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We study the null gluing problem for Maxwell’s equations along null

hypersurfaces. By studying a weaker formulation of the gluing problem,

which we call the kth-order gluing problem, we classify all possible con-

servation laws by proving that they are the only obstructions to gluing.

We derive sets of conserved charges for the zeroth-order gluing problem

along general null hypersurfaces and the first-order gluing problem along

extremal horizons. We derive an elliptic structure related to a foliation

with 2-spheres of a null hypersurface, using a similar method introduced

in [9] by Aretakis. We also show the non-existence of zeroth-order conser-

vation laws along extremal horizons and the non-existence of kth-order

conservation laws for spherically symmetric extremal horizons by using

a hierarchy of v-weighted integrals of the Maxwell equations. Finally, we

determine how the space of these conserved charges changes under a

change of foliation by understanding the gauge covariance of the elliptic

structure.
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1
I N T R O D U C T I O N

The gluing problem asks given two disjoint regions with prescribed data
to extend the data in the connecting region to satisfy given constraint
equations. Obstructions to gluing have provided deeper insights into the
underlying constraint equations. For example, for the Einstein equations,
they have provided insights into the rigidity properties of the geometry
and for the wave equation, they have been used to understand the decay
and asymptotics of solutions, as shown by Aretakis in [3] and [4].

In this thesis, we address the gluing problem for Maxwell’s equations
along null hypersurfaces and show that the obstructions take the form of
conservation laws. The Maxwell equations are given by

DivF = 0 dF = 0

where the Maxwell tensor F is a 2-form defined on a Lorentzian manifold.
We can show that these equations are equivalent to the following null
decomposition

1
ϕ

/∇4 (ϕΩα) = +
Ω
2

(
/dρ + 2ηρ

)
− Ω

2

(
/dσ + 2ησ

)∗
+ χ̂♯ · (Ωα) (1.1)

1
ϕ

/∇3 (ϕΩα) = −Ω
2

(
/dρ − 2ηρ

)
− Ω

2

(
/dσ − 2ησ

)∗
+ χ̂♯ · (Ωα) (1.2)

/div(Ωα) = +
1
ϕ2 L(ϕ2ρ) (1.3)

/curl(Ωα) = +
1
ϕ2 L(ϕ2σ) (1.4)

/div(Ωα) = − 1
ϕ2 L(ϕ2ρ) (1.5)

/curl(Ωα) = +
1
ϕ2 L(ϕ2σ) (1.6)

on a general four-dimensional Lorentzian manifold (M, g) where (α, α, ρ, σ),
defined in Definition 2.5, are the components of the F tensor. Here, the 4
and 3 indices refer to the outgoing and ingoing normalized null vector
fields e3 and e4 and operators /div, /curl are defined with respect to a family
of Riemannian metrics /g, which are the restrictions of the metric g to

1



1.1 conservation laws for maxwell’s equations 2

the spherical sections Sv of the outgoing null hypersurface. The simplest
example of a conserved charge is given by

Q0(v) =
∫

Sv

ρdµ/g Q1(v) =
∫

Sv

σdµ/g (1.7)

which for all solutions of (1.5) and (1.6) satisfy the conservation law

∂vQ0(v) = 0 ∂vQ1(v) = 0

In Section 1.1, we introduce the concept of conserved charges for
Maxwell’s equations, which includes the above example. The remaining
charges will require a characterization of null hypersurfaces that possess
such charges in terms of the kernel of an elliptic operator, a novel idea
introduced by Aretakis in [9]. We show that these charges are all of the
conserved quantities along the null hypersurface by showing that they are
the only obstructions to the null gluing problem for Maxwell’s equations.
We study “gluing constructions for the characteristic initial value problem”
(as outlined in Section 1.2), and show that the existence of conserved
charges (in our sense) on a null hypersurface H is the primary obstruction
to gluing.

Conservation laws on degenerate horizons for the wave equation are
particularly important due to their role in the instability properties of
extremal black holes, leading to the so-called "horizon instability of ex-
tremal black holes," as discussed in [6, 11, 40, 39, 41, 42, 45]. Studying
Maxwell’s equations on general backgrounds may shed new light on the
global evolution of hyperbolic equations on different backgrounds.

1.1 conservation laws for maxwell’s equations

We will first present basic geometric definitions that will be important
when we define the notion of conservation laws on null hypersurfaces. For
more details about the geometric setting, see Section 2.1.

Null foliations

Suppose we have a regular null hypersurface, denoted as H, within a
four-dimensional Lorentzian manifold, represented as (M, g). A null
hypersurface H ⊂ M is a surface within the Lorentzian manifold if and
only if every normal vector field L to H is null, i.e. g(L, L) = 0. Note that
since L is orthogonal to itself, it is also tangent to H. The integral curves
of the vector field L can be shown to be null geodesics along H. In fact, H
will be generated by said null geodesics. A foliation of a null hypersurface
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is a collection of sections Sv that vary smoothly with a parameter v and
∪vSv = H. We take each section Sv to be diffeomorphic to a 2-sphere S2

(although this approach can be extended to topologies with higher genus).
This foliation can be uniquely defined by three components: the choice
of an initial section S0, a smooth function denoted as Ω on H, and a null
geodesic vector field Lgeod that is tangent to the null generators of H and
satisfies ∇Lgeod Lgeod = 0.

By introducing the vector field L = Ω2 · Lgeod on H and considering an
affine parameter v of L such that Lv = 1, with v = 0 on S0, we can define
the level sets Sv of v on H, which correspond to the leaves of the foliation

S . This foliation can be represented as S =
〈

S0, Lgeod, Ω
〉

.
The flow of the vector field L on H provides a diffeomorphism Φv

between the sections Sv and the initial section S0. Additionally, all sections
can be equipped with the standard metric of the unit sphere, denoted as
g/ S2 , via the diffeomorphism Φ. The volume form on Sv with respect to
g/ S2 is denoted as dµ

S2 .
Given any section Sv, there exists a unique metric ĝ that is conformal to

the induced metric g/ , ensuring that the volume forms dµĝ and dµS2 are
equal. This conformal factor is represented by ϕ:

g/ = ϕ2 · ĝ. (1.8)

Conservation laws

We have already stated that the quantities Q0(v) and Q1(v) are conserved
along the null hypersurface H. Consider the linear space VH consisting of
all smooth vector fields on H which have vanishing Lie derivative in the
e4 direction along H, i.e.

VH =
{

X ∈ X(H) : /L4X = 0
}

. (1.9)

The Lie derivative /L4 is the restriction of the Lie derivative L4 to the
spherical sections Sv. Let S =

(
Sv
)

v∈R
be a foliation of H and let ϕ be the

conformal factor defined above. We define the linear space W to be the
subspace of VH such that for all Θ ∈ W and for all solutions (α, α, ρ, σ) to
the Maxwell equations (3.4), the integrals

HΘ
0 =

∫
Sv

(
Ψ−1(v)(W(v)− Q0Z1(v)− Q1Z2(v))

)
ΘdµS2
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are conserved (i.e. independent of v). That is,

W =
{

Θ ∈ X(H) : /L4Θ = 0, ∂vHΘ
0 = 0

}
(1.10)

where

W(v) = W(α, ρ − ρ, σ − σ)(v) = α − χ̂♯ · /D−1(−(ρ − ρ), (σ − σ))

and Ψ(v) is a (1, 1) tensor that only depends on the background metric,
defined in (3.6). Also, the vector fields Zi(v) = Ψ(v)

∫ v
1 Ψ−1(s) · Yi(s)ds

are given by

Y1 = (−η − χ̂♯ · /D−1((trχ − trχ), 0))

Y2 = (η − χ̂♯ · /D−1((trχ − trχ), 0))∗

and finally the operator /D is the Hodge operator, defined in Section 2.9.
We make the following definition:

Definition 1.1. (Conservation laws on H): A null hypersurface H is said
to admit zeroth-order conservation laws with respect to a foliation S of H if

dimW ≥ 1. (1.11)

If (1.11) holds then we will refer to the space W and the number dimW
as the kernel and the dimension of the conservation laws, respectively. We
will call the integrals (1.1) conserved charges.

The initial definition, Definition 1.1, may appear to impose significant
constraints on the concept of conservation laws but, as demonstrated in
Theorem 1.4, the conservation laws defined in Definition 1.1 prove to be
the sole form of ’zeroth order’ conservation laws that a null hypersurface
H can admit.

We can also establish higher order conservation laws by involving higher
derivatives of variables such as α. However, we restrict our analysis to
Extremal Horizons and to null cones of Minkowski.

1.2 the null gluing problem

The null gluing problem for Maxwell’s equations gives a formal way to
represent the concept of conservation laws on null hypersurfaces accurately.
We will introduce this problem in this section.

Consider a four-dimensional Lorentzian manifold (M, g). Let S1 be the
2-sphere that is the intersection of two regular null hypersurfaces H and
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H. We define u, v to be optical functions such that H = {u = 1} and H =

{v = 1}. Following the description and well-posedness of the null initial
value problem of hyperbolic equations in [48], we prescribe characteristic
initial data for the Maxwell equations (1.1)-(1.6) corresponding to the
restriction of (α, α, ρ, σ) on the union H∪H. Let us define the following
regions

A = H∩
{

1 ≤ v ≤ v f
}

A = H∩
{

1 ≤ u ≤ u f
}

for some v f > 1, u f > 1. Let us further prescribe initial data (α, α, ρ, σ) on
these regions. By [48], there exists a smooth unique solution to Maxwell’s
equations in the domain of dependence R, shown below.

H HR

S1

We can now state the gluing construction problem. Consider our original
null hypersurface H and two conjugate null hypersurfaces H1 and H2
intersecting H at the two-dimensional spheres S1 = {v = 1} and S2 =

{v = v1}, for some v1 > 1. We prescribe initial data for the Maxwell’s
equations (1.1)-(1.6) on the hypersurfaces

A1 =H∩ {1 ≤ v ≤ v0}
A1 =H0 ∩

{
1 ≤ u ≤ u f

}
A2 =H∩

{
v1 ≤ v ≤ v f

}
A2 =H1 ∩

{
1 ≤ u ≤ u f

}
In Figure 1.2, we see the prescribed data on their respective regions and
the hyperbolic development in regions R1 and R2 respectively.

H

H1

H2

A1

A2

A1

A2

G
R1

R2

RG

S1

S2
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We would like to extend the data on the truncated hypersurface G = H∩
{v0 ≤ v ≤ v1} such that there exists a smooth solution (α, α, ρ, σ) to the
Maxwell equation in the region R1 ∪RG ∪R2 such that (α, α, ρ, σ)|A1∪A2
and (α, α, ρ, σ)|A1∪A2

agree with the data we have prescribed. Note that
R1,G,R2 is the (future) domain of dependence of the pairs (A1,A1),
(G,G), (A2,A2), respectively, where G = {v = v0} ∩

{
1 ≤ u ≤ u f

}
.

1.3 null gluing problem for maxwell

We address the following version of the above gluing problem which
will be sufficient for the classification of all null hypersurfaces admitting
conservation laws. Consider the following definition.

Definition 1.2. We say that ”we can perform kth-order gluing along H”
of characteristic data (A1,A1), (A2,A2) as defined above if there exists a
smooth extension of the data in G such that the solutions

• (α1, α1, ρ1, σ1) with data given on A1,A1, and

• (α2, α2, ρ2, σ2) with data given on A2,A2

agree at S2 to all orders tangential to H and up to first order in directions
transversal to H; that is, (α1, α1, ρ1, σ1) = (α2, α2, ρ2, σ2) at S2 to all orders
tangential to H and (/Lj

Lα1, /Lj
Lα1, Ljρ1, Ljσ1) = (/Lj

Lα2, /Lj
Lα2, Ljρ2, Ljσ2) at

S2 for j = 1, ..., k, where L is a smooth vector field transversal to H (see
below diagram).

H

A1

A2

L

L

G

S1

S2

For zeroth-order gluing, we ignore any transversal information about
(α, α, ρ, σ). Thus, our data for this problem is given by

Data0(S1) =
{
(α, α, ρ, σ) |S1

}
and

Data0(S2) =
{
(α, α, ρ, σ) |S2

}
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Given that (α, α, ρ, σ) solves the Maxwell equations, the transversal deriva-
tives (/LLα, /LLα, Lρ, Lσ) on H are completely determined by the data
(α, α, ρ, σ)|H on H and the transversal derivatives (/LLα, /LLα, Lρ, Lσ) at
a section S of H. For this reason, we can “forget” about the incoming null
hypersurfaces H1,H2 and thus just “keep” the following data

(α, α, ρ, σ) |A1
, (/LLα, /LLα, Lρ, Lσ) |S1

and
(α, α, ρ, σ) |A2

, (/LLα, /LLα, Lρ, Lσ) |S2
.

We do not need to prescribe data on the entire subsets A1,A2 of H and in
fact we can simply think of the data as given at the two spheres S1, S2 as
follows. {

(α, α, ρ, σ) |S1
, (/LLα, /LLα, Lρ, Lσ) |S1

}
and {

(α, α, ρ, σ) |S2
, (/LLα, /LLα, Lρ, Lσ) |S2

}
where L is tangential to the null generator of H. However, looking at
equations (1.2), (1.3) and (1.4), we see that (/LLα|Si , Lρ|Si , Lσ|Si)i=1,2 are
determined by the initial data (α|Si , α|Si , ρ|Si , σ|Si)i=1,2 and thus cannot be
freely chosen. We can define our free data from the first-order gluing
problem

Data1(S1) =
{
(α, α, ρ, σ) |S1

, /LLα |S1

}
and

Data1(S2) =
{
(α, α, ρ, σ) |S2

, /LLα |S2

}
Our problem becomes smoothly extending (α, α, ρ, σ) on H between S1 and
S2 such that (α, α, ρ, σ)(v = i) = (αi, αi, ρi, σi) for i = 1, 2 and the transver-
sal derivatives (/LLα, /LLα, Lρ, Lσ) are continuous on H∩ {1 ≤ v ≤ 2} (and
hence such that (α, α, ρ, σ) is C1 on H∩ {1 ≤ v ≤ 2}).
For the Ck case with k > 1 (where one needs to “glue” transversal deriva-
tives up to the kth order), sphere data can be defined as well. Note that by
a similar argument for the first-order sphere data, we can see that

/Lk
Lα = F1(/Lk−1

L α, ..., α, /Lk−1
L α, ..., α, Lk−1ρ, ..., ρ, Lk−1σ, ..., σ)

Lkρ = F2(/Lk−1
L α, ..., α, Lk−1ρ, ..., ρ)

Lkσ = F3(/Lk−1
L α, ..., Lk−1σ, ..., σ)

In other words, the (k − 1)th order data determines the kth order data for
α, ρ and σ. We can now define our sphere data.
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Definition 1.3 (kth-order sphere data). Let v ∈ [1, 2]. The kth-order sphere
data of the 2-sphere Sv, equipped with metric /g := g|Sv , is the following
tuple of Sv-tangent tensors

Datak(Sv) =
{
(α, α, ρ, σ)|Sv , /LLα|Sv , ..., /Lk−1

L α|Sv , /Lk
Lα|Sv

}
where

• ρ, σ are scalar functions

• α, α, /LLα, ..., /Lk
Lα are Sv-tangent 1-forms

Our approach for zeroth-order will be to first construct α along H such that
the necessary equations are satisfied. Note that our sphere data depends
on the choice of foliation i.e. the choice of a positive function Ω. For
simplicity, we will take Ω = 1.

Before we state our first main theorem, we need to define the following:
Let

U =
{

Θ ∈ X(H) : /L4Θ = 0,

∗ /D ◦O((Ψ−1)t(s) · Ψ(2)t · Θ
ϕ2 )(s) = (0, 0), ∀s ∈ [1, 2]

}
(1.12)

where

O(X) = −1
2

/Dη(X)− J · ∗ /D−1(ϕ∇4

(
1
ϕ

χ̂♯

)
· X)

+ J · ∗ /D−1[/D, L]∗
(
∗ /D−1(χ̂♯ · X)

)
(1.13)

and where J = diag(−1, 1) and L = ϕ−1 /∇4(ϕ
2·). We can now state our

first main theorem.

Theorem 1.4 (Zeroth-order Gluing). Let H be a regular null hypersurface,
free from conjugate or focal points, of a four-dimensional Lorentzian manifold
(M, g). Let S =

(
Sv
)

v∈R
be a foliation of H, such that each of the leaves Sv is

diffeomorphic to S2. Finally, consider O to be the associated elliptic operator given
by (1.13). Given zeroth-order sphere data (αi, αi, ρi, σi) for i = 1, 2; zeroth-order
gluing can be done given the following two conditions are met.

1. We first require

ρ0(1) = ρ0(2) (1.14)

σ0(1) = σ0(2) (1.15)

Given this condition is met, we can construct (ρ, σ) smoothly on H
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2. For all Θ ∈ U
HΘ

0 (2) = HΘ
0 (1) (1.16)

We can make a more precise statement in the special case where χ̂ = 0.

Theorem 1.5. If χ̂ = 0, then U = {0} and the only obstruction to zeroth-order
gluing is ρ0(1) = ρ0(2) and σ0(1) = σ0(2).

We can also address particular cases for the first-order gluing prob-
lem and the general kth-order gluing problem. For the first-order gluing
problem, we define

R(ρ, σ) =
(
− 1

2
∗ /D + (η,−η∗)

)−1
(

3
4

trχ∗ /D(ρ, σ) + χ̂♯ · (/∇σ)∗

+ (/∇3η − trχη + χ̂♯ · η − 1
2

/∇trχ,−/∇3η∗

+ trχη∗ + χ̂♯ · η∗ +
1
2
(/∇trχ)∗) · (ρ, σ)

)

Let us also define the following set

UExtremal =
{

Θ ∈ X(H) : /L4Θ = 0,

− 1
2
∗ /D/DΘ + ∗ /D(η(Θ),−η∗(Θ))− 2 /∇ηΘ + σ(g)Θ

∗ = 0
}

(1.17)

Note that the operator

−1
2
∗ /D/DΘ + ∗ /D(η(Θ),−η∗(Θ))− 2 /∇ηΘ + σ(g)Θ

∗ = (Q(1))∗(Θ)

is the adjoint of Q(1). We can show that for Θ ∈ UExtremal ̸= ∅, the
quantities

HΘ
Ext(v) :=

∫
Sv

(
/∇3α + (

3
2

trχχ̂♯ + α♯
(g)) · /D−1 J(ρ, σ)

−R(α − χ̂♯ · /D−1 J(ρ, σ))
)
· ΘdµSv

are conserved along extremal horizons H. We now state the second main
theorem we will prove.

Theorem 1.6 (First-order Gluing). Let H be an Extremal Horizon of a four-
dimensional Lorentzian manifold (M, g). Let S =

(
Sv
)

v∈R
be a foliation of

H, such that each of leaves Sv diffeomorphic to S2. Finally, consider O(1) to
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be the associated elliptic operator given by (1.3). Given first-order sphere data
(αi, αi, ρi, σi) for i = 1, 2; zeroth order gluing can be done given the following
two conditions are met.

1. We first require

ρ0(1) = ρ0(2) (1.18)

σ0(1) = σ0(2) (1.19)

Given this condition is met, we can construct (ρ, σ) smoothly on H

2. For all Θ ∈ UExtremal ,
HΘ

Ext(2) = HΘ
Ext(1) (1.20)

For the kth-order gluing problem on spherically symmetric extremal hori-
zons we can state the following.

Theorem 1.7. If H is extremal horizon, then the only obstruction to zeroth-order
gluing is ρ0(1) = ρ0(2) and σ0(1) = σ0(2). If we further assume spherical
symmetry, there are no further obstructions to kth-order gluing.

1.4 previous gluing constructions

Gluing constructions for hyperbolic equations are important to under-
standing the Einstein equations. Our work is motivated by the result of
Aretakis in [3, 4, 6, 9], where it was proven that the existence of conserved
charges for the wave equation along extremal black holes showed that
solutions to the wave equation did not disperse along the event horizon.

In more recent studies, Aretakis–Czimek–Rodnianski [10] introduced a
gluing technique for the characteristic initial value problem for the Einstein
equations. They showed the existence of a 10-dimensional family of gauge
invariant charges and an infinite dimensional space of gauge-dependent
charges that serve as an obstruction to gluing constructions of the null
constraint equations. These gluing constructions were only shown to exist
in a neighbourhood of Minkowski initial data. This development has
applications such as a significant improvement over the Carlotto–Schoen
result, summarized in [13]. Additionally, it provides an alternative proof
for the Corvino–Schoen gluing results. Also, using a gluing construction,
it was shown in [33] that the 3rd law of black hole dynamics was in fact
false. We discuss the spacelike gluing problem for Maxwell’s equations in
Appendix A.1.
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1.5 outline of the thesis

An outline of the thesis is as follows: In Chapter 2 we introduce the basic
geometric concepts relevant to a double null foliation and in Section 3

we derive the relation between the conservation laws and null zeroth-
order gluing constructions on a general null hypersurface, as well as some
special cases for first-order gluing. Finally in Chapter 4, we show how
the change of foliation affects conservation laws and address the gauge
invariance issue of the gluing problem.



2
T H E G E O M E T R I C S E T U P

This chapter introduces the geometric setup for the null gluing problem.
We will define the double null formulation and introduce the necessary
operators required to prove our main theorems.

2.1 null foliations and optical functions

A foliation S of a null hypersurface H in a four-dimensional Lorentzian
manifold (M, g) is a set of sections Sv that vary smoothly with respect
to the function v, such that ∪vSv = H. We will assume for this paper
that Sv are diffeomorphic to the 2-sphere, although higher genus surfaces
can be considered in general as well. One can see that any foliation is
uniquely determined by the choice of a single section, say S1, the choice of
the null tangential vector field to H vector field Lgeod

∣∣
S1

restricted on S1,
and a positive function Ω2 defined on H. We then extend the vector fields
Lgeod

∣∣
S1

to a null vector field tangential to the null generators of H, where

∇Lgeod Lgeod = 0.

Looking at the procedure in [15] for a similar construction, we define the
vector field

L = Ω2 · Lgeod (2.1)

on H and consider the affine parameter v of L such that Lv = 1, with v =

1, on S1. Let Sv denote the level sets of v on H which are the leaves of the
foliaton S . We use the notation

S =
〈

S1, Lgeod
∣∣
S1

, Ω
〉

. (2.2)

12
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LgeodLgeod Lgeod Lgeod

LgeodLgeod Lgeod Lgeod

LgeodLgeod Lgeod Lgeod

LgeodLgeod Lgeod Lgeod

S1

Sv1

Sv2 H

Lv = 1

We will define H1 = H and denote H1 to be the null hypersurface gener-
ated by all null hypersurfaces normal to S1 and conjugate to H1.
Consider now the vector field Lgeod |S1

which we define at S1. It is tangential
to the null generators of H1 and determined by

g(Lgeod, Lgeod) = −Ω−2

Next, we extend it on H1 by solving the geodesic equation

∇Lgeod Lgeod = 0.

We will also extend Ω to be a function on H1 in a similar manner and
consider the vector field

L = Ω2 · Lgeod (2.3)

Let us also define the function u on H1 which is given by Lu = 1, with u =

0 on S1. Let Sτ be the embedded 2-surface on H1 such that u = τ. We
extend Lgeod on H1 such that g(Lgeod, Lgeod) = −Ω−2 and Lgeod is a null
normal vector field to Sτ. Similarly, we extend Lgeod on H1. Note that
the affinely parametrized null geodesics, whose tangent we denote by
Lgeod, span null hypersurfaces which we denote by Hτ. Thus, we see that
H1 ∩Hτ = Sτ. We define Lgeod globally on the whole hypersurface and
the hypersurfaces Hτ so that their null normal is Lgeod.
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LgeodLgeod Lgeod Lgeod

LgeodLgeod Lgeod Lgeod

LgeodLgeod Lgeod Lgeod

S1

H1

Sv1

Su1

H1

We then extend the vector field L, L to global vector fields such that

L = Ω2 · Lgeod, L = Ω2 · Lgeod.

Let us call Ω the null lapse function. We extend the functions u, v globally
as follows.

Lu = 0 Lv = 0

Therefore, Hτ = {u = τ} and Hτ = {v = τ} . Note that u, v are optical
functions and satisfy the following relations:

∇v = −Lgeod ∇u = −Lgeod

and Lv = 1, Lu = 1. Since g
(

L, Lgeod
)
= −1, the vector field Lgeod deter-

mines the optical function u on H = H1 to first order.

S1

H1

Sv1Su1

Su1,v1

Hu1

Hv1 H1
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2.2 gauge freedom

A double null foliation D can be completely determined by

D =
〈

S1, Lgeod
∣∣
S1

, Ω|H1
, Ω|H1

〉
.

We see that the freedom of choice we have for the vector field Lgeod
∣∣
S1

and the functions Ω|H1
, Ω|H1

reflects the freedom for the functions u′ =

u′(u) and v′ = v′(v). Indeed, the optical functions u, v are determined by
choosing Ω and Lgeod (up to additive constants).

2.3 the double null coordinate system

We describe how we construct a diffeomorphism Φu,v from any sphere Su,v

to S1. Given p ∈ Su,v, take q ∈ S0,v via the intersection of H1 and the null
generator of Hu passing through p. The unique point of intersection of S1

and the null generator of H1 passing through q is thus denoted by Φu,v(p).
To obtain a diffeomorphism from Su,v to S2, we look at the diffeomorphism

Φ : S1 → S2 (2.4)

and compose Φu,v with Φ.
We shall develop a coordinate system appropriately fitted to the corre-
sponding double null foliation of the spacetime, using the optical functions
u, v with u(p) = u0, v(p) = v0 if p ∈ M. Note, p ∈ Hu0 ∩ Hv0

. The fol-
lowing are the specified angular coordinates. Assume that a coordinate
system on a domain of S1 is (θ1, θ2). Then, the point Φu0,v0(p) and p have
the same angular coordinates. The result of this construction is that ∂

∂u = L
and ∂

∂θ1 , ∂
∂θ2 ∈ TSu,v everywhere and ∂

∂v = L on H1.
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p

q

(θ1, θ2)

p = (u1, v1, θ1, θ2)

S1

H1

Sv1Su1

Su1,v1

Hu1

Hv1
H1

Note that, the latter equation will not always hold true: In general, ∂v =

L + bi∂θi . Since L = ∂u and [∂u, ∂v] = [∂u, ∂θi ] = 0 we obtain [L, L] =

− ∂bi

∂u ∂θi ∈ TSu,v, and thus,

∂bi

∂u
= −dθi([L, L]), and bi = 0 on H1 = {u = 0} . (2.5)

The metric g in the canonical null coordinate system defined above, is
given by

g = −2Ω2dudv + (bi bj g/ ij)dvdv − 2(bi g/ ij)dθ jdv + g/ ij dθidθ j, (2.6)

where we denote g/ to be the induced metric on the sphere Su,v = Hu ∩Hv.
Moreover,

det(g) = −Ω4 · det(g/ ). (2.7)

2.4 null frames

For the remainder of the paper, we will denote Su,v = Hu ∩Hv. If we let
{e1, e2} =

(
eA
)

A=1,2 be an arbitrary frame on the spheres S(u,v) then we
can define the following null frames:

• Geodesic frame: (e1, e2, Lgeod, Lgeod),

• Equivariant frame: (e1, e2, L, L),

• Normalized frame: (e1, e2, e3, e4),

• Coordinate frame: (∂θ1 , ∂θ2 , ∂v, ∂u).
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Here
e3 = ΩLgeod =

1
Ω

L, e4 = ΩLgeod =
1
Ω

L.

2.5 the conformal geometry and conformal factor

Consider the conformal class of metrics of g/ . There exists a unique rep-
resentative (metric) ĝ such that

√
ĝ =

√
g/ S2 . Here the diffeomorphism

Φ ◦ Φv identifies the section Sv with S2. We can also see that g/ and ĝ are
such that the induced volume forms on Sv are equal. Note that since g/
and ĝ are conformal there exists a conformal factor such that g/ = ϕ2 · ĝ.
Then,

√
g/ = ϕ2√ĝ = ϕ2√g/ S2 and thus

ϕ =
4
√

g/
4
√

g/ S2

. (2.8)

Here, we see that ϕ is a smooth function defined on the sphere Sv and
more importantly does not depend on the choice of the coordinate system.
In spherically symmetric spacetimes, we have ϕ = r, where r is the radius.

2.6 connection coefficients

Consider the normalized frame (e1, e2, e3, e4) defined above. We define
the connection coefficients with respect to this frame to be the smooth
functions Γλ

µν such that

∇eµ eν = Γλ
µνeλ, λ, µ, ν ∈ {1, 2, 3, 4}

Here ∇ denotes the connection of the spacetime metric g. Let us define
the following

Definition 2.1. Let Sv be a leaf in our foliation S . We define /g and /∇ to
be the induced Riemannian metric and covariant derivative respectively
on Sv. Let T be an Sv-tangential tensor. We define /∇LT by

/∇LTα1...αk = Πβ1
α1 ...Πβk

αk∇LTβ1...βk

where Π denotes the projection operator onto TSv.

We are concerned mainly with the case where at least one of the indices
λ, µ, ν is either 3 or 4 (otherwise, we simply get the Christoffel symbols
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with respect to the induced metric g/ ). Following [15, 16], we define the
Ricci coefficients of g with respect to the normalized frame as follows

χAB = g(∇Ae4, eB), χ
AB

= g(∇Ae3, eB),

ηA = g(∇3e4, eA), η
A
= g(∇4e3, eA),

ω = −g(∇4e4, e3), ω = −g(∇3e3, e4),

ζA = g(∇Ae4, e3)

(2.9)

where
(
eA
)

A=1,2 is an arbitrary frame on the spheres Sv and ∇µ = ∇eµ .
The connection coefficient can be recovered from the Ricci coefficients by

∇AeB = /∇AeB + χABe3 + χ
AB

e4

∇3eA = /∇3eA + ηAe3, ∇4eA = /∇4eA + η
A

e4

∇Ae3 = χB
A

eB + ζAe3, ∇4eA = χB
AeB − ζAe4

∇3e4 = ηAeA − ωe4, ∇4e3 = ηAeA − ωe3

∇3e3 = ωe3, ∇4e4 = ωe4

We get the following identities.

η = ζ + /∇(log Ω) η = −ζ + /∇(log Ω)

ω = ∇4(log Ω) ω = ∇3(log Ω)

Note that we can decompose the tensors χ and χ into their trace and
traceless parts as follows

χ = χ̂ +
1
2
(trχ)g/ , χ = χ̂ +

1
2
(trχ)g/ . (2.10)

We take the metric trace with respect to the induced metric g/ of the
S-tensor fields χ, χ (and more general S-tensor fields). Trace trχ is defined
to be the expansion and the component χ̂ is defined as the shear of Sv with
respect to H.

We can also show the following relations for χ and χ. Let L/L be the
projection of the Lie derivative LL onto the spheres Sv similar to how we
defined /∇ in 2.1. By the first variation formulas

L/Lg/ = 2Ωχ, L/L(g/ −1) = −2Ωχ♯♯. (2.11)

We further obtain that

∂u∂v
4
√

g/ =

[
1
2

∂v(Ωtrχ) +
1
4
(Ωtrχ)(Ωtrχ)

]
· 4
√

g/ (2.12)
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on H. The S-tangent 1-form ζ is known as the torsion. Given the relation
shown in [15],

[L, L] = −2Ω2ζ♯, (2.13)

we see that the torsion ζ is the obstruction to the integrability of the
timelike planes given by ⟨e3, e4⟩ which are orthogonal to the spherical
sections Sv.

2.7 tensor calculus

Let us define the following operators acting on S-tangent vector fields and
tensors.

Definition 2.2. Let X and Y be two Sv-tangential vector fields on Sv and
ϵAB is defined with respect to the Levi-Civita symbol ϵABCD as follows.

ϵAB = ϵAB34

We define
X × Y = ϵABXAYB

where g/ denotes the induced metric on Sv. Further, for a vector field X,
we define its dual X∗ to be

X∗
A = ϵABXB

Moreover, we define the /div and /curl of a vector field X as

/divX = /∇AXA, /curlX = ϵAB /∇AXB

We note that

/divX∗ = /curlX
/curlX∗ = − /divX

For a 2-tensor F defined on the Lorentzian 4-manifold (M, g), we define
the Hodge dual ∗F of F as

∗Fµν =
1
2

Fαβϵαβµν

where ϵ is the Levi-Civita symbol.
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2.8 curvature components

Following [16], we decompose the Riemann curvature R in terms of the
normalized null frame. First, we define the following components, which
contain at most two S-tangential components (and hence at least 2 null
components):

α
g
AB = RA4B4, α

g
AB = RA3B3,

β
g
A = RA434, βg

A
= RA334,

ρg = R3434, σg = (∗R)3434,

(2.14)

where the Hodge star ∗R is defined as follows: (∗R)αβγδ = ϵµναβRµν
γδ.

2.9 hodge operators

Consider the 2-sphere (S, /g). We define the Hodge operators /D and ∗ /D
as follows. For an S-tangent vector field X, /DX = ( /divX, /curlX) and for
a pair of functions (ρ, σ) on S to the S-tangent vector field ∗ /D(ρ, σ) =

−/∇ρ + (/∇σ)∗. The /D operator’s image is pair of functions with mean
zero, with the mean of a function of Sv defined to be

F(v) =
1

vol(Sv)

∫
Sv

Fdµ/g

These Hodge operators also satisfy the relations

∗ /D/D = −/∆, /D∗ /D = −/∆ + K (2.15)

where K is the Gauss curvature of the spherical section S. We use the
following from Proposition 4.22 in [35].

Lemma 2.3. Consider the 2-sphere (S, /g). Then the following hold

1. The operator /D is invertible on its range and its inverse /D−1 takes pairs
of functions f = (ρ, σ) (in the range of /D) into S-tangent vector fields X
with /divX = ρ and /curlX = σ , satisfying

||/∇ · /D−1 f ||L2(S) + ||/D−1 f ||L2(S) ≲ || f ||L2(S) (2.16)

2. The operator ∗ /D is invertible as an operator defined from pairs of H1-
functions with mean zero, and its inverse ∗ /D−1 takes S-tangent L2-bounded



2.10 maxwell’s equations 21

vector fields X (that is, the full range of ∗ /D) into pairs of functions (ρ, σ)

with mean zero such that −/∇ρ + (/∇σ)∗ = X , satisfying

||/∇ ·∗ /D−1X||L2(S) ≲ ||X||L2(S) (2.17)

We will also require the following lemma, similar to Lemma 4.23 from
[35].

Lemma 2.4. The operators /D−1, ∗ /D−1 satisfy

[/D−1, L] = /D−1[L, /D]/D−1

where

[L, /D]X =

(
RA4C

AXC + χAB

(
/∇AXB + ηBXA

)
− trχη · X,

ϵABRA4CBXC + ϵABχAC

(
/∇CXB + η

B
XC
))

and where LX = ϕ−2 /∇L(ϕ
2X)

We can now setup the null Maxwell equations.

2.10 maxwell’s equations

It can be shown that the Maxwell equations defined in (1) are equivalent
to

D[αFβγ] = 0 D[α
∗Fβγ] = 0 (2.18)

where ∗FAB = ϵABCDF(eC, eD). In order to write these equations in the
form of coupled null transport equations, we first need to define the
following components of F.

Definition 2.5. Let F be the Maxwell tensor and consider the normalized
frame (eA)A=1,...,4 defined in Section 2.1. We define the null components of
F as

α(eA) := F(e4, eA), α(eA) := F(e3, eA)

ρ := F(e3, e4), σ :=
1
2

F(eA, eB)ϵ
AB
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We also define ⊛α, ⊛α, ⊛ρ, ⊛σ to be the corresponding null components of
∗F. We note that for A = 1, 2,

⊛αA = −∗α, ⊛α = ∗α (2.19)
⊛ρ = σ, ⊛σ = −ρ (2.20)

We want to derive (1.1) - (1.6) from (2.18). The entire content of Maxwell’s
equations are contained in the [34A], [3AB] and [4AB] components of both
equations (2.18).
The [34A] component. Our first (2.18) equation tells us

0 = D[3F4A] = D3F4A + DAF34 + D4FA3 (2.21)

By the Ricci coefficients defined in Section 2.6, we see that

D3F4A = e3(αA)− ηBFBA + ωαA + ηAρ + α(/∇3eA)

DAF34 = /∇A(ρ) + χB
A

αB − χB
AαB

D4FA3 = −e4(αA) + ηBFBA − ωαA + η
A

ρ + α(/∇4eA)

Taking the sum of these terms, we see that (2.21) becomes

0 = (/∇3α)A − (/∇4α)A − (ηB − ηB)σϵAB + ωαA − ωαA + /∇Aρ

+ (ηA + η
A
)ρ + χB

A
αB − χB

AαB

where we used that FBA = σϵAB. Taking the same components for the
equation for the dual tensor ∗F and using the relations in (2.19), we obtain
the equation

0 = −(/∇3α)A − (/∇4α)A + (ηB + ηB)σϵAB − ωαA − ωαA + ϵAB /∇Bσ

− (ηA − η
A
)ρ − ϵBAχBCϵCDαD − ϵBAχBCϵCDαD

Taking the sum and difference of the previous two equations, we get that

0 =− (/∇4α)A + η
A

ρ − ωαA − 1
2

ϵAB /∇Bσ + ηBϵABσ +
1
2

/∇Aρ

+
1
2

(
χ

AD
+ ϵBAχBCϵCD

)
αD +

1
2

(
−χAD + ϵBAχBCϵCD

)
αD

0 =− (/∇3α)A + ηAρ − ωαA +
1
2

ϵAB /∇Bσ + ηBϵABσ +
1
2

/∇Aρ

+
1
2

(
χ

AD
− ϵBAχBCϵCD

)
αD +

(
−χAD − ϵBAχBCϵCD

)
αD
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Finally, we arrive at equations (1.1) and (1.2) by using the following identi-
ties: For an arbitrary S-tangent 2-tensor V

VAD − ϵBAVBCϵCD = tr/gV/gAD

VAD + ϵBAVBCϵCD = 2V̂AD

where V̂ denotes the trace free part of V with respect to the section metric
/g.
The [3AB] component. We get

0 = D[3FAB] = D3FAB + DBF3A + DAFB3 (2.22)

Using 2.6,

D3FAB = e3(FAB)− ηAαB + ηBαA + F(/∇3eA, eB) + F(eA, /∇3eB)

DBF3A = /∇BαA − χC
B

FCA − ζBαA − χ
BA

ρ

DAFB3 = −/∇AαB − χC
A

FCB + ζAαB − χ
AB

ρ

Combining, we get

0 = e3(σ)ϵAB − (/∇BαA − /∇AαB)− (ηAαB − ηBαA)

+ (ζAαB − ζBαA) + trχϵABσ

where we used that χC
A

ϵCB − χC
B

ϵCA = trχϵAB. This is equivalent to

0 = e3σ − /curlα − η × α + ζ × α + trχσ

= e3σ − /curlα − /d log Ω × α + trχσ

Repeating the previous calculations for the dual tensor ∗F we get

0 = e3
⊛σ − /curl⊛α − /d log Ω × ⊛α + trχ⊛σ

By the following relations

/curl⊛α = /curl(∗α) = /divα

/d log Ω × ⊛α = −/d log Ω · α
⊛σ = −ρ

we get
0 = −e3σ + /divα + /d log Ω · α − trχρ

Simplifying gives us both equations, (1.3) and (1.4).



2.10 maxwell’s equations 24

The [4AB] component. We get

0 = D[4FAB] = D4FAB + DBF4A + DAFB4 (2.23)

Using 2.6,

D4FAB = e4(FAB)− η
A

αB + η
B

αA + F(/∇4eA, eB) + F(eA, /∇4eB)

DBF4A = /∇BαA − χC
B FCA − ζBαA − χBAρ

DAFB4 = −/∇AαB − χC
AFCB + ζAαB + χABρ

Combining, we get

0 = e4σ − /curlα − /d log Ω × α + trχσ (2.24)

Repeating the previous calculations for the dual tensor ∗F we get

0 = e4
⊛σ − /curl⊛α − /d log Ω × ⊛α + trχ⊛σ

By the following relations

/curl⊛α = /curl(∗α) = /divα

/d log Ω × ⊛α = −/d log Ω · α
⊛σ = −ρ

we get
0 = −e4σ + /divα + /d log Ω · α − trχρ

Simplifying gives us equations (1.5) and (1.6). We will use various versions
of these equations, defined below.
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Covariant Formulation

We will take our gauge freedom Ω = 1 for simplicity. We refer to the
following set of equations as the covariant formulation of Maxwell’s
equations.

1
ϕ

/∇4 (ϕα) = +
1
2

(
/dρ + 2ηρ

)
− 1

2

(
/dσ + 2ησ

)∗
+ χ̂ · α (2.25)

1
ϕ

/∇3 (ϕα) = −1
2

(
/dρ − 2ηρ

)
− 1

2

(
/dσ − 2ησ

)∗
+ χ̂ · α (2.26)

/divα = +
1
ϕ2 L(ϕ2ρ) (2.27)

/curlα = +
1
ϕ2 L(ϕ2σ) (2.28)

/divα = − 1
ϕ2 L(ϕ2ρ) (2.29)

/curlα = +
1
ϕ2 L(ϕ2σ) (2.30)

Instead of writing our equations in terms of covariant derivatives, we can
write them in terms of Lie derivatives.

Lie Formulation

We rewrite the equations by replacing the covariant derivatives with Lie
derivatives to get the Lie Formulation of the Maxwell equations.

//L4α − χ̂♯ · α = +
1
2

(
/∇ρ + 2ηρ

)
− 1

2

(
/∇σ + 2ησ

)∗
+ χ̂♯ · α (2.31)

//L3α − χ̂♯ · α = −1
2

(
/∇ρ − 2ηρ

)
− 1

2

(
/∇σ − 2ησ

)∗
+ χ̂♯ · α (2.32)

/divα = +
1
ϕ2 L(ϕ2ρ) (2.33)

/curlα = +
1
ϕ2 L(ϕ2σ) (2.34)

/divα = − 1
ϕ2 L(ϕ2ρ) (2.35)

/curlα = +
1
ϕ2 L(ϕ2σ) (2.36)

Recall that for metric connections,

/∇XY − /∇YX = /LXY
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We first raise the indices of (2.25) by applying g−1 to both sides. Since the
metric commutes with covariant derivatives.

1
ϕ

/∇4

(
ϕα♯
)
=

1
ϕ

/L4

(
ϕα♯
)
+ χ · α♯

We now have to lower α♯ back to a 1-form. However, the metric does not
commute with Lie derivatives. We see that

/g · /L4

(
ϕα♯
)
= /L4 (ϕα)− /L4(/g) · ϕα♯

= /L4 (ϕα)− 2χ · ϕα♯

= /L4 (ϕα)− 2χ♯ · ϕα

Therefore,

/g · 1
ϕ

/L4

(
ϕα♯
)
+ χ♯ · α =

1
ϕ

/L4(ϕα)− χ♯ · α

Noting that χ̂♯ = χ♯ − 1
2 trχ, we arrive at the Lie formulation. The formu-

lation of the zeroth-order gluing problem will be framed with respect to
this formulation.

Complex Scalar formulation

We can also write a complex form of Maxwell’s equations. While this
form is not used in the proofs of the main theorems, it was a crucial
step that helped clarify the Maxwell gluing problem. This formulation’s
main advantage was solving the zeroth-order gluing problem for χ̂ = 0,
which is discussed in Remark 3.5. The complex Maxwell equations take
the following form

1
ϕ

L(ϕΨ) =
1
2

m(Θ)− ζmΘ + χ̂m
1

Φ (2.37)

1
ϕ

L(ϕΦ) + iΓ2
31Φ = −1

2
m(Θ)− ζmΘ + χ̂m

1 Ψ (2.38)

/DmΦ = −ϕ−2L(ϕ2Θ) (2.39)
/DmΨ = ϕ−2L(ϕ2Θ) (2.40)
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where

Ψ = α1 + iα2 (2.41)

Θ = ρ + iσ (2.42)

Φ = α1 − iα2 (2.43)

and

m = e1 + ie2 m = e1 − ie2 (2.44)

ζm = ζ(e1) + iζ(e2) ζm = ζ(e1)− iζ(e2)

χ̂m
1
= χ̂1

1
+ iχ̂2

1
χ̂m

1 = χ̂1
1 − iχ̂2

1

/Dm = m + iΓ1
m2 /Dm = m + iΓ1

m2

Γ1
m2 = Γ1

12 + iΓ1
22 Γ1

m2 = Γ1
12 − iΓ1

22

We note that the indices of the 1-form are the evaluation of the form on
a Fermi frame ( /∇LeA = 0). To derive equations (2.37) we evaluate (2.25) on
vector field m = e1 + ie2 and rearrange to get the desired equations. First,

1
ϕ

/∇4 (ϕα) = +
1
2
(/dρ − 2ζρ)− 1

2
(/dσ − 2ζσ)∗ + χ̂ · α (2.45)

Evaluating the left-hand side, we get

1
ϕ

/∇4 (ϕα) (e1 + ie2) = /∇4α(e1 + ie2) +
1
2

trχα(e1 + ie2)

= L(α1 + iα2)− α(/∇4e1 + i /∇4e2) +
1
2

trχ(α1 + iα2)

= L(α1 + iα2) +
1
2

trχ(α1 + iα2)− α(Γ2
41e2 + iΓ1

42e1)

=
1
ϕ

L(ϕΨ) + iΓ2
41Ψ
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noting that /∇4e1 = Γ2
41e2 = −Γ1

42e2 and /∇4e2 = Γ1
42e1 and Γ2

41 = −Γ1
42.

Using the definitions in (2.44), we get the left-hand side of (2.37). For the
right-hand side, we see that

1
2
(/dρ − 2ζρ)(e1 + ie2)−

1
2
(/dσ − 2ζσ)∗ (e1 + ie2) + χ̂ · α(e1 + ie2)

=
1
2
(e1(ρ) + ie2(ρ))− ζ(e1 + ie2)ρ − 1

2
/dσ(ϵ12e2 + iϵ21e1)−

ζ(ϵ12e2 + iϵ21e1)σ + χ̂ · α(e1 + ie2)

=
1
2

m(ρ)− ζmρ +
i
2

m(σ) + iζmσ + χ̂1
1
α1 + χ̂2

1
α2

+ i(χ̂1
2
α1 + χ̂2

2
α2)

=
1
2

m(ρ + iσ)− ζm(ρ + iσ) + (χ̂1
1
+ iχ̂2

1
)(α1 − iα2)

where we used the fact that χ̂ is a trace-free symmetric tensor and that,
χ̂2

1
= χ̂1

2
and χ̂1

1
= −χ̂2

2
. Equation (2.38) is derived similarly, evaluating

the equation on the vector field m instead. To get the next equations, we
com

1
ϕ2 L(ϕ2(ρ + iσ)) = /divα + i /curlα (2.46)

= /∇1α1 + /∇2α2 + i (/∇1α2 − /∇2α1) (2.47)

= e1α1 + e2α2 + i(e1α2 − e2α1)

+ α(/∇1e1 + /∇2e2 + i /∇1e2 − i /∇2e1) (2.48)

Since e1, e2 is an orthonormal frame, we get that

/∇1e1 = Γ2
11e2 /∇2e2 = Γ1

22e1 /∇1e2 = Γ1
12e1 /∇2e1 = Γ2

21e2 (2.49)

Using the fact that Γ1
22 = −Γ2

21 and Γ1
12 = −Γ2

11 and using the definitions
in (2.44), we can get the desired equation. We can derive (2.39) in a similar
manner, by instead taking the sum /divα − i /curlα.



3
G L U I N G P R O B L E M S A N D
C O N S E RVAT I O N L AW S

In this chapter, we prove our main gluing theorems. We introduce the
necessary elliptic structure to prove our general gluing theorems 1.4 and
1.6. We will also introduce methods to prove the invertibility of elliptic
operators.

3.1 zeroth-order gluing constructions

Note that for zeroth-order gluing we only need to consider equations

//L4α − χ̂♯ · α = +
1
2

(
/∇ρ + 2ηρ

)
− 1

2

(
/∇σ + 2ησ

)∗
+ χ̂♯ · α (3.1)

/divα = − 1
ϕ2 L(ϕ2ρ) (3.2)

/curlα = +
1
ϕ2 L(ϕ2σ) (3.3)

By the invertibility of /D on its natural domain, the equations (3.1),(3.2)
and (3.3) can be combined to get the following equation

/L4W(α, ρ − ρ, σ − σ)− χ̂♯ · W(α, ρ − ρ, σ − σ)

= Q(ρ − ρ, σ − σ) + V(ρ, σ) (3.4)

29
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where,

W(α, ρ − ρ, σ − σ) = α − χ̂♯ · /D−1(−(ρ − ρ), (σ − σ))

Q(ρ − ρ, σ − σ) = −1
2
∗ /Dη(ρ − ρ, σ − σ)

− ϕ∇4

(
1
ϕ

χ̂♯

)
/D−1(−(ρ − ρ), (σ − σ))

+ χ̂♯ · /D−1[/D, L]/D−1(−(ρ − ρ), (σ − σ))

V(ρ, σ) = ρ(−η − χ̂♯ · /D−1((trχ − trχ), 0))

+ σ(η − χ̂♯ · /D−1((trχ − trχ), 0))∗

= ρ0Y1 + σ0Y2

where L = ϕ−2 /∇L(ϕ
2·). To prove this we first need the following Lemma

Lemma 3.1. Operators /D−1, ∗ /D−1 satisfy

[/D−1, L] = /D−1[L, /D]/D−1

where

[L, /D]X =

(
RA4C

AXC + χAB

(
/∇AXB + ηBXA

)
− trχη · X,

ϵABRA4CBXC + ϵABχAC

(
/∇CXB + η

B
XC
))

Recalling the definition of /D, we see that

χ̂♯ · (Ωα) = χ̂♯ · /D−1(L(−ρ, σ))

= χ̂♯ · /D−1(L(−(ρ − ρ), σ − σ)) + χ̂♯ · /D−1(L(−ρ, σ))

= χ̂♯ · /D−1(L(−(ρ − ρ), σ − σ))

+ χ̂♯ · /D−1(−ρ(Ωtrχ − Ωtrχ), σ(Ωtrχ − Ωtrχ))

= χ̂♯ · L/D−1(−(ρ − ρ), σ − σ)

+ χ̂♯ · /D−1[L, /D]/D−1((−(ρ − ρ), σ − σ))

+ χ̂♯ · /D−1(−ρ(Ωtrχ − Ωtrχ), σ(Ωtrχ − Ωtrχ))

where we used that for any g : S2 → R

Lg = g(Ωtrχ − Ωtrχ)
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We can further simplify the following operator. For any ( f1, f2) with
vanishing spherical mean

χ̂♯ · L/D−1( f1, f2) =
1
ϕ2 χ̂♯ · /∇4(ϕ

2 /D−1( f1, f2))

=
1
ϕ2 Ωχ̂♯ · /∇4(ϕ

2 /D−1( f1, f2))

=
1
ϕ2 /∇4(Ωϕ2χ̂♯ · /D−1( f1, f2))− (/∇4Ωχ̂♯) · /D−1( f1, f2)

=
1
ϕ

/∇4(Ωϕχ̂♯ · /D−1( f1, f2)) +
1
2

Ωtrχ(χ̂♯ · /D−1( f1, f2))

− (/∇4(Ωχ̂♯)) · /D−1( f1, f2)

=
1
ϕ

/∇4(Ωϕχ̂♯ · /D−1( f1, f2))− ϕ /∇4(
Ω
ϕ

χ̂♯) · /D−1( f1, f2)

= /L4(Ωχ̂♯ · /D−1( f1, f2))− χ̂♯ · (Ωχ̂♯ · /D−1( f1, f2))

− ϕ /∇4(
Ω
ϕ

χ̂♯) · /D−1( f1, f2)

Thus, we see that

χ̂♯ · (Ωα) = /L4(Ωχ̂♯ · /D−1(−(ρ − ρ), σ − σ))

− χ̂♯ · (Ωχ̂♯ · /D−1(−(ρ − ρ), σ − σ))

− ϕ /∇4(
Ω
ϕ

χ̂♯) · /D−1(−(ρ − ρ), σ − σ)

+ χ̂♯ · /D−1[L, /D]/D−1((−(ρ − ρ), σ − σ))

+ χ̂♯ · /D−1(−ρ(Ωtrχ − Ωtrχ), σ(Ωtrχ − Ωtrχ))

where we used that for any 1-form ω, ϕ−1 /∇4(ϕω) = /L4ω − χ̂♯ · ω. Finally,
we want to simplify the terms that only depend on ρ and σ, which we will
call V(ρ, σ), so that it is of the form in (3.4). Note that

Ω
2

(
/∇ρ + 2ηρ

)
− Ω

2

(
/∇σ + 2ησ

)∗
= −Ω

2
/Dη(ρ − ρ, σ − σ)− Ωηρ + Ωη∗σ

and thus, we have

V(ρ, σ) = −ηρ + η∗σ + χ̂♯ · /D−1(−ρ(trχ − trχ), σ(trχ − trχ))
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Let f = Ωtrχ − Ωtrχ and X = /D−1(−ρ f , σ f ). We see that

/D((ρ − ϵσ)X) = ρ /D(X)− σ /D(X∗)

= ρ(−ρ f , σ f )− σ(σ f , ρ f )

= −(ρ2 + σ2)( f , 0)

Thus, we get that

X = /D−1(−ρ f , σ f )

− (ρ2 + σ2)(ρ − ϵσ)−1 /D−1( f , 0)

= −(ρ + ϵσ)/D−1( f , 0)

Now we can write V(ρ, σ) as follows

V(ρ, σ) = ρ(−Ωη − χ̂♯ · /D−1((Ωtrχ − Ωtrχ), 0))

+ σ(Ωη − χ̂♯ · /D−1((Ωtrχ − Ωtrχ), 0))∗

= ρ0Y1 + σ0Y2

where the 1-forms Y1, Y2 only depend on the background metric. Combin-
ing these terms, and setting Ω = 1, we arrive at (3.4). To find a necessary
condition for our initial data to satisfy, we need to ’integrate’ (3.4) in the v
direction. Thus, we need to define the dv integral of a tensor. Let (eA)A=1,2

be a Lie transported frame along H and let (eA)A=1,2 be its corresponding
dual frame. Let T be an arbitrary (1, 1) tensor such that T(v) is Sv-tangent
for all v ∈ [1, 2]. We define the integral of T as follows(∫ b

a
T(s)ds

)B

A
=
∫ b

a
TB

A(s)ds

Let M(v) =
∫ v

a T(s)ds. Note that since the frame is Lie transported i.e.
[L, eA] = 0, we see that by the above definition

(/L4M)B
A = L(MB

A)− M([L, eA], eB)− M(eA, /L4eB)

= ∂v

∫ v

1
TB

A(s)ds

= TB
A

Note that this naturally generalizes to any S-tangent (r, s) tensor. We
finally need to define the Ψ tensor. Let W0(v) be the Sv-tangent 1-form
solution to the following transport equation

/L4W0 − χ̂♯ · W0 = 0 W0(1) = W(1) (3.5)
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Let us denote the solution to the equation (which exists since it is simply
a system of ODEs), as follows

W0(v) = Ψ(v) · W(1) (3.6)

where Ψ(v) is a (1, 1) tensor that only depends on the background metric.
We see that (α, ρ, σ) satisfies (3.4) if and only if

W(v) = Ψ(v) · W(1) + Ψ(v) ·
∫ v

1
Ψ−1(s) · Q(ρ − ρ, σ − σ)(s)ds

+ ρ0Z1 + σ0Z2

where Zi(v) = Ψ(v)
∫ v

1 Ψ−1(s) · Yi(s)ds. Ψ(v) is invertible by uniqueness
theorems for ODEs. Our gluing construction will rely on Fredholm theory.
We will use the following theorem, stated in [23].

Theorem 3.2 (Fredhom Alternative). Suppose T : X → X is a compact
operator, where X is a Banach space and let λ ∈ C be non-zero. Then, exactly one
of the following hold:

• (Eigenvalue) There is a non-trivial solution to the equation Tx = λx

• (Bounded resolvent) The operator T − λ has a bounded inverse on X

It follows that the spectrum of a compact operator can only accumulate
at 0 and all nonzero elements of the spectrum are eigenvalues of finite
multiplicity. Note here that we will think of the adjoint operator acting on
the dual space of 1-forms on S2 i.e. vector fields on S2. Given X ∈ X(S2)

and ω ∈ Ω1(S2), we define the following dual coupling

< ω, X >Sv=
∫

Sv

ω(X)dµ/g

Thus, we first define the adjoint Ov with respect each Qv and then define
O such that O|Sv = Ov. Our proof requires our operator to be elliptic with
its spectrum only accumulating at infinity. However, our operator Q in its
current form will not satisfy the required conditions. Instead we define
the following operators

Q̃ = Q ◦ /D
Õ = Q̃∗ = ∗ /D ◦O
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We see that Q̃ is an operator that takes 1-forms to 1-forms. Also, from
Section 2 of [35], we have the following bounds

||/D−1X||L2(S) ≤ C1||X||L2(S)

||/D−1[L, /D]/D−1X||L2(S) ≤ C2||X||L2(S)

and thus for any X ∈ X(S2)

|
∫

Sv

(−χ̂♯ · /D−1[L + trχ, /D]/D−1 + ϕ /∇4(
1
ϕ

χ̂)/D−1)(J /D(X)) · Xdµ/g |

≤ C||/DX||L2(S)||X||L2(S)

≤
∫

Sv

Cϵ2|/DX|2 + C
ϵ2
|X|2dµ/g

for some C > 0 and for all ϵ2 > 0. Here J( f1, f2) = (− f1, f2). Indeed if we
take the operator, Q̃temp = Q̃ − 1

ϵ , then∫
Sv

Q̃tempX · Xdµ/g =
∫

Sv

−1
2
|/DX|2 − /DX · (−ζ(X), ζ∗(X))

− χ̂♯ · /D−1[L + trχ, /D]/D−1(J /D(X)) · X

+ ϕ /∇4(
1
ϕ

χ̂)/D−1(J /D(X)) · X − 1
ϵ
|X|2dµ/g

≤ −
∫

Sv

(
1
2
− ϵ1 − Cϵ2)|/DX|2 + (−|ζ|2

ϵ1
− C

ϵ2
+

1
ϵ
)|X|2

If we choose ϵ1 and ϵ2 small enough to make the first 1
2 − ϵ1 − Cϵ2 positive

and then choose ϵ sufficiently small to make the last term positive, we
can conclude that Q̃temp has a trivial kernel. By the Fredholm alternative
Q̃temp is an invertible operator. Since H2(S2) compactly embed into L2(S2)

by Rellichs Theorem, Q̃temp has a compact inverse by Poincare’s inequality.
The spectrum of this operator is thus bounded and accumulates at zero.
Thus Q̃temp is an elliptic operator with discrete eigenvalues with the only
accumulation point at infinity and

im(Q̃v) = ker(Õv))
⊥ (3.7)

Thus, since the domain of Q̃ are smooth 1-forms, we can rewrite our
necessary condition (3.8) as follows

W(2)− Ψ(2)W(1)− ρ0Z1(2)− σ0Z2(2)

=
∫ 2

1
Ψ(2) · Ψ−1(s) · Q̃(Ξ)(s)ds (3.8)
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where Ξ := /D−1(−(ρ − ρ), σ = σ). Thus we instead want to find a 1-form
F on H such that for any s ∈ [1, 2]

F(s) ∈ im(Ψ(2) · Ψ−1(s) · Q̃(s)) (3.9)

and ∫ 2

1
F(s)ds = W(2)− Ψ(2)W(1)− ρ0Z1(2)− σ0Z2(2)

which is equivalent to

F(s) ∈ ker(Õ ◦ ( 1
ϕ2 (Ψ

−1)t ◦ Ψ(2)t)(s))⊥

To construct F, we will use the following lemmas from [9]

Lemma 3.3. There is an upper bound for the dimension of the kernel K(v) ⊂
L2(S2) of the operator Õv for v ∈ [0, 1]. Moreover, there is a dense set Z ⊂ [0, 1]
such that for any x ∈ Z , there is an open neighbourhood Vx ⊂ Z such that K(v)
varies smoothly for v ∈ Vx.

Lemma 3.4. Let I =
⋃n

k=1 Ik be a union of compact intervals of R. For each
k = 1, ..., n consider Πk(v), v ∈ Ik, to be smoothly varying nk-dimensional
subspace of L2(S2) spanned by k smooth functions on S2. Define subspaces
Vk ⊂ L2(S2) as follows

Vk =
⋂

v∈Ik

Πk(v) (3.10)

Given a function ρ ∈ C∞(S2), there is a function Fρ ∈ C∞(I × S2) which
vanishes to infinite order at ∂I × S2 and is such that∫

I
Fρ(v, ·)dv = ρ(·) (3.11)

and
Fρ(v, ·) ∈ (Πk(v))

⊥ for all v ∈ Ik and k = 1, 2, ..., n (3.12)

if and only if
ρ ∈ (V1 ∩ V2 ∩ ... ∩ Vn)

⊥ ⊂ L2(S2) (3.13)
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We can now prove our main theorems.
Proof of Theorem 1.4: To see the necessity of the first condition, we see that
the quantities ρ0(v) and σ0(v) are conserved since

Lρ0 = L
∫

Sv

ρdµ/g

= L
∫

Sv

ϕ2ρdµS2

=
∫

Sv

1
ϕ2 L(ϕ2ρ)dµ/g

=
∫

Sv

( /divα)dµ/g = 0

since the divergence and curl of forms/vector fields have a spherical
average of 0. Therefore, given initial data for (ρ, σ), if ρ0(1) = ρ0(2) and
σ0(1) = σ0(2), we can construct ρ(v) and σ(v) along the whole null
hypersurface. The agreement of these quantities on initial spheres S1 and
S2 is a necessary condition for gluing. Let J = J1 ∪ ... ∪ Jk ⊂ [1, 2] such that
the kernel K(v) of our adjoint Õ ◦ ( 1

ϕ2 (Ψ−1)t ◦ Ψt(2)) varies smoothly on
each open subinterval Ji and such that⋂

v∈J

K(v) = U

The existence of the intervals is given by Lemma 3.3. Let Ξi = /D−1(−(ρi −
ρi), σi − σi). We extend Ξ from S1 and S2 smoothly on ([1, 2] − J) × S2

such that Ξ|∂J vanishes to infinite order. We additionally impose that the
extension near S1 and S2 satisfies

L /D(Ξ)|Si + L(−ρ, σ)|Si = (−Lρ, Lσ)|Si = /D(αi)− trχ|Si · (−ρi, σi)

for i = 1, 2. This is to ensure the extension is compatible with the initial
data of α. Let us define ξ as follows

ξ := (W(2)− Ψ(2)W(1)− ρ0Z1(2)− σ0Z2(2))

− Ψ(2)
∫
[1,2]−J

Ψ−1(s)Q̃(Ξ)(s)dv

To complete the gluing construction, we want to construct Ξ on [1, 2]× S2

such that
ξ = Ψ(2)

∫
J

Ψ−1(s)Q̃(Ξ)(s)ds
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In other words, we would like to construct a vector field F on S2 × J that
vanishes identically to infinite order (with respect to /L4 derivatives) on
S2 × ∂J such that F(v, ·) ∈ im(Ψ(2) · Ψ−1(s) · Q̃(s)) and

ξ =
∫

J
F(·, v)dv

Using Lemma (3.4) and the ellipticity of Q̃, we can construct F if ξ ∈ U⊥.
Let us verify this. Note that for all Θ ∈ U , if Condition 2 in 1.4 holds, then∫

S2
ξ(Θ)dµS2 =

∫
S2
(W(2)− Ψ(2)W(1)− ρ0Z1(2)− σ0Z2(2))(Θ)dµS2

−
∫

S2

(∫
[1,2]−J

Ψ(2)Ψ−1(s)Q̃(Ξ)(s)ds
)
(Θ)dµS2

= −
∫
[1,2]−J

∫
S2

(
Ψ(2)Ψ−1(s)Q̃(Ξ)

)
(Θ)dµS2 ds

= 0

Where we used that /L4Θ = 0 to move Θ into the ds integral and that∫
S2

Ψ(2)Ψ−1(s)Q̃(Ξ)(s)(Θ)dµS2 =
∫

Sv

Ξ · O
(

1
ϕ2 (Ψ

−1)t(s)Ψ(2)tΘ
)
(s)dµ/g

= 0

We get that /L4Θ = 0 since Θ ∈ U =
⋂

v∈J K(v) and therefore does
not depend on v. It can be seen from the fact that for any vector field
X = X1(v)e1 + X2(v)e2, since the frame (eA)A=1,2 is Lie transported, then

/L4X = ∂vX1e1 + ∂vX2e2

Thus, if X is independent of v, ∂vXA = 0 =⇒ /L4X = 0. We also used
HΘ

0 (2) = HΘ
0 (1) in the first step to show

0 = Ψ(2)(HΘ
0 (2)− HΘ

0 (1))

=
∫

S2
(W(2)− Ψ(2)W(1)− ρ0Z1(2)− σ0Z2(2))(Θ)dµS2

Thus, ξ ∈ U⊥. We construct F using Lemma (3.4) and complete the gluing
construction of (ρ, σ) by taking /DΞ and then adding back the spherical
averages and by constructing α as follows.

α := /D−1
(

1
ϕ2 (−L(ϕ2ρ), L(ϕ2σ))

)
□
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Let us look at the particular case χ̂ = 0 and show that only Condition 1 of
Theorem 1.4 is an obstruction to gluing.
Proof of Theorem 1.5 Consider Maxwell’s equations for zeroth-order gluing
given χ̂ = 0

1
ϕ

//L4 (ϕα) + χ · α = −1
2
∗ /D(ρ, σ) + ηρ − η∗σ (3.14)

/divα = − 1
ϕ2 L(ϕ2ρ) (3.15)

/curlα = +
1
ϕ2 L(ϕ2σ) (3.16)

The initial data (Θi, Φi, Ψi) combined with (3.14),(3.15) and (3.16) gives us
/L4α|Si , Lρ|Si , Lσ|Si . We define

/L4αi := −1
2
∗ /D(ρi, σi) + ηρi − η∗σi + χ · αi −

1
2

trχ · αi

Lρi := − /divαi + trχρi

Lσi := /curlαi − trχσi

Taking an /L4 derivative of these equations gives us, /L2
4α|Si , L2ρ|Si , L2σ|Si

as well. We can define

/L4 /L4αi := −1
2
∗ /D(Lρi, Lσi)−

1
2
[/L4, ∗ /D](ρi, σi) + ηLρi + (/L4η)ρi − η∗Lσi

− (/L4η∗)σi + /L4χ · αi + χ · /L4αi −
1
2

L(trχ) · αi −
1
2

trχ · /L4αi

Note that [/L4, ∗ /D]( f1, f2) will be an S−tangent 1-form (See Appendix) and
thus we do not need L derivatives of (ρ, σ) to compute the term in the
definition. Thus, any gluing of these functions will not only have to agree
with the initial data but also with the derivatives defined above as well.
Note that if χ̂ ̸= 0, then /L2

4α cannot be determined from initial data since
/L4α would appear on the right-hand side of (3.14). We can now do our
gluing construction. We first construct α along H such that

α|Si = αi

/L4α|Si = /L4αi

/L2
4α|Si = /L2

4αi

To construct (ρ, σ), we need to invert the following operator

∗ /Dη(ρ, σ) := ∗ /D(ρ, σ)− 2ηρ + 2η∗σ



3.1 zeroth-order gluing constructions 39

For convenience, we will use the Levi-Civita operator ϵ to refer to the
∗ operator where (∗ξ)A = ϵABξB. Note the Levi-Civita symbol normally
maps vector fields to 1-forms but with a slight abuse of notation it will
just map vector fields to vector fields i.e. ϵξ =∗ ξ. Note that ϵ2 = −1. With
this notation, we say ∗ /D( f1, f2) = −/∇ f1 + ϵ /∇ f2. In order to invert the
operator ∗ /Dη , we note that η = ∇4e3 is an L2 vector field and thus in the
image of ∗ /D. Thus there exists (g1, g2) such that

∗ /D(g1, g2) = −2η

We define the following functions

h1 = eg1 cos g2

h2 = eg1 sin g2

Note that /∇h1 = h1 /∇g1 − h2 /∇g2 and /∇h2 = h2 /∇g1 + h1 /∇g2. We see that

∗ /D(h1ρ − h2σ, h2ρ + h1σ) = −/∇(h1ρ − h2σ) + ϵ /∇(h2ρ + h1σ)

= h1
(
ρ(−/∇g1 + ϵ /∇g2) + σ(/∇g2 + ϵ /∇g1)

+ (−/∇ρ + ϵ /∇σ)
)
+ h2

(
ρ(/∇g2 + ϵ /∇g1)

+ σ(/∇g2 − ϵ /∇g1) + (ϵ /∇ρ + /∇σ)
)

= (h1 − ϵh2)((ρ − ϵσ)(−2η) + ∗ /D(ρ, σ))

= (h1 − ϵh2)
∗ /Dη(ρ, σ)

We can now rewrite (3.14) as follows

1
ϕ

//L4 (ϕα) + χ · α = −1
2

1
h2

1 + h2
2
(h1 + ϵh2)

∗ /D(h1ρ − h2σ, h2ρ + h1σ)

where we used (h1 − ϵh2)−1 = (h2
1 + h2

2)
−1(h1 + ϵh2). Thus we have written

∗ /Dη in terms of ∗ /D, which we can invert. However, the image of the
inverse of ∗ /D are pairs of functions with mean zero. Thus we see that if
1
ϕ

//L4 (ϕα) + χ · α = X, then

∗ /D−1(−2((h1 − ϵh2))X) = (h1ρ − h2σ − h1ρ − h2σ, h2ρ + h1σ − h2ρ + h1σ)

We have to now recover (ρ, σ) from the right-hand side of the above
equation. Let (F1, F2) = ∗ /D−1(−2((h1 − ϵh2))X). We define

H =

(
h1 −h2

h2 h1

)
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Note that det H = h2
1 + h2

2 = exp(2g1) ̸= 0, thus H is invertible for all
(h1, h2). We can now see that(

F1

F2

)
= H

(
ρ

σ

)
− H

(
ρ

σ

)
Rearranging, and taking an average,

H
(

ρ

σ

)
= H−1−1

(
ρ

σ

)
− H−1−1

H−1

(
F1

F2

)
(3.17)

Here the spherical average of a matrix is the average over each component.
We also used the fact that

H−1H−1

(
ρ

σ

)
= H−1H−1

(
F1

F2

)
The right-hand side of (3.17) is completely determined by the background
metric as well as (ρ, σ), which can be constructed along H given initial data.
We can now complete our gluing construction by defining the following(

ρ

σ

)
:=H−1

((
F1

F2

)
+ H−1−1

(
ρ

σ

)
− H−1−1

H−1

(
F1

F2

))

α :=/D−1
(

1
ϕ2 (−L(ϕ2ρ), L(ϕ2σ))

)
Thus there are no obstructions to zeroth-order gluing when χ̂ = 0.

□

Remark 3.5. The complex Maxwell’s equations for zeroth order gluing
under this assumption are given by

1
ϕ

L(ϕΨ) =
1
2

m(Θ)− ζmΘ (3.18)

/DmΦ = −ϕ−2L(ϕ2Θ) (3.19)
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Since m, as an operator, maps onto all of L2, there exists a function g such
that m(g) = −2ζm. Letting h = eg, we get m(h)/h = m(g). Plugging this
into (3.18)

1
ϕ

L(ϕΨ) =
1
2

m(Θ) +
1
2

m(g)Θ (3.20)

=
1
2

m(Θ) +
1
2

m(h)
h

Θ (3.21)

=
1

2h
(m(Θ)h + m(h)Θ) (3.22)

=
1

2h
m(hΘ) (3.23)

It is much easier to see how to factor the operator in this formulation than
in the Lie Formulation, which was how it was originally proven.

3.2 first-order gluing - spherical symmetry

Before looking at Minkowski, we look at the general first-order problem
in spherical symmetry. Note that in this case, our Maxwell equations take
the following form

/L4α = −1
2
∗ /D(ρ, σ) (3.24)

/L3α = −1
2
∗ /D(−ρ, σ) (3.25)

/Dα =
1
ϕ2 L(ϕ2ρ, ϕ2σ) (3.26)

/Dα =
1
ϕ2 L(−ϕ2ρ, ϕ2σ) (3.27)

The nonexistence of zeroth-order obstructions to the gluing problem fol-
lows from Theorem 1.5. For the first-order problem, we get the following
equation
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/L4 /L3α = /L3 /L4α

= −1
2

/L3
∗ /D(ρ, σ)

= −1
2

/∇3
∗ /D(ρ, σ)− 1

2
χ♯∗ /D(ρ, σ)

= −1
2
∗ /D(Lρ, Lσ)− 1

2
[/∇3, ∗ /D](ρ, σ)− 1

2
χ♯∗ /D(ρ, σ)

= −1
2
∗ /D/Dα +

1
2

trχ∗ /D(ρ, σ)

= −1
2
∗ /D/Dα + L(trχ)α − /L4(trχα)

where we used [/L4, /L3] = /L[e4,e3] = 0 under the assumption of spherical
symmetry. Thus, the obstructions to gluing are given by integrals of the
form

HΘ
sph(v) =

∫
Sv

(/L3α + trχα)ΘdµS2

where Θ ∈ Usph is given by

Usph = {X ∈ X(S2) : (−1
2
∗ /D/D + L(trχ))(X) = 0, /L4X = 0}

Note that the elliptic operator on the right-hand side is also self-adjoint.

Minkowski spacetime

In spherical symmetry, we can replace ϕ = r, where r is the area radius of
the spherical section S, given by

r =
√

1
4π

∫
S

dµS

In Minkowski, the area radius coincides with the coordinate r in the polar
coordinate representation. Using the fact that trχ =

√
2

r and trχ = −
√

2
r ,

and that L = 1√
2
(∂t + ∂r) and L = 1√

2
(∂t − ∂r) given our gauge choice

Ω = 1, we get that

/L4(/L3α + trχα) =
1

2r2 (/̊∆ + 1) (3.28)

where we used the identity ∗ /D/D = −/∆ + K = − 1
r2 (/̊∆ − 1) on Minkowski.

The operator on the right-hand side has a 6-dimensional kernel defined
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in terms of vector spherical harmonics E(1m), H(1m) (defined in Appendix
A.3) with m = −1, 0, 1. We see that the quantities∫

Sv

(/L3α + trχα)E(1m)dµS2 ,
∫

Sv

(/L3α + trχα)H(1m)dµS2 (3.29)

are conserved. Since the operator 1
2r2 (/̊∆ + 1) has a discrete spectrum of

eigenvalues with finite multiplicity accumulating at ∞, we can repeat the
proof of 1.4, mutatis mutandis, to solve the gluing problem for spherically
symmetric metrics, including Minkowski.

Schwarzschild Horizon

By the transversal propagation equation for χ, and assuming H = {r =

2M} is the Schwarschild event horizon, we get the following equation

∂v(trχ) = −K

Thus, we get the following first-order equation along H

/L4(/L3α + trχα) =
1
2
(−∗ /D/D − 2K)α = Qsph(α)

We can see that for all v ∈ [1, 2] and ∀X ∈ X(S2)∫
Sv

X · Qsph(X)dµSv = −1
2

∫
Sv

|/DX|2 + 2K|X|2dµSv < 0

where we used that K > 0 for round spheres. Thus, the operator Qsph has
an empty kernel and therefore no first-order conservation laws along H.
We will now consider the case where H is a Killing Horizon, simplifying
the Maxwell equations and allowing us to address the problem of higher-
order gluing constructions.

3.3 black hole spacetimes

Let (M, g) be a stationary spacetime admitting a black hole region (defined
in [53]). For such a spacetime, the event horizon H is a Killing Horizon,
meaning that there exists a vector field ξ that is tangent and normal to H
such that

Dξξ = κ · ξ on H (3.30)

where κ is constant along the null generators of H. By the zeroth of law of
black hole dynamics, we will take κ to be constant on all of H, in which
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case, we call κ the surface gravity of H. Killing Horizons with κ = 0 are
called extremal horizons. The following properties of Killing Horizons are
proven in [7].

Lemma 3.6. Let H be a Killing horizon and let D = ⟨S1, Lgeod, Ω = 1⟩ be
foliation of H, defined in 2. Let ξ be a Killing vector field normal to H satisfying
(3.30). Then, we get the following relations on H

1. χ = 0

2. /LL/g = 0

3. /dκ = g(ξ, L) · β

4. /LLη = /∇Lη = β

5. If we take Lgeod|S1 = ξ|S1 , and κ is constant on H, then

/LLχ = /∇Lχ =
κ

f
χ (3.31)

where f is such that ξ = f · Lgeod on H

Note that if we assume the Einstein vacuum equations Ric(g) = 0, we get
from the Codazzi equations that

/divχ − /dtrχ + χ♯ · ζ − (trχ) · ζ = β

We see that by result 1) in Lemma 3.6, β = 0. If we do not assume the
Einstein vacuum equations but assume constant surface gravity, it also
follows that β = 0 from result 3) of Lemma 3.6. Along Killing Horizons,
we get a transport equation for /∇3α which we derive as follows.

/∇4 /∇3α = /∇3 /∇4α + [/∇4, /∇3]α

= −1
2
∗ /D/Dα + (η,−η∗)/Dα + 2 /∇ηα − σ(g)α

∗ +
3
4

trχ∗ /D(ρ, σ)

+ χ̂♯ · (/∇σ)∗ +
(

/∇3η − trχη + χ̂♯ · η − 1
2

/∇trχ,−/∇3η∗ + trχη∗

+ χ̂♯ · η∗ +
1
2
(/∇trχ)∗

)
· (ρ, σ)− 3

2
trχχ̂♯ · α − α♯

(g) · α

where α(g)(eA, eB) = RA3B3 and σ(g) =
1
2 /ϵ ABRAB34. For extremal Killing

horizons, we get that the Killing field ξ = L. We also get that on extremal
horizons, /Lξ R = /Lξ Ric = /Lξ Rsc = /Lξχ = 0 (proven in [7]). Let us
assume that (ρ(2), σ(2)) = (ρ(1), σ(1)). Thus for any pairs of function



3.3 black hole spacetimes 45

( f , g) defined on H with conserved spherical averages, we define the
inverse o f /D as follows

/D−1( f , g) := /D−1( f − f , g − g)

Thus, along extremal horizons, we see that

α = /∇4 /D−1 J(ρ, σ)

(ρ, σ) = /∇4

((
−1

2
∗ /D + (η,−η∗)

)−1

(α − χ̂♯ · /D−1 J(ρ, σ))

)

(−1
2
∗ /D/D + (η,−η∗)/D + 2 /∇η − σ(g)/ϵ)α =

/∇4

(
/∇3α + (

3
2

trχχ̂♯ + α♯
(g)) · /D−1 J(ρ, σ)−R(α − χ̂♯ · /D−1 J(ρ, σ))

)

where we used that [/∇4, (− 1
2
∗ /D + (η,−η∗))] = 0 and thus holds for the

inverse by the relation [A, B−1] = B−1[B, A]B−1 and where the operator R
is as follows.

R(ρ, σ) =
(
− 1

2
∗ /D + (η,−η∗)

)−1
(

3
4

trχ∗ /D(ρ, σ) + χ̂♯ · (/∇σ)∗

+(/∇3η − trχη + χ̂♯ · η − 1
2

/∇trχ,−/∇3η∗+ trχη∗+ χ̂♯ · η∗+
1
2
(/∇trχ)∗) · (ρ, σ)

)

Let us now prove our second main theorem.
Proof of Theorem 1.6: If the conserved charges of the prescribed data HΘ

Ext(1)
at S1 and HΘ

Ext(2) at S2 agree, we should be able to construct a solution
along H. Note the following estimate∫

Sv

X · (Q(1) − 1
ϵ1
)(X)dµSv =

∫
Sv

−1
2
|/DX|2 + (η(X),−η∗(X))/DX

+ 2 /∇ηX · X − 1
ϵ1
|X|2dµSv

=
∫

Sv

−1
2
|/DX|2 + (η(X),−η∗(X))/DX

− /divη|X|2 − 1
ϵ1
|X|2dµSv

Note that along Extremal Horizons

L(trχ) = − /divη + |η|2 − K − trχtrχ = 0 (3.32)
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Hence
0 = − /divη + |η|2 − K

Therefore, we get that∫
Sv

X · (Q(1) − 1
ϵ1
)(X)dµSv = −1

2

∫
Sv

|/DX|2 − 2(η(X),−η∗(X))/DX

(−2|η|2 + 2K +
1
ϵ1
)|X|2dµSv

≤ −1
2

∫
Sv

(1 − ϵ)|/DX|2

+ ((−2 − 2
ϵ
)|η|2 + 2K +

1
ϵ1
)|X|2dµSv

≤ −1
2

∫
Sv

(1 − ϵ)|/∇X|2

+ ((−2 − 2
ϵ
)|η|2 + (3 − ϵ)K +

1
ϵ1
)|X|2dµSv

Choosing ϵ, ϵ1 sufficiently small, (Q(1) − 1
ϵ1
) is invertible and by the Fred-

holm alternative and must have discrete eigenvalues with an accumulation
point at infinity. Note that the propagation equation (3.32) and Gauss
equation do not need to be assumed for this estimate but make it slightly
easier. Thus, if HΘ(2) = HΘ(1) for all Θ ∈ Uextremal , we can use a similar
argument as we did in Theorem 1.4 for zeroth-order gluing to construct α.
We then construct (ρ, σ) such that

(
∫ 2

1
ρdv,

∫ 2

1
σdv) =

((
−1

2
∗ /D + (η,−η∗)

)−1

(α − χ̂♯ · /D−1 J(ρ, σ))

) ∣∣∣∣v=2

v=1

and agrees with the prescribed data at v = 1, 2. Finally, we construct α and
/∇3α from the remaining null Maxwell equations to complete the gluing
construction.

□
Proof of Theorem 1.7: Let us introduce a method of v-weighted integrals to
prove gluing constructions along extremal horizons. On extremal horizons,
we get that for any S-tangent tensor T, /∇4T = /L4T. Since χ = /L4/g = 0 ,
we get that for any S-tangent 1 -form ω on H∫ v

1
/Dω(v′)dv′ = /D

∫ v

1
ω(v′)dv′
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since our frame (eA) is Lie transported ([∂v, eA] =) and χ = 0. In sphere
coordinates, letting eA = ei

A∂i, we see that∫ v

1
/divω(v′)dv′ =

∫ v

1
g11e1(ω1) + g22e2(ω2)dv′

= g11
∫ v

1
e1(ω1)dv′ + g22

∫ v

1
e2(ω2)dv′

= g11
∫ v

1
ei

1∂i(ω1)dv′ + g22
∫ v

1
ei

2∂i(ω2)dv′

= g11ei
1∂i

∫ v

1
(ω1)dv′ + g22ei

2∂i

∫ v

1
(ω2)dv′

= /div
∫ v

1
ω(v′)dv′

where we used that

∂v(gAB) = (/L4g−1)AB + g−1(/L4eA, eB) + g−1(/L4eB, eA)

= −2χAB = 0

and the fact that 0 = [∂v, eA] = ∂v(ei
A)∂i =⇒ ∂v(ei

A) = 0. We can rewrite
equations (2.35) and (2.36)

(ρ, σ) = (ρ(1), σ(1)) + J /D
∫ v

1
α(v′)dv′ (3.33)

where we used that Lϕ = 0. Plugging this expression into (2.31), and using
that /L4η = 0

/L4α = −1
2
∗ /D J /D(

∫ v

1
α(v′)dv′) + (η,−η∗) · J /D(

∫ v

1
α(v′)dv′) + χ̂ · α

− 1
2
∗ /D J /D(ρ(1), σ(1)) + (η,−η∗) · J /D(ρ(1), σ(1))

Integrating this equation from v = 1 to v = 2, we get,

α(2)− α(1)−
∫ 2

1
−1

2
∗ /D J /D(ρ(1), σ(1)) + (η,−η∗) · J /D(ρ(1), σ(1))dv

= −1
2
∗ /D J /D(

∫ 2

1

∫ v

1
α(v′)dv′dv) + (η,−η∗) · J /D(

∫ 2

1

∫ v

1
α(v′)dv′dv)

+
∫ 2

1
χ̂♯ · αdv



3.3 black hole spacetimes 48

Note that the left hand side only depends on the background geometry
and the initial data. By changing the order of integration of v and v′ we
get that ∫ 2

1

∫ v

1
α(v′)dv′dv = 2

∫ 2

1
α(v)dv −

∫ 2

1
vα(v)dv (3.34)

In fact, in general, we see that, for any integrable object f (v)∫ 2

1

∫ v1

1
...
∫ vn

1
f (vn+1)dvn+1...dv1dv =

∫ 2

1

1
n!
(2 − v)n f (v)dv (3.35)

Note that by setting v = 2 in (3.33) we get the following equation

(ρ(2), σ(2))− (ρ(1), σ(1)) = J /D
∫ v

1
α(v′)dv′ (3.36)

In addition, for the left-hand side to be in the image of J /D, the spherical
average of the left-hand side has to equal 0. This is related to the quantities
(ρ0, σ0) being conserved. Assuming this, we see that the integral

∫ 2
1 αdv

is completely determined by initial data. Thus, we replace the integral∫ 2
1

∫ v
1 α(v′)dv′dv with the integral

∫ 2
1 vαdv and move the initial data terms

to the right. We have hence reduced the gluing problem along Killing
Horizons to solving the following system

F =
∫ 2

1
α(v)dv

G′ =
1
2
∗ /D J /D(

∫ 2

1
vα(v)dv)− (η,−η∗) · J /D(

∫ 2

1
vα(v)dv) +

∫ 2

1
χ̂♯ · αdv

where

F = /D−1(−ρ(2) + ρ(1), σ(2)− σ(1))

G′ = α(2)− α(1)−
∫ 2

1
−1

2
∗ /D J /D(ρ(1), σ(1)) + (η,−η∗) · J /D(ρ(1), σ(1))dv

+ ∗ /D J /D(F)− 2(η,−η∗) · J /D(F)

Note that along a Killing Horizon, if the Killing vector field ξ|S1 = L, then

/L4χ = /∇4χ = κ · χ|S1 (3.37)
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where κ is the surface gravity. We see that χ̂♯ = (v − 1)κχ̂♯|S1 + χ̂♯|S1 and
we can write

F =
∫ 2

1
α(v)dv (3.38)

G =
1
2
∗ /D J /D(

∫ 2

1
vα(v)dv)− (η,−η∗) · J /D(

∫ 2

1
vα(v)dv) + κχ̂♯|S1 ·

∫ 2

1
vαdv

= (
1
2
∗ /D J /D − (η,−η∗) · J /D + κχ̂♯|S1)(

∫ 2

1
vαdv) (3.39)

where again F, G simply represent 1-forms that only depend on prescribed
data and the background geometry. Therefore, in order to do zeroth-order
gluing on Killing Horizons, we want the operator 1

2
∗ /D J /D− (η,−η∗) · J /D+

κχ̂♯|S1 to be surjective. Let us look at the case where κ = 0 i.e. an Extremal
Horizon. From Theorem 1.5 and the fact that /D is invertible, we see that
the operator 1

2
∗ /D J /D − (η,−η∗)J /D = 1

2
∗ /Dη J /D is invertible. The problem

is therefore reduced to the following lemma.

Lemma 3.7. Given n + 2 arbitrary smooth 1-forms on the sphere W1, ..., Wn+2,
can we find an S-tangent 1-form α on S2 × [1, 2] such that

W1 = α(1),

W2 = α(2)

W3 =
∫ 2

1
α(v)dv

W4 =
∫ 2

1
vα(v)dv

...

Wn+2 =
∫ 2

1
vnα(v)dv

The proof of this uses an orthogonality argument and is identical to
the proof of Lemma 4.18 in [10]. While we were able to prove gluing
for the extremal case, for the κ ̸= 0, we are interested in whether or not
Qsub =

1
2
∗ /D J /D − (η,−η∗) · J /D + κχ̂♯|S1 is invertible.

Question 3.8. Is Qsub invertible? If not, how do we use its kernel to construct
conservation laws?

For the nth-order gluing problem for spherically symmetric extremal
horizons, similar to the first-order case, the nth-order derivatives of ρ, σ

and α can be determined by the lower-order transversal derivatives. Thus,
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for 2nd order gluing, we only need to consider the following transport
equations for the transversal derivatives of α

/∇4α = −1
2
∗ /D(ρ, σ)

/∇4 /∇3α = −1
2
∗ /D/Dα +

3
4

trχ∗ /D(ρ, σ)

/∇4 /∇3 /∇3α = −1
2
∗ /D/D /∇3α +

3
4

trχ∗ /D/Dα − 9
8
(trχ)2∗ /D(ρ, σ)

By induction, one can see that,

/∇4 /∇k
3α = −1

2
∗ /D/D /∇(k−1)

3 α + G(/∇(k−2)
3 α, ..., α) + C(trχ)k∗ /D(ρ, σ)

where G is a smooth operator satisfying∫ v

1
G(/∇(k−2)

3 α, ..., α)dv = G(
∫ v

1
/∇(k−2)

3 αdv, ...,
∫ v

1
αdv)

where we used the following commutation relations along spherically
symmetric Killing horizons

[/∇3, ∗ /D] = −1
2

trχ∗ /D

[/∇3, /D] =
1
2

trχ /D

which implies
[/∇3, ∗ /D/D] = 0

Integrating in v, assuming H is an extremal horizon, we get the following
system

F1 =
∫ 2

1
α(v)dv

F2 = (∗ /D J /D)(
∫ 2

1
vαdv)

F3 = (∗ /D/D∗ /D J /D)(
∫ 2

1
v2αdv)

...

Fk = ((∗ /D/D)k−2∗ /D J /D)(
∫ 2

1
vk−1αdv)
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Where Fi only depends on initial data. Since the operators /D, ∗ /D are
invertible, there are no obstructions to gluing. By applying Lemma 3.7, we
finish the proof of 1.6.

3.4 conservation laws at null infinity

In this section, we are interested in constructing conservation laws along
null infinity I by constructing conservation laws along ingoing null hy-
persurfaces H, and then taking the appropriate limit to infinity. In [9],
Aretakis similarly constructs conservation laws for the wave equation
along ingoing null hypersurfaces and by studying the limiting case, recov-
ers the Newman-Penrose constants, defined and discussed in [43] and [44].
We discuss the geometric structure of null infinity of a (3+ 1)-dimensional
asymptotically flat Lorentzian manifold.

Structure of null infinity I

Let (M, g) be a regular globally hyperbolic four-dimensional Lorentzian
manifold and let S1 be a sphere embedded in an initial Cauchy hyper-
surface Σ. We assume that the outgoing null geodesics normal to S1 are
future complete and thus generate a future complete null hypersurface
H1. We take S =

〈
S1, Lgeod, Ω = 1

〉
to be a foliation of H1. Let τ be the

affine parameter of Lgeod on H1, in other words τ|S1
= 1 and Lgeod(τ) = 1,

and let Sτ be the corresponding spherical sections on H1. Let Hτ denote
the ingoing null hypersurface of M generated by incoming null geodesics
normal to Sτ. We consider the collection {Dτ, τ ≥ 1} of the double null
foliations generated by Dτ =

〈
Sτ, Lgeod

∣∣
Sτ

, Ω|H1
= 1, Ω|Hτ

= 1
〉

where

Lgeod
∣∣
Sτ

is normalized such that

trχ + trχ = 0 : on Sτ. (3.40)
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H1

{u
=

1}

Hτ

Sτ

H1

S1Σ0

i0

I

Let us now consider the induced foliation Sτ =

〈
Sτ, Lgeod

∣∣∣
Sτ

, Ω|Hτ
= 1

〉
on Hτ. Let g/ be the induced metric, ∇/ the induced covariant derivative
with respect to g/ and △/ the induced Laplacian. We also define A(S) to
be the area and r(S) =

√
A(S)/4π the radius function of a particular

spherical section S. Suppose that as τ → +∞ we have r(Sτ) → +∞. If
(M, g) is asymptotically flat in the sense of [53] then the null infinity I
is defined to be the limit as τ → +∞ of the hypersurfaces Hτ. Quantities
associated to I can only be understood in a limiting, appropriately rescaled
sense with respect to the radius variable r (note that the limit of the
foliations Sτ, as τ → +∞, induces a foliation of I). The precise decay
rates for the metric of asymptotically flat spacetimes vary in the literature.
In our setting, it suffices to have the following rates which were used to
understand the Newman-Penrose constants in [9] 1 (which are consistent
with [14]):

1
r2 g/ → g/ S2 ,

1
r2

√
g/ → sin θ, r2∇/ → ∇/ S2 , r2△/ → △/ S2 ,

1
r

ϕ → 1,

∂vr → 1√
2

, ∂ur → − 1√
2

, rζ → Z,

rtrχ →
√

2, rtrχ → −
√

2, r2∂vtrχ → 1, r2∂utrχ → 1,
(3.41)

where Z is a 1-form defined on S2. The definition of the above quantities
can be found in Section 2.1. The above limits should be understood in
terms of the pullback of the induced tensor fields to the standard sphere
via the diffeomorphism Φu,v (see Section 2.1).

1 No other assumptions are required for the metric; no constraint equations need to be
satisfied on null infinity.
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Newman-Penrose constants - Wave equation

Before deriving the conservation laws for Maxwell, we look at the wave
equation to understand a simpler model for conservation laws. We de-
rive the conserved Newman-Penrose constants, as was shown in [9]. In
spherical symmetry, the wave equation takes the following form

−2∂u∂v(rψ) = △/ (rψ) +

[
∂u(trχ) +

1
2
(trχ) · (trχ)

]
· (rψ)

Projecting the equation onto spherical harmonics Ylm, and by defining
ψlm =

∫
S2 ψ · YlmdµS2 we get

− 2∂u∂v(rψlm) =

1
r2

[
−l(l + 1) + r2∂u(trχ) +

r2

2
(trχ) · (trχ)

]
· (rψlm) (3.42)

If we use the ingoing Eddington-Finkelstein coordinates (u, r, θ1, θ2), we
obtain

ψ(u, r, θ) =
a1(u, θ1, θ2)

r
+

a2(u, θ1, θ2)

r2 + O(
1
r3 )

and thus

ψlm(u, r) =
alm

1 (u)
r

+
alm

2 (u)
r2 + O(

1
r3 )

From this, we note the following limits

lim
r→+∞

rψlm = alm
1

lim
r→+∞

r2∂v(rψlm) = −
√

2alm
2

Note that

r2∂u∂v(rψlm) = ∂u(r2∂v(rψlm))− 2r(∂ur)∂v(rψlm))

→ ∂u(r2∂v(rψlm))

Therefore, in order to get a nonzero finite limit at infinity, we need to
multiply equation (3.42) by r2. The right-side limit is given by

lim
r→+∞

r2

r2

[
−l(l + 1) + r2∂u(trχ) +

r2

2
(trχ) · (trχ)

]
· (rψlm) = −l(l + 1)alm

1 (u)
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where we used that r2(∂u(trχ) + 1
2 (trχ) · (trχ)) → (1 − 1) = 0. Hence, we

get a conserved quantity when l = m = 0 and we recover the Newman-
Penrose constant

lim
r→+∞

∫
Su

r2∂v(rψ)dµS2 = −
√

2
∫

Su

a2(u, θ1, θ2)dµS2

Note the importance of having second-order asymptotics to derive the
conservation law. Let us now look at the case for Maxwell.

Conservation laws at null infinity - Maxwell

Let us look at how the Maxwell equations propagate along ingoing null
hypersurfaces. For first-order gluing along ingoing null hypersurfaces, the
roles of the vector fields L and L reverse, with L being the null normal
to the hypersurface Hτ for a fixed τ and L the transversal direction.
Our notion of kth-order gluing now involves gluing L derivatives of our
null Maxwell components. We also let (Su) be a foliation of this ingoing
hypersurface. One can see that the Maxwell equations are invariant under
the frame transformation (e3, e4) 7→ (e4, e3) since under this transformation

α 7→ α

α 7→ α

ρ 7→ −ρ

σ 7→ σ

Thus, we can apply this transformation to any outgoing transport equation
to get the corresponding ingoing equation. In order to get a transport
equation for the transversal derivative of α, we will use the covariant
formulation of Maxwell’s equations in spherical symmetry, which are
given as

1
ϕ

/∇4(ϕα) = −1
2
∗ /D(ρ, σ) (3.43)

1
ϕ

/∇3(ϕα) = −1
2
∗ /D(−ρ, σ) (3.44)

/Dα =
1
ϕ2 L(ϕ2ρ, ϕ2σ) (3.45)

/Dα =
1
ϕ2 L(−ϕ2ρ, ϕ2σ) (3.46)
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Our first-order equation can be derived from Equations (3.24) - (3.27) as
follows

/∇3 /∇4(ϕα) = /∇4 /∇3(ϕα)

= /∇4

(
−ϕ

2
∗ /D(−ρ, σ)

)
= −ϕ

2
/∇4

∗ /D(−ρ, σ)− ϕ

4
trχ∗ /D(−ρ, σ)

= −ϕ

2
∗ /D(−Lρ, Lσ)− ϕ

2
[/∇4, ∗ /D](−ρ, σ)− ϕ

4
trχ∗ /D(−ρ, σ)

= −ϕ

2
∗ /D/Dα +

1
2

trχ∗ /D(−ρ, σ)

= −ϕ

2
∗ /D/Dα + ∂u(trχ)ϕα − /∇3(ϕtrχα)

Using that ϕ = r, we get

/∇3(/∇4(rα) + trχ(rα)) = −1
2
∗ /D/D(rα) + ∂u(trχ)(rα)

= − 1
2r2 (/∆S2 − 1 + 2r2∂u(trχ))(rα) := Q(rα)

Since the metric commutes with covariant derivatives, we get the same
equations for α♯ and α♯. In order to find the appropriate equation along
null infinity I , we project the vector equations onto the vector spherical
harmonics (Elm, Hlm), defined in Appendix A.3. Let rKlm refer to either
vector harmonic (rElm, rHlm). Then,∫

Su

/∇3(/∇4(rα♯) + trχ(rα)) · rKlmdµS2 =
∫

Su

Q(rα♯) · rKlmdµS2

Note that the volume measure for the spherical section is dµSu = r2dµS2

where dµS2 is the volume measure for the round unit sphere. We rewrite
the above equation in more convenient notation as follows

∂u(∂v(rαlm
K ) + trχ(rαlm

K )) =
1

2r2 (−l(l + 1) + 2r2∂u(trχ))(rαlm
K ) (3.47)

where we used that /∇4(rKlm) = 0 = /∇3(rKlm) by our definition in Ap-
pendix A.3 and defined

αlm
K =

∫
Su

α♯ · (rKlm)dµS2 (3.48)
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Note that in spherical symmetry [L, L] = 0 and thus L = e4 = ∂v and
L = e3 − ∂u. Suppose the leading order asymptotics for α near null infinity
are given by

α =
C(u, θ1, θ2)

rp + o(r−p−δ)

and thus for αlm
K

αlm
K =

Clm
K (u)
rp + o(r−p−δ)

It is interesting to note that the precise late-time asymptotics of the null
Maxwell equations are not known. However, as shown in [12] and [31],
the null component α satisfies |α| ≲ r−5/2 near null infinity and thus we
must have p ≥ 5/2. One can see that hence,

∂v(rαlm
K ) + trχ(rαlm

K ) = ((1 − p)∂vr + trχr)
Clm

K (u)
rp + o(r−p−δ)

which implies that

lim
r→∞

rp(∂v(rαlm
K ) + trχ(rαlm

K )) =
3 − p√

2
Clm

K (u) (3.49)

Remark 3.9. It is important to note that the radius function r is not constant
along ingoing null hypersurfaces Hτ but can be taken to be constant along I in
the limiting sense. We also note that

rp∂u(∂v(rαlm
K ) + trχ(rαlm

K )) = ∂u(rp(∂v(rαlm
K ) + trχ(rαlm

K )))

− prp−1(∂ur)(∂v(rαlm
K ) + trχ(rαlm

K ))

→ ∂u(rp(∂v(rαlm
K ) + trχ(rαlm

K )))

as r → ∞

We see that in order to get a non-vanishing limit at null infinity, we
need to multiply Equation (3.47) by the function rp before taking the limit.
However, evaluating the same limit on the right-hand side, we get

rp

2r2 (−l(l + 1) + 2r2∂u(trχ))(rαlm
K ) =

1
2
(−l(l + 1) + 2r2∂u(trχ))(rp−1αlm

K )

→ (
1
2
(−l(l + 1) + 2) · 0) = 0

and therefore limr→∞ rp(∂v(rαlm
K ) + trχ(rαlm

K )) is conserved along null in-
finity. This implies the existence of an infinite number of conserved quan-
tities along null infinity. Let us look at the case when p = 3, in which case
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the limit (3.49) goes to 0. In this case, we require second-order asymptotics
of α. Suppose that we have the following expansion, near null infinity

αlm
K =

Clm
K (u)
rp +

Dlm
K (u)
rp+q + o(r−p−q−δ)

We observe

lim
r→∞

rq+1(∂v(rpαlm
K ) + trχ(rαlm

K )) =
−q√

2
Dlm

K (u) (3.50)

We note that for general p, q > 0

rp+q∂u(∂v(rαlm
K ) + trχ(rαlm

K )) = rp+q∂u(r−2∂v(r3αlm
K ))

= rq+1(∂u∂v(rpαlm
K )− ∂u(∂vr(p − 3)rp−1αlm

K )

− ∂ur(p − 1)rp−1∂v(r3αlm
K ))

= ∂u(rq+1∂v(rpαlm
K ))− (q + 1)rq∂ur∂v(rpαlm

K )

− rq(∂u(∂vr(p − 3)rp−1αlm
K )

− ∂ur(p − 1)rp−4∂v(r3αlm
K ))

→ ∂u(rq+1∂v(rpαlm
K ))

The right-hand side of the equation is given as follows

rp+q

2r2 (−l(l + 1) + 2r2∂u(trχ))(rαlm
K ) =

rq+1

2r2 (−l(l + 1) + 2r2∂u(trχ))(rpαlm
K )

→ (
1
2
(−l(l + 1) + 2) · Clm

K ) · lim
r→∞

rq−1

In order for the limit to exist and be nonzero, we see that q = 1. In this
particular case, we get six conservation quantities, similar to Minkowski,
given by

r2∂v(r3α1m
E ), r2∂v(r3α1m

H )

with m ∈ {−1, 0, 1}. From our earlier calculation, we saw that for there
to not be an infinite number of conservation laws along null infinity, that
p = 3.

Question 3.10. Is p = 3 the leading order asymptotic near null infinity of the
null component α given that it prevents the existence of an infinite number of
conservation laws along I and is consistent with decay rate of r−5/2 derived in
[12]?
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3.5 first-order gluing in complex formulation

In this section, we discuss the first-order gluing problem in the complex
Maxwell Formulation. We prove a gluing theorem in the case where χ̂ = 0.
While the proof can be repeated using the standard Lie Formulation as was
done for the main theorems, the benefits of using the complex formulation
are shown here, as many of the proofs of the previous gluing constructions
were done originally in the Complex Formulation and converted into the
Lie Formulation.

Before deriving the first-order equations and proving our theorem, we
must first discuss the Hodge operators and the spaces they act on. Note
that the properties of the Hodge operators shown in Lemma 3.3 can be
extended to the analogous Hodge operators m, /Dm, m and /Dm. For any
1-form ω the map ω 7→ ωm = ω1 + iω2 is an invertible map, and since

/D1ω = ( /divω, /curlω)

= (Re /Dmωm, Im /Dmωm)

The operator /Dm is an invertible operator onto complex functions with
mean zero. We also see that the operator ∗ /D is an invertible operator from
pairs of functions with mean zero onto L2. We see that for two functions
(ρ, σ) with mean zero and by defining Θ = ρ + iσ, we get

/g(−∗ /D1(ρ, σ), (e1 + ie2)) = (/dρ − (/dσ)∗)(e1 + ie2)

= (e1 + ie2)(ρ + iσ)

= m(Θ)

Since the imaginary and real parts of the right-hand side recover the
vector field, the derivative operator m = e1 + ie2 is invertible on mean zero
functions onto a subspace D(S) given by.

D(S) = { f ∈ C∞(S2) : X = Re( f )e1 + Im( f )e2

extends smoothly to X̃ ∈ X(S)}

The L2(S) space we define for our complex functions is given the by inner
product

< f , g >L2= Re
∫

S
f gdµ/g

Note that the real part of any inner product is an inner product and does
not change the norm, hence the space of functions does not change. The
real part is taken so that the inner product between functions is equal to
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the corresponding inner product between their 1-form and vector field
counterparts. In other words, given a vector field X and a 1-form ω, we
see that for functions f = ω1 + iω2, g = X1 + iX2

∫
S

ω(X)dµ/g =
∫

S
/g(X, ω

\
)dµ/g = Re

∫
S

f gdµ/g

Note that this defines an isometry between the Hilbert spaces L2(X(Sv))

and D(Sv). We define D(H) ⊂ C∞(H) to be that space of all f such that
f (v, ·) ∈ D(S2). With respect to this inner product, we get the following
identities for the adjoints

/D∗
m = −m /D∗

m = −m

By the invertibility of /Dm on its natural domain, the zeroth-order equations
can be combined to get the following equation

1
ϕ

L(ϕ(Ψ + χ̂m
1

/D−1
m (Θ − Θ0) + QZm)) = Q(Θ − Θ0) (3.51)

where,

Q(Θ − Θ0) =
1
2

m(Θ − Θ0) + η
m
(Θ − Θ0)

− χ̂m
1

/D−1
m [L + trχ, /Dm]/D−1

m (Θ − Θ0) + ϕL(
χ̂m

1
ϕ

)/D−1
m (Θ − Θ0)

Zm =
1
ϕ

∫ v

1
ϕ
(
(vol(Sv))

−1χ̂m
1

/D−1
m (trχ − (trχ)0)(s)− η

m
(s)
)

ds

To do first-order gluing, we note that 0th-order gluing gives us a gluing
construction for LΘ, LΦ from Maxwell’s equations. Thus for first-order
gluing, we must do the 0th-order gluing and LΨ gluing simultaneously.
To perform gluing, we need an equation for LΨ. We see that

1
ϕ

LL(ϕΨ) =
1
ϕ

LL(ϕΨ) +
1
ϕ
[L, L](ϕΨ) (3.52)

= L(
1
ϕ

L(ϕΨ)) +
trχ

2
1
ϕ

L(ϕΨ) +
1
ϕ
[L, L](ϕΨ) (3.53)

Using equations (2.37),(2.38),(2.39),(2.40), as well as the commutation rela-
tion,

[L, m] = (−1
2

trχ − iΓ2
31)m − χ̂m

1
m (3.54)
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we get the following equation

1
ϕ

L(L(ϕΨ) =
1
2

m /Dm(Ψ) + a1m(Ψ) + a2 /Dm(Ψ) + a3(Ψ)

+ b1m(Θ) + b2 /Dm(Θ) + b3Θ + c1Φ

where

a1 = −ζm +
i
2

Γ1
m2

a2 = −2ζm

a3 = −ϕ−1m(ϕ)− ϕ−1m(ϕ) + iζmΓ1
m2 + χ̂m

1
χ̂m

1

b1 = − i
2

Γ2
31

b2 = −χ̂m
1

b3 =
1
2

m(trχ) + L(ζm) + χ̂m
1

ζm + iχ̂m
1

Γ1
m2

c1 =
trχ

2
χ̂m

1
+ L(χ̂m

1
)− iΓ2

31

We replace the Φ term by inverting /Dm in (2.40). Hence, we can rewrite
our equation in the following form

1
ϕ

L((L(ϕΨ)) + ϕc1 /D−1
m (Θ − Θ0) + QWm) = Q2(Ψ) +Q3(Θ − Θ0) (3.55)

where
Q(v) :=

∫
Sv

Θdµ/g

and

Q2(Ψ) =
1
2

m /Dm(Ψ) + a1m(Ψ) + a2 /Dm(Ψ) + a3(Ψ)

Q3(Θ − Θ0) = b1m(Θ − Θ0) + b2 /Dm(Θ − Θ0) + b3(Θ − Θ0)

+ ϕL(
c1

ϕ
)/D−1

m (Θ − Θ0)− c1 /D−1
m [L + trχ, /Dm]/D−1

m (Θ − Θ0)

Wm =
1
ϕ

∫ v

1
ϕ(vol(Sv))

−1
(

c1 /D−1
m (trχ − (trχ)0)(s)− b3(s)

)
ds
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We define Q1 and V1 to be the Q and V defined in the Section (3.4). For
metrics where χ̂ = 0 along H, we get that (3.55) can be rewritten in the
following form the following form

1
ϕ

L(L(ϕΨ) + (
3
2

trχ + 2iΓ2
31)Ψ) =

1
2

m /DmΨ − 2ζmm(Ψ)− ζmm(Ψ)

+ (−iζmΓ1
m2 − 2ζ(/∇ log ϕ)− L(

3
2

trχ + 2iΓ1
31))Ψ

+ (−1
2

m(trχ)− 2iΓ2
31ζm + 3ζmtrχ)Θ (3.56)

Recall that when χ̂m
1
= 0, we can write, using the zeroth-order equation

Θ = h−1m−1(
2h
ϕ

L(ϕΨ)) + (hΘ)0h−1

where m(h) = −2ζm. Let f = (− 1
2 m(trχ) − 2iΓ2

31ζm + 3ζmtrχ). We can
now write

f Θ =
1
ϕ

L( f ϕh−1m−1(2hΨ))− 1
ϕ

L( f ϕh−1)m−1(2hΨ)

+ f h−1(m−1[L, m]m−1)(2hΨ)

+ f h−1m−1((2trχ − L(2h))Ψ) + f (hΘ)0h−1 (3.57)

We can thus write equation (3.56) as follows

1
ϕ

L(L(ϕΨ) + (
3
2

trχ + 2iΓ1
31)Ψ − f ϕh−1m−1(2hΨ))

= Q(1)
temp(Ψ) + (hΘ)0h−1 (3.58)

In order to replace the (hΘ)0 term, we can use equation (3.57) without
the f term. By taking the spherical average and commuting out the L
derivative, we get that

Θ0 − (hΘ)0(h−1)0 = L((m−1(2hΨ))0) + ((trχ)0 −
1
ϕ

L(ϕ2h))(m−1(2hΨ))0

+ (h−1m−1[L, m]m−1(2hΨ))0 − ((m−1(ϕL(
2h
ϕ
)Ψ)))0

Hence, we can replace (hΘ)0h−1 = ((Θ0 − (hΘ)0(h−1)0)+Θ0)(h−1)((h−1)0)−1

in (3.58). Since taking spherical averages is a linear operator, we can absorb
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all Ψ terms into the Q(1) operator and we are finally left with the following
equation

1
ϕ

L(L(ϕΨ) + ϕ(
3
2

trχ + 2iΓ1
31)Ψ − ϕ f h−1m−1(2hΨ)

+ ϕ(h−1)((h−1)0)
−1(m−1(2hΨ))0 + QYm) = Q(1)(Ψ)

where
Ym =

1
ϕ

∫ v

1
ϕ(vol(Sv))

−1(h−1)((h−1)0)
−1(s)ds

By Jensens inequality, the operator F 7→ (F)0 for a fixed sphere Sv satisfies
the following bound

||(F)0||L2(S2) ≤ ||F||L2(S2)

Thus, if the volumes are bounded in v, spherical averaging is a bounded
operator. We see that Q(1) can be written in the following form

Q(1) =
1
2

m /Dm + g1 /Dm + g2m + A

where A is a sum of compositions of operators m−1, m−1[L, m]m−1 and
F 7→ (F)0 which are all L2 → L2 bounded operators and thus A is an
L2 bounded operator. Suppose ||AF|| ≤ C||F|| where the norm is the L2

norm. Then we see that

Re
∫

Sv

((Q(1) − 1
ϵ
)F)Fdµ/g ≥ −Re

∫
Sv

1
2
|/DmF|2 − |g1||/DmF||F| − g2m(F)F

− |AF||F|+ 1
ϵ
|F|2dµ/g

≥ −
∫

Sv

(
1
2
− ϵ1 − ϵ2)|/DmF|2

+ (− (|g1|)
ϵ1

− |m(g2)|
ϵ2

− C +
1
ϵ
)|F|2dµ/g

where we used that m∗ = −/Dm. Choose ϵ1 + ϵ2 < 1/2 and then choose
ϵ sufficiently small so the coefficient in front of |F|2 is positive. Thus the
operator Q(1) − 1

ϵ has a trivial kernel. We can argue that Q(1) has a discrete
spectrum accumulating at infinity and thus ker(O(1))⊥ = im(Q(1)) where
O(1) is the adjoint of Q(1). Let us define the following set

U (1) =

{
f ∈ C∞(H) : L f = 0,O(1)(

1
ϕ

f ) = 0 on H
}
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Given this set, we can define first-order gluing condition. Note that by
equations (2.38) and (2.40), prescribing (Θi, Φi, Ψi) determines (LΘi, LΦi)

Therefore, we only need to prescribe LΨi on the initial spheres.

Theorem 3.11. Given initial data (Θi, Φi, Ψi, LΨi) for i = 1, 2 and and assum-
ing that χ̂ = 0 along H, first-order gluing can be done given the following two
conditions are met

1. We first require
Q(1) = Q(2)

Given this condition is met, we can construct the function

Θ0(v) =
Q

vol(Sv)

The first condition ensures the continuity of the function Θ0(v)

2. Given the first condition is satisfied, we require for all f (1) ∈ U (1)

∫
S2

(
F(LΨ, Ψ, Q)

∣∣
S2

)
f (1)dµS2 =

∫
S2

(
F(LΨ, Ψ, Q)

∣∣
S1

)
f (1)dµS2

where

F(LΨ, Ψ, Q) = L(ϕΨ) + ϕ(
3
2

trχ + 2iΓ1
31)Ψ − ϕ f h−1m−1(2hΨ)

+ ϕ(h−1)((h−1)0)
−1(m−1(2hΨ))0 + QYm

If both conditions hold, we can solve first-order gluing

Proof. Following the same proof as Theorems 1.4 and using the Hilbert
space structure introduced in the beginning of this section, we construct Ψ
on H. We use Maxwell’s equations to construct the remaining equations.



4
F O L I AT I O N C O VA R I A N C E

In this chapter we address the problem of foliation covariance. In our proofs
of Theorems 1.4 and 1.6, we fixed our gauge freedom to be Ω = 1. We saw
that our frame was dependent on this choice as our vector fields e1 and e2

were tangent to the Sv leaves of the foliation. We would like to determine
how changing the foliation of H would affect the sets (1.12) and (1.17) i.e.
can we “gauge away“ the kernels of our elliptic operators. We will show
that the conservation laws for charges (1.7) cannot be “gauged away“ and
we will address the difficulties in answering the same question for (1.12).

4.1 gauge transformations

In order see how our conserved charges change under gauge transforma-
tions, we first must see how geometric quantities change. Consider two
different foliations

S = (Sv)v∈R =
〈

S1, Lgeod
∣∣
S1

, ΩS = 1
〉

and
S ′ = (S′

v′)v′∈R =
〈

S1, Lgeod
∣∣
S1

, ΩS ′ = Ω
〉

of H. Note that our initial null outwards normals Lgeod, L′
geod are defined

to be equal on our initial sphere S1, thus

e4 = L = ∂v = Lgeod

and
e′4 = Ωe4, L′ = ∂v′ = Ω2L

on H. Hence, we see that
χ′ = Ωχ

Let us take p ∈ Sv ∩ S′
v′ and let X ∈ TpSv be tangent to spherical sections

under the original gauge Ω = 1. There is a unique point along the line
X+ < L >⊂ H that intersects TpS′

v′ . We therefore get that the new vector
X′ ∈ TPS′

v′ takes the form

X′ = X + γ(X)L
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To find γ from Ω we note the following. Recall that v = v′ = 1 on S1. We
also note that

1 = ∂v′v′ = Ω2∂vv′ =⇒ ∂vv′ = Ω−2

And thus,

v′(v) = 1 +
∫ v

1
Ω−2(s)ds

For an arbitrary vector X we obtain the following

0 = X′(v′) = X(v′) + γ(X)∂vv′

=⇒ γ(X) = −Ω2 · /dv′(X)

Thus we get that

γ = −Ω2 · /d
(∫ v

1
Ω−2dv

)
Note that since S′

1 = S1 and S′
2 = S2 we have that v′(v = 1) = 1 and that

/d(
∫ 2

1 −Ω−2dv) = 0. Let us see how the equations we have seen change
under gauge transformations.
If we do not fix our gauge freedom to be Ω = 1, our zeroth order Maxwell’s
equations take the following form,

/L4 (Ωα)− χ̂♯ · (Ωα) = +
Ω
2

(
/∇ρ + 2ηρ

)
− Ω

2

(
/∇σ + 2ησ

)∗
+ χ̂♯ · (Ωα)

/div(Ωα) = − 1
ϕ2 L(ϕ2ρ)

/curl(Ωα) = +
1
ϕ2 L(ϕ2σ)

Note that all geometric tensors also change under the gauge transforma-
tion. In this gauge, we get that (3.4) takes the form

/L4WΩ(α, ρ − ρ, σ − σ)− χ̂♯ · WΩ(α, ρ − ρ, σ − σ)

= QΩ(ρ − ρ, σ − σ) + VΩ(ρ, σ) (4.1)



4.1 gauge transformations 66

where,

WΩ(α, ρ − ρ, σ − σ) = Ωα − Ωχ̂♯ · /D−1(−(ρ − ρ), (σ − σ))

QΩ(ρ − ρ, σ − σ) = −Ω
2

∗ /Dη(ρ − ρ, σ − σ)

− ϕ∇4

(
Ω
ϕ

χ̂♯

)
/D−1(−(ρ − ρ), (σ − σ))

+ χ̂♯ · /D−1[/D, L]/D−1(−(ρ − ρ), (σ − σ))

VΩ(ρ, σ) = −Ωηρ + Ωη∗σ

+ χ̂♯ · /D−1(−ρ(Ωtrχ − Ωtrχ), σ(Ωtrχ − Ωtrχ))

The adjoint OΩ of QΩ is

OΩ(X) = −1
2

/Dη(ΩX)− J · ∗ /D−1(ϕ∇4

(
Ω
ϕ

χ̂♯

)
· X)

+ J · ∗ /D−1[/D, L]∗
(
∗ /D−1(χ̂♯ · X)

)
We would like to write our new gauge tensors in terms of the Ω = 1
operators as was done in [7]. Let us see how (1, 1) tensor Ψ(v) changes
under this transformation. Recall that W = Ψ′ · W0 solves the following
Lie transport equation

/L4′WΩ − χ̂♯ ′ · WΩ = 0, WΩ(1) = W0

Note that S1, S2 stay unchanged after the change of foliation, and thus,
W0 remains the same. Let W be the solution to the transport equation for
Ω = 1. To see how the solution changes under the gauge transformation,
it is easier to convert the equation to a transport equation for W♯.

/∇4′W
♯
Ω +

1
2

trχ♯ ′ · W♯
Ω = 0, WΩ(1)♯ = W♯

0 (4.2)

We claim that W♯
Ω = W♯ ′ = W♯+γ(W♯)L. Under the gauge transformation,

we see that

e′4 = Ωe4

χ′ = Ωχ
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Plugging this into (4.2), we see that

/g(/∇4′W
♯
Ω +

1
2

trχ′ · W♯
Ω, e′A) = /g(/∇4′W♯ ′ +

1
2

trχ′ · W♯ ′, e′A)

= Ωg(/∇L(W♯ + γ(W♯)L)

+
1
2

trχ(W♯ + γ(W♯)L), eA + γAL)

= Ωg(/∇LW♯ +
1
2

trχW♯, eA)

= 0

Thus, we get that

Ψ′(v′)W0 = Ψ(v)W0 + γ(Ψ(v)W0)L

Ψ′ = Ψ + γ · Ψ ⊗ L

We now compute /curl′ξ ′ for a section S′ and vector field ξ ′

/curl′ξ ′ = ∑
A,B

ϵABg(/∇′
E′

A
ξ ′, E′

B) = ∑
A,B

ϵABg(∇E′
A

ξ ′, E′
B)

= ∑
A,B

ϵABg(∇EA+γA L(ξ + γ(ξ)L), EB + γBL)

= ∑
A,B

ϵAB
(

g(∇EA ξ, EB) + g(∇EA ξ, γBL) + γAg(∇Lξ, EB)

+ γ(ξ)g(∇EA L, EB)
)

= /curlξ + ϵABγBg(∇EA ξ, L) + g(/∇Lξ,−(γ∗)♯) + γ(ξ)ϵABχAB

= /curlξ − ϵABγBg(ξ,∇EA L) + g(/∇ξ L,−(γ∗)♯) + g(/LLξ,−(γ∗)♯)

= /curlξ − 2χ((γ∗)♯, ξ)− γ∗(/LLξ)

Similar calculations done in [7] show us

/div′ξ ′ = /divξ + γ(ξ)trχ + γ(/LLξ) (4.3)

/curl′ξ ′ = /curlξ − 2χ((γ∗)♯, ξ)− γ∗(/LLξ) (4.4)

η′ = η − (χ · γ♯) + /d log Ω + 2γL log Ω (4.5)
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Let us show that the conserved quantities (ρ0, σ0) remained conserved
under the change of foliation. Recall that

α := F(e4, ·)
α := F(e3, ·)
ρ := F(e3, e4)

σ :=
1
2

ϵABF(eA, eA)

Thus, under the change of foliation,

ρ′ = F(e′3, e′4) = F(Ω−1L′, ΩL)

= F(
1
2
(γ, γ)L + L + γ♯, L)

= ρ + α(γ♯) = ρ + γ(α♯)

σ′ = F(e′1, e′2)

= F(e1 + γ1L, e2 + γ2L)

= σ + γ × α

Proposition 4.1. The conserved quantities

Q0(v) =
∫

Sv

ρdµ/g , Q1(v) =
∫

Sv

σdµ/g

are gauge invariant.

Proof: Let us show that L′ρ′0 =
∫

Sv
ϕ−2L′(ϕ2ρ′)dµ/g = 0. We see that

1
ϕ2 L′(ϕ2ρ′) =

Ω2

ϕ2 L(ϕ2(ρ + γ(α♯)))

=
Ω2

ϕ2 L(ϕ2ρ) +
Ω2

ϕ2 L(ϕ2γ(α♯))

=
Ω2

ϕ2 L(ϕ2ρ) + Ω2trχγ(α♯) + Ω2Lγ(α♯)

=
Ω2

ϕ2 L(ϕ2ρ) + Ω2trχγ(α♯) + Ω2(/LLγ)(α♯) + Ω2γ(/LLα♯)

=
Ω2

ϕ2 L(ϕ2ρ) + Ω2(/LLγ)(α♯) + Ω2γ(
1
ϕ2 /LL(ϕ

2α♯))
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Recall that from the definition of γ and the Cartan formula

LLγ = d(ιL(γ)) + ιL(dγ)

= d
(
−Ω2L

∫ v

1
Ω−2(v)dv

)
+ ιL

(
−dΩ2 ∧ d

(∫ v

1
Ω−2(v)dv

))
= −Ω−2L(Ω2)γ + Ω−2dΩ2

Plugging this in and using (2.29) and(4.3)

1
ϕ2 L′(ϕ2ρ′) =

Ω2

ϕ2 L(ϕ2ρ) + Ω2γ(
1
ϕ2 /LL(ϕ

2α♯))− L(Ω2)γ(α♯) + /∇Ω2 · α♯

= Ω2 /divα♯ + /∇Ω2 · α♯ + γ(
Ω2

ϕ2 /LL(ϕ
2α♯)− L(Ω2)α♯)

= /div(Ω2α♯) + γ(
1

ϕ2 /LL(ϕ
2Ω2α♯))

= /div′(Ωα′♯)

Note that the right-hand side is a divergence term so the integral over the
sphere vanishes. Thus the charge remains conserved.

□
For the second gluing condition in Theorem 1.4, we are interested in

how the set U under a different gauge choice and how this affects the
gluing condition. We note that for any function ψ : S2 → R

/∇′ψ = (/∇ψ + γ♯ · Lψ) + γ(/∇ψ + γ♯ · Lψ)L

And thus we see that

∗ /D′( f1, f2) =
∗ /D( f1, f2)− γ♯ · L f1 + (γ♯)∗ · L f2

+ γ(∗ /D( f1, f2)− γ♯ · L f1 + (γ♯)∗ · L f2)L (4.6)

In order to address the gauge transformation of the set (1.12), we first
would have to understand the following question.

Question 4.2. How do the inverses of /D, ∗ /D change under foliation? More
importantly, how do the inverses change when restricted to vector fields X where
/L4X = 0.



A
A P P E N D I C E S

a.1 the spacelike gluing problem

The Cauchy problem for Maxwell’s equations in Minkowski can be for-
mulated as follows, as stated by Carlotto in [13]. Note that given the
antisymmetric 2-tensor F, we can define the electric field Ei = F0i and
magnetic field Bi = ϵijkFjk in Euclidean coordinates. The Maxwell equa-
tions take the following form

divE = 0

divB = 0

∇⃗ × E = −∂B
∂t

∇⃗ × B =
∂E
∂t

where ∇⃗ = (∂x, ∂y, ∂z). Suppose we prescribe (E(t = 0), B(t = 0)) = (E, B)
on Σ = {t = 0}. We see that on Σ, (E, B) must satisfy

divE = 0

divB = 0

These are the constraint equations for the Maxwell equations. Suppose we
have two disjoint regions Σ1 ⊂ Σ and Σ2 ⊂ Σ and prescribed data (Ei, Bi)

on Σi for i = 1, 2. We only require that one is compact and the other is
closed. This assumption allows us to construct a smooth function φ(x)
where φ(x)|Σ1 = 1, φ(x)|Σ2 = 0 by Urysohn’s Lemma. By the Helmholtz
decomposition, we can construct vector fields AE

i and AB
i on Σ such that

∇⃗ × AE
i = Ei, ∇⃗ × AB

i = Bi

on Σi for i = 1, 2. We extend AE
i and AB

i smoothly to all of Σ such that

AE
1 |Σ2 = 0 = AB

1 |Σ2

AE
2 |Σ1 = 0 = AB

2 |Σ1
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We can finally define our gluing construction for (E, B) as follows

E = ∇⃗ × (φAE
1 + (1 − φ)AE

2 )

B = ∇⃗ × (φAB
1 + (1 − φ)AB

2 )

Thus there are no obstructions for spacelike gluing of Maxwell’s equations
in Minkowski. For the Cauchy problem for Maxwell, we look at the
formulation given by Strichartz in [51]: Recall the geometric form of the
Maxwell equations

dF = 0, δF = 0 (A.1)

where F is our Maxwell 2-tensor, d is the exterior derivative on the entire
spacetime and δ is the codifferential. Consider a Lorentzian manifold
(M3+1, g) where M3+1 ≃ M3 × R and where M3 is a 3-manifold dif-
feomorphic to R3. The metric takes the form −dt2 + hij(x)dxidxj, where
hi j is a Riemannian metric defined on M3 slices and x = (x1, x2, x3) are
local coordinates for M3. In this formulation, we can rewrite F in terms of
electric and magnetic fields E and H. For fixed t, E(x, t) and H(x, t) are
1-forms defined on M3, which are related to F by relation F = E ∧ dt + ∗H.
We can now rewrite Maxwell’s equations (A.1)

−∂E
∂t

+ ∗dH = 0,
∂H
∂t

+ ∗dE = 0, (A.2)

∗d ∗ E = 0, ∗ d ∗ H = 0 (A.3)

Here d and ∗ are M3 tangent operators. We see that equations (A.3) become
our constraint equations. Suppose Σ1 ⊂ Σ and Σ2 ⊂ Σ, where Σ =

M3 × {0} and prescribed data (Ei, Hi) on Σi for i = 1, 2 satisfying (A.3)
in the regions. Assuming Σ1 is compact and Σ2 is closed, we can extend
(Ei, Hi) smoothly to the entire region Σ such that their supports are disjoint.
Since (∗Ei, ∗Hi) are closed, by the Poincare Lemma, they are exact so we
get functions (φE

i , φH
i ) such that

dφE
i = ∗Ei, dφH

i = ∗Hi

on Σi. We proceed to interpolate between these functions as we did for
Minkowski to get our spacelike gluing construction. Thus, the general
spacelike gluing problem for Maxwell has no obstructions.

a.2 tensor norms

In this section we define tensor norms and prove an estimate on the Ψ
tensor defined in (3.5).
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Definition 1. (Tensor norms). Let n ≥ 1 and w ≥ 0 be integers. For an
n-tensor T on S2, we define its Hw(S2) norm to be

∥T∥Hw(S2) =

√
∑

k≤w

∫
S2
| /̊∇kT|2γ̊dµS2

where γ̊ is the standard round metric on the 2-sphere and

| /̊∇kT|2γ̊ = |γ̊I1 J1 ...γ̊In Jn γ̊A1B1 ...γ̊AkBk /̊∇A1 ... /̊∇Ak TI1...In /̊∇B1 ... /̊∇Bk TJ1...Jn |

where /̊∇ is covariant derivative with respect to γ̊

We also define the Ww,∞(S2) norm as follows

∥T∥Ww,∞(S2) = sup
k≤w

sup
A1,...,Ak ,I1,...,In

∥ /̊∇A1 ... /̊∇Ak TI1...In∥L∞(S2)

Any tensor with finite norm is said to be an element of the respective
space.

Let W(v) be a 1-form satisfying (3.5). Then,

∂v∥W(v)∥2
Hk(S2) = ∂v ∑

k≤w

∫
S2
|/∇kW|2γ̊dµS2 (A.4)

≲ ∑
k≤w

∫
S2
|γ̊I J γ̊A1B1 ...γ̊AkBk ∂v( /̊∇A1 ... /̊∇AkWI) /̊∇B1 ... /̊∇BkWJ |dµS2

(A.5)

Note that for any 1-form V, given a Lie transported frame

[/∇4, /̊∇B]VI = (eB(χ
K
I ) + χJ

I Γ̊
K
BJ − Γ̊J

BIχ
K
J )VK

:= DK
BIVK

Since the round metric is smooth, and assuming smoothness of the back-
ground metric, the symbol DC

AB defined above is smooth as well. Thus, by
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commuting the ∂v derivative in (A.5) and using the fact that /∇4 = /L4 − χ♯

when acting on 1-forms, we get that

∂v∥W(v)∥2
Hk(S2) ≲ ∥/L4W(v)∥2

Hk(S2) + ∥χ · W(v)∥2
Hk(S2)

+

(
∑

A,B,C
∥DC

AB∥Wk,∞(S2)

)
∥W(v)∥2

Hk(S2)

≲

(
∥χ̂∥Wk,∞(S2) + ∥χ∥2

Wk,∞(S2)

+ ∑
A,B,C

∥DC
AB∥Wk,∞(S2) + 1

)
∥W(v)∥2

Hk(S2)

where we used (3.5) to replace Lie derivative term. Thus, by Gronwall’s
inequality, we get

∥W(v)∥Hk(S2) ≲ ∥W(1)∥Hk(S2) exp
( ∫ v

1

(
∥χ̂∥Wk,∞(S2) + ∥χ∥Wk,∞(S2)

+ ∑
A,B,C

∥DC
AB∥Wk,∞(S2) + 1

)
ds
)

and therefore
∥Ψ∥L1

vWk,∞
S2 ([1,2]×S2)

≲ 1

We see that the Hk norm of W(v) is finite assuming that W(1) has finite
norm and χ, DC

AB ∈ L1
vWk,∞

S2 ([1, 2]× S2)

a.3 tensor harmonics

Here we follow the definitions provided by Czimek in [18]. We will define
operators on round Euclidean spheres (Sr, γ̊) of radius r. We also assume
that all tensors will be Sr-tangent. For r > 0, let{

Y(lm)(r, θ, ϕ) : l ≥ 0, m ∈ {−l, ..., l}
}

denote the set of normalized real spherical harmonics. They form a com-
plete orthonormal basis L2(Sr, γ̊) and satisfy

/∆Y(lm) = − l(l + 1)
r2 Y(lm)
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Using these functions, we can define the vector spherical harmonics E(lm)

and H(lm) on Sr. For l ≥ 1 and m ∈ {−l, ..., l},

E(lm) :=
r√

l(l + 1)
∗ /D(Y(lm), 0)

H(lm) :=
r√

l(l + 1)
∗ /D(0, Y(lm))

By using relations in (2.15), we can show that for l ≥ 1, m ∈ {−l, ..., l},

/∆E(lm) =
1 − l(l + 1)

r2 E(lm)

/∆H(lm) =
1 − l(l + 1)

r2 H(lm)

The set of functions{
E(lm), H(lm) : l ≥ 1, m ∈ {−l, ..., l}

}
form a complete orthonormal basis for the set of L2-integrable vector fields
on Sr.

Remark A.1. For all r > 0, the vector fields with l = 1{
E(1m), H(1m) : m ∈ {−1, 0, 1}

}
form an orthonormal basis of the six-dimensional space of conformal
Killing fields on (Sr, γ̊). Note that these are exactly the vector fields that
appear in the conserved charges (3.29).
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