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Abstract

This thesis contributes to the study of the two-dimensional water wave problem in the presence

of a variable bottom topography, which describes the motion of a free surface over a body of water

under the influence of gravity. When the bottom topography is flat (with depth possibly infinite), it

is known that, in a weakly nonlinear regime, the envelope of modulated surface waves is governed

by the cubic nonlinear Schrödinger (NLS) equation. This result was derived in the case of infinity

depth by Zakharov (1986), and later extended to finite depth domains over a flat bottom by Hasimoto

and Ono (1978).

In this thesis, we extend this derivation to the two-dimensional water wave problem in the case

of a variable bottom, assumed to be a smooth periodic function. Starting from the Zakharov/Craig-

Sulem formulation of water waves, we use a multiple-scale method to write the surface wave in

the form of a slowly modulated Bloch-Floquet wavepacket, which propagates at the group velocity.

We show that the envelope of wave amplitude is governed by the NLS equation. A key step in this

process is to investigate the actions of the Dirichlet-Neumann operator on multiple-scale functions

of various forms.

We also present perturbative calculations of the Bloch-Floquet eigenvalues and eigenfunctions

of the Dirichlet-Neumann operator when the variation of periodic bottom is small. These are used

to study the effect of the variable bottom on the coefficients in the NLS equation.
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Chapter 1

Introduction

The water wave problem refers to a class of mathematical and physical problems related to the

motion of waves on the surface of water bodies, such as oceans, lakes, rivers and canals. Water

waves play a significant role in various natural and artificial phenomena, making their understanding

crucial across scientific domains such as fluid dynamics, oceanography, coastal engineering, and

environmental science. For instance, understanding water waves and their interactions with the

environment contributes to safe marine transportation, enhances coastal engineering construction,

facilitates harnessing wave energy for power generation, and improves weather forecasting and

tsunami monitoring. Therefore, the study of the water wave problem has both scientific and practical

importance.

The mathematical study of water wave equations can be traced back to 1781, when Lagrange

wrote the basic equations to describe the motion of waves on the free surface of water and solved

them in the case of small waves on shallow water [14]. Since then, the study of the water wave

problem has maintained its significance as an active field in mathematics, physics and engineering

for more than 200 years.

The water wave problem involves describing the motion of an incompressible, inviscid, and

irrotational fluid in a d-dimensional fluid domain (d = 2 or 3), under the influence of gravity. The

fluid domain S(η ,b) is assumed to be infinite in the horizontal direction, bounded below by a fixed

bottom −h+b(x) and bounded above by a free surface η(x, t), which acts as the interface between

the fluid and the surrounding air (see Figure 1.1). As the free surface η(x, t) varies over time, the

domain S(η ,b) is time-dependent and can be expressed as

S(η ,b) = {(x,y) : x ∈ Rd−1,−h+b(x)< y < η(x, t)}, (1.1)

with the boundary Γb at the bottom and the boundary Γ at the free surface, which are given by

Γb = {(x,y) : x ∈ Rd−1,y =−h+b(x)}; Γ = {(x,y) : x ∈ Rd−1,y = η(x, t)}. (1.2)

Here, h represents the average depth of the water, and b(x) denotes the perturbation to a flat bottom.
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CHAPTER 1. INTRODUCTION 7

Figure 1.1: The fluid domain S(η ,b)

The case where b(x) = 0 corresponds to the water wave problem over a flat bottom. This thesis

concerns the case where the bottom is variable b(x) ̸= 0.

The motion of water waves is governed by the Euler equations, with the unknowns being the

velocity potential Φ(x,y, t) and the free surface elevation η(x, t).

∆Φ = 0 in S(η ,b),

∂nΦ = 0 on Γb,

∂tΦ+ 1
2 |∇Φ|2 +gη = 0 on Γ,

∂tη +∂xη ·∂xΦ−∂yΦ = 0 on Γ,

(1.3)

where n is the unit exterior normal vector to the boundary Γb at bottom and g is the gravitational

acceleration.

Zakharov [27] formulated the above boundary value problem in the form of a Hamiltonian

system using canonical variables η(x, t) and ξ (x, t), where ξ is defined as the trace of the velocity

potential on the free surface, expressed as ξ (x, t) = Φ(x,η(x, t), t). Following this, Craig and Sulem

[11] made a significant contribution by introducing the Dirichlet–Neumann operator (DNO) G[η ,b],

converting the original problem ( 1.3) with free boundary conditions into the problem ( 1.4), where

unknowns η and ξ are evaluated only on the free surface:
∂tη −G[η ,b]ξ = 0

∂tξ +gη +
1
2
|∂xξ |2 − 1

2(1+ |∂xη |2)
(G[η ,b]ξ +∂xη ·∂xξ )2 = 0.

(1.4)

This formulation of the gravity waves equations, known as the Zakharov/Craig-Sulem formulation,

has been widely used to study the well-posedness of the water wave system [19], asymptotic models

derived from the water wave system in various physical regimes [13], as well as numerical simula-
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tions [15].

Water wave equations ( 1.4) exhibit a particularly rich structure, allowing solutions with dra-

matically different properties depending on the physical characteristics of the flow. For instance,

dispersive effects are more important in deep water than in shallow water, and nonlinear effects

become more significant as the amplitude of the waves grows larger. Due to the complexity and va-

riety of wave dynamics phenomena, it is useful to introduce non-dimensional parameters and derive

approximate asymptotic equations to describe qualitative properties of the solutions to particular

problem under consideration.

Let us introduce 2 typical length scales of the problem.

1. (Nonlinearity Parameter) ε =
a
h

, where h is the water depth and a is the amplitude of surface

wave. ε describes the relative size of amplitude or equivalently strength of the nonlinearity.

2. (Shallowness Parameter) δ =
h
λ

, where λ is the free surface wavelength. δ measures the

shallowness of water.

In the asymptotic regime of shallow water with small amplitude, where ε,δ are small (i.e.

ε,δ << 1) and ε = δ 2, the long-time dynamics of the surface wave η can be approximated by the

Korteweg-de Vries (KdV) equation

∂τ η̃ +∂
3
µ η̃ + η̃∂µ η̃ = 0, (1.5)

where free surface elevation η = ε2η̃ , long-time variable τ = ε3t and µ = ε(x−cgt) with cg =
√

gh.

Many works have been devoted to the derivation of the KdV equation and its rigorous justification

[4, 19, 25].

Another important regime is the weakly nonlinear regime or modulational regime which pro-

vides a canonical description of small amplitude dispersive waves in various contexts. We first

present this regime in the simple case of the Klein-Gordon equation (see Chapter 1 in [24] for more

details)

vtt −∆v+ v = v3. (1.6)

If the nonlinear terms are neglected, v admits a solution in the form of a monochromatic wave

v(x, t) = εuei(kx−ω(k)t)+ c.c. (ε << 1), (1.7)

where c.c. denotes the complex conjugate of the preceding terms. The amplitude u is a constant and

ω(k) is related to k by the dispersion relation

ω
2 = k2 +1. (1.8)

The method of multiple-scale consists in assuming that u is no longer a constant but depends on

slow time and long spatial variables, and provides a canonical evolution equation for the envelope
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u in terms of variables µ = ε
(
x−ω ′(k)t

)
and τ = ε2t, which is the Nonlinear Schrödinger (NLS)

equation

2iuτ +ω
′′(k)uµµ +

3
ω(k)

|u2|u = 0. (1.9)

This approach is very general and can be applied to many physical problems including the water

wave problem.

In the case of water waves over a flat bottom of average depth h, the free surface displacement

η is given by, at leading order,

η ∼ ε u(εx,εt)ei(kx−ω(k)t)+ c.c.+ · · · , (ε << 1) (1.10)

with the dispersion relation

ω
2(k) = gk tanhkh. (1.11)

Then the slowly varying amplitude u(εx,εt), in a reference frame moving with the group velocity

cg = ω ′(k), satisfies the NLS equation

2iuτ +ω
′′(k)uµµ +χ|u|2u = 0, (1.12)

where τ = ε2t, µ = ε
(
x−ω ′(k)t

)
and χ is a coefficient depending on k and h.

The cubic NLS equation was derived from the two-dimensional water wave problem by Za-

kharov [27] in the case of infinitely deep water. Shortly thereafter, Hasimoto and Ono [18] obtained

the NLS equation in the case of finite depth to describe the modulational regime of water waves.

The above results are formal derivations. A partial rigorous derivation of the NLS equation from the

two-dimensional and three-dimensional water wave system is given in [12] and [13] respectively.

The authors proved that an approximate solution in the form of a wavepacket with an envelope

satisfying the NLS equation (or the Davey–Stewartson system in three dimension) satisfies the wa-

ter wave system up to a certain order. Later, Totz and Wu [26] obtained a bound for the error

(η − η̃) between the exact solution and approximate one on time interval O(ε−2) in the case of

two-dimensional problem in infinite depth.

This thesis is devoted to the motion of a free surface of a two-dimensional fluid over a variable

bottom. There is a large literature about the effect of a variable bottom on free surface waves

[6–8, 22]. The usual mathematical assumptions is that the bottom variation are either periodic or

describing by a random process. Here, we assume that the bottom variation b(x) is a periodic

function of x. The goal is to study the modulation regime in this case and derive an NLS equation

for the amplitude of the wavepacket. In particular, we precisely calculate how the coefficients on

the NLS equation depend on the function b(x).

The organization of this thesis is outlined as follows.

In Chapter 2, we formally describe the mathematical formulation of the water wave problem.

We start by introducing the Euler equations governing an incompressible, inviscid, and irrotational

fluid in the domain S(η ,b). From the Hamiltonian system of water waves equation, we define the
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DNO G[η ,b] and derive the Zakharov/Craig-Sulem formulation ( 1.4), which is expressed in terms

of the canonical variables η and ξ . We end this chapter by introducing the linearized water wave

equations. In solving these linearized equations in the presence of a periodic bottom, we replace the

monochromatic harmonic waves (with the dispersion relation ( 1.11))

(
η

ξ

)
=

 iω(k)
g
1

uei(kx−ω(k)t)+ c.c.+

(
0

ϕ

)
, (1.13)

by the Bloch-Floquet plane waves of the form

(
η

ξ

)
=

 iΩn(θ)

g
1

ue−iΩn(θ)tφn(x,θ)+ c.c.+

(
0

ϕ

)
, (1.14)

where Ωn(θ) =
√

gΛn(θ). The eigenvalue Λn(θ) and eigenfunction φn(x,θ) arise from the Bloch-

Floquet spectral problem of the DNO G[b] := G[0,b] with θ -periodic boundary conditionsG[b]φ(x,θ) = Λ(θ)φ(x,θ),

φ(x+2π,θ) = φ(x,θ)e2πiθ .
(1.15)

In Chapter 3, we focus on the Dirichlet-Neumann operator, which plays a central role in our

modulation analysis of the water wave problem. We provide an overview of fundamental properties

of the DNO used in this thesis, including the expressions of G[b] and the Taylor expansions of

G[η ,b] in powers of surface elevation η , as initially derived by Craig and Sulem [11] in the case of

a flat bottom problem, and later extended to the case of a rough bottom problem by Craig, Guyenne,

Nicholls and Sulem in [6] . Additionally, we review the Bloch-Floquet Theory for G[b] developed

in [1, 5, 20] for small bottom variations that are useful for our problem. Since G[b] can be seen

as a nonlocal pseudo-differential operator with periodic coefficients, the Bloch-Floquet spectral

decomposition was introduced to describe its spectrum. According to the references mentioned

above and under the assumption of small bottom variations, the spectrum of G[b] is composed of

bands separated by gaps, which arise due to the presence of a periodic bottom.

Chapter 4 is devoted to the case of a flat bottom problem, we present a formal modulation

expansion of the water wave problem and derive the NLS equation as an envelope equation, serving

as a review of previous work [13]. In contrast, Chapters 5 and 6 focus on the problem over a periodic

bottom, representing the contribution of my study. In the weakly nonlinear modulation regime, the

amplitude of surface deformations η is assumed to be small. Starting from the solutions to the

linearized water wave equations, ( 1.13) or ( 1.14), the theory of modulation involves replacing

the constants u (amplitude) and ϕ (mean potential) with slowly varying functions depending on

variables X = εx and T = εt. The multiple-scale analysis is introduced to avoid resonant terms

arising from the cumulative effects of weak nonlinearities over long time intervals or large spatial

distances. A crucial step in this analysis involves exploring the multiple-scale expansions of the
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DNO when it acts on multiple-scale functions. In the flat bottom problem, the expansion of the

DNO G[0] = D tanhhD acting on multiple-scale monochromatic harmonic waves is derived in [12].

However, in the case of a periodic bottom problem, it becomes more challenging because we lack

explicit formulas for the Bloch-Floquet plane waves defined by Bloch-Floquet spectral problem

( 1.15), and these waves also depend on the Bloch-Floquet parameter θ . Therefore, in Chapter

5, we perform a detailed examination of the actions of G[b] on multiple-scale functions of three

various forms. Based on this preparatory work, we examine the solvability conditions at order ε2

and ε3 respectively in Chapter 6, and derive the cubic NLS equation for the envelope amplitude.

The presence of a periodically varying bottom modifies the coefficients of the NLS equation. In

particular, the coefficient of the nonlinear term becomes quite complicated.

In Chapter 7, to gain a better understanding of the NLS obtained in the periodic bottom prob-

lem, we perform perturbative calculations of the eigenvalues and eigenfunctions associated with the

Bloch-Floquet spectral problem of G[b] for b(x) = γβ (x), where γ is assumed to be small and inde-

pendent with the nonlinearity parameter ε . These calculations show in particular how the coefficient

of the dispersion term in the NLS equation is affected by the presence of a small periodic bottom.

Chapter 8 is devoted to concluding remarks and open questions.



Chapter 2

Mathematical Formulation of the
Problem

2.1 Free Surface Euler Equations

We begin by providing a mathematical description of the motion of two-dimensional surface gravity

waves. The time-dependent fluid domain S(η ,b), along with its boundaries Γ and Γb, is described in

( 1.1) and ( 1.2) with d = 2 (see Figure 1.1). The elevation of the free surface is denoted by η(x, t),

with the quiescent water level set at y= 0. The variable bottom is b̃(x) =−h+b(x), where h denotes

the finite average depth of water and b(x) represents the bottom perturbation around y = −h. We

assume, without loss of generality, that

∫ 2π

0
b(x)dx = 0. (2.1.1)

The bottom perturbation b(x) is assumed to be periodic with a period of 2π in the horizontal direc-

tion x. Specifically, we require b(x) ∈C2(T1), where T1 is the periodized interval [0,2π).

To describe the motion of the fluid, we introduce the following physical assumptions:

• (i) The fluid is inviscid and incompressible.

• (ii) The flow is irrotational.

• (iii) There is no surface tension, and the pressure at Γ is equal to the air pressure Pair. (Sur-

face tension can be incorporated, but it is neglected in our study.)

• (iv) The fluid has constant density ρ .

• (v) The water bottom always remains below the water surface, that is, η(x, t)+ h− b(x) ≥
h0 > 0 for some positive constant h0.

Let U(x,y, t) ∈ R2 be the velocity field of the fluid, and P(x,y, t) ∈ R be the fluid pressure in

S(η ,b) at time t. The gravitational acceleration is denoted by g.

12
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By the conservation of mass and momentum, the motion of an incompressible and inviscid flow

is governed by the Euler equations

∇ ·U = 0 in S(η ,b), (2.1.2)

∂tU+(U ·∇)U =− 1
ρ

∇P −gey in S(η ,b), (2.1.3)

where spatial gradient ∇ =

(
∂x

∂y

)
and vertical unit vector ey =

(
0

1

)
. In addition, the assumption of

irrotational flow implies

∇×U = 0 in S(η ,b). (2.1.4)

On the free surface Γ, the boundary conditions are given by the kinematic condition

∂tη =
√

1+ |∂xη |2U ·n on Γ, (2.1.5)

and the dynamic condition (in the absence of surface tension)

P = Pair on Γ, (2.1.6)

where n is the unit exterior normal vector to the upper boundary Γ.

On the lower boundary Γb, the Euler boundary condition is

U ·n = 0 on Γb (2.1.7)

with the unit exterior normal vector n to the lower boundary Γb.

Equation ( 2.1.4) implies that we can define the velocity potential Φ(x,y, t) ∈ R such that

U = ∇Φ. (2.1.8)

We can reformulate the Euler questions and boundary conditions in terms of Φ. From ( 2.1.2), the

motion of fluid is described by Laplace equation

∆Φ = 0 in S(η ,b). (2.1.9)

We can rewrite ( 2.1.3) as

∇

(
∂tΦ+

1
2
|∇Φ|2 + 1

ρ
P +gy

)
= 0, (2.1.10)

which implies

∂tΦ+
1
2
|∇Φ|2 +gy =− 1

ρ
P + f (t). (2.1.11)

When evaluating ( 2.1.11) on free surface Γ,
1
ρ

P is a constant according to the dynamic boundary
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condition ( 2.1.6). Since f (t) is an arbitrary function of t, without loss of generality, we can choose

f (t) such that the right-hand side of ( 2.1.11) is zero (when evaluating on Γ). Hence, the boundary

condition ( 2.1.6) on Γ can be rewritten as

∂tΦ+
1
2
|∇Φ|2 +gη = 0, (2.1.12)

which is also known as Bernoulli condition. Furthermore, the boundary conditions ( 2.1.5) and (

2.1.7) can also be rewritten in terms of Φ.

In summary, we obtain the following boundary value problem, known as the potential flow

formulation of the Euler equations:

∆Φ = 0 in S(η ,b). (2.1.13)

On the bottom Γb, Φ obeys the Neumann boundary condition

∂nΦ = 0 on Γb, (2.1.14)

where n⃗ is the unit exterior normal vector and ∂nΦ at bottom is given by

∂nΦ
∣∣
y=−h+b(x) =

1√
1+ |∂xb(x)|2

(
∂xb(x)

−1

)
·∇Φ.

The boundary conditions on free surface Γ are Bernoulli and kinematic conditions, namely

∂tΦ+
1
2
|∇Φ|2 +gη = 0

∂tη +∂xη ∂xΦ−∂yΦ = 0
on Γ. (2.1.15)

2.2 Hamiltonian System and Zakharov/Craig-Sulem Formulation

Another form of the water wave system is given by the Zakharov/Craig-Sulem formulation. This

formulation will be used throughout our work because it has the advantage of evaluating all un-

knowns at the free surface only, making it well-suited for studying the asymptotic dynamics of

water waves. Let us review the derivation of this formulation in detail.

We define ξ (x, t) := Φ(x,η(x, t), t) as the trace of the velocity potential on the free surface.

Since the boundary value problem for Laplace’s equation has a unique solution, the fluid flow is

fully determined by quantities η(x, t) and ξ (x, t), which are defined on the free surface. In [27],

Zakharov expressed the system ( 2.1.13)–( 2.1.15) in the form of a Hamiltonian system, where the

Hamiltonian function H of the canonical variables (η ,ξ ) represents the total energy

H =
∫
R

∫
η(x)

−h+b(x)

1
2
|∇Φ|2dydx+

∫
R

1
2

gη
2(x)dx. (2.2.1)
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The first and second terms represent kinetic and potential energies, respectively.

Craig and Sulem [11] proposed a formulation involving the Dirichlet-Neumann Operator (DNO)

G[η ,b] defined as follows:

G[η ,b]ξ =
√

1+ |∂xη |2∂nΦ
∣∣
y=η

, (2.2.2)

where Φ is the solution of the boundary value problem∆Φ = 0 in S(η ,b),

Φ|y=η = ξ , ∂nΦ|y=−h+b(x) = 0.
(2.2.3)

The normal derivative of Φ in ( 2.2.2) is given by

∂nΦ
∣∣
y=η

=
1√

1+ |∂xη |2

(
−∂xη

1

)
·∇Φ(x,η(x), t). (2.2.4)

The operator G[η ,b] is a linear map that associates ξ to the normal derivative ∂nΦ on the free

surface, multiplied by
√

1+ |∂xη |2. This non-local operator G[η ,b] nonlinearly depends on both η

and b.

An application of Green’s identity allows us to express the Hamiltonian ( 2.2.1) in terms of the

canonical variables

H =
1
2

∫
R

ξ (x)G[η ,b]ξ (x)+gη
2(x)dx. (2.2.5)

The Euler’s equations for water waves take the following representation(
∂tη

∂tξ

)
=

(
δξ H

−δηH

)
, (2.2.6)

where the right-hand sides are variational derivatives of the functional H.

On the other hand, ∂tη and ∂tξ can be expressed in terms of canonical variables η ,ξ and the

DNO G[η ,b]. On the free surface, we apply chain rule to ξ (x, t) = Φ(x,η(x, t), t) to compute∂tΦ = ∂tξ −∂tη ∂yΦ,

∂xΦ = ∂xξ −∂xη ∂yΦ.
(2.2.7)

We additionally have on the free surface

∂yΦ =
G[η ,b]ξ +∂xη ∂xξ

1+ |∂xη |2
. (2.2.8)

Combining equations (2.2.2), ( 2.2.4), (2.2.7) and (2.2.8), the boundary conditions (2.1.15) can be
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rewritten as 
∂tη = G[η ,b]ξ ,

∂tξ =−gη − 1
2
(∂xξ )2 +

1
2(1+(∂xη)2)

(
G[η ,b]ξ +∂xη ∂xξ

)2
,

(2.2.9)

which is known as the Zakharov/Craig-Sulem formulation of the water wave problem. The right-

hand side of ( 2.2.9) identifies to the variational derivative of H with respect to ξ and η in ( 2.2.6).

2.3 Linearized Water Wave Problem

When studying the modulation of weakly nonlinear surface waves, the surface deformations η(x, t)

are assumed to be small. It becomes crucial to analyze the linearized water wave equations near

a surface at rest. Neglecting the nonlinear terms in (2.2.9), we derive the linearized water wave

equations around the stationary solution (η ,ξ ) = (0,0), given by(
∂t −G[b]

g ∂t

)(
η

ξ

)
=

(
0

0

)
. (2.3.1)

When η = 0, we denote G[0,b] by G[b], which associates to the domain (see Figure 2.1)

S(0,b) = {(x,y) : x ∈ R,−h+b(x)< y < 0}. (2.3.2)

The operator G[b] is defined as

G[b]ξ = ∂yΦ
∣∣
y=0, (2.3.3)

where Φ is the solution to the following boundary value problem∆Φ = 0 in S(0,b),

Φ|y=0 = ξ , ∂nΦ|y=−h+b(x) = 0.
(2.3.4)

Eliminating the variable ξ , the linearized system ( 2.3.1) can be simplified to a second-order

evolution equation

∂ttη +gG[b]η = 0. (2.3.5)

Equation ( 2.3.5) is analogous to the wave equation if we replace the operator G[b] with the Lapla-

cian. Thus, it can be solved using the method of separation of variables.

2.3.1 Linearized Problem over Flat Bottom

In the linearized water wave problem over a flat bottom b(x) = 0, the operator G[0] can be explicitly

expressed in terms of Fourier multiplier notation.
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Figure 2.1: The fluid domain S(0,b)

Definition. (Fourier Multiplier). The Fourier multiplier M(D) : L2(R)−→ L2(R) is defined by alter-

ing its Fourier transform

M̂(D) f (k) = M(k) f̂ (k). (2.3.6)

Using inverse Fourier transform, we have

M(D) f (x) =
1√
2π

∫
R

eikxM(k) f̂ (k)dk =
1

2π

∫∫
R2

eik(x−x′)M(k) f (x′)dx′dk. (2.3.7)

Proposition 2.1. When the bottom is flat, the operator G[0] has a Fourier multiplier expression

G[0] = D tanh(hD) (2.3.8)

with D =−i∂x.

Using ( 2.3.8), we can rewrite equation ( 2.3.5) as

∂ttη +gD tanh(hD)η = 0, (2.3.9)

which admits a traveling wave solution of the form ei(kx−ωt). That is

η = uei(kx−ωt)+ c.c., (2.3.10)

where u is an arbitrary constant and c.c. denotes the complex conjugate of the preceding terms. The

wave number k is related to frequency ω by the dispersion relation for gravity waves on water of

finite depth

ω
2(k) = gk tanh(hk). (2.3.11)

Furthermore, we find that the linearized system ( 2.3.1) admits a solution in the form of monochro-
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matic waves η(x, t) =
iω(k)

g
uei(kx−ω(k)t)+ c.c.

ξ (x, t) = uei(kx−ω(k)t)+ c.c.+ϕ.

(2.3.12)

The (complex) amplitude u and (real) mean potential ϕ are arbitrary constants. This solution de-

scribes a harmonic wave of wave number k which propagates in the direction of the positive x-axis

at a phase speed of
ω(k)

k
.

Due to the quadratic nonlinearities in the water wave problem, the mean velocity potential ϕ

is incorporated into the solution ( 2.3.12). We introduce this quantity to balance non-oscillating

resonant terms arising in the modulation of the water wave problem.

2.3.2 Linearized Problem over Periodic Bottom

In the water wave problem over a periodic bottom, G[b] is a nonlocal operator depending on a 2π

periodic function b(x) ∈C2(T1). To solve the linearized water waves equations, we seek solutions

of the form e−iωtφ(x), which leads to the spectral problem:

G[b]φ(x) = λφ(x) (2.3.13)

with the dispersion relation ω2 = gλ . To solve it, we introduce the Bloch-Floquet theory, which is

a classical tool used to study wave propagation in periodic media.

Definition. (Bloch-Floquet Transform). The Bloch-Floquet transform defined by

f (x) 7→ fθ (x) := ∑
n∈Z

e−2πiθn f (x+2πn) (2.3.14)

is well-defined for f ∈ S (R), which is the Schwartz space, and can be uniquely extended to a

unitary operator on L2(R).
This definition introduces a parameter θ ∈ [−1

2 ,
1
2), which is known as the Bloch-Floquet pa-

rameter. We say fθ is θ -periodic in x, which means it satisfies

fθ (x+2π) = e2πiθ fθ (x). (2.3.15)

In addition, we have

f (x) =
∫ 1

2

− 1
2

fθ (x)dθ . (2.3.16)

For more details, we refer to Section XIII.16 in [23].

Therefore, using the Bloch-Floquet transform, any function f ∈ L2(R) can be decomposed as an

integral of a θ -periodic function. This θ -periodic function is uniquely determined by fθ (x). Based

on this, the spectral problem ( 2.3.13) can be analyzed using the Bloch-Floquet decomposition.

The idea of this spectral decomposition is to parameterize a continuous spectrum and generalized
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eigenfunctions of G[b] on L2(R) by a family of spectral problems for G[b]θ in the interval [0,2π),

with periodic boundary conditions.

To this end, we consider the following eigenvalue problem

G[b]φ(x,θ) = Λ(θ)φ(x,θ) (2.3.17)

with θ -periodic boundary condition

φ(x+2π,θ) = e2πiθ
φ(x,θ). (2.3.18)

The principle of Bloch-Floquet theory suggests introducing the function

ψ(x,θ) := e−iθx
φ(x,θ) (2.3.19)

and the operator

G[b]θ := e−iθxG[b]eiθx. (2.3.20)

Given any θ -periodic function φ(x,θ), ψ(x,θ) defined in ( 2.3.19) is periodic in x with a period

of 2π . Then the original problem ( 2.3.17)-( 2.3.18) can be transformed to a spectral problem with

periodic boundary condition G[b]θ ψ(x,θ) = Λ(θ)ψ(x,θ),

ψ(x+2π,θ) = ψ(x,θ).
(2.3.21)

Applying the Bloch-Floquet theory of G[b] as developed in [5, 10, 20], we know that for each

fixed θ ∈ [−1
2 ,

1
2), there exists a sequence of pairs

(
Λn(θ),ψn(x,θ)

)
satisfying ( 2.3.21), where

{Λn(θ)} are non-negative real eigenvalues and {ψn(x,θ) = e−iθxφn(x,θ)} are the corresponding

eigenfunctions. Moreover, {ψn(x,θ)} form an orthonormal basis of H1(T1), and each eigenvalue

has finite multiplicity with

Λ0(θ)≤ Λ1(θ)≤ Λ2(θ)≤ ·· · .

More details about the Bloch-Floquet theory will be discussed in Chapter 3.2.

Proposition 2.2. The linearized system (2.3.1) admits a solution in the form of Bloch-Floquet wavesη(x, t,θ) =
iΩn(θ)

g
ue−iΩn(θ)tφn(x,θ)+ c.c.,

ξ (x, t,θ) = ue−iΩn(θ)tφn(x,θ)+ c.c.+ϕ,

(2.3.22)

where φn(x,θ) is the normalized Bloch-Floquet eigenfunction with the corresponding Bloch-Floquet

eigenvalue Λn(θ) satisfying ( 2.3.17) and ( 2.3.18), and the frequency Ωn(θ) satisfies the dispersion

relation

Ω
2
n(θ) = gΛn(θ). (2.3.23)
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The complex amplitude u and real mean potential ϕ are arbitrary constants.

Equivalently, ( 2.3.22) can be rewritten in terms of ψn(x,θ) = e−iθxφn(x,θ) asη(x, t,θ) =
iΩn(θ)

g
ue−(iΩn(θ)t+θx)ψn(x,θ)+ c.c.,

ξ (x, t,θ) = ue−(iΩn(θ)t+θx)ψn(x,θ)+ c.c.+ϕ.

(2.3.24)



Chapter 3

The Dirichlet–Neumann Operator
(DNO)

3.1 Taylor Expansion of DNO in Powers of Surface Elevation

As the DNO plays a central role in the modulation analysis of the water wave problem, we review

some fundamental properties in this chapter, which will be used in our subsequent work. For a more

comprehensive presentation of the DNO, we refer to Chapter 3 in [19].

Property 3.1. Given η(x) and b(x) in C1(R), G[η ,b] : H1(R) −→ L2(R) is a continuous operator

and satisfies:

1. It is symmetric for the L2-scalar product, and has a self-adjoint realization in H1(R).

2. It is positive semi-definite.

3. It depends analytically upon η ,b ∈ BR0(0)⊂C1(R) for some positive value of R0.

See Chapter 3 and Appendix A2 in [19] for the first two properties in Property 3.1.

Recalling Proposition 2.1, G[0] = D tanh(hD) is a Fourier multiplier defined in a flat bottom

problem. A similar result for pseudo-differential operator G[b] in variable bottom problem was

proved by Craig, Guyenne, Nicholls and Sulem [6].

Proposition 3.1. [6] For b(x) ∈C1(R), the operator G[b], defined in ( 2.3.3), can be expressed as

G[b] = G[0]+DL[b], (3.1.1)

where DL[b] is the correction term arising from the presence of bottom topography. The operator

L[b] can be implicitly expressed as

L[b] =−B[b]A[b] =−C[b]−1A[b]. (3.1.2)

21
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Recalling that D =−i∂x and b̃(x) =−h+b(x), the operators A[b] and C[b] are defined as follows:

A[b]ξ (x) = sinh
(
b(x)D

)
sech(hD)ξ (x) :=

∫
R

eikx sinh
(
b(x)k

)
sech(hk)ξ̂ (k)dk, (3.1.3)

and

C[b]ξ (x) = cosh
(
b̃(x)D

)
ξ (x) :=

∫
R

eikx cosh
(
b̃(x)k

)
ξ̂ (k)dk. (3.1.4)

The operator B[b] is defined as the inverse operator of C[b].

This was proved as Proposition 2.1 in [6]. Furthermore, Craig et al. also proved that the inverse

operator B[b] is well defined (see Proposition 2.2 in [6]).

We now turn to the expansion of G[η ,b] for small but arbitrary perturbations η(x) of the surface.

The third property in Property 3.1 implies the existence of the Taylor expansions of G[η ,b] in

powers of η . That property for the case of a flat bottom b(x) = 0 was proved by Coifman and

Meyer in [9], and the Taylor expansion in powers of η was first derived by Craig and Sulem [11]

in two dimensions. The case of three dimensions was proved in [13]. It was later extended to

Lipschitz domains in [16] and precise estimates of radius of convergence of the Taylor series were

given in [17]. In the case of a variable bottom, the analyticity of the DNO with respect to the

elevation and the bottom was proved in [19] with explicit Taylor expansions given in [6].

It follows that G[η ,b] can be written in terms of a convergent Taylor expansion

G[η ,b] =
∞

∑
j=0

G j[η ,b], (3.1.5)

where G j[η ,b] is a pseudo-differential operator homogeneous in η of degree j. In our discussion,

we only require the explicit forms of the first three terms in this Taylor expansion.

Proposition 3.2. The Taylor expansion of G[η ,b] about zero in powers of η takes the form

G[η ,b] = G[b]+G1[η ,b]+G2[η ,b]+O(η3). (3.1.6)

Here, G[b] = D tanh(hD)+DL(b) defined in Proposition 3.1, and the next two terms are given by

G1[η ,b] = DηD−G[b]ηG[b],

G2[η ,b] =−1
2

(
G[b]η2D2 +D2

η
2G[b]−2G[b]ηG[b]ηG[b]

)
.

(3.1.7)

The explicit recursion formulas of G j[η ,b] for higher orders can be found in [6, 11, 13].

In the above Taylor expansion, G[η ,b] is not expanded in terms of b, and the operator L[b] only

appears in the leading-order term G[b]. In [6], Craig et al. also provided a Taylor expansion of

G[η ,b] in powers of both η and b, which relies on a Taylor expansion of L[b] in powers of b. We do

not present the Taylor expansion of G[η ,b] in powers of both η and b here, as it is not used in our

work. It can be found in [6] Appendix A. Instead, we are interested in the Taylor expansion of L[b]
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in powers of b(x), particularly focusing on its first three terms, which will be used in a perturbative

calculation in Chapter 7.

Proposition 3.3. [6] The Taylor expansion of L[b] in powers of b takes the form

L[b] = L0 +L1[b]+L2[b]+O(b3), (3.1.8)

where Li[b] are homogeneous of degree i in powers of b. Furthermore, we have

L0 = 0,

L1[b] =−sech(hD)b(x)Dsech(hD),

L2[b] =−sech(hD)b(x)D tanh(hD)b(x)Dsech(hD).

(3.1.9)

3.2 Bloch-Floquet Theory

In Chapter 2.3.2, to address the linearized problem over a periodic bottom, we introduce the Bloch-

Floquet eigenvalue problem of G[b] with θ -periodic boundary conditionG[b]φ(x,θ) = Λ(θ)φ(x,θ),

φ(x+2π,θ) = e2πiθ φ(x,θ),
(3.2.1)

where the Bloch-Floquet eigenvalue Λ(θ) is real and the Bloch-Floquet eigenfunction φ(x,θ) is

θ -periodic.

Using the operator G[b]θ in ( 2.3.20) and 2π periodic function ψ(x,θ) in ( 2.3.19), the Bloch-

Floquet eigenvalue problem ( 3.2.1) can be rewritten as an eigenvalue problem of G[b]θ with peri-

odic boundary condition G[b]θ ψ(x,θ) = Λ(θ)ψ(x,θ),

ψ(x+2π,θ) = ψ(x,θ).
(3.2.2)

In addition, we have

G[b](eiθx
ψn(x,θ)) = eiθxG[b]θ ψn(x,θ) = eiθx

Λn(θ)ψn(x,θ). (3.2.3)

We summarize some basic properties of G[b]θ from [5] as follows.

Proposition 3.4. [5] For any θ ∈ [−1
2 ,

1
2), G[b]θ takes 2π periodic functions into 2π periodic

functions. In particular, the operator G[b]θ from H1(T1) to L2(T1) is symmetric for L2-scalar

product with periodic boundary conditions.

Correspondingly, G[b] preserves the class of θ -periodic functions. That means for a θ -periodic

function ξ (x) such that e−iθxξ (x) ∈ H1(T1), G[b]ξ (x) is also a θ -periodic function, that is,

(G[b]ξ )(x+2π) = e2πiθ G[b]ξ (x). (3.2.4)
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We recall that G[b] = G[0] +DL[b] with L[b] = −B[b]A[b] defined in Proposition 3.1. These

operators are also well defined for periodic, and more generally on θ -periodic functions. Therefore,

G[b]θ = G[0]θ + e−iθxDL[b]eiθx = G[0]θ −DB[b]θ A[b]θ , (3.2.5)

where we define

G[0]θ = e−iθxG[0]eiθx,

A[b]θ = e−iθxA[b]eiθx,

DB[b]θ = e−iθxDB[b]eiθx.

(3.2.6)

These operators G[0]θ ,A[b]θ and DB[b]θ map 2π periodic functions to 2π periodic functions. In

particular,

G[0]θ eikx = (k+θ) tanh(h(k+θ))eikx. (3.2.7)

Proposition 3.5. [5] The spectrum of G[b]θ on the domain H1(T1)⊂ L2(T1) consists of a nonde-

creasing sequence of real eigenvalues

0 ≤ Λ0(θ)≤ ·· · ≤ Λn(θ)≤ Λn+1(θ)≤ ·· · , (3.2.8)

which tend to infinity as n tends to infinity. The eigenvalues are continuous and periodic in θ of

period 1. The corresponding eigenfunctions ψn(x,θ) of

G[b]θ ψn(x,θ) = Λn(θ)ψn(x,θ) (3.2.9)

are normalized 2π periodic in x and periodic in θ of period 1.

For any θ ∈ [−1
2 ,

1
2), {ψn(x,θ)}n forms an orthonormal basis of H1(T1). Hence,

⟨ψn(x,θ),ψk(x,θ)⟩ :=
∫ 2π

0
ψn(x,θ)ψk(x,θ)dx =

1 if k = n,

0 if k ̸= n.
(3.2.10)

The corresponding solutions φn(x,θ) of G[b]φn(x,θ) = Λn(θ)φn(x,θ) are θ -periodic. In the case

Λn−1(θ)<Λn(θ)<Λn+1(θ), the eigenvalue Λn(θ) is simple, and Λn(θ) and eigenfunctions φn(x,θ)

are locally analytic in θ .

We also notice that the ground state Λ0(θ) satisfies Λ0(0)= 0 for any b(x), and its corresponding

eigenfunction is φ0(x,0) = ψ0(x,0) =
1√
2π

.

When the bottom is flat, the Bloch eigenvalues Λ
(0)
n (θ), where the superscript indicates flat

bottom b(x) = 0, are given explicitly in terms of the classical dispersion relation for water waves

over a constant depth:

Λ
(0)
n (θ) = ω

2(n+θ) = (n+θ) tanh(h(n+θ)). (3.2.11)
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We know Λ
(0)
n (θ) are simple when −1/2 < θ < 0 and 0 < θ < 1/2; while eigenvalues have multi-

plicity two when θ =−1
2
,0,

1
2

. Denoting

gn(θ) = (n+θ) tanh(h(n+θ)), (3.2.12)

we can relabel the eigenvalues Λ
(0)
n (θ) in order of increasing magnitude as following (see Figure

3.1): Λ
(0)
2n (θ) = g−n(θ), ψ

(0)
2n (x,θ) = e−inx, for − 1

2 ≤ θ < 0;

Λ
(0)
2n (θ) = gn(θ), ψ

(0)
2n (x,θ) = einx, for 0 ≤ θ < 1

2 ;
(3.2.13)

and Λ
(0)
2n−1(θ) = gn(θ), ψ

(0)
2n−1(x,θ) = einx, for − 1

2 ≤ θ < 0;

Λ
(0)
2n−1(θ) = g−n(θ), ψ

(0)
2n−1(x,θ) = e−inx, for 0 ≤ θ < 1

2 .
(3.2.14)

With this definition, both Λ
(0)
n and ψ

(0)
n are periodic in θ with period 1 and Λ

(0)
n is continuous in θ ,

while ψ
(0)
n has discontinuities at θ =−1

2 ,0,
1
2 .

The spectrum of G[b] is the union over −1
2 ≤ θ < 1

2 of the Bloch eigenvalues Λn(θ), that is,

σL2(R)(G[b]) =
+∞⋃
n=0

[Λ−
n ,Λ

+
n ], (3.2.15)

where Λ−
n = minθ Λn(θ) and Λ+

n = maxθ Λn(θ). Different with the continuous spectrum of G[0],

the spectrum of G[b] on the domain H1(R) is composed of bands and gaps. Due to the presence of

the periodic bottom, the double eigenvalues may split, creating a spectral gap near θ =−1
2 ,0,

1
2 .

As shown in [5], Craig, Gazeau, Lacave and Sulem gave a sufficient condition for the opening

of the first N gaps for small enough bottom perturbations b(x) = γβ (x), where β ∈C1(T1). Assume

β̂k ̸= 0 for all k ≤ N, where β̂k is the kth Fourier coefficient of β (x). Then there exits small enough

value γ0(N) such that for γ < γ0(N), the first N gaps open and gaps are of the size O(γ). Moreover,

gaps of smaller order are computed in [5] and [20] with different conditions.
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Figure 3.1: Graph of Λn(θ)



Chapter 4

Construction of Nonlinear Modulated
Solutions: Case of Flat Bottom

4.1 Multiple-Scale Expansion

We review the modulation expansion of the water wave problem and derive the NLS equation for

the case of a flat bottom (see [24] Chapter 11). Throughout this chapter, the bottom perturbation

b(x) is assumed to be zero.

In a weakly nonlinear modulation of the water wave problem, we consider the small amplitude

wave solution to ( 2.2.9), with G[η ,b] replaced by G[η ,0] in this chapter, that is
∂tη −G[η ,0]ξ = 0,

∂tξ +gη +
1
2
(∂xξ )2 − 1

2(1+(∂xη)2)

(
G[η ,0]ξ +∂xη ∂xξ

)2
= 0.

(4.1.1)

Recalling from Chapter 2.3.1, the linearized equations of ( 4.1.1) around the resting water state is∂tη −G[0]ξ = 0,

∂tξ +gη = 0,
(4.1.2)

which possess a real-valued plane wave solution with wave number k, given by:η(x, t) =
iω(k)

g
uei(kx−ω(k)t)+ c.c.,

ξ (x, t) = uei(kx−ω(k)t)+ c.c.+ϕ.

(4.1.3)

We recall that G[0] =D tanh(hD) is defined in Proposition 2.1, and the frequency ω(k) is determined

by the dispersion relation

ω
2(k) = gk tanh(hk). (4.1.4)

The constants u and ϕ represent the amplitude and mean potential of surface waves, respectively.

27
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Assuming the solution has small amplitude, we expand it in the formη = εη(1)+ ε2η(2)+ · · · ,

ξ = εξ (1)+ ε2ξ (2)+ · · · ,
(4.1.5)

where ε is a small parameter and the superscripts indicate the orders in ε . The leading order

(η(1),ξ (1)) identifies with the solution ( 4.1.3) of the linear problem. To avoid secular terms arising

from the accumulation of weakly nonlinear effects over long time spans or large distances, we per-

form a multiple-scale analysis. (An introduction of multiple-scale analysis applied to an example of

nonlinear oscillator ODE problem is provided in [3].)

By introducing a large-scale spatial variable X = εx and a slow time T = εt, we assume that the

approximate solution ( 4.1.5) depends on the fast variables x and t, as well as the slow variables X

and T . In the method of multiple-scale analysis, the fast variables and slow variables are treated as

independent variables, although they are actually related by ε .

Notation 4.1. After introducing new variables X = εx and T = εt, the original partial derivatives

∂x and ∂t in ( 4.1.1) are now replaced by ∂x + ε∂X and ∂t + ε∂T , respectively. Thus, the Fourier

multiplier D now represents

D = Dx + εDX (4.1.6)

with Dx =−i∂x and DX =−i∂X .

In addition, we assume the operator G[η ,0] acting on multiple-scale function ξ (x,X) has an

expansion of the form

G[η ,0]ξ (x,X) =
(
G(0)+ εG(1)+ ε

2G(2)+ · · ·
)
ξ (x,X). (4.1.7)

The superscript of G(i) indicates the orders in ε . In our analysis, we only require the first three terms

of the expansion, as shown in the following proposition. For convenience, we omit multiple-scale

function ξ .

Proposition 4.1. The first three contributions in ( 4.1.7) are provided as

G(0) = Dx tanh(hDx), (4.1.8)

G(1) = tanh(hDx)DX +hDx
(
1− tanh2(hDx)

)
DX +Dxη

(1)Dx −G(0)
η
(1)G(0), (4.1.9)

and

G(2) =h
(
1− tanh2(hDx)

)
D2

X −h2Dx
(
1− tanh2(hDx)

)
tanh(hDx)D2

X

+Dxη
(2)Dx +Dxη

(1)DX +DX η
(1)Dx

−
(
G(0)

η
(2)G(0)+G(0)

η
(1)G(1)+G(1)

η
(1)G(0))

− 1
2
(
G(0)(η(1))2D2

x +D2
x(η

(1))2G(0)−2G(0)
η
(1)G(0)

η
(1)G(0)).

(4.1.10)
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Proof. Firstly, we apply the Theorem 4.1 in [12] to obtain an asymptotic expansion of the operator

D tanh(hD) in the multiple-scale regime:

D tanh(hD) =Dx tanh(hDx)+ ε

(
tanh(hDx)+hDx

(
1− tanh2(hDx)

))
DX

+ε
2
(

h
(
1− tanh2(hDx)

)
−h2Dx

(
1− tanh2(hDx)

)
tanh(hDx)

)
D2

X +O(ε3).
(4.1.11)

To calculate each G(i), we need to combine three expansions: the first is the Taylor expansion of

G[η ,0] in terms of powers of η from Proposition 3.2 (taking b(x) = 0); the second is the expansion

of η in ε from ( 4.1.5); and the third is the expansion ( 4.1.11) derived above. We substitute all

three expansions into the left-hand side of ( 4.1.7). By collecting powers of ε , we can find G(i) in

the right-hand side of ( 4.1.7) for any i. In particular, G(0), G(1) and G(2) yield ( 4.1.8), ( 4.1.9) and

( 4.1.10), respectively.

4.2 Derivation of the Nonlinear Schrödinger Equation

Substituting ( 4.1.5) and ( 4.1.7) into ( 4.1.1), and rearranging terms according to the orders of ε , (

4.1.1) can be expanded as follows:(
∂t −G(0)

g ∂t

)(
ε

(
η(1)

ξ (1)

)
+ ε

2

(
η(2)

ξ (2)

)
+ ε

3

(
η(3)

ξ (3)

)
+ · · ·

)
= ε

2

(
U (2)

V (2)

)
+ ε

3

(
U (3)

V (3)

)
+ · · · ,

(4.2.1)

where U (m) and V (m) include G(i) (for i < m), and also the nonlinear terms arising at order εm. The

expressions of U (m) and V (m) can be explicitly calculated at each order. The cases of m = 2 and

m = 3 will be presented later as required.

Clearly, at leading order, we recover the linearized system from ( 4.2.1)(
∂t −G(0)

g ∂t

)(
η(1)

ξ (1)

)
=

(
0

0

)
, (4.2.2)

with G(0) = Dx tanh(hDx) given in ( 4.1.8). Referring to ( 4.1.3), the solution can be written as

modulated plane waves of the form
η(1)(x, t;X ,T ) =

iω
g

u1(X ,T )ei(kx−ωt)+ c.c.,

ξ (1)(x, t;X ,T ) = u1(X ,T )ei(kx−ωt)+ c.c.+ϕ(X ,T ),
(4.2.3)

where the complex amplitude u1(X ,T ) and real mean potential ϕ(X ,T ), instead of being constants,

become functions dependent only on the large-scale variables X and T . This solution describes a

slowly modulated monochromatic wave (with wave number k) propagating in the positive x direc-

tion. In particular, due to the quadratic nonlinearities in the water wave problem, the mean potential
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ϕ(X ,T ) is incorporated into the solution to balance nonoscillating resonant terms arising at higher

order.

At higher order O(εm) with m > 1, ( 4.2.1) leads to an inhomogeneous linear system(
∂t −G(0)

g ∂t

)(
η(m)

ξ (m)

)
=

(
U (m)

V (m)

)
, (4.2.4)

which is not always solvable. The solvability conditions of ( 4.2.4) is that

(
U (m)

V (m)

)
must be or-

thogonal to the kernel of adjoint operator

(
−∂t g

−G(0) −∂t

)
. We know the kernel is spanned by 1

−iω
g

ei(kx−ωt) and

(
1

0

)
. Therefore, the solvability conditions can be further clarified as fol-

lows:

(S1) There is no term independent of (kx−ωt) in U (m).

(S2) Denoting the coefficients of ei(kx−ωt) terms in U (m) and V (m) as P(m) and Q(m) respectively, they

satisfy

P(m)+
iω
g

Q(m) = 0. (4.2.5)

The solvability conditions at order m = 3 lead to the cubic NLS equation, which governs the

dynamics of the modulated wave amplitude. For clarity, we outline the derivation process in three

steps.

• Step 1: Finding the solvability conditions at O(ε2).

At order ε2, U (2) and V (2) in ( 4.2.1) can be computed as

U (2) =−η
(1)
T +G(1)

ξ
(1),

V (2) =−ξ
(1)
T − 1

2
(
ξ
(1)
x
)2

+
1
2
(
G(0)

ξ
(1))2

,
(4.2.6)

where G(0) and G(1) are derived in Proposition 4.1.

Proposition 4.2. At this order, the solvability condition (S2) yields

u1T (X ,T )+ω
′(k)u1X(X ,T ) = 0. (4.2.7)

Moreover, the solution η(2) and ξ (2) to ( 4.2.4) can be expressed in the formη(2) = p1(X ,T )ei(kx−ωt)+ p2(X ,T )e2i(kx−ωt)+ c.c.+η(X ,T ),

ξ (2) = q1(X ,T )ei(kx−ωt)+q2(X ,T )e2i(kx−ωt)+ c.c..
(4.2.8)
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Denoting σ := tanh(hk), the coefficients in ( 4.2.8) are given by

p1 =
1
g

u1T +
σ +hk(1−σ2)

ω
u1X +

iω
g

u2, p2 =
(σ2 −3)k2

2gσ2 u2
1,

η =
1
g

(
k2(σ2 −1) |u1|2 −ϕT

)
,

q1 = u2, q2 =
iωk
(
4(1−σ2)+(1+σ2)2

)
8gσ3 u2

1,

(4.2.9)

where u2(X ,T ) is an arbitrary complex function that depends only on the slow variables X and T .

Proof. Firstly, we examine the solvability condition (S2). To compute U (2) and V (2), we substitute

η(1) and ξ (1) given in ( 4.2.3) into ( 4.2.6), and then apply the formulas of G(0) and G(1) derived in

Proposition 4.1. We find that U (2) and V (2) can be represented in the following form

U (2) = P(2)(X ,T )ei(kx−ωt)+E(2)(X ,T )e2i(kx−ωt)+ c.c.,

V (2) = Q(2)(X ,T )ei(kx−ωt)+F(2)(X ,T )e2i(kx−ωt)+ c.c.+K(2)(X ,T ),
(4.2.10)

with the coefficients

P(2) =− iω
g

u1T − i
(
σ +hk(1−σ

2)
)

u1X , E(2) =
2iω

g
k2(1−σ tanh(2hk)

)
u2

1,

Q(2) =−u1T , F(2) =
1
2

k2(1+σ
2)u2

1, K(2) = k2(σ2 −1) |u1|2 −ϕT .

(4.2.11)

From ( 4.2.10) and ( 4.2.11), the solvability condition (S1) is obviously satisfied at this order,

while the solvability condition (S2) implies

P(2)+
iω
g

Q(2) =−2iω
g

u1T − i
(
σ +hk(1−σ

2)
)

u1X = 0. (4.2.12)

Using the dispersion relation ( 4.1.4), we have

ω
′(k) =

g
2ω

(
σ + kh(1−σ

2)
)
, (4.2.13)

and then ( 4.2.12) can be rewritten in terms of the group velocity ω ′(k), which yields

u1T +ω
′(k)u1X = 0. (4.2.14)

Next, we solve the inhomogeneous linear system ( 4.2.4) and find the solution η(2) and ξ (2)

using the method of undetermined coefficients. From ( 4.2.10), we observe that U (2) and V (2) are

composed of ei(kx−ωt), e2i(kx−ωt) (with their complex conjugates) and (kx−ωt)-independent term.

Hence, we assume η(2) and ξ (2) have the form provided in ( 4.2.8) with unknown coefficients pi,

qi (1 ≤ i ≤ 2) and η . To determine these coefficients, we substitute ( 4.2.8) and ( 4.2.10) into the

inhomogeneous linear system ( 4.2.4). By identifying the coefficients of various terms on two sides

of ( 4.2.4), we obtain the following equations:
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• For the coefficients of ei(kx−ωt), we have−iω p1 − kσ q1 = P(2),

g p1 − iω q1 = Q(2).
(4.2.15)

• For the coefficients of e2i(kx−ωt), we have−2iω p2 −2k tanh(2hk)q2 = E(2),

g p2 −2iω q2 = F(2).
(4.2.16)

• For the term independent of (kx−ωt), we have

gη = K(2). (4.2.17)

Substituting coefficients in ( 4.2.11) and also using the fact

tanh(2hk) =
2tanh(hk)

1+ tanh2(hk)
=

2σ

1+σ2 , (4.2.18)

all above equations can be solved, yielding the results in ( 4.2.9).

• Step 2: Finding the solvability conditions at O(ε3).

At order ε3, we compute U (3) and V (3) in ( 4.2.1) as

U (3) =−η
(2)
T +G(1)

ξ
(2)+G(2)

ξ
(1),

V (3) =−ξ
(2)
T −ξ

(1)
x ξ

(1)
X −ξ

(1)
x ξ

(2)
x +η

(1)
x ξ

(1)
x G(0)

ξ
(1)

+
(
G(0)

ξ
(1))(G(0)

ξ
(2)+G(1)

ξ
(1)),

(4.2.19)

where G(0), G(1) and G(2) are defined in Proposition 4.1.

Proposition 4.3. At order ε3, the solvability conditions (S1) and (S2) implies

ηT +hϕXX +
2ωk

g
|u1|2X = 0, (4.2.20)

and

2i
(
u2T +ω

′(k)u2X
)
+ω

′′(k)u1XX = δ1 |u1|2u1 −
(k2(1−σ2)

ω
ϕT −2k ϕX

)
u1, (4.2.21)

respectively. We have

δ1 =
k4

2ω
(−2σ

4 +13σ
2 −12+9σ

−2). (4.2.22)
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Proof. To examine the solvability conditions, we begin by substituting the expressions of η(1),ξ (1)

from ( 4.2.3), and the expressions of η(2),ξ (2) from ( 4.2.8) into ( 4.2.19). Then, using the formulas

of G(0), G(1) and G(2) derived in Proposition 4.1, we can compute each term in U (3) and V (3).

• We find that all (kx−ωt)-independent terms in U (3) consist of (−ηT ) from (−η
(2)
T ) and

(−hϕXX − 2ωk
g

|u1|2X) from G(2)ξ (1). Thus the solvability condition (S1) implies

−ηT −hϕXX − 2ωk
g

|u1|2X = 0, (4.2.23)

which yields ( 4.2.20).

• To write down the solvability condition (S2), we need to find P(3) and Q(3).

Collecting all the ei(kx−ωt) terms in U (3), we obtain the coefficient

P(3) =− p1T − i
(
σ +hk(1−σ

2)
)
q1X −h(1−σ

2)(1−hkσ)u1XX

+ k2(1−σ
2)ηu1 −

2iωk2

g

(
1−σ tanh(2hk)

)
q2u1 − k2(1+σ

2)p2u1

+
ωk
g

u1ϕX +
σk3ω2

g2

(
−1+2σ tanh(2hk)|u1|u1

)
.

(4.2.24)

Similarly, we calculate the coefficient Q(3) in V (3) as

Q(3) =−q1T − iku1ϕX −2k2(1−σ tanh(2hk)
)
q2u1

+
ik3σω

g

(
1−2σ tanh(2hk)

)
|u1|u1.

(4.2.25)

Substituting P(3) and Q(3) into ( 4.2.5) results in ( 4.2.21). When computing the coefficients

in ( 4.2.21), we use pi,qi from ( 4.2.9) and the fact from ( 4.2.18).

• Step 3: Deriving the NLS eqution.

To merge (4.2.14) at order O(ε2) with (4.2.21) at order O(ε3), we introduce u := u1 + εu2, thereby

obtaining (up to order ε)

2i
(
uT +ω

′(k)uX
)
+ εω

′′(k)uXX = ε

(
δ1|u|2 −

(k2(1−σ2)

ω
ϕT −2k ϕX

))
u. (4.2.26)

Recalling from (4.2.9), we know

η =
1
g
(k2(σ2 −1) |u1|2 −ϕT ). (4.2.27)
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The quantity ϕ represents the mean velocity potential at the free surface, which is of order ε; while

η denotes the mean elevation of the free surface, whose magnitude is of order ε2. The dynamics of

ϕ and η are governed by equations (4.2.20) and (4.2.27).

Substituting (4.2.27) into (4.2.20), we obtain

(
k2(σ2 −1) |u1|2T −ϕT T

)
+ghϕXX +2ωk |u1|2X = 0. (4.2.28)

Combining (4.2.14) and ( 4.2.28), we derive (up to leading order)

ϕT T −ghϕXX = δ2|u|2X , (4.2.29)

where

δ2 = 2kω(k)+(1−σ
2)k2

ω
′(k). (4.2.30)

By introduce new variables µ = X −ω ′(k)T and τ = ε2t, we can rewrite (4.2.26) and (4.2.29)

in a reference frame moving at the group velocity ω ′(k) over a longer time. Up to leading order, we

derive

2iuτ +ω
′′(k)uµµ = δ1|u|2u+

δ2

ω(k)
uϕX . (4.2.31)

and

(ω ′2(k)−gh)ϕµµ = δ2|u|2µ . (4.2.32)

Combining them leads to

2iuτ +ω
′′(k)uµµ +χ|u|2u = 0, (4.2.33)

where

χ =−k3ω(k)
g

H(kh) (4.2.34)

and

H(kh) =− 1
2σ

(−2σ
4 +13σ

2 −12+9σ
−2)−

(
4σ +(1−σ2)(σ + kh(1−σ2))

)2

σ
(
(σ + kh(1−σ2))2 −4khσ

) . (4.2.35)

Equation ( 4.2.33) is the cubic NLS equation for the modulation of a solution (with wave number

k) to the water wave problem over a flat bottom. We will examine the coefficients ω ′′(k) and χ in

Chapter 7.2.



Chapter 5

Modulation Analysis of The Water Wave
Problem with Variable Bottom

5.1 Modulated Plane Wave Solutions

Starting from this chapter, our focus shifts towards the modulation analysis of the water wave prob-

lem in the presence of a periodic bottom. Following the same modulational Ansatz introduced in

Chapter 4, we suppose that the solutions to the water wave system ( 2.2.9) have small amplitudes,

and the effect of the weak nonlinearity of ( 2.2.9) will modulate the amplitude, making it a slowly

varying function of space and time.

To eliminate secular terms over a time period of O(ε−1), we introduce two large-scale variables,

X = εx and T = εt, and further assume the solution to ( 2.2.9) has a perturbation expansion of the

form η = εη(1)+ ε2η(2)+ · · · ,

ξ = εξ (1)+ ε2ξ (2)+ · · · .
(5.1.1)

As seen from the flat bottom problem in Chapter 4, we obtain the linearized system at leading

order. Using Proposition 2.2, the leading order term takes the form of a modulated Bloch-Floquet

wave η(1)(x, t,θ ;X ,T ) =
iΩn(θ)

g
u1(X ,T )e−iΩn(θ)tφn(x,θ)+ c.c.,

ξ (1)(x, t,θ ;X ,T ) = u1(X ,T )e−iΩn(θ)tφn(x,θ)+ c.c.+ϕ(X ,T ).
(5.1.2)

The (complex) amplitude u1(X ,T ) and (real) mean potential ϕ(X ,T ) are no longer constants but

functions depending on the slow variables X = εx and T = εt. The frequency Ωn(θ) is given by the

dispersion relation

Ω
2
n(θ) = gΛn(θ). (5.1.3)

We recall from Chapter 2.3.2 that the Bloch-Floquet eigenfunction φn(x,θ) = eiθxψn(x,θ) of G[b]

with the corresponding Bloch-Floquet eigenvalue Λn(θ) is a θ -periodic function, while ψn(x,θ) is

35



CHAPTER 5. MODULATION ANALYSIS OF THE WATER WAVE PROBLEM WITH VARIABLE BOTTOM 36

a periodic function in x with a period of 2π . Hence, ( 5.1.2) can be rewritten asη(1) =
iΩn(θ)

g
u1(X ,T )eiSn(x,t,θ)ψn(x,θ)+ c.c.,

ξ (1) = u1(X ,T )eiSn(x,t,θ)ψn(x,θ)+ c.c.+ϕ(X ,T ),
(5.1.4)

where we denote

Sn := θx−Ωn(θ)t. (5.1.5)

In the modulation analysis, We choose a positive integer n and θ ∈ [−1
2 ,

1
2) such that the nth

Bloch-Floquet eigenvalue Λn(θ) is simple. For example, θ ∈ ( 1
16 ,

1
4 −

1
16).

Before considering higher orders in the modulation expansion, it is crucial to examine how

G[b] acts on multiple-scale functions of various forms, which we will encounter at higher orders.

Because G[b] only acts on the spatial variables x and X , for convenience, we temporarily omit the

time variables t and T in multiple-scale functions.

We suppose G[b] f (x,θ ;ε) can be expanded in powers of ε as follows:

G[b] f (x,θ ;ε) =
(

G(0)[b]+ εG(1)[b]+ ε
2G(2)[b]+ · · ·

)
f (x,θ ;ε). (5.1.6)

Here, the notations G(0)[b],G(1)[b] and G(2)[b] are somewhat ambiguous, and their specific expres-

sions depend on the form of f (x,θ ;ε). In the subsequent sub-chapter, we examine multiple-scale

functions f (x,θ ;ε) of three distinct forms: modulated θ -periodic functions u(εx)φn(x,θ), long-

wave functions ϕ(εx), and modulated periodic functions u(εx) p(x).

5.2 Action of DNO on Multiple-Scale Functions

5.2.1 The Case of Modulated θ -Periodic Functions

We observe that the multiple-scale function f (x,θ ;ε) = u(X)φn(x,θ) is present in ξ (1) as given in (

5.1.2). Here, u(X) denotes an arbitrary smooth function dependent only on the large-scale variable

X = εx, while the θ -periodic function φn(x,θ) is the nth Bloch-Floquet eigenfunction of G[b] with

the corresponding simple eigenvalue Λn(θ). For such modulated θ -periodic functions f (x,θ ;ε),

we have the following expansion when G[b] acts on it.

Proposition 5.1. The operator G[b] acting on a multiple-scale function f (x,θ ;ε) = u(X)φn(x,θ)

has an asymptotic expansion

G[b] f (x,θ ;ε) =
(

G(0)
I [b]+ εG(1)

I [b]+ ε
2G(2)

I [b]+ · · ·
)

u(X)φn(x,θ) (5.2.1)

with

G(0)
I [b]u(X)φn(x,θ) = Λn(θ)u(X)φn(x,θ), (5.2.2)
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G(1)
I [b]u(X)φn(x,θ) = DX u(X)eiθx

∂θ G[b,Dx +θ ]ψn(x,θ), (5.2.3)

and

G(2)
I [b]u(X)φn(x,θ) =

1
2

DXX u(X)eiθx
∂θθ G[b,Dx +θ ]ψn(x,θ). (5.2.4)

We recall that DX =−i∂X , DXX = (DX)
2 =−∂XX and ψn(x,θ) = e−iθxφn(x,θ).

Proof. Applying the Theorem A2.1 in [12], the pseudo-differential operator G[b] = G[b,D] acting

on multiple-scale function is given by

G[b]u(X)φn(x,θ) =G[b,D]u(X)eiθx
ψn(x,θ)

=eiθxG[b,Dx +θ + εDX ]u(X)ψn(x,θ)

=u(X)eiθxG[b,Dx +θ ]ψn(x,θ)

+ ε DX u(X)eiθx
∂θ G[b,Dx +θ ]ψn(x,θ)

+
ε2

2
DXX u(X)eiθx

∂θθ G[b,Dx +θ ]ψn(x,θ) +O(ε3).

(5.2.5)

According to the order of ε , we denote

G(0)
I [b]u(X)φn(x,θ) := u(X)eiθxG[b,Dx +θ ]ψn(x,θ),

G(1)
I [b]u(X)φn(x,θ) := DX u(X)eiθx

∂θ G[b,Dx +θ ]ψn(x,θ),

G(2)
I [b]u(X)φn(x,θ) :=

1
2

DXX u(X)eiθx
∂θθ G[b,Dx +θ ]ψn(x,θ).

(5.2.6)

From the eigenvalue problem ( 2.3.21), we have

G[b]
(
eiθx

ψn(x,θ)
)
= Λn(θ)

(
eiθx

ψn(x,θ)
)
, (5.2.7)

which implies (in multiple-scale regime)

eiθxG[b,Dx +θ ]ψn(x,θ) = Λn(θ)eiθx
ψn(x,θ) = Λn(θ)φn(x,θ), (5.2.8)

which finishes the proof.

The following lemmas illustrate some properties of ∂θ G[b,Dx +θ ]ψn and ∂θθ G[b,Dx +θ ]ψn in

( 5.2.3) and ( 5.2.4), respectively, and help us understand them. Recalling from Proposition 3.5, we

have an orthonormal basis {ψk(x,θ)}k for periodic functions.

Notation 5.1. In this thesis, we define the L2-inner product and L2-norm for periodic functions f

and g in H1(T1) as

⟨ f ,g⟩=
∫ 2π

0
f (x)g(x)dx and || f ||L2 =

√
⟨ f , f ⟩. (5.2.9)
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Lemma 5.1. For the periodic function ∂θ G[b,Dx + θ ]ψn(x,θ), its decomposition in terms of the

basis {ψk(x,θ)}k is given by

∂θ G[b,Dx +θ ]ψn(x,θ) =
∞

∑
k=0

⟨∂θ G[b,Dx +θ ]ψn(x,θ),ψk(x,θ)⟩ψk(x,θ), (5.2.10)

where for k = n, we have

⟨∂θ G[b,Dx +θ ]ψn(x,θ),ψn(x,θ)⟩= Λ
′
n(θ), (5.2.11)

and for k ̸= n, we have

⟨∂θ G[b,Dx +θ ]ψn(x,θ),ψk(x,θ)⟩=
(
Λn(θ)−Λk(θ)

)
⟨∂ψn

∂θ
(x,θ),ψk(x,θ)⟩. (5.2.12)

Proof. For clarity, we simply write ψn instead of ψn(x,θ) when there is no confusion.

From ( 5.2.8), we have

G[b,Dx +θ ]ψn(x,θ) = Λn(θ)ψn(x,θ). (5.2.13)

Differentiating ( 5.2.13) with respect to θ gives

∂θ G[b,Dx +θ ]ψn +G[b,Dx +θ ]
∂ψn

∂θ
= Λ

′
n(θ)ψn +Λn(θ)

∂ψn

∂θ
. (5.2.14)

Taking the inner product of ( 5.2.14) with ψn(x,θ), we obtain

⟨∂θ G[b,Dx +θ ]ψn,ψn⟩+ ⟨G[b,Dx +θ ]
∂ψn

∂θ
,ψn⟩= Λ

′
n(θ)⟨ψn,ψn⟩+Λn(θ)⟨

∂ψn

∂θ
,ψn⟩. (5.2.15)

Since the DNO is symmetric for L2-inner product with domain H1(T1), we have

⟨G[b,Dx +θ ]
∂ψn

∂θ
,ψn⟩= ⟨∂ψn

∂θ
,G[b,Dx +θ ]ψn⟩= Λn(θ)⟨

∂ψn

∂θ
,ψn⟩. (5.2.16)

Using ( 5.2.16) and ( 3.2.10), we simplify ( 5.2.15) to obtain ( 5.2.11).

To prove ( 5.2.12), we take the inner product of ( 5.2.14) with ψk(x,θ), which yields

⟨∂θ G[b,Dx +θ ]ψn,ψk⟩+ ⟨G[b,Dx +θ ]
∂ψn

∂θ
,ψk⟩= Λ

′
n(θ)⟨ψn,ψk⟩+Λn(θ)⟨

∂ψn

∂θ
,ψk⟩. (5.2.17)

Similar to ( 5.2.16), we have

⟨G[b,Dx +θ ]
∂ψn

∂θ
,ψk⟩= ⟨∂ψn

∂θ
,G[b,Dx +θ ]ψk⟩= Λk(θ)⟨

∂ψn

∂θ
,ψk⟩. (5.2.18)

From ( 3.2.10), the first term on the right-hand side of ( 5.2.17) vanishes. By substituting ( 5.2.18)
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into ( 5.2.17) and rearranging terms, we derive

⟨∂θ G[b,Dx +θ ]ψn,ψk⟩=
(
Λn(θ)−Λk(θ)

)
⟨∂ψn

∂θ
,ψk⟩. (5.2.19)

Lemma 5.2. The operator ∂θ G[Dx +θ ] is symmetric for L2-inner product with domain H1(T1).

Proof. Firstly, we notice that in the proof of ( 5.2.19), we can switch the roles of ψn and ψk to obtain

⟨∂θ G[b,Dx +θ ]ψk,ψn⟩=
(
Λk(θ)−Λn(θ)

)
⟨∂ψk

∂θ
,ψn⟩. (5.2.20)

Because eigenvalues Λn(θ) and Λk(θ) are real, ( 5.2.20) can be rewritten as

⟨ψn,∂θ G[b,Dx +θ ]ψk⟩=−
(
Λn(θ)−Λk(θ)

)
⟨ψn,

∂ψk

∂θ
⟩. (5.2.21)

Subtracting ( 5.2.21) from ( 5.2.19), we obtain

⟨∂θ G[Dx +θ ]ψn,ψk⟩−⟨ψn,∂θ G[Dx +θ ]ψk⟩

=
(
Λn(θ)−Λk(θ)

)(
⟨∂ψn

∂θ
,ψk⟩+ ⟨ψn,

∂ψk

∂θ
⟩
)

=
(
Λn(θ)−Λk(θ)

)
∂θ ⟨ψn,ψk⟩= 0.

(5.2.22)

Therefore, when k ̸= n, we have

⟨∂θ G[Dx +θ ]ψn,ψk⟩= ⟨ψn,∂θ G[Dx +θ ]ψk⟩. (5.2.23)

When k = n, ( 5.2.23) is also valid because of ( 5.2.11).

Because {ψk(x,θ)}k is an orthonormal basis of H1(T1), we conclude that ∂θ G[Dx +θ ] is sym-

metric for L2-inner product over H1(T1).

Lemma 5.3. For periodic function ∂θθ G[b,Dx + θ ]ψn(x,θ), its inner product with ψn(x,θ) gives

Λ′′
n(θ), with correction terms arising from the presence of bottom b(x).

⟨∂θθ G[b,Dx +θ ]ψn(x,θ),ψn(x,θ)⟩

=Λ
′′
n(θ)+2⟨G[b,Dx +θ ]

∂ψn

∂θ
(x,θ),

∂ψn

∂θ
(x,θ)⟩−2Λn(θ)||

∂ψn

∂θ
(x,θ)||2L2 .

(5.2.24)

Proof. Differentiating ( 5.2.13) twice with respect to θ , we get

∂θθ G[b,Dx +θ ]ψn +2∂θ G[b,Dx +θ ]
∂ψn

∂θ
+G[b,Dx +θ ]

∂ 2ψn

∂θ 2

=Λ
′′
n(θ)ψn +2Λ

′
n(θ)

∂ψn

∂θ
+Λn(θ)

∂ 2ψn

∂θ 2 .

(5.2.25)
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Taking the inner product of ( 5.2.25) with ψn(x,θ) results in

⟨∂θθ G[b,Dx +θ ]ψn,ψn⟩+2⟨∂θ G[b,Dx +θ ]
∂ψn

∂θ
,ψn⟩+ ⟨G[b,Dx +θ ]

∂ 2ψn

∂θ 2 ,ψn⟩

=Λ
′′
n(θ)⟨ψn,ψn⟩+2Λ

′
n(θ)⟨

∂ψn

∂θ
,ψn⟩+Λn(θ)⟨

∂ 2ψn

∂θ 2 ,ψn⟩
(5.2.26)

Because G[Dx +θ ] is symmetric for L2-inner product, we have

⟨G[b,Dx +θ ]
∂ 2ψn

∂θ 2 ,ψn⟩= ⟨∂ 2ψn

∂θ 2 ,G[b,Dx +θ ]ψn⟩= Λn(θ)⟨
∂ 2ψn

∂θ 2 ,ψn⟩, (5.2.27)

which implies that the third terms on both sides of ( 5.2.26) can be eliminated. Hence, we can

simplify ( 5.2.26) as

⟨∂θθ G[b,Dx +θ ]ψn,ψn⟩+2⟨∂θ G[b,Dx +θ ]
∂ψn

∂θ
,ψn⟩= Λ

′′
n(θ)+2Λ

′
n(θ)⟨

∂ψn

∂θ
,ψn⟩. (5.2.28)

Similarly, taking the inner product of ( 5.2.14) with ∂ψn
∂θ

(x,θ) gives

⟨∂θ G[b,Dx +θ ]ψn,
∂ψn

∂θ
⟩+ ⟨G[b,Dx +θ ]

∂ψn

∂θ
,
∂ψn

∂θ
⟩

=Λ
′
n(θ)⟨ψn,

∂ψn

∂θ
⟩+Λn(θ)⟨

∂ψn

∂θ
,
∂ψn

∂θ
⟩.

(5.2.29)

Then adding ( 5.2.28) with 2 times ( 5.2.29), we find

⟨∂θθ G[b,Dx +θ ]ψn,ψn⟩+2⟨G[b,Dx +θ ]
∂ψn

∂θ
,
∂ψn

∂θ
⟩

+2⟨∂θ G[b,Dx +θ ]
∂ψn

∂θ
,ψn⟩+2⟨∂θ G[b,Dx +θ ]ψn,

∂ψn

∂θ
⟩

=Λ
′′
n(θ)+2Λn(θ)||

∂ψn

∂θ
||2L2 +2Λ

′
n(θ)

(
⟨∂ψn

∂θ
,ψn⟩+ ⟨ψn,

∂ψn

∂θ
⟩
)
.

(5.2.30)

The third term on the right-hand side of ( 5.2.30) is zero because

⟨∂ψn

∂θ
,ψn⟩+ ⟨ψn,

∂ψn

∂θ
⟩= ∂θ ⟨ψn,ψn⟩= ∂θ 1 = 0. (5.2.31)

Differentiating ( 5.2.11) with respect to θ , we obtain

⟨∂θθ G[b,Dx +θ ]ψn,ψn⟩+ ⟨∂θ G[b,Dx +θ ]
∂ψn

∂θ
,ψn⟩+ ⟨∂θ G[b,Dx +θ ]ψn,

∂ψn

∂θ
⟩= Λ

′′
n(θ).

(5.2.32)

Finally, combining ( 5.2.30) and ( 5.2.32) implies ( 5.2.24), which completes the proof.
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Lemma 5.4. We have the following equality:

⟨G[b,Dx +θ ]
∂ψn

∂θ
,
∂ψn

∂θ
⟩−Λn(θ)||

∂ψn

∂θ
||2L2

=Λ
′
n(θ)⟨

∂ψn

∂θ
,ψn⟩−⟨∂θ G[b,Dx +θ ]

∂ψn

∂θ
,ψn⟩.

(5.2.33)

Proof. Taking the inner product of
∂ψn

∂θ
with ( 5.2.14) gives

⟨∂ψn

∂θ
,∂θ G[b,Dx +θ ]ψn⟩+ ⟨∂ψn

∂θ
,G[b,Dx +θ ]

∂ψn

∂θ
⟩

=Λ
′
n(θ)⟨

∂ψn

∂θ
,ψn⟩+Λn(θ)⟨

∂ψn

∂θ
,
∂ψn

∂θ
⟩.

(5.2.34)

Since G[b,Dx +θ ] and ∂θ G[b,Dx +θ ] are symmetric for L2-inner product, we have

⟨∂θ G[b,Dx +θ ]
∂ψn

∂θ
,ψn⟩+ ⟨G[b,Dx +θ ]

∂ψn

∂θ
,
∂ψn

∂θ
⟩= Λ

′
n(θ)⟨

∂ψn

∂θ
,ψn⟩+Λn(θ)||

∂ψn

∂θ
||2L2 .

(5.2.35)

Rearranging terms in ( 5.2.35) completes the proof.

It should be noted that the above analysis holds for different values of θ , except when θ is close

to 0 and ±1
2 , where Λn(θ) could be a double eigenvalue. Based on the flat bottom problem, it is not

surprising to observe u(X)φk(x,2θ) or u(X)e2iθxψk(x,2θ) appearing in the subsequent modulation

analysis. For such a multiple-scale function, we can choose θ to ensure 2θ ̸= 0,±1
2 (for instance,

θ ∈
( 1

16 ,
1
4 −

1
16

)
) and apply the above results by considering θ ′ = 2θ .

For multiple-scale function u(X)ψk(x,0) when θ = 0, not all above results are valid. We still

have

G(0)
I [b]u(X)ψk(x,0) = Λk(0)u(X)ψk(x,0). (5.2.36)

Especially, as Λ0(0) = 0, we have

G(0)
I [b]u(X)ψ0(x,0) = 0. (5.2.37)

However, The G(1)
I [b]u(X)ψk(x,0) and G(2)

I [b]u(X)ψk(x,0) in ( 5.2.3) and ( 5.2.4) respectively are

not valid for θ = 0 because Λk(0) may be not differentiable at θ = 0. Therefore, we need to find

alternative expansions of G[b] f (x,θ = 0;ε), where f (x,θ = 0;ε) takes the form u(X) or the form

u(X)p(x).

5.2.2 The Case of Long-Wave Functions

From ( 5.1.2), we know that the large-scale function ϕ(X) is present in ξ (1), where ϕ(X) is an

arbitrary smooth real-valued function depending on the large-scale spatial variable X . Therefore, it

is important to understand the action of G[b] on such a function.
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Proposition 5.2. The operator G[b] acting on a long-wave function of the form f (x;ε) = ϕ(X) has

the asymptotic expansion

G[b] f (x;ε) = G(0)
II [b]ϕ(X)+ εG(1)

II [b]ϕ(X)+ ε
2G(2)

II [b]ϕ(X)+O(ε3), (5.2.38)

where

G(0)
II [b]ϕ(X) = 0, (5.2.39)

G(1)
II [b]ϕ(X) =−DX ϕ(X)

(
DxB0[b]b(x)

)
, (5.2.40)

and

G(2)
II [b]ϕ(X) = DXX ϕ(X)

(
h−B0[b]b(x)+DxB0[b]b̃(x)sinh

(
b̃(x)Dx

)
B0[b]b(x)

)
. (5.2.41)

Here, B0[b] stands for the inverse of the operator cosh
(
b̃(x)Dx

)
acting on functions of x, and we

recall b̃(x) =−h+b(x).

The inverse operator B0[b] is defined in Proposition 3.1 with operator D is now replaced by Dx

in multiple scale regime.

Proof. From Proposition 3.1, we have G[b] = D tanh(hD)+DL[b]. We examine the expansions of

D tanh(hD)ϕ(X) and DL[b]ϕ(X) separately.

Firstly, using the result from ( 4.1.11), we get the expansion

D tanh(hD)ϕ(X)

=Dx tanh(hDx)ϕ(X)+ ε

(
tanh(hDx)+hDx

(
1− tanh2(hDx)

))
DX ϕ(X)

+ ε
2
(

h
(
1− tanh2(hDx)

)
−h2Dx

(
1− tanh2(hDx)

)
tanh(hDx)

)
DXX ϕ(X)+O(ε3)

=ε
2hDXX ϕ(X)+O(ε3).

(5.2.42)

Secondly, using equation (4.8) in [6], DL[b] acting on functions of the long-scale variables can

be approximated by

DL[b]ϕ(X)

=− εDX ϕ(X)
(
DxB0[b]b(x)

)
− ε

2DXX ϕ(X)
(

B0[b]b(x)−DxB0[b]b̃(x)sinh
(
b̃(x)Dx

)
B0[b]b(x)

)
+O(ε3),

(5.2.43)

where b̃(x) =−h+b(x) and B0[b] is the inverse of operator cosh(b̃(x)Dx).

Finally, we combine ( 5.2.42) and ( 5.2.43) to obtain the asymptotic expansion of G[b]ϕ(X).

Specifically, we denote the first three orders in this expansion as G(0)
II [b]ϕ(X), G(1)

II [b]ϕ(X) and

G(2)
II [b]ϕ(X), respectively.
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5.2.3 The Case of Modulated Periodic Functions

Now we consider the action of G[b] on multiple-scale functions of the form f (x;ε) = u(X)p(x),

where u(X) is an arbitrary smooth function of large-scale variable X and p(x) represents an arbitrary

2π periodic function. In our work, we only require the first two terms in the expansion, as shown in

the following proposition.

Proposition 5.3. The operator G[b] acting on a modulated periodic function u(X)p(x) has the

asymptotic expansion

G[b] f (x;ε) = G(0)
III [b]u(X)p(x)+ εG(1)

III [b]u(X)p(x)+O(ε2), (5.2.44)

where

G(0)
III [b]u(X)p(x) = u(X)

(
Dx tanh(hDx)−DxB0[b]sinh(b(x)Dx)sech(hDx)

)
p(x), (5.2.45)

and

G(1)
III [b]u(X)p(x)

=DX u(X)
(

hDx
(
1− tanh2(hDx)

)
+ tanh(hDx) −B0[b]sinh(b(x)Dx)sech(hDx)

+DxB0[b]b(x)cosh(b(x)Dx)sech(hDx)−DxB0[b]sinh(b(x)Dx) tanh(hDx)sech(hDx)

+DxB0[b]b̃(x)sinh(b̃(x)Dx)B0[b]sinh(b(x)Dx)sech(hDx)
)

p(x).

(5.2.46)

Proof. From Proposition 3.1, we know G[b] = D tanh(hD)+DL[b] = D tanh(hD)−DB[b]A[b]. For

clarity, we divide the calculation of G[b]u(X)p(x) into 3 steps.

• Step 1. Using the result from ( 4.1.11), we obtain the expansion of D tanh(hD)u(X)p(x)

D tanh(hD)u(X)p(x)

=u(X)Dx tanh(hDx)p(x)+ εDX u(X)
(

hDx
(
1− tanh2(hDx)

)
+ tanh(hDx)

)
p(x)+O(ε2).

(5.2.47)

• Step 2. We calculate the expansions of A[b]u(X)p(x) and B[b]u(X)p(x).

Applying the Theorem 4.1 in [12] to A[b], we obtain the asymptotic expansion of A[b]u(X)p(x) as

A[b]u(X)p(x)

=sinh(b(x)D)sech(hD)u(X)p(x)

=u(X)
(

sinh(b(x)Dx)sech(hDx)
)

p(x)

+ εDX u(X)
(

b(x)cosh(b(x)Dx)sech(hDx)− sinh(b(x)Dx) tanh(hDx)sech(hDx)
)

p(x)

+O(ε2).

(5.2.48)
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Similarly, using equation (4.7) in [6], we obtain the asymptotic expansion of B[b]u(X)p(x) as

B[b]u(X)p(x)

=u(X)B0[b]p(x)− εDX u(X)
(

B0[b]b̃(x)sinh
(
b̃(x)Dx

)
B0[b]

)
p(x)+O(ε2).

(5.2.49)

• Step 3. Combining the results from step 1 and step 2 to obtain the expansion of G[b]u(X)p(x).

We notice that from ( 5.2.48), the expansion of A[b]u(X)p(x) is also a modulated periodic function.

Hence, we can combine ( 5.2.48) and ( 5.2.49) to calculate B[b]A[b]u(X)p(x) as

B[b]A[b]u(X)p(x)

=u(X)
(

B0[b]sinh(b(x)Dx)sech(hDx)
)

p(x)

− εDX u(X)
(

B0[b]b(x)cosh(b(x)Dx)sech(hDx)
)

p(x)

+ εDX u(X)
(

B0[b]sinh(b(x)Dx) tanh(hDx)sech(hDx)
)

p(x)

− εDX u(X)
(

B0[b]b̃(x)sinh(b̃(x)Dx)B0[b]sinh(b(x)Dx)sech(hDx)
)

p(x)+O(ε2).

(5.2.50)

Then we obtain

DL[b]u(X)p(x)

=− (Dx + εDX)B[b]A[b]u(X)p(x)

=−u(X)
(

DxB0[b]sinh(b(x)Dx)sech(hDx)
)

p(x)

+ εDX u(X)
(

DxB0[b]b(x)cosh(b(x)Dx)sech(hDx)
)

p(x)

− εDX u(X)
(

DxB0[b]sinh(b(x)Dx) tanh(hDx)sech(hDx)
)

p(x)

+ εDX u(X)
(

DxB0[b]b̃(x)sinh(b̃(x)Dx)B0[b]sinh(b(x)Dx)sech(hDx)
)

p(x)

− εDX u(X)
(

B0[b]sinh(b(x)Dx)sech(hDx)
)

p(x)+O(ε2).

(5.2.51)

Finally, adding ( 5.2.47) and ( 5.2.51) completes the proof.

In conclusion, depending on the function on which G[b] acts, the expressions of G(0)[b],G(1)[b]

and G(2)[b] in the expansion of G[b] f (x,θ ;ε) in powers of ε are different.

• When f (x,θ ;ε) = u(εx)φn(x,θ), we apply the expressions of G(0)[b],G(1)[b] and G(2)[b]

obtained in ( 5.2.2)-( 5.2.4).

• When f (x;ε) = ϕ(εx), we apply the expressions of G(0)[b],G(1)[b] and G(2)[b] obtained in (

5.2.39)-( 5.2.41).

• When f (x;ε) = u(εx) p(x), we apply the expressions of G(0)[b] and G(1)[b] obtained in (

5.2.45) and ( 5.2.46).



Chapter 6

Construction of Nonlinear Modulated
Solutions: Case of Variable Bottom

6.1 Analysis at Order ε2

When expanding the water wave equations ( 2.2.9) in powers of ε , we obtain a system similar to (

4.2.1), but with G(0) replaced by G(0)[b]. The linearized system is obtained at leading order(
∂t −G(0)[b]

g ∂t

)(
η(1)

ξ (1)

)
= 0, (6.1.1)

which admits a solution of the formη(1) =
iΩn(θ)

g
u1(X ,T )eiSn(x,t,θ)ψn(x,θ)+ c.c.,

ξ (1) = u1(X ,T )eiSn(x,t,θ)ψn(x,θ)+ c.c.+ϕ(X ,T ).
(6.1.2)

The amplitude u and mean potential ϕ are slowly modulated in space and time.

At higher order O(εm), the expansion of ( 2.2.9) in powers of ε leads to an inhomogeneous

linear system (
∂t −G(0)[b]

g ∂t

)(
η(m)

ξ (m)

)
=

(
U (m)

V (m)

)
. (6.1.3)

To guarantee that ( 6.1.3) is solvable, we need to remove the secular terms on the right-hand side of

( 6.1.3), which implies the following two solvability conditions:

• (S1) U (m) does not contain any ’constant term’, where the ’constant term’ refers to a term that

is independent of x and t, though it may depend on the slow variables X and T .

• (S2) Denoting the coefficients of eiSn(x,t,θ)ψn(x,θ) terms in U (m) and V (m) as P(m) and Q(m)

respectively, they satisfy

P(m)+
iΩn(θ)

g
Q(m) = 0. (6.1.4)

45
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6.1.1 Solvability Conditions

Notation 6.1. For clarity, we will use the following abbreviations when there is no confusion:

φn = φn(x,θ), u1 = u1(X ,T ), ϕ = ϕ(X ,T ) and Sn = Sn(x, t,θ) = θx−Ωn(θ)t.

Similar to the flat bottom problem, U (2) and V (2) can be computed asU (2) =−η
(1)
T +

(
G(1)[b]ξ (1)+Dxη(1)Dxξ (1)−G(0)[b]η(1)G(0)[b]ξ (1)

)
,

V (2) =−ξ
(1)
T − 1

2
(
ξ
(1)
x
)2

+
1
2
(
G(0)[b]ξ (1)

)2
.

(6.1.5)

To write down the solvability condition (S2), we need to compute P(2) and Q(2) using ( 6.1.5).

Proposition 6.1. At order O(ε2), the solvability condition (S2) yields the following equation

u1T +Ω
′
n(θ)u1X = 0. (6.1.6)

This expresses that the wavepacket travels at group velocity Ω′
n(θ).

Before proving Proposition 6.1, it is worth noting that ∂x
(
eiθxψn(x,θ)

)
recurs frequently in our

computations. For convenience, we introduce the following notation ℓθ .

Notation 6.2. For any 2π periodic function p(x), ℓθ is defined by

ℓθ

(
p(x)

)
= iθ p(x)+

d p
dx

(x). (6.1.7)

Then ∂x
(
eiθxψn(x,θ)

)
can be conveniently computed as

∂x
(
eiθx

ψn(x,θ)
)
= eiθx(iθψn(x,θ)+∂xψn(x,θ)

)
= eiθxℓθ

(
ψn(x,θ)

)
. (6.1.8)

It is obvious that

ℓθ

(
p(x)

)
= l−θ

(
p(x)

)
, (6.1.9)

where the overline represents the complex conjugate of the corresponding term.

Moreover, for any two 2π periodic functions p(x) and q(x), we have (using integration by parts)

⟨ℓθ

(
p(x)

)
,q(x)⟩=−⟨p(x), ℓθ

(
q(x)

)
⟩. (6.1.10)

Similarly, we can define ℓ2θ for 2π periodic functions by

ℓ2θ

(
p(x)

)
= 2iθ p(x)+

d p
dx

(x), (6.1.11)

which also satisfies ( 6.1.9) and ( 6.1.10) for 2θ .



CHAPTER 6. CONSTRUCTION OF NONLINEAR MODULATED SOLUTIONS: CASE OF VARIABLE BOTTOM47

Proof. Proof of Proposition 6.1.
For clarity, we divide the proof into 3 steps.

Step 1. We calculate each term of U (2) and V (2) appearing in ( 6.1.5).

• From the expressions of η(1) and ξ (1) in ( 6.1.2), we compute −η
(1)
T in U (2), −ξ

(1)
T and

−1
2

(
ξ
(1)
x
)2 in V (2) as follows.

−η
(1)
T =− iΩn(θ)

g
u1T eiSnψn + c.c., (6.1.12)

−ξ
(1)
T =−u1T eiSnψn + c.c.−ϕT , (6.1.13)

−1
2
(
ξ
(1)
x
)2

=−1
2

u2
1 e2iSn

(
ℓθ (ψn)

)2
+ c.c.−|u1|2 |ℓθ (ψn)|2. (6.1.14)

• Recalling Dx =−i∂x, we calculate in U (2)

Dxη
(1)Dxξ

(1) =− iΩn(θ)

g
u2

1 e2iSnα1(x,θ)+ c.c.− iΩn(θ)

g
|u1|2 α2(x,θ), (6.1.15)

where

α1(x,θ) := ℓ2θ

(
ψn ℓθ (ψn)

)
(6.1.16)

and

α2(x,θ) := ∂x
(
ψn ℓθ (ψn)−ψn ℓθ (ψn)

)
. (6.1.17)

Both α1(x,θ) and α2(x,θ) are 2π periodic functions of x. In particular, α2(x,θ) is purely

imaginary.

• Using G(1)
I [b] defined in ( 5.2.3) and G(1)

II [b] defined in ( 5.2.40), we compute G(1)[b]ξ (1) in

U (2) as

G(1)[b]ξ (1) = G(1)
I [b](u1 eiSnψn)+ c.c.+G(1)

II [b]ϕ

=−iu1X eiSn
(
∂θ G[b,Dx +θ ]ψn

)
+ c.c.+ϕX

(
∂xB0[b]b(x)

)
.

(6.1.18)

• Using G(0)
I [b] defined in ( 5.2.2) and G(0)

II [b] defined in ( 5.2.39), we compute

G(0)[b]ξ (1) = G(0)
I [b](u1 eiSnψn)+ c.c.+G(0)

II [b]ϕ = Λn(θ)u1 eiSnψn + c.c.. (6.1.19)

Then in V (2) we have

1
2
(
G(0)[b]ξ (1))2

=
1
2

Λ
2
n(θ)u2

1 e2iSnψ
2
n + c.c.+Λ

2
n(θ) |u1|2 |ψn|2. (6.1.20)
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Using ( 6.1.19) and G(0)
I [b] defined in ( 5.2.6) (replacing θ in ( 5.2.6) by 2θ ), we find in U (2)

−G(0)[b]η(1)G(0)[b]ξ (1) =−G(0)[b]
(
η
(1)(Λn(θ)u1 eiSnψn + c.c.)

)
=−G(0)

I [b]
( iΩn(θ)

g
Λn(θ)u2

1 e2iSnψ
2
n + c.c.

)
=− iΩn(θ)

g
Λn(θ)u2

1 e2iSn
(
G[b,Dx +2θ ]ψ2

n
)
+ c.c. .

(6.1.21)

Combining all the terms computed above, U (2) and V (2) have the formsU (2) =U (2)
1 (x,θ ;X ,T )eiSn +U (2)

2 (x,θ ;X ,T )e2iSn + c.c.+U (2)
0 (x,θ ;X ,T ),

V (2) =V (2)
1 (x,θ ;X ,T )eiSn +V (2)

2 (x,θ ;X ,T )e2iSn + c.c.+V (2)
0 (x,θ ;X ,T ),

(6.1.22)

where 
U (2)

1 :=− iΩn(θ)

g
u1T ψn − iu1X

(
∂θ G[b,Dx +θ ]ψn

)
,

U (2)
2 :=− iΩn(θ)

g
u2

1
(
α1(x,θ)+Λn(θ)(G[b,Dx +2θ ]ψ2

n )
)
,

U (2)
0 :=− iΩn(θ)

g
|u1|2 α2(x,θ)+ϕX

(
∂xB0[b]b(x)

)
,

(6.1.23)

and 
V (2)

1 :=−u1T ψn,

V (2)
2 :=

1
2

u2
1
(
Λ2

n(θ)ψ2
n −
(
ℓθ (ψn)

)2)
,

V (2)
0 := |u1|2

(
Λ2

n(θ) |ψn|2 −|ℓθ (ψn)|2
)
−ϕT .

(6.1.24)

All U (2)
i and V (2)

i ( j = 0,1,2) are 2π periodic functions of x and are independent of variable t. Hence,

U (2)
1 eiSn and V (2)

1 eiSn are the θ -periodic components of U (2) and V (2), respectively. U (2)
2 e2iSn and

V (2)
2 e2iSn are the 2θ -periodic components of U (2) and V (2). The periodic components, U (2)

0 and V (2)
0 ,

are real.

Step 2. We examine the solvability condition (S2).

From Chapter 3.2, we know that {ψk(x,θ)}k≥0 is an orthonormal basis for periodic functions.

Hence, the coefficient P(2) of eiSnψn(x,θ) in U (2) is given by

P(2) = ⟨U (2)
1 ,ψn(x,θ)⟩

=− iΩn(θ)

g
u1T − iu1X ⟨∂θ G[b,Dx +θ ]ψn(x,θ),ψn(x,θ)⟩

=− iΩn(θ)

g
u1T − iΛ′

n(θ)u1X .

(6.1.25)

When decomposing the periodic function ∂θ G[b,Dx + θ ]ψn(x,θ) in terms of {ψk(x,θ)}k≥0, the

coefficient Λ′
n(θ) of ψn(x,θ) is given by ( 5.2.11) in Lemma 5.1.
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In addition, the coefficient Q(2) in V (2) is

Q(2) =−u1T . (6.1.26)

Thus, the solvability condition (S2) can be expressed as

−iΛ′
n(θ)u1X − 2iΩn(θ)

g
u1T = 0. (6.1.27)

From the dispersion relation ( 5.1.3), we have

Λ
′
n(θ) = 2Ω

′
n(θ)

Ωn(θ)

g
. (6.1.28)

Substituting Λ′
n(θ) into ( 6.1.27) yields ( 6.1.6).

Step 3. We examine the solvability condition (S1).

In U (2), the term independent of x and t is only contained in U (2)
0 . It is given by the zero-mode

of the periodic function U (2)
0 , which we can compute as

∫ 2π

0
U (2)

0 dx =− iΩn(θ)

g
|u1|2

∫ 2π

0
α2(x,θ)dx+ϕX

∫ 2π

0
∂xB0[b]b(x)dx

=− iΩn(θ)

g
|u1|2

(
ψnℓθ (ψn)−ψnℓθ (ψn)

)∣∣∣2π

0
+ϕX

(
B0[b]b(x)

)∣∣∣2π

0

= 0,

(6.1.29)

because
(
ψnℓθ (ψn)−ψnℓθ (ψn)

)
and B0[b]b(x) are both 2π periodic functions. Therefore, the solv-

ability condition (S1) is satisfied naturally, and does not provide us any additional equation.

6.1.2 Approximation of Solution at O(ε2)

To find the solvability conditions at next order, we need to solve the inhomogeneous linear system

( 6.1.3) for m = 2 and precisely calculate η(2),ξ (2).

We begin by decomposing the different components of U (2) and V (2) obtained in ( 6.1.22) using

various orthonormal bases: {ψk(x,θ)}k≥0,{ψk(x,2θ)}k≥0 and {ψk(x,0)}k≥0. This is shown in the

next lemma.

Notation 6.3. For clarity, we will omit the variables x in eigenfunctions and only indicate the

variable θ to avoid confusion:

ψk = ψk(x,θ), ψk(2θ) = ψk(x,2θ) and ψk(0) = ψk(x,0).
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Lemma 6.1. U (2) and V (2) can be reformulated as

U (2) =−
( iΩn(θ)

g
u1T + iΛ′

n(θ)u1X
)

eiSnψn − ∑
k≥0,
k ̸=n

i
(
Λn(θ)−Λk(θ)

)
⟨∂ψn

∂θ
,ψk⟩u1X eiSnψk + c.c.

− ∑
k≥0

iΩn(θ)

g
pk(θ)u2

1 e2iSnψk(2θ)+ c.c.

+ ∑
k>0

1
2

(
− iΩn(θ)

g
⟨α2(x,θ),ψk(0)⟩ |u1|2 + ⟨∂xB0[b]b(x),ψk(0)⟩ϕX

)
ψk(0)+ c.c.

(6.1.30)

and

V (2) =−u1T eiSnψn + c.c.

+ ∑
k≥0

1
2

qk(θ)u2
1 e2iSnψk(2θ)+ c.c.

+ ∑
k>0

1
2
⟨Λ2

n(θ) |ψn|2 −|ℓθ (ψn)|2,ψk(0)⟩ |u1|2 ψk(0)+ c.c.

− 1
2π

κ1(θ)|u1|2 −ϕT ,

(6.1.31)

where we introduce

pk(θ) := ⟨α1(x,θ)+Λn(θ)Λk(2θ)ψ2
n ,ψk(2θ)⟩, (6.1.32)

qk(θ) := ⟨Λ2
n(θ)ψ

2
n −
(
ℓθ (ψn)

)2
,ψk(2θ)⟩, (6.1.33)

and

κ1(θ) := ||ℓθ (ψn)||2 −Λ
2
n(θ). (6.1.34)

We recall that α1(x,θ) and α2(x,θ) are defined in ( 6.1.16) and ( 6.1.17) respectively.

Proof. From ( 6.1.22), U (2) and V (2) consist of θ -periodic, 2θ -periodic (including their complex

conjugates), and (real) periodic components:U (2) =U (2)
1 eiSn +U (2)

2 e2iSn + c.c.+U (2)
0 ,

V (2) =V (2)
1 eiSn +V (2)

2 e2iSn + c.c.+V (2)
0 .

(6.1.35)

From Chapter 3.2, we know {ψk(x,θ)}k≥0,{ψk(x,2θ)}k≥0 and {ψk(x,0)}k≥0 are different orthonor-

mal bases for periodic functions. Hence, we can decompose periodic functions U (2)
i and V (2)

i

(i = 0,1,2) in terms of these orthonormal bases.

Specifically, we decompose U (2)
1 in ( 6.1.23) and V (2)

1 in ( 6.1.24) in terms of the basis {ψk(x,θ)}k≥0
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as follows:

U (2)
1 = ∑

k≥0
⟨U (2)

1 ,ψk⟩ψk

=−
( iΩn(θ)

g
u1T + iΛ′

n(θ)u1X
)
ψn − ∑

k ̸=n
i⟨∂θ G[b,Dx +θ ]ψn,ψk⟩u1X ψk,

(6.1.36)

and

V (2)
1 = ∑

k≥0
⟨V (2)

1 ,ψk⟩ψk =−u1T ψn. (6.1.37)

We recall that the coefficient of ψn is P(2), which has been computed in ( 6.1.25).

In addition, using ( 5.2.12) in Lemma 5.1, we can replace ⟨∂θ G[b,Dx + θ ]ψn,ψk⟩ in U (2)
1 by(

Λn(θ)−Λk(θ)
)
⟨ ∂ψn

∂θ
,ψk⟩.

The choice of the basis {ψk(x,θ)}k≥0 to decompose U (2)
1 and V (2)

1 is motivated by two facts:

one is that U (2)
1 eiSn ,V (2)

1 eiSn are θ -periodic functions; another is that φk(x,θ) = eiθxψk(x,θ) satisfies

the spectral problems of G[b] with θ -periodic boundary condition, that isG[b]
(
eiθxψk(x,θ)

)
= Λk(θ)

(
eiθxψk(x,θ)

)
,

eiθ(x+2π)ψk(x+2π,θ) = eiθxψk(x,θ).
(6.1.38)

Later, we can use ( 6.1.38) to compute the actions of G[b] on U (2)
1 eiSn and V (2)

1 eiSn based on the

decomposition in terms of {ψk(x,θ)}k≥0.

Similarly, we decompose U (2)
2 and V (2)

2 in terms of the basis {ψk(x,2θ)}k≥0 as follows:

U (2)
2 = ∑

k≥0
⟨U (2)

2 ,ψk(2θ)⟩ψk(2θ)

=− ∑
k≥0

iΩn(θ)

g
⟨α1(x,θ)+Λn(θ)Λk(2θ)ψ

2
n ,ψk(2θ)⟩u2

1 ψk(2θ),
(6.1.39)

V (2)
2 = ∑

k≥0
⟨V (2)

2 ,ψk(2θ)⟩ψk(2θ)

= ∑
k≥0

1
2
⟨Λ2

n(θ)ψ
2
n −
(
ℓθ (ψn)

)2
,ψk(2θ)⟩u2

1 ψk(2θ).
(6.1.40)

When computing ⟨G[b,Dx +2θ ]ψ2
n ,ψk(2θ)⟩ in U (2)

2 , we use G(0)
I [b] defined in ( 5.2.2) (replac-

ing θ in ( 5.2.2) by 2θ ) and we know G[b,Dx+2θ ] is symmetric for the L2-inner product, as shown

in Lemma 5.2. Hence, we have

⟨G[b,Dx +2θ ]ψ2
n ,ψk(2θ)⟩= ⟨ψ2

n ,G[b,Dx +2θ ]ψk(2θ)⟩= Λk(2θ)⟨ψ2
n ,ψk(2θ)⟩. (6.1.41)

Finally, we decompose U (2)
0 in ( 6.1.23) and V (2)

0 in ( 6.1.24) in terms of the basis {ψk(x,0)}k≥0.
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When k = 0, we have

ψ0(x,0) =
1√
2π

and Λ0(0) = 0. (6.1.42)

Therefor, the coefficients of ψ0(x,0) are related to the zero-mode of U (2)
0 and V (2)

0 . In ( 6.1.29), we

have proven that the zero-mode of U (2)
0 is 0.

Because U (2)
0 and V (2)

0 are real, we can decompose them as

U (2)
0 = ∑

k≥0
⟨1
2

U (2)
0 ,ψk(0)⟩ψk(0)+ c.c.

= ∑
k>0

1
2

(
− iΩn(θ)

g
⟨α2(x,θ),ψk(0)⟩ |u1|2 + ⟨∂xB0[b]b(x),ψk(0)⟩ϕX

)
ψk(0)+ c.c.

(6.1.43)

V (2)
0 = ∑

k≥0
⟨1
2

V (2)
0 ,ψk(0)⟩ψk(0)+ c.c.

= ∑
k>0

1
2
⟨Λ2

n(θ)|ψn|2 −|ℓθ (ψn)|2,ψk(0)⟩ |u1|2 ψk(0)+ c.c.

− 1
2π

(
||ℓθ (ψn)||2 −Λ

2
n(θ)

)
|u1|2 −ϕT .

(6.1.44)

Combining all the above decomposition completes the proof.

Next, we use the method of undetermined coefficients to solve system ( 6.1.3) and find η(2) and

ξ (2) as follows.

Proposition 6.2. The system ( 6.1.3) at order m = 2 is solved in the form

η
(2) = ∑

k≥0
akeiSnψk(x,θ)+ ∑

k≥0
cke2iSnψk(x,2θ)+ ∑

k>0
ekψk(x,0)+ c.c.+ η̄ ,

ξ
(2) = ∑

k≥0
bkeiSnψk(x,θ)+ ∑

k≥0
dke2iSnψk(x,2θ)+ ∑

k>0
fkψk(x,0)+ c.c. ,

(6.1.45)

where coefficients ak,bk,ck,dk,ek, fk and η̄ are functions depending on large-scale variables X and

T , and possibly on parameter θ .

an(θ ,X ,T ) =
1
g

u1T (X ,T )+
Λ′

n(θ)

Ωn(θ)
u1X(X ,T )+

iΩn(θ)

g
u2(X ,T ),

bn(X ,T ) =u2(X ,T ),

ak(θ ,X ,T ) =
Ωn(θ)

g
⟨∂ψn

∂θ
(x,θ),ψk(x,θ)⟩u1X(X ,T ) for k ̸= n,

bk(θ ,X ,T ) =− i⟨∂ψn

∂θ
(x,θ),ψk(x,θ)⟩u1X(X ,T ) for k ̸= n.

(6.1.46)
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ck(θ ,X ,T ) =c̃k(θ)u2
1(X ,T ), dk(θ ,X ,T ) = d̃k(θ)u2

1(X ,T ),

fk(θ ,X ,T ) = f̃k(θ) |u1(X ,T )|2 + f̆k ϕX(X ,T ), ek(θ ,X ,T ) = ẽk(θ) |u1(X ,T )|2,

η̄(θ ,X ,T ) =− 1
g

( 1
2π

κ1(θ)|u1(X ,T )|2 +ϕT (X ,T )
)
.

(6.1.47)

A new arbitrary function u2(X ,T ) of the slow variables is introduced into the solution at order

O(ε2). In addition, the explicit formulas of coefficients c̃k(θ), d̃k(θ), f̃k(θ), f̆k, and ẽk(θ) are pro-

vided in ( 6.1.57) and ( 6.1.61).

Proof. We are looking for the solution, η(2) and ξ (2), to the inhomogeneous system∂tη
(2)−G(0)[b]ξ (2) =U (2),

gη(2)+∂tξ
(2) =V (2).

(6.1.48)

According to Lemma 6.1, we assume that η(2) and ξ (2) have the forms given in ( 6.1.45) with

undetermined coefficients ak,bk,ck,dk,ek, fk, and η̄ . These coefficients depend on the slow variables

X and T , but they remain independent of x and t. To determine these coefficients, we substitute (

6.1.45) into ( 6.1.48), and then identify the coefficients of different terms on two sides of ( 6.1.48).

Substituting η(2) and ξ (2) into the left-hand side of ( 6.1.48), we obtain

∂tη
(2)−G(0)[b]ξ (2)

=−
(
iΩn(θ)an +Λn(θ)bn

)
eiSnψn − ∑

k≥0,
k ̸=n

(
iΩn(θ)ak +Λk(θ)bk

)
eiSnψk

− ∑
k≥0

(
2iΩn(θ)ck +Λk(2θ)dk

)
e2iSnψk(2θ)− ∑

k>0
Λk(0) fk ψk(0)+ c.c.

(6.1.49)

and

gη
(2)+∂tξ

(2) =
(
gan − iΩn(θ)bn

)
eiSnψn + ∑

k≥0,
k ̸=n

(
gak − iΩn(θ)bk

)
eiSnψk

+ ∑
k≥0

(
gck −2iΩn(θ)dk

)
e2iSnψk(2θ)+ ∑

k>0
gek ψk(0)+ c.c.+gη̄ .

(6.1.50)

In the above computation, we use ( 5.2.2) (replacing θ with 2θ and 0, respectively) to compute

G(0)[b]e2iSnψk(2θ) and G(0)[b]ψk(0).

On the other hand, U (2) and V (2) on the right-hand side of ( 6.1.48) are provided in ( 6.1.30) and

( 6.1.31), respectively. By identifying the coefficients of various terms on two sides of ( 6.1.48), we

derive the following equations, which can be solved to find all undetermined coefficients.

1. Coefficients of eiSnψn(x,θ):
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Identifying the coefficients of eiSnψn(x,θ) results in the equations

−iΩn(θ)an −Λn(θ)bn =− iΩn(θ)

g
u1T − iΛ′

n(θ)u1X ,

gan − iΩn(θ)bn =−u1T ,

(6.1.51)

which can be solved as an =
1
g

u1T +
Λ′

n(θ)

Ωn(θ)
u1X +

iΩn(θ)

g
u2,

bn = u2.

(6.1.52)

Here, u2 = u2(X ,T ) is an arbitrary smooth function that depends on X and T .

2. Coefficients of eiSnψk(x,θ) for k ̸= n:

Identifying the coefficients of eiSnψk(x,θ) for any k ≥ 0 except n leads to the equations

−iΩn(θ)ak −Λk(θ)bk =−iu1X
(
Λn(θ)−Λk(θ)

)
⟨∂ψn

∂θ
,ψk⟩,

gak − iΩn(θ)bk = 0,
(6.1.53)

which can be solved as 
ak =

Ωn(θ)

g
⟨∂ψn

∂θ
,ψk⟩u1X ,

bk =−i⟨∂ψn

∂θ
,ψk⟩u1X .

(6.1.54)

3. Coefficients of e2iSnψk(x,2θ):

Identifying the coefficients of e2iSnψk(x,2θ) for any k ≥ 0 leads to the equations

−2iΩn(θ)ck −Λk(2θ)dk =− iΩn(θ)

g
pk(θ)u2

1,

gck −2iΩn(θ)dk =
1
2

qk(θ)u2
1,

(6.1.55)

where pk(θ) and qk(θ) are defined in ( 6.1.32) and ( 6.1.33). Then the solution to ( 6.1.55) isck = c̃k(θ)u2
1,

dk = d̃k(θ)u2
1,

(6.1.56)

with

c̃k(θ) :=
1
2g

4Λn(θ)pk(θ)−Λk(2θ)qk(θ)

4Λn(θ)−Λk(2θ)
,

d̃k(θ) :=
iΩn(θ)

g
qk(θ)− pk(θ)

4Λn(θ)−Λk(2θ)
.

(6.1.57)
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In Appendix A, we show that the denominator
(
4Λn(θ)−Λk(2θ)

)
may vanish for certain

values of n and θ . We exclude them in the present analysis.

4. Coefficients of ψk(x,0):

Identifying the coefficients of ψk(x,0) for k > 0 results in the following equations

−Λk(0) fk =− iΩn(θ)

2g
⟨α2(x,θ),ψk(0)⟩ |u1|2 +

1
2
⟨∂xB0[b]b(x),ψk(0)⟩ϕX ,

gek =
1
2
⟨Λ2

n(θ)|ψn|2 −|ℓθ (ψn)|2,ψk(0)⟩ |u1|2,
(6.1.58)

and identifying the coefficients of ψ0(x,0) = 1√
2π

gives

gη̄ =− 1
2π

κ1(θ) |u1|2 −ϕT . (6.1.59)

Solving above equations, we find
fk = f̃k(θ) |u1|2 + f̆k ϕX ,

ek = ẽk(θ) |u1|2,

η̄ =−1
g

( 1
2π

κ1(θ) |u1|2 +ϕT
)
,

(6.1.60)

where we denote

f̃k(θ) :=
iΩn(θ)

2gΛk(0)
⟨α2(x,θ),ψk(0)⟩,

f̆k :=− 1
2Λk(0)

⟨∂xB0[b]b(x),ψk(0)⟩,

ẽk(θ) :=
1
2g

⟨Λ2
n(θ)|ψn|2 −|ℓθ (ψn)|2,ψk(0)⟩.

(6.1.61)

Since Λk(0) ̸= 0 when k ̸= 0, all f̃k(θ) and f̆k are well-defined.
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6.2 Analysis at Order ε3: Solvability Condition (S2)

At order ε3, U (3) and V (3) in ( 6.1.3) can be computed as

U (3) =−η
(2)
T +

(
G(1)[b]ξ (2)+Dxη

(1)Dxξ
(2)−G(0)[b]η(1)G(0)[b]ξ (2)

)
+

[
G(2)[b]ξ (1)+Dxη

(2)Dxξ
(1)−G(0)[b]η(2)G(0)[b]ξ (1)+Dxη

(1)DX ξ
(1)

−G(0)[b]η(1)G(1)[b]ξ (1)+DX η
(1)Dxξ

(1)−G(1)[b]η(1)G(0)[b]ξ (1)

− 1
2

(
G(0)[b](η(1))2D2

xξ
(1)+D2

x(η
(1))2G(0)[b]ξ (1)−2G(0)[b]η(1)G(0)[b]η(1)G(0)[b]ξ (1)

)]
,

V (3) =−ξ
(2)
T −ξ

(1)
x ξ

(1)
X −ξ

(1)
x ξ

(2)
x +η

(1)
x ξ

(1)
x G(0)[b]ξ (1)

+
(
G(0)[b]ξ (1))(G(0)[b]ξ (2)+G(1)[b]ξ (1)+Dxη

(1)Dxξ
(1)−G(0)[b]η(1)G(0)[b]ξ (1)

)
.

(6.2.1)

The formulas of U (3) and V (3) in ( 6.2.1) are similar to those in ( 4.2.19) from Chapter 4 (after

substituting G(0), G(1) and G(2) into ( 4.2.19)).

Now we examine the solvability conditions (S1) and (S2) at order O(ε3), which lead to the NLS

equation. Because U (3) and V (3) consist of numerous terms, for the clarity of computation, we label

different terms in U (3) as U (3)
i and in V (3) as V (3)

j :

U (3)
1 :=−η

(2)
T , U (3)

2 := G(2)[b]ξ (1), U (3)
3 := G(1)[b]ξ (2),

U (3)
4 := Dxη

(2)Dxξ
(1)−G(0)[b]η(2)G(0)[b]ξ (1),

U (3)
5 := Dxη

(1)DX ξ
(1)−G(0)[b]η(1)G(1)[b]ξ (1),

U (3)
6 := DX η

(1)Dxξ
(1)−G(1)[b]η(1)G(0)[b]ξ (1),

U (3)
7 :=−1

2
(
G(0)[b](η(1))2D2

xξ
(1)+D2

x(η
(1))2G(0)[b]ξ (1)),

U (3)
8 := G(0)[b]η(1)G(0)[b]η(1)G(0)[b]ξ (1),

U (3)
9 := Dxη

(1)Dxξ
(2), U (3)

10 :=−G(0)[b]η(1)G(0)[b]ξ (2).

(6.2.2)

V (3)
1 :=−ξ

(2)
T , V (3)

2 :=−ξ
(1)
x ξ

(1)
X , V (3)

3 :=−ξ
(1)
x ξ

(2)
x ,

V (3)
4 := (G(0)[b]ξ (1))(G(0)[b]ξ (2)), V (3)

5 := (G(0)[b]ξ (1))(G(1)[b]ξ (1)),

V (3)
6 := (G(0)[b]ξ (1))(Dxη

(1)Dxξ
(1)), V (3)

7 :=−(G(0)[b]ξ (1))(G(0)[b]η(1)G(0)[b]ξ (1)),

V (3)
8 := η

(1)
x ξ

(1)
x G(0)[b]ξ (1).

(6.2.3)

Furthermore, we denote P(3)
i as the coefficients of eiSnψn(x,θ) in U (3)

i , and Q(3)
i as the coefficients

of eiSnψn(x,θ) in V (3)
j .

By computing and combining all P(3)
i and Q(3)

i , we obtain P(3)+
iΩn(θ)

g
Q(3) in condition (S2),
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leading us to the following proposition.

Proposition 6.3. At order O(ε3), the solvability condition (S2) for ( 6.1.3) reads as

2i
(
u2T +Ω

′
n(θ)u2X

)
+Ω

′′
n(θ)u1XX = χ1(θ)u1|u1|2 −

1
Ωn(θ)

(
κ1(θ)ϕT +κ2(θ)ϕX

)
u1, (6.2.4)

where κ1(θ) is given in ( 6.1.34),

κ2(θ) := Ωn(θ)
(

2i⟨ℓθ (ψn),ψn⟩−
(
∑
k>0

1
2Λk(0)

⟨∂xB0[b]b(x),ψk(0)⟩⟨ψk(0), iα2(x,θ)⟩+ c.c.
))

,

(6.2.5)

and

χ1(θ) :=
Ωn(θ)

g

( 1
Λn(θ)

r3(θ)+Λn(θ)r4(θ)+2Λ
2
n(θ)r5(θ)+2r6(θ)

)
. (6.2.6)

Coefficients r3,r4,r5 and r6 are defined in ( 6.2.27), ( 6.2.35), ( 6.2.44) and ( 6.2.54), respectively.

Furthermore, coefficients κ1(θ), κ2(θ) and χ1(θ) are all real.

To simplify the computation of P(3)+
iΩn(θ)

g
Q(3), we will group U (3)

i and V (3)
j by their charac-

teristics, and divide the entire proof into 6 steps for clarity.

• Step 1: Combination of terms U (3)
1 , U (3)

2 , U (3)
3 and V (3)

1 .

All U (3)
1 , U (3)

2 , U (3)
3 and V (3)

1 are the linear terms in U (3) and V (3), which contribute to the coefficients

of linear terms in the NLS equation.

Lemma 6.2. The linear terms U (3)
1 , U (3)

2 , U (3)
3 and V (3)

1 contribute

3

∑
i=1

P(3)
i +

iΩn(θ)

g
Q(3)

1 =−Ωn(θ)

g

(
2i
(
u2T +Ω

′
n(θ)u2X

)
+Ω

′′
n(θ)u1XX

)
(6.2.7)

to P(3)+
iΩn(θ)

g
Q(3).

Proof. Firstly, we compute coefficients P(3)
1 , P(3)

2 , P(3)
3 and Q(3)

1 .

1. From the expressions of η(2) and ξ (2) in ( 6.1.45), we have in U (3)
1 and V (3)

1P(3)
1 =−anT =−1

g
u1T T − Λ′

n(θ)

Ωn(θ)
u1XT − iΩn(θ)

g
u2T ,

Q(3)
1 =−bnT =−u2T .

(6.2.8)

2. Using ξ (1) in ( 6.1.2) and G(2)
I [b] defined in ( 5.2.4), the eiSnψn term in U (3)

2 comes from

G(2)
I [b]

(
u1eiSnψn

)
=

1
2

DXX u1 eiSn∂θθ G[b,Dx +θ ]ψn.
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Applying Lemma 5.3, we have

P(3)
2 =− 1

2
u1XX ⟨∂θθ G[b,Dx +θ ]ψn,ψn⟩

=− 1
2

Λ
′′
n(θ)u1XX −u1XX

(
⟨G[b,Dx +θ ]

∂ψn

∂θ
,
∂ψn

∂θ
⟩−Λn(θ)||

∂ψn

∂θ
||2
)
.

(6.2.9)

3. Using ξ (2) in ( 6.1.45) and G(1)
I [b] defined in ( 5.2.3), the eiSnψn term in U (3)

3 comes from

G(1)
I [b]

(
bn eiSnψn + ∑

k ̸=n
bk eiSnψk

)
=− ibnX eiSn∂θ G[b,Dx +θ ]ψn − i ∑

k ̸=n
bkX eiSn∂θ G[b,Dx +θ ]ψk.

Then the coefficient of eiSnψn is

P(3)
3 =−ibnX ⟨∂θ G[b,Dx +θ ]ψn,ψn⟩− i ∑

k ̸=n
bkX ⟨∂θ G[b,Dx +θ ]ψk,ψn⟩. (6.2.10)

We substitute bn and bk from ( 6.1.46) into ( 6.2.10), and then use ( 5.2.11) to rewrite

P(3)
3 =− iΛ′

n(θ)u2X −u1XX ∑
k ̸=n

⟨∂ψn

∂θ
,ψk⟩⟨∂θ G[b,Dx +θ ]ψk,ψn⟩

=− iΛ′
n(θ)u2X −u1XX ⟨∂θ G[b,Dx +θ ]

(
∑
k ̸=n

⟨∂ψn

∂θ
,ψk⟩ψk

)
,ψn⟩.

(6.2.11)

When decomposing
∂ψn

∂θ
in terms of the basis {ψk(x,θ)}k≥0, we have

∂ψn

∂θ
−⟨∂ψn

∂θ
,ψn⟩ψn = ∑

k ̸=n
⟨∂ψn

∂θ
,ψk⟩ψk. (6.2.12)

Substituting ( 6.2.12) into ( 6.2.11) and using ( 5.2.11) again, we obtain

P(3)
3 =−iΛ′

n(θ)u2X −u1XX

(
⟨∂θ G[b,Dx +θ ]

∂ψn

∂θ
,ψn⟩−Λ

′
n(θ)⟨

∂ψn

∂θ
,ψn⟩

)
. (6.2.13)

Applying Lemma 5.4, we observe that the second term in ( 6.2.13) is canceled with the second

term in ( 6.2.9), which implies

P(3)
2 +P(3)

3 =−1
2

Λ
′′
n(θ)u1XX − iΛ′

n(θ)u2X . (6.2.14)
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Therefore, combining ( 6.2.8) and ( 6.2.14) gives

3

∑
i=1

P(3)
i +

iΩn(θ)

g
Q(3)

1

=− 1
g

u1T T − Λ′
n(θ)

Ωn(θ)
u1XT − 1

2
Λ
′′
n(θ)u1XX − 2iΩn(θ)

g
u2T − iΛ′

n(θ)u2X .

(6.2.15)

By differentiating the dispersion relation ( 5.1.3) twice, we find

Λ
′
n(θ) =

2
g

Ωn(θ)Ω
′
n(θ) and Λ

′′
n(θ) =

2
g

(
Ωn(θ)Ω

′′
n(θ)+Ω

′2
n (θ)

)
. (6.2.16)

Substituting ( 6.2.16) into ( 6.2.15) and also using ( 6.1.6), we can simplify the terms in ( 6.2.15) as

follows:

− 1
2

Λ
′′
n(θ)u1XX − 1

g
u1T T − Λ′

n(θ)

Ωn(θ)
u1XT

=− Ωn(θ)

g

(
Ω

′′
n(θ)u1XX +

1
Ωn(θ)

(
u1T +Ω

′
n(θ)u1X

)
T +

Ω′
n(θ)

Ωn(θ)

(
u1T +Ω

′
n(θ)u1X

)
X

)
=− Ωn(θ)

g
Ω

′′
n(θ)u1XX ,

(6.2.17)

and

−2iΩn(θ)

g
u2T − iΛ′

nu2X =
−2iΩn

g

(
u2T +Ω

′
nu2X

)
, (6.2.18)

which completes the proof of Lemma 6.2.

Remark 1. Different from the linear terms in Lemma 6.2, identifying the eiSnψn terms in the nonlin-

ear U (3)
i and V (3)

j is more challenging. The strategy is considering all combinations that yield eiSn ,

because operators D and G[b] preserve eiSn .

Specifically, we first find all combinations in U (3)
i or V (3)

j that contain eiSn , and these combi-

nations provide us θ -periodic functions. Next, we multiply these θ -periodic functions by e−iSn to

obtain periodic functions, which can be decomposed in terms of the basis {ψk(x,θ)}k. Then the co-

efficients P(3)
i or Q(3)

j can be computed as the inner product of the periodic functions with ψn(x,θ).

I will explain this computational process through an example later.

• Step 2: Combination of terms U (3)
5 , U (3)

6 , V (3)
2 and V (3)

5 .

Lemma 6.3. The terms U (3)
5 , U (3)

6 , V (3)
2 and V (3)

5 contribute coefficient

P(3)
5 +P(3)

6 +
iΩn(θ)

g

(
Q(3)

2 +Q(3)
5

)
=−r1(θ)

2iΩn(θ)

g
u1 ϕX , (6.2.19)

to P(3)+
iΩn(θ)

g
Q(3), where

r1(θ) = ⟨ℓθ (ψn),ψn⟩. (6.2.20)
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Proof. We compute each coefficient as follows.

1. The eiSnψn term in U (3)
5 comes from a combination of the first term ( iΩn(θ)

g u1eiSnψn) in η(1)

and the third term ϕ in ξ (1) given in ( 6.1.2), that is,

Dx
( iΩn(θ)

g
u1eiSnψn

)
DX(ϕ)−G(0)

I [b]
( iΩn(θ)

g
u1eiSnψn

)
G(1)

II [b](ϕ).

Remark 2. As the first example of nonlinear term, here we present the detailed computation

process, which will be omitted in the future. For the θ -periodic function

Dx
( iΩn(θ)

g
u1eiSnψn

)
DX(ϕ)−G(0)

I [b]
( iΩn(θ)

g
u1eiSnψn

)
G(1)

II [b](ϕ),

we first multiple e−iSn to get a periodic function, and then we can take the inner product with

ψn to compute the coefficient P(3)
5 of eiSnψn term in U (3)

5 :

⟨e−iSnDx
( iΩn(θ)

g
u1eiSnψn

)
DX(ϕ),ψn⟩−⟨e−iSnG(0)

I [b]
( iΩn(θ)

g
u1eiSnψn

)
G(1)

II [b](ϕ),ψn⟩

=
iΩn(θ)

g
⟨e−iSnDx

(
u1eiSnψn

)
(−iϕX),ψn⟩−

iΩn(θ)

g
⟨e−iSnG(0)

I [b]u1eiSn
(
ψnG(1)

II [b](ϕ)
)
,ψn⟩

=− i
iΩn(θ)

g
⟨e−iSnDx

(
u1ϕX eiSnψn

)
,ψn⟩−

iΩn(θ)

g
u1⟨e−iSneiSnG[b,Dx +θ ]

(
ψnG(1)

II [b](ϕ)
)
,ψn⟩

=(−i)2 iΩn(θ)

g
u1ϕX⟨e−iSneiSnℓθ (ψn),ψn⟩−

iΩn(θ)

g
u1⟨ψnG(1)

II [b](ϕ),G[b,Dx +θ ]ψn⟩

=(−i)2 iΩn(θ)

g
u1ϕX⟨ℓθ (ψn),ψn⟩−

iΩn(θ)

g
u1⟨ψnG(1)

II [b](ϕ),Λn(θ)ψn⟩

=− iΩn(θ)

g
u1ϕX⟨ℓθ (ψn),ψn⟩−

iΩn(θ)

g
Λn(θ)u1⟨G(1)

II [b]ϕ, |ψn|2⟩.

Since G(1)
II [b]ϕ will be eliminated later, there is no need to substitute ( 5.2.40) here.

Therefore, the coefficient P(3)
5 is

P(3)
5 =− iΩn(θ)

g
u1ϕX⟨ℓθ (ψn),ψn⟩−

iΩn(θ)

g
Λn(θ)u1⟨G(1)

II [b]ϕ, |ψn|2⟩. (6.2.21)

2. U (3)
6 does not contain any term of the form eiSnψn, which implies P(3)

6 = 0.

3. Using the first term (u1eiSnψn) and the third term ϕ in ξ (1), the eiSnψn term in V (3)
2 comes

from the combination

−
(
∂x(u1eiSnψn)

)(
ϕX
)
,

which has the coefficient

Q(3)
2 =−u1ϕX⟨ℓθ (ψn),ψn⟩. (6.2.22)
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4. Using the first term (u1eiSnψn) and the third term ϕ in ξ (1), the eiSnψn term in V (3)
5 comes

from the combination

(G(0)
I [b]u1eiSnψn)(G

(1)
II [b]ϕ).

Using G(0)
I [b] defined in ( 5.2.2), we compute the coefficient Q(3)

5 as

Q(3)
5 = Λn(θ)u1⟨ψnG(1)

II [b]ϕ,ψn⟩= Λn(θ)u1⟨G(1)
II [b]ϕ, |ψn|2⟩.

In summary, combining all the computations above yields

P(3)
5 +P(3)

6 +
iΩn(θ)

g

(
Q(3)

2 +Q(3)
5

)
=−2iΩn(θ)

g
u1ϕX⟨ℓθ (ψn),ψn⟩. (6.2.23)

• Step 3: Term U (3)
4 .

Notation 6.4. For convenience, we introduce the following notations:
γ1k(θ) := ⟨ℓ2θ

(
ψnℓθ (ψn)

)
,ψk(2θ)⟩,

γ2k(θ) := ⟨(ℓθ

(
ψn)
)2
,ψk(2θ)⟩,

γ3k(θ) := ⟨ψ2
n ,ψk(2θ)⟩.

(6.2.24)

Then we can rewrite pk(θ) in ( 6.1.32) and qk(θ) in ( 6.1.33) aspk(θ) = γ1k +Λn(θ)Λk(2θ)γ3k,

qk(θ) = Λ2
n(θ)γ3k − γ2k.

(6.2.25)

Lemma 6.4. U (3)
4 contributes the following coefficient to P(3)+

iΩn(θ)

g
Q(3):

P(3)
4 =−1

g

(
κ1(θ)u1ϕT − r3(θ)u1|u1|2

)
, (6.2.26)

where κ1 is defined in ( 6.1.34) and

r3(θ) =−||Λ2
n(θ)|ψn|2 −|ℓθ (ψn)|2||2

+
1
2 ∑

k≥0

4Λn(θ)pk(θ)−Λk(2θ)qk(θ)

4Λn(θ)−Λk(2θ)

(
γ2k −Λ

2
n(θ)γ3k

)
.

(6.2.27)

Proof. From the expressions of η(2) in ( 6.1.45) and ξ (1) in ( 6.1.2), we find two combinations in

U (3)
4 that contain eiSnψn terms.
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1. One combination is

Dx
(
∑
k≥0

cke2iSnψk(2θ)
)
Dx
(
u1eiSnψn

)
−G(0)[b]

(
∑
k≥0

cke2iSnψk(2θ)
)
G(0)[b]

(
u1eiSnψn

)
,

which contributes coefficient

(i) =−u1 ∑
k≥0

ck⟨ℓθ

(
ψk(2θ)ℓθ (ψn)

)
,ψn⟩−u1Λ

2
n(θ) ∑

k≥0
ck⟨ψk(2θ)ψn,ψn⟩ (6.2.28)

to P(3)
4 .

Remark 3. Here we explain the computation of ⟨ℓθ

(
ψk(2θ)ℓθ (ψn)

)
,ψn⟩ as follows:

⟨ℓθ

(
ψk(2θ)ℓθ (ψn)

)
,ψn⟩=−⟨ψk(2θ)ℓθ (ψn), ℓθ (ψn)⟩=−⟨ψk(2θ),(ℓθ (ψn))

2⟩= γ2k,

where we use ( 6.1.10) and ( 6.2.24) in the above computation.

Substituting ck in ( 6.1.47), (i) can be expressed as

(i) =
u1|u1|2

2g ∑
k

4Λn(θ)pk(θ)−Λk(2θ)qk(θ)

4Λn(θ)−Λk(2θ)

(
γ2k −Λ

2
n(θ)γ3k

)
(6.2.29)

If we also substitute pk(θ) and qk(θ) in ( 6.2.25), (i) can be expressed in terms of γik as

(i) =
u1|u1|2

2g ∑
k

1
4Λn(θ)−Λk(2θ)

(
4Λn(θ)γ1kγ2k −4Λ

3
n(θ)γ1kγ3k +Λk(2θ)|γ2k|2

−Λ
2
n(θ)Λk(2θ)γ2kγ3k +3Λ

2
n(θ)Λk(2θ)γ2kγ3k −3Λ

4
n(θ)Λk(2θ)|γ3k|2

)
.

(6.2.30)

2. Another combination is

Dx
(
∑
k>0

ekψk(0)+ c.c.+ η̄
)
Dx
(
u1eiSnψn

)
−G(0)[b]

(
∑
k>0

ekψk(0)+ c.c.+ η̄
)
G(0)[b]

(
u1eiSnψn

)
,

which contributes coefficient

(ii) = u1⟨∑
k>0

ekψk(0)+ c.c.+ η̄ , |ℓθ (ψn)|2⟩−u1Λ
2
n(θ)⟨∑

k>0
ekψk(0)+ c.c.+ η̄ , |ψn|2⟩,

(6.2.31)

to P(3)
4 .

Substituting ek and η̄ given in ( 6.1.47), we obtain

(ii) =−1
g

u1|u1|2||Λ2
n(θ)|ψn|2 −|ℓθ (ψn)|2||2 −

1
g

u1ϕT
(
||ℓθ (ψn)||2 −Λ

2
n(θ)

)
. (6.2.32)
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In summary,

P(4)
3 =

1
2g

u1|u1|2 ∑
k

4Λn(θ)pk(θ)−Λk(2θ)qk(θ)

4Λn(θ)−Λk(2θ)

(
γ2k −Λ

2
n(θ)γ3k

)
−1

g
u1|u1|2||Λ2

n(θ)|ψn|2 −|ℓθ (ψn)|2||2

−1
g

u1ϕT
(
||ℓθ (ψn)||2 −Λ

2
n(θ)

)
.

(6.2.33)

• Step 4: Combination of terms U (3)
7 , V (3)

6 and V (3)
8 .

Lemma 6.5. The terms U (3)
7 , V (3)

6 and V (3)
8 contribute the coefficient

P(3)
7 +

iΩn(θ)

g

(
Q(3)

6 +Q(3)
8

)
= r4(θ)

Ω2
n(θ)

g2 Λn(θ)u1|u1|2, (6.2.34)

to P(3)+
iΩn(θ)

g
Q(3), where

r4(θ) = ⟨−2θ
2|ψn|2 +2iθ(ψnψ

′
n −ψnψ ′

n)+ψnψ
′′
n +ψnψ ′′

n , |ψn|2⟩. (6.2.35)

In Lemma 6.5, we use ′ to denote ∂x for convenience, although it is not rigorous. Thus ψ ′
n = ∂xψn

and ψ ′′
n = ∂xxψn.

Proof. 1. Substituting η(1) and ξ (1) in ( 6.1.2) into U (3)
7 , we find two different combinations in

U (3)
7 that contain eiSnψn terms. One combination involves selecting (

2Ω2
n(θ)

g2 |u1|2|ψn|2) from

(η(1))2 and (u1eiSnψn) from ξ (1):

−1
2

G(0)[b]
(2Ω2

n(θ)

g2 |u1|2|ψn|2
)
D2

x
(
u1eiSnψn

)
− 1

2
D2

x
(2Ω2

n(θ)

g2 |u1|2|ψn|2
)
G(0)[b]

(
u1eiSnψn

)
.

This θ -periodic function contributes coefficient (i) to P(3)
7 , where

(i) =
Ω2

n(θ)

g2 u1|u1|2Λn(θ)
(
⟨|ψn|2ℓ2

θ (ψn),ψn⟩+ ⟨ℓθ (ℓθ (|ψn|2ψn)),ψn⟩
)
. (6.2.36)

Another combination involves selecting (
iΩn(θ)

g
u2

1e2iSnψn)
2 from (η(1))2 and (u1eiSnψn) from

ξ (1):

−1
2

G(0)[b]
(−Ω2

n(θ)

g2 u2
1e2iSnψ

2
n
)
D2

x
(
u1eiSnψn

)
− 1

2
D2

x
(−Ω2

n(θ)

g2 u2
1e2iSnψ

2
n
)
G(0)[b]

(
u1eiSnψn

)
.
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The coefficient of eiSnψn in above θ -periodic function is

(ii) =−Ω2
n(θ)

2g2 u1|u1|2Λn(θ)
(
⟨ψ2

n ℓ
2
θ
(ψn),ψn⟩+ ⟨ℓθ (ℓθ (|ψn|2ψn)),ψn⟩

)
. (6.2.37)

Therefore,

P(3)
7 = (i)+(ii) =

Ω2
n(θ)

g2 Λn(θ)u1|u1|2⟨|ψn|2ℓ2
θ (ψn),ψn⟩. (6.2.38)

Remark 4. We provide some details about the computation in ( 6.2.38).

Using ( 6.1.10), we compute

⟨|ψn|2ℓ2
θ (ψn),ψn⟩+ ⟨ℓθ (ℓθ (|ψn|2ψn)),ψn⟩−

1
2
⟨ψ2

n ℓ
2
θ
(ψn),ψn⟩−

1
2
⟨ℓθ (ℓθ (|ψn|2ψn)),ψn⟩

=⟨|ψn|2ℓ2
θ (ψn),ψn⟩+

1
2
⟨ℓθ (ℓθ (|ψn|2ψn)),ψn⟩−

1
2
⟨ψ2

n ψn, ℓ
2
θ (ψn)⟩

=⟨|ψn|2ℓ2
θ (ψn),ψn⟩+

(−1)2

2
⟨|ψn|2ψn, ℓ

2
θ (ψn)⟩−

1
2
⟨|ψn|2ψn, ℓ

2
θ (ψn)⟩

=⟨|ψn|2ℓ2
θ (ψn),ψn⟩.

2. Turning to V (3)
6 , we identify 3 combinations that include eiSnψn term, which are as follows:

(
G(0)[b]

(
u1eiSnψn

))(
Dx
( iΩn(θ)

g
u1eiSnψn

)
Dx
(
u1eiSnψn

))
,(

G(0)[b]
(
u1eiSnψn

))(
Dx
( iΩn(θ)

g
u1eiSnψn

)
Dx
(
u1eiSnψn

))
,(

G(0)[b]
(
u1eiSnψn

))(
Dx
( iΩn(θ)

g
u1eiSnψn

)
Dx
(
u1eiSnψn

))
.

Calculating their coefficients of eiSnψn leads to

Q(3)
6 =− iΩn(θ)

g
Λn(θ)u1|u1|2⟨ψnℓ2θ (ψnℓθ (ψn)),ψn⟩

+
iΩn(θ)

g
Λn(θ)u1|u1|2⟨ψn(ψnℓθ (ψn))

′,ψn⟩

− iΩn(θ)

g
Λn(θ)u1|u1|2⟨ψn(ψn(ℓθ ψn))

′,ψn⟩.

(6.2.39)

3. Because V (3)
8 has a similar structure with V (3)

6 , the eiSnψn terms in V (3)
8 are also provided by
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three combinations.

( iΩn(θ)

g
u1eiSnψn

)′(u1eiSnψn
)′G(0)[b]

(
u1eiSnψn

)
,

( iΩn(θ)

g
u1eiSnψn

)′(u1eiSnψn
)′G(0)[b]

(
u1eiSnψn

)
,

( iΩn(θ)

g
u1eiSnψn

)′(u1eiSnψn
)′G(0)[b]

(
u1eiSnψn

)
,

which contribute to coefficient

Q(8)
3 =− iΩn(θ)

g
Λn(θ)u1|u1|2⟨|ℓθ (ψn)|2ψn,ψn⟩

+
iΩn(θ)

g
Λn(θ)u1|u1|2⟨|ℓθ (ψn)|2ψn,ψn⟩

+
iΩn(θ)

g
Λn(θ)u1|u1|2⟨(ℓθ (ψn))

2
ψn,ψn⟩

=
iΩn(θ)

g
Λn(θ)u1|u1|2⟨(ℓθ (ψn))

2
ψn,ψn⟩.

(6.2.40)

In summary, U (3)
7 , V (3)

6 and V (3)
8 contribute the following coefficient

P(3)
7 +

iΩn(θ)

g
(Q(3)

6 +Q(3)
8 )

=
Ω2

n(θ)

g2 Λn(θ)u1|u1|2
(
⟨|ψn|2ℓ2

θ (ψn),ψn⟩+ ⟨ψnℓ2θ (ψnℓθ (ψn)),ψn⟩

−⟨ψn(ψnℓθ (ψn))
′,ψn⟩+ ⟨ψn(ψn(ℓθ ψn))

′,ψn⟩

−⟨(ℓθ (ψn))
2
ψn,ψn⟩

)
.

(6.2.41)

Using the definition of ℓθ in ( 6.1.7), we can rewrite ( 6.2.41) as

Ω2
n(θ)

g2 Λn(θ)u1|u1|2⟨−2θ
2|ψn|2 +2iθ(ψnψ

′
n −ψnψ ′

n)+(ψnψ
′′
n +ψnψ ′′

n ), |ψn|2⟩. (6.2.42)

• Step 5: Combination of terms U (3)
8 and V (3)

7 .

Lemma 6.6. U (3)
8 and V (3)

7 contribute the following coefficient to P(3)+
iΩn(θ)

g
Q(3):

P(3)
8 +

iΩn(θ)

g
Q(3)

7 = r5(θ)
2Ω2

n(θ)

g2 Λ
2
n(θ)u1|u1|2. (6.2.43)
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Recalling γ3k defined in ( 6.2.24), we have

r5(θ) = ∑
k≥0

Λk(2θ)|γ3k|2. (6.2.44)

Proof. 1. Substituting η(1) and ξ (1) in ( 6.1.2) into U (3)
8 , there are 3 combinations that contains

eiSnψn terms. The first combination is

G(0)[b]
( iΩn

g
u1eiSnψn

)
G(0)[b]

( iΩn

g
u1eiSnψn

)
G(0)[b]

(
u1eiSnψn

)
,

where the coefficient of eiSnψn in it is

(i) =
Ω2

n(θ)

g2 u1|u1|2Λ
2
n(θ)⟨ψn(G[b,Dx +2θ ]ψ2

n ),ψn⟩. (6.2.45)

The second combination is

G(0)[b]
( iΩn

g
u1eiSnψn

)
G(0)[b]

( iΩn

g
u1eiSnψn

)
G(0)[b]

(
u1eiSnψn

)
,

with the coefficient

(ii) =
Ω2

n(θ)

g2 u1|u1|2Λ
2
n(θ)⟨ψn(G[b,Dx +0]|ψn|2),ψn⟩. (6.2.46)

The last combination is given as

G(0)[b]
( iΩn

g
u1eiSnψn

)
G(0)[b]

( iΩn

g
u1eiSnψn

)
G(0)[b]

(
u1eiSnψn

)
,

with the coefficient

(iii) =−Ω2
n(θ)

g2 u1|u1|2Λ
2
n(θ)⟨ψn(G[b,Dx +0]|ψn|2),ψn⟩. (6.2.47)

We notice that (ii)+(iii) = 0, then we conclude that

P(3)
8 =

Ω2
n(θ)

g2 u1|u1|2Λ
2
n(θ)⟨ψn(x,θ)(G[b,Dx +2θ ]ψ2

n (x,θ)),ψn(x,θ)⟩. (6.2.48)

2. Turing to V (3)
7 , it has similar structure to U (3)

8 . Hence, a similar calculation shows that the
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eiSnψn terms in V (3)
7 are contained in

−
(

G(0)[b]
(
u1eiSnψn

))(
G(0)[b]

( iΩn(θ)

g
u1eiSnψn

)
G(0)[b]

(
u1eiSnψn

))
,

−
(

G(0)[b]
(
u1eiSnψn

))(
G(0)[b]

( iΩn(θ)

g
u1eiSnψn

)
G(0)[b]

(
u1eiSnψn

))
,

−
(

G(0)[b]
(
u1eiSnψn

))(
G(0)[b]

( iΩn(θ)

g
u1eiSnψn

)
G(0)[b]

(
u1eiSnψn

))
.

Then the coefficient Q(7)
3 is calculated as

Q(7)
3 =− iΩn(θ)

g
u1|u1|2Λ

2
n(θ)⟨ψn(G[b,Dx +2θ ]ψ2

n ),ψn⟩

+
iΩn(θ)

g
u1|u1|2Λ

2
n(θ)⟨ψn(G[b,Dx +0]|ψn|2),ψn⟩

− iΩn(θ)

g
u1|u1|2Λ

2
n(θ)⟨ψn(G[b,Dx +0]|ψn|2),ψn⟩

=− iΩn(θ)

g
u1|u1|2Λ

2
n(θ)⟨ψn(G[b,Dx +2θ ]ψ2

n ),ψn⟩.

(6.2.49)

In summary, we have

P(3)
8 +

iΩn(θ)

g
Q(3)

7 =
2Ω2

n(θ)

g2 u1|u1|2Λ
2
n(θ)⟨G[b,Dx +2θ ]ψ2

n (x,θ),ψ
2
n (x,θ)⟩. (6.2.50)

We can decompose the periodic function ψ2
n (x,θ) in terms of basis {ψk(x,2θ)}k.

ψ
2
n (x,θ) = ∑

k
⟨ψ2

n (θ),ψk(2θ)⟩ψk(2θ). (6.2.51)

Substituting ( 6.2.51) into ( 6.2.50) and using ( 5.2.13) (with θ in ( 5.2.13) replaced by 2θ ), we

compute ( 6.2.50) as

P(3)
8 +

iΩn(θ)

g
Q(3)

7 =
2Ω2

n(θ)

g2 u1|u1|2Λ
2
n(θ)∑

k
Λk(2θ)|⟨ψ2

n (x,θ),ψk(x,2θ)⟩|2. (6.2.52)

Substituting γ3k defined in ( 6.2.24) completes the proof.

• Step 6: Combination of terms U (3)
9 , U (3)

10 , V (3)
3 and V (3)

4 .

Lemma 6.7. U (3)
9 , U (3)

10 , V (3)
3 and V (3)

4 contribute the following coefficient to P(3)+
iΩn(θ)

g
Q(3):

P(3)
9 +P(3)

10 +
iΩn(θ)

g
(Q(3)

3 +Q(3)
4 ) = r6(θ)

2Ω2
n(θ)

g2 u1|u1|2 − r7(θ)
Ωn(θ)

g
u1ϕX , (6.2.53)
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where

r6(θ) =−∑
k

qk(θ)− pk(θ)

4Λn(θ)−Λk(2θ)

(
Λn(θ)Λk(2θ)γ3k + γ1k

)
− 1

2 ∑
k ̸=0

1
Λk(0)

|⟨α2(x,θ),ψk(0)⟩|2

(6.2.54)

and

r7(θ) =−1
2 ∑

k ̸=0

1
Λk(0)

⟨∂xB0[b]b(x),ψk(0)⟩⟨ψk(0), iα2(x,θ)⟩+ c.c.. (6.2.55)

We recall that α2 is defined in ( 6.1.17), pk,qk are defined in ( 6.2.25), and γik (for i=1,2,3) are

defined in ( 6.2.24).

Proof. 1. From the expressions of ξ (2) in ( 6.1.45) and η(1) in ( 6.1.2), we find there are two

combinations in U (3)
9 , which contain eiSnψn terms. The first combination is

Dx
( iΩn(θ)

g
u1eiSnψn

)
Dx
(
∑
k ̸=0

fkψk(0)+ c.c.
)
,

which contributes coefficient

(i) =− iΩn(θ)

g
u1 ∑

k ̸=0
⟨ℓθ

(
ψn ∂x( fkψk(0)+ c.c.)

)
,ψn⟩. (6.2.56)

Another combination is

Dx
( iΩn(θ)

g
u1eiSnψn

)
Dx
(
∑
k

dke2iSnψk(2θ)
)
,

with coefficient

(ii) =
iΩn(θ)

g
u1 ∑

k
dk⟨ℓθ

(
ψnℓ2θ (ψk(2θ))

)
,ψn⟩. (6.2.57)

Therefore,

P(3)
9 =− iΩn(θ)

g
u1 ∑

k ̸=0
⟨ fkψk(0)+ c.c,∂x

(
ℓθ (ψn)ψn

)
⟩

+
iΩn(θ)

g
u1 ∑

k
dk⟨ℓθ

(
ψnℓ2θ (ψk(2θ))

)
,ψn⟩.

(6.2.58)

2. Because U (3)
9 and U (3)

10 have similar structure, with Dx is replaced by G(0)[b], the eiSnψn terms

in U (3)
10 are contained in

−G(0)[b]
( iΩn(θ)

g
u1eiSnψn

)
G(0)[b]

(
∑
k ̸=0

fkψk(0)+ c.c.
)

−G(0)[b]
( iΩn(θ)

g
u1eiSnψn

)
G(0)[b]

(
∑
k

dke2iSnψk(2θ)
)
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with the coefficient

P(3)
10 =− iΩn(θ)

g
Λn(θ)u1 ∑

k ̸=0
Λk(0)⟨ fkψk(0)+ c.c, |ψn|2⟩

+
iΩn(θ)

g
Λn(θ)u1 ∑

k
dkΛk(2θ)⟨ψnψk(2θ),ψn⟩.

(6.2.59)

3. Turning to V (3)
3 , from the expressions of ξ (2) in ( 6.1.45) and ξ (1) in ( 6.1.2), we find there are

two combinations contain eiSnψn terms:

−∂x
(
u1eiSnψn

)
∂x
(
∑
k ̸=0

fkψk(0)+ c.c.
)
−∂x

(
u1eiSnψn

)
∂x
(
∑
k

dke2iSnψk(2θ)
)

with coefficient

Q(3)
3 = u1 ∑

k ̸=0
⟨ fkψk(0)+ c.c,∂x

(
ψnℓθ (ψn)

)
⟩−u1 ∑

k
dk⟨ℓθ (ψn)ℓ2θ (ψk(2θ)),ψn⟩. (6.2.60)

4. Since V (3)
4 has similar structure to V (3)

3 , we can easily find the two combinations contain

eiSnψn are (
G(0)[b]

(
u1eiSnψn

))(
G(0)[b]

(
∑
k ̸=0

fkψk(0)+ c.c.
))

,(
G(0)[b]

(
u1eiSnψn

))(
G(0)[b]

(
∑
k

dke2iSnψk(2θ)
))

,

and the corresponding coefficient is

Q(3)
4 =u1Λn(θ) ∑

k ̸=0
Λk(0)⟨ fkψk(0)+ c.c., |ψn|2⟩

+u1Λn(θ)∑
k

dkΛk(2θ)⟨ψnψk(2θ),ψn⟩.
(6.2.61)

In summary, U (3)
9 , U (3)

10 , V (3)
3 and V (3)

4 contribute the following coefficient to P3 +
iΩn(θ)

g
Q3.

P(3)
9 +P(3)

10 +
iΩn(θ)

g
(Q(3)

3 +Q(3)
4 )

=
2iΩn(θ)

g
u1Λn(θ)∑

k
dkΛk(2θ)⟨ψnψk(2θ),ψn⟩

−2iΩn(θ)

g
u1 ∑

k
dk⟨ℓ2θ (ψk(2θ)),ψnℓθ (ψn)⟩

+
iΩn(θ)

g
u1 ∑

k ̸=0
⟨ fkψk(0)+ c.c.,α2(x,θ)⟩,

(6.2.62)
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where α2 is defined in ( 6.1.17).

Substituting dk and fk in ( 6.1.47), we can compute ( 6.2.62) and simplify it to

P(9)
3 +P(10)

3 +
iΩn(θ)

g
(Q(3)

3 +Q(4)
3 )

=− 2Ω2
n(θ)

g2 u1|u1|2 ∑
k

qk(θ)− pk(θ)

4Λn(θ)−Λk(2θ)

(
Λn(θ)Λk(2θ)γ3k + γ1k

)
− Ω2

n(θ)

g2 u1|u1|2 ∑
k ̸=0

1
Λk(0)

|⟨iα2(x,θ),ψk(0)⟩|2

+
Ωn(θ)

2g
u1ϕX ∑

k ̸=0

1
Λk(0)

⟨∂xB0[b]b(x),ψk(0)⟩⟨ψk(0), iα2(x,θ)⟩+ c.c.,

(6.2.63)

where α2 defined in ( 6.1.17) is purely imaginary.

Now we proceed to prove Proposition 6.3 by combining all the previously established lemmas.

Proof. Proof of Proposition 6.3.

In order to to get P3 +
iΩn(θ)

g
Q3, we add all the coefficients obatined in Lemma 6.2 - 6.7, and

then the solvability condition (S2) (i.e. P3 +
iΩn(θ)

g
Q3 = 0) reads

0 =− Ωn(θ)

g
Ω

′′
n(θ)u1XX − 2iΩn(θ)

g

(
u2T +Ω

′
nu2X

)
− Ωn(θ)

g

(
2ir1(θ)+ r7(θ)

)
u1ϕX − 1

g
κ1(θ)u1ϕT

+
(1

g
r3(θ)+ r4(θ)

Ω2
n(θ)

g2 Λn(θ)+ r5(θ)
2Ω2

n(θ)

g2 Λ
2
n(θ)+ r6(θ)

2Ω2
n(θ)

g2

)
u1|u1|2.

(6.2.64)

After multiplying (− g
Ωn(θ)

) to (6.2.64), we obtain

2i
(
u2T +Ω

′
n(θ)u2X

)
+Ω

′′
n(θ)u1XX = χ1(θ)u1|u1|2 −

u1

Ωn(θ)

(
κ2ϕX +κ1ϕT

)
, (6.2.65)

where κ1(θ) and κ2(θ) are introduced in ( 6.1.34) and ( 6.2.5). κ1(θ) is obviously real by definition.

κ2(θ) is also real because both ⟨ℓθ (ψn),ψn⟩ and α2 are purely imaginary.

The coefficient of the nonlinear term u1|u1|2 is

χ1(θ) =
Ωn(θ)

g

( 1
Λn(θ)

r3(θ)+Λn(θ)r4(θ)+2Λ
2
n(θ)r5(θ)+2r6(θ)

)
, (6.2.66)

which is also real. This is proved in Appendix B.
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6.3 Analysis at Order ε3: Solvability Condition (S1)

Now we examine the solvability condition (S1) at order ε3. We begin with a lemma that will be

useful later.

Lemma 6.8. For orthonormal basis {ψk(x,0)}k≥0 for periodic functions, we have

1. When k ̸= 0 and θ = 0, we have

∫ 2π

0
ψk(x,0)dx = 0. (6.3.1)

2. For any 2π periodic function f (x), we have

∫ 2π

0
G(0)[b] f (x)dx = 0. (6.3.2)

Proof. 1. When θ = 0 and k ̸= 0, we know ψk(x,0) and ψ0(x,0) = 1√
2π

are orthonormal. There-

fore, ∫ 2π

0
ψk(x,0)dx =

√
2π⟨ψk(x,0),ψ0(x,0)⟩= 0. (6.3.3)

2. As we know Λ0(0) = 0, for any 2π periodic function f (x), we have

∫ 2π

0
G(0)[b] f (x)dx =

√
2π⟨G(0)[b] f (x),ψ0(x,0)⟩

=
√

2π⟨ f ,G(0)[b]ψ0(x,0)⟩

=
√

2πΛ0(0)⟨ f ,ψ0(x,0)⟩= 0.

(6.3.4)

Computing the ”constant terms” (terms that are independent of x and t) in U (3) from ( 6.2.1)

gives the following equation.

Proposition 6.4. At order ε3, the solvability condition (S1) of ( 6.1.3) implies

η̄T +(hb +ρ2)ϕXX −
( iΩn(θ)

gπ
r1(θ)−ρ1(θ)

)
|u1|2X = 0, (6.3.5)

where we define

hb := h− 1
2π

∫ 2π

0
B0[b]b(x)dx, (6.3.6)

ρ1(θ) :=
i

2π
∑
k>0

f̃k(θ)
∫ 2π

0
B0[b]A0[b]ψk(x,0)dx+ c.c., (6.3.7)

and

ρ2 :=
i

2π
∑
k>0

f̆k

∫ 2π

0
B0[b]A0[b]ψk(x,0)dx+ c.c. . (6.3.8)
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The operators B0[b] and A0[b] are defined in Proposition 3.1 with operator D replaced by Dx in

multiple scale regime:

B0[b]A0[b]ψk(x,0) = B0[b]sinh
(
b(x)Dx

)
sech(hDx)ψk(x,0). (6.3.9)

We recall that η̄ , f̃k(θ), f̆k, and r1(θ) are defined in ( 6.1.60), ( 6.1.61), and ( 6.2.20) respectively.

It is worth noting that hb defined in ( 6.3.6) is a modified depth that also appears in the analysis

of the effect of a periodic bottom in the KdV limit (see [6], page 854).

Proof. Recalling U (3)
i defined in ( 6.2.2), to find the ”constant terms” in U (3), we need to compute

the ”constant term” in each U (3)
i .

We observe that the variable t appears exclusively in either eiSn or e2iSn at this order. Therefore,

terms independent of t must be those that do not contain eiSn or e2iSn . To find the ”constant term”,

we only need to compute the zero-mode of t-independent term in U (3)
i .

Our computation reveals that only U (3)
1 , U (3)

2 , U (3)
3 and U (3)

6 contain non-zero ”constant terms”,

while the rest U (3)
i contribute nothing. The four non-zero ”constant terms” are computed as follows:

1. Using the expression of η(2) in ( 6.1.45), we observe that the ”constant term” in U (3)
1 is

−η̄T . (6.3.10)

2. Using the expression of ξ (1) in ( 6.1.2), we find the t-independent term in U (3)
2 is G(2)

II [b]ϕ .

Using G(2)
II [b] defined in ( 5.2.41), the ”constant term” is given by the the zero-mode of

G(2)
II [b]ϕ , which is

1
2π

∫ 2π

0
G(2)

II [b]ϕdx

=− ϕXX

2π

∫ 2π

0
h−B0[b]b(x)+DxB0[b]b(x)sinh(b(x)Dx)B0[b]b(x)dx

=−ϕXX

(
h− 1

2π

∫ 2π

0
B0[b]b(x)dx

)
=−hbϕXX .

(6.3.11)

Because B0[b]b̃(x)sinh(b̃(x)Dx)B0[b]b(x) is a periodic function of x,

∫ 2π

0
DxB0[b]b̃(x)sinh(b̃(x)Dx)B0[b]b(x)dx = 0. (6.3.12)

3. Using the expression of ξ (2) in ( 6.1.45), we find the t-independent term in U (3)
3 is

G(1)[b](∑
k>0

fkψk(x,0)+ c.c.),
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which contains the ”constant term”

1
2π

(
∑
k>0

∫ 2π

0
G(1)

III [b] fkψk(x,0)dx+ c.c.
)
. (6.3.13)

Using G(1)
III [b] defined in ( 5.2.46), we obtain

∫ 2π

0
G(1)

III [b] fkψk(x,0)dx =i fkX

∫ 2π

0
B0[b]A0[b]ψk(x,0)dx

=i
(

f̃k(θ)|u1|2X + f̆kϕXX
)∫ 2π

0
B0[b]A0[b]ψk(x,0)dx

(6.3.14)

Hence, the ”constant term” in U (3)
3 can be represented as

1
2π

(
∑
k>0

∫ 2π

0
G(1)

III [b] fkψk(x,0)dx+ c.c.
)

=
i

2π
∑
k>0

(
f̃k(θ)|u1|2X + f̆kϕXX

)∫ 2π

0
B0[b]A0[b]ψk(x,0)dx+ c.c.

=ρ1|u1|2X +ρ2ϕXX ,

(6.3.15)

where ρ1(θ) and ρ2(θ) are defined in ( 6.3.7) and ( 6.3.8), respectively.

4. In U (3)
6 , the t-independent terms arise from the following two combinations of the terms in

η(1) and ξ (1):

DX
( iΩn(θ)

g
u1eiSnψn

)
Dx
(
u1eiSnψn

)
−G(1)[b]

( iΩn(θ)

g
u1eiSnψn

)
G(0)[b]

(
u1eiSnψn

)
+DX

( iΩn(θ)

g
u1eiSnψn

)
Dx
(
u1eiSnψn

)
−G(1)[b]

( iΩn(θ)

g
u1eiSnψn

)
G(0)[b]

(
u1eiSnψn

)
(6.3.16)

Then the ”constant term” is given as

iΩn(θ)

πg
|u1|2X⟨ℓθ (ψn),ψn⟩. (6.3.17)

Remark 5. When computing ( 6.3.17), we have

1
2π

∫ 2π

0
DX
( iΩn(θ)

g
u1eiSnψn

)
Dx
(
u1eiSnψn

)
+DX

( iΩn(θ)

g
u1eiSnψn

)
Dx
(
u1eiSnψn

)
dx

=
1

2π

iΩn(θ)

g
|u1|2X

∫ 2π

0
ℓθ (ψn)ψn −ψnℓθ (ψn)dx

=
1

2π

iΩn(θ)

g
|u1|2X

(
⟨ℓθ (ψn),ψn⟩−⟨ψn, ℓθ (ψn)⟩

)
=

iΩn(θ)

πg
|u1|2X⟨ℓθ (ψn),ψn⟩
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Because ⟨ℓθ (ψn),ψn⟩ is purely imaginary, so we have

⟨ℓθ (ψn),ψn⟩−⟨ψn, ℓθ (ψn)⟩= 2⟨ℓθ (ψn),ψn⟩.

In addition, we compute

− 1
2π

∫ 2π

0
G(1)[b]

( iΩn(θ)

g
u1eiSnψn

)
G(0)[b]

(
u1eiSnψn

)
dx

− 1
2π

∫ 2π

0
G(1)[b]

( iΩn(θ)

g
u1eiSnψn

)
G(0)[b]

(
u1eiSnψn

)
dx

=
iΩn(θ)

2πg
Λn(θ)

∫ 2π

0
G(1)[b]

(
|u1|2ψnψn

)
dx−G(1)[b]

(
|u1|2ψnψn

)
dx = 0

In total, combining all ”constant terms” find in U (3)
1 , U (3)

2 , U (3)
3 and U (3)

6 yields ( 6.3.5). Using

Lemma 6.8, it is easy to check that the ”constant terms” in U (3)
i are all zero for i = 4,5,7,8,9,10.

We do not present the details here.

6.4 Derivation of NLS Equation

We introduce u := u1 + εu2 to combine (6.1.6) (at order ε2) and (6.2.4) (at order ε3) to obtain the

following equation up to order ε

2i
(
uT +Ω

′
n(θ)uX

)
+ εΩ

′′
n(θ)uXX = ε

(
χ1(θ)|u|2 −

1
Ωn(θ)

(
κ2(θ)ϕX +κ1(θ)ϕT

))
u. (6.4.1)

On the other hand, the dynamics of η and ϕ are governed by equation (6.3.5) and the following

one.

η̄ =−1
g

( 1
2π

κ1(θ)|u1|2 +ϕT
)
. (6.4.2)

Substituting ( 6.4.2) into ( 6.3.5) to eliminate η̄ , we obtain (up to leading order)

ϕT T −g
(
hb +ρ2

)
ϕXX =−

( iΩn(θ)

π
r1(θ)−gρ1(θ)

)
|u|2X − 1

2π
κ1(θ)|u|2T . (6.4.3)

Using (6.1.6), we can simplify ( 6.4.3) as

ϕT T −g
(
hb +ρ2

)
ϕXX = κ3(θ)|u|2X , (6.4.4)

where

κ3(θ) :=− iΩn(θ)

π
r1(θ)+gρ1(θ)+

Ω′
n(θ)

2π
κ1(θ). (6.4.5)

r1(θ), ρ1(θ) and κ1(θ) are defined in ( 6.2.20), ( 6.3.7) and ( 6.1.34).

We introduce µ = X −Ω′
n(θ)T and the longer time τ = ε2t to use a reference frame moving at
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the group velocity Ω′
n(θ). Then (6.4.1) and (6.4.4) lead to (up to leading order)

2iuτ +Ω
′′
n(θ)uµµ = χ1(θ) |u|2u+κ4(θ)uϕµ (6.4.6)

and ((
Ω

′
n(θ)

)2 −g(hb +ρ2)
)

ϕµµ = κ3(θ) |u|2µ , (6.4.7)

where

κ4(θ) :=
1

Ωn(θ)

(
Ω

′
n(θ)κ1(θ)−κ2(θ)

)
. (6.4.8)

For wave number (n+θ) such that
(
Ω′

n(θ)
)2 −g(hb +ρ2) = 0, ( 6.4.7) is singular and a different

scaling needs to be considered [2] (see also Chapter 11.1 in [24]). We exclude this situation in our

work.

Substituting ( 6.4.7) into ( 6.4.6), we derive the cubic NLS equation for the modulation of a

solution with wave number (n+θ) to the water wave problem over a periodically variable bottom.

2iuτ +Ω
′′
n(θ)uµµ +χb(θ)|u|2u = 0, (6.4.9)

where

χb(θ) =−χ1(θ)−χ2(θ) (6.4.10)

and

χ2(θ) =
κ3(θ)κ4(θ)

(Ω′
n(θ))

2 −g(hb +ρ2)
. (6.4.11)

In Appendix B, we check that the coefficient χb(θ) of nonlinear term in the NLS equation is real.



Chapter 7

Perturbation Analysis for Small Bottom
Variations

7.1 Approximation of Bloch-Floquet Eigenvalues and Eigenfunctions

7.1.1 Perturbation of Simple Eigenvalues

Recalling from Chapter 3, the Bloch-Floquet spectral problem of G[b]θ = e−iθxG[b]eiθx with peri-

odic boundary condition is G[b]θ ψn(x,θ) = Λn(θ)ψn(x,θ),

ψn(x+2π,θ) = ψn(x,θ).
(7.1.1)

To perform a perturbative calculation of eignevalue Λn(θ) and eigenfunction ψn(x,θ), we express

the periodic bathymetry as

b(x) = γβ (x), (7.1.2)

and we assume that β (x) has the Fourier expansion

β (x) = ∑
k∈Z

β̂keikx (7.1.3)

with Fourier coefficients β̂k. For clarity of computation, γ is assumed to be small and independent

of the nonlinearity parameter ε .

By applying Proposition 3.1 and Proposition 3.3, we conclude that

G[b] = G[0]+DL[γβ ] = D tanh(hD)+ γDL1[β ]+ γ
2DL2[β ]+O(γ3), (7.1.4)

76
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where

DL1[β ] =−Dsech(hD) β Dsech(hD),

DL2[β ] =−Dsech(hD) β D tanh(hD) β Dsech(hD).
(7.1.5)

Notation 7.1. For convenience, we introduce the following notations:

gn(θ) = (n+θ) tanh
(
h(n+θ)

)
and sn(θ) = (n+θ)sech

(
h(n+θ)

)
. (7.1.6)

In the case of a flat bottom β = 0, the eigenvalues and normalized eigenfunctions are easily

computed as 
λ
(0)
n (θ) = (n+θ) tanh(h(n+θ)) = gn(θ),

ψ̃n
(0)
(x,θ) =

1√
2π

einx.
(7.1.7)

Here, the superscript (0) indicates the flat bottom β (x) = 0. (λn, ψ̃n) denote the eigenvalues and

normalized eigenfunctions without relabeling. Later, we will relabel them in order of increasing

magnitude of Λn(θ), as explained in Chapter 3.2, to obtain (Λn,ψn).

When θ is not too close to 0 and ±1
2 , λn(θ) is simple eigenvalue and can be approximated as

follows.

Proposition 7.1. In the case of a periodic bottom β ̸= 0, the eigenvalue λn(θ) and eigenfunction

ψ̃n(x,θ) of ( 7.1.1) have the expansions in γ around β = 0 as follows:λn(θ) = gn(θ)+ γλ
(1)
n (θ)+ γ2λ

(2)
n (θ)+ · · · ,

ψ̃n(x,θ) = α
(0)
n einx + γ ∑k ̸=n α

(1)
k eikx + γ2

∑k ̸=n α
(2)
k eikx + · · · ,

(7.1.8)

where

λ
(1)
n (θ) =0,

λ
(2)
n (θ) =− s2

n(θ)
(

∑
k∈Z

|β̂k|2gn+k(θ)+ ∑
k∈Z,
k ̸=n

|β̂n−k|2
s2

k(θ)

gk(θ)−gn(θ)

)
, (7.1.9)

and

α
(1)
k =α

(0)
n

β̂k−nsn(θ)sk(θ)

gk(θ)−gn(θ)
,

α
(2)
k =α

(0)
n

sn(θ)sk(θ)

gk(θ)−gn(θ)

(
∑
l∈Z

β̂k−n−l β̂lgn+l(θ)+ ∑
l∈Z,
l ̸=n

β̂k−l β̂l−ns2
l (θ)

1
gl(θ)−gn(θ)

)
.

(7.1.10)

Coefficient α
(0)
n is a constant used to normalize the eigenfunction ψ̃n(x,θ).

Proof. We assume that the expansions of λn(θ) and ψ̃n(x,θ) in powers of γ have the forms de-
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scribed in ( 7.1.8). Then we substitute G[b] from ( 7.1.4) and (λn, ψ̃n) from ( 7.1.8) into ( 7.1.1). By

rearranging and collecting terms according to the orders of γ , we get at O(γ)(
e−iθxG[0]eiθx)

∑
k ̸=n

α
(1)
k eikx +

(
e−iθxDL1[β ]eiθx)

α
(0)
n einx

=gn(θ) ∑
k ̸=n

α
(1)
k eikx +λ

(1)
n (θ)α

(0)
n einx,

(7.1.11)

and at O(γ2)(
e−iθxG[0]eiθx)

∑
k ̸=n

α
(2)
k eikx +

(
e−iθxDL2[β ]eiθx)

α
(0)
n einx +

(
e−iθxDL1[β ]eiθx)

∑
k ̸=n

α
(1)
k eikx

=gn(θ) ∑
k ̸=n

α
(2)
k eikx +λ

(2)
n (θ)α

(0)
n einx +λ

(1)
n ∑

k ̸=n
α
(1)
k eikx.

(7.1.12)

At O(γ), we compute the two terms in the left-hand side of ( 7.1.11) as

(
e−iθxG[0]eiθx)

∑
k ̸=n

α
(1)
k eikx = ∑

k ̸=n
α
(1)
k gk(θ)eikx, (7.1.13)

and (
e−iθxDL1[β ]eiθx)

α
(0)
n einx =

(
− e−iθxDsech(hD)β Dsech(hD)eiθx)

α
(0)
n einx

=
(
− e−iθxDsech(hD)

)(
∑
k∈Z

β̂keikx)
α
(0)
n sn(θ)ei(n+θ)x

=
(
− e−iθxDsech(hD)

)
∑
k∈Z

β̂kα
(0)
n sn(θ)ei(n+k+θ)x

=− e−iθx
∑
k∈Z

β̂kα
(0)
n sn(θ)sn+k(θ)ei(n+k+θ)x

=− ∑
k∈Z

β̂kα
(0)
n sn(θ)sn+k(θ)ei(n+k)x

=−α
(0)
n sn(θ) ∑

p∈Z
β̂p−nsp(θ)eipx,

(7.1.14)

where we use DL1[β ] in ( 7.1.5) and β in ( 7.1.3) in the above calculation. Hence, the left-hand side

of ( 7.1.11) can be expressed as

∑
k ̸=n

α
(1)
k gk(θ)eikx −α

(0)
n sn(θ) ∑

p∈Z
β̂p−nsp(θ)eipx. (7.1.15)

Identifying ( 7.1.15) with the right-hand side of ( 7.1.11), the coefficient of einx satisfies

−α
(0)
n s2

n(θ)β̂0 = λ
(1)
n (θ)α

(0)
n , (7.1.16)
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as well as the coefficient of eikx (for k ̸= n) satisfies

α
(1)
k gk(θ)−α

(0)
n sn(θ)sk(θ)β̂k−n = gn(θ)α

(1)
k . (7.1.17)

Under the assumption
∫ 2π

0 β (x)dx = 0, we require β̂0 = 0. Hence, ( 7.1.16) is solved as

λ
(1)
n (θ) = 0. (7.1.18)

Moreover, we solve ( 7.1.17) to get

α
(1)
k = α

(0)
n

β̂k−nsn(θ)sk(θ)

gk(θ)−gn(θ)
. (7.1.19)

At O(γ2), we compute three terms on the left-hand side of ( 7.1.12) in a manner analogous to

our approach at the order γ , yielding

(
e−iθxG[0]eiθx)

∑
k ̸=n

α
(2)
k eikx = ∑

k ̸=n
α
(2)
k gk(θ)eikx, (7.1.20)

(
e−iθxDL2[β ]eiθx)

α
(0)
n einx =−α

(0)
n sn(θ) ∑

p,k∈Z
β̂p−n−kβ̂kgn+k(θ)sp(θ)eipx, (7.1.21)

and (
e−iθxDL1[β ]eiθx)

∑
k ̸=n

α
(1)
k eikx =− ∑

k,q∈Z,
k ̸=n

β̂q−kα
(1)
k sk(θ)sq(θ)eiqx. (7.1.22)

Therefore, the left-hand side of ( 7.1.12) can be expressed as

∑
k ̸=n

α
(2)
k gk(θ)eikx −α

(0)
n sn(θ) ∑

p,k∈Z
β̂p−n−kβ̂kgn+k(θ)sp(θ)eipx − ∑

k,q∈Z,
k ̸=n

β̂q−kα
(1)
k sk(θ)sq(θ)eiqx

(7.1.23)

Identifying the coefficients of einx on both sides of ( 7.1.12) leads to

−α
(0)
n s2

n(θ) ∑
k∈Z

β̂−kβ̂kgn+k(θ)− sn(θ) ∑
k ̸=n

β̂n−kα
(1)
k sk(θ) = λ

(2)
n (θ)α

(0)
n . (7.1.24)

By substituting α
(1)
k from ( 7.1.19), we solve ( 7.1.24) as

λ
(2)
n (θ) =−s2

n(θ)
(

∑
k∈Z

|β̂k|2gn+k(θ)+ ∑
k ̸=n

|β̂n−k|2
s2

k(θ)

gk(θ)−gn(θ)

)
. (7.1.25)

Similarly, identifying the coefficients of eikx (for k ̸= n) on both sides of ( 7.1.12) implies that

α
(2)
k gk(θ)−α

(0)
n sn(θ)∑

l∈Z
β̂k−n−l β̂lgn+l(θ)sk(θ)−∑

l ̸=n
β̂k−lα

(1)
l sl(θ)sk(θ) = gn(θ)α

(2)
k , (7.1.26)



CHAPTER 7. PERTURBATION ANALYSIS FOR SMALL BOTTOM VARIATIONS 80

which implies that

α
(2)
k = α

(0)
n

sn(θ)sk(θ)

gk(θ)−gn(θ)

(
∑
l∈Z

β̂k−n−l β̂lgn+l(θ)+∑
l ̸=n

β̂k−l β̂l−ns2
l (θ)

1
gl(θ)−gn(θ)

)
. (7.1.27)

In above computation, α
(0)
n can be an arbitrary constant; however, we choose its value such that

the eigenfunction ψ̃n(x,θ) is normalized.

In summary, we observe that

λn(θ) = gn(θ)− γ
2s2

n(θ)
(

∑
k∈Z

|β̂k|2gn+k(θ)+ ∑
k∈Z,
k ̸=n

|β̂n−k|2
s2

k(θ)

gk(θ)−gn(θ)

)
+O(γ3), (7.1.28)

and λn(θ) contributes zero at O(γ).

As explained in Chapter 3.2, we reorder λn(θ) appropriately in order of increasing magnitude

and relabel them by Λn(θ) as follows:Λ2n(θ) = λ−n(θ), ψ2n(x,θ) = ψ̃−n(x,θ), for − 1
2 ≤ θ < 0;

Λ2n(θ) = λn(θ), ψ2n(x,θ) = ψ̃n(x,θ), for 0 ≤ θ < 1
2 ;

(7.1.29)

and Λ2n−1(θ) = λn(θ), ψ2n−1(x,θ) = ψ̃n(x,θ), for − 1
2 ≤ θ < 0;

Λ2n−1(θ) = λ−n(θ), ψ2n−1(x,θ) = ψ̃−n(x,θ), for 0 ≤ θ < 1
2 .

(7.1.30)

7.1.2 Approximation of the Spectral Gaps

Another perturbative calculation is provided in [5]. W Craig et al. compute the two eigenvalues

Λ2n−1(θ) and Λ2n(θ) perturbatively and thus give conditions for the opening of the nth spectral gap

created near θ = 0 in the presence of a periodic bottom b(x) = γβ (x). Starting by briefly recalling

their calculation near θ = 0, we extend their work and present a similar result around θ = 1
2 .

Case 1: Around θ = 0.
When b(x) = 0, the eigenvalue is double at θ = 0. We know

Λ
(0)
2n−1(0) = Λ

(0)
2n (0) = n tanh(hn) (7.1.31)

with corresponding eigenfunctions ψ
(0)
2n−1(x,θ) = e−inx and ψ

(0)
2n (x,θ) = einx respectively, as shown

in ( 3.2.13) and ( 3.2.14).

To calculate the two eigenvalues Λ2n−1(θ) and Λ2n(θ) near θ = 0 in the presence of a periodic

bottom b(x), we restrict our calculation to the subspace spanned by {e−inx,einx}, neglecting the

contribution of the other modes. In addition, we simplify the operator DL[b] in G[b] by replacing it

by its first term DL1[b] of the Taylor expansion in b(x).
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We examine the action of e−iθx
(
G[0] + γDL1[β ]

)
eiθx on periodic function αneinx +α−ne−inx,

and consider the following spectrum problem

e−iθx(G[0]+ γDL1[β ]
)
eiθx(

αneinx +α−ne−inx)= Λ(θ)
(
αneinx +α−ne−inx). (7.1.32)

Substituting the Fourier expansion of β (x) in ( 7.1.3) and DL1[β ] in ( 7.1.5), we obtain a matrix

equation (
gn(θ) −γβ̂2nsn(θ)sn(−θ)

−γβ̂2nsn(θ)sn(−θ) g−n(θ)

)(
αn

α−n

)
= Λ(θ)

(
αn

α−n

)
. (7.1.33)

Here, the eigenvalues Λ(θ) are explicitly computed as

Λ(θ) =
1
2

(
gn(θ)+gn(−θ)±

√(
gn(θ)−gn(−θ)

)2
+4γ2|β̂2n|2s2

n(θ)s2
n(−θ)

)
, (7.1.34)

where the different signs lead to two eigenvalues Λ2n−1(θ)≤ Λ2n(θ):

Λ2n−1(θ) =
1
2

(
gn(θ)+gn(−θ)−

√(
gn(θ)−gn(−θ)

)2
+4γ2|β̂2n|2s2

n(θ)s2
n(−θ)

)
,

Λ2n(θ) =
1
2

(
gn(θ)+gn(−θ)+

√(
gn(θ)−gn(−θ)

)2
+4γ2|β̂2n|2s2

n(θ)s2
n(−θ)

)
.

(7.1.35)

Especially, at θ = 0, we have Λ2n−1(0) = gn(0)− γ|β̂2n|s2
n(0)

Λ2n(0) = gn(0)+ γ|β̂2n|s2
n(0)

(7.1.36)

Therefore, if β̂2n ̸= 0, the eigenvalues Λ2n−1(0) and Λ2n(0) split and the gap between them at θ = 0

is

Λ2n(0)−Λ2n−1(0) = 2γ|β̂2n|s2
n(0), (7.1.37)

which exponentially decays as n approaches infinity.

Case 2: Around θ =
1
2

.

As shown in ( 3.2.13) and ( 3.2.14), we have double eigenvalues

Λ
(0)
2n+1(

1
2
) = Λ

(0)
2n (

1
2
) = gn(

1
2
) (7.1.38)

with corresponding eigenfunctions ψ
(0)
2n+1(x,θ) = e−i(n+1)x and ψ

(0)
2n (x,θ) = einx respectively. Sim-

ilar to the case abound 0, we consider the following spectral problem

e−iθx(G[0]+ γDL1[β ]
)
eiθx(

αneinx +α−n−1e−i(n+1)x)= Λ(θ)
(
αneinx +α−n−1e−i(n+1)x). (7.1.39)
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Examining the action of e−iθx
(
G[0] + γDL1[β ]

)
eiθx on periodic function αneinx +α−n−1e−i(n+1)x

leads to(
gn(θ) γβ̂2n+1sn(θ)s−n−1(θ)

γβ̂2n+1sn(θ)s−n−1(θ) g−n−1(θ)

)(
αn

α−n−1

)
= Λ(θ)

(
αn

α−n−1

)
. (7.1.40)

The eigenvalues Λ2n(θ)≤ Λ2n+1(θ) are explicitly computed as

Λ2n(θ) =
1
2

(
gn(θ)+g−k−1(θ)−

√(
gn(θ)−g−k−1(θ)

)2
+4γ2|β̂2n+1|2s2

n(θ)s2
−n−1(θ)

)
,

Λ2n+1(θ) =
1
2

(
gn(θ)+g−k−1(θ)+

√(
gn(θ)−g−k−1(θ)

)2
+4γ2|β̂2n+1|2s2

n(θ)s2
−n−1(θ)

)
.

(7.1.41)

When θ = 1
2 , we have

gn(
1
2
) = (n+

1
2
) tanh(n+

1
2
) = (−n−1+

1
2
) tanh(−n−1+

1
2
) = g−n−1(

1
2
),

sn(
1
2
) = (n+

1
2
)sech(n+

1
2
) = (−n−1+

1
2
)sech(−n−1+

1
2
) =−s−n−1(

1
2
),

(7.1.42)

because x tanh(x) is even and xsech(x) is odd. Therefore, we conclude thatΛ2n+1(
1
2) = gn(

1
2)+ γ|β̂2n+1|s2

n(
1
2),

Λ2n(
1
2) = gn(

1
2)− γ|β̂2n+1|s2

n(
1
2),

and the nonzero Fourier coefficients β̂2n+1 leads to a gap at θ = 1
2

Λ2n+1(
1
2
)−Λ2n(

1
2
) = 2γ|β̂2n+1|s2

n(
1
2
). (7.1.43)

in the presence of a periodic bottom.

7.2 Effect of Bottom Topography on NLS Coefficients

We recall that the cubic NLS equation derived from the flat bottom problem in Chapter 4 is

2iuτ +ω
′′(k)uµµ +χ(k)|u|2u = 0. (7.2.1)

Since ω(k) is determined by the dispersion relation

ω(k) =
√

gk tanh(hk), (7.2.2)

the coefficient ω ′′(k) in ( 7.2.1) is negative for all k.
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The coefficient χ(k) of the nonlinear term in ( 7.2.1) is defined as

χ(k) =−k3ω(k)
g

H(kh), (7.2.3)

with σ = tanh(hk) and

H(kh) =− 1
2σ

(−2σ
4 +13σ

2 −12+9σ
−2)−

(
4σ +(1−σ2)(σ + kh(1−σ2))

)2

σ
(
(σ + kh(1−σ2))2 −4khσ

) . (7.2.4)

A numerical evidence (see Figure 7.1) shows that the function H(kh) is monotonically decreas-

ing, with values that are positive when kh < 1.363 and negative when kh > 1.363. The horizontal

asymptote of H(kh) is y =−4, as shown in Figure 7.1.

Figure 7.1: Graph of H(kh)

Depending on the values of the coefficients ω ′′(k) and H(kh), there are two types of the NLS

equation. If ω ′′(k)H(kh)> 0, it is referred to as the focusing case. Conversely, if ω ′′(k)H(kh)< 0,

it is termed the defocusing case.

Furthermore, the modulational instability, also know as Benjamin-Feir instability, of a monochro-

matic wave depends on hk. For the deep water case (kh > 1.363), we have the focusing NLS equa-

tion and the solutions are modulationally unstable. For the shallow water case (kh < 1.363), we

have the defocusing NLS equation and the solutions are modulationally stable.
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Unlike ω ′′(k) < 0 in the flat bottom problem, we show that the presence of the bottom b(x)

could result in a change in the sign of Ω′′
n(θ) by providing a specific example. Specifically, we

choose a depth h = 1 and a bottom b(x) = γβ (x) with γ = 0.1 and β (x) = cosx+cos2x. The Fourier

expansion of this β (x) is

β (x) = cosx+ cos2x =
2

∑
k=−2

1
2

eikx. (7.2.5)

As β̂1 = β̂2 = 1
2 ̸= 0, the first gap occurs at θ = ±1

2 , and the second gap occurs at θ = 0. Both

of these gaps are of order O(γ). Substituting all these parameters into the different formulas of

Λn(θ) obtained in ( 7.1.8), ( 7.1.35) and ( 7.1.41), we can create a graph of Ωn(θ) =
√

gΛn(θ) for

0 ≤ n ≤ 4.

Specifically, around θ = 0 and 1
2 , we employ the eigenvalues provided in ( 7.1.35) and ( 7.1.41)

respectively. These eigenvalues are obtained from the perturbation of double eigenvalues near θ = 0

and 1
2 . However, for θ far away from 0 and 1

2 , we use the eigenvalues in ( 7.1.8), which are obtained

from the perturbation of simple eigenvalues.

From the Figure 7.2, we can see the concavity of Ω1(θ) changes around 1
2 , and the concavity of

Ω2(θ) changes around 0 because of the presence of a periodic bottom b(x). This is different with

case in the flat bottom problem that ω ′′(k) is always negative.

Figure 7.2: Graph of Ωn(θ)



Chapter 8

Conclusion and Future Work

In this thesis, we performed a modulational analysis of the two-dimensional water wave problem in

the presence of a periodic bottom. We express the solution of the water wave problem in the form

of slowly modulated Bloch-Floquet waves and derive the cubic NLS equation ( 6.4.9) that governs

the dynamics of the amplitude of wavepackets.

Furthermore, to investigate the effect of the periodic bottom on the NLS equation, we perform

perturbative calculations to the Bloch-Floquet eigenvalues Λn(θ) and eigenfunctions ψn(x,θ). We

find that the coefficient Ω′′
n(θ) of linear term in ( 6.4.9) may change the sign near θ = 0, 1

2 . Due to

the presence of the periodic bottom, the double eigenvalues Λn(θ) may split, creating a spectral gap

near θ = −1
2 ,0,

1
2 . For values of n and θ near such gaps, we observe from Figure 7.2 that Ωn(θ)

changes the concavity, indicating that Ω′′
n(θ) changes to positive for these values of n and θ .

However, because of the complexity of the formula giving the coefficient of nonlinear term in

( 6.4.9), we are unable to explicitly calculate how it is modified due to the presence of a variable

bottom. The presence of the bottom could have the effect of changing the sign of the linear and

nonlinear terms in the NLS equation, making it focusing or defocusing. In particular, in the focusing

case, the Benjamin-Feir instability may occur.

In this thesis, we construct an approximate solution of the water wave problem in the formηapp = εη(1)+ ε2η(2)+ ε3η(3)+ · · · ,

ξ app = εξ (1)+ ε2ξ (2)+ ε3ξ (3)+ · · · .
(8.1)

with explicit expressions for η(1),ξ (1),η(2) and ξ (2). Inspired by the works of [12] and [26], another

potential work in the future is to estimate how well these constructed approximate solutions satisfy

the water wave problem.

In a first step towards a justification of the validity of this approximation, we propose the fol-

lowing analysis. Denoting the original water wave system as

W (η ,ξ ) = 0, (8.2)
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one computes W (ηapp,ξ app) and estimate it in Sobolev norms. The goal is to find that for some

appropriate s and p, an estimate of the form ||W (ηapp,ξ app)||W s,p = O(εq) for some q > 2 holds.

In the case of infinite depth, Totz and Wu proved a stronger result. They compare the leading order

of the constructed approximate solution to an exact solution of the water wave problem, namely

establishing an estimate of the form ||(η ,ξ )−ε(η(1),ξ (1))||Hs over time t = O(ε−2), corresponding

to a carefully selected initial condition close to a modulated wavepacket.



Appendix A

Evaluation of the coefficient
(4Λn(θ)−Λk(2θ))

We examine whether the denominator 4Λn(θ)−Λk(2θ) = 0 that appear in the expressions of ck

and dk in ( 6.1.56) may vanish. In such cases, the analysis breaks down and a new scaling may be

required. We exclude these cases in our work. However, it is crucial to ensure that for some selected

(n,θ), 4Λn(θ) ̸= Λk(2θ) for any k.

Recalling the perturbation calculation ( 7.1.28) we conducted in Chapter 7, the effect of small

b(x) = γβ (x) on the simple eigenvalues is:

Λn(θ) = Λ
(0)
n (θ)+O(γ2). (A.1)

Therefore, if we check 4Λ
(0)
n (θ) ̸= Λ

(0)
k (2θ) for some values of (n,θ) when b(x) = 0, then by

continuity, 4Λn(θ) ̸= Λk(2θ) remains true for small enough γ .

When b(x) = 0, the eigenvalues Λ
(0)
n (θ) are reordered by their magnitude as follows (see Figure

3.1): Λ
(0)
2n (θ) = g−n(θ), ψ

(0)
2n (x,θ) = e−inx, for − 1

2 ≤ θ < 0;

Λ
(0)
2n (θ) = gn(θ), ψ

(0)
2n (x,θ) = einx, for 0 ≤ θ < 1

2 ;
(A.2)

and Λ
(0)
2n−1(θ) = gn(θ), ψ

(0)
2n−1(x,θ) = einx, for − 1

2 ≤ θ < 0;

Λ
(0)
2n−1(θ) = g−n(θ), ψ

(0)
2n−1(x,θ) = e−inx, for 0 ≤ θ < 1

2 ,
(A.3)

where gn(θ) = (n+θ) tanh(h(n+θ)).

Without loss of generality, we can choose h = 1, θ ∈ (0,1/2) and n to be an even number, that

is, n = 2n′ for some n′. Then the eigenvalue

Λ
(0)
n (θ) = gn′(θ) = (n′+θ) tanh(n′+θ). (A.4)

For Λ
(0)
k (2θ), there are two cases could happen:
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1. k is even (i.e. k = 2k′).

Λ
(0)
k (2θ) = gk′(2θ) = (k′+2θ) tanh(k′+2θ). (A.5)

For relatively large n (for example, n ≥ 4), tanh(n′+θ)≈ 1. Therefore,

4Λ
(0)
n (θ)−Λ

(0)
k (2θ) = 4(n′+θ) tanh(n′+θ)− (k′+2θ) tanh(k′+2θ)

≈ 4(n′+θ)− (k′+2θ)

= (4n′− k′)+2θ .

(A.6)

It is non-zero if 2θ ̸= 0 and 1, which means θ ̸= 0 and 1
2 .

2. k is odd (i.e. k = 2k′+1).

Λ
(0)
k (2θ) = g−k′(2θ) = (k′−2θ) tanh(k′−2θ). (A.7)

For relatively large n, we have

4Λ
(0)
n (θ)−Λ

(0)
k (2θ) = 4(n′+θ) tanh(n′+θ)− (k′−2θ) tanh(k′−2θ)

≈ 4(n′+θ)− (k′−2θ)

= (4n′− k′)+6θ .

(A.8)

It is non-zero if 6θ ̸= 0,1,2, which means θ ̸= 0, 1
6 and 1

3 .

Therefore, if we choose an even number n and θ not close to 0,1/6,1/3 and 1/2, we have 4Λ
(0)
n (θ)−

Λ
(0)
k (2θ) ̸= 0. For instance, we choose θ ∈ (2/9,5/18), which is the middle third from the interval

(1/6,1/3).

Here, we focus solely on the case that n is even and θ is positive. However, it is worth noting that

the analysis leads to the same conclusion when n is odd. Additionally, if θ is negative, θ should be

situated away from 0, −1/6, −1/3, and −1/2 because eigenvalues Λn are symmetric with respect

to θ .



Appendix B

Checking χb(θ) in ( 6.4.10) is Real

We examine the coefficient χb of the nonlinear term in the NLS equation ( 6.4.9), and show it is

real. From ( 6.4.10), we know χb = −(χ1 + χ2). We check χb is real by checking both χ1 and χ2

are real.

Firstly, the coefficient χ1 is defined as

χ1(θ) =
Ωn(θ)

g

( 1
Λn(θ)

r3(θ)+Λn(θ)r4(θ)+2Λ
2
n(θ)r5(θ)+2r6(θ)

)
, (B.1)

where r3,r4,r5 and r6 are given in ( 6.2.27), ( 6.2.35), ( 6.2.44) and ( 6.2.54), respectively. Substi-

tuting them into χ1(θ), we have

χ1(θ)

=
Ωn(θ)

gΛn(θ)

(
−||Λ2

n(θ)|ψn|2 −|ℓθ (ψn)|2||2 +
1
2 ∑

k≥0

4Λn(θ)pk(θ)−Λk(2θ)qk(θ)

4Λn(θ)−Λk(2θ)

(
γ2k −Λ

2
n(θ)γ3k

))
+

Λn(θ)Ωn(θ)

g

(
⟨−2θ

2|ψn|2 +2iθ(ψnψ
′
n −ψnψ ′

n)+ψnψ
′′
n +ψnψ ′′

n , |ψn|2⟩
)

+
2Λ2

n(θ)Ωn(θ)

g

(
∑
k≥0

Λk(2θ)|γ3k|2
)

+
2Ωn(θ)

g

(
−2 ∑

k≥0

qk(θ)− pk(θ)

4Λn(θ)−Λk(2θ)

(
Λn(θ)Λk(2θ)γ3k + γ1k

)
+ ∑

k ̸=0

1
Λk(0)

|⟨α2(x,θ),ψk(0)⟩|2
)

For clarity, we separate all terms in χ1(θ) into 3 parts:
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1. We examine all terms in χ1(θ) that involve (4Λn(θ)−Λk(2θ)):

χ11(θ) =
2Ωn(θ)

g ∑
k≥0

1
4Λn(θ)−Λk(2θ)

(∣∣Λn(θ)Λk(2θ)γ3k − γ1k
∣∣2

+
Λn(θ)Λk(2θ)

4

∣∣ 1
Λn(θ)

γ2k −Λn(θ)γ3k
∣∣2 +Λ

2
n(θ)

(
γ1kγ3k + γ1kγ3k

)
+Λn(θ)Λk(2θ)

(
γ2kγ3k + γ2kγ3k

)
−
(
γ1kγ2k + γ1kγ2k

)
−2Λ

3
n(θ)Λk(2θ)

∣∣γ3k
∣∣2),

(B.2)

which is a real value.

2. We examine the term in χ1(θ) that involves Λk(0):

χ12(θ) =
2Ωn(θ)

g ∑
k ̸=0

1
Λk(0)

|⟨α2(x,θ),ψk(0)⟩|2, (B.3)

which is real.

3. The remaining terms in χ(θ):

χ13(θ) =− Ωn(θ)

gΛn(θ)
||Λ2

n(θ)|ψn|2 −|ℓθ (ψn)|2||2

+
Λn(θ)Ωn(θ)

g
⟨−2θ

2|ψn|2 +2iθ(ψnψ
′
n −ψnψ ′

n)+ψnψ
′′
n +ψnψ ′′

n , |ψn|2⟩,
(B.4)

which is real.

Therefore, χ1(θ) = χ11(θ)+χ12(θ)+χ13(θ) is real.

Next, we check χ2(θ) is real. We have

χ2(θ) =
κ3(θ)κ4(θ)

(Ω′
n(θ))

2 −g(hb +ρ2)
, (B.5)

with

κ3(θ) =− iΩn(θ)

π
r1(θ)+gρ1(θ)+

Ω′
n(θ)

2π
κ1(θ). (B.6)

and

κ4(θ) =
1

Ωn(θ)

(
Ω

′
n(θ)κ1(θ)−κ2(θ)

)
. (B.7)

From ( 6.2.20), we can check r1(θ) is purely imaginary. ρ1(θ) and ρ2(θ) defined in ( 6.3.7) and (

6.3.8) are real because terms come with their complex conjugates. κ1(θ) in ( 6.1.34) and κ2(θ) in (

6.2.5) are real. Combining all these implies that χ2(θ) is real.
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