
Ordering of the Tracy-Widom beta distributions and fractal
dimension of the level sets of the directed landscape in the

temporal direction

by

Virginia Pedreira

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Mathematics
University of Toronto

© Copyright 2024 by Virginia Pedreira



Ordering of the Tracy-Widom beta distributions and fractal dimension of the level
sets of the directed landscape in the temporal direction

Virginia Pedreira
Doctor of Philosophy

Graduate Department of Mathematics
University of Toronto

2024

Abstract

The first part of the thesis is related to the Tracy-Widom distribution. We give a

stochastic comparison and ordering of the Tracy-Widom distribution with parameter

β. In particular, we show that as β grows, the Tracy-Widom random variables get

smaller modulo a multiplicative coefficient.

The second part of the thesis is related to the directed landscape. The directed

landscape, L, is a random ’metric’ on R2 that arises as the rescaled limit of last

passage percolation. We show that the level sets of last passage percolation converge

to the level sets of the directed landscape in the Euclidean Hausdorff metric. We also

describe the fractal nature of the level sets of the directed landscape. In particular,

we prove that the level sets of Lp0, 0; 0, tq have Hausdorff dimension of 2/3 with

positive probability. We prove this by finding matching upper and lower bounds. We

provide an upper bound for the Hausdorff dimension in the usual way: by counting

the number of squares that cover the level set. In the case of the lower bound,

we provide sufficient conditions on the one and two-point density of any stochastic

process to obtain a lower bound of the Hausdorff dimension of its level sets. This

theorem generalizes for stochastic processes whose densities are not proved to exist.

In that case, the conditions are on the one and two-point probability of being ε close

to the level set. Then, we prove that the directed landscape satisfies the conditions

on the two-point probability mentioned above. We conclude that 2/3 is also the lower

bound of the level set of Lp0, 0; 0, tq with positive probability.
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Chapter 1

Introduction

This thesis contains my exploration of two questions in the area of probability. One

question is related to understanding better Tracy-Widom β distributions and the

other question concerns studying the level sets of the directed landscape. Both ques-

tions are related to models that belong to the Kardar-Parisi-Zhang (KPZ) universality

class.

Universality refers to the phenomenon where probabilistic models with different

characteristics produce the same limiting behaviour under rescaling. A classical ex-

ample of universality is the Brownian motion. Consider a simple random walk, where

a particle takes steps of fixed size in random directions at discrete time intervals. If

we rescale appropriately the size of the steps as the number of steps increase, the

trajectory of the random walk converges to a continuous path described by Brownian

motion. This occurs regardless of the particular distribution of each step.

The KPZ universality class is supposed to represent the rescaled limit of a class of

interface growth processes, where the growth rate at each point depends on the local

slope of the interface. In particular, these growth interfaces present height fluctuation

exponents of 1{3 and spatial correlation exponents of 2{3. Although there has not

been a general universal result in the case of KPZ yet as there is for Brownian motion,

the limiting behaviour of certain models expected to be in this universality class is

well known and present the exponent behaviour explained above. One such case is

Last Passage Percolation (LPP). This model will be related to both questions that

we answer in this thesis. In the rest of the thesis, we will define LPP and its rescaled

limit, the directed landscape and we will state the theorems that we obtained.

1



CHAPTER 1. INTRODUCTION 2

1.1 Last passage percolation

Last passage percolation is a model where one considers a grid, for example Z2, with

random weights assigned to each vertex or edge. The goal is to find the maximum

weight path from a starting point to an endpoint. The weight of each path is the sum

of the weights of all of the vertices or edges along the way. Naturally if we do not

add additional restrictions to the paths, every path has infinite weight so we usually

ask that the paths be upwards and rightwards on the lattice. The weight of the

maximally weighted path between two points, the passage time, can be considered

a distance between the points and the maximal path turns into the geodesic in the

LPP ’directed metric’.

In a sequence of papers, J. Baik, P. Deift, K. Johansson and E. Rains ( [2], [21],

[4], [3] and [5]) define several versions of a last passage percolation model on the Z2

lattice and take the rescaled limit of those models. They assign weights to each vertex

of the lattice and they run random weighted walks on the square r0, N s2. They study

the paths with the largest weight from p0, 0q to pN,Nq and find that, in the rescaled

limit, those paths converge to the Tracy-Widom distribution. They also apply certain

symmetries to the lattice and obtain last passage paths that follow those symmetries

and, rescaled, converge to Tracy-Widom distributions with different parameters (1,

2 or 4). In those papers, they imply that there is an interpolation of those last

passage paths that provides an interpolation of the limits. In Chapter 2, we answer

the question: can we stochastically order the Tracy-Widom β distributions not only

for parameters β “ 1, 2 or 4 but for a general parameter β ą 0? In short, we prove

and generalize the interpolation that was previously only implied. The motivation

and statement of the result can be found in Subsection 1.2.

If instead of looking at the passage time from p0, 0q to pN,Nq we look at the passage

time from p0, 0q to any point px, yq P N2, we will still find that the rescaled limit follows

a Tracy-Widom distribution. In fact, LPP is shift invariant so the same result would

be obtained as the rescaled limit of the weight of the longest path between any two

points as long as we keep the order. What would happen if we take the rescaled limit

of the whole Z2 and the directed metric induced by LPP on it? This question was

answered in [16]. The limiting ’directed metric’ on R2 is called the directed landscape.

The question that this thesis solves related to this topic is: what can be said about

the level sets of the directed landscape metric? In Chapter 3, we prove that the level

sets of the LPP metric converge to the level sets of the directed landscape metric

with respect to the Euclidean Hausdorff metric. In Chapters 4, 5 and 6, we prove

that the Hausdorff dimension of the level sets of the directed landscape from p0, 0q to
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p0, tq with t ą 0, is 2
3
. In Section 1.3, we define the directed landscape properly and

state the results.

1.2 β Tracy-Widom distributions

In [4], Baik and Rains obtained the asymptotic fluctuations of the models mentioned

above that we will now define. To each site pi, jq P Z2 we assign a random variable

wpi, jq. The random variables at each site are independent and identically distributed.

We will denote a general up/right path as π : pi, jq Õ pk, lq, indicating its initial and

final position. The weight or length of each path is the sum of the weights of the

sites it visits. The goal is to describe the asymptotic length of the longest up/right

path. We will apply three symmetries Tf : Z2 Ñ Z2 onto the lattice. The identity

symmetry will be named Tl, the symmetry along the y “ x diagonal will be called

Tm and the symmetry along the other diagonal, y “ ´x will be called Tn.

Then, the length of the longest up/right path on a square with side length N can

be described as GTfpNq “ supπ:pÕq

ř

pi,jqPπ wpTfpi, jqq. We always take a square of

size N but taking into account that the ”diagonals” of the lattice have to coincide with

the diagonals of the square, the initial and final points p and q might be different for

each symmetry. However, the points p and q always represent the lower left and upper

right points in the square (but we can not always take the square r0, N s ˆ r0, N s).

In this context, Baik and Rains proved that for each x P R,

lim
NÑ8

P
ˆ

GTfpNq ´ aNq

bN1{3
ď x

˙

“ F˚pxq,

where the constants a and b depend on the distribution of the weights wpi, jq and

for each symmetry f “ l,m or n, the function F˚pxq is the cumulative distribution

function of the Tracy-Widom 2, 4 and 1 respectively, as originally defined in [29] and

[30] by Tracy and Widom. We will name the random variable associated to F˚ as Lf.

We can compare Ll and Lm by defining the last passage model as above on the

square r0, N s ˆ r0, N s and in the case of Tm we symmetrize the half plane above the

diagonal onto the lower half plane. This coupling gives us a simple comparison of Ll

and Lm: in the case of the m symmetry, we are taking the maximum of the up/right

paths that stay in the upper half triangle while in the case of l the maximum is taken

on all the up/right paths from the lower left corner to the upper right corner of the

square. See Figure 1.1a below for an example. Since the weights in the upper half

triangle are the same in both models, Gl is larger than Gm almost surely. Therefore,

Ll
d
ě Lm.
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Figure 1.1: The pictures show the couplings and examples of possible last passage paths; the yellow
region represents the points of the lattice that have been identified in the coupling and wpi, jq are
the weights. In the left picture (picture (b)), the green path represents an optimal path in the point-

to-point last passage model in r0, 3s
2
, (n). The blue path is a last passage path in the point-to-line

model from (1,1) to (6,6); that is why it is symmetrized along the dotted diagonal. On the right
picture (picture (a)), the green path represents an optimal path in the point-to-point in the half
space case (m). The blue path is a last passage path from (1,1) to (6,6).

Similarly, we can compare Ll with Ln. In this case, we define the last passage

model in the square r´N, 0s ˆ r0, N s. The model is shift invariant in the lattice

and this square will allow us to couple both random variables. The symmetry Tn

acts by copying the triangle below the y “ ´x diagonal onto the upper triangle

symmetrically. We can see that every up/right path from the lower left corner of the

square to the upper right corner of the square in the symmetrized lattice consists

of two symmetric paths: the path form the lower left corner to the diagonal is then

repeated symmetrically in the upper triangle. Therefore, the weight of the longest

path is exactly twice the weight of the longest path from the lower left corner to the

diagonal. See Figure 1.1b above for an example. This path to the diagonal could be

larger than the path from the lower left corner to the center of the square because

the center of the square is in the diagonal, assuming that N is even. The weight of

this new path is equal to GlpN{2q so

1

2
Gn

pNq ě Gl

ˆ

N

2

˙

almost surely. After substracting the mean, rescaling and taking the limit, we obtain

that

Ln
d
ě 22{3Ll.
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As mentioned before, the random variables Lf are distributed according to the

Tracy-Widom distributions as defined for the first time in [30] and [29]. These distri-

butions are well known and have continuous and positive probability densities that

can be expressed in terms of solutions of a differential equation. Moreover, Lf is

the rescaled limit of the largest eigenvalue of a Gaussian random matrix. In [20] ,

Ramı́rez, Rider and Virág, propose a tridiagonal random matrix that depends on a

parameter β and whose spectrum distribution, called the β-ensemble, coincides with

the Gaussian Ensembles (GO/U/SE) in the cases where β is 1, 2 or 4. In that sense,

they generalize the Tracy-Widom with parameter β by taking the rescaled limit of

the largest eigenvalue. We call those random variables as TWβ. This new definition

differs slightly from the original one for the cases where β is 1, 2 or 4. An explana-

tion on the way the scaling differs in the two definitions can be found in the work of

Bloemendal and Virág [9]. This slight difference means that, Ln
d
“ TW1, Ll

d
“ TW2

and Lm
d
“ 22{3TW4.

From the coupling, we see a pattern in these stochastic comparisons:

TW1

d
ě 22{3TW2 and TW2

d
ě 22{3TW4.

We will prove that this generalizes for the Tracy-Widom β random variables defined

originally, by Ramı́rez, Rider and Virág in [20].

The main result in this part is the following:

Theorem 1. Let β1 ą β ą 0 and α ą 0, then TWβ

d
ě αTWβ1 if and only if

ˆ

β1

β

˙1{3

ď α ď

ˆ

β1

β

˙2{3

.

The proof of this theorem relies on the fact that there are two equivalent definitions

of the notion of stochastic ordering. We say that the random variable X stochastically

dominate the random variable Y , X
d
ě Y if PpX ď tq ď PpY ď tq for all t P R.

Alternatively, if on the same probability space we can define random variables X 1

and Y 1 such that X 1 „ X, Y 1 „ Y and such that X 1 ě Y 1 almost surely, then X
d
ě Y .

We use each of these definitions to prove a direction of the if and only if argument in

Theorem 1.

Chapter 2, will be devoted to the proper definition of the TW β-distributions,

the heuristics of the result and the proper proof of this theorem. This part of the

thesis is based on [26]. This work has already had some applications; see [6] where

a similar stochastic comparison result is established for the largest eigenvalue of the

finite matrices.
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Figure 1.2: The first four rescaled eigenvalues pλipβq´2
?
nqn1{6

β2{3 of a 10x10 matrix distributed accord-

ing to the β-ensemble plotted as functions of β. The colour gradient represents the order of the
eigenvalues; the lighter the shade, the smaller the eigenvalue. The functions are decreasing.

1.3 Directed landscape

We will now consider the metric defined by LPP. To do that, we need to be more

precise with the definition of last passage percolation. Consider the LPP model on Z2

where at each site pi, jq, we assign a random independent exponential weight ωpi, jq

of mean 1. Let p⃗, q⃗ P Z2 be two vectors such that p1 ď q1 and p2 ď q2. We define the

passage time Gp⃗,q⃗ to be the maximum sum of weights of all up-right paths from p⃗ to

q⃗. Indeed,

Gp⃗,q⃗ “ sup
π:p⃗Õq⃗

ÿ

pi,jqPπ

ωpi, jq.

If p⃗ and q⃗ are not well ordered, meaning that there is no up-right path between them,

then Gp⃗,q⃗ “ ´8. Consider the function

F pp⃗; q⃗q “ Gp⃗,q⃗ ´ 2pq1 ´ p1q ´ 2pq2 ´ p2q ´ ωpp⃗q.

The function F defines a ’directed metric’ on Z2 Y t´8u. A directed metric on a set

S is a function d such that dpx, xq “ 0 for all x P S and such that the reverse triangle

inequality is true:

dpx, zq ě dpx, yq ` dpy, zq

for all x, y, z P S.
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The directed landscape is a directed metric on R2. So far, we have defined the

directed metric defined by LPP on Z2. As it is done in [16], we can extend this

directed metric to R2 as follows. Let r : R2 Ñ Z2 be the following function

rpx, yq “

$

’

’

’

’

’

&

’

’

’

’

’

%

px, yq x, y P Z;

ptxu, yq x R Z, y P Z;

px, tyuq x P Z, y R Z;

ptxu, tyuq x R Z, y R Z.

Then, for all px, y;w, zq P R4 such that x ď w and y ď z, the function

F px, y;w, zq “ Gprxs,rysq,rpw,zq ´ 2pw ´ xq ´ 2pz ´ yq ´ ωpx, yq1px, y P Zq

is an extension to the reals. Let

R4
Ò :“ tpx, s; y, tq P R4 : s ă tu.

Now, let Kn : R4
Ò Ñ R be the rescaled version of F :

Knpx, s; y, tq “ 2´4{3n´1{3F pns ` 25{3n2{3x, ns;nt ` 25{3n2{3y, ntq.

Notice that the rescaling follows 1:2:3 KPZ scaling.

We can now state the convergence result:

Theorem 2 (Dauvergne, Virág [16]). There exists a directed metric L on R2 and a

coupling of Kn and L for all n such that for any compact K Ď R4
Ò,

sup
K

pKn ´ Lq ÝÑ
nÑ8

0

almost surely.

The limiting metric L is the directed landscape.

We move on to the topic of the geometry of the level sets of the directed landscape.

The comparison between the role of the Brownian motion as the universal limit of

random walks and the directed landscape in the KPZ universality class also guided

our questions. The study of the level sets of the Brownian motion was well developed,

what can be said about the level sets of the directed landscape? The first result, shows

that the level sets of LPP converge in the Euclidean Hausdorff metric to the level sets

of the directed landscape.

Theorem 3. Let dH be the Euclidean Hausdorff metric on R ˆ p0,8q. Let h P R be

a real number and let K “ ra, bs ˆ rc, ds with a ă b and 0 ă c ă d be a compact set
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on R2. Then,

lim
nÑ8

dHpKnp0, 0; ¨, ¨q
´1

phq X K,Lp0, 0; ¨, ¨q
´1

phq X Kq “ 0

almost surely.

More details about this theorem and its proof can be found on Chapter 3.

The next question naturally arises when we further consider the comparison with

Brownian motion. We know that the level sets of the Brownian motion have Hausdorff

dimension 1{2 (see for example [25], Chapter 4), the question is what is the Hausdorff

dimension of the level sets of the directed landscape in the temporal direction? Our

theorem provides the answer.

Theorem 4. Let dimH be the Hausdorff dimension of a set. Let h P R. Then,

dimHpL´1
p0, 0; 0, ¨qphqq “

2

3

with positive probability.

More details about this theorem can be found on Chapter 4. The proof of this

theorem relies on three other theorems that we proved: Theorem 5, 6 and 7. We state

and discuss these results in the remainder of this section.

As usual, the Hausdorff dimension in Theorem 4 is proved by finding an upper

bound and a lower bound to the Hausdorff density. The first theorem is in fact an

upper bound for the Hausdorff dimension.

Theorem 5. For each h P R, let Zh be the set

Zh :“ tt P p0,8q : Lp0, 0; 0, tq “ hu.

Then, for any h P R,
dimHpZhq ď

2

3

almost surely.

More details about this result and its proof can be found in Chapter 4.

A second theorem provides a general template to obtain a lower bound for the

Hausdorff dimension of stochastic processes. It is based on the energy method de-

scribed for example in [25]. The theorem essentially says that if certain conditions on

the one and two-point distributions of the stochastic process at the point h are met,

then there is a lower bound to the Hausdorff dimension on the h-level set. However,

the one or two-point distributions of the process need not be known (or even more

their existence might not be proven) to apply this theorem.
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Theorem 6. Let Bptq be a stochastic process on R. Let h be a real number. Assume

that there exists an ε0, positive constants ch, c
1
h and c2

h and an exponent 0 ă β ă 1

such that for all t, s P r1, 2s,

PpBptq P ph ´ ε, h ` εqq ď ch2ε (1.1)

PpBptq P ph ´ ε, h ` εqq ě c1
h2ε (1.2)

PpBptq P ph ´ ε, h ` εq, Bpsq P ph ´ ε, h ` εqq ď c2
h4ε

2
|t ´ s|

´β (1.3)

for all ε ď ε0. Then, we get a lower bound for the Hausdorff dimension of the level

sets:

dHpB´1
phq X r1, 2sq ě 1 ´ β

with positive probability ph where

ph “
c12
h pβ2 ´ 3β ` 2q

8c2
h

.

The positive probability mentioned in the theorem goes to 0 when h goes to infinity,

essentially because the level set might have a positive probability of being empty if

|h| is too large. This is the same positive probability mentioned in Theorem 4. More

details about this theorem can be found on Chapter 5.

The final theorem proves the bound on the two-point density of Lp0, 0; 0, tq that

is needed to use Theorem 6.

Theorem 7. Let 0 ă ε ď 1, h P R and 0 ă s ă t. Then, there exists an absolute

constant c such that

PpLp0, 0; 0, sq P ph ´ ε, h ` εq,Lp0, 0; 0, tq P ph ´ ε, h ` εqq ď c|t ´ s|
´1{3ε2. (1.4)

The proof of this result relies heavily on the fact that the directed landscape is

locally Gaussian. In the reminder we explain the key point of the proof of Theorem

7. A deeper explanation of this result and its proof can be found in Chapter 6.

There has been a lot of recent developments in the study of the fractal properties

of the directed landscape mostly focused on fractacl properties of the geodesics. In

particular, Ganguly and Zhang proved in [19] that the Hausdorff dimension of the

level sets of the geodesics of the directed landscape in the temporal direction is 1/3

through building the geodesic local time. For more on this topic, see for example:

[12], [13], [7], [8]. For a survey on these topics see [18].

To be able to understand the two-point distribution of Lp0, 0;x, sq we have heavily

relied on the fact that the parabolic Airy line ensemble is locally Brownian. The
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parabolic Airy line ensemble is a sequence of ordered random functions A1 ą A2 ą . . . .

For more information about it see Section 3.2. The first line of the parabolic Airy

ensemble is distributed like the directed landscape for a fixed time. More precisely,

for each fixed s, t P R such that s ă t,

Lpx, s; y, tq
d
“ pt ´ sq

1{3A1

´ y ´ x

pt ´ sq2{3

¯

.

Therefore, the property of the parabolic Airy ensemble being locally Brownian trans-

lates to the directed landscape.

This property, first introduced by Corwin and Hammond in [11] as the Brownian

Gibbs property, states that inside any region K “ t1, . . . , ku ˆ ra, bs conditionally on

all values Aipxq for pi, tq R K the parabolic Airy line ensemble on K is distributed

according to a sequence of k independent Brownian bridges from pa,Aipaqq to pb,Aipbqq

conditioned to not intersecting. This absolute continuity property is very strong and

has been widely used to prove results related to the Airy process, the Airy line

ensemble and other objects in the KPZ world, in particular it was crucial to the

definition of the directed landscape itself ([15]). In this work we have used a similar

result that provides more precision on the Radon-Nikodym derivative of the parabolic

Airy line ensemble against the Wiener measure.

In [14], a similar result is introduced by Dauvergne. Now, inside any region K “

t1, . . . , ku ˆ ra, bs conditionally on all values Aipxq for pi, tq R K the parabolic Airy

line ensemble on K is distributed according to a sequence of k independent Brownian

bridges conditioned to not intersecting. Moreover, this time, the Radon-Nikodym

derivative is bounded by a function that only depends on the length of the interval

ra, bs and it also provides tail bound estimates for the boundary conditions. The

drawback of this newer result is that the boundary is not longer the Airy process

itself. However, it is a related process with tail bounds of the same order. We state

the result that we will use later on:

Theorem 8 (Dauvergne, in [14]). For any T0 ě 1, there exists an absolute constant

c ą 0 such that

Law

ˆ

´

A1prq

¯

rPr0,T0s

˙

ď ecT
3
0 Law

ˆ

´

Lprq ` Bprq

¯

rPr0,T0s

˙

with B a diffusion parameter two Brownian bridge on r0, T0s from 0 to 0 and L an

affine linear function which is independent of B. Moreover, there exist T0´dependent
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constants d1, d2 ą 0 such that for all m ą 0, we have that

P
´

Lp0q _ LpT0q ą m
¯

ď exp

ˆ

´
4

3
m

3
2 ` d1m

5
4

˙

(1.5)

P
´

Lp0q ^ LpT0q ă ´m
¯

ď 2 exp
`

´d2m
3
˘

(1.6)

P
´

|Lp0q ´ LpT0q| ą m
¯

ď exp

ˆ

´
1

4T0

m2
´

2

3
m

3
2 ` d1m

5
4

˙

. (1.7)

The results stated in this subsection have been a collaboration with Lemonte Alie-

Lamarche, unless otherwise stated.



Chapter 2

Stochastic comparison of β-GUE

distributions

2.1 Stochastic Airy operator and Tracy-Widom beta random

variables

For any β ą 0, consider the probability distribution

Pβ
npλ1, λ2, . . . , λnq “

1

Zβ
n

e´β
řn

k“1 λ
2
k{4

ź

jăi

|λj ´ λi|
β,

where λ1 ě λ2 ě ¨ ¨ ¨ ě λn. When β “ 1, 2 and 4, this gives the joint distribution

of the eigenvalues of Gaussian orthogonal, unitary and symplectic ensembles respec-

tively, or G(O/U/S)E, of random matrix theory. In [20] (and more generally in [23]),

Krishnapur, Ramı́rez, Rider and Virág obtain the point process limit of the spectral

edge of the general β-ensemble. In fact, the eigenvalues of the β-ensemble converge

in distribution to the eigenvalues of a stochastic operator called the Stochastic Airy

Operator (SAO):

Hβ :“ ´
d2

dx2
` x `

2
?
β
b1
x (2.1)

where b1 is the white noise. The operator is defined on the Hilbert space L˚, the space

of continuous functions f such that fp0q “ 0 and

ż 8

0

pf 1
pxqq

2
` p1 ` xqf 2

pxqdx ă 8.

12
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The SAO acts on functions as a quadratic form in the following way: we decompose

the Brownian motion in two terms b “ b ` pb ´ bq where bpxq is the average,

bpxq “

ż x`1

x

bydy.

For every function f P L˚,

ă f,Hβf ą

d
“

ż 8

0

pf 1
pxqq

2
` xf 2

pxqdx `
2

?
β

ˆ
ż 8

0

f 2
pxqb

1

xdx ´ 2

ż 8

0

f 1
pxqfpxqpbx ´ bxqdx

˙

.

The integrals are well defined and finite, see [20]. The definition looks more involved

than it needs to be and that is because the last two integrals could be replaced, using

integration by parts, with ´4?
β

ş8

0
fpxqf 1pxqbxdx if this were a finite integral. If the

function f is compactly supported, then this simpler definition of the quadratic form

works.

In [10], Bloemendal provides an alternative definition of the Stochastic Airy op-

erator, Hβ as a generalized Sturm-Liouville operator. Additionally, in [24] Minami

proves that Hβ is a self-adjoint operator with probability one and has purely discrete

spectrum.

To define the eigenvalues and eigenfunctions of Hβ, we use their variational char-

acterization. Then, the smallest eigenvalue, Λ0, is defined as

Λ0 :“ inftă f,Hβf ą: f P L˚, ∥f∥2 “ 1u. (2.2)

The infimum of the formula (2.2) is attained at an eigenfunction f0 with corresponding

eigenvalue Λ0. Functions of compact support are dense in L˚ (since functions in L˚

have the boundary condition fp0q “ 0) and the quadratic form ă ¨, Hβ ¨¨ ą: pL˚q2 Ñ R
is continuous as proved in [20] so we can take Λ0 to be

Λ0 “ inftă f,Hβf ą: f P L˚, ∥f∥2 “ 1, f compactly supportedu. (2.3)

The rest of the eigenvalues are defined recursively as

Λk :“ inftă f,Hβf ą: f P L˚, ∥f∥2 “ 1, f K f0, . . . , fk´1u

and the infimum is attained at an eigenfunction fk. A proof that this variational

characterization actually defines eigenvalues and that these eigenvalues are strictly

ordered Λ0 ă Λ1 ă Λ2 ă . . . can be found in [20], Corollary 2.6, Lemma 2.7 and

Proposition 3.5.
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Functions of compact support are also L˚-dense in the orthogonal complement

of an eigenspace. In fact, if a function f in L˚ is orthogonal to f0, . . . , fk´1 we can

choose a function g that is ε close to f in L˚. Then, the function g̃ “ g´
řk´1

i“0 xg, fiyfi

is a function in L˚ orthogonal to the eigenfunctions fi. Since the function f is also

orthogonal to the eigenfunctions, we can rewrite f as f “ f ´
řk´1

i“0 xg, fiyfi. Then,

∥f ´ g̃∥L˚ “

∥∥∥∥∥f ´ g ´

k´1
ÿ

i“0

pxf, fiy ´ xg, fiyqfi

∥∥∥∥∥
L˚

ď ∥f ´ g∥L˚ `

k´1
ÿ

i“0

|xf, fiy ´ xg, fiy| ď pk ` 1qε

using Cauchy-Schwarz inequality and the fact that ∥f∥2 ď ∥f∥L˚ . The continuity of

the quadratic form in L˚ means that we can restrict the definition to

Λk “ inftă f,Hβf ą: f P L˚, ∥f∥2 “ 1, f K f0, . . . , fk´1, f compactly supportedu.

(2.4)

More details on this random operator and its eigenvalues can be found in [20].

Then, (from [20]) Λ0 ă Λ1 ă ¨ ¨ ¨ ă Λk´1 are the k lowest elements of the set of

eigenvalues of the operator Hβ and the vector

pn1{6
p2

?
n ´ λlqql“1,...,k

converges in distribution to pΛ0,Λ1, . . .Λk´1q as n Ñ 8.

The rescaled limit of the largest eigenvalue of the β-ensembles mentioned ear-

lier is distributed according the Tracy-Widom β, so we define the Tracy-Widom β

distribution as the distribution of ´Λ0. In fact,

TWβ
d
“ ´Λ0

There is a deterministic operator associated with the SAO which is the Airy Op-

erator

A :“ ´
d2

dx2
` x.

We can think of the Airy operator as the SAO with parameter β “ 8.
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2.2 Stochastic comparison of β-GUE distributions

Theorem 9. Let β1 ą β ą 0 and α ą 0, then TWβ

d
ě αTWβ1 if and only if

ˆ

β1

β

˙1{3

ď α ď

ˆ

β1

β

˙2{3

.

Proof. The goal is to stochastically compare the eigenvalues of the SAOβ. Recall that

the parameter β only appears in the operator (2.1) as part of the coefficient of the

random term, so the coupling used to obtain the comparison will consist of keeping

the same source of randomness for all β.

There is a natural partial order on the space of self adjoint operators, the Loewner

order: we say that two operators A and B are ordered A ě B if the operator A ´ B

is positive definite. We would like to establish an order on tHβuβě1.

Assume that β1 ą β ą 0 and pβ1{βq
1{3

ď α ď pβ1{βq
2{3. Then, we will show that

we can couple Hβ1 and Hβ such that αHβ1 ´ Hβ is positive definite and αHβ1

d
ě Hβ.

We start by making the following remark. Let b be a standard Brownian and

s ą 0. Then, the stochastic process b̃pxq “ s1{2bpx{sq is also distributed as a standard

Brownian motion by the Brownian scaling. Then

H̃β “ ´B
2
x ` x `

2
?
β
b̃1
x

has the same distribution as Hβ. In particular, if Λβ
k is the kth eigenvalue of Hβ and

Λ̃β
k is the kth eigenvalue of H̃β, then Λβ

k
d
“ Λ̃β

k .

Recall the variational definition of the eigenvalues of SAOβ (2.3) and (2.4). Let

fpxq P L˚, ∥f∥2 “ 1 be a test function and s ą 0. Then, gpxq “ 1?
s
fpx{sq is also a

suitable test function since g P L˚ and ∥g∥2 “ 1. We will compare ă f, H̃βf ą with

ă g,Hβg ą.

By making the change of variables y “ sx we get

ż 8

0

pf 1
pxqq

2
dx “ s2

ż 8

0

ˆ

1

s3{2
f 1
´y

s

¯

˙2

dy “ s2
ż 8

0

pg1
pyqq

2
dy

ż 8

0

xf 2
pxqdx “

1

s

ż 8

0

y

ˆ

1
?
2
f
´y

s

¯

˙2

dy “
1

s

ż 8

0

yg2pyqdy

ż 8

0

fpxqf 1
pxqb̃xdx “

?
s

ż 8

0

1
?
s
f
´y

s

¯ 1

s3{2
f 1
´y

s

¯

s1{2by{sdy “
?
s

ż 8

0

gpyqg1
pyqbydy.

Therefore, we have that the spectrum of H̃β is the same as the same as the spectrum
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of the operator

Hs
β “ ´s2B2

y `
1

s
y ` 2

c

s

β
b1
y.

Recall that the spectrum of H̃β is equal in distribution to the spectrum of Hβ.

Let s “
α2β
β1 . Then,

Hs
β “ ´

α4β2

β12
B
2
y `

β1

α2β
y `

2α
?
β1
b1
y.

Notice that the random term of this operator is the same as the random term of the

operator αHβ1 . We can couple Hs
β and αHβ1 by using the same Brownian motion in

each operator. By subtracting both operators, we get that

αHβ1 ´ Hs
β “ ´

ˆ

α ´
α4β2

β12

˙

B
2
y `

ˆ

α ´
β1

α2β

˙

y.

Notice that the Airy operator is positive definite since

xAf, fy “

ż 8

0

´f2
pxqfpxq ` xf 2

pxqdx “

ż 8

0

f 12
pxq ` xf 2

pxqdx ě 0.

In fact, if we take the deterministic operator Aa,b “ ´aB2
x ` bx, we know that Aa,b is

positive definite if and only if both a and b are positive. Then, we need that

α ě
α4β2

β12

α ě
β1

α2β

which happens if and only if

ˆ

β1

β

˙1{3

ď α ď

ˆ

β1

β

˙2{3

.

Notice that this is the hypothesis condition.

We conclude that αHβ1

d
ě Hs

β. Let Λs,β
k be the kth eigenvalue of Hs

β. Since the

positive definite partial order implies an ordering of the eigenvalues, we have that

αΛβ1

k

d
ě Λβ,s

k
d
“ Λβ

k .

We have proved that if
´

β1

β

¯1{3

ď α ď

´

β1

β

¯2{3

, then TWβ

d
ě αTWβ1 . (Here, the

inequality reverses because the ´Λ0 is distributed according to TWβ).

Notice that this proof gives a comparison of the whole spectrum of the Stochastic

Airy Process and not only on the smallest eigenvalue which is distributed according

to the Tracy-Widom distribution. In fact, if, as before, Λβ
0 ,Λ

β
1 , . . . are the eigenvalues
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of Hβ in increasing order,

αΛβ1

k

d
ě Λβ

k ,

for any k, given that
´

β1

β

¯1{3

ď α ď

´

β1

β

¯2{3

.

In the opposite direction, we can look at the tails of the TWβ distribution and get

from there a possible range of αs. From Ramı́rez, Rider, Virág [20] we get that for

a Ñ 8,

PpTWβ ą aq “ exp

ˆ

´
2

3
βa3{2

p1 ` op1qq

˙

PpTWβ ă ´aq “ exp

ˆ

´
1

24
βa3p1 ` op1qq

˙

.

If αTWβ1

d
ď TWβ, then PpαTWβ1 ą aq ď PpTWβ ą aq which means that for a large

enough

exp

ˆ

´
2

3
β1 a

3{2

α3{2
p1 ` op1qq

˙

ď exp

ˆ

´
2

3
βa3{2

p1 ` op1qq

˙

or

exp

ˆ

´
2

3
a3{2

pβ1
{α3{2

´ βqp1 ` op1qq

˙

ď 1

so β1{α3{2 ´ β ě 0 or equivalently, α ď

´

β1

β

¯2{3

. Doing a similar calculation with

the left-hand tail, gives us that
´

β1

β

¯1{3

ď α which is the same range that we found

through the other method. This concludes the proof.



Chapter 3

Convergence of the level sets of

LPP

This chapter will be devoted to proving the that the h-level sets of the ”metric”

defined in the Last Passage Percolation model converges in the Euclidean Hausdorff

metric to the h-level sets of the directed landscape on compacts.

3.1 LPP converges to directed landscape

Recall from Section 1.3, that LPP converges to the directed landscape in the Euclidean

Hausdorff metric.

Theorem 10 (Dauvergne, Virág [16]). There exists a directed metric L on R2 and a

coupling of Kn and L for all n such that for any compact K Ď R4
Ò,

sup
K

pKn ´ Lq ÝÑ
nÑ8

0

almost surely.

The Hausdorff distance is the standard way to define distance between subsets of a

metric space. In this case, the underlying metric space is Rˆp0,8q with the Euclidean

distance. The definition of the Hausdorff distance that we use in this section is the

following: for each pair of non-empty subsets A,B Ď R ˆ p0,8q,

dHpA,Bq “ inftδ ą 0 : A Ď pBqδ and B Ď pAqδu

where pAqδ “
Ť

xPA

tz P R ˆ p0,8q : ∥x ´ z∥ ď δu.

Let h P R. The proof also relies on the fact that the directed lansdcape has no

local extrema with value h on any rectangle on R ˆ p0,8q. We say that a function

18
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f has a local maximum (or minimum) with value h on a compact K if there exist

a point x P K and an open set B Ă R ˆ p0,8q such that fpyq ď fpxq “ h (or

fpyq ě fpxq “ h) for all y P B X K.

3.2 Properties of the directed landscape

The proof requires some properties of the directed landscape. These properties are

called to use several times in this thesis but we will write them down on this section.

Recall from the introduction, that we defined the directed landscape L : R4
Ò Ñ R

px, s; y, tq ÞÝÑ Lpx, s; y, tq

as the rescaled limit of the directed metric defined by exponential LPP. We make

a point here to note that we call the second coordinate (s, t in this case) as time

and the first coordinate (x, y) as space. The directed landscape was first obtained as

the rescaled limit of Brownian last passage percolation by Dauvergne, Ortmann and

Virág in [15]. Since exponential LPP is a discrete model, it is not clear if the directed

landscape L : R4
Ò Ñ R is continuous. Fortunately, there is a great description of the

modulus of continuity of the directed landscape; it turns out that L grows almost as

t1{3 in time and as x1{2 in space.

Theorem 11 (Dauvergne, Ortmann, Virág, [15]). Let Kpx, s; y, tq “ Lpx, s; y, tq `
px´yq2

pt´sq
be the stationary version of the directed landscape for each px, s; y, tq P R4

Ò. Let

n ě 2 and 0 ă δ ď 1 and

Kδ
n “ r´n, ns

4
X

!

px, s; y, tq P R4
Ò : t ´ s ě δ

)

.

For two points ui “ pxi, si; yi, tiq, i “ 1, 2, let

ξ “ ξpu1, u2q “ ∥px2, y2q ´ px1, y1q∥ , τ “ τpu1, u2q “ ∥ps2, t2q ´ ps1, t1q∥ .

Then, there exists a random constant CKδ
n
such that

|Kpu2q ´ Kpu1q| ď CKδ
n
pτ 1{3 log2{3

pτ´1
` 1q ` ξ1{2 log1{2

pξ´1
` 1qq,

for every u1, u2 P Kδ
n such that 0 ă τ ă δ3{n3 and 0 ă ξ. Moreover, there exist

universal positive constants c and d such that for all M ą 0, we have that

PpCKδ
n

ą Mq ď cn10δ´6e´dM3{2

.

Remark: Notice that even though the modulus of continuity is expressed for the
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case when ξ ą 0, it is clear that if ξ “ 0 and 0 ă τ ă δ3{n3 then there exists a

constant CKδ
n
such that

|Kpu2q ´ Kpu1q| ď CKδ
n
τ 1{3 log2{3

pτ´1
` 1qq. (3.1)

In fact, let ε ą 0. We define uε
2 :“ u2 ` pε, ε, ε, εq. Then,

|Kpu2q ´ Kpu1q| ď |Kpu2q ´ Kpuε
2q| ` |Kpuε

2q ´ Kpu1q|.

By Theorem 11, there exists a random constant CKδ
n
such that

|Kpu2q´Kpuε
2q|

ďCKδ
n
pτpuε

2, u2q
1{3 log2{3

pτpuε
2, u2q

´1
` 1q ` ξpuε

2, u2q
1{2 log1{2

pξpuε
2, u2q

´1
` 1qq

|Kpuε
2q´Kpu1q|

ďCKδ
n
pτpuε

2, u1q
1{3 log2{3

pτpuε
2, u1q

´1
` 1q ` ξpuε

2, u2q
1{2 log1{2

pξpuε
2, u2q

´1
` 1qq.

Notice that this is true for all ε ą 0. Recall that the constant CKδ
n
does not depend on

the points u1 and u2 but only on the compact set Kδ
n. It is clear that τpuε

2, u2q Ñ 0,

ξpuε
2, u2q Ñ 0 and τpuε

2, u1q Ñ τ when ε Ñ 0. Moreover,

lim
xÑ0

x1{3 log2{3
px´1

` 1q “ 0 and lim
xÑ0

x1{2 log1{2
px´1

` 1q “ 0.

Then,

|Kpu2q ´ Kpu1q| ď lim
εÑ0

|Kpu2q ´ Kpuε
2q| ` |Kpuε

2q ´ Kpu1q| ď CKδ
n
τ 1{3 log2{3

pτ´1
` 1q.

So we can state a temporal modulus of continuity as follows:

Theorem 12 (Dauvergne, Ortmann, Virág, [15]). Let n ě 2 and 0 ă δ ď 1 and

Kδ
n “ rδ, ns.

Then, there exists a random constant CKδ
n
such that

|Lp0, 0; 0, tq ´ Lp0, 0; 0, sq| ď CKδ
n
p|t ´ s|

1{3 log2{3
p|t ´ s|

´1
` 1q,

for every s, t P Kδ
n such that 0 ă |t ´ s| ă δ3{n3. Moreover, there exist universal

positive constants c and d such that for all M ą 0, we have that

PpCKδ
n

ą Mq ď cn10δ´6e´dM3{2

.

The marginals, or one-point distribution of the landscape are well known. They
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are related to the first line of the parabolic airy line ensemble, A1. The parabolic

Airy line ensemble is a sequence of ordered random functions A1 ą A2 ą A3 ą . . . .

The ensemble is called parabolic because each line is centered around a negative

parabola. The related ensemble tAiptq ` t2uiPN is stationary. The stationary Airy

ensemble was first constructed in [27] through a determinantal formula. The first

line of the stationary ensemble A1ptq ` t2 is sometimes called the Airy process. This

process arises naturally as a rescaled limit in the context of the KPZ universality

environment. The marginals of the parabolic Airy line ensemble are well known. In

particular, for any t P R,
A1ptq ` t2

d
“ TW2. (3.2)

We state some properties that will be useful.

Proposition 13 (Dauvergne, Ortmann, Virág, [15]). The directed landscape is a

random function L : R4
Ò Ñ R that satisfies the following properties.

1. (Continuity) The function Lpx, s; y, tq is continuous (see Theorem 11).

2. (Marginals) For each s, t P R fixed such that s ă t,

Lp0, s; y, tq
d
“ pt ´ sq

1{3A1

´ y

pt ´ sq2{3

¯

as a function of y.

3. (Independent increments) For any disjoint time intervals tpsi, tiq : i “ 1, . . . , ku,

the random functions

Lp¨, si; ¨, tiq, i “ 1, . . . , k

are independent.

4. (Metric composition law) Almost surely, for any s ă r ă t and x, y P R we have

that

Lpx, s; y, tq “ sup
zPR

Lpx, s; z, rq ` Lpz, r; y, tq.

The metric composition law in particular will be very significant in the proof of

Theorem 7. Notice that the two terms in the supremum above are independent.

When thinking about the two-point distribution density of L it will be convenient to

think that the distance from time 0 to time t goes through time s at some point z

and the metric composition law provides that result. Also, the metric composition

law implies a reverse triangle inequality for the directed landscape.

Lastly, we will state some symmetry properties of the directed landscape.
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Lemma 14 (Dauvergne, Ortmann, Virág, [15]). Let L be the directed landscape. Let

r, c P R and q ą 0.

1. (Time stationarity)

Lpx, s; y, tq
d
“ Lpx, s ` r; y, t ` rq

2. (Spatial stationarity)

Lpx, s; y, tq
d
“ Lpx ` c, s; y ` c, tq

3. (Flip symmetry)

Lpx, s; y, tq
d
“ Lp´y,´t;´x,´sq

4. (Skew stationarity)

Lpx, s; y, tq
d
“ Lpx ` cs, s; y ` ct; tq ` pt ´ sq

´1
`

x ´ y ´ cpt ´ sq
2

´ px ´ yq
2
˘

5. (Rescaling)

Lpx, s; y, tq
d
“ qLpq´2x, q´3s; q´2y, q´3tq

3.3 Strategy of the proof

For ease of reading, we rewrite the statement of the theorem.

Theorem 15. Let dH be the Euclidean Hausdorff metric on R ˆ p0,8q. Let h P R
be a real number and let K “ ra, bs ˆ rc, ds with a ă b and 0 ă c ă d be a compact set

on R2. Then,

lim
nÑ8

dHpKnp0, 0; ¨, ¨q
´1

phq X K,Lp0, 0; ¨, ¨q
´1

phq X Kq “ 0

almost surely.

The strategy of the proof is the following:

1. We will prove a general, deterministic result for the convergence of h-level sets

when a sequence of functions converges uniformly on compacts. The only re-

quirement for this convergence is that the limiting function, f , doesn’t have

local extrema for any point x⃗, such that fpx⃗q “ h. See Subsection 3.4.1.

2. We need to prove that the directed landscape doesn’t have local extrema on the

h-level set. To do that we will use the fact that, for fixed times the landscape
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is equal in distribution to the top line of the parabolic Airy line ensemble and

that the parabolic Airy line ensemble is locally Brownian. This will allow us to

express Lp0, 0, y, tq as the sum of a Brownian bridge and an independent random

variable. See Subsection 3.4.2.

3. We will show that we can express a Brownian bridge B as the sum of a Gaussian

X and an independent stochastic process. Then, Lp0, 0, y, tq “ X`Dpy, tq where

D is a random function independent of X. See Proposition 17.

4. We will prove that any random function of the form X ` Dpy, tq has no atoms

with probability 1.

3.4 Convergence of level sets of LPP to directed landscape

In this section we will prove Theorem 3.

3.4.1 Convergence of level sets when a sequence of functions converges

We start by proving a deterministic version of our theorem.

Lemma 16. Let K “ ra, bs ˆ rc, ds with a ă b and 0 ă c ă d be a compact set

on R2 and h P R be a real number. Let gn : K Ñ R be a sequence of continuous

functions that converges to a function g : K Ñ R uniformly. Suppose that g has no

local extrema with value h on K. Then g´1
n phq X K converges to g´1phq X K with

respect to the (Euclidean) Hausdorff metric.

Proof. Let K “ ra, bs ˆ rc, ds with a ă b and 0 ă c ă d be a compact set on R2. We

need to prove that

lim
nÑ8

dHpg´1
n phq X K, g´1

phq X Kq “ 0.

Recall that for any pair of sets A,B Ď K,

dHpA,Bq “ inftδ ą 0 : A Ď pBqδ and B Ď pAqδu

where pAqδ “
Ť

xPA

tz P K : ∥x ´ z∥ ď δu.

We claim that there exist δ0 ą 0 and n0 P N, such that that g´1phq X K Ď

pg´1
n phqq X Kqδ for all δ ă δ0 and n ě n0. Take any x P g´1phq X K. Since x cannot

be a local maxima or minima of g on K, there must exist two sequences, pxjqj and

pyjqj in K such that

gpxjq ă gpxq “ h ă gpyjq



CHAPTER 3. CONVERGENCE OF THE LEVEL SETS OF LPP 24

such that for all j P N,

∥xj ´ x∥ ď
1

j
and ∥yj ´ x∥ ď

1

j
(3.3)

Since we also assumed that gn converges to g uniformly, for each ε ą 0, there exists

a natural number N1pεq such that for n ě N1pεq,

|gnpwq ´ gpwq| ă ε

for any w P K. For each j P N, we take N1pjq such that for all n ě N1pjq,

|gnpwq ´ gpwq| ă gpxq ´ gpxjq

for any w P K. Then, evaluating at the point xj, we get

gnpxjq ´ gpxjq ă gpxq ´ gpxjq.

This proves that for all n ě N1pjq, gnpxjq ă gpxq “ h. Similarly, there must exist

an integer N2 “ N2pjq such that for n ě N2, h ă gnpyjq. So for n ě N “ Npjq :“

maxtN1, N2u, we will have that

gnpxjq ´ h ă 0 ă gnpyjq ´ h.

For each n ě Npjq, by the Intermediate Value Theorem, there is a point xn in the

segment that starts at xj and ends at yj such that gnpxnq “ h. Since K is a rectangle

and xj, yj P K, the point xn is in K too. By (3.3), we know that ∥xj ´ x∥ ď 1
j
and

∥yj ´ x∥ ď 1
j
so

∥xn ´ x∥ ď ∥xn ´ xj∥ ` ∥xj ´ x∥ ď ∥yj ´ xj∥ ` ∥xj ´ x∥ ă
3

j
.

This means that xn P Bpx, 3{jq X g´1
n phq for n ě Npjq. So for each j P N, x P

pg´1
n phq X Kq3{j for all n ě Npjq.

We now show the reverse inclusion: that for each j P N,

g´1
n phq X K Ď pg´1

phq X Kq3{j

for n sufficiently large. Fix j P N and suppose that this is not true. Then there

exists a sequence of points on the h-level set, znk
P g´1

nk
phq X K such that for any

x P g´1phq X K, |znk
´ x| ą 3

j
.

Fix any one such x P g´1phq X K. By the compactness of K, tznk
u must have a
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convergent subsequence which we will without loss of generality take to be tznk
u itself

with a limit z. We claim that z P g´1phq. To see this, observe that by the triangle

inequality,

|gpzq ´ h| ď |gpzq ´ gnk
pzq| ` |gnk

pzq ´ gnk
pznk

q| ` |gnk
pznk

q ´ h|.

The third summand is 0 by definition of znk
. The first summand tends to 0 as k Ñ 8

by uniform convergence of gn to g. The second summand goes to zero as k Ñ 8 by

continuity of gnk
for each k, and so we see that |gpzq ´ h| must be 0 as the upper

bound becomes arbitrarily small as k Ñ 8. This means that gpzq “ h as claimed,

and this is a contradiction. We chose znk
so that |x´ znk

| ą 3
j
for any x P g´1p0q but

|z ´ znk
| ă 3

j
eventually by definition of z.

We conclude that for all j P N, there exists M , such that

g´1
n p0q X K Ď pg´1

p0q X Kq3{j and g´1
p0q X K Ď pg´1

n p0q X Kq3{j

for all n ě M . This proves that

lim
nÑ8

dHpg´1
n phq X K, g´1

phq X Kq “ 0.

3.4.2 Proof of Theorem 3

By Lemma 16, to prove Theorem 3 we need to show that for any compact set K “

ra, bs ˆ rc, ds with a ă b and 0 ă c ă d, the directed landscape Lp0, 0; y, tq : K Ñ R
has no extrema on the h-level set with probability 1. To prove that, we will use the

fact that for fixed times, the directed landscape is locally Brownian to express L as

the sum of an absolutely continuous random variable and an independent random

function. Then, we will prove that any stochastic process expressed in that way has

probability 0 of having an extrema on the h-level set over any rectangle.

Proof of Theorem 3. Let h P R. By Lemma 16, it is enough to prove that for any

compact K “ ra, bs ˆ rc, ds with a ă b and 0 ă c ă d,

P
´

sup
py,tqPK

Lp0, 0; y, tq “ h
¯

“ 0 (3.4)

and

P
´

inf
py,tqPK

Lp0, 0; y, tq “ h
¯

“ 0. (3.5)

Notice that Lemma 16, requires that there is no local extrema on a compact on the
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h-level set and we are only proving that there is no absolute maximum or minimum

on the h-level set. This is not a problem because the probabilities (3.4) and (3.4) are

0 for any rectangle, not only the rectangle on the statement of Theorem 3.

We begin by observing that for any y P R and 0 ă s ă t, we can use the metric

composition property of the directed landscape from Proposition 13 to express

Lp0, 0; y, tq “ sup
xPR

Lp0, 0;x, sq ` Lpx, s; y, tq.

Here, Lp0, 0;x, sq and Lpx, s; y, tq are independent. Moreover, we know that for fixed

s, by Proposition 13

Lp0, 0; ¨, sq
d
“ s1{3A1

´

¨

s2{3

¯

,

where A1 is the top line of the parabolic Airy ensemble. For any function f , we

will denote f psqpxq “ s1{3f
`

x
s2{3

˘

. Then, by this equality in distribution and the

independence previously mentioned, we know that

Lp0, 0; y, tq
d
“ sup

xPR
s1{3A1

´ x

s2{3

¯

` Lpx, s; y, tq “ sup
xPR

A
psq

1 pxq ` Lpx, s; y, tq

where A1 and L are independent.

In turn, we can translate the probabilities (3.4) and (3.5) as

P
´

sup
py,tqPK

sup
xPR

A
pc{2q

1 pxq ` Lpx, c{2; y, tq “ h
¯

(3.6)

and

P
´

inf
py,tqPK

sup
xPR

A
pc{2q

1 pxq ` Lpx, c{2; y, tq “ h
¯

(3.7)

respectively since K “ ra, bs ˆ rc, ds and c{2 ď t for all t P K. We would like to use

the absolute continuity of A1 with respect to a Brownian bridge on a compact (see

Theorem 8) but we are looking at the supremum of A1 over the whole line. First, we

need to break the supremum over R into smaller pieces. It is clear that there exists

a random number N P N such that

sup
xPR

A
pc{2q

1 pxq ` L
`

x,
c

2
; y, t

˘

“ sup
xPr´N,Ns

A
pc{2q

1 pxq ` L
`

x,
c

2
; y, t

˘

.
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Then,

P
´

sup
py,tqPK

sup
xPR

A
pc{2q

1 pxq`L
`

x,
c

2
; y, t

˘

“ h
¯

“P
´

ď

nPN

!

sup
py,tqPK

sup
xPr´n,ns

A
pc{2q

1 pxq ` L
`

x,
c

2
; y, t

˘

“ h
)¯

ď
ÿ

nPN

P
´

sup
py,tqPK

sup
xPr´n,ns

A
pc{2q

1 pxq ` L
`

x,
c

2
; y, t

˘

“ h
¯

and

P
´

inf
py,tqPK

sup
xPR

A
pc{2q

1 pxq`L
`

x,
c

2
; y, t

˘

“ h
¯

“P
´

ď

nPN

!

inf
py,tqPK

sup
xPr´n,ns

A
pc{2q

1 pxq ` L
`

x,
c

2
; y, t

˘

“ h
)¯

ď
ÿ

nPN

P
´

inf
py,tqPK

sup
xPr´n,ns

A
pc{2q

1 pxq ` L
`

x,
c

2
; y, t

˘

“ h
¯

.

The result will follow from proving that for each n P N,

P
´

sup
py,tqPK

sup
xPr´n,ns

A
pc{2q

1 pxq ` L
`

x,
c

2
; y, t

˘

“ h
¯

“ 0 (3.8)

and

P
´

inf
py,tqPK

sup
xPr´n,ns

A
pc{2q

1 pxq ` L
`

x,
c

2
; y, t

˘

“ h
¯

“ 0. (3.9)

To study these random variables, we are finally going to use the fact that the Airy

line ensemble is locally Brownian. By the stationarity of the stationary Airy process,

we have the equality in distribution

´

A
pσq

1 prq

¯

rPra,bs

d
“

´

A
pσq

1 prq `
r2

σ
´

pr ` a ´ 1q2

σ

¯

rPr1,b´a`1s
.

The more natural thing would be to shift the parabolic Airy process to the origin but

it will become clear later why we need a margin far from 0.

Then, we can rewrite equations (3.8) and (3.9) as

P
´

sup
py,tqPK

sup
xPr1,2n`1s

A
pc{2q

1 pxq `
2x2

c
´

2px ´ n ´ 1q2

c
` L

`

x ´ n ´ 1,
c

2
; y, t

˘

“ h
¯

“ 0

and

P
´

inf
py,tqPK

sup
xPr1,2n`1s

A
pc{2q

1 pxq `
2x2

c
´

2px ´ n ´ 1q2

c
` L

`

x ´ n ´ 1,
c

2
; y, t

˘

“ h
¯

“ 0.
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By Theorem 8 for any interval r0, T s with T ě 1, there exist a standard Brownian

bridge B and an independent random linear shift L and an absolute constant c1 ą 0

such that for any subset S of Cpr0, T s,Rq,

PpA1pxq P Sq ď ec1T
2PpBp2xq ` Lpxq P Sq.

We will use this result. Notice that the natural interval to apply this result to is the

interval rc2{3{22{3, 21{3nc2{3 ` c2{3{22{3s. However, to make sure that the interval has

length larger than 1 and give us a little margin, we will use a slightly larger interval.

Then, on the interval r0, 21{3nc2{3 ` c2{3s “: r0, T0s, we get that

P
´

sup
py,tqPK

sup
xPr1,2n`1s

A
pc{2q

1 pxq `
2x2

c
´

2px ´ n ´ 1q2

c
` L

`

x ´ n ´ 1,
c

2
; y, t

˘

“ h
¯

ďec1c
4{3p1`21{3nq2P

ˆ

sup
py,tqPK

sup
xPr1,2n`1s

Bpc{2q
p2xq ` Lpc{2q

pxq ` gpx, y, tq “ h

˙

.

(3.10)

where gpx, y, tq “ `2x2

c
´

2px´n´1q2

c
` L

`

x ´ n ´ 1, c
2
; y, t

˘

. Here we have used again

that A1 and L and therefore A1 and g are independent in the expression above.

We will now prove that one can ’pull out’ a random variable from a Brownian

bridge. Meaning, that for any Brownian bridge, B, one can write B as the sum of

a random variable and an independent stochastic process. This proposition will also

be applied in Section 6.3 to find the Hausdorff dimension of the level sets.

Proposition 17. Let a P R, T ą 0, and let pBprqqrPra,a`T s be a Brownian bridge with

arbitrary start and end values. Then for any δ P p0, 1
2
q, we may write

pBprqqrPra`δT,a`p1´δqT s “ N ` pBprq ´ NqrPra`δT,a`p1´δqT s

where N „ N p0, 1
2
δT q and is independent of the process pBprq ´ NqrPra`δT,a`p1´δqT s.

Proof. By subtracting a deterministic linear function, we may assume that Bpaq “

Bpa ` T q “ 0 without loss of generality. Define

N “
Bpa ` δT q ` Bpa ` p1 ´ δqT q

2
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and let r P ra ` δT, a ` p1 ´ δqT s. We then compute that

CovpN,Bprqq “ Covp
Bpa ` δT q

2
, Bprqq ` Covp

Bpa ` p1 ´ δqT q

2
, Bprqq

“
1

2

ppa ` T q ´ rqppa ` δT q ´ aq

T
`

1

2

ppa ` T q ´ pa ` p1 ´ δqT qqpr ´ aq

T

“
1

2

ppa ` T q ´ rqδT

T
`

1

2

δT pr ´ aq

T

“
1

2
δT.

We also see immediately that

VarpNq “
1

4
VarpBpa ` δT qq `

1

4
VarpBpa ` p1 ´ δqT q `

1

2
CovpBpa ` δT q, Bpa ` p1 ´ δqT qq

“
1

4

p1 ´ δqT pδT q

T
`

1

4

δT p1 ´ δqT

T
`

1

2

ppa ` T q ´ pa ` p1 ´ δqT qqppa ` δT q ´ aq

T

“
1

4
pδT ´ δ2T q `

1

4
pδT ´ δ2T q `

1

2
δ2T

“
1

2
δT.

Therefore, for each r P ra ` δT, a ` p1 ´ δqT s we have that

CovpN,Bprq ´ Nqq “ CovpN,Bprqq ´ VarpNq “ 0.

Thus the process pBprq ´ NqrPra`δT,a`p1´δqT s is uncorrelated with N , and hence the

two are independent as claimed.

Recall that T0 “ c2{3p1 ` 21{3nq. Let δ be a positive real number such that δ ă

mint1{2, pc{2q2{3u. Going back to the proof of the convergence of the level sets, by

Proposition 17, we know that there exists a random variable X „ N p0, 1
2
δT0q such

that

Bp2xq “ X ` pBp2xq ´ Xq

for any x P rδT0, p1 ´ δqT0s such that X and pBp2xq ´ Xqx are independent. Then,

we can rewrite probability (3.10) as

P
´

sup
py,tqPK

sup
xPr1,2n`1s

Bpc{2q
p2xq ` Lpc{2q

pxq ` gpx, y, tq “ h
¯

“ P
´

` c

2

˘1{3
X ` sup

py,tqPK

sup
xPr1,2n`1s

fpx, y, tq “ h
¯
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where f is the random function defined as

fpx, y, tq :“ Bpc{2q
p2xq ´

` c

2

˘1{3
X ` Lpc{2q

pxq ` gpx, y, tq

and X is independent of the stochastic function pfpx, y, tqqr1,2n`1sˆK .

To conclude we need to prove that any random variable expressed as

Z :“
´ c

2

¯1{3

X ` sup
py,tqPK

sup
xPr1,2n`1s

fpx, y, tq

has no atoms on the h-level set. In fact, let hX be the density of
`

c
2

˘1{3
X and

YK,n :“ sup
py,tqPK

sup
xPr1,2n`1s

fpx, y, tq,

then the cumulative distribution function of Z, FZ is

FZpwq “

ż

R
FYK,n

pw ´ zqhXpzqdz

where FYK,n
is the cumulative distribution function of the random variable YK,n. Since

hX is C1, we know that the convolution of FYK,n
and hX is also C1. This proves that

FZ is differentiable with continuous derivative and that Z is an absolutely continuous

random variable. Then,

P
´

` c

2

˘1{3
X ` sup

py,tqPK

sup
xPr1,2n`1s

fpx, y, tq “ h
¯

“ PpZ “ hq “ 0.

We have proved that

P
´

sup
py,tqPK

sup
xPr´n,ns

A
pc{2q

1 pxq ` L
`

x,
c

2
; y, t

˘

“ h
¯

“ 0

for all n P N. Therefore,

P
´

sup
py,tqPK

Lp0, 0; y, tq “ h
¯

ď
ÿ

nPN

P
´

sup
py,tqPK

sup
xPr´n,ns

A
pc{2q

1 pxq ` L
`

x,
c

2
; y, t

˘

“ h
¯

“ 0.

In exactly the same way, one can prove that

P
´

inf
py,tqPK

Lp0, 0; y, tq “ h
¯

“ 0.

This concludes the proof.



Chapter 4

Hausdorff dimension of the level

sets of the directed landscape

This chapter contains the proof of two results. In the first section, we will assume

that Theorems 5, 6 and 7 are true. Under that assumption, the proof of the Hausdorff

dimension of the level sets of the directed landscape, Theorem 4, is simple. In the

second section, we will prove the upper bound on the Hausdorff dimension of the level

sets of the directed landscape, Theorem 5. The proof of Theorems 6 and 7 can be

found on Chapters 5 and 6 respectively.

4.1 The Hausdorff dimension

In this section we will introduce the Hausdorff dimension and relate it to the directed

landscape. More details on the specific techniques used to calculate the Hausdorff

dimension of the level sets of the directed landscape can be found on 4.3.1 and in

Chapter 5.

The Hausdorff dimension is a measure of the ’size’ of a mathematical object that

extends the traditional integer dimension notion (a point has dimension 0, a line has

dimension 1, etc.) to allow to give a measure to the complexity of self-similar objects

that present a lot of ’roughness’. It is the natural notion of dimension for fractals.

Let X be a metric space. For any α ě 0 and subset U Ă X, the α-dimensional

Hausdorff measure of U is defined as

lim
δŒ0

inf

"

ÿ

i

pdiamUiq
α : tUiu is a covering of U with 0 ă diampUiq ă δ

*

. (4.1)

31
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The Hausdorff dimension of U is

dimHpUq “ inftα ą 0 : α ´ dimensional Hausdorff measure of U is zerou.

Typically, to find the Hausdorff dimension of a set, one would obtain matching upper

and lower bounds.

The idea is a sophisticated version of the following reasoning: take the square

r0, 1s2. Split it smaller squares tSiu of size 1
n2 . We need n2 squares Si to cover r0, 1s2.

Intuitively, that exponent is the dimension. In fractal objects, the coverings need to

include sets of different sizes to cover the whole object at all scalings.

Similarly to the scaling properties of the Brownian motion, the scaling properties

of the directed landscape (see Lemma 14) mean that it is a fractal object. Therefore,

its level sets are too.

The intuition behind the specific number 2
3
is the scaling of the directed landscape.

By Lemma 14, for any q ą 0,

Lp0, 0; 0, tq
d
“ q1{3Lp0, 0; 0, q´1{3tq.

This means that the number of zeroes on r0, εs scales like ε2{3 heuristically.

The Hausdorff dimension of the level sets of Lp0, 0;x, tq is 5
3
and can be found using

the same strategy. This work was done by Lemonte Alie-Lamarche in collaboration

with me.

The Hausdorff dimension has a property that we will use a couple of times: it is

stable under countable unions. In fact, if X “
Ť

iPN Xi, then

dimHpXq “ sup
iPN

dimHpXiq.

From now on, the set N does not contain the number 0.

4.2 Hausdorff dimension of the level sets of the directed land-

scape

For ease of readability, we will rewrite the statement of the result from the introduc-

tion.

Theorem 18. Let dimH be the Hausdorff dimension of a set. Let h P R. Then,

dimHpL´1
p0, 0; 0, ¨qphqq “

2

3

with positive probability.
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Remark. The positive probability is the one obtained in Theorem 6 for the stochastic

process Lp0, 0; 0, tq on t P p0,8q and β “ 1
3
.

Proof. By Theorem 5, we know that

dimHpL´1
p0, 0; 0, ¨qphqq ď

2

3

almost surely.

By Theorem 6, we know that if there exists an ε0 ą 0 and positive constants ch, ch

and c2
h such that for any s, t P r1, 2s with s ă t and for all ε ď ε0 the three following

’density’ bounds are true

PpLp0, 0; 0, tq P ph ´ ε, h ` εqq ď ch2ε (4.2)

PpLp0, 0; 0, tq P ph ´ ε, h ` εqq ě c1
h2ε (4.3)

PpLp0, 0; 0, sq P ph ´ ε, h ` εq,Lp0, 0; 0, tq P ph ´ ε, h ` εqq ď c2
h4ε

2
|t ´ s|

´1{3, (4.4)

then

dimHpL´1
p0, 0; 0, ¨qphq X r1, 2sq ě 1 ´

1

3
“

2

3

with positive probability ph “ 5
36

c12
h

c2
h
.

Take ε0 “ 1. Recall from Proposition 13 that for each t fixed,

Lp0, 0; 0, tq
d
“ t1{3A1p0q

d
“ t1{3X

where X is distributed according to the Tracy-Widom 2 distribution. Recall that the

Tracy-Widom 2 distribution, sometimes also called the GUE Tracy-Widom distribu-

tion, has a continuous positive density, fTW2 , on R (see for example, the survey [28]).

Then, we can take

ch “ max
rh´1,h`1s

fTW2pxq and c1
h “ min

rh´1,h`1s
fTW2pxq

that exist by continuity of the density and are positive because fTW2pxq ą 0 for all

x P R. These constants satisfy inequalities (4.2) and (4.3).

Inequality (4.4) is proved in Theorem 7.

We have proved that

dimHpL´1
p0, 0; 0, ¨qphq X r1, 2sq ě

2

3
(4.5)

with positive probability ph “ 5
36

c12
h

c2
h
. By the countable stability of the Hausdorff



CHAPTER 4. HAUSDORFF DIMENSION OF THE LEVEL SETS OF THE DIRECTED LANDSCAPE 34

dimension, we know that if a set Y “
Ť

nPN Yn is a countable union of subsets then

dimHpY q “ sup
nPN

dimHpYnq.

The directed landscape Lp0, 0; 0, tq is defined on p0,8q and can be expressed as a

countable union as follows:

Lp0, 0; 0, tq´1
phq “

ď

nPN

Lp0, 0; 0, tq´1
Xrn, n`1sphq

ďď

kPN

Lp0, 0; 0, tq´1
X

” 1

k ` 1
,
1

k

ı

phq

Using the countable stability of the Hausdorff dimension, we get that

dimHpLp0, 0; 0, tq´1
phqq ě dimHpL´1

p0, 0; 0, ¨qphq X r1, 2sq

which as we know by (4.5) is larger than 2
3
with probability ph. This concludes the

proof.

4.3 Upper bound on the Hausdorff dimension of level sets

This section will be devoted to proving Theorem 5. We restate it for readability

purposes.

Theorem 19. For each h P R, let Zh be the set

Zh :“ tt P p0,8q : Lp0, 0; 0, tq “ hu.

Then, for any h P R,
dimHpZhq ď

2

3

almost surely.

4.3.1 Strategy for the upper bound

Before we prove this result we will explain briefly our reasoning. Suppose that we

need to find an upper bound for the Hausdorff dimension of a subset E of Rn. We

can split a compact region C Ă Rn that contains E in squares whose side has length

of 1{m. If we count the number of squares needed to cover E and we find it is of

order md squares, then d is an upper bound because we would have found a covering

that upper bounds equation 4.1.

Of course, the level sets of the directed landscape are not deterministic. However,
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suppose that E is random and say we can show that for any square R of diameter r,

PpE X R ‰ Hq ď rn´d, (4.6)

possibly multiplied by a constant and logarithmic terms. Then, splitting the compact

C in approximately r´n squares of diameter r, the expected number needed to cover

E is bounded by

# of squares ˆ PpE X R ‰ Hq ď r´d.

This would prove that the α-Hausdorff measure of E is 0 for every α ą d.

Now the question is how to find the estimate in (4.6). The modulus of continuity

is of help with this in our case. Take a random function f : R Ñ R that is α-Holder

continuous. Then, if f has a point on the h-level set at y P ra, bs then for any x P ra, bs,

|fpxq ´ fpyq| “ |fpxq ´ h| ď |x ´ y|
α

ď pb ´ aq
α.

Then,

PpZ X ra, a ` εs ‰ Hq ď Pp|fpa ` εq| ď εαq. (4.7)

To bound the right hand side of the equation above, we can use a density bound on

f and we would obtain the desired estimate.

The modulus of continuity of the directed landscape is Theorem 11 and essentially

means that if K Ă tps, tq P R2 : s ă tu is a compact, then

|Lp0, 0; 0, tq ´ Lp0, 0; 0, sq| ď CKpt ´ sq
1{3 log2{3

ppt ´ sq
´1

` 1q

for all s, t P K close enough. Here, the constant C is a random variable. This explains

why the upper bound to the Hausdorff dimension is 2
3
.

The proof is very similar to the proof of the same result but in the case of the

Brownian motion (see [25]). The constant CK adds a challenge since it is random

and so the simple argument expressed in equation (4.7) of using the density of the

random variable, in this case the one-point density of the directed landscape, won’t

work. But we know from Theorem 11, that CK decays exponentially. In fact,

PpCK ą Mq “ Ope´M3{2

q as M Ñ 8.

So we can use that either |Lp0, 0; 0, tq ´Lp0, 0; 0, sq| ď Mpt´sq1{3 log2{3
ppt´sq´1 `1q

or CK ą M . Both events have very little probability which makes the probability of

having an element of the Zh level set very small if K is small too. This argument

would work the same for other stochastic processes with a modulus of continuity that

have a random constant with fast decay.
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We move on to the proof of Theorem 5.

4.3.2 Proof of Theorem 5

Proof. We start by giving a heuristic idea about the (fractal) dimension of a set. Start

by splitting a compact region K in Rn that contains Zh into squares whose side has

length 1{m. If we count the number of squares needed to cover the set Zh and find

that we need Opmdq squares, then d is an upper bound of the dimension. So, we start

by estimating the number of boxes of small size that are needed to cover the set Zh

in a compact. Since Zh Ă R, our boxes are closed intervals. To estimate this number

we will find an upper bound of

PpZh X ra, a ` εs ‰ Hq (4.8)

for arbitrary a ą 0 and ε ą 0 small enough.

Let n P N. Consider the random function Lp0, 0; 0, ¨q :
”

1
n
, n
ı

ÝÑ R. The interval
”

1
n
, n
ı

is the compact set that we mentioned above. At the end of the proof we will

argue, using the countable stability of the Hausdorff dimension, that dimHpZhq ď 2
3

and not just over this compact. For now and until the very end of the proof, n will

be fixed. Fix a ą 0 and 0 ă ε ă n´6 such that

ra, a ` εs Ď

” 1

n
, n
ı

.

Suppose that for some s P ra, a ` εs, we have that Lp0, 0; 0, sq “ h. Then,

|Lp0, 0; 0, tq ´ h| “ |Lp0, 0; 0, tq ´ Lp0, 0; 0, sq| (4.9)

for all t P ra, a ` εs. By applying Theorem 12 with δ “ 1
n
, we know that there exists

a random constant Cn, that only depends on n, such that

|Lp0, 0; 0, tq ´ h| ď Cnτ
1{3 log2{3

pτ´1
` 1q (4.10)

for all t P ra, a ` εs. We will use this fact to bound probability (4.8). However, first

we will take a look at the right hand side of the inequality above with the hopes of

simplifying the expression.

Notice that for any 0 ă γ ă 1
3
, we have that

lim
εÑ0`

ε1{3 log2{3
pε´1 ` 1q

ε1{3´γ
“ 0.
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Then, there exists ε0 ą 0 such that

ε1{3 log2{3
pε´1

` 1q ď ε1{3´γ

for all ε ď ε0. In fact, if ε ď mintε0, n
´6u, using equation (4.10) we get that for all

s, t P ra, a ` εs,

|Lp0, 0; 0, tq ´ Lp0, 0; 0, sq| ď Cn|t ´ s|
1{3´γ

ď Cnε
1{3´γ.

We can conclude that if ε ą 0 is small enough and there exists s P ra, a ` εs such

that Lp0, 0; 0, sq “ h, then

|Lp0, 0; 0, aq ´ h| ď Cnε
1{3´γ

for any 0 ă γ ă 1{3. Translating this into probabilities, we get that

PpZh X ra, a ` εs ‰ Hq ď Pp|Lp0, 0; 0, aq ´ h| ď Cnε
1{3´γ

q (4.11)

for any 0 ă γ ă 1{3. Recall that our first goal was to bound the term on the left

hand side of the inequality above. The only thing left to do is to understand the

distribution of Lp0, 0; 0, aq and of Cn.

Recall from Proposition 13, that the one-point distribution of the directed land-

scape is related to the distribution of A1 in the following way:

Lp0, 0; 0, aq
d
“ a1{3A1p0q,

where A1p0q is the top line of the parabolic Airy line ensemble A evaluated at 0. We

know that Ap0q is distributed according to Tracy-Widom 2 distribution, TW2. Let

fTW2 be the density of TW2 and λ :“ ∥fTW2∥8
. Then, we know that

Pp|Lp0, 0; 0, aq ´ x| ď kq “ Pp|a1{3A1p0q ´ x| ď kq

“ Pp|A1p0q ´ xa´1{3
| ď a´1{3kq

ď 2a´1{3kλ (4.12)

for all x P R, k ą 0.

Of course, we don’t know the distribution of Cn but we know that it decays fast.

In fact, by Theorem 12, we know that there exist absolute positive constants c, d such

that

PpCn ą Mq ď cn16e´dM3{2

. (4.13)

Now we are ready, to bound equation (4.11). We are going to use the idea explained
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before: either Cn is small, in which case we can bound (4.11) using the uniform norm

of the Tracy-Widom 2 density or Cn is large, in which case, we will use its fast decay

to bound (4.11). By the law of total probability and the fact that the probability

intersection of two events is smaller than the probability of each of them, we get that

P
´

|Lp0, 0; 0, aq ´ h| ď Cnε
1{3´γ

¯

ď P
´

|Lp0, 0; 0, aq ´ h| ď Cnε
1{3´γ, Cn ď M

¯

` P
´

Cn ą M
¯

. (4.14)

Using the bound (4.12), we get that

P
´

|Lp0, 0; 0, aq ´ h| ď Cnε
1{3´γ, Cn ď M

¯

ďP
´

|Lp0, 0; 0, aq ´ h| ď Mε1{3´γ
¯

ď2a´1{3Mε1{3´γ.

Joining this last bound with (4.11), (4.13) and (4.14), we obtain that

P
´

Zh X ra, a ` εs ‰ H

¯

ď 2a´1{3Mε1{3´γ
` cn16e´dM3{2

(4.15)

for every a,M ą 0, ε sufficiently small and n P N.
Now we will focus on counting the number of small intervals in r 1

n
, ns needed to

cover the h-level set. We will split r 1
n
, ns in intervals of length 1

2m
, withm large enough

to make 1
2m

ď mintε0, n
´6u. Notice that for all m P N,

” 1

n
, n
ı

Ď

rn´ 1
n

s2m
ď

j“1

” 1

n
`

j ´ 1

2m
,
1

n
`

j

2m

ı

.

We define the (random) number of intervals of length 1{2m needed to cover ZhXr 1
n
, ns

as

Nm :“

rn´ 1
n

s2m
ÿ

j“1

1␣
ZhXr 1

n
`

j´1
2m

, 1
n

`
j

2m
s‰H

(.

We are going to estimate this number, by finding a bound on its expectation.

Looking at ErNms, we observe that

ErNms ď

rn´ 1
n

s2m
ÿ

j“1

P
´

Zh X

” 1

n
`

j ´ 1

2m
,
1

n
`

j

2m

ı

‰ H

¯

.
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By (4.15), we can bound the terms in the sum above and we obtain that

ErNms ď

rn´ 1
n

s2m
ÿ

j“1

2n1{3M2´m{3`mγ
` cn16e´dM3{2

“

Q

n ´
1

n

U

2m
´

2n1{3M2´m{3`mγ
` cn16e´dM3{2

¯

ď2n2M2mp2{3`γq
` cn172me´dM3{2

(4.16)

for any M ą 0. We will choose M wisely, so that ErNms

2mp2{3`ηq is summable on m. In that

way, we will have estimated the number of small intervals needed to cover the level

set and in fact it will be of the correct order.

Let M “ p m
3d

q2{3 and η ą 0. Let m0 be large enough so that 2´m ď mintε0, n
´6u.

By the Monotone Convergence Theorem and the inequality on (4.16), we see that

E

«

8
ÿ

m“m0

Nm

2mp2{3`γ`ηq

ff

ď

8
ÿ

m“m0

ErNms

2mp2{3`γ`ηq

ď
2n

p3dq2{3

8
ÿ

m“m0

m2{32mp2{3`γq

2mp2{3`γ`ηq
` cn17

8
ÿ

m“m0

2me´m{3

2mp2{3`γ`ηq

“
2n

p3dq2{3

8
ÿ

m“m0

m2{32´mη
` cn17

8
ÿ

m“m0

´2

e

¯m{3 1

2mpγ`ηq

which is finite for all η ą 0 and γ P p0, 1
3
q. This implies that for any η ą 0 and

γ P p0, 1
3
q,

lim sup
mÑ8

Nm

2mp2{3`γ`ηq
“ 0

almost surely. This is true for all n P N.
We will now finish the proof. Recall that by the definition of the Hausdorff dimen-

sion

dimH

´

Zh X
“ 1

n
, n
‰

¯

“ inf
␣

α : Hα
´

Zh X
“ 1

n
, n
‰

¯

“ 0
(

where the α-Hausdorff measure is defined as

Hα
´

Zh X
“ 1

n
, n
‰

¯

“ lim
δÑ0`

Hα
δ

´

Zh X
“ 1

n
, n
‰

¯

and

Hα
δ

´

Zh X
“ 1

n
, n
‰

¯

“ inf
!

8
ÿ

i“1

|Ei|
α : E1, E2, E3, . . . , cover Zh X

“ 1

n
, n
‰

and |Ei| ď δ
)

.

Then, the union of each dyadic interval that intersects the level set is a covering of
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the h-level set by sets of diameter 1
2m

and such that the sum of the diameter of each

set to the power of 2
3

` γ ` η is equal to Nm

2mp2{3`γ`ηq . Then,

H
2
3

`γ`η

1{2m

´

Zh X
“ 1

n
, n
‰

¯

ď
Nm

2mp2{3`γ`ηq

for every η ą 0, γ P p0, 1
3
q almost surely. In turn, this means that the α-Hausdorff

measure of the level set Zh on r 1
n
, n
‰

can be bounded as

Hα
´

Zh X
“ 1

n
, n
‰

¯

ď lim sup
mÑ8

Nm

2mp2{3`γ`ηq
“ 0

for all η ą 0 and all γ P p0, 1
3
q almost surely. Then,

dimH

´

Zh X
“ 1

n
, n
‰

¯

“ inf
␣

α : Hα
´

Zh X
“ 1

n
, n
‰

¯

“ 0
(

ď
2

3
` γ ` η

almost surely. Taking η Ñ 0 and γ Ñ 0, we get that

dimH

´

Zh X
“ 1

n
, n
‰

¯

ď
2

3

almost surely for all n P N.
Finally, using the countable stability of the Hausdorff dimension we get that

dimHpZhq “ dimH

8
ď

n“1

´

Zh X
“ 1

n
, n
‰

¯

“ sup
nPN

dimH

´

Zh X
“ 1

n
, n
‰

¯

ď
2

3
.



Chapter 5

Strategy for the lower bound of the

Hausdorff dimension of level sets

In this chapter we will give some conditions for the existence of a lower bound to the

Hausdorff dimension of the level sets of any stochastic process pBptqqt with positive

probability. The conditions are equivalent to density bounds for the one and two-

point distributions of the process. However, it does not require the proven existence

of the density.

5.1 Lower bound of the Hausdorff dimension

The goal is to find the lower bound of the Hausdorff dimension of the level sets of

a stochastic process. The real end goal is to have a template to find the Hausdorff

dimension of the level sets of the directed landscape Lp0, 0; 0, tq. The proof is based

on a similar early proof of the Hausdorff dimension of the level sets of the Brownian

motion by Adler available in [1] (Theorem 8.4.2).

Let Bptq be a stochastic process. The goal is to prove a lower bound for the

Hausdorff dimension of B´1phqXr1, 2s of 1´β where β is the ”scale” of the stochastic

process. We will use the energy method. Suppose that we need to find a lower bound

for the set X Ă Rn. Suppose that there exists a measure µ, supported on X and such

that 0 ă µpXq ă 8. Let α ě 0. We define the α-energy of µ is

Iαpµq “

ĳ

dµpxqdµpyq

∥x ´ y∥α
.

We define

Hα
ε pXq “ inf

"

ÿ

i

pdiamUiq
α : tUiu is a covering of X with 0 ă diampUiq ă ε

*

41
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Theorem 20 (Energy method, see for example [25], Theorem 4.27). Let α ě 0 and

µ a measure supported on X, finite and non-zero. Then, for every ε ą 0,

Hα
ε pXq ě

µpXq2

ť

t∥x´y∥ăεu

dµpxqdµpyq

∥x´y∥α
.

So if Iαpµq ă 8, then the α-dimensional Hausdorff measure of X is infinity so

dimHpXq ě α.

The measure µ is sometimes called the Frostman measure. The idea is that if

Iαpµq ă 8, the measure µ spreads the mass in such a way that at each point, it

compensates for zero in the denominator of order ∥x ´ y∥´β. This means that the

measure is spreading the mass at the right scaling or less.

If the set is random, as it is for us, it is enough to show that

EIαpµq ă 8

for a suitable random measure µ on X.

In our case, we need to find a random measure µ supported on the h-level set of

Lp0, 0; 0, tq such that

E
„
ĳ

1

|s ´ t|α
dµpsqdµptq

ȷ

ă 8 (5.1)

for all α “ 1
3
. The measure µ needs to be random because already its support is

random. We will define µ through a limit of finite measures.

5.2 Remarks about the statement

We begin by rewriting the statement for ease of readability.

Theorem 21. Let Bptq be a stochastic process on R. Let h be a real number. Assume

that there exists an ε0, positive constants ch, c
1
h and c2

h and an exponent 0 ă β ă 1

such that for all t, s P r1, 2s,

PpBptq P ph ´ ε, h ` εqq ď ch2ε (5.2)

PpBptq P ph ´ ε, h ` εqq ě c1
h2ε (5.3)

PpBptq P ph ´ ε, h ` εq, Bpsq P ph ´ ε, h ` εqq ď c2
h4ε

2
|t ´ s|

´β (5.4)

for all ε ď ε0. Then, we get a lower bound for the Hausdorff dimension of the level

sets:

dHpB´1
phq X r1, 2sq ě 1 ´ β
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with positive probability ph where

ph “
c12
h pβ2 ´ 3β ` 2q

8c2
h

.

Try to get these remarks numbered

Remark. The same argument works for any interval of length 1. The choice of the

interval r1, 2s is to simplify the notation of the theorem.

Remark. Conditions (5.2) and (5.3) are immediate if the stochastic process B has a

continuous positive density on R. See Section 4.2 for an example of this.

Remark. The theorem can be easily used to prove that the Hausdorff dimension of

the h-level set of B has the same lower bound. In fact, since

B´1
phq “

ď

nPZ

B´1
phq X rn, n ` 1s,

then by the countable stability of the Hausdorff dimension,

dimHpB´1
phqq “ sup

nPZ
dimHpB´1

phq X rn, n ` 1sq ě dimHpB´1
phq X r1, 2sq ě 1 ´ β.

Remark. Notice that naturally, limhÑ˘8 c1
h “ 0 so limhÑ˘8 ph “ 0 too. In the proof,

the probability ph is related the probability of the level set not being empty.

5.3 Proof of Theorem 4

This section contains the proof of Theorem 3. The idea is that we are going to find

a sequence of measures that is supported almost on the h-level set with finite energy

integral and such that: it is tight and therefore converges, the limit is supported on

the h-level set of B, the limit is not the zero measure and the limit has finite energy

integral. The limit is indeed, our Frostman measure.

Proof. We will split the proof in subsections.

5.3.1 Defining a sequence of measures µh,ε

For any subset A Ă r1, 2s, we define the random measure of A as

µh,εpAq “
1

2ε
λpt : pt, Bptqq P A ˆ ph ´ ε, h ` εqq,

where λ is the Lebesgue measure on R. This would be the occupation time of the

stochastic process Bptq on the set A in an interval around h, which is the level set.
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Notice that we can rewrite the measure as an integral:

µh,εpAq “
1

2ε

ż

A

1pBptq P ph ´ ε, h ` εqqdt. (5.5)

5.3.2 Proof that µh,εn has a subsequence that converges in distribution as

n Ñ 8

A natural way to prove precompactness of a sequence of random measures is to prove

tightness of such sequence. In fact, we will use the following form of Prokhorov’s

Theorem (see for example [22], Lemma 14.15):

Theorem 22. Let µ1, µ2, . . . be random measures on a locally compact simply con-

nected Hausdorff space S. Then the sequence pµnq is relatively compact in distribution

iff pµnpAqq is tight in R` for every A P S.

In our case, S “ r1, 2s and µn “ µh,ε. Take A a subset of r1, 2s. To prove that

pµh,εpAqq is tight in R`, it is enough to prove that the mean of pµh,εpAqq is uniformly

bounded. Given that pµh,εpAqq is non-zero for all h and ε, we just need to prove a

uniform upper bound for the expectation of µh,εpAq.

Using (5.5), we get that

Erµh,εpAqs “
1

2ε
E
„
ż

A

1pBptq P ph ´ ε, h ` εqqdt

ȷ

.

By Fubini’s theorem, we exchange the order of integration and we get that the ex-

pectation above is equal to

1

2ε

ż

A

PpBptq P ph ´ ε, h ` εqqdt. (5.6)

The probability in the integrand can be bounded using (5.2) by cε where c is a

constant so we end up with

Erµh,εpAqs ď ch

ż

A

dt ď ch,

where in the last inequality we used that A is a subset of r1, 2s. This proves that

pµh,εpAqq is tight and therefore that there exists a subsequence, pµh,εnq, that converges

to a measure µ in distribution. The measure µh is our candidate to be the non-zero

measure supported in the level set that has finite energy. We will prove these claims

in the following subsections.
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5.3.3 Proof that the limiting measure is non-zero with positive probabil-

ity

By the Paley-Zygmund inequality we know that for a non-negative random variable

X,

PpX ą θErXsq ě p1 ´ θq
2 ErXs2

ErX2s
,

where θ P r0, 1s. We want to prove that µh,εpr1, 2sq is not zero with positive probability.

Clearly, µh,εpr1, 2sq is non-negative. Notice that if we prove that Erµh,εpr1, 2sqs ě K

and Erµh,εpr1, 2sq2s ď C where K and C are uniform constants then taking θ positive

and θ ă K, we have that

Ppµh,εpr1, 2sq ą θhq ě

ˆ

1 ´
θh

Erµh,εpr1, 2sqs

˙2 Erµh,εpr1, 2sqs2

Erµh,εpr1, 2sq2s

ě

ˆ

1 ´
θh
K

˙2
K2

C
“: ph ą 0. (5.7)

We will now focus on the uniform bounds on the first and second moments of

µh,εpr1, 2sq. We need a lower bound for the mean of µh,εpr1, 2sq. First, notice that, as

in (5.6)

Erµh,εpr1, 2sqs “
1

2ε

ż 2

1

PpBptq P ph ´ ε, h ` εqqdt.

Using the bound (5.3) we obtain,

Erµh,εpr1, 2sqs ě c1
h

ż 2

1

dt ě c1
h.

This proves that

Erµh,εpr1, 2sqs ě c1
h ą 0.

For upper bound of the second moment, a similar calculation shows that:

Erµh,εpr1, 2sq
2
s “

1

4ε2

ĳ

r1,2s2

PpBptq P ph ´ ε, h ` εq, Bpsq P ph ´ ε, h ` εqqdtds.

Notice that this expression is symmetric with respect to s and t so we can assume

that s ă t and multiply by a factor of 2. Using the bound (5.4),

PpBptq P ph ´ ε, h ` εq, Bpsq P ph ´ ε, h ` εqq ď c2
h4ε

2
|t ´ s|

´β
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we get:

Erµh,εpr1, 2sq
2
s ď

2

4ε2

ż 2

1

ż 2

s

c2
h4ε

2
pt ´ sq

´βdtds.

Performing the change of variable t ´ s “ u, we obtain

Erµh,εpr1, 2sq
2
s ď 2c2

h

ż 1

0

ż 2´s

0

u´βduds “ 2c2
h

ż 2

1

p2 ´ sq1´β

1 ´ β
ds “

2c2
h

β2 ´ 3β ` 2
ă 8,

where we have used that β ă 1.

For each h P R, we use the Paley-Zygmund result from (5.7) with θh “
c1
h

2
, we

obtain that

Ppµh,εpr1, 2sq ą θhq ě
c12
h pβ2 ´ 3β ` 2q

8c2
h

:“ ph

This proves that for all ε ď ε0,

Ppµh,εpr1, 2sq ą θhq ě ph,

where θh and ph depend on the level set h but not on ε. Now, we need to prove that

this is also true for the limit. But using the properties of convergence in distribution,

we get

Ppµhpr1, 2sq ě θhq ě lim sup
nÑ8

Ppµh,εnpr1, 2sq ě θhq ě lim sup
nÑ8

Ppµh,εnpr1, 2sq ą θhq ě ph.

The conclusion is that the limiting measure is non-negative with probability at least

ph.

5.3.4 Proof that the limiting measure is supported on the level set

The purpose of this section is to establish that the limiting measure µh is indeed

supported on (a subset of) the h´level set of the random process Bptq on the interval

r1, 2s. To begin, take pΩ,F ,Pq to be the underlying probability space on which B

and our measures µh,ε are defined, i.e.

B :
´

Ω,F ,P
¯

Ñ pCpr1, 2sq, σpτunif qq

µh,ε :
´

Ω,F ,P
¯

Ñ pMr1,2s, σpτvagueqq

where σpτunif qq is the sigma algebra generated by the topology of uniform conver-

gence, Mr1,2s is the space of finite (positive) measures on r1, 2s, and σpτvagueq is the

sigma algebra generated by the vague topology on Mr1,2s. Note that Mr1,2s is a Pol-

ish space and that Cpr1, 2sq is a complete metric space under the sup-norm by the

Stone-Weierstrass theorem. This will be important momentarily.
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Next, let dvague be the metric generating the vague topology on Mr1,2s and define

a metric dprod on the product of these two spaces by

dprod : pMr1,2s ˆ Cpr1, 2sqq ˆ pMr1,2s ˆ Cpr1, 2sqq Ñ R` (5.8)

ppf, µq, pg, νqq ÞÑ

c

dvaguepµ, νq2 ` p sup
xPr1,2s

|fpxq ´ gpxq|q2. (5.9)

Under this metric we can see immediately that the product space

pMr1,2s ˆ Cpr1, 2sq, dprodq

is again a separable complete metric space. Let τprod denote the topology generated

by the metric dprod and σpτprodq be the Borel sigma algebra generated by this topol-

ogy. In turn this means that any finite measure on the product space endowed with

σpτprodq will automatically have compact support.

We will now focus our attention on the aforementioned convergent in law sequence of

random measures pµh,εnp¨qq8
n“1. With the conventions in this subsection thus far, we

can view the pairs pµh,εnp¨q, Bp¨qq as random elements

pµh,εnp¨q, Bp¨qq :
´

Ω,F ,P
¯

Ñ pMr1,2s ˆ Cpr1, 2sq, σpτprodqq. (5.10)

As such if for each n P Zą0 we define the probability measure

Qn “ Lawppµh,εnp¨q, Bp¨qqq (5.11)

on pMr1,2sˆCpr1, 2sq, σpτprodqq then the sequence of probability measures pQnq has a

weak limit Q8, and each probability measure Qn (including n “ 8) has separable

support. Thus we may use the Skorokhod Representation Theorem to construct a

new probability space
´

Ω̃, F̃ , P̃
¯

and random elements

Ynp¨q :
´

Ω̃, F̃ , P̃
¯

Ñ pMr1,2s ˆ Cpr1, 2sq, σpτprodqq (5.12)

for each n ą 0 (including n “ 8q such that Yn Ñ Y8 P̃´almost surely and with

LawpYnq “ Qn for each n. For each n P Zą0 write

Ynp¨q “: pµ̃h,εnp¨q, Bpnq
p¨qq (5.13)
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and write

Y8p¨q “: pµhp¨q, Bp8q
p¨qq. (5.14)

As the almost-sure convergence Yn Ñ Y8 is with respect to the metric dprod, we have

by 5.8 that for P̃´almost every ω P Ω̃ and as n Ñ 8,

µ̃h,εnpωq Ñ µhpωq (5.15)

in the vague topology on Mr1,2s and that

Bpnq
pωq Ñ Bp8q

pωq (5.16)

with respect to the sup-norm on Cpr1, 2sq.

Now observe that each Bpnq (including n “ 8) is a copy of the random process

B on
´

Ω̃, F̃ , P̃
¯

, though they are not necessarily the same realization of B. We will

show that this is not an issue for our purposes. To that end, we make several more

elementary observations before addressing our original problem. First we establish

that for each finite n

supp µ̃h,εnpωq Ď pBpnq
pωqq

´1
prh ´ εn, h ` εnsq (5.17)

P̃´almost surely. Letting π1 and π2 be the usual projection maps on Mr1,2s ˆCpr1, 2sq,

this follows immediately from the fact that

P̃pπ1pYnqpπ2pYnq
´1

prh´εn, h`εns
C

qq ą 0q “ Ppµh,εnpB´1
prh´εn, h`εns

C
qq ą 0q “ 0

(5.18)

by our original definition of µh,εn in terms of B.

Next we fix δ ą 0 and recall that P̃´almost surely there exists N “ Npδ, ωq such that

for all n ą N , εn ă δ{2 and

sup
xPr1,2s

|Bpnq
pωqptq ´ Bp8q

pωqptq| ă δ{2. (5.19)

As an immediate consequence of (5.19) and the fact that εn ` δ{2 ă δ we have that

for all n ą N

Bpnq
pωq

´1
prh ´ εn, h ` εnsq Ď Bp8q

pωq
´1

prh ´ δ, h ` δsq (5.20)
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P̃´almost surely. In conjunction with (5.17), this means that

supp µ̃h,εnpωq Ď Bp8q
pωq

´1
prh ´ δ, h ` δsq (5.21)

P̃´almost surely. With this we are now ready to establish that P̃´almost surely,

suppµhpωq Ď Bp8q
pωq

´1
prh ´ δ, h ` δsq (5.22)

for any δ ą 0, i.e. that

suppµhpωq Ď Bp8q
pωq

´1
phq (5.23)

as desired, which would allow us to take this concrete construction of µhp¨q in terms

of Bp8q as the definition of our Frostman measure. To prove that (5.22) is true, it

suffices to show that for any continuous

f : r1, 2s Ñ R

vanishing on an arbitrary open neighbourhood of Bp8qpωq´1prh ´ δ, h ` δsq that

ż 2

1

fpxqdµhpωqpxq “ 0. (5.24)

By (5.15), we know that for any such function f ,

ż 2

1

fpxqdµhpωqpxq “ lim
nÑ8

ż 2

1

fpxqdµ̃h,εnpωqpxq. (5.25)

By (5.20) and the hypothesis about the support of f we know that for n ą N “

Npδ, ωq each integral on the righthand side above will be exactly 0. This in turn

establishes (5.22) for any fixed δ ą 0 and by letting δ Ñ 0, this finally proves that

(5.23) is true. Thus we have now obtained a legitimate well-defined construction of

our Frostman measure.

5.3.5 Proof that the energy integral is finite

As explained in (5.1), we need to prove that

ĳ

r1,2s2

1

|s ´ t|α
dµhpsqdµhptq ă 8

almost surely. Notice that since this is a random integral, to prove that this integral

is finite, it is enough to show that its expectation is finite. First, we will prove that

the mean of the energy integral for µh,ε is uniformly bounded. By the definition of
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µh,ε,

E

»

—

–

ĳ

r1,2s2

1

|s ´ t|α
dµh,εpsqdµh,εptq

fi

ffi

fl

“ E

»

—

–

1

4ε2

ĳ

r1,2s2

1

|s ´ t|α
1pBpsq P ph ´ ε, h ` εqq1pBptq P ph ´ ε, h ` εqqdsdt

fi

ffi

fl

.

By Fubini’s Theorem, the expression on the right hand side is equal to

1

4ε2

ĳ

r1,2s2

1

|s ´ t|α
PpBpsq P ph ´ ε, h ` εq, Bptq P ph ´ ε, h ` εqqdsdt.

As before, we can use the bound (5.4) on the two-point distribution, and get the

bound

E

»

—

–

ĳ

r1,2s2

1

|s ´ t|α
dµh,εpsqdµh,εptq

fi

ffi

fl

ď 2ch

ż 2

1

ż 2

s

1

|s ´ t|α`β
dtds.

By the change of variables t ´ s “ u, the right hand side of the expression above can

be rewritten as

2ch

ż 2

1

ż 2´s

0

1

|u|α`β
duds.

If α ` β ă 1, the integral above converges and we get

E

»

—

–

ĳ

r1,2s2

1

|s ´ t|α
dµh,εpsqdµh,εptq

fi

ffi

fl

ď 2ch

ż 2

1

p2 ´ sq1´α´β

1 ´ α ´ β
ds ă 8. (5.26)

The goal is to prove that

ĳ

r1,2s2

1

|s ´ t|α
dµhpsqdµhptq ă 8 (5.27)

almost surely. To do that, we will relate the sequence (whose mean we have just

proved that is uniformly bounded) with that integral.

Assume that

µh,εnp¨, ωq ÝÑ µhp¨, ωq (5.28)

in distribution (in the space of random measures) a.s. for ω P Ω (the probability space

where the Brownian Motion(s) are defined). Let ω P Ω be such that the convergence
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on (5.28) occurs. Since the integral on the left hand side of (5.27) is a double integral,

we should prove that

µh,εn ˆ µh,εnp¨, ωq ÝÑ µh ˆ µhp¨, ωq (5.29)

in distribution on the space of measures on r1, 2s2. Notice that for a fixed ω, µh,εn ˆ

µh,εnp¨, ωq is a product measure so the convergence of the subsequence µh,εnp¨, ωq in

distribution implies the convergence of the product measure as described in (5.29).

To relate the energy integral of the sequence to the energy integral of the limit we

will make use of Fatou’s Lemma. In particular, Fatou’s Lemma for weakly convergent

measures. From Theorem 2.4 in [17] we know that since µh,εn ˆ µh,εnp¨, ωq converges

weakly to µh,εnp¨, ωq and fps, tq “ |s ´ t|´α is a positive measurable function that

takes values in R Y t˘8u, then

ĳ

r1,2s2

lim inf
ps1,t1qÑps,tq

1

|s1 ´ t1|α
dµhpsqdµhptq ď lim inf

nÑ8

ĳ

r1,2s2

1

|s ´ t|α
dµh,εnpsqdµh,εnptq.

Since lim infps1,t1qÑps,tq
1

|s1´t1|α
“ 1

|s´t|α
, we have

ĳ

r1,2s2

1

|s ´ t|α
dµhpsqdµhptq ď lim inf

nÑ8

ĳ

r1,2s2

1

|s ´ t|α
dµh,εnpsqdµh,εnptq.

Taking expectation on both sides we get

E

»

—

–

ĳ

r1,2s2

1

|s ´ t|α
dµhpsqdµhptq

fi

ffi

fl

ď E

»

—

–

lim inf
nÑ8

ĳ

r1,2s2

1

|s ´ t|α
dµh,εnpsqdµh,εnptq

fi

ffi

fl

.

Using the regular version of Fatou’s Lemma on the right hand expression, we obtain

E

»

—

–

ĳ

r1,2s2

1

|s ´ t|α
dµhpsqdµhptq

fi

ffi

fl

ď lim inf
nÑ8

E

»

—

–

ĳ

r1,2s2

1

|s ´ t|α
dµh,εnpsqdµh,εnptq

fi

ffi

fl

ă 8,

where we have used the uniform bound found in (5.26).



Chapter 6

Two-point ‘density’ bound for the

directed landscape in the temporal

direction

This section will be devoted to proving Theorem 7. This provides a bound for the

event that two point are very close to be on the h-level set of the directed landscape.

This the key condition (5.4) required by Theorem 6 to get a lower bound for the level

set. For ease of readability, we will rewrite the theorem here.

Theorem 23. Let 0 ă ε ď 1, h P R and 0 ă s ă t. Then, there exists an absolute

constant c such that

PpLp0, 0; 0, sq P ph ´ ε, h ` εq,Lp0, 0; 0, tq P ph ´ ε, h ` εqq ď c|t ´ s|
´1{3ε2. (6.1)

6.1 Organization of the proof

Before embarking on a proof we will give a short explanation on how it will go.

Clearly, there is no formula for the distribution of the directed landscape but we

still need to find a specific bound on its density as seen on the statement of the

theorem above. Essentially, we will use the fact that, when time is fixed, the directed

landscape follows the distribution of the top line of a parabolic Airy line ensemble

which is the same as the distribution of the Airy process minus a parabola. The

Airy process does have a known two-point density, given by a Fredholm determinant.

However, these determinental formulas are hard to use. We will use another strategy.

We will use that the Airy process is locally Brownian. This means that the Airy

process on compacts is absolutely continuous with respect to a Brownian bridge that

only depends on the process at the boundary of the compact. Crucially, the Radon-

52
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Nikodym derivative only depends on the size of the compact. The structure of the

proof is as follows. In Subsection 6.2.1, we will use the metric composition law to

split the metric space derived from the directed landscape in two independent metric

spaces: whatever happens from time 0 to time s and whatever happens from time s

to time t. In fact,

Lp0, 0; 0, tq “ sup
zPR

Lp0, 0; z, sq ` Lpz, s; 0, tq.

Moreover,

Lp0, 0; 0, tq ´ Lp0, 0; 0, sq “ sup
zPR

Lp0, 0; z, sq ` Lpz, s; 0, tq ´ Lp0, 0; 0, sq.

Understanding this random variable will be the key to our proof. To allow us to use

the absolute continuity with respect to the Brownian bridge of the Airy process as

explained earlier, we will break the space coordinate, represented by z in the equation

above, in small intervals. This will create two regimes, the density of the supremum

above when the supremum is achieved in an interval close to 0 or on an interval

far for 0. Heuristically, the supremum above can be seen, modulo a random linear

function, as the supremum of the sum of a parabolic Airy process, Lpz, s; 0, tq, and a

Brownian motion, Lp0, 0; z, sq´Lp0, 0; 0, sq, through the locally Brownian condition of

the landscape for fixed times. Naturally, since Lpz, s; 0, tq is distributed according to

a stationary Airy process minus a parabola centered at 0, the likelihood of achieving

the supremum in an interval close to 0 is larger. The strategy is to make the intervals

small enough to compensate for this larger probability. In Subsection 6.2.2 we use the

property of the directed landscape to be locally Brownian to express the two-point

distribution as the supremum of an expression that only involves well known stochastic

processes, and in subsection 6.2.3 we study the distribution of the supremum of the

sum of the parabolic Airy process and the Brownian motion when that supremum

occurs in intervals close to 0 rigorously. In Subsections 6.2.4 and 6.2.5, we will do the

same with the intervals far from the origin. The last section 6.3 contains the proof of

the absolute continuity lemmas used in the proof.

6.2 Proof of Theorem 7

This section contains the proof of Theorem 7.

Proof. We will split the proof in subsections.
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6.2.1 Setting the stage

The goal is to find a bound as in equation (6.1).

We begin by noticing that if both Lp0, 0; 0, sq and Lp0, 0; 0, tq are close to h then

they are also quite close to each other. Recall that s ă t. Therefore, we have the

following inequality:

PpLp0, 0; 0, sq P ph ´ ε, h ` εq,Lp0, 0; 0, tq P ph ´ ε, h ` εqq

ď PpLp0, 0; 0, sq P ph ´ ε, h ` εq, |Lp0, 0; 0, tq ´ Lp0, 0; 0, sq| ď 2εq. (6.2)

Using the metric composition law of the directed landscape proved in Section 10 of

[15] (see Theorem 13), we have that

Lp0, 0; 0, tq “ sup
zPR

Lp0, 0; z, sq ` Lpz, s; 0, tq.

Then, the right hand side of inequality (6.2) is equal to

P
ˆ

Lp0, 0; 0, sq P ph ´ ε, h ` εq,
ˇ

ˇ

ˇ
sup
zPR

Lp0, 0; z, sq ` Lpz, s; 0, tq ´ Lp0, 0; 0, sq

ˇ

ˇ

ˇ
ď 2ε

˙

.

(6.3)

The independent increments property of the directed landscape implies that Lp0, 0; z, sq

and Lpz, s; 0, tq are independent. Also, by temporal and spatial stationarity we have

that for all z P R,
Lpz, s; 0, tq

d
“ rLp0, 0;´z, t ´ sq

where the equality is in distribution and rL is an independent copy of the directed

landscape. We conclude that the probability (6.3) above can be rewritten again as

P
ˆ

|Lp0, 0; 0, sq ´ h| ď ε,

ˇ

ˇ

ˇ

ˇ

sup
zPR

Lp0, 0; z, sq ` rLp0, 0;´z, t ´ sq ´ Lp0, 0; 0, sq

ˇ

ˇ

ˇ

ˇ

ď 2ε

˙

.

(6.4)

Notice that, by the definition of the landscape (see Theorem 13), we have the

following equality in distribution as a function of z P R:

rLp0, 0;´z, t ´ sq
d
“ pt ´ sq

1{3A1

ˆ

´z

pt ´ sq2{3

˙

(6.5)

where A1 is the parabolic Airy process (or the first line of the parabolic Airy line

ensemble). Also, we know that

Lp0, 0; ¨, sq
d
“: s1{3A1

´

¨

s2{3

¯

. (6.6)
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From now on we adopt the notation f psqpxq “ s1{3f
´

x
s2{3

¯

. Then, we can rewrite

probability (6.3) as

P
ˆ

|A
psq

1 p0q ´ h| ď ε,

ˇ

ˇ

ˇ

ˇ

sup
zPR

A
psq

1 pzq ´ A
psq

1 p0q ` Ã
pt´sq

1 p´zq

ˇ

ˇ

ˇ

ˇ

ď 2ε

˙

, (6.7)

where A1 and Ã1 are independent parabolic Airy processes.

The strategy to prove the intended inequality is to divide the real line where the

supremum is taken in intervals; since the supremum must happen in an interval,

then we can bound the probability (6.7) by a countable sum of probabilities each one

refering to the supremum occurring in the interval. Then we will focus on that sum

being summable, the sum being uniformly bounded by a constant times ε2|t ´ s|1{3

as in (6.1). By the previous discussion, the line will be split in intervals of length

pt ´ sq2{3 “: σ2{3 such that z
σ2{3 P ri ´ 1{2, i ` 1{2s for i P Z. This makes the

Airy process in (6.5) of order 1. From now on, we will use the convention that

ri ˘ 1{2s :“ ri ´ 1{2, i ` 1{2s. This gives us the following decomposition:

P
´

|Lp0, 0; 0, sq ´ h| ď ε,Lp0, 0; 0, tq P ph ´ ε, h ` εq

¯

ď
ÿ

iPZ

P

˜

|A
psq

1 p0q ´ h| ď ε,

ˇ

ˇ

ˇ

ˇ

ˇ

sup
z

σ2{3 Pri˘1{2s

A
psq

1 pzq ´ A
psq

1 p0q ` Ã
pt´sq

1 p´zq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2ε

¸

. (6.8)

The behaviour of the supremum will have two regimes: one when i is small and

another when i is large. This is because when i is smaller than 7σ´2{3, we can find an

interval of order 1 that contains both any z P rσ2{3i ˘ σ2{3{2s and 0. In that case, we

can use Theorem 8 to get an absolute continuity result simultaneously for A
psq

1 pzq and

A
psq

1 p0q. Recall that Ã
pt´sq

1 is independent so a similar absolute continuity result will

be used to treat it as a Brownian bridge but independently than A
psq

1 . If i is larger,

then 0 and the interval rσ2{3i ˘ σ2{3{2s will be far and we will have to use a slightly

different result also available in [14] by Dauvergne to prove that we can resample the

parabolic Airy process in disjoint intervals independently on each interval. This will

be done in Subsection 6.2.4. We will start by looking at the case when |i| ď 7
σ2{3 .

Recall that σ is bounded above but it can be 0 since it is the distance between s and

t to the power of 2{3.

In the next section, we will use the absolute continuity of the Airy process with

respect to the Brownian bridge from Theorem 8 to bound this probability

P

˜

|A
psq

1 p0q ´ h| ď ε,

ˇ

ˇ

ˇ

ˇ

ˇ

sup
z

σ2{3 Pri˘1{2s

A
psq

1 pzq ´ A
psq

1 p0q ` Ã
pt´sq

1 p´zq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2ε

¸

(6.9)
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with a more manageable one.

6.2.2 Absolute continuity of the Airy process on a compact

Let |i| ď 7
σ2{3 . We now introduce a key lemma. This lemma will give us a key

decomposition of the rescaled Airy processes in (6.9) into a sum of a Gaussian random

variable and an independent random function on R with sufficiently nice tail bounds.

To obtain these bounds we will use the fact, proved in [14], that the parabolic Airy

process and in general the first k lines of the Airy line ensemble in a compact r0, ts

are absolutely continuous with respect to k independent Brownian bridges and that

the endpoints have comparable tail bounds to that of parabolic Airy process at a

particular point (see Theorem 8).

Lemma 24. Let a P R and T ą 1
6
. Let ℓa be the function on R defined by

ℓaprq “ pr ´ aq
2

´ r2 “ ´ap2r ´ aq “ a2 ´ 2ra

and let Ia denote the interval

Ia :“ ra ´ T, a ` T s

Then there exists an absolute constant c ą 0, two T´dependent constants c1, c2 ą 0,

and a random function pFprqqrPIa such that

Law

ˆ

´

A1prq

¯

rPIa

˙

ď ecT
3

Law

ˆˆ

?
2TN `

´

Fprq ` ℓaprq

¯

rPIa

˙˙

(6.10)

where N is a standard Gaussian independent of
´

Fprq

¯

rPIa
and for all m ą 0,

P
ˆ

sup
rPIa

|Fprq| ě m

˙

ď c1e
´c2m

3
2 . (6.11)

More generally, for any constant λ ą 0, let A
pλq

1 be as in (6.6) and denote by I
pλq
a the

interval

Ipλq
a :“

”

aλ
2
3 ´ Tλ

2
3 , aλ

2
3 ` Tλ

2
3

ı

.

Then as a consequence of (6.10), there exists a random λ´dependent function pF pλqprqq
rPI

pλq
a

and an independent standard Gaussian N such that

Law

ˆ

´

A
pλq

1 prq

¯

rPI
pλq
a

˙

ď ecT
3

Law

ˆ

´

λ
1
3

?
2TN `

´

F pλq
prq ` λ

1
3 laprλ´ 2

3 q

¯¯

rPI
pλq
a

˙

,

(6.12)
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and that for the same constants c1 and c2 and all m ą 0,

P

˜

sup
rPI

pλq
a

ˇ

ˇ

ˇ
λ´ 1

3F pλq
prq

ˇ

ˇ

ˇ
ě m

¸

ď c1e
´c2m

3
2 . (6.13)

In particular, there exist random constants A and C such that we may write

´

F pλq
paλ

2
3 ` δq

¯

δPI
pλq

0

d
“

´

Wp2δ ` 6Tλ
2
3 q ` λ´ 1

3Aδ ` λ
1
3C

¯

δPI
pλq

0

(6.14)

where W is a standard two-sided Brownian motion, and for all m ą 0,

P
´

|A| ě m
¯

` P
´

|C| ě m
¯

ď 2c1e
´c2m

3
2 . (6.15)

No claims are made about the independence or lack thereof amongst A,W and C.

Remark. • The bound on the Radon-Nikodym derivative, ecT
3
is crucially not de-

pendent on anything but the length of the interval where we are resampling.

• The proof of this Lemma can be found in Section 6.3. We give now an idea about

it. Essentially, from Theorem 8, we know that the first line of the parabolic

Airy line ensemble is absolutely continuous with respect to a Brownian bridge

that only depends on the boundary conditions; this Brownian bridge can be

decomposed into a diffusion 2 Brownian bridge from 0 to 0 and a linear function

L. From B, we can ’take’ a Gaussian random variable N independent of B ´ N

from Proposition 17. The linear function L is the linear shift to the boundary

conditions. These boundary conditions are not equally distributed as the Airy

process but preserve the same tails as the Tracy-Widom distribution. Therefore,

we get that F is the sum of B´N and L and those random variables have either

Gaussian or Tracy-Widom type of tails so we will be able to work with them.

• The constants A and C are random variables that are linear combinations of N

and the endpoints of the linear function L which are the boundary conditions.

Recall that the notation Apσq and Apsq is introduced in (6.6). For the sake of

readability we defer the proof of Lemma 24 for Section 6.3.

Let I
pσq

´i “ σ2{3r´i´ 1
2
,´i` 1

2
s and I

psq

0 “ s2{3r´8s´2{3, 8s´2{3s. In the second case,

the length of the interval depends on s; in fact, T “ 8s´2{3. However, since s ě 1,

T ď 8 so the constants c1 and c2 from the theorem above are absolute contants.

Notice that if z P rσ2{3i ´ 1
2
, σ2{3i ` 1

2
s, then ´z P I

pσq

´i and, since |i| ď 7
σ2{3 and σ ď 1

we know that

|z| ď |z ` iσ2{3
| ` |iσ2{3

| ď
σ2{3

2
` 7 ď

1

2
` 7 ď 8
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so z P I
psq

0 . Now by invoking Lemma 24 twice, once on rA
pσq

1 |
I

pσq

´i
and again on A

psq

1 |
I

psq

0
,

we can upper bound the probability (6.9) by

P
ˆ

|A
psq

1 p0q ´ h| ď ε,
ˇ

ˇ

ˇ
sup

z

σ2{3 Pri˘1{2s

A
psq

1 pzq ´ A
psq

1 p0q ` rA
pσq

1 p´zq

ˇ

ˇ

ˇ
ď 2ε

˙

ď ecp 1
2

q3ecp8s´2{3q3P
ˆ

|4N ` F psq
p0q ´ h| ď ε,

ˇ

ˇ

ˇ
σ1{3

rN ` σ1{3Gi ´ σ1{3i2
ˇ

ˇ

ˇ
ď 2ε

˙

, (6.16)

where ℓ0 ” 0,

σ1{3ℓ̃´ip´zσ´2{3
q “ ´i2σ1{3

` 2i
´

´
z

σ1{3
` iσ1{3

¯

and

Gi “ sup
z

σ2{3 Pri´ 1
2
,i` 1

2
s

pF psqpzq ´ F psqp0qq ` F̃ pσqp´zq

σ1{3
` 2ipi ´

z

σ2{3
q. (6.17)

Notice that the bound on the Radon-Nikodym derivative obtained from the abso-

lute continuity Lemma 24 is bounded

ecp 1
2

q3ecp8s´2{3q3
ď ec

1
23 ec8

3

“: c0

since s ě 1 and c is an absolute constant. We can then write the probability in the

right hand side of (6.16) as

P
´

|4N ` G ´ h| ď ε,
ˇ

ˇ

ˇ

rN ` Gi ´ i2
ˇ

ˇ

ˇ
ď 2ε{σ1{3

¯

(6.18)

where G “ F psqp0q. It is important to note that the random vector pG, G̃iq is inde-

pendent of the Gaussian random vector p4N, Ñq.

We now introduce a lemma that will prove that the vector p4N, Ñq ` pG,Giq has a

continuous density and give bounds to the Radon-Nikodym derivative of the random

vector with respect to the Lebesgue measure. The lemma is a version of Young’s

inequality.

Lemma 25. Let µ and ν be independent finite measures on Rn. Let the random

vector µ be absolutely continuous with respect to the Lebesgue measure with Radon-

Nikodym derivative fµ. Then, the measure µ ˚ ν is also absolutely continuous with

respect to the Lebesgue measure and

}fµ˚ν}8 ď }fµ}8νpRn
q,

where fµ˚ν is the Radon–Nikodym derivative of the measure µ ˚ ν with respect to the
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Lebesgue measure.

Proof. We begin by proving that µ ˚ ν is absolutely continuous with respect to the

Lebesgue measure. We denote the Lebesgue measure as | ¨ |. Take A a Lebesgue

measurable set such that |A| “ 0. Then,

µ ˚ νpAq “

ĳ

1Apx ` yqdµpxqdνpyq “

ĳ

1A´ypxqfµpxqdxdνpyq.

The Lebesgue measure is invariant under translation so |A ´ y| “ |A| “ 0. This

implies that the inner integral in the right hand side expression above is 0.

We have proved that µ ˚ ν ! | ¨ | so there exists an integrable function fµ˚ν on Rn

such that

µ ˚ νpAq “

ż

A

fµ˚νpxqdx

for all Borel sets A in Rn. To prove that the Radon-Nikodym derivative fµ˚ν is

bounded it suffices to show that

µ ˚ νpAq ď }fµ}8νpRn
q|A| (6.19)

for all Borel sets A in Rn. Let A be a Borel set in Rn. Then, as before,

µ ˚ νpAq “

ĳ

1A´ypxqfµpxqdxdνpyq.

We bound the function fµ with its norm and get an upper bound on the right hand

side as follows:
ż ż

A´y

}fµ}8dxdνpyq “ }fµ}8

ż

|A|dνpyq “ }fµ}8νpRn
q|A|

where again we have used the fact that the Lebesgue measure is invariant under

translation.

To estimate probability (6.18), we will first bound the density ρipx, yq of the ran-

dom variable pG,Giq ` p4N, Ñq at the value px, yq. Notice that by Lemma 25, the

density exists. We take a moment here to also observe that we can write (6.18) as

ż

r´ε,εsˆr´2ε{σ1{3,2ε{σ1{3s

ρipx ` h, y ` i2qdxdy. (6.20)

The strategy here is to find a sequence of upper bounds ai such that

ρipx ` h, y ` i2q ď aipy ` i2q
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for |i| ď 7σ´ 2
3 and

ÿ

|i|ď7σ´ 2
3

aipy ` i2q ă c2

for an absolute constant c2 which is independent of h and the bounds of summation

for i. This in conjunction with (6.8), the bound (6.16), and its reformulation (6.18)

would give us that

PpLp0, 0; 0, sq Pph ´ ε, h ` εq;Lp0, 0; 0, tq P ph ´ ε, h ` εqq

ď
ÿ

iPZ

pi,ε

“c0
ÿ

|i|ď7σ´ 2
3

ż

r´ε,εsˆr´2ε{σ1{3,2ε{σ1{3s

ρipx ` h, y ` i2qdxdy `
ÿ

|i|ą7σ´ 2
3

pi,ε

ďc0

ż

r´ε,εsˆr´2ε{σ1{3,2ε{σ1{3s

c2dxdy `
ÿ

|i|ą7σ´ 2
3

pi,ε

“4c0c
2 ε2

σ1{3
`

ÿ

|i|ą7σ´ 2
3

pi,ε (6.21)

where

pi,ε “ P

˜

|A
psq

1 p0q ´ h| ď ε,

ˇ

ˇ

ˇ

ˇ

ˇ

sup
z

σ2{3 Pri˘1{2s

A
psq

1 pzq ´ A
psq

1 p0q ` Ã
pt´sq

1 p´zq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2ε

¸

.

This would thereby reduce our goal in (6.1) to understanding the remaining tail sum

in (6.21). Let X be a random variable absolutely continuous with respect to the

Lebesgue measure. We denote

PpX P dxq “ lim
εŒ0

P
´

X P rx, x ` εq

¯

ε

With the preceding strategy in mind, let y ą 0 be arbitrary. By conditioning on
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the value of the second coordinate Ñ ` Gi, we obtain the following description:

ρipx, yq “P
´

4N ` G P dx, rN ` G̃i P dy
¯

(6.22)

“ lim
εÑ0

1

ε2
P
´

4N ` G P rx, x ` εq, rN ` Gi P ry, y ` εq

¯

“ lim
εÑ0

1

ε2
P
´

4N ` G P rx, x ` εq, rN ` Gi P ry, y ` εq

ˇ

ˇ

ˇ
Gi ě y{2

¯

PpGi ě y{2q

`
1

ε2
P
´

4N ` G P rx, x ` εq, rN ` Gi P ry, y ` εq

ˇ

ˇ

ˇ
Ñ ě y{2

¯

PpÑ ě y{2q.

(6.23)

Notice that the inequality above makes use of the fact that for any r ą 0, the event

t rN ` Gi P ry, y ` rqu occurring implies that either the event t rN ě y{2u or the event

tGi ě y{2u must occur and the definition of PpX P dxq as a limit.

We will call the distribution above

P
´

4N ` G P du, rN ` Gi P dv
ˇ

ˇ

ˇ
Gi ě y{2

¯

“: f̂pu, vq

and in general, we will denote the distribution function of any continuous random

vector pW,Zq at the point pu, vq as fpW,Zqpu, vq. Then,

P
´

4N `G P rx, x`εq, rN `Gi P ry, y`εq

ˇ

ˇ

ˇ
Gi ě y{2

¯

“

ż x`ε

x

ż y`ε

y

f̂pu, vqdudv. (6.24)

To bound the density f̂ , we use Lemma 25.

By Lemma 25, we get that

f̂pu, vq ď

∥∥∥f̂pu, vq

∥∥∥
8,Rˆr0,8q

“

∥∥∥fp4N,Ñq`pG,Giq|tGiěy{2upu, vq

∥∥∥
8,Rˆr0,8q

ď

∥∥∥fp4N,Ñq|tGiěy{2upu, vq

∥∥∥
8,Rˆr0,8q

PppG,Giq P R ˆ r0,8q|Gi ě y{2q

ď

∥∥∥fp4N,Ñqpu, vq

∥∥∥
8,Rˆr0,8q

“
1

8π
,

where in the last inequality we used that pN, Ñq and G̃i are independent. Then, we

can use the bound of the density that we just obtained on the integral (6.24) to get

P
´

4N ` G P rx, x ` εq, rN ` Gi P ry, y ` εq

ˇ

ˇ

ˇ
Gi ě y{2

¯

ď
ε2

4π
. (6.25)
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Similarly, by Lemma 25,

fp4N,Ñq`pG,Giq|tÑěy{2upu, vq

ď

∥∥∥fp4N,Ñq|Ñěy{2upu, vq

∥∥∥
8,Rˆr0,8q

PppG,Giq P R ˆ r0,8q|Ñ ě y{2q.

By a trivial bound to the probability on the right hand side of the equation above,

we get that

fp4N,Ñq`pG,Giq|tÑěy{2upu, vq ď

∥∥∥fp4N,Ñq|tÑěy{2upu, vq

∥∥∥
8,Rˆr0,8q

.

Notice that

fp4N,Ñq|tÑěy{2upu, vq “ lim
εÑ0

1

ε2
P
´

4N P ru, u ` εq, rN P rv, v ` εq

ˇ

ˇ

ˇ
Ñ ě y{2

¯

“ lim
εÑ0

P
´

4N P ru, u ` εq, rN P rv, v ` εq, Ñ ě y{2
¯

ε2PpÑ ě y{2q

“ lim
εÑ0

P
´

4N P ru, u ` εq

¯

P
´

rN P rv, v ` εq, Ñ ě y{2
¯

ε2PpÑ ě y{2q
, (6.26)

where in the last line we have used the independence of N and Ñ . Notice that

P
´

rN P rv, v ` εq, Ñ ě y{2
¯

“

$

’

’

’

&

’

’

’

%

0 if y{2 ą v ` ε

P
´

rN P ry{2, v ` εq

¯

if v ď y{2 ď v ` ε

P
´

rN P rv, v ` εq

¯

if y{2 ă v.

Notice that

lim
εÑ0

1

ε
P
´

rN P rv, v ` εq, Ñ ě y{2
¯

“ P
´

rN P dv
¯

1ty ď 2vu “

?
π

e´v2
1ty ď 2vu.

Then, by taking the limit ε Ñ 0 on (6.26), we obtain that

fp4N,Ñq|tÑěy{2upu, vq “
1

4
?
2π

e´u2

32
1

?
2πPpÑ ě y{2q

e´v21ty ď 2vu.
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Taking, supremum over pu, vq we get the desired bound on the density:

∥∥∥fp4N,Ñq|tÑěy{2upu, vq

∥∥∥
8,Rˆr0,8q

ď

∥∥∥∥∥e´u2

32

8π

e´v2

PpÑ ě y{2q
1ty ď 2vu

∥∥∥∥∥
8,Rˆr0,8q

ď
1

8π

e´
y2

4

PpÑ ě y{2q
.

Then, we can bound the integral

P
´

4N ` G P rx, x ` εq, rN ` Gi P ry, y ` εq

ˇ

ˇ

ˇ
Ñ ě y{2

¯

“

ż x`ε

x

ż y`ε

y

fp4N,Ñq`pG,Giq|tÑěy{2upu, vqdudv

ď

ż x`ε

x

ż y`ε

y

1

8π

e´
y2

4

PpÑ ě y{2q
dudv

ď
ε2

8π

e´
y2

4

PpÑ ě y{2q
.

Adding this last bound to the one found in (6.25), we obtain that

ρipx, yq ď lim
εÑ0

1

ε2
ε2

8π

´

PpGi ě y{2q `
e´

y2

4

PpÑ ě y{2q
PpÑ ě y{2q

¯

.

Therefore, we have bounded the density of the random vector p4N, Ñq ` pG,Giq;

ρipx, yq ď cPpGi ě y{2q ` ce´
y2

4

for some constants c ą 0.

A similar, symmetric argument shows that

ρipx, yq ď cPpGi ď y{2q ` ce´
y2

4

for y ă 0. Notice that there is no bound for y “ 0 but densities can be redefined at

single points so for completeness we are going to say that

ρipx, 0q ď cPpG̃i ě 0q ` c.

Recall that we need to bound:
ż

r´ε,εsˆr´2ε{σ1{3,2ε{σ1{3s

ρipx ` h, y ` i2qdxdy
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where ρi is the density of the vector p4N`G, Ñ`Giq. Through the Young’s inequality

argument above, we have proved that we can bound the density above by

ρipx ` h, y ` i2q ď

$

&

%

cPpGi ě py ` i2q{2q ` ce´
py`i2q2

8 if y ` i2 ě 0

cPpGi ď py ` i2q{2q ` ce´
py`i2q2

8 if y ` i2 ă 0.
(6.27)

In the next section we will provide suitable summable bounds for the probability of

the tail bounds of Gi written above.

6.2.3 Bound for the two-point density of the directed landscape if a

geodesic from p0, 0q to p0, tq is close to the origin at time s

We need to find bounds for 6.27; in fact our bounds need to be summable on i and

those series need to be uniformly bounded on y. Recall that as seen in (6.17),

Gi “ sup
z

σ2{3 Pri´ 1
2
,i` 1

2
s

pF psqpzq ´ F psqp0qq ` F̃ pσqp´zq

σ1{3
` 2ipi ´

z

σ2{3
q.

For the rest of the argument, I will assume that i ‰ 0. From now on, c, c1 ą 0 are

positive constants whose value might change.

If y ` i2 ă 0.

We need to get a bound for

P
´

Gi ď
y ` i2

2

¯

,

where y ` i2 ă 0 and

Gi “ sup
z

σ2{3 Pri´ 1
2
,i` 1

2
s

pF psqpzq ´ F psqp0qq ` F̃ pσqp´zq

σ1{3
` 2ipi ´

z

σ2{3
q.

We can bound the supremum for the function evaluated at the center of the interval

and we obtain

Gi ě
pF psqpσ2{3iq ´ F psqp0qq ` F̃ pσqp´σ2{3iq

σ1{3
.

We have obtained a decomposition of F psq as the sum of a double sided Brownian

motion and a random linear function in Lemma 24. We will use that decomposition

(and the well know tail bounds of the double sided Brownian motion and this partic-

ular random linear function, again from Lemma 24), to get the tail bounds that we
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need for the terms related to F psq in Gi. By Lemma 24,

pF psqpσ2{3iq ´ F psqp0qq

σ1{3

d
“

Wp2σ2{3i ` 48q ´ Wp48q

σ1{3
` A

´σ

s

¯1{3

i,

where W is a standard double sided Brownian motion and A is a random constant,

whose tail bounds are made explicit in Lemma 24.

Using a union bound argument , we get that

P
ˆ

G̃i ď
y ` i2

2

˙

ďP
ˆ

Wp2σ2{3i ` 48q ´ Wp48q

σ1{3
ď

y ` i2

6

˙

(6.28)

`P
ˆ

A
´σ

s

¯1{3

i ď
y ` i2

6

˙

(6.29)

`P
ˆ

F̃ pσqp´σ2{3iq

σ1{3
ď

y ` i2

6

˙

. (6.30)

In the first case, we need to bound probability (6.28). Recall that |σ2{3i| ď 7 so W
2σ2{3i ` 48 is positive so we can treat W as a (one-sided) Brownian motion. Then,

Wp2σ2{3i ` 48q ´ Wp48q is distributed according to a normal random variable Z. In

fact, for every z such that z
σ2{3 P ri ´ 1

2
, i ` 1

2
s,

Wp2z ` 48q ´ Wp48q
d
“

$

&

%

Zp0, 2zq if z ą 0

Zp0,´2zq if z ă 0.
(6.31)

We deduce that |Wp2σ2{3i ` 48q ´ Wp48q|
d
“ |Zp0, 2σ2{3|i|q|. We are now ready to

bound probability (6.28).

P
ˆ

Wp2σ2{3i ` 48q ´ Wp48q

σ1{3
ď

y ` i2

6

˙

ďP
ˆ

|Wp2σ2{3i ` 48q ´ Wp48q|

σ1{3
ě ´

y ` i2

6

˙

“P
ˆ

|Zp0, 2σ2{3|i|q|

σ1{3
ě ´

y ` i2

6

˙

ďcec
1 ´py`i2q2

|i| , (6.32)

where in the last inequality we have used the Brownian scaling and the tail bounds

of a Gaussian random variable of mean 0 and variance 2|i|.

For probability (6.29), first we use that A ě ´|A|:

P
ˆ

A
´σ

s

¯1{3

i ď
y ` i2

6

˙

ď P
ˆ

|A|

´σ

s

¯1{3

|i| ě ´
y ` i2

6

˙

.
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Using that s ě 1 and that σ ď 1, we can further bound the above probability by

P
ˆ

|A| ě ´
y ` i2

6|i|

˙

“ P
ˆ

|A| ě
|y ` i2|

6|i|

˙

ď ce
´c1 |y`i2|

3
2

|i|
3
2 , (6.33)

where we have used that y ` i2 ă 0 and the bound in tail bounds on A found on

Lemma 24 again.

Lastly, for the probability (6.30), and again based on Lemma 24 we get that

P
ˆ

F̃ pσqp´σ2{3iq

σ1{3
ď

y ` i2

6

˙

ď P
ˆ

|F̃ pσqp´σ2{3iq|

σ1{3
ě

|y ` i2|

6

˙

ď ce´c1|y`i2|
3
2 . (6.34)

Thus, for each y and each i such that y ` i2 ă 0, following (6.27) and the bounds

(6.32), (6.33) and (6.34), we get that

ÿ

|i|ďt 7

σ2{3 u

ρipx ` h, y ` i2q1ty`i2ă0u ď

c

¨

˝1 `

t 7

σ2{3 u
ÿ

|i|ě1

´

e´c1 py`i2q2

|i| ` e
´c1 |y`i2|

3
2

|i|
3
2 ` e´c1|y`i2|

3
2

` e´
py`i2q2

8

¯

1ty`i2ă0u

˛

‚ (6.35)

The term 1 comes from the trivial bound to the term corresponding to i “ 0. Notice

that |i| ě 1 so |y ` i2|
3
2 ě

|y`i2|
3
2

|i|
3
2

, py ` i2q2 ě
py`i2q2

|i|
and py`i2q2

|i|
ě

py`i2q2

|i|2
. Therefore,

we can bound the series above with the simplified series

c

¨

˝1 ` 2

t 7

σ2{3 u
ÿ

|i|ě1

´

e
´c1 py`i2q2

|i|2 ` e
´c1 |y`i2|

3
2

|i|
3
2

¯

1ty`i2ă0u

˛

‚.

Using that for all u ě 0 and p ě 1, up ě u ´ 1, we can bound

ÿ

|i|ďt 7

σ2{3 u

ρipx ` h, y ` i2q1ty`i2ă0u ď

t 7

σ2{3 u
ÿ

|i|ě1

´

e´c1 py`i2q2

|i| ` e
´c1 |y`i2|

3
2

|i|
3
2

¯

1ty`i2ă0u

ď

8
ÿ

|i|ě1

2e´c1

ˇ

ˇ
y
|i|

`|i|

ˇ

ˇ

1ty`i2ă0u ă
4

1 ´ e´c1 . (6.36)

The last bound (uniform on y P r´2ε{σ1{3, 2ε{σ1{3s) was obtained, by the fact that

y ă 0, through the following lemma:
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Lemma 26. Let β1, γ, r P R with β1 ě 0, γ ą 0, and r ě 1. For each i P Z‰0 define

fpiq :“ |i| ´
β1

|i|
.

Then we have that
ÿ

iPZ

e´γ|fpiq|r1tfpiqă0u ă
2

1 ´ e´γ
.

Proof. Firstly, notice that fpiq is symmetric with respect to i so it is enough to prove

that
ÿ

iPZą0

e´γ|fpiq|r1tfpiqă0u ă
1

1 ´ e´γ
.

We start by assuming that the set ti P Zą0 : fpiq ă 0u is not empty, otherwise the

bounds would be trivially true. Notice that for any u ě 0 and r ě 1, ur ě u´1, then

8
ÿ

i“1

eγ|fpiq|r1tfpiqă0u ď eγ
8
ÿ

i“1

e´γ|fpiq|1tfpiqă0u.

So it is enough to prove that

ÿ

iPZ

e´γ|fpiq|1tfpiqă0u ă
e´γ

1 ´ e´γ
.

When i ą 0, since β1 ě 0 we see that

f 1
piq “

ˆ

i ´
β1

i

˙1

“ 1 `
β2

i2
ě 1.

This means that for any i ą 0, fpi` 1q ě fpiq ` 1 or equivalently, fpiq ď fpi` 1q ´ 1.

Set

imax :“ max ti P Zą0 : fpiq ď 0u .

By iterating this property, we see then that fpiq ď fpimaxq ´ pimax ´ iq ď 0 for any
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0 ă i ď imax. Then this means that

8
ÿ

i“1

e´γ|fpiq|1tfpiqă0u “

imax
ÿ

i“1

eγfpiq

ď

imax
ÿ

i“1

eγpfpimaxq´pimax´iqq

ď

imax
ÿ

i“1

eγpi´imaxqeγfpimaxq

ď

imax
ÿ

i“1

eγpi´imaxq

ď

8
ÿ

k“1

e´γk

ă
e´γ

1 ´ e´γ

since eγfpimaxq ď 1 by definition of imax.

If y ` i2 ě 0. Again, we need to bound

P
ˆ

Gi ě
y ` i2

2

˙

.

Recall the definition of Gi in (6.17):

Gi “ sup
z

σ2{3 Pri´ 1
2
,i` 1

2
s

pF psqpzq ´ F psqp0qq ` F̃ pσqp´zq

σ1{3
` 2ipi ´

z

σ2{3
q

Therefore, for each z P rσ2{3i ˘ σ2{3{2s, we can bound

2i

ˆ

i ´
z

σ2{3

˙

ď 2|i|
ˇ

ˇ

ˇ

z

σ2{3
´ i

ˇ

ˇ

ˇ
ď |i|.

In turn, this means that

Gi ď sup
z

σ2{3 Pri´ 1
2
,i` 1

2
s

pF psqpzq ´ F psqp0qq ` F̃ pσqp´zq

σ1{3
` |i|

and so

P
ˆ

Gi ě
y ` i2

2

˙

ď P
ˆ

sup
z

σ2{3 Pri´ 1
2
,i` 1

2
s

pF psqpzq ´ F psqp0qq ` F̃ pσqp´zq

σ1{3
ě

y

2
`

i2

2
´ |i|

˙

.

(6.37)
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Here there is a big problem: notice that it is possible that y`i2 ě 0 but y`i2´2|i| ď

0. In that case, we will never get a good bound of the probability above and our best

bet is to bound the probability by 1. We need to understand for how many terms

of the series, this is true. In short we need to know for each y, how many integers i

satisfy that y ` i2 ě 0 and y ` i2 ´ 2|i| ď 0.

Before moving on with the proof, we will digress to give some intuition on this.

We are trying to understand the density of

sup
z

σ2{3 Pri˘1{2s

A
psq

1 pzq ´ A
psq

1 p0q ` rA
pσq

1 p´zq

σ1{3
.

The stochastic process A
psq

1 pzq ´ A
psq

1 p0q is absolutely continuous with respect to a

Brownian bridge. However, the stochastic process rA
pσq

1 p´zq is a parabolic Airy process

so it fluctuates around the parabola ´z2. Therefore, in certain intervals close to the

origin and when y ` i2 is positive but very small, then probability (6.37) might be

large. Is this correct? Should I remove it?

If y ą 0, then y`i2 ě 0 trivially and we need to count how many is make y`i2´2|i|

negative. By completing squares:

y ` i2 ´ 2|i| “ y ` p|i| ´ 1q
2

´ 1

so

y ` i2 ´ 2|i| ď 0 iff y ` p|i| ´ 1q
2

´ 1 ď 0 iff p|i| ´ 1q
2

ď 1 ´ y.

Since y is positive, then 1 ´ y ď 1. Then,

ti P Z : y ` i2 ´ 2|i| ď 0u Ď ti P Z : p|i| ´ 1q
2

ď 1u “ r´2, 2s X Z.

This means that there are 5 terms of the series that we need to be bounded by 1.

If y ă 0, then we have that

y ` i2 ě 0 iff |i| ě
?

´y “
a

|y|

and

y ` i2 ´ 2|i| ď 0 iff y ` p|i| ´ 1q
2

´ 1 ď 0 iff |i| ď
a

1 ´ y ` 1 “
a

1 ` |y| ` 1.

Now, we need to determine the number of integers i that fit in the interval
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r
a

|y|,
a

1 ` |y| ` 1s. But

a

1 ` |y| ` 1 ´
a

|y| ď

b

p1 ` 2
a

|y| ` |y|q ` 1 ´
a

|y| “ 1 `
a

|y| ` 1 ´
a

|y| “ 2.

Since the interval r
a

|y|,
a

1 ` |y| ` 1s has length 2, we have at most 4 terms (ac-

counting for both signs, positive and negative) for which the best bound possible for

P
`

Gi ě
y`i2

2

˘

is 1. If we include the term corresponding to i “ 0 which we had singled

out before, we conclude that there are 5 terms of the series that need to be bounded

by 1.

The rest of the bound is similar as before. Once again,

pF psqpzq ´ F psqp0qq

σ1{3

d
“

Wp2z ` 48q ´ Wp48q

σ1{3
` A

z

psσq1{3
.

Assuming that y
2

` i2

2
´ |i| ě 0, and using a union bound we get

P
ˆ

Gi ě
y ` i2

2

˙

ďP
ˆ

sup
z

σ2{3 Pri´ 1
2
,i` 1

2
s

Wp2z ` 48q ´ Wp48q

σ1{3
ě

y

6
`

i2

6
´

|i|

3

˙

(6.38)

`P
ˆ

sup
z

σ2{3 Pri´ 1
2
,i` 1

2
s

A
z

psσq1{3
ě

y

6
`

i2

6
´

|i|

3

˙

(6.39)

`P
ˆ

sup
z

σ2{3 Pri´ 1
2
,i` 1

2
s

F̃ pσqp´zq

σ1{3
ě

y

6
`

i2

6
´

|i|

3

˙

. (6.40)

We will bound the probabilities above using arguments similar to the ones used earlier

in this section and Lemma 24.

We start with (6.38). Notice that if i ‰ 0, the interval ri ´ 1
2
, i ` 1

2
s contains only

positive numbers or negative numbers (depending on the sign of i). Since i ‰ 0 for

us, we will assume that i ą 0 without loss of generality. Making the interval over

which we take the supremum larger, we get that

P
ˆ

sup
z

σ2{3 Pri´ 1
2
,i` 1

2
s

Wp2z ` 48q ´ Wp48q

σ1{3
ě

y

6
`

i2

6
´

|i|

3

˙

ď P
ˆ

sup
z

σ2{3 Pr0,i` 1
2

s

Wp2z ` 48q ´ Wp48q

σ1{3
ě

y

6
`

i2

6
´

|i|

3

˙

.

By the Markov property of the Brownian motion, we know that

pWp2z ` 48q ´ Wp48qqzPr0,σ2{3i`σ2{3{2s

d
“ pBp2zqqzPr0,σ2{3i`σ2{3{2s
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where B is a Brownian motion. Then,

P
ˆ

sup
z

σ2{3 Pr0,i` 1
2

s

Wp2z ` 48q ´ Wp48q

σ1{3
ě

y

6
`

i2

6
´

|i|

3

˙

ď P
ˆ

sup
z

σ2{3 Pr0,i` 1
2

s

Bp2zq

σ1{3
ě

y

6
`

i2

6
´

|i|

3

˙

. (6.41)

Using the reflection principle, Brownian scaling and the tail bound for a Gaussian

random variable, we get that

P
ˆ

sup
z

σ2{3 Pr0,i` 1
2

s

Bp2zq

σ1{3
ě

y

6
`

i2

6
´

|i|

3

˙

ď2P
ˆ

Bp2σ2{3i ` σ2{3q

σ1{3
ě

y

6
`

i2

6
´

|i|

3

˙

“2P
ˆ

Bp2i ` 1q ě
y

6
`

i2

6
´

|i|

3

˙

ďce´c1 |y`i2´2|i||2

2|i|`1 . (6.42)

For probability (6.39), we get that,

P
ˆ

sup
z

σ2{3 Pri´ 1
2
,i` 1

2
s

A
z

psσq1{3
ě

y

6
`

i2

6
´

|i|

3

˙

ďP
ˆ

sup
z

σ2{3 Pri´ 1
2
,i` 1

2
s

|A|
|z|

psσq1{3
ě

y

6
`

i2

6
´

|i|

3

˙

ďP
ˆ

|A|
|i|σ1{3 ` σ1{3{2

s1{3
ě

y

6
`

i2

6
´

|i|

3

˙

ďP
ˆ

2|A||i| ě
y

6
`

i2

6
´

|i|

3

˙

,

where in the last inequality we have used the σ ď 1 and s ě 1. The tail bounds of

the random constant A are determined in Lemma (24), so from the right hand side

of the equation above, we get that

P
ˆ

sup
z

σ2{3 Pri´ 1
2
,i` 1

2
s

A
z

psσq1{3
ě

y

6
`

i2

6
´

|i|

3

˙

ď ce
´c1 |y`i2´|i||3{2

|i|3{2 . (6.43)

Lastly, for equation (6.40), by Lemma 24, we immediately get that

P
ˆ

sup
z

σ2{3 Pri´ 1
2
,i` 1

2
s

F̃ pσqp´zq

σ1{3
ě

y

6
`

i2

6
´

|i|

3

˙

“P
ˆ

sup
zPI

pσq

´i

F̃ pσqpzq

σ1{3
ě

y

6
`

i2

6
´

|i|

3

˙

ďce´c1|y`i2´|i||3{2

. (6.44)

In this way, compiling (6.27), (6.42), (6.43) and (6.44) we have obtained a bound

for the density. For each |i| ď 7
σ2{3 and y P r´2ε{σ1{3, 2ε{σ1{3s such that y`i2´2|i| ě 0
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we get that

ρipx ` h, y ` i2q ď e´
py`i2q2

4 ` e´c1 |y`i2´2|i||2

2|i|`1 ` e
´c1 |y`i2´2|i||

3
2

|i|
3
2 ` e´c1|y`i2´2|i||

3
2 . (6.45)

The first term comes from bounding the Gaussian term on the density as shown in

(6.27).

We are left with dealing with the series obtained by summing the right hand side of

equation (6.45). Before moving on to the series, let’s try to simplify its terms. Recall

that in this case, both y` i2 and y` i2 ´2|i| are positive so py` i2q2 ě py` i2 ´2|i|q2.

Since |i| ě 1,

|y ` i2 ´ 2|i||
3
2 ě

|y ` i2 ´ 2|i||
3
2

|i|
3
2

py ` i2q2 ě py ` i2 ´ 2|i|q2 ě
py ` i2 ´ 2|i|q2

|i|2

|y ` i2 ´ 2|i||2

2|i| ` 1
ě

|y ` i2 ´ 2|i||2

3|i|
ě

py ` i2 ´ 2|i|q2

9|i|2
.

Using these inequalities on (6.45) we get that

ρipx ` h, y ` i2q ď 2e
´c1 py`i2´2|i|q2

|i|2 ` 2e
´c1 |y`i2´2|i||

3
2

|i|
3
2 .

Furthermore, we know that for all u ě 0 and all p ě 1, up ě u´ 1 so we can simplify

the bound on the density further

ρipx ` h, y ` i2q ď 4ec
1

e´c1 py`i2´2|i|q

|i|

for all |i| ď 7
σ2{3 and y P r´2ε{σ1{3, 2ε{σ1{3s such that y ` i2 ´ 2|i| ě 0.

The series turns out to be bounded by

ÿ

|i|ďt 7

σ2{3 u

ρipx ` h, y ` i2q1ty`i2ě0u ď 5 ` c
ÿ

|i|ďt 7

σ2{3 u

e´c1 py`i2´2|i|q

|i| 1ty`i2´2|i|ě0u.

Recall that the constant term 5 comes from the summands for which y ` i2 ě 0 but

y ` i2 ´ 2|i| ă 0. We will now split in two cases:
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If y ą 0: In this case,

ÿ

|i|ďt 7

σ2{3 u

e´c1 py`i2´2|i|q

|i| 1ty`i2´2|i|ě0u ď
ÿ

|i|ďt 7

σ2{3 u

e´c1 py`i2´2|i|q

|i| 1ti2´2|i|ě0u

“
ÿ

|i|ďt 7

σ2{3 u

e´c1p|i|´2q

ďe2c
1

8
ÿ

i“´8

e´c1|i|
“ c2

If y ď 0: We can rewrite the series as follows:

ÿ

|i|ďt 7

σ2{3 u

e´c1 py`i2´2|i|q

|i| 1ty`i2´2|i|ě0u “
ÿ

|i|ďt 7

σ2{3 u

e´c1p|i|´2`
y
|i|

q
1ty`i2´2|i|ě0u ď c2,

where the last inequality was obtained through the following lemma:

Lemma 27. Let β1 P R, β2 ď 0, γ ą 0, and r ě 1 and for each i P Z‰0 define the

sequence pΨiqiPZ‰0 by

Ψi :“ |i| ` β1 `
β2

|i|
.

Then, there exists an absolute constant b1pγq ą 0 such that

´1
ÿ

i“´8

`

e´γpΨiq
r˘

1tΨiě0u `

8
ÿ

i“1

`

e´γpΨiq
r˘

1tΨiě0u ă b1pγq ă 8.

Proof. We start by noticing that Ψi is symmetric with respect to i so

´1
ÿ

i“´8

`

e´γpΨiq
r˘

1tΨiě0u “

8
ÿ

i“1

`

e´γpΨiq
r˘

1tΨiě0u

and we can restrict ourselves to lookings at the case when i ą 0.

Also, assume that the set ti ą 0 : Ψi ě 0u is not empty. Otherwise, the inequality

would be trivially true.

Then, observe that for any u P r0,8q and any r ě 1 it is always true that ur ě u´1.

This means that we will always have that

8
ÿ

i“1

`

e´γpΨiq
r˘

1tΨiě0u ď

8
ÿ

i“1

`

e´γpΨi´1q
˘

1tΨiě0u “ eγ
8
ÿ

i“1

`

e´γΨi
˘

1tΨiě0u.
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Since β2 ď 0,

pΨiq
1

“

ˆ

i ` β1 `
β2

i

˙1

“ 1 ´
β2

i2
ě 1

for all i ą 0. By expressing the increment Ψi`1 ´ Ψi as in integral, we then see that

Ψi`1 “ Ψi ` pΨi`1 ´ Ψiq ě Ψi ` 1

for all i ą 0. Now if we set i0 P Zą0 to be the minimal positive integer such that

Ψi0 ě 0 then we can say that

eγ
8
ÿ

i“1

`

e´γΨi
˘

1tΨiě0u “eγ
8
ÿ

i“i0

e´γΨi

ďeγ
8
ÿ

i“i0

e´γpΨi0
`pi´i0qq

ďeγ
8
ÿ

i“i0

e´γpi´i0q

“:
1

2
b1pγq ă 8.

6.2.4 Absolute continuity of the Airy process on disjoint compacts

We move on to the last part of the proof. Recall that we had split the real line in

intervals, with the hopes that the supremum of the sum of the Airy process Apσq and

the increment on the Airy process Apsq had small probability to occur in each interval

and we could obtain a bound for the two-point probability of Lp0, 0; 0, sq. We have

already dealt with the intervals that are close to 0; we now move on to bound the

intervals that are far from the origin. In fact, we need to bound

pi,ε “ P
´

|A
psq

1 p0q ´ h| ď ε, | sup
z{σ2{3Pri˘1{2s

A
psq

1 pzq ` rA
pσq

1 p´zq ´ A
psq

1 p0q| ď 2ε
¯

, (6.46)

for |σ2{3i| ą 7.

The strategy is very similar to the one used on the intervals such that |i| ď 7
σ2{3 ,

only that now, i and 0 will be far apart and so Apsqpzq and Apsqp0q will not belong

to the same interval, as before. However, this is not a big problem, since the same

absolute continuity result over the Airy line ensemble with respect to a locally Brow-

nian ensemble is true for a finite number of disjoint intervals of the same length.

The original theorem by Dauvergne (in [14]) can be found in Section 6.3 and our
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convenient version of that result as a lemma is stated beloe. Notice that this lemma

is comparable to Lemma 24 but in this case, the absolute continuity is used in two

disjoint intervals of the same length over the parabolic Airy process simultaneously.

Lemma 28. Let a1, a2 P R‰0 and T ą 1
6
such that a1`3T ă a2´3T . Let I1 “ ra1˘T s

and I2 “ ra2 ˘ T s. Let faj be the linear function on raj ˘ 3T s satisfying

fajpaj ´ 3T q “ ´paj ´ 3T q
2 and fajpaj ` 3T q “ ´paj ` 3T q

2.

Then there exists a constant c P Rą0 and random functions

ˆ

´

F1prq

¯

rPI1
,
´

F2prq

¯

rPI2

˙

such that

Law

ˆ

´

A1prq

¯

rPI1
,
´

A1prq

¯

rPI2

˙

ď ecT
3

Law
´´?

2TN1 ` pF1prq ` fa1prqqrPI1

¯

,
´?

2TN2 ` pF2prq ` fa2prqqrPI2

¯¯

(6.47)

where N1 and N2 are independent standard Gaussian random variables. Moreover,

the pairs pN1, N2q and
´

pF1prqqrPI1 , pF2prqqrPI2

¯

are independent, and there exist

T´dependent constants c1, c2 ą 0 such that for each j P t1, 2u,

P

˜

sup
rPIj

|Fiprq| ą m

¸

ď c1 exp
´

´c2m
3
2

¯

(6.48)

for all m ą 0. More generally, for any λ ą 0, let A
pλq

1 be as in (6.6). Denote by I
pλq

j

the interval

I
pλq

j :“ λ2{3Ij “
“

ajλ
2{3

´ Tλ2{3, ajλ
2{3

` Tλ2{3
‰

.

Then as a consequence of (6.47), we have that

Law

ˆ

´

A
pλq

1 prq

¯

rPI
pλq

1

,
´

A
pλq

1 prq

¯

rPI
pλq

2

˙

ď ecT
3
0 Law

˜

ˆ

´

F pλq

j prq ` λ1{3
´?

2TNj ` fajprλ
´ 2

3 q

¯¯

rPI
pλq

j

˙2

j“1

¸

(6.49)

with N1 and N2 as before. For each j P t1, 2u, F pλq

j is a λ´dependent random function

such that for all m ą 0,

P

¨

˝ sup
rPI

pλq

j

ˇ

ˇ

ˇ
λ´1{3F pλq

j prq

ˇ

ˇ

ˇ
ą m

˛

‚ď c1 exp
´

´c2m
3
2

¯

(6.50)
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for the same T´dependent constants c1, c2 ą 0.

We may also write for each j P t1, 2u the random function F
pλq

j as

´

F pλq

j prq

¯

rPI
pλq

j

d
“

´

Wj

´

2r ´ 2paj ´ 3T qλ
2
3

¯

` Ajλ
´ 1

3 r ` Cjλ
1
3

¯

rPI
pλq

j

(6.51)

where Wj is a standard Brownian motion, and Aj and Cj are random constants such

that,

P p|Aj| ą mq ď c1 exp
´

´c2m
3
2

¯

and P p|Cj| ą mq ď c1 exp

˜

´c2

ˆ

m

|aj|

˙
3
2

¸

(6.52)

for all m ą 0. There are no claims made about any independence amongst Wj, Aj,

and Cj.

Remark. Note that although the constants c1, c2 ą 0 are T´dependent, if we only

ever use values of T that are bounded above and below by absolute constants, we

can take c1, c2 to actually be absolute constants as well without of loss of generality.

The values of T that we choose to work with specifically will be continuous univariate

functions of s, and since s lives in a finite interval, our choices of T will indeed be

bounded by absolute constants. Thus, in the work that follows, we will implicitly

optimize our choice of c1, c2 as functions of s to obtain absolute constants.

We will use the previous lemma to bound probability (6.46):

P
´

|A
psq

1 p0q ´ h| ď ε, | sup
z{σ2{3Pri˘1{2s

A
psq

1 pzq ´ A
psq

1 p0q ` rA
pσq

1 p´zq| ď 2ε
¯

.

We are now in the situation in which we need to understand the behaviour of Apsqpzq

and A
psq

1 p0q when z is close to iσ2{3 and far from 0. Since |i|σ2{3 ą 7, the points z

and 0 are far enough that we can use the absolute continuity lemma above in two

different intervals. For simplicity, we will assume that i ą 0 so the interval around

σ2{3i will be on the right of the interval that contains 0. The case when i ă 0 is

done in the same way except that the intervals change their order. The intervals are:

I1 “ s2{3r σ1{3

2s2{3 ˘ 1
2s2{3 s and I2 “ s2{3rσ

2{3

s2{3 i ˘ 1
2s2{3 s. In the language of the previous

theorem this means that a1 “ σ1{3

2s2{3 , a2 “ σ2{3

s2{3 i and T “ 1
2s2{3 . We need to check three

things:

1. The point 0 P I1: It is clear that 0 ă σ1{3

2
` 1

2
. We need to check that σ1{3

2
´ 1

2
ă 0.

Since σ ď 1, this statement is true.

2. The interval rσ2{3i ˘ σ2{3

2
s, the interval over which we take the supremum, needs
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to be a subset of I2 so that we can compare the supremum of the parabolic Airy

A
psq

1 pzq in (6.46) with the supremum of the function F as defined on Lemma 28.

If z P rσ2{3i ˘ σ2{3

2
s,

|z ´ σ2{3i| ď
σ2{3

2
ď

1

2
,

where in the last inequality we have used that σ ď 1. We have proved that

rσ2{3i ˘ σ2{3

2
s Ď I2.

3. We need to make sure that I1 and I2 are far enough. As per Lemma 28, we need

to guarantee that a1 ` 3T ď a2 ´ 3T :

a1 ` 3T ď a2 ´ 3T iff
σ1{3

2s2{3
`

3

2s2{3
ď

σ2{3

s2{3
i ´

3

2s2{3
iff 3 ď σ2{3i ´

σ1{3

2
.

Notice that since σ2{3i ě 4 and σ ď 1, we know that σ2{3i´ σ1{3

2
ą 7´ 1

2
ě 3. This

implies that the intervals are far enough to use the absolute continuity statement

in Lemma 28 in these two intervals.

For rA
pσq

1 we will use Lemma 24 on one interval as before.

Then, by Lemma 24 and Lemma 28, there exist a constant c0, and indepen-

dent standard Gaussians N1, N2 and rN corresponding to A
psq

1 |I1pzq, A
psq

1 |I2pzq and
rA

pσq

1 |r´σ2{3i˘σ2{3{2s such that we can bound probability (6.46) with

c0Pp|N1 ` G ´ h| ď ε, |σ1{3
rN ` N2 ´ N1 ` σ1{3Gi ´ σ1{3i2| ď 2εq, (6.53)

where G “ F
psq

2 p0q ´ ℓa1,T p0q and

Gi “ sup
z

σ2{3 Pri˘1{2s

rF pσqp´zq

σ1{3
`

F
psq

2 pzq

σ1{3
´

F
psq

1 p0q

σ1{3
` gipzq

where

gipzq “
s1{3

σ1{3
ℓa2,T

` z

s2{3

˘

´
s1{3

σ1{3
ℓa1,tp0q ` 2i

`

i ´
z

σ2{3

˘

.

Recall the definition of the linear shifts:

ℓa1,T prq “ ´ 2a1r ` a21 ´ 9T 2
“ ´

σ1{3

s2{3
r `

σ2{3

4s4{3
´

9

4s4{3

ℓa2,T prq “ ´ 2a2r ` a22 ´ 9T 2
“ ´

2σ2{3

s2{3
ir `

σ4{3

s2{3
i2 ´

9

4s4{3
.
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Then,

s1{3

σ1{3
ℓa1,T p0q “

σ1{3

4s
´

9σ1{3

4s
s1{3

σ1{3
ℓa2,T

` z

s2{3

˘

“ ´
2σ1{3

s
iz `

σ

s1{3
i2 ´

9σ1{3

4s
.

We can rewrite gi as follows:

gipzq “ ´
2σ1{3

s
iz `

σ

s1{3
i2 ´

σ1{3

4s
` 2i

`

i ´
z

σ2{3

˘

(6.54)

We can rearrange equation (6.53) as

c0Pp|N2 ` G ´ h| ď ε, | rN ` σ´1{3N1 ´ σ´1{3N2 ` Gi ´ i2| ď 2εσ´1{3
q.

Notice that t rN,N1, N2u is independent of tG,Giu. Also, since rN,N1 and N2 are

independent of each other and Gaussian,

pN2, rN ` σ´1{3N1 ´ σ´1{3N2q “: pX, Y q „ N p0,Σq (6.55)

where Σ is the covariance matrix. In fact,

Σ “

˜

1 ´ 1
σ1{3

´ 1
σ2{3

2
σ1{3 ` 1

¸

. (6.56)

We can now rewrite the probability (6.55) as

Pp|X`G´h| ď ε, |Y `Gi´i2| ď 2εσ´1{3
q “

ż

r´ε,εsˆr´2ε{σ1{3,2ε{σ1{3s

ρipx`h, y`i2qdxdy,

(6.57)

where ρipx ` h, y ` i2q is the density of the vector pX, Y q ` pG,Giq. It is worth

mentioning that the density is well defined by the Lemma 25. Notice that for all

y P r´2ε{σ1{3, 2ε{σ1{3s,

y ` i2 ě ´
2ε

σ1{3
` i2 ě ´

2ε

σ1{3
`

49

σ4{3
“

1

σ1{3

´49

σ
´ 2ε

¯

ě
1

σ1{3

´

49 ´ 2
¯

“
47

σ1{3
ě 0,

where we have used that |i| ě 7{σ2{3, σ ď 1 and ε ď 1.

Mimicking what we have done before, we will first bound the density ρipx, yq of

the random vector pX, Y q ` pG,Giq at the value px, yq. The goal is to find a bound

ai independent of h and σ such that if |i| ą 7σ´2{3, then

ρipx ` h, y ` i2q ď aipy ` i2q, for all x P R (6.58)
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and
ř

|i|ą7σ´2{3 aipy ` i2q ă d2 for a constant d2 independent of σ, y and h. Once we

obtain that bound, can join this bound with the work done previously in (6.21)

PpLp0, 0; 0, sq P ph ´ ε, h ` εq;Lp0, 0; 0, tq P ph ´ ε, h ` εqq

ď
ÿ

iPZ

pi,ε “ 8c2 ε2

σ1{3
`

ÿ

|i|ą7σ´ 2
3

pi,ε

“4c2 ε2

σ1{3
`

ÿ

|i|ą7σ´ 2
3

ż

r´ε,εsˆr´2ε{σ1{3,2ε{σ1{3s

ρipx ` h, y ` i2qdxdy

ď4c2 ε2

σ1{3
`

ż

r´ε,εsˆr´2ε{σ1{3,2ε{σ1{3s

ÿ

|i|ą7σ´ 2
3

aipy ` i2qdxdy

ď4c2 ε2

σ1{3
`

ż

r´ε,εsˆr´2ε{σ1{3,2ε{σ1{3s

d2dxdy

“4c2 ε2

σ1{3
` 4d2 ε2

σ1{3
ď c2 ε2

σ1{3
“ c2 ε2

|t ´ s|1{3
.

In the last inequality we have redefined the value of c2. Notice that obtaining the

bound (6.58) completes the proof of this theorem as explained in (6.1).

We now, embark on the task of finding bounds for the density ρi. Let y ą 0

arbitrary. We will use the same strategy as before: condition on the second coordinate

to be able to deal with the density bounds of Y and Gi separately. Since pX, Y q and

pG,Giq are independent we will bound the density of the convolution pX, Y q`pG,Giq

conditioned using Lemma 25. Recall that

ρipx, yq “PpX ` G P dx, Y ` Gi P dyq

“ lim
δÑ0

1

δ2
PpX ` G P rx, x ` δq, Y ` Gi P ry, y ` δqq

ď lim
δÑ0

1

δ2
PpX ` G P rx, x ` δq, Y ` Gi P ry, y ` δq|Y ě y{2qPpY ě y{2q

`
1

δ2
PpX ` G P rx, x ` δq, Y ` Gi P ry, y ` δq|Gi ě y{2qPpGi ě y{2q. (6.59)

We have used that for every δ ą 0, the event tY `Gi P ry, y ` δqu implies that either

tY ě y{2u or tGi ě y{2u must occur.

We now focus on the last two probabilities above. We start by writing

PpX ` G P rx, x ` δq, Y ` Gi P ry, y ` δq|Y ě y{2q

“

ż x`δ

x

ż y`δ

y

fpX,Y q`pG,Giq|tY ěy{2upu, vqdudv. (6.60)
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By Lemma 25, for all pu, vq P R ˆ r0,8q, we know that

fpX,Y q`pG,Giq|tY ěy{2upu, vq ď
∥∥fpX,Y q`pG,Giq|tY ěy{2upu, vq

∥∥
8

ď
∥∥fpX,Y q|tY ěy{2upu, vq

∥∥
8
PppG,Giq P R ˆ r0,8q|Y ě y{2q

ď
∥∥fpX,Y q|tY ěy{2upu, vq

∥∥
8
. (6.61)

In a closer inspection to this density we see that

fpX,Y q|tY ěy{2upu, vq “ lim
δÑ0

1

δ2
PpX P ru, u ` δq, Y P rv, v ` δq, Y ě y{2q

PpY ě y{2q

“
fpX,Y qpu, vq1tv ě y{2u

PpY ě y{2q
. (6.62)

The vector pX, Y q follows the distribution of bivariate normal with covariance matrix

Σ so its density is

fpX,Y qpu, vq “
1

2π
a

|Σ|
e´ 1

2
pu,vqTΣ´1pu,vq

“
1

2π
a

|Σ|
e

´ 1
2|Σ|

´

`

u

σ1{3 `v
˘2

`

`

1

σ2{3 `1
˘

u2

¯

.

Following the definition of Σ on (6.56) we find the determinant:

|Σ| “ detΣ “
1

σ2{3
` 1.

By simple inspection we can tell that the maximum of this density is achieved at

the origin but since we are maximizing over the half-plane tv ě y{2u and y ą 0,

we conclude that the maximum occurs when v “ y{2. Optimizing the exponential

function, we get

∥∥fpX,Y qpu, vq1tv ě y{2u
∥∥

8
“

∥∥fpX,Y qpu, y{2q
∥∥

8
“

1

2π
a

|Σ|
e

´
y2σ2{3

4p2`σ2{3q . (6.63)

Notice that since σ ď 1, we can bound the determinant |Σ| ě 2 and

1

2π
a

|Σ|
e

´
y2σ2{3

4p2`σ2{3q ď
1

2
?
2π

e
´

y2σ2{3

4p2`σ2{3q ď
1

2
?
2π

e´
y2σ2{3

12 . (6.64)

Putting equations (6.60), (6.61), (6.62), (6.63) and (6.64) together, we see that

PpX ` G P rx, x ` δq, Y ` Gi P ry, y ` δq|Y ě y{2q ď
δ2

2
?
2π

e´
y2σ2{3

12

PpY ě y{2q
. (6.65)
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We move onto the bounding the density of the other conditioned distribution:

PpX ` G P rx, x ` δq, Y ` Gi P ry, y ` δq|Gi ě y{2q “
ż x`δ

x

ż y`δ

y

fpX,Y q`pG,Giq|tGiěy{2upu, vqdudv. (6.66)

Again, by Lemma 25,

fpX,Y q`pG,Giq|tY ěy{2upu, vq ď
∥∥fpX,Y q`pG,Giq|tGiěy{2upu, vq

∥∥
8

ď
∥∥fpX,Y q|tY ěy{2upu, vq

∥∥
8
PppG,Giq P R ˆ r0,8q|Gi ě y{2q

ď
∥∥fpX,Y q|tGiěy{2upu, vq

∥∥
8

(6.67)

for all pu, vq P R ˆ r0,8q. Notice that tX, Y u are independent of Gi so

fpX,Y q|tGiěy{2upu, vq “ fpX,Y qpu, vq

and ∥∥fpX,Y q|tGiěy{2upu, vq
∥∥

8
ď

1

2
?
2π

. (6.68)

Adding the results obtained in (6.66), (6.67) and (6.68) we get that

PpX ` G P rx, x ` δq, Y ` Gi P ry, y ` δq|Gi ě y{2q ď
δ2

2
?
2π

. (6.69)

Then, following (6.59), (6.65) and (6.69) we obtain that for all x P R and y ą 0

ρipx, yq ď lim
δÑ0

1

δ2
PpX ` G P rx, x ` δq, Y ` Gi P ry, y ` δq|Y ě y{2qPpY ě y{2q

`
1

δ2
PpX ` G P rx, x ` δq, Y ` Gi P ry, y ` δq|Gi ě y{2qPpGi ě y{2q

ď
1

2
?
2π

e´
y2σ2{3

12

PpY ě y{2q
PpY ě y{2q `

1

2
?
2π

PpGi ě y{2q

“
1

2
?
2π

´

e´
y2σ2{3

12 ` PpGi ě y{2q

¯

.

Then, we can bound the density in (6.57) as follows:

ρipx ` h, y ` i2q ď
1

2
?
2π

´

e´
py`i2q2σ2{3

12 ` P
`

Gi ě
y ` i2

2

˘

¯

. (6.70)

In the next section we will concern ourselves with bounding P
`

Gi ě
y`i2

2

˘

.



CHAPTER 6. TWO-POINT ‘DENSITY’ BOUND FOR THE DIRECTED LANDSCAPE IN THE TEMPORAL DIRECTION82

6.2.5 Bound for the two-point density of the directed landscape if a

geodesic from p0, 0q to p0, tq is far from the origin at time s

Recall the definition of Gi (equation (6.54)):

Gi “ sup
z

σ2{3 Pri˘1{2s

rF pσqp´zq ` F
psq

2 pzq ´ F
psq

1 p0q

σ1{3
` gipzq

where

gipzq “
s1{3

σ1{3
ℓa2,T

` z

s2{3

˘

´
s1{3

σ1{3
ℓa1,tp0q ` 2i

`

i ´
z

σ2{3

˘

.

We will first focus on the deterministic part of the supremum; we can rewrite gi as

follows:

gipzq “ ´
2σ1{3i

s
pz ´ σ2{3iq ´

2σi2

s
`

σi2

s1{3
´

σ1{3

4s
` 2ipi ´

z

σ2{3
q. (6.71)

For any z P rσ2{3i ˘ σ2{3{2s, we can bound the right hand side of the equation above

and we get

gipzq ď
σ1{3|i|

s
´

2σi2

s
`

σi2

s1{3
´

σ1{3

4s
` |i| “

` ´2

s2{3
` 1

˘ σ

s1{3
i2 `

`σ1{3

s
` 1

˘

|i| ´
σ1{3

4s
.

Using the fact that 0 ď σ ď 1 and 1 ď s ď 2, we can further bound the right hand

side of the equation above by

p1 ´ 21{3
qi2 ` 2|i|

Notice that the equation above is negative for all |i| ą 7.

We conclude that for all z P rσ2{3i ˘ σ2{3{2s,

gipzq ď 0.

Then,

Gi ď sup
z

σ2{3 Pri˘1{2s

rF pσqp´zq ` F
psq

2 pzq ´ F
psq

1 p0q

σ1{3
.

Therefore,

P
ˆ

Gi ě
y ` i2

2

˙

ď P
ˆ

sup
z

σ2{3 Pri˘1{2s

rF pσqp´zq ` F
psq

2 pzq ´ F
psq

1 p0q

σ1{3
ě

y ` i2

2

˙

.
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Now, we will try to understand

sup
z

σ2{3 Pri˘1{2s

rF pσqp´zq ` F
psq

2 pzq ´ F
psq

1 p0q

σ1{3
. (6.72)

Recall that by Lemma 28, we know that for all r P Ij

F pλq

j prq
d
“ Wj

´

2r ´ 2paj ´ 3T qλ
2
3

¯

` Ajλ
´ 1

3 r ` Cjλ
1
3

Then, we can rewrite

F
psq

1 p0q

σ1{3
“
W1p´2p σ1{3

2s2{3 ´ 3
2s2{3 qs2{3q

σ1{3
`

C1s
1{3

σ1{3

“
W1p´σ1{3 ` 3q

σ1{3
`

C1s
1{3

σ1{3

F
psq

2 pzq

σ1{3
“
W2p2z ´ 2pσ2{3

s2{3 i ´ 3
2s2{3 qs2{3q

σ1{3
`

A2z

σ1{3s1{3
`

C2s
1{3

σ1{3

“
W2p2z ´ 2σ2{3i ` 3q

σ1{3
`

A2z

σ1{3s1{3
`

C2s
1{3

σ1{3

Then, we can rewrite equation (6.72) as

sup
z

σ2{3 Pri˘1{2s

rF pσqp´zq

σ1{3
`
W2p2z ´ 2σ2{3i ` 3q

σ1{3
`

A2z

σ1{3s1{3
`
C2s

1{3

σ1{3
´
W1p´σ1{3 ` 3q

σ1{3
´
C1s

1{3

σ1{3
.

Using the fact that the supremum of a sum is larger or equal than the sum of
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suprema and a union bound, we can see that

P
ˆ

Gi ě
y ` i2

2

˙

ďP
ˆ

sup
z

σ2{3 Pri˘1{2s

rF pσqp´zq

σ1{3
`

F
psq

2 pzq

σ1{3
´

F
psq

1 p0q

σ1{3
ě

y ` i2

2

˙

ďP
ˆ

sup
z

σ2{3 Pri˘1{2s

rF pσqp´zq

σ1{3
ě

y ` i2

12

˙

(6.73)

`P
ˆ

sup
z

σ2{3 Pri˘1{2s

W2p2z ´ 2σ2{3i ` 3q

σ1{3
ě

y ` i2

12

˙

(6.74)

`P
ˆ

sup
z

σ2{3 Pri˘1{2s

A2z

σ1{3s1{3
ě

y ` i2

12

˙

(6.75)

`P
ˆ

C2s
1{3

σ1{3
ě

y ` i2

12

˙

(6.76)

`P
ˆ

´
W1p´σ1{3 ` 3q

σ1{3
ě

y ` i2

12

˙

(6.77)

`P
ˆ

´
C1s

1{3

σ1{3
ě

y ` i2

12

˙

. (6.78)

We are going to bound each of the terms above.

We start by bounding the first term of the expression above. The numbers c1
i

and c2
i for i “ 1, . . . , 6 are constants that can change from line to line, absorbing

the constants into the expressions. By (6.50) in Lemma 24, we bound the first term

(equation (6.73)) as follows:

P
ˆ

sup
z

σ2{3 Pri˘1{2s

rF pσqp´zq

σ1{3
ě

y ` i2

12

˙

ďP
ˆ

sup
z

σ2{3 Pri˘1{2s

| rF pσqp´zq|

σ1{3
ě

y ` i2

12

˙

ďc1
1e

´c2
1py`i2q3{2

. (6.79)

For the second term (equation (6.74)), recall that W2 is a standard Brownian
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motion so

P
´

sup
z

σ2{3 Pri˘1{2s

W2p2z ´ 2σ2{3i ` 3q

σ1{3
ě

y ` i2

12

¯

“P
´

sup
zPr´σ2{3,σ2{3s

W2pz ` 3q

σ1{3
ě

y ` i2

12

¯

ďP
´

sup
zPr0,σ2{3`3s

W2pzq

σ1{3
ě

y ` i2

12

¯

ď2P
´W2pσ

2{3 ` 3q

σ1{3
ě

y ` i2

12

¯

“2P
´

W2

`

1 `
3

σ2{3

˘

ě
y ` i2

12

¯

ď2 exp
␣

´
py ` i2q2

24
`

1 ` 3
σ2{3

˘

(

ďc1
2e

´c2
2py`i2q2σ2{3

, (6.80)

where we have used the reflection principle, the scaling property of the Brownian

motion, the Gaussian tail bounds and the fact that σ ď 1.

For the third term (equation (6.75)), using that s ď 1, we get that

P
´

sup
z

σ2{3 Pri˘1{2s

A2z

σ1{3s1{3
ě

y ` i2

12

¯

ďP
´

sup
z

σ2{3 Pri˘1{2s

|A2|z

σ1{3
ě

y ` i2

12

¯

ďP
´

|A2|pσ
2{3i ` σ2{3{2q

σ1{3
ě

y ` i2

12

¯

ďP
´

|A2| ě
y ` i2

12pσ1{3i ` σ1{3{2q

¯

ďP
´

|A2| ě
y ` i2

12pi ` 1{2q

¯

ď c1
3 exp

␣

´c2
3

py ` i2q3{2

pi ` 1{2q3{2

(

,

(6.81)

where in the last two inequalities we have used that σ ď 1, i ą 0 and the tail bound

of A2 from (6.52) in Lemma 28 respectively.

For the fourth term (equation (6.76)),

P
´C2s

1{3

σ1{3
ě

y ` i2

12

¯

ďP
´

|C2| ě
py ` i2qσ1{3

21{312

¯

ďc1
4 expt´c2

4

py ` i2q3{2σ1{2

pσ1{3{2s2{3q3{2
u

ďc1
4e

´c2
4py`i2q3{2

, (6.82)

where we have used that 1 ď s ď 2 and the tail bound of C2 from (6.52) in Lemma

28.
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For the fifth term (equation (6.77)), since W1 is a Brownian motion,

P
´

´
W1p´σ1{3 ` 3q

σ1{3
ě

y ` i2

12

¯

“P
´W1p´σ1{3 ` 3q

σ1{3
ě

y ` i2

12

¯

ďc1
5e

´c2
5

py`i2q2σ2{3

3´σ1{3 ď c1
5e

´c2
5py`i2q2σ2{3

, (6.83)

where we have used the symmetry of the standard Gaussian random variable, the tail

bounds for a standard Gaussian and the fact that σ ď 1 in each step of the inequality

chain above.

For the sixth term (equation (6.78)),

P
´

´
C1s

1{3

σ1{3
ě

y ` i2

12

¯

ď c1
6e

´c2
6py`i2q3{2

(6.84)

for the same reason as (6.82).

Putting the bounds obtained in (6.79), (6.80), (6.81), (6.82), (6.83) and (6.82)

together we get that for all y P r´2ε{σ1{3, 2ε{σ1{3s,

PpGi ě
y ` i2

2
q ď c1

1e
´c2

1py`i2q3{2

` c1
2e

´c2
2py`i2q2σ2{3

` c1
3e

´c2
3

py`i2q3{2

pi`1{2q3{2

` c1
4e

´c2
4py`i2q3{2

` c1
5e

´c2
5py`i2q2σ2{3

` c1
6e

´c2
6py`i2q3{2

.

Taking c1 “ maxtc1
i “ i “ 1, . . . , 6u and c2 “ mintc2

i “ i “ 1, . . . , 6u, we can bound

the sum above by

c1

ˆ

3e´c2py`i2q3{2

` 2e´c2py`i2q2σ2{3

` e
´c2 py`i2q3{2

pi`1{2q3{2

˙

. (6.85)

Putting together this last calculation and (6.70), we can bound the density as follows:

ρipx ` h, y ` i2q ď
1

?
3π

´

e´
py`i2q2σ2{3

16 ` P
`

Gi ě
y ` i2

2

˘

¯

ď
1

?
3π

´

e´
py`i2q2σ2{3

16 ` c1
`

3e´c2py`i2q3{2

` 2e´c2py`i2q2σ2{3

` e
´c2 py`i2q3{2

pi`1{2q3{2
˘

¯

ďc1
´

e´c2py`i2q3{2

` e´c2py`i2q2σ2{3

` e
´c2 py`i2q3{2

pi`1{2q3{2

¯

,

where in the last inequality we have simply redefined the constants c1 and c2. Recall

that i ą 0, σ2{3 ě 7
|i|

ě 7
i2
, and that 1{2 ď |i| so

e´c2py`i2q2σ2{3

ď e
´7c2

´

y`i2

|i|

¯2

and e
´c2 py`i2q3{2

pi`1{2q3{2 ď e
´ c2

23{2

´

y`i2

|i|

¯3{2

. (6.86)
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Furthermore, recall that for all u ě 0 and all p ě 1, up ě u ´ 1 so putting together

the bounds obtained on (6.85) and (6.86), we get that

ρipx ` h, y ` i2q ďc1
´

e´c2py`i2qec
2

` e´7c2

`

y`i2

|i|

˘

e7c
2

` e
´ c2

23{2

`

y`i2

|i|

˘

e
c2

23{2

¯

ďc1
´

e´c2py`i2q
` e´c2

`

y`i2

|i|

˘

¯

where in the last inequality we have simply redefined the constants c1 and c2 for more

convenient ones once again.

As previously explained, all that is there left to do now is finding a bound for the

series
ÿ

iě7{σ2{3

ρipx ` h, y ` i2q ď
ÿ

iě7{σ2{3

c1
´

e´c2py`i2q
` e´c2

`

y`i2

|i|

˘

¯

uniform on y P r´2ε{σ1{3, 2ε{σ1{3s. For the first series,

ÿ

iě7{σ2{3

e´c2py`i2q
ď

ÿ

iě7{σ2{3

e´c2|tyu`i2|
ď
ÿ

iPZ

e´c2|tyu`i|
“
ÿ

jPZ

e´c2|j|
“ dpc2

q,

where we have used in the first inequality the fact that y ` i2 “ |y ` i2| and the fact

that y ě tyu, in the second inequality we have added to the series the non quadratic

terms and in the third equality, we have performed a change of variables j “ tyu ` i.

In the second case, we are going to use Lemma 27.

If y ď 0: By Lemma 27, with β1 “ 0 and β2 “ y,

ÿ

iě7{σ2{3

e´c2

`

y`i2

|i|

˘

“
ÿ

iě7{σ2{3

e´c2

`

|i|` y
|i|

˘

ď
ÿ

iě1

e´c2

`

|i|` y
|i|

˘

1t|i|` y
|i|

ě0u ă b1pc2
q.

If y ą 0:

ÿ

iě7{σ2{3

e´c2

`

y`i2

|i|

˘

ď
ÿ

iě7{σ2{3

e´c2|i|
ď dpc2

q

We have proved that

ÿ

iě7{σ2{3

ρipx ` h, y ` i2q ď 2dpc2
q ` b1pc2

q.

This concludes our proof.
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6.3 Proofs of the absolute continuity lemmas

We conclude this section of our argument by providing the proof of Lemma 24 and

Lemma 28 that we deferred earlier. Recall that these lemmas are simple adaptations

of Theorem 8 and Theorem 29.

6.3.1 Proof of Lemma 24

We begin with the proof of Lemma 24. We will use Theorem 8 and Proposition 17

(proof available in Subsection 3.4.2).

Proof of Lemma 24. By the stationarity of the stationary Airy process, we have the

equality in distribution

´

A1prq

¯

rPra˘3T s

d
“

´´

A1pr ´ aq ` pr ´ aq
2
¯

´ r2
¯

rPra˘3T s

d
“

´

A1prq ` r2 ´ pr ` aq
2
¯

rPr0˘3T s

which can be thus be condensed into the equality of laws

Law
´

pA1prqqrPra˘3T s

¯

“ Law
´

`

A1prq ` r2 ´ pr ` aq
2
˘

rPr0˘3T s

¯

.

By Lemma 8, there exists a diffusion parameter 2 Brownian bridge B on r´3T, 3T s

from 0 to 0 and an independent random affine function L on r´3T, 3T s such that

Law

ˆ

´

A1prq

¯

rPra˘3T s

˙

“ Law

ˆ

´

A1prq ` r2 ´ pr ` aq
2
¯

rPr0˘3T s

˙

ď e216cT
3

Law

ˆ

´

Bprq ` Lprq ` r2 ´ pr ` aq
2
¯

rPr0˘3T s

˙

We note here that although we do have the option to apply Lemma 8 on the original

interval ra ˘ 3T s, it is better for our purposes to apply it on r0 ˘ 3T s. The main

benefit to making this choice is that this isolates the dependency on the center of the

interval a in a single deterministic parabolic term. In doing so, we see that any and

all behaviours of L and B on r0 ˘ 3T s now have absolutely no relation to the value

of a. This will be quite useful later on.

Thus by restricting both pA1prqqrPra˘3T s
and pBprq ` Lprq ` r2 ´ pr ` aq2qrPr0˘3T s

to the middle thirds of their domains, we may use Lemma 17 with the parameters

δ “ 1
3
and k “ 2 to extract a Gaussian random variable from the Brownian bridge
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and conclude that

Law

ˆ

´

A1prq

¯

rPIa

˙

ď e216cT
3

Law
´

`

Bprq ` Lprq ` r2 ´ pr ` aq
2
˘

rPr0˘T s

¯

“ e216cT
3

Law

ˆ

´?
2TN ` pBprq ´

?
2TNq ` Lprq ` r2 ´ pr ` aq

2
¯

rPr0˘T s

˙

“ e216cT
3

Law

ˆ

´?
2TN ` pBpr ´ aq ´

?
2TNq ` Lpr ´ aq ` pr ´ aq

2
´ r2

¯

rPIa

˙

“ e216cT
3

Law

ˆ

´?
2TN ` Fprq ` ℓaprq

¯

rPIa

˙

with N a standard Gaussian independent of the process pB ´
?
2TNqrPr0˘T s, and

where we have defined

´

Fprq

¯

rPIa
:“

´´

Bpr ´ aq ´
?
2TN

¯

` Lpr ´ aq

¯

rPIa
. (6.87)

Now that we have defined our process pFprqqrPIa
, we will next prove that the tail

bound (6.11) is true. We first observe that

sup
rPIa

|Fprq| “ sup
rPra˘T s

ˇ

ˇ

ˇ
Bpr ´ aq ´

?
2TN ` Lpr ´ aq

ˇ

ˇ

ˇ

ď sup
rPr´T,T s

|Bprq| `
?
2T |N | ` sup

rPr´T,T s

|Lprq| . (6.88)

Moreover, recalling that L is a straight line segment from Lp´3tq to Lp3tq we have

the elementary bound

sup
rPr´T,T s

|Lprq| ď sup
rPr´3T,3T s

|Lprq| ď maxt|Lp´3tq| , |Lp3tq|u ď |Lp´3tq| ` |Lp3tq| .

(6.89)

By invoking the bounds (1.5) and (1.6) in Lemma 8, we obtain in our case that

P
´

Lp´3tq ^ Lp3tq ă ´m
¯

ď 2e´dm3

and P
´

Lp´3tq _ Lp3tq ą m
¯

ď e´ 4
3
m

3
2 `cm

5
4

(6.90)

for some T0´dependent constants c, d ą 0. This means that by taking union bounds,
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combining equations (6.89) and (6.90) gives us a chain of inequalities

P

˜

sup
rPr´T,T s

|Lprq| ě 2m

¸

ďP
´

|Lp´3tq| ` |Lp3tq| ě 2m
¯

ďP
´

|Lp´3tq| ě m
¯

` P
´

|Lp3tq| ě m
¯

ď2P
´

Lp´3tq ^ Lp3tq ă ´m
¯

` 2P
´

Lp´3tq _ Lp3tq ą m
¯

ď2
´

e´ 4
3
m

3
2 `cm

5
4

` 2e´dm3
¯

ď c1e
´c2m

3
2 (6.91)

for some T´dependent constants c1, c2 ą 0. We now turn our attention to the

Brownian bridge B. Since B is a Brownian bridge of diffusion parameter 2, we may

write
´

Bprq

¯

rPr´3T,3T s

d
“

´

Wp2r ` 6T q ´
r ` 3T

6T
Wp12T q

¯

rPr´3T,3T s
(6.92)

where W is a standard two-sided Brownian motion. Based on this decomposition in

law we have the upper bound

sup
rPr´T,T s

|Bprq| ď |Wp12T q| ` sup
rPr0,6T s

|Wp2rq| “ |Wp12T q| ` sup
rPr0,12T s

|Wprq| .

In turn, this implies the chain of inequalities

P p sup
rPr´T,T s

|Bprq| ě 2m q (6.93)

ď P

˜

|Wp12T q| ` sup
rPr0,12T s

|Wprq| ě 2m

¸

ď P
´

|Wp12T q| ě m
¯

` P

˜

sup
rPr0,12T s

|Wprq| ě m

¸

“ P
´

|Wp12T q| ě m
¯

` P

˜

sup
rPr0,12T s

Wprq ě m

¸

` P

˜

sup
rPr0,12T s

´Wprq ě m

¸

“ P
´

|Wp12T q| ě m
¯

` 2P

˜

sup
rPr0,12T s

Wprq ě m

¸

“ 3P
´

|Wp12T q| ě m
¯

ď 6e´m2{p24tq (6.94)

using the fact that ´W d
“ W , the known distribution for the running maximum

of a Brownian motion, and the standard Gaussian concentration bound. As such,

by combining equations (6.88), (6.91), and (6.93), we see that we can find positive
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T0´dependent constants c1, c2 ą 0 such that

P
´

sup
rPIa

|Fprq| ě m
¯

ďP
´

sup
rPr´T,T s

|Bprq| ě m{3
¯

` P
´?

2T |N | ě m{3
¯

` P
´

sup
rPr´T,T s

|Lprq| ě m{3
¯

ďc1e
´c2m3{2

as claimed in equation (6.11). The extension of our result to the rescaled Airy process

Apλq

1 in (6.12) is an immediate consequence of the base case when λ “ 1. To see this

explicitly, we observe that

Law pp A
pλq

1 prq

¯

rPI
pλq
a

˙

“Law

ˆ

´

λ
1
3A1prq

¯

rPIa

˙

ďe216cT
3

Law

ˆ

´

λ
1
3

?
2TN ` λ

1
3Fprq ` λ

1
3 ℓaprq

¯

rPra˘T s

˙

“e216cT
3

Law

ˆ

´

λ
1
3

?
2TN ` λ

1
3Fprλ´2{3

q ` λ
1
3 ℓaprλ´2{3

q

¯

rPraλ2{3˘Tλ2{3s

˙

“e216cT
3

Law

ˆ

´

λ
1
3

?
2TN ` F pλq

prq ` λ
1
3 ℓaprλ´2{3

q

¯

rPI
pλq
a

˙

where we have defined the rescaled random function
´

F pλqprq

¯

rPI
pλq
a

by

´

F pλq
prq

¯

rPI
pλq
a

“

´

λ
1
3

´

Bprλ´2{3
´ aq ´

?
2TN ` Lprλ´2{3

´ aq

¯¯

rPI
pλq
a

(6.95)

via our original definition in equation (6.87). Equation (6.13) then follows from (6.11)

and the fact that
´

λ´ 1
3F pλq

prq

¯

rPI
pλq
a

“

´

Fprq

¯

rPIa
.

We now turn our attention to establishing the decomposition in law in equation (6.14).

Given the fact that Lprq is a linear function, we may write

´

Lprq

¯

rPr´3T,3T s
“

ˆ

1

6T

´

Lp3T q ´ Lp´3T q

¯

r `
1

2

´

Lp´3T q ` Lp3T q

¯

˙

rPr´3T,3T s

.

Similarly, equation (6.92) can be decomposed and rewritten in law as

´

Bprq

¯

rPr´3T,3T s

d
“

ˆ

Wp2r ` 6T q ´
1

2
Wp12T q ´

1

6T
Wp12T qr

˙

rPr´3T,3T s

.
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As an immediate consequence of the above, we also have that

´

λ
1
3B

´

δλ´ 2
3

¯¯

δPI
pλq

0

d
“

ˆ

W
´

2δ ` 6Tλ
2
3

¯

´ λ
1
3
1

2
Wp12T qλ´ 1

3
Wp12T q

6T
δ

˙

δPr´3,3s

where the first term was simplified by Brownian scaling. Using these decomposi-

tions and the explicit definition of
´

F pλqprq

¯

rPI
pλq
a

in (6.95), we have the equalities in

distribution

`

F pλq
`

aλ2{3
` δ

˘˘

δPI
pλq

0
“

´

λ
1
3B

`

δλ´2{3
˘

´ λ
1
3

?
TN ` λ

1
3L

´

δλ´ 2
3

¯¯

δPI
pλq

0

d
“

´

W
´

2δ ` 6Tλ
2
3

¯

` λ´ 1
3Aδ ` λ

1
3C

¯

δPI
pλq

0

where we have defined the random constants A and C as

A :“
1

6T

´

Wp12T q ` Lp3T q ´ Lp´3T q

¯

C :“
1

2

´

´ Wp12T q ` Lp´3T q ` Lp3T q

¯

´
?
2TN.

Observing that the triangle inequality gives us the two upper bounds

|A| ď
1

6T
|Wp12T q| `

1

6T
|Lp3T q ´ Lp´3T q|

|C| ď
1

2
|Wp12T q| `

1

2
|Lp3T q| `

1

2
|Lp´3T q| `

?
2T |N |,

the tail bounds in equation (6.15) follow immediately from the standard Gaussian

concentration inequality and equation (1.7) of Theorem 8, after possibly redefining

our original choice of the T´dependent constants c1, c2 ą 0. This completes our

proof.

6.3.2 Proof of Lemma 28

We now move on to the proof of Lemma 28. First, we state the absolute continuity

in disjoint intervals of the Airy line ensemble in which we base our arguments.

Theorem 29 (Dauvergne, in [14]). Fix T0 ě 1 and a⃗ “ pa1, a2q P R2 such that

a1 ` T0 ă a2. Then, there exists an absolute constant c ą 0 and a random process
`

La⃗
1prq

˘

rPR such that

Law
´

pA1prqqrPra1,a1`T0s
, pA1prqqrPra2,a2`T0s

¯

ď ecT
3
0 Law

´

`

La⃗
1prq

˘

rPra1,a1`T0s
,
`

La⃗
1prq

˘

rPra2,a2`T0s

¯

.
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Moreover, for each j P t1, 2u we can write

`

La⃗
j prq

˘

rPraj ,aj`T0s

d
“ pBjprq ` LjprqqrPraj ,aj`T0s

where Bj is a diffusion parameter 2 Brownian bridge from 0 to 0 on raj, aj ` T0s, B1

is independent of B2, pB1, B2q is independent of pL1, L2q and the linear terms L1 and

L2 can be decomposed in law as

´

Ljprq

¯

rPraj ,aj`T0s

d
“

ˆ

paj ` T0q ´ r

T0

La⃗
1pajq `

r ´ aj
T0

La⃗
1paj ` T0q

˙

rPraj ,aj`T0s

. (6.96)

Moreover, for some T0´dependent constants c1, c2 ą 0 we have that for all m ą 0,

P
´

|Ljpajq ` a2j | ą m
¯

“ P
´

|Lpajq ` a2j | ą m
¯

ď c1e
´c2m3{2

P
´

|Lipaj ` T0q ` paj ` T0q
2
| ą m

¯

“ P
´

|Lpaj ` T0q ` paj ` T0q
2
| ą m

¯

ď c1e
´c2m3{2

.

(6.97)

Now we proof the lemma.

Proof of Lemma 28. By invoking Theorem 29 with T0 “ 6T and a⃗ “ pa1´3T, a2´3T q,

we have that

Law

˜

´

A1prq

¯

rPra1˘3T s
,
´

A1prq

¯

rPra2˘3T s

¸

ď e216cT
3

Law

ˆ

´

B1prq ` L1prq

¯

rPra1˘3T s
,
´

B2prq ` L2prq

¯

rPra2˘3T s

˙

.

Since Ij is the middle third of the interval raj ˘ 3T s, we may invoke Lemma 17 with

k “ 1 and δ “ 1
3
on raj ˘ 3T s for each j P t1, 2u to get the decomposition in law

´

Bjprq

¯

rPIj

d
“

?
TNj `

´

Bjprq ´
?
2TNj

¯

rPIj

where Nj is a standard Gaussian, Nj is independent of the process pBjprq ´ NjqrPIj ,

and N1 is independent of N2. As such, we can now write that

Law

ˆ

´

A1prq

¯

rPI1
,
´

A1prq

¯

rPI2

˙

ď e216cT
3

Law

ˆ

´?
2TN1 ` pF1prq ` fa1prq

¯

rPI1
,
´?

2TN2 ` pF2prq ` fa2prq

¯

rPI2

˙
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where for each j P t1, 2u we have defined

´

Fjprq

¯

rPIj
:“

´

Ljprq ´ fajprq ` Bjprq ´
?
2TNj

¯

rPIj

and for r P raj ˘ 3T s, we haved defined faj by

fajprq “ ´
paj ` 3T q ´ r

6T
paj ´ 3T q

2
´

r ´ paj ´ 3T q

6T
paj ` 3T q

2.

This establishes (6.47) so all that remains is to establish (6.48). To that end, we

employ the same general argument used in Lemma 24 previously, independently in

each coordinate of (6.48).

We begin by observing the chain of inequalities

sup
rPIj

|Fjprq| ď sup
rPIj

|Ljprq ´ fajprq| ` sup
rPIj

|Bjprq| ` |
?
2TNj|. (6.98)

Notice that because Lj ´ faj is a (random) line segment, its maximum absolute value

is obtained at one of its two endpoints. So we have that

sup
rPIj

|Ljprq ´ fajprq| ď|Ljpaj ´ 3T q ´ fajpaj ´ 3T q| _ |Ljpaj ` 3T q ´ fajpai ` 3T q|

“|Ljpaj ´ 3T q ` paj ´ 3T q
2
| _ |Ljpaj ` 3T q ` paj ` 3T q

2
|,

(6.99)

where in the last equality we have used the definition of faj . We will now adopt the

convention that for any a P R, Ba,6T is a diffusion parameter 2 Brownian bridge on

ra, a ` 6T s from 0 to 0. With this convention, we may write that

´

B0,6T prq

¯

rPr0,6T s

d
“

´

Wp2rq ´
r

6T
Wp12T q

¯

rPr0,6T s
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where W is a standard Brownian motion. Given this, we may then say that

P

˜

sup
rPIj

|Bjprq| ą 2m

¸

“ P

˜

sup
rPr2T,4T s

|B0,6T prq| ą 2m

¸

ď P

˜

sup
rPr0,6T s

|B0,6T prq| ą 2m

¸

“ P

˜

sup
rPr0,6T s

ˇ

ˇ

ˇ
Wp2rq ´

r

6T
Wp12T q

ˇ

ˇ

ˇ
ą 2m

¸

ď P

˜

|Wp12T q| ` sup
rPr0,6T s

|Wp2rq| ą 2m

¸

ď P
´

|Wp12T q| ą m
¯

` P

˜

sup
rPr0,12T s

|Wprq| ą m

¸

ď P
´

|Wp12T q| ą m
¯

` 2P

˜

sup
rPr0,12T s

Wprq ą m

¸

“ P
´

|Wp12T q| ą mq ` 2Pp|Wp12T q| ą m
¯

“ 3P
´

|Wp12T q| ą m
¯

using that W is equal in law to ´W , and the known distribution of the running

maximum of a standard Brownian motion.

We may use this elementary bound in conjunction with (6.98) and (6.99) to obtain

the union bound

P

˜

sup
rPIj

|Fiprq| ą 4m

¸

ď P
´

|Ljpaj ´ 3T q ` paj ´ 3T q
2
| _ |Ljpai ` 3T q ` paj ` 3T q

2
| ą m

¯

` P

˜

sup
rPIj

|Bjprq| ą 2m

¸

` P
´

|
?
2TNj| ą m

¯

ď P
´

|Ljpaj ´ 3T q ` paj ´ 3T q
2
| _ |Ljpaj ` 3T q ` paj ` 3T q

2
| ą m

¯

` 3P
´

|Wp12T q| ą m
¯

` P
´

|
?
2TNj| ą m

¯

.

Using the standard sub-Gaussian concentration inequalities for the latter two summ-

mands, and the tail bounds in equation (6.97) for the first summand above yields

P

˜

sup
rPIj

|Fjprq| ą 4m

¸

ď c1e
´c2m

3
2

` 6e
´ m2

2p12T q2 ` 2e
´ m2

2p2T q2 ď c1e
´c2m

3
2
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by redefining the original choice of c1 and c2 as needed, thus establishing (6.48) and

completing the proof of the base case.

Equations (6.49) and (6.50) are immediate consequences of (6.47) and (6.48), re-

spectively. To see this explicitly, we need only observe that (6.47) gives us the chain

of equalities

Law p

´

A
pλq

1 prq

¯

rPI
pλq

1

,
´

A
pλq

1 prq

¯

rPI
pλq

2

q

“ Law

ˆ

´

λ1{3A1prλ
´2{3

q

¯

rPλ2{3I1
,
´

λ1{3A1prλ
´2{3

q

¯

rPλ2{3I2

˙

“ Law

ˆ

´

λ1{3A1prq

¯

rPI1
,
´

λ1{3A1prq

¯

rPI2

˙

ď e216cT
3

Law

˜

ˆ

λ1{3
´?

2TNj ` pFjprq ` fajprqq

¯

rPIj

˙2

j“1

¸

“ e216cT
3

Law

˜

ˆ

λ1{3
´?

2TNj `

´

Fjprλ
´2{3

q ` fajprλ
´ 2

3 q

¯¯

rPI
pλq

j

˙2

j“1

¸

“ e216cT
3

Law

˜

ˆ

´

F pλq

j ` λ1{3
´?

2TNj ` fajprλ
´ 2

3 q

¯¯

rPI
pλq

j

˙2

j“1

¸

where we have that F pλq

j is defined for each j P t1, 2u by

´

F pλq

j prq

¯

rPI
pλq

j

:“
´

λ
1
3Fjprλ

´ 2
3 q

¯

rPI
pλq

j

(6.100)

“

´

λ
1
3Ljprλ

´ 2
3 q ´ λ

1
3fajprλ

´ 2
3 q ` λ

1
3Bjprλ

´ 2
3 q ´ λ

1
3

?
2TNj

¯

rPI
pλq

j

.

All the claimed independence properties of the decomposition (6.100) are inherited

from the base case of this proof. Establishing the tail bound (6.50) follows immedi-

ately from (6.48) and the fact that

´

Fjprq

¯

rPIj
“

´

λ´1{3F
pλq

j prq

¯

rPI
pλq

j

.

We now provide a decomposition of the functions
´

F pλq

j prq

¯

rPI
pλq

j

which will enable

us to establish the tail bounds (6.52). By invoking the decomposition in equation

(6.96), we obtain that

´

Ljprq

¯

rPraj˘3T s

d
“

ˆ

paj ` 3T q ´ r

6T
La⃗
1paj ´ 3T q `

r ´ paj ´ 3T q

6T
La⃗
1paj ` 3T q

˙

rPraj˘3T s

.

(6.101)
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We may write for each r P raj ˘ 3T s that

fajprq “ ´
paj ` 3T q2 ´ paj ´ 3T q2

6T
r ´

paj ` 3T qpaj ´ 3T q2 ´ paj ´ 3T qpaj ` 3T q2

6T
(6.102)

“ ´p2ajqr `
`

a2j ´ 9T 2
˘

.

We begin with the definition in (6.100), which gives us for each r P I
pλq

j “
“

ajλ
2{3 ˘ 3Tλ2{3

‰

the decomposition in law

F pλq

j prq “ λ
1
3Fj

`

rλ´2{3
˘

“ λ
1
3Lj

`

rλ´2{3
˘

´ λ
1
3faj

`

rλ´2{3
˘

` λ
1
3Bj

`

rλ´2{3
˘

´ λ
1
3

?
TNj

d
“ λ

1
3Lj

`

rλ´2{3
˘

´ λ
1
3faj

`

rλ´2{3
˘

` λ
1
3B0,6T

`

rλ´2{3
´ paj ´ 3T q

˘

´ λ
1
3

?
TNj

(6.103)

where as before, Ba,6T is a diffusion parameter 2 Brownian bridge on ra, a` 6T s from

0 to 0. Noting that for any a, k P R the scaling properties of Brownian bridges give

us that

´

k´1B0,6T pk2r ´ k2aq

¯

rPra,a`6T s

d
“

´

k´1Bk2a,6k2T pr ´ k2aq

¯

rPrk2a,k2pa`6T qs

d
“

´

k´1B0,6k2T prq

¯

rPr0,k2p6T qqs

d
“

´

Wp2rq ´
k´2r

6T
Wp12k2T q

¯

rPr0,k2p6T qqs

d
“

´

Wp2r ´ 2k2aq ´
k´2r ´ a

6T
Wp12k2T q

¯

rPrk2a,k2pa`6T qs

d
“

´

Wp2r ´ 2k2aq ´
k´1r ´ ka

6T
Wp12T q

¯

rPrk2a,k2pa`6T qs
.

Therefore, we will adopt the convention that W1 and W2 are independent standard

Brownian motions associated with the independent Brownian bridges B1 and B2

respectively such that for all r P I
pλq

j “

”

λ
2
3aj ˘ λ

2
3T

ı

,

λ
1
3Bj

`

rλ´2{3
˘ d

“ Wj

´

2r ´ p2aj ´ 6T qλ
2
3

¯

´
rλ´ 1

3 ´ paj ´ 3T qλ
1
3

6T
Wjp12T q. (6.104)

Now by using (6.104) in conjunction with (6.101) and (6.102) we can obtain the

decomposition in law

´

F
pλq

j prq

¯

rPI
pλq

j

d
“

´

Wj

´

2r ´ p2aj ´ 6T qλ
2
3

¯

` Ajrλ
´1{3

` Cjλ
1{3
¯

rPI
pλq

j
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where the random constants Aj, and Cj are defined as

Aj :“

˜

pLa⃗
1paj ` 3T q ´ paj ` 3T q2q ´ pLa⃗

1pajq ´ a2jq

3T
´

1

6T
Wjp12T q

¸

Cj :“

ˆ

paj ` 3T qpLa⃗
1paj ´ 3T q ´ paj ´ 3T q2q ´ paj ´ 3T qpLa⃗

1paj ` 3T q ´ paj ` 3T q2q

6T

˙

`
aj ´ 3T

6T
Wjp12T q ´

?
2TNj.

We now establish tail bounds for the random constants Aj and Cj. First,

P
´

|Aj| ą m
¯

ď P
ˆ
ˇ

ˇ

ˇ

ˇ

La⃗
1paj ` 3T q ´ paj ` 3T q2

6T

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

La⃗
1paj ´ 3T q ´ paj ´ 3T q2

6T

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

1

6T
Wjp12T q

ˇ

ˇ

ˇ

ˇ

ą m

˙

.

(6.105)

Now, using the tail bounds in (6.97), we see that for all m ą 0,

P
ˆ
ˇ

ˇ

ˇ

ˇ

La⃗
1paj ` 3T q ´ paj ` 3T q2

6T

ˇ

ˇ

ˇ

ˇ

ą
m

3

˙

ďP
´

ˇ

ˇLa⃗
1paj ` 3T q ´ paj ` 3T q

2
ˇ

ˇ ą 2mT
¯

ďc1e
´c2p2mT q

3
2 (6.106)

and similarly,

P
ˆ
ˇ

ˇ

ˇ

ˇ

La⃗
1paj ´ 3T q ´ paj ´ 3T q2

6T

ˇ

ˇ

ˇ

ˇ

ą
m

3

˙

ďP
´

ˇ

ˇLa⃗
1paj ´ 3T q ´ paj ´ 3T q

2
ˇ

ˇ ą 2mT
¯

ďc1e
´c2p2mT q

3
2 (6.107)

Using the standard Gaussian tail bounds, we get that

P
´

ˇ

ˇ

ˇ

ˇ

1

6T
Wjp12T q

ˇ

ˇ

ˇ

ˇ

ą
m

3

¯

ďP
´

|Wjp12T q| ą 2mT
¯

ď2e´
p2mT q2

2p12T q (6.108)

Using equations (6.106), (6.107) and (6.108) and a simple union bound, we get

that

P
´

|Aj| ą m
¯

ď c1e
´c2p2mT q

3
2

` 2e´
p2mT q2

2p12T q ď c1e
´c2m

3
2

where the T´dependent constants c1, c2 have been redefined as needed.
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Similarly, for the random constant Cj we may obtain the tail bound

P
´

|Cj| ą m
¯

ď P
ˆ
ˇ

ˇ

ˇ

ˇ

paj ` 3T qpLa⃗
1paj ´ 3T q ´ paj ´ 3T q2q

6T

ˇ

ˇ

ˇ

ˇ

ą
m

4

˙

` P
ˆ
ˇ

ˇ

ˇ

ˇ

paj ´ 3T qpLa⃗
1paj ` 3T q ´ paj ` 3T q2q

6T

ˇ

ˇ

ˇ

ˇ

ą
m

4

˙

` P
ˆ
ˇ

ˇ

ˇ

ˇ

paj ´ 3T qWjp12T q

6T

ˇ

ˇ

ˇ

ˇ

ą
m

4

˙

` P
´ˇ

ˇ

ˇ

?
2TNj

ˇ

ˇ

ˇ
ą

m

4

¯

“ P
ˆ

ˇ

ˇLa⃗
1paj ´ 3T q ´ paj ´ 3T q

2
q
ˇ

ˇ ą
3mT

2|aj ` 3T |

˙

` P
ˆ

ˇ

ˇLa⃗
1paj ` 3T q ´ paj ` 3T q

2
q
ˇ

ˇ ą
3mT

2|aj ´ 3T |

˙

` P
ˆ

|Wjp12T q| ą
3mT

2|aj ´ 3T |

˙

` P
´

|
?
2TNj| ą

m

4

¯

ď c1e
´c2

ˆ

3mT
2|aj`3T |

˙ 3
2

` c1e
´c2

ˆ

3mT
2|aj´3T |

˙ 3
2

` 2e
´ 1

24T

ˆ

3mT
2|aj´3T |

˙2

` 2e´ 1
4T pm

4 q
2

ď c1e
´c2

ˆ

m
|aj |

˙ 3
2

where we have once again redefined the values of c1 and c2 so that the final inequality

holds as well. This therefore establishes (6.52) and completes the proof of Lemma

28.
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