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Let X = Γ\Bn be an n-dimensional complex ball quotient by a torsion-free non-

uniform lattice Γ whose parabolic subgroups are unipotent. Let X be the unique

toroidal complication of X constructed in [AMRT10, Mok12].

In the first part of this thesis we prove positivity properties of Ω1
X and Ω1

X

(
log(D)

)
depending intrinsically on X. We prove that Ω1

X

(
log(D)

)
⟨−rD⟩ is ample for all

sufficiently small rational numbers r > 0, and Ω1
X

(
log(D)

)
is ample modulo D.

Further, we conclude that if the cusps of X have uniform depth greater than 2π, then

Ω1
X is semi-ample and is ample modulo D, and all subvarieties of X are of general

type.

In the second part of this thesis we prove that the volumes of subvarieties of X are

controlled by the systole of X, which is the length of the shortest closed geodesic of

X. There are a number of arithmetic and geometric consequences: the systole of X

controls the growth rate of rational points on X, uniformly in the field of definition

of X. Also, we obtain effective global generation and very ampleness results for

multiples of the canonical bundle KX. These results follow from the bound we find

for the Seshadri constant of KX in terms of the systole.
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1
I N T R O D U C T I O N

Let H be a bounded symmetric domain and X := Γ\H be a quotient of H by a
torsion-free lattice Γ ⊂ Aut(H). Various hyperbolicity properties of a smooth toroidal
compactification X of X and curves in X have been explored by studying the positivity
of Q-line bundles in the form KX(D)− rD, where D is the boundary divisor, KX(D)

is the log-canonical bundle and r is a rational number varying on an interval, the size
of which depends on X. For instance, see [Nad89, SB05] for the case of moduli space
of principally polarized abelian varieties Ag, [BT18a] for the case of Hilbert modular
varieties and [BT18b, DCDC15] for the case of ball quotients.

Motivated by these results for the twists of KX(D) and their implications for the
hyperbolicity properties, in the first part of this thesis we study the positivity of the
twists of Ω1

X

(
log(D)

)
and Ω1

X in the form of the Q-vector bundles Ω1
X

(
log(D)

)
⟨−rD⟩

and Ω1
X⟨−rD⟩. As the vector bundles Ω1

X

(
log(D)

)
and Ω1

X restrict well to subvarieties
(of arbitrary dimensions), the positivity of Ω1

X

(
log(D)

)
⟨−rD⟩ and Ω1

X⟨−rD⟩ reveals
various hyperbolicity properties of subvarieties of X.

We restrict ourselves to a complex ball quotient X = Γ\Bn, where Γ ⊂ Aut(Bn)

is a torsion-free lattice. We may refer to X as a complex hyperbolic manifold with
cusps, where cusps correspond to parabolic fixed points of Γ. The complex ball has an
intrinsic Hermitian metric (Bergman metric) which induces a Kähler form on X. This
Kähler form also induces a Kähler form on a subvariety V of X. The volume of V with
respect to the induced Kähler form on X will be called the induced Kähler volume.
The systole of X is the length of the shortest closed geodesic of X with respect to the
Bergamn metric.

In the second part this thesis, we find a uniform lower bound for the the induced
Kähler volume of all subvarieties of X in terms of the systole. There are a number
of arithmetic and geometric consequences with the assumption that the systole is
sufficiently large:

• The systole of X bounds from above the growth rate of rational points on X,
uniformly in the field of definition of X.

• The systole of X bounds from below the canonical volume of subvarities of X.
In particular, if the systole is sufficiently large, then all subvarities of X are of
general type.

• The systole bounds from below the Seshadri constant of KX. This implies
effective global generation and very ampleness results for multiples of the
canonical bundle KX.

1



1.1 main results 2

1.1 main results

For cusps of X we associate a uniform depth d measuring the size of the largest
embedded cusp neighborhoods which are disjoint from each other (see 2.1 for more
precise definitions). Thanks to Parker’s generalization of Shimizu’s lemma [Par98,
Proposition 2.4.] we know that the uniform depth of cusps is at least 2 for torsion-free
lattices. Moreover, the uniform depth tends to infinity in the cofinal towers of normal
covering (see Lemma 2.4).

Our first main result is the following theorem:

Theorem A. (Theorem 3.2.6) Let X be a complex hyperbolic manifold with cusps whose
toroidal compactification X has no orbifold points, and d be the uniform depth of cusps. Then,
the Q-vector bundle

Ω1
X

(
log(D)

)
⟨−rD⟩

is ample for all rational r ∈ (0, d/2π).

In the case that X is an arithmetic locally symmetric domain, Brunebarbe’s work
([Bru20b, section 3]) implies that for some highly ramified cover of X the Q-vector
bundle in Theorem A is big. However, Theorem A applies even in the case that X
is not a cover of other locally symmetric domains and more importantly it implies
stronger positivity.

When the dimension of X is greater than 1, the boundary divisor D is a union
of étale quotients of abelian varieties. This implies that Ω1

X|D admits a numerically

trivial quotient and therefore Ω1
X can’t be ample. However, we showed that Ω1

X is
semi-ample and ample modulo D (see Definition 2.5) provided that the uniform
depth of cusps is sufficiently large:

Theorem B. (Theorem 3.3.2) With X and X as in Theorem A, suppose that the uniform
depth of cusps is greater than 2π. Then, the cotangent bundle Ω1

X is semi-ample and ample
modulo D.

Using results of L2-estimates for a Kähler manifold, Wong [Won18] proved that
there exist a constant r(n) and d(n) depending only on the dimension of X, such that
if the injectivity radius is larger than r(n) and the uniform depth of cups is larger
than d(n), then Ω1

X is ample modulo D. His method relies on the existence theorem
of L2-estimation ([AV65, Hör13]).

In Theorem A, Ω1
X

(
log(D)

)
can not be replaced by Ω1

X without adding any extra
assumptions about X because there are examples due to Hirzebruch [Hir84] of the
toroidal compactification of a 2-dimensional ball quotient whose canonical bundle is
not even nef. We showed that assuming the uniform depth is sufficiently large the
replacement is possible as long as r varies on a smaller interval.

Theorem C. (Theorem 3.3.1) With X and X as in Theorem A, suppose that the uniform
depth of cusps d is greater than 2π. Then, the Q-vector bundle

Ω1
X⟨−rD⟩

is ample for all rational r ∈ (0,−1 + d/2π).
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Bakker and Tsimerman [BT18b] proved that KX(D)− rD is ample for r ∈ (0, (n +

1)/2), where n = dim X and concluded that if n ≥ 6, KX is ample. Similarly, Cadorel
[Cad21a] showed that V ⊂ X with dim V ≥ 6 is of general type if V ̸⊂ D.

In the second part of this thesis we find a uniform lower bound for the induced
Kähler and canonical volumes of all subvarieties of a non-compact ball quotient X in
terms of a geometric quantity of X :

Theorem D. (Theorem 4.3.2) Let X = Γ\Bn be a complex ball quotient by a torsion-free
non-uniform lattice Γ whose parabolic stabilizers are unipotent. Let V ⊂ X be an irreducible
subvariety of dimension m > 0. Then,

volX(V) ≥ (4π)m

m!
sinh2m (

sys(X)/2
)
, (1.1)

where volX(V) is the volume of V induced by Bergman metric on V and sys(X) is the length
of the shortest closed geodesic in X.

The systole is anon-zero real number and can be estimated by the trace of the
hyperbolic elements in a representation of Γ. When X is compact ball quotient,
the inequality (1.1) is known by Hwang and To [HT99] and we generalized their
inequalities for non-compact X with a mild assumption on the parabolic stabilizer
of Γ. Note that every neat lattice Γ satisfies this assumption, and every Γ has a finite
index subgroup which satisfies this assumption (see [Hum98]).

We prove in Theorem 4.1.9 that the systole of X bounds the uniform depth of cusps
from below. Therefore, if sys(X) is sufficiently large, then KX is ample.

For a subvariety V ⊂ X of dimension m > 0, we denote the degree of V with
respect to the line bundle KX by degX(V) :

degX(V) := Km
X · V.

Also, we study the canonical volume of a subvariety V which is an intrinsic quantity
of V and a priory does not depend on the ambient space X. Let V ′ be a smooth variety
birational to V with a canonical bundle KV′ . The canonical volume of the variety V is

ṽolV := lim sup
b→∞

h0(V ′, bKV′)

bm/m!
,

which does not depend on the choice of V ′. In particular, if V is an integral curve,
then the canonical volume of V is 2g − 2. The canonical volume of V measures
the asymptotic growth rate of the pluri-canonical linear series |bKV′ |. The canonical
volume is a non-negative real number and it is positive if and only if the linear system
|bKV′ | embedds V ′ birationally in a projective space for a large enough b, i.e., V is of
general type.

We prove that the systole controls both the canonical volume of V and its degree
with respect to KX in the following sense:

Theorem E. (Theorem 4.3.5+Theorem 4.3.7) With the same assumption on X as Theorem D,
let X be the toroidal compactification of X and V ⊂ X be a subvariety of dimensional m > 0
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with X ∩ V ̸= ∅. Suppose that sys(X) ≥ 4 ln
(
5n + (8π)4). Then the following inequalities

hold:

ṽolV > (
m
4π

)mem sys(X)/16,

degX(V) > (
n

4π
)mem sys(X)/16.

Note that systole cannot decrease in a cover and for every X there exists a finite
cover X′ such that sys(X′) is sufficiently large. As a byproduct of Theorem E, we can
observe that in a tower of covering of X where the systole increases, the canonical
volume of subvarieties increases.

Application I: hyperbolicity of subvarities

As the cotangent bundle is well-behaved under the restriction to subvarieties, by virtue
of Theorem A and Theorem C we get hyperbolicity of subvarieties of an arbitrary
dimension in the following sense:

Corollary F. (Corollary 3.4.1) With the same notations as in Theorem A, suppose V is
a smooth subvariety of X intersecting X with dimension m > 0. Then,

KV − (r − 1)D|V

is ample for all rational r ∈ (0, m⌊ d−1
2π ⌋). Moreover, if d > 2π, then KV is ample.

Corollary G. (Corollary 3.4.2) With the same X as Theorem A, all subvarieties of X are
of general type provided that the uniform depth of cusps is greater than 2π.

Given this result, Bombieri–Lang conjecture predicts that there are only finitely
many rational points on X. However, this conjecture is widely open.

Application II: sparsity of rational points

A smooth toroidal compactification X of X can be defined over a number field F. (see
[Fal84]) provided that Γ is neat and arithmetic. Combining Theorem E with [BM22,
Theorem 3.4] on the growth rate of rational points, we get that sys(X) controls the
growth rate of rational points:

Corollary H. (Corollary 6.2.2) Let L = KX and ϵ be a positive number. Suppose that
sys(X) ≥ 4 ln

(
5n + (4π)4). Then, there exists a constant c depending on X, F and ϵ

such that for every B ≥ ϵ[F : Q], one has:

#
{

x ∈ X(F) | HL(x) ≤ B
}
≤ cBδ,

where

δ =
4π[F : Q](n + 3)

esys(X)/16
(1 + ϵ),

and HL is the multiplicative height.
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Corollary H tells us that the growth rate of F-rational points decreases as sys(X)

gets larger.

Application III: effective very ampleness and seshadri constant

Combining Theorem E with the results in the adjunction theory proved by Angehrn-
Siu [AS95], Kollar [Kol97] and Ein-Lazersfeld-Nakamaye [ELN96] gives effective
results in global generation, very ampleness and separation of jets:

Corollary I. (Corollary 5.2.10) With the same X and X as Theorem E, suppose that

sys(X) ≥ 20 max{n ln
(
(1 + 2n + n!)(n + 1)

)
, ln

(
5n + (8π)4)}.

Then, the following hold

1. 2KX is globally generated and very ample modulo D.

2. 3KX is very ample.

Another implication of Theorem E is the following bound on the Seshadri constant
of KX:

Corollary J. (Theorem 5.2.5) Suppose that

sys(X) ≥ 20 max{n ln
(
(1 + 2n + n!)(n + s)

)
, ln

(
5n + (8π)4)}.

Then 2KX separates any s-jets and in particular for every x ∈ X, we have that

ϵ(KX, x) ≥ s/2.

Application IV : finite generation of symmetric differentials

Applying [Laz17, Example 2.1.29] to Theorem B yields that symmetric differentials
over X forms a finitely generated C-algebra:

Corollary K. With the same assumptions as Theorem B, the graded ring⊕
n≥0

H0(X, SnΩ1
X)

is finitely generated C-algebra.

1.2 outline

In Chapter 2, we collect necessary background on the geometry of complex ball, the
toroidal compactifications of ball quotients, the Siegel domain and we prove some
basic lemmas about Q-vector bundles. In Chapter 3, we study the properties of the
Bergman metric induced on OP(Ω1

X
(log(D))(1) and we prove the results related to the

positively of Ω1
X

(
log(D)

)
including Theorem A. Further, we prove the results related
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to the positivity of Ω1
X, namely Theorem B and Theorem C, and we deduce the

applications to hyperbolicity of subvarieties in Corollary F, and Corollary G.
In Chapter 4 we prove the bounds on the volume of subvarities, in particular

Theorem D and Theorem E. In Chapter 5 we prove Corollary I and Corollary J on
the effective very ampleness and global generation. Finally, in Chapter 6 we prove
Corollary H on the sparsity of rational points.



2
B A C K G R O U N D

In this chapter, we collect the necessary background and notations which will be used
frequently in the sequel. We refer to [Gol99, Par98, Kap22, BT18b] for a much fuller
account.

2.1 geometry of complex call quotients

The complex n-ball Bn is defined as

Bn = {z ∈ Cn | |z|2 < 1}.

Bn has an intrinsic Hermitian metric called Bergman metric:

h = 4.
(1 − |z|2). ∑i dzi ⊗ dz̄i + ∑i z̄idzi ⊗ ∑i zidz̄i

(1 − |z|2)2 .

The holomorphic isometry group of Bn with respect to this metric is the projective
unitary group

G := PU(n, 1) =
U(n, 1)

Z(U(n, 1))
,

where the centre Z(U(n, 1)) can be identified with the circle group {µI : |µ| = 1}. The
group G acts transitively on Bn and acts doubly transitively on the boundary sphere
∂Bn. The stabilizer of the center of Bn is U(n). Every isometry g ∈ G is continuous
on the closed ball Bn and it follows from Brouwer’s fixed point theorem that g has a
fixed point on the closed ball Bn. Moreover, if there is no fixed point on Bn, there can
be at most two fixed points on the boundary sphere ∂Bn. Accordingly, an isometry
g ∈ G is classified as:

1. Elliptic: g has a fixed point z in Bn. After conjugating g via h ∈ G which sends
z to 0,

hgh−1 ∈ U(n),

and therefore all eigenvalues of g are roots of unity.

2. Parabolic: g has a unique fixed point in Bn and this fixed point is on the
boundary ∂Bn. Equivalently,

inf
z∈Bn

d(z, gz) = 0,

where d(., .) denotes the Bergman metric. This infimum is not realized for a
parabolic g.

7



2.2 siegel domain model 8

3. Hyperbolic: g has exactly two fixed points in Bn and both are in ∂Bn. In
particular, g preserves the unique geodesic connecting these two fixed points in
Bn and acts as a translation along this geodesic. This geodesic is called the axis
of g. The length of a hyperbolic isometry g ∈ G is

ℓ(g) := inf
z∈Bn

d(z, gz).

This infimum is not zero and is realized by any point on the axis of g. The work
of Chen-Greenberg on the conjugacy classification of element of U(n, 1) [CG74,
Theorem 3.4.1] implies that a hyperbolic isometry g has two eigenvalues reiθ

and r−1eiθ with r > 1 and n − 1 eigenvalues with norm 1.

Let Γ ⊂ PU(n, 1) be a torsion-free lattice whose parabolic elements are unipotent.
[Hum98] tells us that every lattice in PU(n, 1) has a finite index subgroup with this
property. With this property, an element g ∈ Γ is hyperbolic if and only if g is
semi-simple. Therefore, we will denote the set of the hyperbolic elements in Γ by Γs.

Let X = Γ\Bn. The systole of X is the length of the shortest closed geodesic with
respect to the Bergman metric:

sys(X) := inf
g∈Γs

ℓ(g) = inf
g∈Γs

{d(z, gz)|z ∈ Bn}.

Equivalently, the systole of X is the length of the shortest hyperbolic element in Γ.
Consider x ∈ X. Choose a fiber x̃ ∈ Bn with stabilizer Γx̃ in Γ. The injectivity radius

of x in X is defined to be

injx(X) :=
1
2

infγ∈Γ\Γx̃ d(x̃, γ · x̃),

which is independent of choice of x̃. The injectivity radius of X is inj(X) :=
infx∈X injx(X). In the case that X is compact, Γ only has semi-simple elements and
hence sys(X) = inj(X)/2. However, this relation does not hold for a non-compact X
because of the parabolic elements in Γ.

2.2 siegel domain model

The half-plane model of 1-dimensional complex ball quotient is generalized by the
Siegel domain model in higher dimensions. In horospherical coordinates, the Siegel
domain of (complex) dimension n is S = Cn−1 × R × R+. The points of S will be
written as (ζ, v, u) ∈ Cn−1 × R × R+. The boundary of S is H0 ∪ {∞}, where ∞ is a
distinguished point at infinity and H0 = Cn−1 × R × {0}. We will follow [Par98] to
describe PU(n, 1) as a matrix group by embedding the Siegel domain as a paraboloid
in P(Cn,1). To do so, we should choose a Hermitian form of signature (n, 1) on
PU(n, 1). Let

J0 :=

0 0 1
0 In−1 0
1 0 0

 ,
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and Q := z∗ J0z, where z is a column vector in P(Cn,1) and z∗ is the Hermitian
transpose of z. Consider the map ψ : S → P(Cn,1) given by

ψ : (ζ, v, u) −→

 1
2 (−||ζ||2 − u + iv)

ζ

1

 , for (ζ, v, u) ∈ S\{∞}; ψ : ∞ −→

1
0
0

 . (2.1)

The image of this map is the set of points in P(Cn,1), where the Hermitian form Q is
negative. Also ψ is a homeomorphism of ∂S onto the set of points where Q is zero.
We will refer to q∞ := ψ(∞) as the cusp at ∞ and q0 := ψ(0) as the cusp at 0.

The holomorphic isometry group of S with respect to the Bergman metric is the
projective unitary group PU(Q) and it acts on P(Cn,1) by matrix multiplication. A
matrix h ∈ GL(n + 1, C) is in PU(Q) if and only if its inverse h−1 is given by J0h∗ J0,
where ∗ denotes the Hermitian transpose; that is, transpose the matrix and complex
conjugate each of its entries. The general form for h ∈ PU(Q) and its inverse is given
in [Par98, pg 438] :

h =

a τ∗ b
α A β

c δ∗ e

 , h−1 =

 ē β∗ b̄
δ A∗ τ

c̄ α∗ ā

 , (2.2)

where A is an (n − 1)× (n − 1) matrix, a, b, c, e ∈ C, and τ, δ, α, β are column vectors
in Cn−1.

The following lemma easily follows:

Lemma 2.1. Let h be an element of PU(Q) written in form 2.2.

1. ([Par97, page 7]) If h swaps q∞ and q0, then it must have the following form:

h =

0 0 1/c
0 A 0
c 0 0

 ,

where A ∈ U(n − 1) and c ∈ C. Therefore, h must be the following transforma-
tion:

h : (ζ, u, v) −→
( −2Aζ

c(||ζ||2 + u − iv)
,

−4v∣∣c∣∣2∣∣||ζ||2 + u − iv
∣∣2 ,

4u∣∣c∣∣2∣∣||ζ||2 + u − iv
∣∣2).

2. If h fixes both the cusps q∞ and q0, then it must have the following form

h =

a 0 0
0 A 0
0 0 1/ā

 ,

where A ∈ U(n − 1) and a ∈ C.
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For any pair of points z1 = (ζ1, v1, u1) and z2 = (ζ2, v2, u2) in S the Bergman metric
is given by:

d(z1, z2) = 2 cosh−1
( 1

4u1u2

∣∣||ζ1 − ζ2||2 + u1 + u2 + iv1 − iv2 + 2i im⟨ζ1, ζ2⟩
∣∣2),

(2.3)

where ⟨., .⟩ denotes the standard positive definite Hermitian form on Cn−1. Since
cosh−1(x) is increasing, the following lower bound can be obtained for the metric :

d
(
(ζ1, v1, u1), (ζ2, v2, u2)

)
≥ 2 cosh−1

( |u1 + u2|2
4u1u2

)
(2.4)

The holomorphic sectional curvature of this metric is −1 and the sectional curva-
ture of this metric varies on [−1,− 1

4 ] (see [Gol99]). It follows that the holomorphic
bisectional curvature of this metric is bounded above by a negative constant since the
holomorphic bisectional curvature always can be written as the sum of two sectional
curvatures.

The Kähler form of the Bergman metric on S is given by

wS := −2i∂∂̄ log(u) (2.5)

(see, for example, [BT18b, Lemma 2.1]), and more explicitly we can write ωS in terms
of (ζ, z)-coordinates

wS =2iu−2 ·
n−1

∑
i=1

n−1

∑
k=1

(uδik + ζi ζ̄k)dζk ∧ dζ̄i (2.6)

+ u−2 ·
n−1

∑
j=1

(ζ̄ jdζ j ∧ dz̄ − ζ jdz ∧ dζ̄ j)

− i
2

u−2dz ∧ dz̄,

where δik is the Kronecker delta function. Using holomorphic coordinates ζ and z on S,
we can set a holomorphic coordinates (ζ, z, ξ, w) on Ω1

S, where ξ = ( ∂
∂ζ1

, ∂
∂ζ2

, ..., ∂
∂ζn−1

)

and w = ∂
∂z . Using the frame ei = ξi for 1 ≤ i ≤ n − 1 and en = w, the hermitian

matrix of the Bergman metric is

[h(ei, ēj)] = 2


u−1 + u−2|ζ1|2 u−2ζ1ζ̄2 ... u−2ζ1ζ̄n−1

1
2i u

−2ζ1

u−2ζ2ζ̄1 u−1 + u−2|ζ2|2 ... u−2ζ2ζ̄n−1
1
2i u

−2ζ2

... ... ... ... ...
u−2ζn−1ζ̄1 u−2ζn−1ζ̄2 ... u−1 + u−2|ζn−1|2 1

2i u
−2ζn−1

− 1
2i u

−2ζ̄1 − 1
2i u

−2ζ̄2 ... − 1
2i u

−2ζ̄n−1
1
4 u−2

 .
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2.3 toroidal compactification

The complex ball quotient X has a unique toroidal compactification X, which is a
smooth projective variety (see [Mok12]). The boundary divisor of this compactification
D := X \ X is a disjoint union of abelian varieties with ample conormal bundle.

It follows from Mumford’s work on the singular Hermitian metric [Mum77] that
the Bergman metric on X extends as a good Hermitian metric to X. Integration against
ωX on the open part represents (as a current) a multiple of the first Chern class

c1(KX + D) =
1

2π

n + 1
2

[ωX] ∈ H1,1(X, R), (2.7)

where KX is the canonical bundle of X (see [BT18b]).

2.4 stabilizer of cusps

We denote the parabolic stabilizer of q∞ in G by G∞. With our choice of Hermitian
form, the matrices corresponding to elements of G∞ are upper triangular. There is an
equivalent way to identify these matrices:

Lemma 2.1. ([Par98]) Let h be an element of PU(Q) written in the form 2.2. Then, h
fixes the cusp q∞ if and only if the c entry of h is 0.

Proof. Note that

h · q∞ =

a τ∗ b
α A β

c δ∗ e

1
0
0

 =

a
α

c

 ,

and therefore h fixes q∞ projectively if and only if c = 0 and α = 0. Note that if the
c entry of h is 0, the multiplication of the matrix of h and h−1 in the form 2.2 yields
that α (and also δ) must be 0.

The group G∞ is generated by Heisenberg isometries I∞ and a one-dimensional
torus T. Heisenberg isometries consist of Heisenberg Rotations U(n − 1) and Heisen-
berg translations N. Heisenberg Rotations U(n − 1) acts on ζ-coordinates of S in the
usual way and Heisenberg translations N ∼= Cn−1 × R acts on ζ and v coordinates of
S via

(τ, t) : (ζ, v, u) −→
(
ζ + τ, v + t + 2i⟨τ, ζ⟩, u

)
.

The element (0, t) ∈ N will be called the vertical translation by t, and the subgroup
generated by (0, t) in G∞ will be denoted by V∞. The vertical translation V∞ is the
center of G∞ and the quotient V∞\I∞ is isomorphic to the unitary transformation of
Cn−1. We use (A, τ, t) ∈ U(n − 1)⋉N to denote the transformation acting by

(A, τ, t) · (ζ, z) −→
(

Aζ + τ, z + t + i|τ|2 + 2i⟨Aζ, τ⟩
)
,
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where the standard positive definite hermitian form (., .) chosen on Cn−1. Using the
chain rule we can observe that the action of (A, τ, t) induced on the cotangent bundle
Ω1

S is

(A, τ, t).(ζ, z, ξ, w) =
(

Aζ + τ, z + t + i|τ|2 + 2i⟨Aζ, τ⟩, Aξ + 2i⟨Aξ, τ⟩, w
)
. (2.8)

A Heisenberg translation (τ, t) ∈ N fixing q∞ corresponds to the matrix g∞ and a
Heisenberg translation (σ, s) ∈ N fixing q0 corresponds to the matrix g0, where

g∞ =

1 −τ∗ −(|τ|+ it)/2
0 I τ

0 0 1

 , g0 =

 1 0 0
σ I 0

−(|σ|+ is)/2 −σ∗ 1

 . (2.9)

With our assumption on Γ, all parabolic stabilizers of q∞ in Γ, i.e., Γ∞ := Γ ∩ G∞ are
Heisenberg translations.

2.5 neighborhood of cusps

A horoball centered at the cusp q∞ with height ũ is the open set

B∞(ũ) := {(ζ, v, u) ∈ S | u > ũ}.

The smallest ũ such that Γ∞\B∞(ũ) injects into X will be called the height of the
cusp q∞ and will be denoted by u∞. The complex ball quotient X has a finitely many
cusps and they are in one-to-one correspondence with the equivalence classes of
parabolic fixed points of Γ. For a cusp qi, there exists a g ∈ PU(Q) translating qi to q∞.
The horoball based at cusp qi with height ũ is defined to be the image of the horoball
based at cusp q∞ with height ũ translated by g :

Bi(ũ) = g · B∞(ũ)

Accordingly, the height of cusp qi is the smallest ũ such that Γi\Bi(ũ) injects into X,
where Γi is the parabolic stabilizer of qi. We will denote the height of qi by ui. Thanks
to the Parker’s generalization of Shimuzu’s lemma [Par98], Bi(ũ) must inject into X
for a large enough ũ. Note that the height coordinate u on S is invariant under the
action of Heisenberg rotations U(n − 1) and Heisenberg translations N and hence the
horoball is invariant with respect to the action of these groups.

Let ti be the shortest vertical translation in the parabolic stabilizer of qi. The number
di = ti/ui is called the depth of cusp qi which is invariant under conjugating Γ.

Definition 2.1. ([BT18b, Definition 3.7.]) The uniform depth of the cusps of X is the
largest d satisfying the following properties:

1. for every i, d ≤ di (this gives that Γi\Bi(ti/d) injects into X).

2. all Bi(ti/d) are disjoint.
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Remark 2.2. By passing to a cover of X, i.e., passing to a subgroup of Γ, the shortest
vertical translations of parabolic subgroups can not decrease and the heights can not
increase. Therefore, the canonical depth can not decrease by passing to a cover of X.

Definition 2.3. (see [Yeu94, Section 2]) A cofinal normal tower of X is a sequence
{Xi}∞

i=1 of étale Galois coverings of X = X1 given by a sequence of lattices {Γi}∞
i=1

such that for each subsequence {Γj}∞
j=1, one has

⋂∞
j=1 Γj = {1}.

Similar to [Yeu94, Lemma 1.2.2.] and [HT06, Proposition 2.1.], we can prove that
the uniform depth of cusps tends to infinity in towers:

Lemma 2.4. Let {Xi}∞
i=1 be a cofinal normal tower of X and d(Xi) be the uniform

depth of cusps of Xi. Then,
lim
i→∞

d(Xi) = ∞.

Proof. Let pi : Xi → X be the covering map. Fix a cusp c1 of X, and let ci be a cusp of
Xi such that pi(ci) = c1. Note that as Xi is a normal cover of X, Γ acts transitively on
cusps of Xi, and therefore the uniform depth d(Xi) equals to the depth of each cusps.
Hence, it is enough to show that

lim
i→∞

d(ci) = ∞,

where d(ci) is the depth of ci on Xi. Let u(ci) be the height of cusp ci, and t(ci) be the
shortest vertical translation in the stabilizer of ci. Since u(ci) ≤ u(c1), it is sufficient to
show that t(ci) tends to infinity. Note that as Γ is discrete, for every ti there only exists
finitely many elements in Γ with the length smaller than or equal to ti. On the other
hand, for every subsequence {Γj}∞

j=1, we have
⋂∞

j=1 Γj = {1}. Putting these together,
we conclude that the length of the shortest element except 1 in Γi tends to infinity.

2.6 base loci

The goal of this section is to prove formal properties of Q-vector bundles which will
be used in §3.2 and §3.3 to study the twists of Ω1

X and Ω1
X

(
log(D)

)
. To this end, we

use the definitions and properties of the base loci of a vector bundle which has been
systematically studied in [BKK+

15]. We also use the definitions and properties of
Q-vector bundles from [Laz04, section 6].

Let E be a vector bundle over a projective variety Y, and D be an integral divisor
on Y. The base locus of E is defined to be the subset

Bs(E) = {y ∈ Y|H0(Y, E) → E(y) is not surjective},

and the stable base loci of E is defined to be the algebraic subset

B(E) =
⋂

m>0

Bs(SmE).

Let r be a rational number.
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Definition 2.1. A Q-vector bundle E⟨rD⟩ on Y is a pair consisting of a vector bundle
E on Y and a Q-divisor rD ∈ DivQ(Y). A Q-isomorphism of Q-vector bundles is
the equivalence relation generated by considering E⟨D′ + rD⟩ to be equivalent to
E ⊗ OY(D′)⟨rD⟩, where D′ is an integral divisor.

The formal symbol E⟨rD⟩ is intended to say that we are twisting the vector bundle
E by a Q-divisor rD. The symmetric power Sm(E⟨rD⟩

)
denotes a Q-vector bundle

Sm(E)⟨mrD⟩. It is easy to observe that every Q-vector bundle has a symmetric power
which is Q-isomorphic to a vector bundle. Let a and b be integers such that b is
positive. We will define the base loci of the Q-vector bundle E⟨ a

b D⟩ to be the following
set

B(E⟨ a
b

D⟩) =
⋂

m>0

Bs
(
SmbE ⊗ OY(maD)

)
,

which does not depend on the choice of a, b. Let A be an ample divisor on Y. The
augmented base locus of E is the algebraic subset

B+(E) =
⋂

r∈Q+

B(E⟨−rA⟩),

which does not depend on the choice of the ample divisor A.

Definition 2.2. We say that E⟨rD⟩ is ample (nef) if one of the following equivalent
properties holds:

(i) The Q-divisor OP(E)(1) + π∗(rD) is ample (nef) on P(E).

(ii) E⟨rD⟩ has a symmetric power which is Q-isomorphic to an ample (a nef) vector
bundle.

(iii) If r = a/b and b is positive, then the vector bundle SbE ⊗OY(aD) is ample (nef).

The equivalency of these definitions is checked in [Laz17, Lemma 6.2.8].

Lemma 2.3. If E is a nef vector bundle and rD is an ample Q-divisor, then E⟨rD⟩ is an
ample Q-vector bundle.

Proof. Take a, b ∈ Z such that r = a/b and b is positive. As rD is ample, the integral
divisor aD is ample. Since E is nef, SbE is nef. Combing these two we get that
SbE ⊗ OY(aD) is ample vector bundle. Hence, E⟨rD⟩ is ample.

Lemma 2.4. Suppose 0 → G → E → F → 0 is an exact sequence of vector bundles on
a projective variety Y. The following hold:

(i) If E⟨rD⟩ is ample (nef), then F⟨rD⟩ is ample (nef).

(ii) If G⟨rD⟩ and F⟨rD⟩ are ample, then E⟨rD⟩ is ample.

Proof. (i) Since P(E) parametrizes one-dimensional quotients, the surjection E → F
corresponds to an inclusion P(E) ⊂ P(F), such that the restriction of OP(E)(1) is
OP(F)(1). Hence, the ampleness (nefness) of OP(E)(1) +π∗(rD) implies the ampleness
(nefness) of OP(F)(1) + π∗(rD).

(ii) See [Laz04, Lemma 6.2.8].
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Note that the above mentioned definitions for a Q-vector bundle E⟨rD⟩ agree with
the usual definitions for a vector bundle when a vector bundle E is considered as the
Q-vector bundle E⟨0⟩.

Definition 2.5. A vector bundle E over Y is said to be ample modulo D if for every
coherent sheaf F over Y, there exists an m0 > 0 such that if m > m0, then for every
y ∈ Y \ D, the fiber F ⊗ Sm(E)|y is generated by H0(Y, F ⊗ Sm(E)

)
.

There is an obvious relation between the notion of ampleness modulo a divisor
and the augmented base loci:

Proposition 2.6. If the vector bundle E is ample modulo D, then the augmented base
loci B+(E) contained in D and B+

(
OP(E)(1)

)
is contained in π∗(D).

Proof. Pick an arbitrary point y ∈ Y \ D. To show B+(E) ⊂ D, it is enough to show
that y /∈ B+(E). Let A be an ample line bundle. By Definition 2.5, there exist n
such that (SnE − A)|y is generated by H0(Y, SnE − A) and therefore y /∈ B(E⟨− 1

n A⟩).
Consequently, y /∈ B+(E).

[BKK+
15, Proposition 3.2] tells us that B+

(
OP(E)(1)

)
⊂ π−1(B+(E)) and therefore

the previous part gives that B+(OP(E)(1)) ⊂ π∗(D).

Suppose L is a line bundle on a projective variety Y. It is well-known that L is big
if and only if B+(L) ̸= X. This follows that if E is ample modulo D, then E is big in
the sense that OP(E)(1) is big. Another well-know fact is that L is ample if and only
if B+(L) = ∅. For vector bundles, we will use the following lemma to go from the
ampleness modulo D to the ampleness:

Lemma 2.7. If E is ample modulo D and E|D is ample, then E is ample.

Proof. Let L be the line bundle OP(E)(1) on P(E). First, we show that L is nef. Consider
an irreducible curve C on P(E). If C ⊂ π∗(D), then C · L > 0 because L|π∗(D) is ample.
If C is not contained in D, then there is a point x ∈ C such that x ̸∈ π∗(D). Since E is
ample modulo D, Proposition 2.6 gives that B+(L) ⊂ π∗(D) and therefore x ̸∈ B+(L).
It means that there exist a, b ∈ Z+ such that x ̸∈ Bs(bL − aA), where A is an ample
divisor on P(E). Consequently, the zero locus of bL − aA is not contained in C and it
follows that C intersects transversely with bL − aA. Hence. C · (bL − aA) ≥ 0 which
gives that C · L > 0.

To conclude ampleness it is sufficient to prove that L intersects positively with
every subvariety of P(E). Let V be a an arbitrary subvariety of P(E). Since L is nef,
thanks to [Bir17, Theorem 1.4], we know that

B+(L) =
⋃

L|V not big
V.

Since B+(L) ⊂ π∗(D) and E|D is ample, we get B+(L) = ∅, that is, E is ample.

Definition 2.8. We say that E⟨rD⟩ is ample modulo D if one of the following two
equivalent properties holds:
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(i) E⟨rD⟩ has a symmetric power which is Q-isomorphic to an ample modulo D
vector bundle.

(ii) If r = a/b and b is positive, then the vector bundle SbE ⊗ OY(aD) is ample
modulo D.

Definition 2.9. Consider two Q− vector bundles E⟨ a
b D⟩ and F⟨ a′

b D⟩, where r and s
are two rational numbers. We say that E⟨rD⟩ is a Q-subsheaf of F⟨sD⟩ if for every
integer a, a′ and every positive integer b such that r = a

b and s = a′
b , the vector bundle

SbE ⊗ OY(aD) is a subsheaf of SbF ⊗ OY(a′D).

Lemma 2.10. Let E and F be vector bundles on Y and they are isomorphic over
Y := Y \ D. Suppose E⟨rD⟩ is a Q-subsheaf of F⟨sD⟩, and E⟨rD⟩ is ample modulo D.
Then F⟨sD⟩ is ample modulo D.

Proof. Take a, a′, b ∈ Z such that a/b = r, a′/b′ = s and b is positive. Since the Q-
vector bundle E⟨ a

b D⟩ is ample modulo D, there exists an integer l ∈ Z such that the
vector bundle SblE ⊗ OY(alD) is ample modulo D. It means that for a given coherent
sheaves F over Y there exists m0 > 0 such that for every m > m0 and every y ∈ Y,(
F ⊗ SblmE ⊗ OY(alD)

)
|y is generated by H0(Y, F ⊗ SblmE ⊗ OY(alD))|y. Because

E⟨rD⟩ is a Q-subsheaf of F⟨sD⟩, we obtain that F ⊗ SblmE ⊗ OY(alD)) is a subsheaf
of F ⊗ SblmF ⊗ OY(a′lD)). This implies that

H0(Y, F ⊗ SblmE ⊗ OY(alD)
)
⊆ H0(Y, F ⊗ SblmF ⊗ OY(a′lD)

)
.

Since these two sheaves restricts to the same sheaf on Y, for every y ∈ Y and for
every m > m0, F ⊗ SblmE ⊗ OY(a′lD) is generated by H0(X, F ⊗ SmE2

)
.

Lemma 2.11. Let r ∈ Q+ be a positive rational number. If E⟨−rD⟩ is ample modulo D,
then E⟨−sD⟩ is ample modulo D for any rational s < r.

Proof. Let a, a′, b ∈ Z be positive integers such a/b = r and a′/b = s. Since s < r, we
get that a′ < a and therefore SbE ⊗Y (−aD) is a subsheaf of SbE ⊗Y (−a′D) and the
claim follows from Lemma 2.10.

Lemma 2.12. Suppose f : Y′ −→ Y is a finite surjective map and E is a vector bundle
on Y. Then, f ∗E is semi-ample, then E is so.

Proof. By passing to the projective bundles, the lemma follows from the corresponding
facts for line bundles ( see [Fuj83, 1.20])



3
P O S I T I V I T Y O F C O TA N G E N T
B U N D L E

3.1 positivity on the projective bundle

Let E be a vector bundle of rank n on an algebraic variety or complex manifold Y and
let

π : P(E) → Y

be the projective bundle of lines in the dual bundle E∗. The projective bundle P(E)
carries a tautological quotient bundle line bundle OP(E)(1) whose dual OP(E)(−1) is
naturally a subbundle of π∗E:

0 −→ OP(E)(−1) −→ π∗E.

In other words, a point (y, [L]) of P(E) is determined by a point y ∈ Y together with
[L] in Pn = P

(
E∗(y)

)
. The fiber OP(E)(−1)(y,[L]) is the subvector space L and the

fiber OP(E)(1)(y,[L]) is the one dimensional quotient of E corresponding to L. A vector
bundle E is called ample if OP(E)(1) is ample.

Let X = Γ\Bn be a complex ball quotient by a torsion-free lattice Γ ⊂ Aut(Bn) and
ĥ be the hermitian metric induced by the Bergman metric h on OP(Ω1

X)
(1).

In this section, we prove two properties of ĥ in Proposition 3.2 and Proposition 3.4.
These properties will be used to construct a singular hermitian metric on the line
bundle O(1) over P(Ω1

X

(
log(D)

)
) to prove Theorem A.

Let ĥ∗ be the dual metric of ĥ on OP(Ω1
X)
(−1). Suppose U is an open subset of

P(Ω1
X) such that for every u ∈ U, ξ1,u ̸= 0. After replacing ξi by ξi

ξ1
and w by w

ξi
, we

can take a local section σ =
n−1

∑
i=1

ξiei + wen of OP(Ω1
X)
(−1) on U. The first Chern form

of OP(Ω1
X)
(−1) on U is represented by

c1(OP(Ω1
X)
(−1), ĥ∗) =

i
2π

∂̄∂ log ||σ||2ĥ∗

=
i

2π
∂̄∂ log

( n

∑
i=1

n

∑
j=1

ξi ξ̄ jh(ei, ej)
)

=
i

2π
(−2∂̄∂ log u + ∂̄∂ log v),

17
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where

v =
n−1

∑
i=1

n−1

∑
j=1

(
(uδij + ζ̄iζ j)ξi ξ̄ j +

1
2i

ξ j ξ̄n ζ̄ j −
1
2i

ξ̄ jξnζ j
)
+

1
4
|ξn|2. (3.1)

As OP(Ω1
X)
(−1) is the dual of OP(Ω1

X)
(1), the first Chern form c1(OP(Ω1

X)
(1), ĥ) on U

is given by

c1
(
OP(Ω1

X)
(1), ĥ

)
= 2i∂̄∂ log u − i∂̄∂ log v. (3.2)

Lemma 3.1. For every q ∈ Ω1
X there exists a point p in the orbit I∞ · q such that in

(ζ, z, ξ, w)-coordinates p is given by

ζi,p = ξi,p = 0,

for 1 ≤ i ≤ n − 2, ζn−1,p = 0 and ξn−1,p being a positive real number.

Proof. Consider the action of (A, τ, t) ∈ U(n − 1)× Cn−1 × R described in 2.8 and
take (A, τ, t) = (I,−ζq, 0):

(I,−ζ, 0).(ζq, zq, ξq, wq) = (0, z′, ξq + i|ζq|2 + 2i(ξq,−ζq), wq)

There exist B ∈ U(n − 1) such that

B
(
ξ + 2i(ξ,−ζ)

)
= (0, ..., 0, |ξq + 2i(ξq,−ζq)|).

The element (B, 0, 0) ∈ U(n − 1)× Cn−1 × R sends (0, z′, ξq + i|ζq|2 + 2i(ξq,−ζq), wq)

to a point p with the desired properties.

Proposition 3.2. Let X = Γ\Bn be a torsion-free ball quotient and ĥ be the hermitian
metric on OP(Ω1

X)
(1) induced by the Bergman metric on Bn. Then,

(i) the first Chern form c1
(
OP(Ω1

X)
(1), ĥ

)
is a Kähler form on P(Ω1

X);

(ii)

c1
(
OP(Ω1

X)
(1), ĥ

)
≥ 1

4π
π∗(wX),

where wX is the Kähler form of the Bergman metric on X.

Proof. First we prove part (ii) and then conclude part(i) from the inequality appears
in the proof of (ii).

(ii) Since the Bergman metric and u is I∞-invariant, its enough to check the inequality
on I∞-orbit. Consider an open set U ⊂ P(Ω1

X) such that w ̸= 0. Replacing ξi by ξi
w

and w by 1, we can work on the affine coordinates on P(Ω1
X)|U . Thanks to Lemma

3.1, we can move every point in U by an element of I∞ to point p such that

ζ1,p = ζ2,p = ... = ζn−1,p = 0,

ξ1,p = ξ2,p = ... = ξn−2,p = 0,
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w = 1 and ξn−1,p is a real number. Note that the function v in 3.1 on U is

v = (
n−1

∑
i=1

n−1

∑
j=1

(
(uδij + ζ̄iζ j)ξi ξ̄ j +

1
2i

ξ j ζ̄ j −
1
2i

ξ̄ jζ j
)
+

1
4

.

Set L = OP(Ω1
X)
(1). The first Chern form at p is

c1(L, ĥ)(p) =
i

2π
∂̄∂ log(v)(p) =

i
2π

(v(p))−2(v(p) · ∂̄∂v(p)− (∂̄v ∧ ∂v)(p)
)
.

To find explicit formula note that

r := v(p) = uξ2
n−1 +

1
4

,

∂v(p) = uξn−1dξn−1 +
1
2i

ξ2
n−1dz − 1

2i
ξn−1dζn−1,

and

∂̄∂v(p) =
n−1

∑
i=1

(
− ξ2

n−1dζ̄i ∧ dζi + udξ̄i ∧ dξi +
1
2i

dζ̄i ∧ dξi −
1
2i

dξ̄i ∧ dζi
)

+ ξ2
n−1dζ̄n−1 ∧ dζn−1 −

1
2i

ξn−1dz̄ ∧ dξn−1 +
1
2i

ξn−1dξ̄n−1 ∧ dz,

giving that

c1(L, ĥ)(p) =
i

2π
r−2 ·

( n−2

∑
i=1

(
rudξ̄i ∧ dξi − rξ2

n−1dζ̄i ∧ dζi +
1
2i

rdζ̄i ∧ dξi −
1
2i

rdξ̄i ∧ dζi
)

+
1
4
·
(
udξ̄n−1 ∧ dξn−1 +

1
2i

dζ̄n−1 ∧ dξn−1 −
1
2i

dξ̄n−1 ∧ dζn−1

− 1
2i

ξn−1dz̄ ∧ dξn−1 +
1
2i

ξn−1dξ̄n−1 ∧ dz − ξ4
n−1dz̄ ∧ dz

+ ξ3
n−1dz̄ ∧ dζn−1 + ξ3

n−1dζ̄n−1 ∧ dz − ξ2
n−1dζ̄n−1 ∧ dζn−1

))
.

Now, as ωX = 2i∂̄∂ log(u), using equation 3.2, we can write

c1(L, ĥ)(p)− 1
4π

π∗(wX)(p) =
i

2π

(
∂̄∂ log(u)(p)− ∂̄∂ log(v)(p)

)
,

and therefore denoting the form c1(L, ĥ)− 1
4π π∗(wX) by η, we obtain

η(p) =
i

2π
·

n−2

∑
i=1

(
ur−1dξi ∧ dξ̄i + (u−1 − r−1ξ2

n−1)dζi ∧ dζ̄i +
1
2i

r−1dξi ∧ dζ̄i −
1
2i

r−1dζi ∧ dξ̄i
)

+
i
8

r−2u−2
(
(8ur2 − 2u2ξ2

n−1)dζn−1 ∧ dζ̄n−1 + 2u3dξn−1 ∧ dξ̄n−1 − iu2dξn−1 ∧ dζ̄n−1

+ iu2dζn−1 ∧ dξ̄n−1 + iu2ξn−1dξn−1 ∧ dz̄ − iu2ξn−1dz ∧ dξ̄n−1

+ (2r2 − 2u2ξ4
n−1)dz ∧ dz̄ + 2u2ξ3

n−1dζn−1 ∧ dz̄ + 2u2ξ3
n−1dz ∧ dζ̄n−1

)
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To see that η(p) is semi-positive, we choose the local frame β for L over U as follows:

β2i−1 =
∂

∂ξi
, β2i =

∂

∂ζi
,

for 1 ≤ i ≤ n − 1 and β2n−1 = ∂
∂z . In this frame,

[η(p)]β =
i

2π


A1 0 ... 0 0
0 A2 ... 0 0
... ... ... ... ...
0 0 ... An−1 0
0 0 ... 0 B

 ,

where Ai = r−1

 u 1
2i

− 1
2i

1
4u

 and B = 1
8 r−2u−2


2u3 iu2 −iu2ξn−1

−iu2 8ur2 − 2u2ξ2
n−1 2u2ξ3

iu2ξn−1 2u2ξ3 2r2 − 2u2ξ4
n−1

 .

By computation we can see that det(Ai) = 0, tr(Ai) > 0 and determinate of all
upper left sub-matrices of B are semi-positive. Hence,

c1
(

L, ĥ
)
≥ 1

4π
wX.

(i) Since c1
(

L, ĥ
)

is a closed form, we only need to show that it is positive. As ωX

is zero only on the vertical directions and neither Ais nor B is zero on the vertical
directions, c1(L, ĥ) is a positive (1, 1)-form.

In fact, if Γ ⊂ PU(n, 1) is a cocompact lattice, Proposition 3.2 implies that Γ\Bn

has ample cotangent bundle. This is well-know and the difficulty is, when Γ is not
cocompact.

For the non-compact case, we will construct a hermitian metric on O(1) over P(Ω1
X)

which extends as singular hermitian metric to O(1) over P(Ω1
X

(
log(D)

)
).

To prove Theorem A, we will construct a singular hermitian metric whose curvature
current is represented by a form. To this end, we prove the following Proposition
which is inspired by [GK73, Lemma 6.18] and [Kol85, Proposition 5.16]:

Proposition 3.3. Suppose Φ(ζ, |q|) : Cn−1 × C → (0, ∞] is a function satisfying the
following conditions:

(i) ∂ log
(
Φ(ζ, |q|)

)
and ∂∂̄ log

(
Φ(ζ, |q|)

)
are locally integrable on a neighborhood

of the divisor q = 0;

(ii) lim
q→0

log(Φ(ζ, |q|))
log|q| = 0, when |ζ| is bounded.

Then, the current
[
∂∂̄ log

(
Φ(ζ, |q|)

)]
is represented by the form ∂∂̄ log

(
Φ(ζ, |q|)

)
.
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Proof. Let U be an open set where the divisor D is given by q = 0. For a compactly
supported (n − 1, n − 1)−form f on U,∫

X
log

(
Φ(ζ, |q|)

)
∂∂̄ f = lim

ϵ→0

∫
Xϵ

log
(
Φ(ζ, |q|)

)
∂∂̄ f ,

where Xϵ = {(ζ, q) ∈ C | |q| > ϵ}. Applying Stokes’ theorem to the closed form
d
(

log |Φ(ζ, |q|)∂ f
)
, we get:

∫
Xϵ

log(Φ(ζ, |q|))∂̄∂ f = −
∫

Xϵ

∂̄ log
(
Φ(ζ, |q|)

)
∧ ∂ f +

∫
Sϵ

log
(
Φ(ζ, |q|)

)
∂ f , (3.3)

where Sϵ = {(ζ, q) ∈ Cn | |q| = ϵ} is oriented with its normal in the direction of
decreasing |q|. Since Sϵ = Cϵ × Cn−1 where Cϵ is the circle {q ∈ C | |q| = ϵ}, Fubini’s
theorem gives that∫

Sϵ

log
(
Φ(ζ, |q|)

)
∂ f =

∫
Cn−1

( ∫
Cϵ

log(Φ
(
ζ, |q|

)
f̃ (ζ, q)dq

)
dζ ∧ dζ̄

=
∫

D

(
log

(
Φ(ζ, ϵ)

) ∫
Cϵ

f̃ (ζ, q)dq
)

dζ ∧ dζ̄, (3.4)

where dζ ∧ dζ̄ = dζ1 ∧ dζ̄1 ∧ ...dζn−1 ∧ dζ̄n−1, f̃ (ζ, q)dq ∧ dζ ∧ dζ̄ is dq ∧ dζ ∧ dζ̄ part
of ∂ f and D is a compact set such that D × Cϵ contains the support of f̃ (ζ, q). Since

lim
q→0

log(Φ(ζ, |q|))
log|q| = 0, there exists ϵ′ > 0 such that | log

(
Φ(ζ, ϵ)

)
| < ϵ′|log(ϵ)|.

Furthermore, as f̃ (ζ, q) is continuous and Cϵ is compact, there exists a continuous

function M(ζ) such that
∣∣∣∣∫Cϵ

f̃ (ζ, q)dq
∣∣∣∣ < M(ζ) · ϵ. It follows by compactness of D

that ∣∣∣∣∫D

(
log

(
Φ(ζ, ϵ)

) ∫
Cϵ

f̃ (ζ, q)dq
)

dζ ∧ dζ̄

∣∣∣∣ ≤ R · ϵ log(ϵ), (3.5)

where R is a constant. As such, 3.4 and 3.5 imply that lim
ϵ→0

∫
Sϵ

log(Φ(ζ, |q|))∂ f = 0

and by 3.3 we obtain that∫
X

log
(
ϕ(ζ, |q|)

)
∂∂̄ f =

∫
X

∂̄ log
(
ϕ(ζ, |q|)

)
∧ ∂ f . (3.6)

On the other hand, applying Stokes’ theorem to the closed form d
(

f ∧ ∂̄ log
(
ϕ(ζ, |q|)

))
yields that:

∫
Xϵ

f ∧ ∂∂̄ log
(
Φ(ζ, |q|)

)
= −

∫
Xϵ

∂ f ∧ ∂̄ log
(
Φ(ζ, |q|)

)
+

∫
Sϵ

f ∧ ∂̄ log
(
Φ(ζ, |q|)

)
.

(3.7)

It will be shown that lim
ϵ→0

∫
Sϵ

f ∧ ∂̄ log
(
Φ(ζ, |q|)

)
= 0. Note that
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∫
Sϵ

f ∧ ∂̄ log
(
Φ(ζ, |q|)

)
=

∫
r=ϵ

f ∧ 1
Φ(ζ, r)

· ∂Φ(ζ, r)
∂q̄

+
∫
|q|=ϵ

f ∧
n−1

∑
i=1

∂ log
(
Φ(ζ, |q|)

)
∂ζ̄i

,

(3.8)

where r = |q|. Applying L’Hopital’s rule to lim
r→0

log(Φ(ζ, r))
log(r)

= 0 yields

lim
r→0

r
Φ(ζ, r)

· ∂Φ(ζ, r)
∂r

= 0. (3.9)

As ∂r
∂q̄ = 1

2

(
q
q̄

) 1
2

the chain rule gives

∂Φ(ζ, |q|)
∂q̄

=
1
2

(q
q̄

) 1
2 · ∂Φ(ζ, r)

∂r
.

Since f is compactly supported, there exists a constant M′ such that

∣∣∣∣∫r=ϵ
f ∧ 1

Φ(ζ, r)
· ∂Φ(ζ, |q|)

∂q̄

∣∣∣∣ ≤ M′ϵ · max
r=ϵ

∣∣∣∣ 1
Φ(ζ, r)

· ∂Φ(ζ, r)
∂r

∣∣∣∣, (3.10)

which tends to 0 as ϵ tends to 0 using 3.9. The other term in 3.8 can be written as

∫
|q|=ϵ

f ∧
n−1

∑
i=1

∂ log
(
Φ(ζ, |q|)

)
∂ζ̄i

=
∫

Cn

n−1

∑
i=1

∂ log
(
Φ(ζ, ϵ)

)
∂ζ̄i

∫
|q|=ϵ

f

=
∫

Cn
log

(
Φ(ζ, ϵ)

)
∂̄
( ∫

|q|=ϵ
f
)

, (3.11)

by Stokes’ theorem. As f is compactly supported there exists a constant R′ such that

∣∣∣∣∫
Cn

log
(
Φ(ζ, ϵ)

)
∂̄
( ∫

|q|=ϵ
f
)∣∣∣∣ ≤ R′ϵ′| log(ϵ)|ϵ (3.12)

tending to 0 as ϵ tends to 0. Therefore, combining 3.8, 3.10, 3.11 and 3.12 gives

lim
ϵ→0

∫
Sϵ

f ∧ ∂̄ log
(
Φ(ζ, |q|)

)
= 0 and by 3.7 we get

∫
X

f ∧ ∂∂̄ log
(
Φ(ζ, |q|)

)
= −

∫
X

∂ f ∧ ∂̄ log
(
Φ(ζ, |q|)

)
. (3.13)

The claim follows from 3.6 and 3.13.

Proposition 3.4. Let s be a local section of OP(Ω1
X(log D))(1). Then, the current [∂∂̄ log(ĥ(s))]

is represented by the form ∂∂̄ log(ĥ(s)).
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Proof. Let D′ be the pull back of D = X\X to Ω1
X(log D). Take an arbitrary point

a = (ζ1, ..., ζn−1, q = 0; [ξ1, ..., ξn]) ∈ D′. At least one of ξ1, ξ2, ..., ξn is non-zero. Let
ξk ̸= 0, for some k ∈ {1, 2, ..., n}. Suppose U is an open subset of P(Ω1

X(log D))

such that for every u ∈ U, ξk,u ̸= 0 and D′ ∩ U = (q = 0). Replacing ξi by ξi
ξk

,

η =
n−1

∑
i=1

ξi
∂

∂ζi
+ ξnq

∂

∂q
is a local section of OP(Ω1

X(log D))(−1) on U. Note that on U we

have h(s) =
1

||η||2
ĥ∗

, and therefore it is enough to check the conditions of Proposition

3.3 for log(||η||2
ĥ∗
). We write this function in terms of the chosen coordinate. First, we

have that

||η||2ĥ∗ = u−2.
( n−1

∑
i=1

n−1

∑
j=1

(
(uδij + ζ̄iζ j)ξi ξ̄ j +

t∞

4π
ξ j ξ̄n ζ̄ j +

t∞

4π
ξ̄ jξnζ j

)
+

t2
∞

16π
|ξn|2

)
= u−1 ·

n−1

∑
i=1

|ξi|2 + u−2 ·
( n−1

∑
i=1

n−1

∑
j=1

(
ζ̄iζ jξi ξ̄ j +

t∞

4π
ξ j ξ̄n ζ̄ j +

t∞

4π
ξ̄ jξnζ j

)
+

t2
∞

16π
|ξn|2

)
.

Therefore,

log(||η||2ĥ∗) = −2 log(u) + log(
n−1

∑
i=1

n−1

∑
j=1

(
(uδij + ζ̄iζ j)ξi ξ̄ j +

t∞

4π
ξ j ξ̄n ζ̄ j +

t∞

4π
ξ̄ jξnζ j

)
+

t2
∞

16π
|ξn|2).

(3.14)

To check that the 1-form ∂ log(||η||2
ĥ∗
) is locally integrable, we only need to check

that the the function
1

|q| log |q| is locally integrable around q = 0. This follows from

∫
|q|<ϵ

dq ∧ dq̄
|q| log |q| =

∫ 2π

0

∫ ϵ

0

2r
1
2 drdθ

log(r)
< ∞,

for small enough ϵ > 0.
To check that the (1, 1)-form ∂̄∂ log(||η||2

ĥ∗
) is locally integrable around q = 0, we

should only check that the function
1

|q|2 log2 |q|2
is locally integrable around q = 0.

This follows from ∫
|q|<ϵ

dq ∧ dq̄
|q|2 log2 |q|

=
∫ 2π

0

∫ ϵ

0

drdθ

r log2(r)
< ∞,

for small enough ϵ > 0. When ζ1, ..., ζn and ξ1, ..., ξn are bounded, using (3.14) and
q → 0, we have the the asymptotic relation

log(||η||2
ĥ∗
)

log(q)
∼ log(u)

log |q| ∼
log(log |q|)

log |q| ∼ 0.

Hence, we can apply Proposition 3.3 to log(||η||2
ĥ∗
).
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3.2 positivity of logarithmic cotangent bundle

Throughout this section, we adopt the convention that Γ is a torsion-free lattice in
PU(n, 1), X = Γ\Bn is a complex hyperbolic manifold with cusps, X is the toroidal
compactification of X and d is the uniform depth of cusps. Additionally, we assume
that X does not have any orbifold point.

The goal of this section is to prove the ampleness of the twisted logarithmic
cotangent bundle as stated in Theorem A. To prove this theorem, we need to construct
a singular hermitian metric using the properties of the Bergman metric proved in the
previous section, namely Proposition 3.2 and Proposition 3.4.

Suppose Y is a smooth projective variety and D is divisor on Y. As proved in
[ADT22, BD18], if dim Y > 1, the logarithmic cotangent bundle Ω1

Y
(log(D)) is never

ample because its restriction to D is an extension of the trivial bundle. Therefore, to
describe a positivity properties of Ω1

Y
(log(D)) we need a weaker positivity notion.

In the case of the toroidal compactification X of X, the first step toward understand-
ing the positivity of the cotangent bundles is to study the positively of the cotangent
bundle restricted to the boundary divisor D. The connected components of D are
étale quotients of abelian varieties whose conormal bundles are ample and therefore
considering the conormal bundle exact sequence

0 −→ OD(−D) −→ Ω1
X|D −→ Ω1

D −→ 0, (3.15)

on D, one can observe that Ω1
X|D is an extension of a vector bundle with vanishing

Chern classes, by an ample line bundle. Moreover, we will prove that Ω1
X|D is semi-

ample in the sense that O(1) on P(Ω1
X|D) is semi-ample. To this end, we need the

following lemma:

Lemma 3.1. Suppose 0 → G → E → F → 0 is an exact sequence of vector bundles on
a projective variety Y such that H1(Y, G) = 0. If SmG and F are globally generated,
then OP(E)(m) is globally generated.

Proof. H1(Y, G) = 0 gives the exact sequence of global sections:

0 −→ H0(Y, G) −→ H0(Y, E) −→ H0(Y, F) −→ 0.

This implies that H0(Y, SmG) injects into H0(Y, SmF) and H0(Y, E) surjects onto
H0(Y, F).

To prove that OP(E)(m) is globally generated, we need to show that for every
p ∈ P(E), the fiber OP(E)(m)|p is generated by global sections of OP(E)(m). Suppose
p ∈ P(E) is determined by y ∈ Y and an one-dimensional quotient Ep → Lp. Consider
the map ηy : Gy → Ly. We may have two cases:

1. ηy : Gy → Ly is the zero map. In this case, ηy factors through Fy. On the other
hand, H0(Y, E) surjects onto H0(Y, F), and F is globally generated. Since

H0(Y, E) ∼= H0(P(E), OP(E)(1)),
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the fiber OP(E)(1)|p is generated by the global sections and therefore OP(E)(m)|p
is generated by global sections.

2. ηy : Gy → Ly is a non-zero map. Since H0(Y, SmG) injects into H0(Y, SmE) and
SmG is globally generated, the global sections

H0(P(E), OP(E)(m)) ∼= H0(Y, SmE) generates the fiber OP(E)(m)|p.

Hence, OP(E)(m) is globally generated, as desired.

Now, we can study the positivity of the twisted cotangent bundle restrict to the
boundary divisor:

Proposition 3.2. Suppose that the dimension of X is greater than 1 and r is a rational
number. Consider the Q-vector bundles

Er := Ω1
X|D⟨−rD|D⟩.

The following hold:

(i) If r = 0, then Er = Ω1
X|D is semi-ample, but not ample.

(ii) If r > 0, then Er is ample.

Proof. (i) Let Di be a connected component of D. We can write the exact sequence
3.15 on Di :

0 −→ ODi(−Di) −→ E0|Di
−→ Ω1

Di
−→ 0.

As Di is an étale quotient of abelian variety, there is a finite étale map f : D′ −→ Di,
where D′ is an abelian variety. We pull back the previous exact sequence to D′ :

0 −→ f ∗ODi(−Di)
ϕ−→ f ∗E0|Di

−→ f ∗Ω1
Di

−→ 0.

As ODi(−Di) is ample and f is finite, f ∗ODi(−Di) is ample. As f is an étale map
f ∗Ω1

Di
∼= Ω1

D′ which is trivial because D′ is an abelian variety. Since f ∗E0|Di
has a

trivial quotient, E0|Di
can not be ample.

To show semi-ampleness, note that Ω1
Di

is in particular globally generated. Also,
f ∗ODi(−Di) is ample because −Di|Di

is ample and f is finite. Therefore, there exist
m ∈ Z+ such that m f ∗ODi(−Di) is globally generated on f−1(Di). Additionally, the
Kodaira’s vanishing theorem gives that H1( f−1(Di), f ∗ODi(−Di)) = 0. Thanks to
Lemma 3.1, we can conclude that f ∗E0|Di

is semi-ample and therefore Lemma 2.12,
implies that E0|Di

is semi-ample.
(ii) Since E0|Di

is in particular nef by (i) and the conormal bundle −DD is ample,
we can conclude from Lemma 2.3 that Er is ample.
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Proposition 3.3. Suppose that the dimension of X is greater than 1 and r is a rational
number. Consider the Q-vector bundles

Fr := Ω1
X

(
log(D)

)
|D⟨−rD|D⟩.

The following hold:

(i) If r = 0, then Fr = Ω1
X(log(D))|D is nef, but not ample.

(ii) If r > 0, then Fr is ample.

Proof. Let Di be a connected component of D. The vector bundle F0|Di
= Ω1

X

(
log(D)

)
|Di

on Di fits into the exact sequence:

Ω1
X|Di

ϕ1−→ F0|Di

ϕ2−→ ODi −→ 0,

where ϕ1 is the inclusion and ϕ2 is the residue map sending
n−1

∑
i=1

fidzi + g
dq
q

to g|Di
on

an open set U on which the local coordinate of Di is (q = 0). Therefore, we get the
exact sequence

0 −→ Im(ϕ1) −→ F0|Di

ϕ2−→ ODi −→ 0.

Note that Im(ϕ1) is a quotient of Ω1
X|Di

which is in particular nef by Proposition 3.2.
Therefore, Im(ϕ1) is nef.

(i) Since F0|Di
admits a trivial quotient, it is not ample. However, it is squeezed

between two nef bundles, and therefore it is nef.
(ii) Since F0|Di

is nef and −rDi|Di
is ample for r > 0, it follows from Lemma 2.3 that

Fr is ample when r > 0.

Another ingredient we need in order to construct a singular hermitian metric is
an appropriate weight function. Roughly speaking, this weight function will be a
plurisubharmonic function, supported on a horoball with the largest possible Lelong
number on the boundary. The desired wight function on the horoball around the
cusp ci will be constructed using the following Lemma:

Lemma 3.4. For a positive real number ui and sufficiently small ϵ > 0, there exists a
C2 function ρi : R>0 → R and a constant number c satisfying the following properties:

1. ρi(u) = − log(u) + c on (0, ui + ϵ′], where ϵ′ is a positive number depending
on ϵ.

2. i∂∂̄ρi ≥ 0

Let u = − ti
2π · log |q| − |ζ|2, where ti ∈ R+, and (ζ, q) ∈ Cn−1 × C.

3. When (ζ, q) varies on a compact set with non-empty intersection with q = 0,

lim
q→0

ρi(u)
log |q| =

1
2π

(di − ϵ),
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where di =
ti
ui

.

4. The forms ∂̄
(
ρ(u)− 1

2π (di − ϵ) log |q|
)

and ∂∂̄
(
ρ(u)

)
are locally integrable on

the set {(ζ, q) ∈ Cn−1 × C | u > u0 + ϵ′}.

Proof. Let ϵ > 0 be small enough such that there exists ϵ′ ∈ (0, ti
4π ) satisfying ti

ui
−

ti
ui+2ϵ′ = ϵ and define ρi : R>0 → R be the function given by

ρi(u) =


− log(u) + c0 0 < u < ui + ϵ′,

−u
ui + 2ϵ′

+ c1e−a(u−ui−ϵ′) u ≥ ui + ϵ′,

where a = 1
ϵ′ +

1
ui+ϵ′ , c1 =

(
ϵ′

ui+2ϵ′ )
2, and c0 = − log(ui + ϵ′) − c1 −

ui + ϵ′

ui + 2ϵ′
. Since

a · c1 = ϵ′

(ui+ϵ′)(ui+2ϵ′) , and a2c1 = 1
(ui+ϵ′)2 its straightforward to see that the function ρi

is C2.
As −u is a plurisubharmonic function, and c1 and a are positive, −log(u) + c0,
−u

ui+2ϵ′ + c1e−(u−ui−ϵ′) are plurisubharmonic because the function −log(−x) when
x < 0 and the function ebx for every b > 0 are monotonically increasing and convex.
Hence, ρi(u) satisfies the second properties.

ρi(u) satisfies the third condition since

lim
q→0

ρi(u)
log |q| =

1
2π

ti

ui + 2ϵ′
=

1
2π

(
ti

ui
− ϵ) =

1
2π

(di − ϵ).

To check the forth condition note that

e−a(u−ui−ϵ′) = c′ · e−a|ζ|2 · |q|l ,

where l =
a · ti

2π
and c′ is a constant. The inequality a > 1

ϵ′ > 4π
ti

gives that l > 2,

the function |q|l , and the forms ∂̄(|q|l), ∂(|q|l) and ∂∂̄(|q|l) are locally integrable and
therefore letting c′′ = 1

u0+2ϵ′ ,

∂∂̄
(
ρi(u)

)
= ∂∂̄(c′′ · |ζ|2) + ∂∂̄(c′e−a|ζ|2 |q|l)

is a locally integrable form. On the other hand, −u
ui+2ϵ′ = (di − ϵ) log |q|+ |ζ|2

ui+2ϵ′ , in
other words,

∂̄
( −u

ui + 2ϵ′
− (d − ϵ)log|q|

)
= ∂̄(c′′ · |ζ|2),

which is a locally integrable form. Hence, ∂̄
(
ρ(u)− (di − ϵ) log |q|

)
is locally integrable

on {(ζ, q) ∈ Cn−1 × C | u > u0 + ϵ′} as desired.

The main difficulty to prove Theorem A is to prove the following proposition. In
the proof, we construct a singular hermitian metric by Preposition 3.3 and Lemma
3.4:
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Proposition 3.5. For a sufficiently small ϵ > 0, with r = (d − ϵ)/2π being rational, the
Q-vector bundle

Ω1
X

(
log(D)

)
⟨−rD⟩

is ample.

Proof. Denote Ω1
X

(
log(D)

)
by F. Suppose D̃ is the pullback of D by the natural

projection
π : P(F) −→ X.

The goal is to show that the Q-line bundle OP(F)(1)− rD̃ is ample, i.e., it intersects
positively with every subvariety of P(F) . Since −r = −(d − ϵ) < 0 for a sufficiently
small ϵ > 0, by Proposition 3.3, it is enough to show that OP(F)(1)− rD̃ intersects
positively with every subvariety of P(F) that is not contained in D̃ but possibly
intersects with D̃. Let V be such a subvariety.

Let a and b be positive integer such that a/b = r. We show that the line bundle
L = OP(F)(b)⊗ OP(F)(−aD̃) intersects positively with V by constructing a singular
hermitian metric h̄ on L such that c1(L, h̄)dim(V) · V > 0.

Suppose Di is the component of D compactifing the cusp ci and Di is given by qi = 0
on the horoball Bi(ui), where ui = ti/d. Let D̃i = π∗(Di) and B̃i(ui) = π−1(Bi(ui)

)
.

Taking ϵ to be small enough, by Shimuzu’s lemma the horoballs are disjoint and
therefore L|B̃i(ui)

naturally isomorphic to OP(F)(b)⊗ OP(F)(−aD̃i).
Substituting ui and ϵ to Lemma 3.4, we obtain ρi(u) and constant c satisfying the

properties in Lemma 3.4. Now, we define a singular hermitian metric

h̄(sb ⊗ β) := exp
(

b ·
(
− ρi(u)− log(u)− c

))
ĥ(s)b

on OP(F)(b)⊗ OP(F)(−aD̃i), where sb is a section of OP(F)(b) and β is the canonical
rational section of −aD̃i corresponding to 1. As horoballs are disjoint, Lemma 3.4
implies that h̄ is a well-defined metric on L and on the complements of horoballs it
equals to ĥb. Evaluating h̄ at a local generator of L on H̃i(ui) gives

h̄(sb ⊗ βqa
i ) = exp

(
b ·

(
− ρi(u) + r · log|qi| − log(u)− c

))
ĥ(s).

Now, we can compute the curvature current on the horoball B̃i(ui):

[
c1(L, h̄)

]
=

i
2π

([
∂∂̄

(
ρi(u)− r · log(qi)

)]
+ [∂∂̄ log(u)]− [∂∂̄ log(ĥ(s))]

)
By Proposition 3.4, the current [∂∂̄ log(ĥ(s))] is represented by the form ∂∂̄ log(ĥ(s)).
Applying Proposition 3.3 to Φ1(ζ, |qi|) = exp

(
ρi(u) − r log(qi)

)
and Φ2(ζ, |qi|) =

exp
(
− log(u)

)
gives that[

∂∂̄
(
ρi(u)− r · log(qi))

)]
+ [∂∂̄ log(u)]
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is represented by the form ∂∂̄
(
ρi(u)− r · log(qi)

)
+ ∂∂̄ log(u). By Proposition 3.2, we

observe that ∂∂̄ log(u) − ∂∂̄ log(ĥ(s)) is a semi-positive form. On the other hand,
Lemma 3.4 gives that ∂∂̄

(
ρi(u)− r · log(qi)

)
= i∂∂̄ρi(u) is semi-positive. Putting these

together, we obtain that [c1(L, h̄)] is represented by a semi-positive form on B̃i(ui).
Note that by Lemma 3.4 we killed the Lelong number of the current

[
∂∂̄

(
ρi(u)− r ·

log(qi)
)]

on q = 0, and the currents [∂∂̄ log(u)] and [∂∂̄ log(ĥ(s))] also have 0 Lelong
number on q = 0 (see the last part of the proof of Proposition 3.4). Therefore, we can
apply [Dem92, Corollary 7.6.] and obtain that∫

V

[
c1(L, h̄)

]dim(V) ≥
∫

V|π−1(X)

c1(L, h̄)dim(V) ≥ 0.

By Proposition 3.2, we have the strict positivity of c1(L, h) > 0 on X, therefore∫
V|π−1(X)

c1(L, h̄)dim(V) > 0.

Since h̄ does not depend on V, we can conclude that every subvariety V ⊂ P(E) that
is not entirely contained in D̃ intersects positively with L.

Using Proposition 3.3 together with Proposition 3.5, we can prove Theorem A:

Theorem 3.2.6. (Theorem A) For every rational r ∈ (0, d/2π), the Q-vector bundle

Ω1
X

(
log(D)

)
⟨−rD⟩

is ample.

Proof. Fix r = a/b ∈ (0, d/2π), and choose ϵ > 0 such that r < (d − ϵ)/2π. Putting
Proposition 3.5 and Lemma 2.11 together, we get that Ω1

X

(
log(D)

)
⟨−rD⟩ is am-

ple module D, i.e. the vector bundle SbΩ1
X

(
log(D)

)
⊗ OX(−aD) is ample modulo

D. Moreover, it follows from Proposition 3.3 that the restricted Q-vector bundle
Ω1

X

(
log(D)

)
|D⟨−rD|D⟩ is ample and therefore by Lemma 2.7 we can conclude that

the vector bundle SbΩ1
X

(
log(D)

)
⊗ OX(−aD) is ample.

Theorem 3.2.6 implies that Ω1
X

(
log(D)

)
is a limit of ample Q-vector bundles.

Moreover, we show in Corollary 3.2.7 that Ω1
X

(
log(D)

)
is ample modulo D and nef.

It is previously proved by Cadorél that Ω1
X

(
log(D)

)
is big and nef ([Cad21b, Theorem

3]).

Corollary 3.2.7. The logarithmic cotangent bundle Ω1
X

(
log(D)

)
is ample modulo D

and nef.

Proof. Denote Ω1
X

(
log(D)

)
by F. Putting Proposition 3.5 and Lemma 2.11 together,

we get that Ω1
X

(
log(D)

)
is ample module D.
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It is easy to conclude from Theorem 3.2.6 that F is nef. If F were not nef, then there
would be a curve C ⊂ P(F) such that the intersection I := C · OP(F)(1) is negative.
Let D̃ = π∗D. Choose a small enough r > 0 such that I − r(C · D̃) < 0 and therefore

C ·
(
OP(F)(1)− rD̃

)
< 0,

which contradicts the ampleness of F⟨−rD⟩.

3.3 positivity of cotangent bundle

Throughout this section, we denote a complex hyperbolic manifold with cusps by X,
and its smooth toroidal compactification by X. Additionally, we assume that X does
not have any orbifold point.

The goal of this section is to prove the results on the positivity of the cotangent
bundle, namely Theorem B and Theorem C. Further, we conclude that if the canonical
depth of cusps is sufficiently large, then the symmetric differentials on X is finitely
generated C-algebra.

To pass from positivity on the log-cotangent bundle in the previous section to
positivity of the cotangent bundle in this section we consider the following exact
sequence of coherent sheaves over X:

0 −→ Ω1
X

(
log(D)

)
⊗ OX(−D)

ϕ−→ Ω1
X −→ i∗Ω1

D → 0, (3.16)

where ϕ sends
( n

∑
i=1

fidζi + g
dq
q
)
⊗ q to

n

∑
i=1

q fidζi + gdq on an open set U on which the

local coordinate of D is given by q = 0.

Theorem 3.3.1. (Theorem C) Suppose that the uniform depth of cusps d is greater than 2π.
Then,

Ω1
X⟨−rD⟩

is ample for all rational r ∈ (0,−1 + d/2π).

Proof. Let r = a/b with a positive b be a rational number in (0,−1 + d/2π). Since
d > 2π, Theorem 3.2.6 gives that the Q-vector bundle Ω1

X

(
log(D)

)〈
(−1 − r)D

〉
is

ample. In particular, Ω1
X

(
log(D)

)〈
(−1− r)D

〉
is ample modulo D. Note that the exact

sequence 3.16 gives that the vector bundle Ω1
X

(
log(D)

)
⊗ OX(−D) is a subbundle

of Ω1
X. Therefore, the Q-vector bundle Ω1

X

(
log(D)

)〈
(−1 − r)D

〉
is a Q-subsheaf of

Ω1
X⟨−rD⟩. It follows from Lemma 2.10 that Ω1

X⟨−rD⟩ is ample modulo D, that is,
the vector bundle SbΩ1

X ⊗ OX(−aD) is ample modulo D. On the other hand, the
restricted bundle Ω1

X|D⟨−rD|D⟩ is ample thanks to Proposition 3.2. This means that(
SbΩ1

X ⊗ OX(−aD)
)
|D is ample. Hence, it follows from Lemma 2.7 that Ω1

X⟨−rD⟩ is
ample.



3.3 positivity of cotangent bundle 31

Theorem 3.3.2. (Theorem B) Suppose that the uniform depth of cusps d is greater than 2π.
Then, Ω1

X is ample modulo D and semi-ample.

Proof. Set E = Ω1
X. Since the uniform depth of all cusps is greater then 2π, Theorem

3.2.6 implies that Ω1
X

(
log(D)

)
⊗OX(−D) is ample. It therefore follows from 3.16 and

Lemma 2.10 that E is ample modulo D.
Let Y = P(E), π : P(E) → X be the natural projection and D̃ = π∗(D). Given that

E is ample modulo D and E|D is semi-ample by Proposition 3.2, to show that E is
semi-ample, we only need to show that there is a large enough n such that setting
L = OY(n)

H0(Y, L)
ϕ−→ H0(D̃, L|D̃)

is surjective. Choose r ∈ (0,−1 + d/2π). By Theorem 3.3.1, Ω1
X⟨−rD⟩ is ample, i.e.,

OY(1) − rD̃ is ample. We can choose n large enough so that H1(Y, L − ñD̃) = 0,
where ñ = nr ∈ Z. Therefore, denoting the restriction of L to the ñth order thickening
of D̃ by L|ñD̃, we obtain

H0(Y, L)
ψ−→ H0(Y, L|ñD̃)

is surjective. Considering the commutative diagram

H0(D̃, L|ñD̃)

H0(Y, L) H0(D̃, L|D̃),

η
ψ

ϕ

to conclude that ϕ is surjective, it is enough to show that η is surjective. To this end,
consider the following exact sequence on D̃:

0 −→ L(−mD̃)|D̃ −→ L|(m+1)D̃ −→ L|mD̃ −→ 0,

where m is a positive integer. We prove that for every m > 0,

H0(D̃, L|(m+1)D̃) −→ H0(D̃, L|mD̃)

is surjective by showing that H1(D̃, L(−mD̃)|D̃) = 0. This implies that η is surjective
and therefore ϕ is surjective which finishes the proof.

Let φ : D −→ Spec(C). Applying the exact sequence of low degrees to the compo-
sition of the push-forward functor

π∗ : Sh(D̃) −→ Sh(D)

and the global section functor φ∗ yields

0 −→ H1(D, π∗(L(−mD̃)|D̃)
)
−→ R1(φ ◦π)∗(L(−mD̃)|D̃) −→ H0(D, R1π∗(L(−mD̃)|D̃)

)
.
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Note that (φ ◦ π)∗ is the global section functor H0(D̃,−) and therefore

R1(φ ◦ π)∗(L(−mD̃)|D̃) = H1(D̃, L(−mD̃)|D̃).

Hence, it is sufficient to prove that

H1(D, π∗(L(−mD̃)|D̃)
)
= H0(D, R1π∗(L(−mD̃)|D̃)

)
= 0.

To prove H0(D, R1π∗(L(−mD̃)|D̃)
)
= 0, note that π is a flat morphism because the

fibers of π are projective spaces of the same dimension. Since for every x ∈ D, the
dimension h1(x, π∗(L−mD̃)x) = h1(π−1(x), OPn−1(n)

)
is constant, Grauert’s theorem

([Har13, Corollary 12.9]) gives the isomorphism

R1π∗(L(−mD̃)|D̃)
∼= H1(Pn−1, OPn−1(n)) = 0.

Hence H0(D, R1π∗(L(−mD̃)|D̃)
)
= 0.

To prove H1(D, π∗(L(−mD̃)|D̃)
)
= 0, note that π∗(L(−mD̃)|D̃) = SnΩ1

X|D(−mD|D).

Consider the filtration of SnΩ1
X|D obtained by the exact sequence 3.15:

SnΩ1
X|D = F0 ⊇ F1 ⊇ ... ⊇ Fm ⊇ Fm+1,

with quotients
Fi/Fi+1 ∼= Sm−iΩ1

D(−iD|D)

for each i. Tensoring the filtration by −mD|D, we get a filtration for SnΩ1
X|D(−mD|D)

whose successive quotients are Sm−iΩ1
D(−jD|D) for some j > 0. As D is an étale

quotient of abelian variety, there exists a finite étale map f : D′ → D, where D′ is an
abelian variety. Since f ∗Ω1

D
∼= Ω1

D′ , and Ω1
D′ is trivial, we get that f ∗Sm−iΩ1

D(−jD|D)

is a power of f ∗(−jD|D). Since the canonical bundle KD′ is trivial, f is finite and
−D|D is ample, Kodaira vanishing theorem gives that H1(D′, f ∗(−jD|D)) = 0 for
every positive integer j.

It follows that the successive quotients of the filtration of SnΩ1
X|D(−mD|D) have

vanishing first cohomology. Hence, H1(D, SnΩ1
X|D(−mD|D)

)
= 0, i.e.,

H1(D, π∗(L(−mD̃)|D̃)
)
= 0.

Applying [Laz17, Example 2.1.29] to Theorem 3.3.2, we get that symmetric differen-
tials over X forms a finitely generated C-algebra provided that the uniform depth is
sufficiently large. More precisely, we get:

Corollary 3.3.3. (Corollary K) With the same assumption as Theorem 3.3.2, the graded
ring ⊕

n>0

H0(X, SnΩ1
X)

is finitely generated C-algebra.
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3.4 application to hyperbolicity of subvarieties

We follow the same notations as previous section and denote a ball quotient Γ\Bn

with a torsion-free lattice Γ by X, the boundary divisor X \ X by D, the toroidal
compactification of X by X and the uniform depth of cusps by d. In addition, we
assume that X does not have any orbifold point. Let V be an irreducible subvariety of
X intersecting X.

The purpose of this section is to prove the result related to hyperbolicity of V. We
first prove Corollary F and Corollary G. Further, we prove that the hyperbolicity
increases in towers of normal covering in the sense that the minimum volume of
subvarieties of X intersecting both X and D tends to infinity. Note that, as the
components of D are étale quotient of abelian varieties, we can not expect that the
hyperbolic volume of a variety entirely contained in D tends to infinity.

Corollary 3.4.1. (Corollary F) Suppose V is smooth with dimension m > 0. Then,
Q-line bundle

KV − (r − 1)D|V

is ample for all rational r ∈ (0, m⌊ d−1
2π ⌋). Moreover, if d > 2π, then KV is ample.

Proof. Let b be a positive integer strictly less than d/2π and D′ be D|V . Since the
vector bundle Ω1

V(log(D′))⊗ OV(−bD′) is a quotient of(
Ω1

X

(
log(D)

)
⊗ OX(−bD)

)
|V

,

Theorem 3.2.6 gives that Ω1
V(log(D′))⊗ OV(−bD′) is ample and therefore its deter-

minant KV − (mb − 1)D′ is ample. Now, for any positive rational number r ≤ mb, the
Q-line bundle KV − (r − 1)D′ is ample modulo D′ by Lemma 2.10. Similarly, we can
conclude from 3.2.7 that (KV + D′)|D′ is nef. On the other hand, the conormal bundle
of D is ample and therefore (KV − (r − 1)D′)|D′ must be ample. Hence, it follows
from Lemma 2.7 that KV − (r − 1)D′ is ample.

If d > 2π, we can choose b = 1, which gives that KV is ample.

Corollary 3.4.2. (Corollary G) All subvarieties of X are of general type provided that
the uniform depth of cusps is greater than 2π.

Proof. Let V0 be m-dimensional (possibly non-smooth) subvariety of X not entirely
contained in D and let µ : V ′ → V0 be a resolution of singularities. There is a
generically surjective homomorphism µ∗Ωm

X
→ Ωm

V′ = KV′ . Thanks to Theorem 3.3.2,
Ωm

X
is ample modulo D and therefore, the pull back µ∗Ωm

X
is ample modulo µ∗D. This

implies that KV′ is in particular big, i.e., V0 is of general type.

The volume of a line bundle L on an m-dimensional projective variety V is defined
as the non-negative real number

volV(L) := lim sup
b→∞

h0(V, bL)
bm/m!

,
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which measures the positivity of L from the point of view of birational geometry. If L
is a nef line bundle on V, then volV(L) = Ln. Let V ′ be a smooth variety birational to
V with a canonical bundle KV′ . The canonical volume of the subvariety V is

ṽolV := lim sup
b→∞

h0(V ′, bKV′)

bm/m!
,

which does not depend on the choice of V ′.
The volume of a line bundle is a birational invariant and it is positive if and only if

the line bundle is big. It turns out that if L is nef, then vol(L) = Ln.
In the setting of the compactification of a locally symmetric domain, a natural

quantity reflecting the hyperbolicity behaviour is the volume of the log-canonical
bundle. In particular, volV(KV + D|V) > 0 if and only if V is of log-general type. In
the case of ball quotients, Corollary 3.2.7 in particular implies Ω1

V(log D|V) is nef and
therefore KV + D|V is nef on V. Hence,

volV(KV + D|V) = (KV + D|V)
m.

We show that the minimum volume of log-canonical bundle of subvarieties of X is
controlled by the uniform depth of cusps:

Corollary 3.4.3. Suppose V is a m-dimensional smooth subvariety of X not entirely
contained in D. If l is the number of component of D intersecting with V, then

volV(KV + D|V) > mm⌊d − 1
2π

⌋ml(m − 1)!.

Proof. Let r = ⌊ d−1
2π ⌋ and D′ be D|V . Since D is a union of étale quotient of abelian

varieties with ample conormal bundle OD(−D), we get

l ≤ D′ · (−D′)m−1

(m − 1)!
=

−(−D′)m

(m − 1)!
. (3.17)

On the other hand, as 0 ≤ r < d/2π, Theorem 3.2.6 and Corollary 3.2.7 imply
that Ω1

V(log(D′)) ⊗ OV(−rD′) is ample modulo D and nef as it is a quotient of(
Ω1

X

(
log(D)

)
⊗ OX(−rD)

)
|V

and therefore

KV − (mr − 1)D′ ∼= det
(

Ω1
V(log(D′))⊗ OV(−rD′)

)
is in particular big and nef. Thus, (KV − (mr − 1)D′)m

> 0. On the other hand,
(KV + D′)|D′ is nef and −D′

|D′ is ample. Consequently, for every 0 < i < m,

(KV + D′)m−i(−D′)i = −
(
(KV + D′)|D′

)m−i
(−D′

|D′)i−1

is non-positive. Hence, (KV − (mr − 1)D′)m
> 0 yields that

(KV + D′)m > −(rm)m(−D′)m.
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Combining this with the inequality 3.17 gives the desired inequality.

Remark 3.4. Parker’s generalization of Shimizu’s lemma [Par98, Proposition 2.4.]
gives that the uniform depth of cusps is at least 2. Plugging in this result to Corollary
3.4.3 gives that if V intersects D, then V is of log general type. This can be concluded
from the recent result of Guenancia [Gue22, Theorem B] as well.

We also get a uniform lower bound for the volume of the canonical bundles of
subvarieties:

Corollary 3.4.5. If the canonical depth of cusps d is greater than 2π, then

ṽolV ≥
(
m⌊d − 1

2π
⌋ − 1

)ml(m − 1)!

Proof. Since d > 2π, by Corollary 3.4.1 we get that KV is ample and therefore
volV(KV) = Km

V . Let r = ⌊ d−1
2π ⌋ and D′ be D|V . As sated in the proof of Corollary 3.4.3,

(KV − (mr − 1)D′)m > 0. Since KV|D′ and −D′
D′ are ample, for every 0 < i < m,

Km−i
V · (−D′)i ∼= −(KV|D′)m−i · (−D′

|D′)i−1

is negative. Hence, (KV − (mr − 1)D′)m > 0 together with the inequality 3.17 yields
that

Km
V ≥ −(rm − 1)m(−D′)m ≥ (rm − 1)ml(m − 1)!

As a generalization of Brunebarbe’s work [Bru20a], for towers of ball quotients we
show that the minimum volume of subvarieties of X containing a cusp of X, tends to
infinity in towers:

Corollary 3.4.6. Let {Xi}∞
i=1 be a tower of X = X1. Suppose that toroidal compacti-

fication of Xi does not have any orbifold points. Then, given a positive number v,
for all but finitely many i, every subvariety V of Xi containing a cusp of Xi have
vol(KV) > v.

Proof. Combining Lemma 2.4 and Corollary 3.4.5 gives the result.



4
V O L U M E E S T I M AT E

Let X = Γ\Bn, where Γ ⊂ PU(n, 1) is a torsion-free lattice whose parabolic stabilizers
are unipotent.

4.1 systole and depth of cusps

The main goal of this chapter is to prove Theorem 4.1.9, where we show that the
systole sys(X) bounds the uniform depth of cusps d of X from below.

To see the relation between the systole and depth of cusps, we first prove that the
length of a hyperbolic element in Γ only depends on its non-unit eigenvalues:

Proposition 4.1. Suppose h ∈ Γ is a hyperbolic element whose non-unit eigenvalues
are reiθ and r−1eiθ . Then,

ℓ(h) = 2 cosh−1
(1

4
· (r + 1

r
)2
)

.

Proof. Since h is hyperbolic, it fixes two distinct points x1 and x2 on the boundary ∂S.
As PU(Q) acts doubly transitive on the boundary, there exists P ∈ PU(Q) such that
P(x1) = q0 and P(x2) = q∞. Now we can write

d(x, hx) = d(Px, PhP−1Px) = d(x′, PhP−1x′),

where x′ = Px. Suppose x′ = (ζ1, v1, u1), and PhP−1x′ = (ζ2, v2, u2). Since PhP−1

fixes both q0 and q∞, it follows from Lemma 2.1 that for a complex number a and
A ∈ U(n − 1)

PhP−1x′ =

a 0 0
0 A 0
0 0 1/ā

 1
2 (−||ζ1||2 − u1 + iv1)

ζ1

1

 =

 a
2 (−||ζ1||2 − u1 + iv1)

Aζ1

1/ā

 .

This gives that ζ2 = āAζ1 and

1
2
(−||ζ2||2 − u2 + iv2) =

|a|2
2

(−||ζ1||2 − u1 + iv1). (4.1)

36
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Therefore, u2 = |a|2u1 and v2 = |a|2v1. Note that as conjugation does not change the
eigenvalues, we have that |a|2 = r2 or 1

r2 . On the other hand, the inequality 2.4 yields
that

d
(
x′, PhP−1x′

)
≥ 2 cosh−1

( |u1 + u2|2
4u1u2

)
≥ 2 cosh−1

(1
4
· (r + 1

r
)2
)

.

Since this lower bound is realized on ζ1 = 0, v = 0, we can conclude the desired
equality.

Consider γ ∈ Γ and the corresponding element in the matrix group gγ ∈ PU(Q).
When we talk about | tr(γ)|, we mean | tr(gγ)|. Proposition 4.1 tells us if for every
hyperbolic element γ ∈ Γ we have that | tr(fl) | is sufficiently large, then systole
sys(X) will be large, i.e., the systole sys(X) can be estimated just be the trace of the
hyperbolic elements. In particular, the systole goes to infinity in a cofinal tower of
any ball quotient.

Consider the set associated to Γ

SΓ :=
{

γ ∈ Γ
∣∣| tr(γ)| > n + 1

}
.

It follows from the classification of isometries that if γ ∈ Γ has | tr(γ)| > n + 1, then
γ must be hyperbolic. Hence, all elements of SΓ are hyperbolic. We associate the
number

λΓ := inf
γ∈SΓ

| tr(γ)|,

to Γ which will play a role as an intermediate quantity to relate the systole of X to
the depth of cusps of X. Specifically, we can see how sys(X) bounds λΓ from below:

Proposition 4.2. The following inequality holds:

λΓ ≥ 1 − n +
√

2esys(X)/4.

Proof. Consider γ ∈ SΓ. Let reiθ and r−1eiθ be eigenvalues of γ which are not units.
As sys(X) is the length of the shortest geodesic, Proposition 4.1 implies that

r + r−1 ≥
√

4 cosh
(1

2
sys(X)

)
.

Since the other n− 1 eigenvalues of γ have norm 1, and cosh(x) > 1
2 ex, by the triangle

inequality we can conclude the desired inequality.

We prove a lemma which will help us to see the relation between the height of cusp
q∞ in terms of the trace of the hyperbolic elements in Γ :

Lemma 4.3. Suppose γ ∈ Γ \ Γ∞ written in from 2.2. For every z ∈ Bn the following
inequality holds:

u(z)u(γ · z) ≤
∣∣2

c
∣∣2.
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Proof. There are unique Heisenberg transformations h1, h2 such that h1(0) = γ(∞)

and h−1
2 (0) = γ−1(∞). Consider γ̃ = h−1

1 γh−1
2 and note that as the Heisenberg

translations are stabilizers of the u−coordinate, we have that u(γz) = u(γ̃z). Since γ̃

swaps ∞ and 0, Lemma 2.1 tells us that γ̃ must have the form:

γ̃ : (ζ, v, u) −→
( Aζr2

γ

||ζ||2 + u − iv
,

−vr4
γ∣∣||ζ||2 + u − iv

∣∣2 ,
ur4

γ∣∣||ζ||2 + u − iv
∣∣2)

where A ∈ U(n − 1) and rγ =

√
2
|c| . This gives that

u(z)u(γ · z) = u(z)u(γ̃ · z) =
u2

|||ζ||2 + u − iv|2 ·
∣∣2

c
∣∣2 ≤

∣∣2
c
∣∣2.

Let cm be the minimal value of |c| among all γ ∈ Γ \ Γ∞ written in the form 2.2:

γ =

a τ∗ b
α A β

c δ∗ e

 . (4.2)

Note that as γ ̸∈ Γ∞, the c entry cannot be zero (see Remark 2.1). Lemma 4.3 implies
that:

Proposition 4.4. The horoball B∞(
2

cm
) injects into X, i.e., the height of the cusp q∞ is at

least 2/cm and therefore the depth of q∞ is at least cm·t∞
2 .

We recall a lemma from Parker’s version of Shimizu’s lemma which tells us how
the c entry shows up in the trace of (some of) hyperbolic elements:

Lemma 4.5. (see [Par98, Lemma 2.6]) Let g∞ = (0, t), be the vertical translation centered
at q∞ and h be an element of PU(n, 1) written in the form 2.2. Then,

tr[g∞, h] = n + 1 + | tc
2
|2.

Proof. The matrix representations of g∞, h and h−1 are given by:

g∞ =

1 0 i t
2

0 I 0
0 0 1

 , h =

a τ∗ b
α A β

c δ∗ e

 h−1 =

 ē β∗ b̄
δ A∗ τ

c̄ α∗ ā

 ,

To find tr[g∞, h], note that

g∞h0 =

a + i
2 ct τ∗ + i

2 tδ∗ b + i
2 te

α A β

c δ∗ e

 , g−1
∞ h−1

0 =

ē − i
2 c̄t β∗ − i

2 tα∗ b̄ − i
2 tā

δ A∗ τ

c̄ α∗ ā


Therefore, using the relation given by 2.2 it follows that
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tr[g∞, h] = aē +
1
4
|ct|2 + it

2
(cē − c̄a) + δτ∗ +

i
2

t|δ|2 + bc̄ +
i
2

tec̄

+ αβ∗ − i
2

t|α|2 + AA∗ + βα∗ + cb̄ − i
2

tāc + δ∗τ + eā

= n + 1 +
1
4
|ct|2

Now, we can show the relation between the quantity λΓ and depth of each cusps of
X :

Proposition 4.6. The depth of each cusp of X = Γ\Bn is at least
√

λΓ − n − 1.

Proof. Since λΓ is invariant under the conjugation by an element of PU(n, 1), it is
sufficient to prove the lemma for the cusp q∞. Let g∞ = (0, t∞) be the shortest vertical
translation in Γ∞. Suppose that h ∈ Γ is an element which does not fix q∞ and written
in the form 2.2. It follows from Lemma 4.5 that

tr[g∞, h] = n + 1 +
∣∣ t∞c

2

∣∣2.

Since h does not fix ∞, we have that c ̸= 0, and therefore [g∞, h] ∈ Sλ. This implies
that ∣∣ t∞c

2

∣∣ ≥ √
λΓ − n − 1.

Since this inequality holds for every h ∈ Γ \ Γ∞, we can conclude that

∣∣ t∞cm

2

∣∣ ≥ √
λΓ − n − 1.

Hence, Proposition 4.4 implies

d∞ ≥
√

λΓ − n − 1,

where d∞ is the depth of cusp q∞.

To pass from the individual depth of cups to the uniform depth of cusps we will
use this lemma:

Lemma 4.7. ([Par98, Lemma 2.5]) Let B0(ũ0) be the horoball of height ũ0 based at q0,
and let B∞(ũ∞) be the horoball of height ũ∞ based at q∞. These two horoballs are
disjoint if and only if

ũ0 · ũ∞ ≥ 4.

Proposition 4.8. Let d be the uniform depth of cusps of X. Then,

d ≥ min{(λΓ − n − 1)
1
4 , (λΓ − n − 1)

1
2 }.

Proof. By Proposition 4.6, we only need to show that if d > (λΓ − n − 1)
1
4 , then the

horoballs are disjoint. Let g0 = (0, t0) be the shortest vertical translation based at q0
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and g∞ = (0, t∞) be the shortest vertical translation based at q∞. We write g∞ and g0

in the form 2.9:

g0 =

 1 0 0
0 I 0

−it0/2 0 0

 , g∞ =

1 0 −it∞/2
0 I 0
0 0 0

 .

Lemma 4.5 implies that tr[g∞, g0] = n + 1 +
∣∣ t0t∞

4

∣∣2. Therefore, [g∞, g0] ∈ Sλ and it
follows that

t0t∞ ≥ 4
√

λΓ − n − 1.

Consider ũ0 := t0

(λΓ−n−1)
1
4

and ũ∞ := t∞

(λΓ−n−1)
1
4

. The inequality above implies that

ũ0 · ũ∞ ≥ 4,

and therefore it follows from Lemma 4.7 that the horoballs are disjoint.

Combining Proposition 4.2 with Proposition 4.8, we finally conclude that the systole
bounds the uniform depth from below:

Theorem 4.1.9. Let d be the uniform depth of cusps of X. Then,

d ≥ min{
(
− 2n + s′

) 1
4 ,
(
− 2n + s′

) 1
2 },

where s′ =
√

2e
1
4 sys(X).

Direct computation gives the following Corollary which will be used later to bound
the uniform depth of cusps in terms of sys(X):

Corollary 4.1.10. If sys(X) ≥ 4 ln
(
5n + (4π)4), then

d > esys(X)/16 > 4π. (4.3)

4.2 thin-thick decomposition

In this section, we introduce a version of thin-thick decomposition relative to the
systole. This is not the same as Margulis’ thin-thick decomposition because our
decomposition depends on the lattice Γ. The main goal of this section is to prove
Theorem 4.2.4 which tells us that the thin part of X does not have any subvariety.

Let qi be a cusp of X with unipotent stabilizer Γi. Fix ϵ > 0. Consider the set

Ũi,ϵ = {x ∈ Bn|∃g ∈ Γi, d(x, g · x) < ϵ}.

We define the ϵ-thin neighborhood around the cusp qi as the set Ui,ϵ := Γ\Ũi,ϵ. Also,
we fix ρ = sys(X)/2 and define the thin part of X as union of all ρ-thin neighborhood
around cusps of X :

Xthin := ∪k
i=1Ui,ρ.
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The following Proposition shows that Xthin is actually disjoint union of the ρ-thin
neighborhood around cusps:

Proposition 4.1. If ϵ < sys(X)/2, then Ui,ϵ ∩ Uj,ϵ = ∅ for i ̸= j.

Proof. For the sake of the contradiction assume that x ∈ Ui,ϵ ∩Uj,ϵ. It means that there
exist γ1 ∈ Γi and γ2 ∈ Γj such that d(x̃, γ1 · x̃) < ϵ and d(x̃, γ2 · x̃) < ϵ, where x̃ ∈ Bn

is a fiber of x. This in particular implies that d(x̃, γ−1
1 · x̃) < ϵ.

Suppose γ1 = (τ, t) is a Heisenberg translation based at q∞ and γ2 = (σ, s)
is a Heisenberg translation based at q0. We represent γ1 and γ2 by the matrices
g∞, g0 ∈ PU(Q) respectively, where

g∞ =

1 −τ∗ −(|τ|+ it)/2
0 In−1 τ

0 0 1

 , g0 =

 1 0 0
σ In−1 0

−(|τ|+ is)/2 −σ∗ 1

 .

Note that γ−1
1 = (−τ,−t) corresponds to g−1

∞ . We can write:∣∣ tr(g∞g0)
∣∣+ ∣∣ tr(g−1

∞ g0)
∣∣ ≥ ∣∣∣ tr

(
(g∞ + g−1

∞ )g0
)∣∣∣

=
∣∣∣ tr

( 2 0 −|τ|2
0 2In−1 0
0 0 2

 1 0 0
σ In−1 0

(−|σ|2 + is)/2 −σ∗ 1

 )∣∣∣
=

∣∣2(n + 1) +
1
2
|τ|2(|σ|2 − is)

∣∣
≥ 2(n + 1) +

1
2
|τ|2|σ|2.

Hence, either | tr(g∞g0)| ≥ n + 1 + 1
4 |τ|2|σ|2 or | tr(g−1

∞ g0)| ≥ n + 1 + 1
4 |τ|2|σ|2 and

therefore either γ1γ2 or γ−1
1 γ2 must be hyperbolic. But this implies that either

d(x̃, γ1γ2 · x̃) ≥ sys(X) or d(x̃, γ−1
1 γ2 · x̃) ≥ sys(X), which is a contradiction because

d(x̃, γ2 · x̃) < sys(X)/2, d(x̃, γ1 · x̃) < sys(X)/2, and d(x̃, γ−1
1 · x̃) < sys(X)/2.

We define the thick part of X as the complement of the thin part:

Xthick := X \ ∪k
i=1Ui,ρ.

Since every point in a thin part of X has a displacement less than sys(X)/2, the
following Proposition tells us that Xthcik ̸= ∅.

Proposition 4.2. There exists x ∈ X such that

injx(X) ≥ sys(X)/2.

Proof. Note that if γ ∈ Γ is not unipotent, then it is semi-simple and for every x ∈ Bn,
we have d(x, γ · x) ≥ sys(X). Now, assume for the sake of contradiction that for
all x ∈ X we have injx(X) < sys(X)/2. Therefore, the thin part of X covers all X.
However, this is not possible because the thin part of X is disjoint union of open sets
by Proposition 4.1 and X is connected.
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Now we show that the monodromy of ρ-thin part of X around each cusp is in the
stabilizer of that cusp:

Lemma 4.3. Suppose that ϵ ≤ sys(X)/2. Let U′
i be a connected component of Ui,ϵ and

ι : U′
i → X be the identity map. Then, ι(π1(U′

i )) is a subgroup of Γi.

Proof. As ϵ < sys(X)/2, Proposition 4.1 implies that Ui,ϵs are disjoint. Fix x ∈ U′
i,ϵ

and let γ : [0, 1] → X be a loop at x which is representative of a class in ι(π1(U′, x)).
Let x̃ be a lift of x to the universal cover Bn. As γ is fully contained in U′

i,ϵ, it lifts
to a loop γ̃(t) : [0, 1] → Ũi,ϵ which starts at x̃. Therefore, ỹ := γ · x̃ = γ̃(1) is in Ũi,ϵ
which means that d(x̃, ỹ) < ϵ. Let γ′ ∈ Γi such that d(x̃, γ′ · x̃) < ϵ. By homogeneity,
we have

d(ỹ, γγ′γ−1 · ỹ) = d(γ · x̃, γγ′γ−1γ · x̃) = d(x̃, γ′ · x̃) < ϵ.

Since γγ′γ−1 fixes γ(qi) and ỹ ∈ Ui, we get that γ(qi) = qi and therefore γ ∈ Γi.

Finally, we show that every subvariety of X intersects with Xthick, that is, every
subvariety of X contains a point whose injectivity radius in X is larger than sys(X)/2 :

Theorem 4.2.4. Every subvariety of X either intersects with Xthick or fully contained in D.

Proof. For the sake of the contradiction assume that there exists a connected subvariety
V which is fully contained in Xthin. Without loss of generality we can assume that V is
fully contained in a connected component of a thin part around the cusp q∞. Consider
the function −u which is a plurisubharmonic function on the Siegel domain S and
invariant under the action of stabilizer Γ∞(see [BT18b, §2]). Therefore, it follows from
Lemma 4.3 that −u is a well-defined function on every component of the thin part
around q∞. Hence, −u is a well-defined plurisubharmonic function on V. Notice that
if a plurisubharmonic function achieves its maximum, it has to be constant. Since V
is compact, −u must be constant on V. However, it is not possible because the Kähler
form on X is induced from −2i∂∂̄ log(u)(see [BT18b, Lemma 2.1]) and if − log(u)
were constant, the volume of V would be zero.

4.3 volumes of subvarieties

In this section, we prove Theorem D, and Theorem E. We first state the Hwang and
To’s theorem in the following way:

Theorem 4.3.1. ([HT02, Theorem 1.1]) Take x ∈ X with injectivity radius r = injx(X). Let
B(x, r) be Bergman ball of radius r centered at x. Suppose V is an m-dimensional subvariety
of X passing through x. Then, the following inequality holds:

volX(V ∩ B(x, r)) ≥ (4π)m

m!
sinh2m(r) · multx(V). (4.4)

Hwang and To generalized the above-mentioned theorem for a general Hermitian
symmetric domain in [HT00, HT02].

In the compact case, Theorem 4.3.1 gives the lower bound on volume of subvarieties
in terms of the injectivity radius of X, however, in the case that X is not compact, the
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injectivity radius of X escapes to zero as we get closer to the cusps. So we use the
systole, the length of the shortest closed geodesic in X, as a geometric invariant of X
to uniformly bound the volumes of all subvarieties of X. For a compact ball quotient,
the systole is twice the injectivity radius. However, for a non-compact X the systole
is still not zero and can be estimated by the trace of the hyperbolic elements in a
representation of Γ.

Theorem 4.2.4 tells us that every subvariety of X has a point with injectivity as
large as sys(X)/2. Hence, we will get the following theorem:

Theorem 4.3.2. Let V be an m-dimensional subvariety of X which is not contained in D.
Then,

volX(V) ≥ (4π)m

m!
sinh2m (

sys(X)/2
)
. (4.5)

Proof. Theorem 4.2.4 implies that V ∩ Xthick ̸= ∅. By Proposition 4.2 there exits a
point x ∈ V with injx(X) ≥ sys(X)/2. Now, Theorem 4.3.1 gives:

volX(V) ≥ (4π)m

m!
sinh2m (

sys(X)/2
)
.

Corollary 4.3.3. With the same notation as Theorem 4.3.2, we have that

(KX + D)m · V ≥ (n + 1)m sinh2m (
sys(X)/2

)
.

Proof. Theorem 4.3.2 together with 2.7 gives:

(KX + D)m · V =
(n + 1

4π

)mm! volX(V) (by 2.7)

≥ (n + 1)m sinh2m (
sys(X)/2

)
(by Theorem 4.3.2)

We recall Bakker and Tsimerman’s theorem which tells us that the uniform depth
of cusps of X bounds the intersection numbers of KX with subvarieties of X which is
not contained in D.

Theorem 4.3.4. ([BT18b, Corrolary 3.8]) Suppose d is the uniform depth of cusps. Then,

KX + (1 − λ)D

is ample for λ ∈ (0, d(n + 1)/4π).

Now, putting together Theorem 4.3.2, Theorem 4.3.4 and what we proved for the
uniform depth of cusps, Theorem 4.1.9, yields a lower bound for the degree of KX on
V in terms of sys(X) :
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Theorem 4.3.5. Let V be an m-dimensional subvariety of X which is not contained in D. If
sys(X) ≥ 4 ln

(
5n + (4π)4), then

Km
X · V > (

n
4π

)m · em sys(X)/16. (4.6)

Proof. We deal separately with the following two cases:

1. V ∩ D = ∅ : In this case we have Km
X · V = (KX + D)m · V and from Corollary

4.3.3 we get that

Km
X · V ≥ (n + 1)m sinh2m (

sys(X)/2
)

(4.7)

≥ (
n

4π
)mem sys(X) (becasue of the bound on the systole). (4.8)

2. V ∩ D ̸= ∅ : Since sys(X) ≥ 4 ln
(
5n + (4π)4)), 4.3 gives that the uniform depth

of cusp is at least 4π and it follows from Bakker-Tsimerman’s theorem (Theorem
4.3.4) that KX is ample. In particular, this implies that KX|D is ample. On the
other hand, we know that the conormal bundle −D|D is ample. Therefore, for
every i > 1, we have

Km−i
X

· (−D)i · V = −(KX|D)
m−i · (−D|D)

i−1 · V|D < 0. (4.9)

By Bakker-Tsimerman’s theorem, Theorem 4.3.4, we get that(
KX −

(
(n + 1)d/4π − 1

)
D
)m

· V ≥ 0.

Expanding this and combining with 4.9 gives:

Km
X · V ≥

(
(n + 1)d/4π − 1

)m · −(−D)m · V

≥
(
(n + 1)d/4π − 1

)m(by ampleness of −D)

≥
(

nd/4π
)m

(by 4.3)

≥
(
n/4π

)m · em sys(X)/16 (by 4.3). (4.10)

Combining 4.7 and 4.10 gives that:

Km
X · V > (

n
4π

)m · em sys(X)/16.

To prove the bound on the canonical volume for a subvariety which does not
intersect the boundary D, we will use the following lemma proved by Brunebarbe:
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Lemma 4.6. [Bru20a, Proposition 3.2] Let Y be a Kähler manifold with Kähler form
ω. Assume that its holomorphic bisectional curvature is non-positive and that its
holomorphic sectional curvature is bounded from above by −c < 0. Then,

1
c

Ricω ≥ ω.

Theorem 4.3.7. Let V be an m-dimensional subvariety of X which is not contained in D. If
sys(X) ≥ 4 ln

(
5n + (8π)4), then

ṽolV > (
m
4π

)mem sys(X)/16. (4.11)

Proof. Let V ′ −→ V be a desingularization such that the set-theoretic preimage of the
boundary divisor D′ is a normal crossing divisor. We consider two cases:

1. V ∩ D = ∅ : Let ω be the Kähler form induced by the Bergman metric on V ′.
Since the holomorphic sectional curvature of the Bergman metric is −1 and
the curvature decreases on a subvariety, we can apply Lemma 4.6 to get that
KV′ − KX|V′ is nef on V ′ and therefore

ṽolV = volV′(KV′) ≥ volV′(KX|V′).

Since the uniform depth of cusp is sufficiently large, by Theorem 4.3.4 we get
that KX is ample and therefore

volV′(KX|V′) = Km
X|V′ = Km

X · V = degX(V).

We can conclude the desired inequality for this case by Theorem 4.3.5.

2. V ∩ D ̸= ∅ : Since sys(X) ≥ 4 ln
(
5n + (4π)4)), 4.3 gives that the uniform depth

of cusp is at least 4π. Theorem A implies that twisted log-cotangent bundle
Ω1

V′(log(D))⟨−rD′⟩ is ample for every r ∈ (0, d/2π). Taking determinate gives
that KV′ + (1 − mr)D′ is ample for every r ∈ (0, d/2π). Therefore, with the
bound on the depth we get that KV′ is ample. On the other hand, we have that
the bundle −D′

|D′ is ample. Therefore, for every i > 1, we have

Km−i
V′ · (−D′)i · V ′ = −(KV′|D)

m−i · (−D′
|D′)i−1 · V|D′ < 0. (4.12)

Set r′ = d/2π − ϵ, for a small ϵ > 0. Expanding
(

KV′ + (1 − mr′)D′
)m

≥ 0 and
using 4.12 gives that

Km
V′ ≥

(
mr′ − 1

)m
(−D′

|D′)m

≥
(
mr′ − 1

)m (by the ampleness of −D′
|D′)

≥ (md/4π)m

≥ (
m
4π

)mem sys(X)/16 (by 4.3).
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By the ampleness of KV′ we get ṽolV = volV′(KV′) = Km
V′ and hence the claim

follows.
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In this chapter, we prove Corollary I, Corollary J based on the bound we found for
degX(V) in Theorem 4.3.5. First, we analyze the problem on the boundary divisor D.

5.1 base-point freeness and very ampleness on D .

In this section, we prove that if the uniform depth of cusps is sufficiently large,
then 2KX does not have a base point on D, and moreover 3KX can separate any two
points, and any tangent direction on D. We first prove that the restricted bundles on
the boundary satisfy these properties. Consider the decomposition of the boundary
divisor D to the connected components D = ⊔k

i=1Di. Due to [Mok12], we know that
each Di is an abelian variety with ample conormal bundle ODi(−Di).

Lemma 5.1. The line bundle 2KX|Di
is base-point free and 3KX|Di

is very ample for
every i.

Proof. The adjunction formula gives that KX|Di
∼= −Di|Di

. As the conormal bundle
is ample and Di is an abelian variety, −2Di|Di

is base-point free and −3Di|Di
is very

ample (see [Ohb87]).

In the next two lemmas, we see how we can lift the sections from the restricted
bundle to X. The base locus of a line bundle L on X will be denoted by Bs(L).

Lemma 5.2. Suppose that the uniform depth of cusps is larger than 4π, Then, the
following hold:

1. Bs
(
2KX

)
∩ D = ∅

2. For any two points on different components of D, there exists a global section
of 2KX which separate them.

Proof. Let L be 2KX.

1. By Lemma 5.1, L|D is base-point free and therefore it is enough to show that
we can lift the global section from D to X, that is, H0(X, L) −→ H0(D, L|D) is
surjective. Consider the following exact sequence on X :

0 −→ L − D −→ L −→ L|D −→ 0

47
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Writing the long exact sequence we can see that it is sufficient to show H1(X, L−
D) = 0. As L − D = KX + (KX − D), if the uniform depth is sufficiently large,
then by Theorem 4.3.4 KX −D is ample. Therefore, the vanishing of H1(X, L−D)

follows from Kodaira’s vanishing theorem.

2. Suppose that we want to separate x ∈ Di and y ∈ Dj with i ̸= j. It is sufficient
to find a global section of L − Di which does not vanish at y. To this end, we
can repeat the argument of the first part, but instead of using Theorem 4.3.4, we
should use [BT18b, Proposition 3.6].

Lemma 5.3. If the uniform depth of cusps is larger than 2π, then 3KX can separate any
two points, and any tangent direction on every connect component of D.

Proof. By Lemma 5.2 and Lemma 5.1, it is enough to show that we can lift the sections
from the boundary, i.e.,

H0(X, 3KX) −→ H0(D, 3KX|D) −→ 0.

Hence, it is enough to show that H1(X, 3KX − D) = 0. Since d > 2π, it follows from
Theorem 4.3.4 that 2KX − D is ample. Therefore, by Kodaira’s vanishing theorem we
get that H1(X, 3KX − D) = 0.

5.2 global generation and very ampleness on X

In this section, we see how we can conclude effective global generation and effective
very ampleness results by using Theorem 4.3.5. We first recall the famous theorem of
Angehrn and Siu on pointwise base point freeness:

Theorem 5.2.1. [AS95, Theorem 0.1] Let Y be a smooth projective variety of dimension n,
and let L be an ample line bundle on Y. Fix a point y ∈ Y, and assume that

Lm · V >
(n(n + 1)

2
)m (5.1)

for every subvariety V of dimension m passing through y. Then, KY + L has a section that
does not vanish at y.

Combining Angehrn and Siu’s result with our Theorem 4.3.5 gives that if sys(X) is
sufficiently large relative to n, then 2KX is globally generated:

Theorem 5.2.2. If sys(X) ≥ 20 ln
(
5n + (4π)4), then 2KX is globally generated.
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Proof. Using 4.3 we get that d > 4π. Therefore, by Lemma 5.2, 2KX does not have
any base-point on D. On the other hand, Theorem 4.3.5 implies that for every m-
dimensional subvariety V ⊂ X which is not contained in D, we have

Km
X · V ≥ (

n
4π

)m · em sys(X)/16

≥ nm(5n + (4π)4)m(by the bound on sys(X))

>
(n(n + 1)

2
)m.

Therefore, Theorem 5.2.1 implies that for every point x ∈ X \ D, there is a section of
2KX which does not vanish at x. Hence, 2KX is globally generated.

Now, we prove a proposition which will be used to show that 2KX can separate a
point in X from a point in D :

Proposition 5.3. If sys(X) ≥ 20 ln
(
5n + (8π)4), then for every x ∈ X there exits

s ∈ H0(X, 2KX − D) such that s does not vanish at x.

Proof. Since sys(X) ≥ 20 ln
(
5n + (8π)4), the uniform depth of cusps is larger than

4π(see 4.3) and therefore by Bakker-Tsimerman’s result, Theorem 4.3.4, KX +(1−λ)D
is ample for λ ∈ (0, (n+1)d

4π ). On the other hand, as KX|D
∼= −DD and −D|D is ample,

for every subvariety V of dimension m and every 1 ≤ i ≤ m we have

(KX − 2D)m−i(−D)i · V|D = −(KX − 2D)i
|D(−D|D)

j−1 · V = −3i(−D|D)
n−1 · V|D ≤ 0.

(5.2)

Expanding (KX − (1 − (n+1)d
4π )D)m · V ≥ 0 and using 5.2 we get:

(KX − 2D)m · V ≥ (
(n + 1)d

4π
+ 1)m(−D|D)

m−1 · V|D

≥ (
(n + 1)d

4π
)m(by the ampleness of −D|D)

≥
(n + 1

4π

)m · em sys(X)/16 (by 4.3)

> (n + 1)mnm (by the bound on sys(X))

Hence, Theorem 5.2.1 gives that 2KX − D has a global section which does not vanish
at x.

We recall the result of Ein-Lazarsfeld-Nakamay on the pointwise separation of jets:

Theorem 5.2.4. ([ELN96, Theorem 4.4]) Let Y be a smooth projective variety of dimension
n and let L be an ample line bundle on Y satisfying Ln > (n + s)n. Let b be a non-negative
number such that KY + bL is nef. Suppose that m0 is a positive integer such that m0L is free.
Then, for any point y ∈ Y either

(a) KY + L separates s-jets at y, or
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(b) there exists a dimension m subvariety V containing y and satisfying

degL(V) ≤
(

b + m0 · m +
n!

(n − m)!

)n−m
(n + s)n (5.3)

Let Y be a smooth projective variety and L be a nef line bundle on Y. Fix a point
y ∈ Y. The Seshadri constant of L at y is the real number

ε(L, y) = inf
L · C

multy(C)
,

where the infimum is taken over all curves C passing through y.
Plugging in our Theorem 4.3.5 and Theorem 5.2.2 to the result of Ein-Lazarsfeld-

Nakamay allows us to separates s-jets of 2KX on X if sys(X) is sufficiently large with
respect to n and s :

Theorem 5.2.5. Let s be a positive integer. Suppose that

sys(X) ≥ 20 max{n ln
(
(1 + 2n + n!)(n + s)

)
, ln

(
5n + (8π)4)}.

Then for every x ∈ X, the line bundle 2KX separates s-jets at x. In particular, for every x we
have that

ϵ(KX, x) ≥ s/2.

Proof. Since sys(X) > 20 ln
(
5n + (8π)4), Theorem 5.2.2 implies that 2KX is globally

generated. Also, as sys(X) ≥ 20 ln(n + s), Theorem 4.3.5 implies that

Kn
X > (n + s)n.

Note that plugging in the lower bounds on sys(X) in Theorem 4.3.5 gives that for a
subvariety V of dimension m which does not contained in D, the following inequality
holds:

Km
X · V ≥ nm(1 + 2n + n!)n(n + s)n ≥ (b + 2m +

n!
(n − m))!

)n−m(n + s)n.

Now, applying Theorem 5.2.4 to L = KX, m0 = 2 and b = 1 gives that 2KX separates
s-jest at every x ∈ X.

Combining the separation of jets with [BRH+
09, Proposition 2.2.5 ] gives that

ϵ(2KX, x) ≥ s. Since ϵ(2KX, x) = 2ϵ(KX, x), we get the desired inequality.

We recall a result of Kollar which tells us that a line can separate two points if the
degree of every subvariety passing through either of the points with respect to the
line bundle is sufficiently large relative to the dimension of the ambient space:

Theorem 5.2.6. ([Kol97, Theorem 5.9]) Let L be a nef and big divisor on a smooth projective
variety Y. Let x1, x2 be closed points and assume that there are positive numbers c(k) with
the following properties:

1. If V ⊂ Y is an irreducible m-dimensional subvariety which contains x1 or x2 then

Lm · V > c(m)m.
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2. The numbers c(k) satisfy the inequality

dim(x)

∑
k=1

k
√

2
k

c(k)
≤ 1.

Then, KY + L separates x1 and x2.

Definition 5.7. ([Tak93]) Let L be a line bundle on a smooth projective variety Y and
D be a divisor on Y. The line bundle L is said to be very ample modulo D if the
rational map ΦL : Y 99K P(H0(Y, OY(L)) is an embedding of Y \ D.

Note that Theorem 5.2.2 says that the rational map Φ2KX
: Y 99K P(H0(Y, OY(2KX))

is globally defined map on Y. Moreover, the following theorem gives that this map is
in particular injective on X and can separate any two tangent directions at whole X :

Theorem 5.2.8. Suppose that

sys(X) ≥ 20 max{n ln
(
(1 + 2n + n!)(n + 1)

)
, ln

(
5n + (8π)4)}.

Then the map Φ2KX
: X → P

(
H0(X, 2KX)

)
satisfies the following properties:

1. If ϕ2KX
(x1) = ϕ2KX

(x2) for some x1, x2 ∈ X, then x1, x2 ∈ Di, where Di is some
connected component of D.

2. Φ2KX
separates tangent directions at every x ∈ X.

Proof. Separation of points: Note that by Lemma 5.2 if ϕ2KX
(x1) = ϕ2KX

(x2) and
x1, x2 ∈ D, then they both lie on the same component of D. Hence, we only need to
deal with the following two cases:

1. x1, x2 ∈ X : Let V ⊂ X be a subvariety of dimension m which passes through
either x1 or x2. Fix c = nesys(X)/20. By Theorem 4.3.5 we have that

Km
X · V ≥ cm.

Therefore, by Kollar’s Theorem (5.2.6) we can separate any two points x1, x2 ∈ X.

2. x1 ∈ X, x2 ∈ D : By Proposition 5.3, there is a section s ∈ H0(X, 2KX − D) which
does not vanish at x1. Therefore, as 2KX − D is a subbundle of 2KX, we get a
section of 2KX which does not vanish at x1, but vanishes on D and in particular
at x2.

Separation of tangent directions: For x ∈ X, the separation of tangent direction
follows from Theorem 5.2.5 when s = 1.

In particular, Theorem 5.2.8 implies that 2KX is very ample modulo D.

Theorem 5.2.9. With the same assumption on sys(X) as Theorem 5.2.8, 3KX is very ample.
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Proof. By Theorem 5.2.8, we only need to show that 3KX can separate any two points
and any tangent direction on any connected component of D, which follows from
Lemma 5.3.

Putting all of these together, we get:

Corollary 5.2.10. Suppose that

sys(X) ≥ 20 max{n ln
(
(1 + 2n + n!)(n + 1)

)
, ln

(
5n + (8π)4)}.

Then, the following hold

1. 2KX is globally generated and very ample modulo D.

2. 3KX is very ample.

Proof. The global generation of 2KX follows from Theorem 5.2.2. The very ampleness
modulo D follows from Theorem 5.2.8. The very ampleness of 3KX follows from
Theorem 5.2.9.

5.3 seshadri constant

The goal of this section is to study the relation between the Seshadri constant and the
systole of X and in particular we prove Corollary ?? in this section.

In addition to what we obtained on Theorem 5.2.5 about the Seshadri constant
ϵ(2KX, x) for x ∈ X, we can obtain the following result which has smaller bound on
sys(X) :

Corollary 5.3.1. Suppose that sys(X) ≥ 20 ln
(
5n + (8π)4). Let

E := {x ∈ X|ϵ(KX, x) < esys(X)/20}.

Then, E satisfies the following properties:

1. E ∩ Xthick = ∅.

2. E does not contain any positive dimensional subvariety.

3. E is contained in a Zariski closed proper subset of X.

Proof. 1. Fix x ∈ Xthick. Let C ⊂ X be a curve passing through x. Since x ∈ Xthick
we have injx(X) ≥ sys(X)/2. On the other hand, the bound on the systole gives
that d ≥ 8π, therefore by Theorem 4.3.4 KX − D is ample. We can write:

2KX · C ≥ (KX + D) · C (By ampleness of KX − D)

≥ n + 1
4π

volX(C)

≥ n + 1
4π

sinh2 ( sys(X)/2
)
· multx(C) (by 4.3.1).
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Therefore,

ϵ(x, KX) ≥
n + 1

8π
sinh2 ( sys(X)/2

)
> esys(X)/20,

and this gives the first property.

2. Combining (i) with Theorem 4.2.4 we conclude that E does not have any positive
dimensional subvariety.

3. Note that Theorem 4.3.5 implies that for every m-dimensional subvariety V ̸⊂ D,
we have

(Km
X · V)

1
m ≥ n + 1

4π
esys(X)/16.

Putting this in [EKL95, Theorem 3.1] gives

ϵ(KX, x) ≥ 1
4π

esys(X)/16 > esys(X)/20. (5.4)

for all x ∈ X off the union of countably many proper subvarieties of X. On the
other hand as KX is ample by using [EKL95, Lemma 1.4] we can conclude that
the inequality 5.4 holds on Zarisiky open set, i.e, E is contained in a proper
subvariety of X.

Consider the decomposition of the boundary divisor D to the connected compo-
nents D = ⊔k

i=1Di. Due to [Mok12], we know that each Di is an abelian variety with
ample conormal bundle ODi(−Di). The adjunction formula gives that KX|Di

is isomor-
phic to the conormal bundle ODi(−Di). Suppose that Di = Λi\Wi, where Wi

∼= Cn−1

is a complex vector space of dimension n − 1, and Λi
∼= Zn−1 is a lattice in Wi. It is

classical that every ample line bundle on Di determines a positive definite Hermitian
form on Wi. Suppose Hi is the positive definite Hermitian form determined by KX|Di

on Wi. The real part
Bi = Re(Hi)

defines a Euclidean inner product on Wi (see [Laz17, sec 5.3.A] for more details). Let
li be the length of the shortest vector of Λi with respect to Bi. We define the systole of
the boundary as

sys(D) := mink
i=1 li.

The following lemma gives a lower bound for the Seshadri constant of KX|D in
terms of the systole of the boundary:

Lemma 5.2. Let x be a point on a connected component of the boundary, Di. Then,

ϵ(KX|Di
, x) ≥ π

4
· sys(D)2.

Proof. This follows from [Laz17, Theorem 5.3.6].

Combining this lemma with the previous results gives that if the systole of X
and sys(D) are sufficiently large, then the Seshadri constant ϵ(KX, x) is large and in
particular 2KX is very ample:
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Corollary 5.3.3. Suppose that sys(D) > 2
√

2n/π and that

sys(X) ≥ 20 max{n ln
(
5n(1 + 2n + n!)

)
, ln

(
5n + (8π)4)}.

Then, for every x ∈ X we have

ϵ(KX, x) ≥ 2n,

and in particular 2KX is very ample.

Proof. Let C ⊂ X be a connected curve passing through a point x ∈ X. We consider
there cases:

1. x ∈ D and C fully contained in a D : Let Di be the connected component of D
which contains x. Lemma 5.2 implies that

KX · C = KX|Di
· C ≥ π

4
sys(D)2 · multx(C) ≥ 2n · multx(C).

2. x ∈ D and C is not contained in D : Plugging in the bound on the systole in
Theorem 4.1.9 gives that the uniform depth of cusps d is at least 8π. By the
theorem of Bakker-Tsimerman, Theorem 4.3.4, the line bundle KX + (1 − λ)D is
ample for λ ∈ (0, (n + 1)d/4π). Hence, we can write

KX · C ≥ (
(n + 1)d

4π
− 1)D · C

≥ nd
4π

multx(C)

≥ 2n multx(C).

3. x ∈ X : For this case we will use Theorem 5.2.5. Plugging in s = 2n to this
theorem gives that:

KX · C ≥ 2n · multx(C).

Hence, for every x ∈ X we get that ϵ(KX, x) ≥ 2n. Combining this with
Demailly’s theorem [Dam92, Proposition 6.8).] implies that 2KX is very ample.



6
R AT I O N A L P O I N T S

6.1 bombieri–lang conjecture

Let C be a smooth projective curve defined over Q and let g be the geometric genus
of C. In 1983 Faltings proved in his celebrated paper [Fal83] that if g > 1, i.e., C is a
compact ball quotient of complex dimension 1, then C(Q) is finite. Bombieri and Lang
stated a conjecture on a generalization of Faltings’ theorem to higher-dimensional
varieties:

Conjecture 6.1. (Bombieri–Lang) Let Y be a smooth projective variety defined over a number
field K. Suppose Y is a variety of general type. Then, there exists a proper algebraic subset
D ⊂ Y that contains all but finitely many points of Y(K).

This conjecture is known for curves and subvarieties of abelian varieties by the
seminal work of Faltings [Fal83, Fal91] in 1983 and 1991. Up to the cases that can be
reduced to Falting’s results, this conjecture has remained largely open since 1971.

Given Corollary 3.4.2, Bombieri–Lang conjecture predicts that there are only finitely
many rational points on ball quotient with uniform depth greater 2π. While this
conjecture is widely open, we can bound the growth rate of rational points in terms
of systole.

6.2 sparsity of rational points

The goal of this section is to prove Corollary H which is based on fundamental idea
of Bombieri-Pila:

Theorem 6.2.1. ([BM22, Theorem 3.4]) Let D be a closed subvariety of PN
F , ϵ > 0 be a real

number, and n ≥ 0 and e ≥ 1 be integers.
Then, there is a real number C = c(n, e, N, F, D, ϵ) with the following property: For an

integral n-dimensional closed subvariety Y of PN
F of degree ≤ e such that each positive-

dimensional integral closed subvariety in Y not contained in D has degree ≥ ddim(X) for some
integer d ≥ 1, and a real number B > [F : Q]ϵ, the following inequality holds:

#{x ∈ Y(F) \ D | H(x) ≤ B} ≤ CB(1+ϵ)[F:Q]n(n+3)/d.

Now, combining our effective estimate (Theorem 4.3.5) on the degree of the subva-
rieties with Theorem 6.2.1 we can conclude:

55
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Corollary 6.2.2. Suppose that X is defined over a number field F and sys(X) ≥
4 ln

(
5n + (4π)4). Let L = KX and ϵ be a positive number. Then, there exists a

constant C depending on X, F and ϵ such that for every B ≥ ϵ[F : Q] one has :

#
{

x ∈ X(F) | HL(x) ≤ B
}
≤ CBδ,

where

δ =
4π[F : Q](n + 3)

esys(X)/16
(1 + ϵ).

Proof. With the bound on the systole, Theorem 4.3.5 tells us that L is ample bundle as
it has positive intersection with all subvarieties. Let b be an integer such that bL is
very ample. Now, we can embed X into some projective space PN by bL. Applying
Theorem 4.3.5 gives us that for every subvariety of X not contained in D one has:

((bL)m · V)1/m ≥
( nb

4π

)
esys(X)/16.

Because of the bound on the systole, we know that the left hand side of the inequality
is greater than 1. Hence, applying Theorem 6.2.1 gives us that:

#{x ∈ X(F) | HbL(x) ≤ B} ≤ CB4π[F:Q](n+3)(1+ϵ)/bs, (6.1)

where s = esys(X)/16, and C is constant depending on X, F and ϵ (note that N, n and e
is fixed when we fixed X and L. Also, the toroidal compactification is unique for a
ball quotient, therefore all of theses data only depend on X). To conclude, note that
HL(x) ≤ B if and only if HbL(x) ≤ Bb. Therefore replacing B with Bb implies the
claim.
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