# Department of Mathematics <br> Comprehensive Exam 2023 <br> Second half: Tuesday, September 19, 2023-6:00-9:00 p.m. BA6183 

Last name $\qquad$

First name $\qquad$

Email
NO AIDS ALLOWED. Solve 6 questions out 12 questions. Indicate which questions you want to be graded. Overall passing score is 80 percent from those 6 questions. (over 2 days). Each one of the 6 problems chosen has to get a minimum score of $70 \%$. Do not attempt all problems; instead, aim for complete solutions.

## 1. ( 10 pts )

a) ( $\mathbf{1} \mathbf{p t}$ ) Define what it means for a family of functions $\left\{\phi_{t}\right\}_{t>0}$ in $L^{1}(\mathbb{R})$ to be an approximate identity. Also, given any fixed $L^{1}(\mathbb{R})$ function $\phi$ with $\int \phi=1$, there is a standard way to create an approximate identity from it. Explain what this standard way is and prove that it indeed yields an approximate identity.
b) (1 pt) Assume $\left\{\phi_{t}\right\}_{t>0}$ is an approximate identity, and $f \in$ $L^{p}(\mathbb{R})$. Prove that if $1 \leq p<\infty$, then $\phi_{t} * f \rightarrow f$ in $L^{p}(\mathbb{R})$, as $t \rightarrow 0$.
c) ( 2 pts ) Assume that $f \in C_{0}(\mathbb{R})$ (the space of continuous functions which vanish at infinity, i.e. such that for any $\varepsilon>0$, there exists a compact $K \subset \mathbb{R}$ such that $|f(x)|<\varepsilon$ for $x \notin K)$. Prove that $\phi_{t} * f \rightarrow f$ uniformly, as $t \rightarrow 0$.
d) (3 pts) Assume that $f \in L^{\infty}(\mathbb{R})$. Prove that $\phi_{t} * f \rightarrow f$ in the weak-* topology of $L^{\infty}(\mathbb{R})$, as $t \rightarrow 0$.
e) (3 pts) Prove that there is no identity for convolution in $L^{1}(\mathbb{R})$, i.e. there is no function $e \in L^{1}(\mathbb{R})$ such that, for all $f \in L^{1}(\mathbb{R})$, $f * e=f$.

## 2. ( 10 pts )

a) ( 2 pts ) Find the Riemann surface $X$ over the Riemann sphere $S^{2}$ of the multivalued function

$$
w=\sqrt[3]{(z-a)(z-b)(z-c)}
$$

where $a, b, c$ are distinct complex numbers.
b) ( 1 pt ) How many sheets does $X$ have?
c) ( $\mathbf{1} \mathbf{~ p t}$ ) Where are the branch points of $X$ ? (Be sure to check infinity.)
d) ( 2 pts ) How are the sheets permuted as we go around simple closed curves in $\mathbb{C}$ which avoid (the images of) the branch points?
e) ( $\mathbf{2} \mathbf{p t s}$ ) What are the possible values of

$$
\int_{\delta} \frac{d z}{\sqrt[3]{(z-a)(z-b)(z-c)}}
$$

where $\delta$ is a simple closed curve in $X$ lying over a positively oriented circle $\gamma$ in $\mathbb{C}$ enclosing the points $a, b, c$.
f) (2 pts) What changes (or remains the same) in (a)-(e) above if two or all of the points $a, b, c$ coincide?
3. (10 pts) Consider the initial value problem associated to the linearized Korteweg-de Vries equation

$$
\begin{aligned}
& \partial_{t} u+\partial_{x x x} u=0, \quad x \in \mathbb{R}, t \in \mathbb{R}^{+} \\
& u(x, 0)=u_{0}(x)
\end{aligned}
$$

Here $u(x, t)$ is real-valued. Assume $u \in \mathbb{S}(\mathbb{R})$ (i.e. of Schwartz class).
(a) Write the differential equation satisfied by $\hat{u}(k, t)$, the Fourier transform of $u$ (in $x$ ), and solve it.
(b) Write $u$ in the form of a convolution of $u_{0}$ with a kernel $T(x, t)$.
(c) Write the kernel $T(x, t)$ in terms of the Airy function

$$
A i(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(k x+\frac{k^{3}}{3}\right)} d k
$$

(d) Consider the Korteweg-de Vries equation

$$
\begin{aligned}
\partial_{t} u+\partial_{x}\left(u_{x x}+\frac{u^{2}}{2}\right) & =0, \quad x \in \mathbb{R}, t \in \mathbb{R}^{+} \\
u(x, 0) & =u_{0}(x)
\end{aligned}
$$

Here again, $u(x, t)$ is real-valued.
Assume the solution $u \in \mathbb{S}(\mathbb{R})$ (the Schwartz space), prove that

$$
\begin{gathered}
I_{1}(t)=\int_{-\infty}^{\infty} u(x, t) d x \\
I_{2}(t)=\int_{-\infty}^{\infty} u^{2}(x, t) d x \\
I_{3}(t)=\int_{-\infty}^{\infty}\left(\left(\partial_{x} u\right)^{2}-\frac{1}{3} u^{3}\right)(x, t) d x
\end{gathered}
$$

are conserved quantities, i.e. they are independent of $t$.

## 4. ( 10 pts )

Consider a group $G$ which has the following character table over $\mathbb{C}$, where $A, B, C, D, E, F$ denote the conjugacy classes of $G$.

|  | $A$ | $B$ | $C$ | $D$ | $E$ | $F$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\chi_{1}$ | 1 | 1 | 1 | 1 | 1 | 1 |
| $\chi_{2}$ | 1 | -1 | 1 | 1 | $*$ | 1 |
| $\chi_{3}$ | 1 | -1 | 1 | -1 | 1 | -1 |
| $\chi_{4}$ | 1 | 1 | 1 | -1 | -1 | -1 |
| $\chi_{5}$ | 2 | 0 | -1 | 2 | 0 | -1 |
| $\chi_{6}$ | 2 | 0 | -1 | $*$ | 0 | 1 |

a) (4 pts) Determine the unknown entries $*$ and the order of $G$.
b) ( 2 pts ) Find the size of each conjugacy class $A, B, C, D, E, F$.
c) ( 4 pts ) Show that $G$ has a normal subgroup of order 6 and a normal subgroup of order 3. (Hint: it may help to remember that 1-dimensional representations of $G$ are the same as homomorphisms $G \rightarrow \mathbb{C}^{\times}$.)

## 5. ( 10 pts )

a) ( 3 pts) For $S Y$ the suspension of $Y$, show by a Mayer-Vietoris sequence that there are isomorphisms $\tilde{H}_{n}(S X)$ and $\tilde{H}_{n}(X)$ for all $n$.
b) (2 pts) For a pair $(X, A)$, let $X \cup C A$ be $X$ with a cone on $A$ attached. Show that if $A$ is contractible in $X$ then $X$ is a retract of $X \cup C A$.
c) (5 pts) Use the fact that $(X \cup C A) / X$ is the suspension $S A$ of $A$ to show that if $A$ is contractible in X then $H_{n}(X, A)$ is isomorphic to $\tilde{H}_{n}(X) \oplus \tilde{H}_{n-1}(A)$.
6. ( 10 pts ) Let $G$ be the infinite 4 -regular graph that is connected and has no loops. A picture of part of this graph is:


Let $X_{n}$ be the random walk on $G$, starting at a fixed vertex $v_{0} \in G$. That is, at every time step, $X_{n}$ jumps to one of its four adjacent vertices with equal probability.
a) Let $Y_{n}$ be the distance of $X_{n}$ from $v_{0}$ at time $n$. Prove that,

$$
\lim _{n \rightarrow \infty} \frac{Y_{n}}{n}=\frac{1}{2}
$$

b) Show that the random walk $X_{n}$ is transient (that is, almost surely, it visits any given vertex $v \in G$ only finitely many times).

