Department of Mathematics
 Comprehensive Exam 2023
 First half: Monday, September 18, 2023-6:00-9:00 p.m.
 BA6183

Last name \qquad

First name \qquad

Email
NO AIDS ALLOWED. Solve 6 questions out 12 questions. Indicate which questions you want to be graded. Overall passing score is 80 percent from those 6 questions (over 2 days). Each one of the 6 problems chosen has to get a minimum score of 70%. Do not attempt all problems; instead, aim for complete solutions.

1. (10 pts) Let (X, \mathcal{M}, μ) be a finite measure space.
(a) (3 points) Let $f \in L^{1}(\mu)$, show that for every $\epsilon>0$, there exists $\delta>0$ such that

$$
\mu(E)<\delta \Longrightarrow \int_{E}|f| d \mu<\epsilon
$$

(b) (5 points) Let f_{n} be a sequence of measurable functions on (X, \mathcal{M}), we assume that for every $\epsilon>0$, there exists $\delta>0$ such that

$$
\mu(E)<\delta \Longrightarrow \sup _{n} \int_{E}\left|f_{n}\right| d \mu<\epsilon
$$

Prove that if f_{n} is a Cauchy sequence in measure, then f_{n} is a Cauchy sequence in L^{1}.
(c) (2 points) If f_{n} is Cauchy in measure and $\sup _{n} \int\left|f_{n}\right|^{2} d \mu<\infty$, then f_{n} is a Cauchy sequence in L^{1}.
2. (10 pts) Let u, v in $C\left(\mathbb{R}^{n} \times[0, T]\right) \cap C^{2}\left(\mathbb{R}^{n} \times(0, T)\right)$ be bounded solutions of the following heat equations on the whole space:

$$
\begin{cases}u_{t}-\Delta u=F & \text { in } \quad \mathbb{R}^{n} \times(0, T) \tag{H}\\ v_{t}-\Delta v=0 & \text { in } \quad \mathbb{R}^{n} \times(0, T)\end{cases}
$$

with initial data $u(x, 0)=u_{0}(x)$ and $v(x, 0)=v_{0}(x)$ satisfying

$$
\sup _{x \in \mathbb{R}^{n}}\left|u_{0}(x)\right|+\int_{\mathbb{R}^{n}}\left|u_{0}\right| \leq A, \quad \sup _{x \in \mathbb{R}^{n}}\left|v_{0}(x)\right|+\int_{\mathbb{R}^{n}}\left|v_{0}\right| \leq B,
$$

and given forcing term $F=F(x, t)$.
a) Prove that for some constant $C=C(n)>0, v$ satisfies the estimate

$$
\sup _{x \in \mathbb{R}^{n}}|v(x, t)| \leq C_{n} \frac{B}{(1+t)^{n / 2}}
$$

b) Prove that, for all $t \leq T$, one has

$$
\|u(\cdot, t)\|_{L^{2}} \leq\left\|u_{0}\right\|_{L^{2}}+\int_{0}^{t}\|F(\cdot, s)\|_{L^{2}} d s
$$

provided the right-hand side is finite.
c) Consider the case when (H) is a system of coupled equations with

$$
F(x, t)=v^{3}(x, t) .
$$

Determine in which dimension n one has

$$
\|u(\cdot, t)\|_{L^{2}} \leq C=C(A, B)
$$

3. (10 pts total) Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial in one variable over \mathbb{Q}.
a) (5 pts) Prove that $F=\mathbb{Q}[x] /(f(x))$ is a field.
b) (5 pts) Prove that

$$
\left\{1 \bmod f, x \bmod f, x^{2} \bmod f, \ldots, x^{(\operatorname{deg} f)-1} \bmod f\right\}
$$

is a basis for F over \mathbb{Q}, where $a(x) \bmod f(x)$ denotes the image of $a(x) \in \mathbb{Q}[x]$ under the projection map $\mathbb{Q}[x] \rightarrow F$.
(You are welcome to utilize the Long Division Algorithm in $\mathbb{Q}[x]$ without proof.)

4. (10 pts)

Let $v \in \Omega^{2}\left(S^{2}\right)$ satisfy $\int_{S^{2}} v=1$, and let $f: S^{3} \rightarrow S^{2}$ be a smooth map.
a) (2 pts) Prove that there exists $\xi \in \Omega^{1}\left(S^{3}\right)$ such that $d \xi=f^{*} v$.
b) ($2 \mathbf{p t s}$) Prove that if $d \xi^{\prime}=f^{*} v$, then $\xi^{\prime}=\xi+d \lambda$, for $\lambda \in$ $C^{\infty}\left(S^{3}, \mathbb{R}\right)$.

Define the Hopf invariant of f to be the following integral:

$$
H(f)=\int_{S^{3}} \xi \wedge d \xi
$$

c) (2 pts) Prove that $H(f)$ does not depend on the choice of ξ such that $d \xi=f^{*} v$.
d) (2 pts)Prove that $H(f)$ is unchanged if v is replaced by $v^{\prime} \in$ $\Omega^{2}\left(S^{2}\right)$ which also satisfies $\int_{S^{2}} v^{\prime}=1$.
e) (2 pts)Let f_{0}, f_{1} be smooth maps $S^{3} \rightarrow S^{2}$. Prove that if f_{0}, f_{1} are smoothly homotopic, then they have the same Hopf invariant.
5. (10 pts) Let $X_{n}, n \in \mathbb{N}$ be a sequence of independent exponential random variables of mean 1 , and let $S_{n}=X_{1}+X_{2}+\ldots X_{n}$. For every positive a find

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{P}\left(S_{n}<a\right) .
$$

6. (10 pts) An $n \times n$ matrix with complex-valued entries, A, is Hermitian if $A^{*}=A$ where A^{*} is the matrix constructed from A via $\left(A^{*}\right)_{i j}=$ $\overline{A_{j i}}$ for all $1 \leq i, j \leq n$. Hermitian matrices can be orthogonally diagonalized and their eigenvalues are real:

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}
$$

a) Assume A is Hermitian. The Rayleigh quotient $R(A, x)$ is defined for a nonzero vector x via

$$
R(A, x)=\frac{x^{*} A x}{x^{*} x}
$$

Prove one of the two equalities:

$$
\lambda_{1}=\min _{x \neq 0} R(A, x) \quad \lambda_{n}=\max _{x \neq 0} R(A, x) .
$$

They're both true but if you can prove one then you can prove the other with similar ideas.
b) From above, you can find λ_{1} and λ_{n} by optimizing over all nonzero vectors. What about other eigenvalues? Find subspaces W_{2} and V_{2} so that

$$
\lambda_{2}=\min _{x \neq 0, x \in W_{2}} \frac{x^{*} A x}{x^{*} x}=\max _{x \neq 0, x \in V_{2}} \frac{x^{*} A x}{x^{*} x}
$$

and prove that your choices work. What subspaces W_{k} and V_{k} would you use to find λ_{k} ? (No proof requested.)
c) The previous part gives a pen-and-paper way of finding intermediate eigenvalues λ_{i} such that $\lambda_{1}<\lambda_{i}<\lambda_{n}$. Is it practical? (Do you see any challenges in coding it up on a computer?)
d) Can you think of a promising way to find such intermediate eigenvalues using either a min-max or a max-min optimization? (Note: it will have different computational challenges, if you try to code it up on a computer. But if you come up with the one I'm hoping you come up with, it's an analytically super-powerful one.)

