the
(w1 Yws)?

w1 Vo > can be arbitrarily small.

problem that (thY’LUQ —
We have:

Theorem 4.2.22.
paGp) = D> brs(&p)

SoeSkew?, (Z)

where

§,wo TimTy (§,w TinT2 (§,w
¢f50(£ p) = 2 yl ‘S wO Z Z Cmn€2 L& 0) 2 2(§wo) (472)

m=1n=—oo

where ¢, are coefficients given by:

Cmn = Z d”_lamn/dz (4.73)
d| ged(m,n)

Proof. Fix some Sy € Skewp,(Z), and wy € M;vQ(Z) as in the previous lemma, so that
(wo,wo) = Sp. Then we have that a set of representatives for O*% is given by {wova,pa :
a,d > 0,ad = ;,0 < b < a}. From the same calculation that shows (4.14) we get
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—Ttr w,w dxd
CTuca | [ it (uwp)emeY o S50

_ P& W) ominitcn) 1 e
= y1(§,w) f( 2(67 ))

(4.74)

Next we consider what happens to the above expression when we replace w with wygp 4.
From (4.12) and (4.13) We have that:

T1(&, WYapa) = adri (&, w), 72(§, wYapd) = M7 (&, wYapa) = dn(§, w)

a

so that replacing w with wygp 4 in (4.74) is:

-t P(U(§7 ZU)) eQm'adn({,w)f <d72(§7 w) - b)
a Y1 (ng) a

We have thus that:

b (659 =2 S L o (TG Z0) gz

67 ’U)O a
n= la b d€Z>O
ad=p
0§b<a

Now consider the expression:

dr1 dTo (5, w()) —-b drt omim &m2(&wo) —b
S () s B3 e

a,b,dEZZO a,b,dGZZO n>-ng
ad:u ad:u
0<b<a 0<b<a

For fixed a,d,n, when we sum over b we get 0 unless a|n, in which case the sum over b

contributes a. Thus the above is

§ : dn—lane%ri%d’rg (&wo)

n,deZZo
ad=p
aln

Thus we get that (4.75) is

2p(77(§, wO) Z an62ﬂiadT1 (é,wo)e2ﬂi%dT1 (&wo)
y1(&, wo) >0

a,d>0
ad
aln

and by relabeling ad as m, and 7 as n, and collecting coefficients together, we obtain the
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result. O

Remark 4.2.23. This route provides an alternate way to prove theorem 4.1.16. For a Hecke
eigenform form f =35> ane

also have the expression ¢f.s,(£;p) = Q%e%iﬂﬁ(&%)(T(,u)f)(Tg(ﬁ, So)) but we eschew

this for weakly holomorphic modular forms as the Hecke operators increase the order of the

2minT and a; = 1, we have that Cmp = QnGm. Alternately we

pole at infinity so that there are no Hecke eigenforms (see the summation from —oo to oo
inmn (4.72).

We have a similar result as theorem 4.1.17, where the rank 2 piece for the lift to O(m, m)
is obtained from the rank 2 piece for the lift to O(2,2). The proof is identical.

Corollary 4.2.24. Using the same notation as in theorem 4.1.17, we have:

e = Y )R], ,
AEP2(Z)\GLm/(Z)

Remark 4.2.25. Note that it is not all of <I)§cm) that is obtained from @502), as we do not get

the constant term in this way, only the non-constant term. The rank 1 piece can be thought
of as a lift from the degenerate O(1,1). D; = Ry, parameterized by a single variable
K € Rso. When we calculate the rank 1 piece we get <I>§£li(Y) = 2ﬂ§2). Then summing over
P1(Z)\GL,(Z) is essentially breaking up the sum defining ((z,Y;p) into lines through the

origin. We will not treat this idea in detail since it is a small aside.

We combine Theorems 4.2.16 and 4.2.22

Theorem 4.2.26 (Expression for the Regularized Lift ®¢(&)). Suppose that f : H — C is a
weakly holomorphic modular form of weight k, with Fourier expansion f(1) =1 a,e2minT .
Then the regularized lift @5 : D —V,, (4.2.3) has the Fourier expansion:

1
©s(&5p) = a0—¢(L,Y5p)
00
) Z eﬂ'iutr XSop(n(K SO))yl (Y, So)e—Zw,uyl (Y,So) Z CHJLBQMWFQ (Y,So0)
SOESkewin (Z) n>=-—00

n>0
where (1,Y;p) is the Epstein zeta function (4.2.13), (where we take the constant term at
z=11n case m = 2 and ((z,Y;p) has a pole there), and c,, , are the coefficients defined in
(4.73). The constant term of the Fourier expansion is ao%C(l, Y:p) and the uSy-th Fourier
coefficient is:
o

as,(Y3p) = 2e™H T XS0p(n(Y, So) )y (Y, So)e 2 (¥:50) Z ¢y me2rinT2(Y:So)

n>=—00
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Theorem 4.2.27 (Singular Shimura Correspondence). If f(7) = >~ ane®™ "7 s a

weakly holomorphic modular form of weight k, then the singular Shimura lift of f to SOy(2,2)
= SLy(R) x41 SLa(R), as defined in [1] is given by:

_(r=D)(x) KA1 — - 2mimTy  2minT
Fy(n,7m) = ap—— 2L E(m) +2 YD cmae®m T (4.76)
m=1n=—cc

where E,; is the weight k holomorphic Eisenstein series (normalized with constant coefficient
1), and ¢y, are the constants defined in (4.73).

In particular this is a meromorphic modular function on HixHi with respect to S Lo(Z) %
SLs(Z) of weight (k, k), and it has singularities along the divisors 71 = 1o that are poles
of order k for all v € My(Z) with dety =n >0 and a_,, # 0. At a point (71,74) on such a

divisor, the singularity is given as:

Z a—det’YW,¢< (K;_l)!

T — YT2)%9(y, T2)%
yres 1= 72)"5 (7, T2)

!/ __ !
T =Ty

Proof. Most of the proof of this is contained in example 4.2.9 (for the singularities), and
example 4.2.19 (for the rank 1 piece giving the term with the Eisenstein series). To obtain

the sum in (4.76) we follow the same process as we obtained theorem 4.1.18. O



Chapter 5

Lifting Cusp Forms of Genus 2 and
Higher

5.1 Fourier Coeflicients of Lifts

In this section we will write H for H,,, except when later on we will be specifically referring
ton = 2. We will also write f for a Siegel cups form f : H — V, weight k, with (Vx, k)
an irreducible representation holomorphic of GL,(C). Recall in definition 3.4.5, we defined
functions ©% : D x H =V, ® Vi, where V,_ (3.51) is the GL,,(R) representation whose
underlying space is Homgy,, (c)(Vi; C[Mm,n(C)]")*, whose action is given by (px(a) P)(v) =
|det a|"o (o) "t P(v) for v € Ve, P € Homgy,, (c)(Vis C[Mimn(C)]), where o is the action on

C[Mpmn(C)] given by o(a)p(n) = p(a'n).
The function 0" is modular for I' x I on D x H of weight (p, k*), i.e.:

O (v&,7'1) = (pr(i~ (1,€)) @ K*(j(/,7)))©% (&, 7)

and can pair with f to obtain a function (f,©") : D x H — V,_ that is modular of weight
(P, 1). We recall that P(f(7)) € C[M,;,,(C)], and (3.56) says:

(LONENP) = 3 PO (w)em s Xl mriny (w:

WEMp, 2n (Z)

Definition 5.1.1 (Theta Lift of f to O(m,m)). Define the Theta lift of fto O(m,m) to
be &y : D —V,, to be the function:

B (€)= /F (. ©)(&,7) dety™"Ldady

where F is a fundamental domain for the action of T' = SP,(Z) on H.

This converges without issue as f is a cusp form.

88
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Remark 5.1.2. Note that a priori that the minimum m for which we can lift f to O(m,m)
is m = mn, due to the weight of f being k = (K1,...,Kn) with k, # 0. We will see that indeed

for cusp forms the lifts are identically 0 until we reach m = 2n.

Proposition 5.1.3. The function ®; : D — V,,_ defined in the previous definition is
modular on D of weight py:

Dp(v) = pu( (1,6)25(6)

for ally € T, £ € D. In terms of evaluation of ®(§) on P € Homgy, cy(Vi, C[n]"), we

have:
O (v P) = |detj~ (v,8)"®¢ (& 0(5~(1,€) 7' P)

From the modularity of ®; we have that it has a Fourier expansion:

b)) = Y N ag(Y) (5.1)
S€Skewm (Z)
for some ag(Y') taking values V,, . We will write ag(Y’; P) for evaluating ag(Y’) at a specific
P. We obtain an expression for the Fourier coefficients immediately from the definition of
er:

os(ViP)= 3 [ PUEm)e ™ 00 dety ey (52)
WEMm 2n(Z) * T
(w,w)=8

We will now seek to obtain more explicit expressions for these Fourier coefficients. To begin

the calculation of the Fourier coefficients we will record the following lemma. It is a simple

calculation but it will be used frequently in this section.

Lemma 5.1.4. Suppose that f : H — V,; is modular of weight r, g € GSPF(R), R C H,
P € Homgr, c)(Vi, C[Mpnn(C)]%), and w € My, 2, (R). Then:

/ P(f(T))(nT(wg))e”T trY (wg,wg) - det yfnfld:cdy

. (5.3)

=p(g)?) /2 / P(f]y-1(7)) (s (w))e™ ™D &Y @) qet yy=n=1 iy
gR

where fl|g is the slash operator of weight k for g applied to f (3.8).

Proof. First recall we have n;(wg) = n4-(w)j(g, 7) and (wg, wg)r = p(g)(w, w)gr. Then in

1

the left hand side of (5.3) we change variables 7 +— ¢~ "7, giving:

/ P(f(g~'r)) (n-(w)j(g, gilr))efﬂ“(g) Y (ww)r qet y " dady
gR
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We have j(g,g7'7) = j(g~!,7)7! so that

P(f(g~' 7)) (nr(w)j(g,97'7)) = P(s(i(g~", 7)) f) (nr(w))
Then finally we use that x(j(g~*, 7)) "1 f = u(g)d(“)*”("“)ﬂf]gq. O

We can now collect terms together in the sum on w in (5.2) according to their I” orbits.

First we introduce some notation. For S € Skew,,(Z), define:

M3 — {w e My 2n(Z) : (w,w) =8, rank w = rank S + j}

m,2n

0% = M, /T

m,2n

(5.4)

We will write elements of @7 as either w or [w], depending on whether we want to value
simpler notation, or to emphasize that they are orbits of M, 2,(Z). We can rephrase (5.2)

in these terms:

os(iP) =3 ¥ 3 [ PU@)m e O dety T Ty (55)

J [w]e05d w'ew]

For D a diagonal matrix, we will also write OP QP+, Mszn(Z) and Mﬁgn(Z) for ©7(P)|

m
0 D
07/ (P)7 M;,]l(fn) (Z) and Mi(ézl)’] (Z), respectively, where J(D) = | —D 0 0 |, so that the
0

representative Fourier coefficients (Definition 3.3.6) are given as:

ap(V;P)=3 > X /f P(f(7)) (e ()™ (') et y =~ dady
il |

w]eOPJ w'elw

We will now prove a lemma that allows us to group together the inside sums in (5.5). Given
aw € Mp,o,(Z), we will write

I, = stab p(w) (5.6)
and F,, for a fundamental domain inside of H,, for the action of I',.
Lemma 5.1.5 (Unfolding). Suppose that [w] € My, 20 (Z)/T’, we have:

> [ PEE )™ oty dady
f

w’€w] (57)
=2 [ P o (w)e ™Y dety " dady
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Proof. The proof is essentially the same as Lemma 4.1.3, but we will write it out anyways.

Let ~; range over a set of representatives for I, \I". We have then that if h is some function

> hw) = h(wy)

w’ €[w]

of w':

By Lemma 5.1.4 we get that the left hand side of (5.7) is

2 / _, PE@)r(w))em Y0 det y =~ dady
- U

7

Their union of the regions v, LF gives F,,. We have that the integral with w = 0 is identically
0 since the polynomial P(f(7)) has no constant term, so that all of the stabilizers do not
contain —1. Thus both v; and —~; appear in the sum over ¢, so that we are double counting

the region F,, giving the coefficient of 2. O

In light of the lemma we can then refine (5.5):

as(Y;P) =2 > / P(f(r)) (1 (w))e ™Y (@Ww)r ety dady  (5.8)

J we03I
We have an action of GL,,(Q) and Sp,(Q) on My, 2,(Q) on the left and the right, respec-
tively. Given w € My, 2,(Q) we can form colspang(w) € Q™ and rowspang(w) C Q.
For A € GL,(Q) and g € Sp,(Q), we have colspang(Awg) = A(colspang(w)), and
rowspang (Awg) = (rowspang(w))g.

Proposition 5.1.6. Suppose that w € O, with rank S = 2r and sd(S) = D. Then there
is an A € GLy(Z) and g € Spp(Q) so that w = Awp ;g where:

D00 O 00
o001 0 o0
YPIT 0 00 0 1, 0

0000 00

Proof. We can find an A; € GL,,(Z) so that Ajw = u(j)l has the bottom m — 2r — j rows

zero, and the rows of wy linearly independent. Then the top 2r + j rows of Ajw. Then we

can choose Ay € GLoyr4;(Z) so that Ax(wq,wr) YA, is in skew normal form. Then writing

A
Al = ( 2 1) Ay, we have that A~ lw = (u(;z) with the rows of wy linearly independent

D 00 0 0 0
and (wa,ws) = J(D). If we consider the matrix w3 = [0 0 0 1, 0 0|, then we
0 00 0 1; O

J
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have (w3, ws) = (w2, ws), and since both matrices have linearly independent rows, there is

a g € Spn(Q) so that wzg = wy. Then we have wp ; = <u(;3 and w = Awp jg. O

We will call a w € My, 2,(Z) degenerate if rank w > rank (w,w). This is equivalent to
the rows of w spanning a degenerate symplectic subspace of R?". It is immediate that one
w in a IV orbit is degenerate iff all members of that orbit are degenerate, and we will call a

I orbit degenerate if its elements are degenerate.

Lemma 5.1.7 (Degenerate Orbits Contribute 0). Suppose that w € M, 2, (Z) is degenerate.
Then:

/ P(f(7)) (- (w))e ™Y ) dety ="t dady = 0 (5.9)

w

Proof. Suppose that w € My, 2,,(Z) is degenerate. We have that w € O%7 for some S with
rank S = 2r and j > 0. From the lemma above there is an A € GL,,(Z), a g € SP,(Q)
such that w = Awp ;g. Then we have by Lemma 5.1.4 that the left hand side of (5.9) is:

/ P'(fly1(7) (i (wpj))e ™Y (WD swns)r det y ="~ dzdy (5.10)
]_‘/

where Y/ = Y[A], P' = 0(A)~'P, and F' = ¢gF, is a fundamental domain for g/, g~!. We
have that g(I')g~! NT" is finite order in both g(I'")g~! and I so that there is a finite order

1
S under the trace pairing. We have that f|,-1 has a Fourier expansion with respect to S*:

1 S A 1 S
subgroup S C Sym,,(Z) so that gI"g~' N ¥ )> = ( 1). Let S* be the dual to

f’gfl (7_) — Z alN627ritrNT
NES:_
where the expansion will only be over positive definite elements of S* as f is a cusp form.
We have that g(I',))g~! C stab sp.(@)(wp,;), and that stab gp, (@)(wp ;) is generated by

the elements:
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1
1
/ /
, a b
m - )
(9) )
1
c d
1 1
1 T2  X23 1
1 I3 1
n(x,y) =
(z,y) ) .
1 1
1 —ty 1
/ /
for g/ = C/ d/ € Spnfrfj(Q)a RS Mj,nfrfj(Q)a Tog € Sme(Q) and T23 € Mj,nfrfj(Q)-
Let S22 be defined by

0O 0 O 0 00
0 Seo 0] =5SN|0 * 0
0O 0 O 0 00

We have that Sz is a finite order subgroup of Sym;(Z). We describe the action of m(g')
and n(z,y) on H:

11 — 7135 (9's T33) LT3 T2 — 135 (g, T33) T Ts2 Tisi(g Ta3) T

m(g') T = | o1 — 7235 (g, 733) I3 To2 — To3(g), Ta3) i Tee Ta3s(g), Ta3) 7]
a'r3 — (9' : T33)C/T31 a'Tgy — (g' : 733)0'732 9/ ©T33
and
T11 Ti2 + T13 'y T13
n(x,y) - T=|To1 +yTs1 Too+yTse + To3ly + yTszly + xo0 o3 + yT33 + To3
T31 32 + 'yTa3 + Twog 733
0O 0 O
Suppose now that y7 =7+ | 0 s99 0| for some sg9s € So and v € gI'),g~ . Then we
0O 0 O

have v = n(z,y)m(g') for some x,y, ¢’. Since (y7)33 = 733 we have that ¢’ = £1, and then

(y7)31 = 731 so that (unless 7 is in a set of measure 0), we have that a’ = 1, so that ¢’ = 1.
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Then, looking at 712 and 793 we have that y = 0 and x93 = 0, (again unless 7 is in a set of

measure 0). Thus if A is some function on F’, we can write:

/ h(T)dT:/ / h(n(x2)7")dwodr’
! F' /n(Sym;(R)) JSym,(R)/Sa2

where dr = dxdy is the usual volume element on H, and dr’ = [[,; 100 dxi; [[;; dyi;. We
have that 7,,(z,,).-(Wp,j) = 1-(wp,j) and (WD j, WD j)n(zss)+ = (WD,j, WD j)r, SO that in the
integration

/ P/(f|g_1 (n(222) - T/)) (nn(zm).q—/ (wD,j))67”trY/(wD*j’wD’j)"(GCm)'T' det y_n_1d$22
Symy;(R)/S22
all of the terms except —1(n(xz92) - ) are independent of x93. We have that
pt fl, D
P’(f|g_1(n(x22) . 7_/)) _ Z Pl(a/N)€27ritrNT’627ritrN22x22

Nes;

Since N is positive definite we have that Noo > 0, so we have

/ 627'(1' tr Nooxoo d$22 =0
Sym;(R)/S22

so that (5.10) is 0. O
It follows from this lemma that

Corollary 5.1.8. The contribution to the Fourier coefficients of ®y is entirely from the

non-degenerate orbits:
es(ViP) = 3 [ P )™ 0 dotydady

We will say that w is full rank if rank w = 2n (when m < 2n there are no possible
full rank w). When w is full rank we have that I, = 1 and F,, = H,, but when w is not
full rank these stabilizers will be non-trivial and the fundamental domains F,, will be more

complicated. We are lucky then that we have the following lemma.

Lemma 5.1.9 (Non Full Rank Fourier Coefficients are 0). Suppose that w € My, 2n(Z) is

non-degenerate and not full rank, and f is a cusp form. Then

/ P(f(7))(nr(w))e ™Y @) qot " dady = 0 (5.11)

w

The proof will follow from a series of smaller lemmas related to the structure of F,, and

the corresponding integral.
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Lemma 5.1.10. Suppose that w € My, 2,(Z) is non-degenerate and rank w = 2r < 2n.
Then there is a My, € SP,(Q), such that wM,, is of the form:

wa:(* 0 =* 0)

where the * blocks are r entries wide and the 0 blocks are n —r entries wide. We have that:

_ i T2 _
Fo=Mj"- { (t > i Tag € Fupy 12 € My (C), 111 € Hyyyn1 > y221[ty12]}
Ti2 T22

where F,, is a fundamental domain inside of H,—, for a subgroup of SP,_.(Q) that is

commensurate with SPy,_(Z).

Proof. To begin, we may find a M, in SP,(Q) so that

1, 0 0 O
rowspang (wM,,) = rowspang (OT 01 0)
T

as the former is a 2r-dimensional non-degenerate subspace of Q2. Write I'},_,.(Q) for the

subgroup:
1
a b a b
F”ﬂ—T(Q) = €SP, (Q)
1 c d
c d
, ., 0 0 0 , v ,

Then T7,_,.(Q) = stab gp, () 0 0 1 so that T, < M, ‘T, _.(Q)M,. Consider

the subgroup of SP,_,(Q) identified with M, I}, M, NT;,_ (Q), which we will call T}, .
We claim that this subgroup is commensurate with SP,,_,(Z). Suppose it were not. Let
I = M T, M, NT,_.(Z). We have that Mj'T"M, C Mj'SP,(Z)M, and further
that T, = SP,(Z)NM,I",_.(Z)M,'. Thus we have that I = M 'SP, (Z)M,NSP,(Z)N
I _.(Q). We have thus that if [[ : M, T’ M,] = occor [[' : T,,_(Z)] = oo, then we would
have that M, 'SP, (Z)M, and SP,(Z) are not commensurable, which is a contradiction.
Via a similar argument as in lemma 5.1.7, we have that M T M, has a fundamental

domain given of the form:

i1 Ti2 _
. : T2 € Flpy Ti2 € My (C), 711 € Hy, Y11 > Yoo ['y12]
Ti2 T22

and then translating this by M ! gives a fundamental domain for I, . O
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Lemma 5.1.11. Suppose that 0 <r <n and w € Mo, 2,(Q) is of the form:

wp 0 0 O
w =
0 0 w2 O

is non-degenerate and has rank 2r. Let R C H, be a region of the form:

I Ti2 _
R = { (t ) t o9 € Fopy T2 € My (C), 711 € Heyy11 > ?/221[tyl2]}
Ti2 T2

where F), is a fundamental domain inside of H,—, for a subgroup of SP,—.(Q) that is
N1 Nig

commensurate with SP,_(Z). Suppose as well that Y € Symj, (R) and N = .
Nig  Nao

is symmetric positive definite of the same dimensions of 7. Then the integral:
/ e27ritrNTe—7TtrY(w,w)7— det y_n_ldl‘dy (512)
R
1s independent of Nis.

Proof. To begin, write W = (wl ) and replace Y by Y[W 1] so that (5.12) is
w2

/ e2mitr NTe—WtrY(w/7w/)r det y_”_ldxdy (513)
R

1 000
with w' = (O 01 O)’ and we will prove the statement for (5.13). We will write ¥ =

Yii Y
. 1 '2) with each block being r x r. We have:
Yiz Yoo

th‘ tY Y—l B t$ tY Y—l
Y(w',w'); =tr Yoy +tr Yo * . B 2hn y ! . ) 2
T12 0 12 0

+ tr(Yoo — Yi7' [Va2)) (w11 — v [w12]) ™

yl = <(y11 — g [tya]) ) [(1 —y12y221>]
3/2_21 1

Now we move on the integration. We will write S = Sym,.(R), P = Sym," (R), M = M, .(R),
M’ = M, ,,_(R), and A = Skew,(R). The integration is:

where we use:
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[[ ] Lo

Fly M Py Lty5] SXM!

t tY Y—l t tY Y—l
X exp |—mtr¥Yi ! tafn + 2t y ! t$11 + 1211
12 0 12 0
x exp [—mtr (y11 Vi1 + (Yoo — Y17 [Yi2]) (yi1 — ¥as ['912]) 1)
x dety ™" td(z11, 212)dy11dyr2d (T2, Y22)
The variable x1;1 is a symmetric matrix, which complicates the integral. We will use a
trick that will come up again later, where we interpret the x1; as variable in M whose A

coordinate is 0. With this perspective we use the Fourier inversion theorem to introduce

another variable s in A, and the integral is:

/ / / / / 627rst111627ritrN7—

Fly M/ Py Ltyyy] A MM

t$ tY Y—l t.ﬁlf tY Y—l
X exp [_,ﬂ.tr Yllt <<tx11> + ( 120 11 y—l txll + 120 11
12 12

x exp [—mtr (y1Yir + (Yoo — Y17 [Ya2]) (yi1 — ¥a ['912]) 7Y

x dety " ld(211, 212)dsdyi1dy12d(w22, ya2)

We now integrate the x1; and x12 variables. We can interpret them together as a variable in

M, ,,(R), and then after translating x1; — z11 — YfllYlg this is simply the Fourier transform

x T
of the Gaussian exp (—77 tr Y1 ( 11) y 1t < 11)), and after integrating x11; and x19, we

get

:detYl_I”/Q// / /6—27ritr(N11+s)tleYHleQm‘trNggrgg

Fl, M/ P+yss [tylz] A

_ Ni1+s N1+ s
X exp [—71’ tr Ylllt ( tljif ) < 1 ) —mtry1 Y — 2w tr(y11N11 + Y12 tN12)
12

X exp [— (Yoo — Yip ' [Vaa]) (Y11 — v [(912]) 1} dety """ dsdy dyrad(was, y22)
We move the integral over A further into the integration, and we translate y11 by y;21 [ty12],

and then we can shift the integration over y;2 to happen first. We arrange terms to collect

terms with y12 together, and obtain:
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=det Y_n/2////e—27ritr(N11+s)tYngl_lleQMtergrm
A P M

7,

x exp | —mtr (Y H(Nig 4 8)yin(Nug + s) + (Yig 4+ 2N11)yi1 + (Yoo — Yﬁl[le])yﬂl>]

X exp | — mtr (Yl V(N + 8)y12Yas y12(N11 + 8) + 2V H(N1y + 8)y12 tleﬂ

x exp | — mtr ( Yy N2y ‘N1z + 2y12 ‘N1a + 241255 ‘w12 N11 + V11912900 ylZ)]

147/2 —n—1+7/2
xdetyln TRy T Gy dsdyrd (22, y22)

We have that:

tr (Y H(N11 + 8)y12ysy ‘y12(N11 + 8) + 2V (N1 + 8)y1a "N 12 + Y Niayoy tNu)
+ tr (23/12 EN12 4 291295 ‘Y12 N1 + Yi1y12Yas ty12)

=tr'CY1'Cy12 + C ' Niayi2)yas (12 + C ' Niayi2)

where C = Y71 + Ny + s, which we note is invertible as is has positive definite symmetric

part. Integrating over 12 amounts to integrating a Gaussian, and we get:

—detY_T/2///6—27Titr(N11+5)tY12Y1_11627ritrN227—22
Fl, AP

X exp |: —mtr (Yl_ll t(Nn + S)yn(Nu + S) + Y11y11 + 2N11y11 + (YQQ — Yl_ll[Ylg])yﬁl)]
x det(Yi1 + Nip + 8) 7 detyr" T 2ys 1 dsdyryd(an, ya)
This integral is manifestly independent of Nis. O

Proof of lemma 5.1.9. Suppose that w € M, 2,(Z) is non-degenerate and not full rank. We
can find an A € GL,,,(Z) and a g € SP,(Q) so that w = Aw'g, with:

wy 0 O
w = 0 wh 0
0 0 0

for some full rank w},w) € M,(Z). Write Y’ =AY A, and P’ = o(A)~'P. Then we have:
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P(f(7)) (1 (w))e ™Y () det y =" dady
’ (5.14)
— / P,(f|g—1 (7_)) (nT(w/))e_ntr Y’(w/,w/)T det y_”_ldxdy
9 Fw

—

The function f|,-1(7) has a Fourier decomposition:
f|gfl (,7_) — Zakfe%ritrNT
N

where a/y are some coefficients in V., and N ranges over positive definite matrices in some
lattice. Write p'y for P’(aly), so that (5.14) is:

Z/ plN(nT(w/))GZWitrNTefwtrY’(w/,w’)T det yinildﬂfdy (515)
N Y9 Fu
We have:
wiTin wiTie
n-(w') = | w) 0 (5.16)
0 0

The polynomials p/y are contained inside of the GL,,(C) x GL,(C) translates of A"(n)
(3.50). As f has weight k = (k1,...,Kn) With &, > 0 (this is true for all Siegel modular
forms, see remark 3.2.2), we have that p/y will be a sum of terms, each of which has some
factor of AlL--1)(A'p) for some A’ € GL,,(C). When we evaluate A1 (A'n (w')) we
see that as a polynomial of 7, it is contained in the ideal generated by the variables of 7o.
Thus so is py (n-(w')), so that p/y (9, (w’)) is either 0 or has non-trivial dependence on some

entry of 712. The integrals in (5.15) are obtained from:
/ 627ritrN7—677rtrY/(w/,w’)T det yinildﬂfdy (517)
97 Fuw
by differentiation:
/ 1 pGV(T/T(w/))BQM' tr NTe—ﬂ'tI‘Y/(’LU/,’LU/)T det y_n_1d$dy
g w

_ pr i / p2mitr Nre—wtrY’(w’,w’)T det y_n_ldacdy
ON) Jyrr,

(5.18)

with the differential operator pfy, (8%) defined by:

o . .
p/]<[ (a]\f> eZﬂ'ltI‘NT :plN(nT(wl))e%rztrNT
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As the previous lemma shows that (5.17) is independent of any of the variables occurring
in Njg, however the differentiation in (5.18) involves differentiation with respect to some

number of entries in Nj5 which yields 0. O
Corollary 5.1.12. Suppose that f is a cusp form on H,, and ®; is the theta lift to O(m, m).
1. If m < 2n, then ®; = 0 identically.

2. If m > 2n, then:
(I)f(f) — Z ewitrSXaS(Y)

SeSkewn (Z)
rank S=2n
and
as(Y;P) = Z /HP(f(T))(nT(w))e_“ry(w’w)T det y " tdxdy (5.19)

(i.e.: all Fourier non-zero coefficients are full rank and are given entirely by the non-

degenerate w ).

Remark 5.1.13. The sums in (5.19) are finite; that is |O°| < co. This is not immediately

obvious but it follows from the discussion in the proof of lemma 5.5.4 in the next section.

5.2 Relations Between the Lift for Different m

We have a fact analogous to Theorem 4.1.17 that states that the lift to O(m, m) for m > 2n
“comes from” the lift to O(2n,2n). The setup and proof is much the same, but we will

write it out in full here. Define subgroups of GL,,(Z):

GLoy(7)

Py, (Z) = * GLm—Qn(Z>>

GLan(Z) *
GLy—on(Z)

) , Pon(Z) ="'Poy(Z) = (

Next, for & € Dy, let []m 2, be the top left 2n x 2n minor of &, which is an element of
Dy, and for P € Homgy, (c)(Vie, C[Min,n(C)]%), let [Pl 2n € Homgr,, () (Vi, C[Mapn(C)]7)
given by composition with the map C[M,, »(C)] = C[Ma, (C)] given by setting the bottom
m — 2n rows equal to 0. For ® € C[Mpyy, »,(C)]* denote by [®], 2, € C[M;y,,2,(C)]* the dual
map, so that we have [®],, 2,,(P) = ®([P]m,2n). Write @}m) for the lift of f to O(m,m) and
<I>§c2n) for the lift to O(2n,2n).

Theorem 5.2.1. If m < 2n then the lift to O(m, m) of a cusp form for SP,(R) is 0. If

m > 2n, then we have:

o= Y () [@FV (A Al2n)],,
AEP2 (Z)\GLm (Z)
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or, evaluated on a P € Homgry,, (c)(Vi; C[Mi 21 (C)]):

o (& P) = O (JAE Al 20; [0 (A7) Pl 2n)
A€P2, (Z)\GLm (Z)

Proof. That <I>5£m) is 0 identically when m < 2n is the first statement of Corollary 5.1.12.

For the rest of the statement, we have that:

oGP = > as(Y;P)emr S
SeSkew, (Z)
rank S=2n

Let Grapm(Q) be the space of 2n dimensional subspaces of Q. We have a transitive action

Lop
of GLy,(Z) on Gra, m(Q), and if we fix the base point Wy = colspan ( ; ) we have:

GLn(Z) ) Pan(Z) = Grapm(Q)

where A € GL,,(Z) is sent to AWy. Given W € Gray, m(Q), define:
Skew)V (Z) = {S € Skew,,(Z) : image(S) = W}

We have that Skewt" (Z) = A(Skew}} (2))'A. For § € Skews, (2), write §' = (i 3) )

Skew,,,(Z). If rank S = 2n then we have that image(AS'*A) = AW,. We can group Fourier

(m)

coefficients of @, according to image(s):

‘I)Svm)(f;P) = Z Z Qg A (Y3 P)emiirAsAX
AEGLm (Z)/Pon,m(Z) SESkeway, (Z)
rank S=2n

we have that:

asgia(Y;P) =ag ("AY A;0(A™)P)

and further that emtrAS""AX _ it SPAXAlm2n  We have that:

ag/("AY A;o(A™HP) =2 Z
wEMQn,Zn(Z)/SPn(Z)

rank w=2n
(w,w)y=5

/H(O'(A)_IP)(f(T)) (nT <lg>> exp (—77 tr’AY A ((lg) , (18]))7_) dety ™" Ldady

(5.20)
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tr'AY A ((Z) , (E}) ) ] = tr[' AY Al o0 (w, w),

(o(A) " P)(f(7) <m (“’)) = [(c(A) T PYI()] 50 (07 (w))

We have that

and

0

due to the presence of the 0’s. Thus we have that

450 4(Y; P) = as(['AY Al,an; [0(A) 7 Pl 2n)

Finally, we note that summing ‘A over G'Ly,(Z)/Pan.m(Z) is equivalent to instead summing
A over Poy i (Z)\G Ly, (Z). O

Remark 5.2.2. [t is interesting to see how the choice of representatives of Pon(Z)\G Ly, (Z)
An

Ay Az
[AftA}m,Qn = All[g]m,Qn tAll, and [O’(A)_lp]mgn = O'(All)_l[P]mgn. This has the eﬁect
of permuting the w in the sum (5.20) by A1 which cancels with the action on P.

do not matter in the above formula. We have that if A = < € Pon(Z), we have

Remark 5.2.3. If is interesting to note that Lemmas 5.1.7 and 5.1.9 are essential for the

above result. We could define pieces

(I)ff",j(& P) = Z eTritrXS Z ) P(f(T))(nT(w))efﬂtrY(w,w)T det yilfndxdy
SESkewm(Z) [w]eos,j Fuw
rank S=2r

s0 that ®f = Zm- Qi Bach @y, is not modular for O(m,m), but their sum is (they do

transform modularly for v € NprMp (2.13), but only their sum is guaranteed to be modular
(m)

for all of T'). Following the same proof we have above, we would have that <1>ij “comes
from” @;2:;.”) in the same sense as the theorem. Thus it is due to the lemmas that @, ; =0

identically unless j = 0 and r = n that we get that the entirety of @}m) “comes from” Q(fn).

5.3 Fourier Coefficients of the Lift to O(2n,2n)

Now we will move on to calculation of the full rank Fourier coefficients. In light of Theorem
5.2.1, the key case to consider is the lift from SP,(R) to O(2n,2n), and from Lemma 5.1.9
and Lemma 5.1.7, the only non-zero Fourier coefficients come from the full rank orbits, so

that we have:

p(&GP) = Y ag(Y;P)em XS
SeSkeway, (2)
rank S=2n

with the Fourier coefficients give by:
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s(Y;P)=2 Z / (w))e ™Y Ww)r qot =" dzdy

weDs

From (3.28) there are relations between the Fourier coefficients. For each S we have that
there is a unique representative Fourier coefficient (3.3.6), ap(Y'), where D = diag(d, ..., d,)

is diagonal with positive integral entries along the diagonal and d,|...|d;. For such D we

D
defined J(D) = ( D ), and the coefficient ap is given by:

=3 [ U™ 0 doty iy
weOD H

where MP(Z) = {w € My, (Z) : (w,w) = J(D)}, and OF = MEP(Z)/T'. For any
S € Skeway,(Z) of full rank we have that there is some A € G Ly, (Z) so that
as(Y; P) = ap(Y[AJ;o(4)"1P)

where and S = J(D)['A]. The A is unique as a class in GLay,(Z)/Spn(Z; D), where:

Spn(Z; D) = {y € GLan(Z) : J(D)['4] = J(D)} (5.21)

Note that we have Sp,,(Z; uD) = Sp,(Z; D) for all positive integers pu, so that Spy,(Z; D) de-
pends only on Dy = d,;D. We can arrange the representative Fourier coefficients according

to which Dg they correspond to.
Definition 5.3.1. For Dy = diag(dy,...,dn—1,1) withdy,...,d,—1 € Lo withd,—1|...|d1,
define ¢f,p,(&; P) by:
o0
br.0o(&P) =Y e DX g, (v P) (5.22)
d=1
The following proposition is simply an arrangement of the terms in the Fourier series
for @ according to which Dy they correspond to:

Proposition 5.3.2. With Do, Sp,(Z; Do) and ¢5 p, as above, we have:

Op(&P) =) > fje’”“‘“ (Lol X M ayp, (Y[Al;0(A)~'P)

Do A€GLan(Z)/Spn(Z; Do) d=1

and grouping the inside sum together, we have:

p(GP) =) > b0 (E[A];0(A) ' P)

Do AEGLQn (Z)/Spn (Z;Do)

where the outside sum ranges over Dy = diag(dy,...,dy—1,1) as in the previous definition.
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Remark 5.3.3. Instead of summing over cosets of GLayn(Z)/Spn(Z; Do), we could instead
define an Sy € Skewa,(Z) to be primitive if for all u € Z we have uSy € Skew,(Z) iff
w € {=1,0,1}. Then for Sy primitive we define:

o0

Br.50(€) =D ™ N0g, 6 (V)

p=1

and then we have

)= > ¢rsld)

SoESkewan, (Z)
rank Spg=2n
So primitive

For such an Sy we have that Sy = AJ(Dg)A for some unique A € GLayn(Z)/Spn(Z; Do),
so that the space of primitive elements of Skew,,,(Z) of rank 2n is identified with the disjoint
union of all of the GLy,(Z)/Spn(Z; Dy).

Now, we move on to evaluation of the representative Fourier coefficients ap. We will

define the following integral:

I(f;Y;P):/HP(f(T))(nT(l))e_”rYQTth det y™ " tdxdy (5.23)

We note first of all that we have:

al(Y: P) = 21(f;Y; P) (5.24)

as O! = {1}. The key to our calculations of the Fourier coefficients is that we will be able
to trade the sum over @ in (5.3) for a Hecke operator acting on f, so that we will be able
to relate all the coefficients to I(f;Y; P) in a similar way to (5.24).

Lemma 5.3.4. For D = diag(dy, ..., d,) with di|...|d, positive integers, recall the D-total
Hecke operator, T (D), defined in definition 3.2.7, and define u(D) = dy, D' = u(D)D™1,
1

and Ap = Ik For convenience we will also define

Yp = ApWY AL = YA (5.25)

as it will appear frequently in the formulas we have later. Then the Fourier coefficient ap
s given by:
ap(Y;P) = Qu(D)”("“)/zI(T(D) i 1w(D)Yir: U(AD,)p) (5.26)

Remark 5.3.5. The D' defined here will be D' = diag(1,d), ... ,d,,), with dj|...|d],. Note
that for D we have that the diagonal entries decrease in divisibility as we go down the
diagonal, but for D' it is the opposite where they increase. Also we note that D' depends

only on Dy, so that we have:
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61.00(6 P) = 23 A" D2 (Do) 2emi XSO (T (d Do) 5 dp(Do) Yy o(Apy)P)
d=1

Proof. First, we will describe a set of representatives for O analogous to (3.11). More pre-

w
cisely, we claim that each class of OF is represented by an element of the form 1 12) ,
W2

where w17 is in (column) Hermite normal form such that woo = D twﬁl is integral, and w9
is determined uniquely modulo weeSym,,(Z). Note, taking D = pul,, gives a set of represen-

tatives for GSP)(Z)/T’. This is essentially the transpose of (3.11).
0

D
To prove the claim, suppose that w € MQI%(Z). As (w,w) = ( 0)’ the bottom n

rows of w span an n-dimensional isotropic subspace, so that there is some v € I so that

w11 w12

w~y is of the form < ) . Next, acting by (a : _1> e I for some a € GL,(Z) has
a

wo2
the effect of sending w1 to wija. Thus we may put wy; in (column) Hermite normal form
so that wiy is lower triangular. Then it follows from wq; ‘wee = D that woy = thl_ll is

uniquely determined by wi; and in upper triangular form. The Hermite normal form of
1 %
wy1 is unique, and acting by . makes wio unique modulo wgySym,,(Z), proving the

claim.
Now, for w € ML (Z), we have that Apw € GSpZ(D)(Z), and the map w — Apw
descends to an injective map OF to GS pﬁ(D) (Z)/T’. The image of this map can be described

in terms of representatives by:

ApOP = { (9” 912> e GSpHPN(Z) T . (D) tgay € Mn(Z)} (5.27)
g22

Now, when we consider the integrals involved, we have:

| PO w)e ™= @0 dety ™ Ldady
H
= / P(f(T))(AB}UT(AD/M))e_WYD’(AD’w’AD’w)T det y™" dady
H
_ M(D)d(fﬁ)—n(n—i—l)/Q /H P(f|’(€AD,w)*1 (7_)) (AB,IUT(1))6—7ru(D)YD/(1,1)T det y_"_ldxdy

N (D)n(nﬂw/ P(fI5 (pya g1 (7)) (Apms (1)) e~ P D097 07 det y =~ dady
H

Where the first equality is simply multiplying and dividing by Ap in certain positions,
and the second is using lemma 5.1.4, and the third by the fact that for r € Ryy and
g € GSp;(R), we have f|5, = ri() =1 £[< and that (1,1), = g, 'g.
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l'is an involution on GSph(Z) that descends

to a bijection between GSph(Z)/T" and T"\GSph(Z). To show the first point, note that
gJtg = uJ for g € GSph(Z), so that ug=' = JigJ !, showing that ug~! is integral, and

Next, we claim that the map g — ug~

then we note that u(ug™') = p?u(g)~' = p. Next, to show the second point, note that
wx (gy)~t =~ (ug™!) for v € T’, so that the map interchanges the right and left action
of IV on GSph(Z).

It will be helpful to note what the map g — u(g)g~! does to representatives of the form

(5.27). We have:
t t
gi1 912 1 g22 — 412
g= ( > . g = ( . )
g22 g1

w(D)(ApOP)~t = {(g g”) e \GSpPN(Z) . gn (D)t e Mn<Z>}

so that:

g22

We note that this is exactly the set described in (3.24). Then, we have:

ap(Y;P) =2 /H P(F(7) (e (w))e™ ™Y (9007 det y =" dady

= 2u(D)"V2 Y /Hp<f ‘Z(n)(AD,wrl(T))(AB}??T(l))e_”“(D)“YD“"*’T dety " dady

weOP

and so the summation over w € O gives the summation in the definition of T'(D) (3.23)
so that

ap(Y; P) = 2u(D)"" D/ / P(T(D) (7)) (Ap 1 (1)) e ¢ Pe097 97 det y = dedy
H

proving the proposition. O

Corollary 5.3.6. Suppose that f is a Hecke eigenfunction, that is T'(d)f = X(d) f for some

scalars N(d). Then we have:

aar, (Y; P) = d""* V2 )\(d)ay, (dY; P) (5.28)
(compare to 5.24). More generally, if ged(d, u(Do)) = 1, then we have

aqp, (Y; P) = d""D/2X\(d)ap,(dY; P)

as T'(dDy) = T(Do)T'(d) in this case.
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Next, we move on the calculation of these I(f;Y; P). We have only been able to obtain
a full calculation of these integrals for n = 2. One path for the calculation of these integrals
is a manipulation involving Fourier inversion similar to the proof of Lemma (5.1.11) to
obtain the integral formula for a matrix argument K-Bessel function as in [3]. When n = 2
there are identities available from [3] to evaluate the K-Bessel function in our formulas that
allow for simplifications.

To express the result of the integral we will introduce some new coordinates on Symy, (R).

a11

Definition 5.3.7. For Y = a'la with a =
o1 92

>, define the following quantities:

BY) =taiam

5(Y) = (fariag tasary )2

() =it (-804 gyl o + i I s )
M(Y) = 5(Y) + 5(Y)"
(5.29)

where for a square matrices C, we let |C| = (*CC)Y2, the symmetric positive semi-
definite square root of 'CC, and C* denotes the symmetric and skew symmetric parts of
C, respectively, and [C,C'] = CC" — C'C denotes the commutator of C and C'.

Remark 5.3.8. As we mention these give a system of coordinates on Sym;n(R) consisting
ofaT € Hyp and M = 6 + 5~ € M,(R) with 0 positive definite symmetric and [~ skew
symmetric. Given 7(Y), and M(Y) we can work backwards to obtain the entries o, using
that a1 and aos are assumed lower triangular with positive diagonal entries to obtain Y,
so that we have Symj, (R) = H,, X D,,.

We will build up the calculation of I(f;Y’; P) in three steps. First we will calculate an
analogous integral with 2™ N7 in place of P(f(7)). We will differentiate that with respect
to N to obtain the integral with a polynomial p/(7) in place of P(f(7)), and finally the full
integral I(f;Y’; P) by summing over N.

11

Lemma 5.3.9. Suppose that Y = a'a with a = ( ), and N is positive definite.

Q91 (3
Then:

/ e?ﬂ'itrNTe—ﬂtrYgT tgr det y_3dxdy
He (5.30)

— 1 e2mi tr‘r(Y)Nef27rtr\M(Y)
det Y1/2tr |[M(Y)|

Remark 5.3.10. [t is crucial for us that N appears linearly in the exponent
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Proof. We can expand out the term in the second exponential of the integral as:

trYg, g, = tr <a11 fap1y + aqrtan t(fB + 612104f11)y_1(1‘ + 0421Oéﬁl) + a2 t0422y_1)

We can then transform the integral by the change of variables: 7 — tal_llv'al_ll, to obtain

that the integral we are seeking to calculate is:

/ e?m’ tr aﬁlN tozfll‘refﬂ tr(y+t(z+tar1ao)y Hz+tariaz1)+(Pariaese tassarr )y~ 1) det y*‘?’da;dy
Ho

Writing ‘aj1a9e = B(Y) = B(Y)' + B(Y)™ we can perform the change of variables x —
x — BH(Y), and write §(Y)? = tajiaas tagearr so that the above is:

eQﬂtrtalllﬁ(Y)+a111N/627ritrauthanl‘re7rtr(ert(:rJrB(Y)_)y_l(:E+B(Y)_)+6(Y)2y_1)det y~3dady
Ha

Thus we will seek to calculate that:

/ e2mitr N7 —m tr(y+t (z4+A)y~(z+A)+B2y 1 det y_?’dxdy
Ha

(5.31)
1 —27i(tr B)~2 tr[A,BQ}N€72ﬂ‘MtI‘BN727TtI‘|B+A|

= tr B
4det Btr|B + A|

For B a positive definite symmetric matrix and A a skew symmetric matrix. We obtain our
result by replacing N, A, and B with ozl_llN tal_ll, (Y)~, and §(Y), respectively.

To calculate (5.31), first we take advantage of the Fourier inversion theorem to change
the integral over symmetric 2 X 2 matrices into an integral over all matrices. Write Po

for the space of 2 x 2 positive definite symmetric matrices, So for the space of symmetric

r
matrices, and My for the space of all 2 x 2 matrices. Write R = = rJ and
—r

2 1
§= < /2 o/ ) = 5J (where J = ( 1 )) We have the integral is:
—s B

0o 00
/// /6—27ritrtSR627rz'trNre—rrtr(y+t(x+R+A)y1(x+R+A)+BQy1) dety_3drdsd:£dy

P2 So —00 —o0

(5.32)
As z spans over S and R spans over the space of skew matrices, x + R spans over My. We
can absorb the A into R and then write z + R = M, and then dxdr = 27'dM, so that

above is:
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o0
1 . . _ _
- ///e2mtrtSA€2mtrf(N+S)Memr(y+2Ny+tMy IM+B2%y 1)dety—3dede
—00 Pa Mo

Integrating over My is a Fourier transform of a Gaussian and gives:

1/00 /e27ritrtSAe—7rtr(y+2Nyt(N-i—S)y(N-&-S)—l—BQy1) det y~2dsdy
P2
We can collect: tr(y 4+ 2Ny + “(N + S)y(N + 5)) = tr’(1 + N + S)y(1 4+ N + S) due to
the skew symmetry of S. Note that (1 + N + S) is invertible for all S as its symmetric
part is positive definite. For brevity we will write N’ for N + 1. We note that the quantity
det y~3/2dy is invariant under transformations y — ay‘a. After such a change of variables

in y, the above integral is:

/ / 2mitrtSA det(N/ + S) / e—ﬂ'tr(y‘f'yil)(t(N,+S)BZ(N/+S)>1/2 det y72dyd8 (533)
Py det B1/2

In [3] functions K, l(,")(Z ) of a positive definite n x n matrix Z are defined:

(n) _ 9—n —Lir(y+y=YH)Z v dy
KM(Z) =2 / O ety S (5.34)
Using this, we have that (5.33) is:

/OO eQWitrtSA det(N/ + 5)1/2 K(2)

YN 2/ a1/ 1/2
det B2 1/2 (2”( (N + 5)BY (N +5)) )ds (5.35)

Also from [3] we have the formula:

K}7)(2rZ) = det 712K (2m tr 2) (5.36)
and so (5.35) is
2detB/ e2mtrSAK((]1) (27Tt1‘(t(Nl + S)B*(N' + S))1/2) ds (5.37)

For a 2 x 2 positive definite matrix C' we have: tr C1/2 = \/trC +2det C1/2. We have as
well that det(N'+S) = det N’ 4+ det S, which is true for 2 X 2 matrices with one symmetric

and the other skew symmetric. We have:
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2
(V' + 8)BAN + 5))12)
= tr'SB%S 4 2det Sdet B + tr N'[S, B*] + tr N'B?N’ + 2det B det N’

rewriting S = §J and completing the square this is:

1 (tr N'[J, B2))?

(trB)2 tr N'[J, B2] 9 nn ,
N'B*N" +2 B N — —
1 s+ (tr B)? + tr + 2det B det 1 CIE
Consider now the term:
tr N'[.J, B2
tr N'B2N' + 2det Bdet N' — L PN BT (5.38)

4  (trB)?
These formulas are invariant under any transformation N’, B +— kN'k~', kBk™! for k €

b
0(2), so w.l.o.g. we may assume that B = < !

N/ = [T T2 , we have:
ni2 N2
tr N'B2N' = b3n2, + (b3 + b3)ny + b3n2,
det Bdet N’ = b1ba(ni1nog — n12)

tr N'[J, B?] = 2(b% — b2)n12
tr B =01 + by

" ) with b1,by > 0. If we then write
2

and so after some simplifications (5.38) is (b1n11 + bange)? = (tr BN')2. Tt is somewhat
miraculous that this gives the square of a linear function of N, and this is crucial for later
steps. Writing A = aJ, we have that (5.37) is:

L[ gm0 (g [UrB2 (NI BN )
2detB/Oo€ Ko 277\/ 4 s+ (tr B)2 + (tr BN)? | ds (5.39)

from [9] we have the formula:

o0
/ iy [ (%p\/m) y 2 4 ) V/2em 2ty het) 2 (5.40)
—00

so that (5.39) is:
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o trN'[J,B? 2 2
2 2 exp (—27r (trtB)B+ da trBN’)
r

1
e
4 det B\/(tr B)? + 4a?

Next, we note that tr!AA = 2a? and det A = a?, so that

(tr B)2 4+ 4a%> = tr B? + 2det B + tr'AA + 2det A
=tr'(B+ A)(B+ A) + 2det(B + A)

2
= (6 (B + A)(B+A)"?)
Where we need that A and B are 2 x 2 and alternating and symmetric, respectively. Thus

we have
(tr B)?2 4+ 4a? = tr|B + A|

We have that tr[.J, B%] = 0 so that tr N'[J, B?] = tr N[J, B?], so that o' -] = = AL

Finally we have

(tr B)? + 4a? ,  tr|B+ A
trBN'= ———trBN +tr|B+ A
tr B ' tr B ' +ir|B+ Al
This shows the equality in (5.31). O

Next, for convenience of expressing the final form of the Fourier coefficients we will

define the following functions.

Definition 5.3.11. Define a map € : Symg, (R) — C[May, ,,(C)]* by:

EYsip)=p <<T(T)>> (5.41)

where 7(Y) is from (5.29), and we will also define n(Y') to be:

§(Y) = (“”) (5.42)

so that £(Y;p) = p(n(Y)).

Lemma 5.3.12. Suppose that f : Ho — V,, is a function that has a Fourier series f(1) =

2mi tr
Y N ane

N7 that is uniformly convergent on any compact subset in H. Then

o 2mtr [M(Y))|

det YV2tr |M(Y)|

1(:viP) = ¢ (VP (50)) (5.4

Proof. With f(1) = 3y ane?™ " N7 write py(n) € C[My2(C)] to be py = P(ay). Then

we have:
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I(f;Y;P) = Z/ pn(ny(1))e2m i NTg=mtrYgr ‘97 det y 3dady (5.44)
N JH2

We have that 7,(1) = 71— . For p/(7) a polynomial in C[Sym,(C)], denote by p’ (2%”8%)

the differential operator defined by:

/ ii 2mitr N7 __
b (2m’8N>e =r(7)

TG T Ni1 N

Writing 7 = M2 and N = 1 12 , this differential operator can be explicitly
Ti2 T22 12 1Va2

obtained by replacing each power of 71, 712, and 799 with the same power of %m.a%n,

1 _0 1 _0

Ami ON12’ and 2 ONos?

respectively. We then have:

/ p/(T)eQTritrNTe—ﬂ'tI‘YthQT dety_gdxdy
Ha

— /<1a> / e?ﬂitrNTe—ﬂ'trYg.,.tg,_ dety_gdxdy
Ha

_ P (r(Y)) Q2 tr (V)N =2t [M(Y)]
4det Y2t |IM(Y)|

with the last equality following from (5.30). Then we get (5.44) is

1 7(Y) 2mitr (V)N e~ 2m b))
- E e
12PN\ det Y12 tr [M(Y)]

and the result is obtained by summing over N. O

From the above results we have calculated the representative Fourier coefficients explic-

itly in the case where n = 2. We summarize them in the following.

Theorem 5.3.13 (Fourier Coefficients for the Theta lift when n = 2). Suppose that f :
Ho — Vs is a weight k cusp form of full level and genus 2. For Y € Symj (R), define 7(Y),
0(Y) and B(Y) as in (5.29), and Ypr and Ap: as in Lemma 5.3.4, and € as in definition
5.8.11. Then the representative Fourier coefficients of ®5 are given by:

23551/2 2 <YD/; (o(ap)P) ((T(D)) (T<YD'>>)> Qtu |(JL\74)<YZ(>Y)

det D’ 6—27Tl,b(D) tr | M (Yp)|

(YD)
ey wpry < P(E@N ) <(D,)D1>

ap(Y; P) =

(5.45)

Where T(D) is the D-total Hecke operator defined in Definition 3.2.7.
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Proof. The proof is essentially just combining Lemma 5.3.12 and Lemma 5.3.4. Combining

them immediately gives:

ap(Y; P)
/,L(D)3 e2mtr |M(u(D)Ypr)|

~ s (O (s @mP) (D) DY) ) B

And then we also use that for r > 0 we have that M (rY) =rM(Y) and 7(rY) = 7(Y), and
det(u(D)Ypr) = u(D)*(det D)2 det Y. O

Now we will describe a parameterization of the subset of Y such that = (Y) = 0 that
leads to a nice interpretation of the Fourier coefficients ap(Y; P) in the above theorem.

Just as in the case when n = 1, we may define embeddings ¢1,t2 : Spp(R) < O(2n,2n) by:
a b a —b
L1 =
c d —c d
(5.46)

unlike when n = 1, the images of these embeddings do not commute, and so there is no
sense in which we have some sort of identification of Sp,(R) x+1 Sp,(R) with a subgroup
of O(2n,2n). We can however note that these embeddings carry the maximal compact
subgroup of Sp,(R) into that of O(2n,2n), and induce embeddings H,, < Ds,, which we
will denote by the same symbols. We have:

()
! Y (5.47)

-1 -1
-1 — Yy -y oz
L2(T) = th 197’ b= <_$y—1y—1x 4 Yy >

We note that o carries all of Sp,(R) into the Levi subgroup M C O(2n,2n), so that it
embeds H,, entirely inside of the submanifold of Ds,, where X = 0, which we identify with
Symj, (R).

Definition 5.3.14 (Embedding Sym; (R) x H, < Symj, (R)). For y; € Sym;} (R) and

To = T2 +iy2 € Hy, with y; = aj taj, a; lower triangular with positive diagonal entries,
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define:

taslay tajas? 1 —=zx
Y(yl,m)=L2<gm>b1<giyl>~1=( 2 TH R L ’ (5.48)
aga1 "ap "a2 1

Remark 5.3.15. We will write a(y1, ) for the unique element of By such that

a(y1, ) falyr, 72) = Y (y1, )

Note that tay'ay is not lower triangular. Let k(*ay'ay) € O(n) be the unique element such

that taglalk(taglal) 1s lower triangular with positive diagonal entries. Then we have:

1 tasark(tas ta
a(y1,m2) = (_m 1>< 2 ak(ay ) a2a1) (5.49)

Formulas for the relevant quantities 87,9, 7 in terms of y; and 7 can be readily found
from the above expression. To express the all Fourier coefficients in theorem 5.3.13 we will
also need to find these same quantities for Y (y1, 72)pr when D’ is non-scalar as well. These
are made difficult for values of 75 that do not commute with D’ (in particular since 5~ does
not vanish), so we restrict attention to only such 75. The following is a simple verification
using (5.49).

Lemma 5.3.16. Suppose that 5 is such that 9D’ = D'ty. Then we have:

We can plug in these values with (5.45) to obtain:

Corollary 5.3.17. Suppose that oD = Dte. Then the value of ap on the subspace of
Symj (R) consisting of elements of the form Y (y1,T2) is given by:

2 e —1 T
on(Y (g, 12): P) = 5oL SLD arenDp((2(D) ) (u(D) ' r2D) <<1> M(D)‘1D>

Example 5.3.18 (Scalar Valued Cusp Forms on Hs). The simplest case to consider is
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when the input form, f, is a scalar valued cusp form, f(y1) = detj(v,7)"f(7). As Vy is
one dimensional in this case, the space Homgy, cy(Vis, C[My2(C)]) is identified with the
space C[My2(C)]", the space of polynomials that transform as p(na) = deta”p(n) for a €
GL,(C). The space C[My2(C)]" is spanned by polynomials of the form pf(n) = det(*nu)”

u
foru=[ ") € My 2(C). For such polynomials we have o(c,a)pli = det a"pry-14. For

u2
these polynomials (5.45) is:

det D’ 6727TM(D) tr | M(Yp)|

ap(Yi2) = 530y —wrmy de (T + (D)) (T(D)) (V)

We can simplify further with some more assumptions. If Do = mD then in the special

coordinates described above we have that this is:

D)(det D))1—# _
(¥ (i) = BTS2 et ) (T(D) ) oD )

and in particular if f is a Hecke eigenform with Hecke eigenvalues T'(d)f = A(d)f, then we

have:

e—2ﬂ'd tryy

adr, (Y (y1, 72); pu) = A(d) det(mau1 + u2)" f(12)

2try; det yq
For a function h : Ryy — C, whose argument we will denote by ¢, the Mellin Transform
of h, denote by (M;h)(s) is defined by:

(Myh(8))(s) = /0 T dt (5.50)

When f is a Hecke eigenform form on H;, normalized so that a; = 1, we have that

I'(s)
(2m)®

(M f(it))(s) = L(s; f) (5.51)

where L(s; f) is the L-function for f. For n > 1 we have the functions ¢¢ p, (&) defined in
(5.22), given by:

[e.e]
$r0o(§) = Y ™A P0)a,p, (V)
pn=1
Scaling Y in (4.19) to tY and taking the Mellin transform would yield (up to a translation
in s) yield terms that look like (5.51). We are able to say something similar for the lift to

Ho for scalar cusp forms:

Theorem 5.3.19. Suppose that f is a scalar Hecke cusp form of weight k and genus 2. Re-
call we defined functions ¢f.p,(€) in (5.22). Then the the Mellin transform of t3¢¢ 1,(tY; p)
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18:

fr(Y)E(Y;p) I'(s)L(s; f;spin)

Mi(E65,(Y3p))(s) = 53-8 MY @t | M(Y)))*¢(25 — 2k + 4)

(5.52)

where L(s; f;spin) is the spin L-function for f. (The factor of t3 is chosen to eliminate a

translation in s).

Proof. First note that we have

g o0
3 i —omtptr | M(Y)|
FornYsp) = 5 vz, IM Z ¥))e

For f a Hecke cusp form with Hecke eigenvalues T'(p) f = A(u) this is:

As only the part inside the sum depends on ¢ this is the only part we need to calculate the

Mellin transform of. We have:

PR o—2rtutr M) 4 _ - A(u) .
/0 ! ;A(“) ' ; ; Eru@))e )

Then finally we have from [10] (exercise 3.10, page 21) that:

i Ap s; f;spin)

o 25 — 2K +4)

5.4 Future Work

There are some obvious further developments to do to achieve a more satisfactory result for
the lifts from Sp,(R) to O(2n,2n) of Siegel cusp forms.
1) We need to evaluate the integral I(Y; f; P) (5.23) for n > 2 as well. For that we have

the following conjecture:

Conjecture 5.4.1. Suppose that Y € Symg (R) and N € Sym,’ (R). Then

/ 627TitrN‘r€77rtrqu— tg, det yinild.%'dy _ h(y)eZﬂitrT(Y)NefQﬂ'tr|M(Y)| (553)

where 7 : Symg, (R) — H,, M : Symj, (R) — D, and h : Sym3, (R) — R are functions such

that T is homogeneous of degree 0, M is homogeneous of degree 1, and h is homogeneous of
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degree —n(n +1)/2.

If this conjecture is true we have a result similar to (5.45) to give the Fourier coefficients:

ap(Y; P) = h(YD/)5<YD/; (J(AD/)P) ((T(D)f) (T(YD/))>>6_2W(D) tr M(Ypr)

When f is a Hecke eigenform with Hecke eigenvalues A\(u), we would also have something

analogous to (5.52):

M, (2002 1 (45 P)) (s) = h(Y)é‘(Y; P(f(T(Y)))> o tf](\?(y))s ; )‘fjj)

Towards computing (5.53) we can follow the same steps as in Lemma 5.3.9, and we can get
to:

/ e?ﬂ'i tr NTe—TI' tr(y+t (z4+A)y~(z+A)+By~ ! det y_"_lda:dy
/ ritrsadet(N +14 812 )

= e
A det B1/4 1/2

(27r(t(N Y14+ 8)B(N+1+ 5))1/2) ds

One might hope that there is some sort of simplification for K f?%(Z ) as there is for K S)Q(Z ) =
1 det Z_l/QK(()l)(Qﬂ' tr Z) like we used in the proof. The method used in [3] to obtain this
formula does not seem to easily generalize to n > 2, unfortunately. It is clear that K 5”)(2 )
will be some function of the elementary symmetric polynomials in the eigenvalues of Z,
which suggests that even if they do exist for n > 2, the formulas might be unwieldy if they
involve symmetric functions of the eigenvalues other than tr Z and det Z.

If we restrict attention to the subset of Y of the form Y (y1, 72), it is sufficient to calculate

the integral:

; _ t g —1 2,1 o
/ 6271'21:1‘N7'€ mtr(y+tezyta+B%y )dety n ldl‘dy

for B and N positive symmetric definite, which is somewhat simpler than (5.53). (This is
the n-dimensional version of (5.31) with A = 0).

2) Some further investigation of the module structure of (I, TV(D')) as a %, module
would shed more light on how to interpret the T'(D)f terms in (5.45) to obtain formulas
like (5.52) for ¢ p, with Dy # 12, when f is a Hecke eigenform.

We have that #(I",I"(D’)) C Hom(S,(I"), Sk(I'(D"))) is a 5, module via precompo-
sition. When ged(d, Dy) = 1 we have that T'(Dy)T'(d) = T'(dDy), so that when f is a Hecke
eigenform, we get that:

agp,(Y) = Ad)ap,(dY) (5.54)

Conjecture 5.4.2. Suppose that f is a Hecke eigenform. For a positive natural number,

d, write emaz(d) for the highest power of an exponent in the prime factorization of d. For
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each Dy = diag(dy,...,dn—1,1), there is some k > 0 depending on emas(d1) and n such
that we have:

T(dDy) = Z Z ca/u(9)T (1Do)T (g)

pl ged(d,dy) p(g)=p
emam(u)gk

for some constants cq/,(g)-

If this conjecture is true then if f is a Hecke eigenform, we have:

n(n+1)/2 d
a’dDo(Y): Z Z < > Cd/u(g))‘(g)auDo(ﬁY)

wl ged(d,di) p(g)=p
emaz (1) <k

Where A(g) is the Hecke eigenvalue of f with respect to T'(g). (5.54) is a special case of
this with ¢4/,(g9) = 0 for 1 > 1 and c4(g) = 1 for each g so that >/ A(g) = A(d). We expect
that formulas similar to (5.52) may be found that relate other L-functions related to f to
the Mellin transforms of ¢y p,.

We expect that this can be worked out locally via (I, I"(D")) = &, 2 (I",I"(D’)),
and S = ®p S, at each prime p.
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Appendix

6.1 Weil Representation

In this section we will describe the Weil representation of G x G' = O(m,m) x Sp,(R)
which underlies the modular properties of the theta functions © defined in (3.61). We will
interpret Mo, »(R) as V™, thought of as length n row vectors of elements of V', where V' is

R™™  the quadratic space whose underlying vector space is R?™ together with quadratic the

0
form given by the matrix Q = L o) Given v,v’ € V, we will denote by (v,v’) = tvQv’,

their symmetric bilinear product associated to (). Writing v = Zl , (v,v) is given by
2

tu1vh + togv]. We extend this product to V™ by taking the matrix of bilinear products

between the different components of elements v € V™. For v,v’ € V" we still have the same

formula for (v,v’) = 'wyvh + 'v9v], but this is an n x n matrix. This product is symmetric

in the sense that ‘(v,v’) = (v/,v) and in particular we have (v, v) is a symmetric matrix for

all v € My, (R). We have a left action of G and a right action of GL,(R) on Ma, »(R)

given by matrix multiplication.

Definition 6.1.1 (Standard Model Weil Representation). Denote by S = S(May, n(R)) the
space of Schwartz functions on Map, ,(R). We have an action of G x G' on S, which we

will denote by w whose action is given for elements g € G by:

w(g)p(v) = (g~'v) (6.1)

119
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0 1
and for elements in the Siegel parabolic subgroup of G' and J = ( ) by:

-1 0
w <<a ta_1>> p(v) = det a™p(va)
w ((1 f)) () = m () (6.2)
w 0 1 V) = eQﬂ'itr(v,v’) o) do
((_1 0)) 0 /MM’H(R) o(0') d

A key feature of the Weil representation is the asymmetry between the action of the
orthogonal group and the symplectic group, namely the former acts through a simple trans-
lation of the argument, while the latter acts in a significantly more complicated way. In
particular the action of the maximal compact subgroup of G’ acts in a much more obfuscated
way. Because V is a split quadratic space there is an isomorphic representation that we can
use that switches this dynamic. We will call this the symplectic model Weil representation,
but this is terminology is not common as far as we are aware. We will now describe this
representation.

We will denote by W = R?", thought of as row vectors with the symplectic product

associated to J = 0 which we denote by (w,w’) = wJ 'w' = wy 'wh — wa wy. We

will think of M, 2, (R) as W™, the space of m-component column vectors of elements of
w. We extend the symplectic product to elements of M, 2,(R) by taking the matrix of the
symplectic products of the components of w, explicitly: (w,w’) = wJ 'w’. This product is
alternating in the sense that *(w,w’) = —(w’, w), and in particular we have that (w,w) is a

skew symmetric matrix for all w € W™,

Definition 6.1.2 (Symplectic Model Weil Representation). Define a representation w’ of
G x G onS =8(My2,(R)) as follows. For g € G':

W'(9)¢ (w) = ¢'(wg) (6.3)
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0 1
and for elements of the Siegel parabolic of G and () = (1 O) by:

o (( )) ¢ (w) = | det o' (faw)
o ((1 i’)) (p/(w) _ em‘trb(w,w>(’0/(w) (6.4)
W 01 "w) — eQwitr(w’,w) "' duw'
((1 O)) dw=[ P (w) d

In these representations we have that G acts by translations through w, and G’ acts

by translations through w’, but the other group acts in a more complicated manner. We

10 01
note that the elements (a . _1), ( ), ( 0) do not generate all of G unlike how
a

1 1
the analogous elements generate G'. We need in addition elements @ as in 2.14, and
0 1
they have similar formulas in w’ as , where instead we leave out rows not in [

from the integration. This will not be important for our purposes, but we point it out for

thoroughness.

Definition 6.1.3 (Partial Fourier Transform). Define a map % : S — S’ by:

L%P(whw)_/ itz (1) gy, (6.5)
Mm,n(R) w1

The inverse of .# is given by:

Fy <U1> :/ e 2 I o (1) ) duws (6.6)
My (R)

Lemma 6.1.4. The map % is an intertwining isomorphism for the action of Gx G’ between

the representations (S,w) and (S',w’)

We will also record the action of the Lie algebras of G' and G’, which we will denote by
go = Lie G and gj, = Lie G/, respectively. We will generally use the subscript 0 for a real Lie
algebra, and no subscript for its complexification. Also we will write matrices representing

Lie algebra elements with square brackets, and elements in the groups with round brackets

b b
so that (a d) € G while [a d] € go, for example. We will also write £y = Lie K and
c c

t(, = Lie K’. We obtain the action of the Lie algebras by differentiating the action described
in Definitions 6.1.1 and 6.1.2. To simplify things we will introduce the following notation.
Use [ and r to denote the derivatives of left and right action on a function of a matrix

variable:
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a)p(w) = S o(ea)| = tra(a'V)p(x)
p =0 (6.7)
raple) = Golee®)| = wrla(aV)pl)

where we use V to represent the matrix of differential operators:

0
Vij = =— 6.8
1) <8xzj ) ( )
and we use the shorthand tr a(x V) to express the sum Dis aijmjsaans. We also define

some operators that are specific to S and &’. On S we will define AV, an n x n matrix of

second order differential operators whose ij coordinate is:

& o2 o2
’ 521 A(v1)siO(va)s; ~ O(v1)s;0(v2)si

(6.9)

This operator is essentially the Laplacian corresponding to the split symmetric bilinear

form (v,v) on V, and is symmetric in the sense that Al‘; = A;/Z

Lemma 6.1.5 (Lie Algebra Action on S). For a € go, we have:

w(a)p(v) = —l(a)p(v) (6.10)

w ([ ¢ btJ) o(v) = (m tra+r(a) + mitr(v,v)b+ ﬁ tr CAV) o(v) (6.11)

On &', we define the differential operator <a%, 8%> as the m x m matrix of second order

differential operators with entries given by:

g 0 - 0? 9?
—, =) = - 6.12
<8w 6w>ij ;a(wl)isa(w2)js O(w1)js0(w2)is (0:42)

This is something like a Laplacian, but instead of corresponding to a symmetric bilinear

form, it corresponds to an alternating form. In particular the matrix <%, %> is skew

symmetric.

Lemma 6.1.6 (Lie Algebra Action on §'). For a € gy, the action on S’ is given by:

w'(a)¢' (w) = r(a)¢’(w) (6.13)
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a

For .
—'a

" ([Z _bta]) S (w) = (ntra+ (ta) + i tr bw, w) — 471Titrc<£u, ai;>) o (w)
(6.14)

] € go the action on S’ is given by:

Definition 6.1.7 (Majorized Gaussians and Sy, S)). Inside of S and S" we define a dis-

tinguished Gaussian function:

t
o(v) = e~ Tty _ e—ﬂ'tr(v,v)o S
#olv) t (6.15)
906(11)) — e Tiriww _ e—wtr(w,w)o cs
where (v,v)o here is the same as (v,v)1 in definition 2.1.13, and (w,w)o here is the same
as (w,w); in definition 2.2.5. We also define subspaces Sy C S and Sy C S by:

So = {pwo : p is a polynomial on Moy, n(R)} (6.16)
S, = {pelL : p is a polynomial on M, 2, (R)} '

We will write P and P’ for the spaces of polynomials on May, »(R) and My, 2,(R), respec-

tively. We will interchangeably identify So and P as convenient.

Lemma 6.1.8. We have that FSy = S)). For p € P, we will slightly abuse notation and
write Fp € P for the polynomial so that F (ppo) = (Fp)e,. We can explicitly describe
the map F : P = P':

(Fp) (w1, ws) = exp <417TA1> P <iw2> (6.17)

w1

where A1 is the differential operator:

U1 <L p? U1
VANTY = — 6.18
1 <U2> zjzz:l 8(@1)22,]- (1)2) ( :

We note that as p as a polynomial the operator exp (ﬁAl) reduces to a finite sum of orders

of the operator /\1. The inverse operator is given by:

(%

(F'p) (i) = exp <4177A2> p'(v2, —ivy) (6.19)

where Ny is the differential operator:

m,n

872 '(wy, ws) (6.20)
6(’[1}2)127.7%0 1, W2 .

Do (wy,wa) =
ij=1
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The subspaces Sy and S are closed under the actions of gg and g;. We will denote by
wp and wp the action induced on P and P’ of the Lie algebras under the identifications

between Sy, S and P, P’, respectively. The formulas for the action are given by:

Lemma 6.1.9 (Lie Algebra Actions on Sy). For xz € go, the action on P is given by:
wp(x)p(v) = =l(z)p(v) + 27 tr(zv, v)op(v) (6.21)

For elements in g, the actions is given by:
wp ([ : ) p(v) = mtrap(v) + trla(*vV)p(v) — 27 (tr(v, v)oa)p(v)

wp ([ ) p(v) = mi(tr(v,v)b)p(v) (6.22)

—C T

b
0
0 0] 1 . . o
wp 0 p(v) = = treA” p(v) — mi(tre(v,v))p(v) + i tr e 'vQVp(v)
In particular for x € tg we have the action simplifies to:

wp(z)p(v) = —l(x)p(v) (6.23)

as tr(zv,v)g = travtv = 0 due to viv being symmetric and x skew symmetric. For

a b
[ b ] € ), we have that the action simplifies to:
—b a

a b
w
P -b a

Lemma 6.1.10 (Lie Algebra Actions on S))). For x € g, we have:

47

) p(v) = r(*a)p(v) +itrb'wQVp(v) + = trbAY p(v) (6.24)

wp(2)p'(w) = (r(z) + tr((wz, w)o)) p'(w) (6.25)

wp(@)p'(w) = r(z)p (w) (6.26)
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For elements in gg, the action is given by:

wp ([a 1, ) P (w) = (ntra+(*a) — 2m tr(a{w, w);)) p'(w)
b:

wp ([g 0 >p'(w) = mi(tr b(w, w))p'(w)

,oo',_—1t o 9 ” . 0 ,
wp . 0 p(w)—<4m, rc<6w’8w>_m re(w,w) +1 rc<w,aw>>p(w)

(6.27)
When [sl 52] € to, we the formula simplifies to:
S2 81

Wy (tl ZD P (w) = <—1(51) + %itrsz <ai/ ai)> Fitrss <w, ai)>) p(w) (6.28)

We note that as a result of these formulas that the action of € x € does not increase
the degree of a polynomial. As such we have that Sy (and S)) has a filtration by finite
dimensional subspaces (by degree of polynomials) that are invariant spaces for € x €. As
such the action can be exponentiated to obtain that Sy (resp. Sj) are K x K’ finite vectors.
Indeed, Sy (resp. &) is the underlying (g x g/, K x K’) module of S (resp. &’). We will
use wp and wp as well for the induced actions of K x K’ on P and P’, respectively. It is
difficult to explicitly describe the action of K x K’ on P or P’. In either case one of the
factors simply acts linearly, but the other factor has a much more complicated action. In

particular we have:

wp(k)p(v) = p(k~ ) for k € K,

T RAYN / ’ / / (6'29)
wp(k")p' (w) = p'(wk') for k' € K

We will want to introduce some alternate coordinates to express the polynomials in P
and P’ that makes the action of K 2 O(m) x O(m) and K’ = U(n) more clear.

Definition 6.1.11 (Polynomials Spaces C[vt,v ] and C[n™,n~]). For elements v = <U1>
V2

€ Moy n(R), denote by v the matrices:
vE(v) = vy £ 09 (6.30)

and define Clv™,v™] to be the space of polynomials in the My, ,(C) variables vT,v=. We
identify this space with P, identifying p(vt,v™) € Clvt,v™] with the polynomial q(v) € P
given by q(v) = p(v1 + vz, v1 — V).
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Similarly, for w = (w1, w2) € My, 2,(R), denote by n* the matrices:
7 (w) = Fiwy + ws (6.31)

and define C[n™,n~] to be the space of polynomials in the My, ,(C) variables n*,n~. We
identify this space with P', identifying p(n*,n~) € Clp™,n~] with q(w) € P’ given by

q(w) = p(—iwy + wa, iw; + wa).

+

The matrices v™ may be thought of as something like the coordinates of V" according to

an orthogonal decomposition of V' =V @ V~. These spaces are the 1 eigenspaces of the

0 1 1+ L=
matrix Q = L o) As v* vary over My, »(R), the vectors ? N and 21 | span a
51/

2
maximal positive definite and a perpendicular negative definite subspace, respectively. The

coordinate vT is 0 on the negative definite subspace and v~ is 0 on the positive definite
subspace. We denote by C[v*] the subalgebra consisting of polynomials that only depend
on the v* variable. In terms of functions on the underlying space, these only depend on
V* component under the decomposition V = V+ @V~ above. In particular C[v*] is equal
to the subspace of polynomials in C[v™, v ™| that are invariant under precomposition with
projection to V*, given by the map v — %(’U + Q).

There is a similar interpretation of n* giving coordinates on the i eigenspaces of

0 1
WeC= WE ® W with respect to J = Lol In particular, matrices of the form

%(:l:ini, n*) span the +i eigenspace of J on My, 20, (C), and under w — Fiw; + wy these
map to n*, with the other coordinate nT = 0. Similar to before we will denote by C[n*]
the subalgebra of polynomials that only depend on the n* variable, and these can be
thought of as polynomials that depend only on the Wg variable in the decomposition
W®C = W(ér ® W . Likewise C[n*] is equal to the subspace of polynomials that are
invariant under precomposition with projection to Wi, given by the map w — %(w FiwlJ).

The purpose of these coordinates is to simplify the action of the maximal compact

subgroups K and K’ in the two different models. Suppose that we have k € K identified
a b

with (ky,k_) € O(m) x O(m), and k' = < ) € K'. Then we have:
-b a
vE(K ) = kx'vE(v)

(6.32)
™ (wk) = " (w)(a + ib)
So that:

Lemma 6.1.12. Consider the identification of P = C[v™,v™] (resp. P’ = Cln*t,n7]) above,
and the induced action of K x K' on these ClvT,v~] (resp. C[nT,n7]) by the action wp on
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P (resp. wp onP'). The action of K (resp. K') is then given by:
wp(k)p(vT,v7) = p(k:;lﬁ, kv ) forke K

Y, o) — + . . ;) a b , (6.33)
wp(K)p(n™,n~) = p(n*(a+ib),n-(a — b)) fork I

The action of K’ on C[v",v~| and K on C[n*,n~] is more difficult to explicitly describe
but is obtained from the above via the partial Fourier transform .# : P = P’. We will
likewise use .% to describe the induced isomorphism .% : C[v*,v~] = C[n*,n7]. A formula
analogous to that in Lemma 6.1.8 may be obtained by translating into the coordinates of

v+ and nt:

Lemma 6.1.13 (Partial Fourier Transform .% : Clv*,v~] = C[n*,n7]). The map F :
Clvt,v=] = C[nT,n7] is defined by the identifications Clv*,v=] =2 P and C[n*,n"]| = P,

and translating the formulas in terms of vt and n=. We have the following:

1. The differential operator /1 on Clv™,v™] is given by:

m,n a a 2 m,n 62 82 82
Z (8(V+)s,i - (v~ )s > - Z 3(V+)§7i + 26(y+)s’i6(y*)si + 3(V*)2 (6.34)

A 1 A -
s,i=1 ’ s,i=1 ’ 5,2

2. The differential operator /Ny on C[n™,n~] is given by:

= o o \? & o o2 02
+ = +2 + 6.35
Py (365 * o000 2 56T, St o, ¢
3. With A1 and Ay as above, we have that for p € Clvt,v~|, (Fp) € C[nt,n~] is given
by:
1 . . —
(Zp)(n*n7) = (eﬂ&lp) (in™,in") (6.36)

and for p’ € Cln*,n~], (F~') € ClvT,v™] is given by:
(F Wt v) = (eﬁ&p) (—ivt, —iv7) (6.37)

4. We have that .F restricts to an isomorphism between C[vt] and C[n*], i.e.: F(C[v¥])
= Cln*]. Writing A for the usual Laplacian operator on C[M,y, ,(C)], the transfor-

mations are then:

(Fp)r®) = (72 (i)

(
(F ) (") = (eﬁﬂp’) (—iv®E) (6.38)
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5. When p € C[My, n(C)] is harmonic the operator .F has a particularly simple form:

\j_

Fp)(n

(
(F1p)(v*) = p(—iv?) (6.39)

where we interpret p as a polynomial in C[vt] in the first line and in C[nT] in the
second line.

There is a nice description for the action of g’ on C[n*,n_] that is more explicit than
(6.25). We have the decomposition g’ =p’ @ ¢ @ p’,, where

b +ib
+ib —b

W, = {ni(b) _ % be Symn(C)} (6.40)

The action of elements in ¢ on C[n*, ™| is obtained by differentiating (6.33). To describe
the action of p/,, first we note that:

(6.41)

Next, we can write pp(w) = e~ tro (W) '~ (w)  We write V¥ for the gradient associated to

n*. Then we can calculate:

wp(ne()p(n®,n7) = (= tr™b'VF + wtrn™b'n™)p(nT, n") (6.42)
by using (6.33) on p(n*(w), n‘(w))e‘”r”ﬂw)t’f(w).
6.2 Theta Distributions and Theta Functions

Definition 6.2.1 (Theta distribution on S and §’). Denote by 2(S) the space of tempered
distributions on S. Define 0 € 2(S) as:

o)=Y ¢ (6.43)
’UEMQm‘n(Z)
and 0" € 2(S') as:
=Y W (6.44)
wEMm,Qn(Z)

We will also write 2(Sp) and 2(8))) for the dual spaces of Sy and S}y, respectively.

The partial Fourier transform .# : S =+ &' described in the previous section induces a
isomorphism .% : 2(S') = 2(S). Under this isomorphism # and ' are identified:
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(Z0)(p) =0'(Fp) = b(¢) (6.45)

The proof of this fact follows from an application of Poisson summation to (6.5). The groups
G and G’ act on Z(S) through their action on S:

(w*(g,9")0)(0) = B(w(g,9) ") (6.46)

and similarly for an action on Z2(S)). As g x ¢’ and K x K’ stabilize Sy, they act on 2(Sp)
as well. For (z,2') € g x g and (k, k') € K x K’ we have:

(wp(2,2')0)(p) = —0(wp(z,2)p),

(6.47)
(w;;(k? k:/)H) (p) - H(WP(kv k/)_lp)

and similarly for the action of 2(Sy). We will define some functions on G x G’ that are
valued in 2(Sp) (or 2(S)))

Definition 6.2.2 (Theta Functions on G x G’). We define a function © : G x G' — 2(S)
(and ©' : G x G' = 2(8))) by:

O(g,95p) = 0(w(g,9 ) (ppo)), ©'(9,9':0") =0 (W' (9,9) @ ¢0))- (6.48)

where we identify Sy and S, with P and P’, respectively. In light of equation 6.45, we have
that

©(g,9"sp) = ©'(g,9'; Fp) (6.49)
Recall we defined I' C G and I' C G’ as the subgroups Oy, (Z) and Sp,(Z), respec-
tively. We have:

Lemma 6.2.3. Suppose that (v,~") € T x I, and (k, k') € K x K. Then for all (g,g") €
G x G, we have:

O(vgk, 7' gk = wp(k, k') 'O(g,9)

/ PILIN () % nN—1n/ / (6'50)
O©'(vgk, v g'K') = (Wp)"(k, k)" ©O'(g,9)

Proof. The invariance with respect to left translation from (vy,7’) € T' x TV follows from ~
permuting the elements in the sum defining 0 so that O(yg,¢’) = ©(g,¢’), and 4/ permuting
the sum defining #’, so that ©'(g,7'g) = O(g,¢’), and then the equality .#(0'(g,¢')) =
©(g,¢’) gives invariance for the other argument. Next, if (k, k') € K x K', then we have:

w(g,9")w(k, k") (peo))
w(g,9")((wp(k,k")p)¢o))
= 0(g,9")(wp(k, k')p)

O(gk, g'K')(p) =
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and similarly for ©’. O

We will now describe how these are related to the function O(, 7) described in definition
3.4.1. First, we will denote by o the action of GL,,(C) x GL,(C) on C[n*,n~] given by

-1

o(a,a)p(nt,n™) = |deta"p(a'nT la™ a7y a) (6.51)

When p depends only on 7~ this reduces to the action o in (3.41). Use ¢* to denote the
dual action on C[n*,n~]*. Recall for £ = X +Y € D,,, and 7 = z + iy € H,,, we have the
elements g¢ € G, g. € G’ given by:

()0 ) ()0 e

t

where Y = a'a, y = a'a with a,a both lower triangular with positive diagonal entries.

Recall as well that we have factors of automorphy k(g, €), and k'(¢’, 7) valued in K and K’,
respectively, defined by:

99¢ = 9gck(9,€), 9’9y = gy K (¢’ 7) (6.53)

We also have maps 7,7 : My, 2n(R) — M, »(C) by:

Nr(w) = wiT + w2, 7N (w) =wT + w2 (6.54)

More generally than (3.39) we could consider functions of the form:

Oump(&,Tsp) = Y P (w)y ™!, e (w))em Wy () (6.55)
wEMm’gn(Z)

for p(7,m) € C[My,n(C) X Mp, ,(C)]. Then we have:

(H)symp(gﬂ—;p) = a*(a,a)@'(gg,g;;p) (656)
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