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Abstract

Markovian open quantum systems are of great importance in quantum statistical

mechanics and quantum information theory, whose dynamics are governed

by the von Neumann-Lindblad equation (or the quantum master equation),

obtained by integrating over the environmental degrees of freedom. In this

thesis, we study the evolution of such systems and, in particular, their asymptotic

behaviors. We will show the return-to-equilibrium for such systems under the

quantum detailed balance condition. The major techniques employed here are

spectral theory and the theory of C∗-algebras.
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Chapter 1

Introduction

1.1 Von Neumann-Lindblad equation

Consider a quantum system described by a quantum Hamiltonian H on a
Hilbert space H. Assume this system interacts with a (quantum) environment
and we trace/integrate out the environment’s degrees of freedom. The resulting
physical system is called the open quantum system. Its states are given by
density operators ρ (i.e. positive, trace-class operators, ρ = ρ∗ ≥ 0, Tr(ρ) <
∞) on H, and its dynamic, βt : ρ0 7→ ρt, results from a unitary dynamics of
the total system by tracing out the environment. Under the assumption that
βt is Markovian and uniformly continuous, βt(ρ0) satisfies the von Neumann-
Lindblad (vNL) equation (or the quantum master equation)

∂ρ

∂t
= −i[H, ρ] +

∑
j≥1

(
WjρW

∗
j − 1

2
{W ∗

jWj, ρ}
)
, (1.1.1)

with the initial condition ρ|t=0 = ρ0, where H is, as above, the quantum
Hamiltonian of a proper quantum system, which is bounded in this case, and
Wj are bounded operators on H such that

∑
jW

∗
jWj converges weakly. (Here

and in what follows we use the units in which the Planck constant is set to
2π and speed of light, to one: ℏ = 1 and c = 1.) The converse statement is
also true. Moreover, it is shown in [28] that for H self-adjoint and Wj that
is H-bounded for each j, the operator on the r.h.s. of (1.1.1) generates a
one-parameter, trace-preserving, positive contraction semigroup βt. It is also
shown in [27, 57] and in Appendix A below the semigroup βt is completely
positive, which, according to [51, 52], must be of the form

βt(ρ) =
∑
k≥1

Vk(t)ρVk(t)
∗, with

∑
k≥1

V ∗
k (t)Vk(t) = 1, (1.1.2)

1



CHAPTER 1. INTRODUCTION 2

for some family of bounded operators {Vk(t)} on H. Such semigroup defines a
weak solution to (1.1.1) (in the sense explained below) on the Schatten space
S1 of trace-class operators on H.

The set of operators Wj, called jump or Kraus-Lindblad operators, is what
is left over from the interaction with the environment. If we set them to zero,
then the second term on the r.h.s. of (1.1.1) drops out and (1.1.1) reduces to
the von Neumann equation

∂ρ

∂t
= −i[H, ρ], ρt=0 = ρ0, (1.1.3)

for the resulting closed system. The latter extends the Schrödinger equation
to quantum statistics (see [43] for some definitions). Put differently, Markovian
open quantum systems present an extension of quantummechanics incorporating
terms resulting from interaction with the environment.

Due to the presence of jump operators, the evolution described by (1.1.1) is
generally dissipative, i.e., the energy of the system will decrease (“dissipating
into environment”). Hence, in contrast to evolutions generated by the von
Neumann equation (1.1.3), the evolutions generated by (1.1.1) are in general
irreversible. The irreversiblity of solution generated by (1.1.1) can be demonstrated
explicitly as the decreasing of relative entropy (or positive entropy production),
which is strictly decreasing in general unless the Lindblad part disappears, i.e.,
the relative entropy is constant in time if the evolution is generated by (1.1.3),
see [43, 55, 56, 65].

We will call the operators due to the two terms on the r.h.s. of (1.1.1) as
the von Neumann operator and Lindblad operator, respectively.

It is assumed that the Markovian open quantum dynamics approximate
open quantum dynamics coming from quantum systems weakly coupled to an
environment. So far this is proven, under some technical conditions, for the
simplest environment given by the free massless fermion quantum field and
simplest interaction (linear in field) in the van Hove limit, see [24, 48, 49] for
finite-dimensional systems and [25, 26], for infinite-dimensional ones.

In quantum computations, the vNL equation is also used for preparation
of the Gibbs and ground states (a quantum version of Monte-Carlo method),
see [18, 19, 22, 32, 49, 63, 69, 71]. For a given state ρ∗, it is shown that, under
suitable conditions, we can construct jump operators Wj’s such that, for any
initial state ρ, the solution βt(ρ) converges to ρ∗. The study of converging rate
of these convergence remains an active area of reseaching.

The vNL equation is closely related to the non-commutative analogue of
the linear dissipative stochastic master equations in a separable Hilbert space
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H (see [7, 17, 33, 47, 59, 67])

dψ(t) =
∑
j

Wjψ(t)dwj(t)−Kψ(t)dt. (1.1.4)

Here wj(t), j = 1, 2, ..., are independent standard Wiener processes, K =
−iH− 1

2

∑
j≥1W

∗
jWj, with H and Wj’s as given above. Let ψ(t) be a solution

to (1.1.4) with an initial condition ψ0 ∈ H and E stands for expectation w.r.t.
the Wiener measure. Under some technical conditions, the equation

⟨ψ0, β
′
t(A)ψ0⟩H = E⟨ψ(t), Aψ(t)⟩H, t ≥ 0, (1.1.5)

defines the quantum dynamical semigroup β′
t on B, which is dual to βt (see

[47], Section 3).
The principle of detailed balance (also known as the micro-reversilibity

condition) is originated in the kinetic gas theory of the (classical) statistical
mechanics, which essentially states, at the equilibrium, each elementary process
(such as collision, elementary reaction, etc) and its time-reverse process are
equally probable. The validity of detailed balance condition is essentially
attributed to the invariance of the microscopic equation of motion under time-
reversal transformation. In symbols, by denoting p

(eq)
i as the equilibirum

probability of the ith state and wi→j is the transition rate (or transition
probability) from the ith to the jth state, the detailed balance condition is
formulated as

p
(eq)
i wi→j = p

(eq)
j wj→i. (1.1.6)

Here wj→i can be intepreted as the time-reversal of the process wi→j. For
many system of physical and chemical kinetics, the detailed balance condition
is sufficient (however, not necessary in general) for positive entropy production,
such as Boltzman’s H-theorem.

The detailed balance condition is naturally formulated for Markov processes
in classical probability theory. Markov processes that obey detailed balance
condition is called the reversible Markovian chain, which is due to the fact that,
under detailed balance condition, around any closed cycle of state transition,
the net flux of probability is zero. For example, if we have a closed cycle of
transition of three states i → j → k → i, then the transition probabilities
satisfy

wi→jwj→kwk→i = wi→kwk→jwj→i. (1.1.7)

For quantum Markovian systems (either closed or open), various extensions
of the classical detailed balance condition were given. In this thesis, we adapt
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the general approach according to [2, 15, 16, 40, 58, 70] in terms of the
generator of (1.1.1). The relation between our formulation of quantum detailed
balance condition and time-reversal was considered in [3, 60]. A specific form
of the generators of quantum dynamic semigroups under the quantum detailed
balance condition was derived in [2, 15, 16, 24, 58] for a finite-dimensional H.
For the Hilbert spaces H with dimH = ∞, a formula for bounded Lindblad
operator satisfying the quantum detailed balance condition was obtained in
[40]. We also remark the quantum detailed balance condition is closely related
to the theory of symmetric and KMS-symmetric Markovian semigroups on von
Neumann algebras (see [1, 41] for definitions).

In this thesis, we are interested in the long time behaviour of solutions
of the vNL equation on an infinite-dimensional Hilbert space H, under the
assumptions

(H) H is a self-adjoint operator on a Hilbert space H;

(W ) Wj are bounded operators onH such that the sum
∑

j≥1W
∗
jWj converges

weakly,

and, under the quantum detailed balance condition (QDB) (see Subsection 2.3
for the definition). We derive the results for βt (vNL equation (1.1.1)) from
our results for the dual dynamics β′

t on B defined by

Tr(β′
t(A)ρ) = Tr(Aβt(ρ)) ∀A ∈ B, ρ ∈ S1 (1.1.8)

(see Subsections 2.1 and 2.2 below). One of our main results, Theorem 3.1.3,
formulated in Section 3 (and below), establishes the ergodic convergence of β′

t

to its static solutions.
To state this theorem here, we define, for a given density operator ρ∗ > 0,

the Hilbert space B∗ as the completion of the space B of bounded operators
on H in the norm corresponding to the inner product

⟨A,B⟩obs,∗ := Tr(A∗Bρ∗). (1.1.9)

Theorem 1.1.1. Assume Conditions (H), (W ) and (QDB), with ρ∗ = ρβ,
the Gibbs state at temperature 1/β (see (2.3.4)), hold.

Then, the dual quantum evolution β′
t(A) converges, in the ergodic sense, to

the subspace Bstat := Null(G′) in B∗:

s- lim
T→∞

1

T

∫ T

0

β′
tdt = P ′, (1.1.10)

strongly in B∗, where P
′ is the orthogonal projection onto Bstat.
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This result shows the approach to stationary states for systems of infinite
number of degrees of freedom. We expect it could be extended to unbounded
operators Wj’s.

As followed from (1.1.8) and the fact that βt is trace-preserving, 1 is a
stationary state β′

t, i.e., β
′
t(1) = 1. It is shown in Proposition 4.5.1 below that

the Spohn’s conditions on the Wj’s garanteeing the uniqueness of 1 also holds
for the present context.

Theorem 1.1.1 can be also used to justify the application of the vNL
equation for a state preparation. Indeed, given a quantum Hamiltonian H
and the Gibbs state ρβ, one constructs jump operators Wj satisfying (QDB)
with ρ∗ = ρβ and a uniqueness condition. Then, any solution of the vNL
equation with these Wj’s and H converges to ρβ.

1.2 Remarks on related works

To our knowledge, the vNL equation (1.1.1) was first studied by Davies in [23,
24, 25, 26, 27] for bounded H and Wj’s and in [28], for unbounded operators
H and Wj’s bounded relatively to H.

The existence theory for the related non-commutative stochastic equation
(1.1.4) was developed in [47].

The fact that the generators of the norm continuous quantum dynamic
semigroups are given by the r.h.s. of (1.1.1) was first derived in [57] for infinite
dimensional H, and in [42] for the finite dimensional H.

A finite dimensional version of Theorem 1.1.1 was proven by Spohn in [64],
who also provided an algebraic condition on theWj’s such that, under (QDB),
the vNL equation (1.1.1) has the unique stationary solution ρst. Later, the
same condition was obtained in [65] using the concept of entropy production.
Under the same condition, it was shown by Frigerio in [38] that the solutions
to (1.1.1) converge to ρst strongly as t → ∞ for infinite dimensional H and
bounded H and Wj’s, provided that the corresponding dynamic semigroup
βt has a faithful normal stationary state and satisfies a “weak coupling”
condition1. The latter says that βt describes the reduced dynamics of a system
coupled weakly with a reservoir in a KMS state.

1.3 Organization of the thesis

This thesis is organized as follows. In Section 2, we give some basic definitions,
including that of the dual, Heisenberg-Lindblad (HL) equation, and formulate

1This condition says essentially that βt is the reduced dynamics of a system coupled
weakly to a reservoir initially in a KMS state.
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the standard existence and uniqueness results, proved in Appendix A for the
readers’ convenience.

In Section 3, we state the result on existence and convergence to stationary
states for the vNL and HL dynamics. These results are proved in Section 4
and Appendix A. The uniqueness of stationary solution under vNL dynamics
is considered in Subsection 4.5 and a sufficient condition for which the von
Neumann part and the Lindblad part commute is formulated in Subsection
4.2.1.

In Appendices B and C, we prove some technical results used in the main
text.

Notation. Throught out this thesis, we fix the Hilbert space H and denote
B(H) by B whose norm ∥ · ∥ is given by the operator norm. The identity
element in B is denoted by 1. The norm and inner product on H are denoted
by ∥ · ∥H and ⟨·, ·⟩H.

We denote the p-th Schatten spaces on the Hilbert space H by Sp, which
is a complex Banach space w.r.t. the norm ∥ · ∥Sp given by

∥κ∥Sp := (Tr |κ|p)1/p, where |κ| := (κ∗κ)1/2. (1.3.1)

In particular, S1,S2 are spaces of trace-class operators and Hilbert-Schmidt
(HS) operators on H, respectively. The latter is a Hilbert space, equipped
with the HS-inner product:

⟨κ, σ⟩S2 := Tr(κ∗σ). (1.3.2)



Chapter 2

Problem and set-up

2.1 States and observables

We denote S1,+ ⊂ S1 be the subset of positive elements in S1. Those elements
in S1,+ with unit trace-norm are called density operators.

We will call elements in B as observables and positive, normalized, continuous
linear functionals on B as states. Any density operator ρ defines a state on B
by A 7→ Tr(Aρ). Such states are known as normal states on B.1

In addition to the von Neumann-Lindblad evolution, we also consider its
dual evolution

∂tAt = i[H,At] +
∑
j≥1

(W ∗
j [At,Wj] + [W ∗

j , At]Wj) (2.1.1)

on the space B of observables. We call (2.1.1) the Heisenberg-Lindblad (HL)
equation.

2.2 von Neumann-Lindblad and Heisenberg-

Lindblad operators

We write the vNL equation (1.1.1) as

∂tρt = Lρt, (2.2.1)

1One may regard S1 as the non-commutative analogue of L1(Ω) or the space of complex
measures on Ω, where Ω is some measure space. In this way, states can be regarded
as probability measures. Similarly, the Schatten spaces Sp can be regarded as the non-
commutative analogue of Lp(Ω). Following this argument, we may also regard B as L∞(Ω).

7
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where the operator L, called the vNL operator, is defined as

L = L0 +G, L0ρ := −i[H, ρ], (2.2.2)

G(ρ) =
1

2

∑
j∈J

(
[Wj, ρW

∗
j ] + [Wjρ,W

∗
j ]
)

=
∑
j≥1

(
WjρW

∗
j − 1

2
{W ∗

jWj, ρ}
)
, (2.2.3)

where {A,B} := AB +BA. Since, by Proposition A.2.2, G is bounded on S1,
the domain of L is given by (see [27])

D(L) = D(L0) := {ρ ∈ S1 | ρ(D(H)) ⊆ D(H) and

Hρ− ρH defined on D(H) extends to

an element in S1}. (2.2.4)

We will call the operator L0 the von Neumann (vN) operator and G the
Lindblad operator.

Let L′ be the dual operator of L w.r.t. the coupling (A, ρ) := Tr(Aρ), i.e.

Tr(ALρ) = Tr((L′A)ρ) (2.2.5)

for all ρ ∈ D(L) and A ∈ D(L′).
Similarly to (2.2.2), we have L′ = L′

0 + G′, where L′
0 and G′ are the dual

operators to L0 and G, w.r.t. the coupling (A, ρ) = Tr(Aρ). We have

L′
0(A) = i[H,A], (abusing notation : L′

0(A) = −L0(A)), (2.2.6)

and G′ is given by

G′(A) =
1

2

∑
j

(
W ∗
j [A,Wj] + [W ∗

j , A]Wj

)
=
∑
j≥1

(
W ∗
j AWj −

1

2
{W ∗

jWj, A}
)
. (2.2.7)

In terms of the dual operator L′, the HL equation (2.1.1) can be written as

∂tAt = L′At. (2.2.8)
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We say that ρt is a weak solution2 of (1.1.1) in S1 if, for any observable A
in D(L′), ρt satisfies

∂tTr(Aρt) = Tr((L′A)ρt). (2.2.10)

If L generates a weakly continuous semigroup βt = eLt on the space S1,
then, for every initial condition ρ0 ∈ S1, Eq. (2.2.1) has a weak solution
ρt = βt(ρ0) and, for any ρ0 ∈ D(L), a strong one. The same results hold also
for the operator L′.

Theorem 2.2.1. ([23, 27, 28])

(a) The HL operator L′ generates a weakly continuous, completely positive
bounded semigroup and therefore (2.1.1) has a unique weak solution for
any initial condition in B and a unique strong solution for any initial
condition in D(L′).

(b) The vNL operator L generates a weakly continuous, completely positive,
bounded semigroup, βt, on S1 and therefore (1.1.1) has a unique weak
solution for any initial condition in S1 and a unique strong solution for
any initial condition in D(L).

For completeness, we prove this theorem in Appendix A.
As apparent from expressions (2.2.6) and (2.2.7), L′

0 and G
′, and therefore

L′, has the eigenvalue 0 (with the eigenvector 1),

L′1 = 0, L′
01 = 0, and G′1 = 0. (2.2.11)

2.3 Quantum detailed balance condition

We say that the vNL operator L = L0+G, or what is the same, the HL operator
L′ = L′

0 +G′, satisfies the quantum detailed balance condition (QDB) w.r.t. a
strictly positive, density operator ρ∗ if

2Another possible definition of the weak solution is the one satisfying∫
Tr((∂tAt)ρt)dt =

∫
Tr((L′At)ρt)dt (2.2.9)

for any differentiable family At ∈ D(L′). Using the facts proven below that L0 is anti-self-
adjoint and G is bounded, one can also defined the mild solution of (2.1.1) with the initial
condition ρ|t=0 = ρ0 ∈ S1 as a solution to the integral equation

ρt = eL0tρ+

∫ t

0

eL0(t−s)Gρsds.
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(QDB) (a) L0ρ∗ = 0, and (b) the Lindblad operators G and G′ satisfy

G(Aρ∗) = (G′A)ρ∗ for all A ∈ B. (2.3.1)

By the explicit formula (2.2.7), G′1 = 0 (see also (2.2.11)). Then, (2.3.1)
implies that

Gρ∗ = 0. (2.3.2)

Since L = L0 +G, the relations L0ρ∗ = 0 and Eq. (2.3.2) yield

Lρ∗ = 0, (2.3.3)

i.e. ρ∗ is a stationary state and 0 is an eigenvalue of L.

Remark 2.3.1. ρ∗ = f(H) for any (reasonable) functions satisfies Condition
(a). Under some conditions on H, the converse is also true.

An example of ρ∗ is provided by the Gibbs state at a temperature T = β−1:

ρβ = e−βH/Z(β), β > 0, provided that Tr e−βH <∞, (2.3.4)

where Z(β) := Tr e−βH (the partition function).
On the other hand, any ρ∗ > 0 can be written in the form of (2.3.4).

Indeed, since ρ∗ > 0, it can be written as ρ∗ = e−βH∗ for the self-adjoint
operator H∗ := −β−1 ln ρ∗. Hence, ρ∗ is of the form (2.3.4) with H = H∗ + µ
and Z = Tr

(
e−β(H−µ)) = eβµ for any µ ∈ R.

2.4 Spaces

Given a density operator ρ∗ > 0, define the inner product on B

⟨A,B⟩obs,∗ := Tr(A∗Bρ∗), (A,B ∈ B). (2.4.1)

We define the Hilbert space B∗ as the completion of B w.r.t. the norm
∥A∥obs,∗ :=

√
⟨A,A⟩obs,∗. We study the HL equation on this space.

To study the vNL equation, we introduce, for a given density operator
ρ∗ > 0, the Hilbert space S∗ of density operators as

S∗ := S̃∗, S̃∗ := {λ ∈ S1 | λρ−1/2
∗ ∈ S2}, (2.4.2)

with the completion is taken in the norm induced by the inner product

⟨λ, µ⟩st,∗ := Tr
(
λ∗µρ−1

∗
)
. (2.4.3)
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Remark 2.4.1. (i) We show below (see Theorem 3.1.2) that L′ = L′
0 + G′ is

the decomposition of L′ into anti-self-adjoint and self-adjoint parts w.r.t. the
inner product (2.4.1).

(ii) The space B∗ is the GNS representation space for a finite number of
degrees of freedom, i.e., Tr(ρ∗) <∞. Indeed, we define the state

ω∗(A) := Tr(Aρ∗) (2.4.4)

on the C∗-algebra B. Then, ⟨A,B⟩obs,∗ = ω∗(A
∗B) and B∗ is (isomorphic

to) the GNS Hilbert space for the C∗-algebra B and the state ω∗ on it (see
Appendix C for details).

(iii) The norm associated with the inner product (2.4.3) satisfies

∥λ∥st,∗ ≥ ∥λ∥S1(Tr ρ∗)
−1/2. (2.4.5)

Indeed, using the non-commutative Cauchy-Schwarz inequality, we obtain

∥λ∥S1 = Tr |λ| = Tr
(
|λ|ρ−1/2

∗ ρ1/2∗
)
≤ ∥|λ|ρ−1/2

∗ ∥S2∥ρ1/2∗ ∥S2

= (Tr
(
ρ−1/2
∗ λ∗λρ−1/2

∗
)
)1/2(Tr ρ∗)

1/2

= ∥λ∥st,∗(Tr ρ∗)1/2. (2.4.6)

In the next two sections, we formulate and prove our main results on
existence and long-time behavior (convergence to equilibrium) for HL and vNL
equations, respectively. Along the way, we prove some spectral properties of
operators L′ and L and establish their dissipative nature on the respective
spaces.
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Main results

3.1 The Heisenberg-Lindblad (HL) equation

In this subsection, we formulate our results on the HL equation.

Theorem 3.1.1. Suppose L′ satisfies Condition (H), (W ) and (QDB). Then,
(2.1.1) has a unique solution on B∗ for any initial condition in D(L′).

This theorem is proven in Appendix A.

Theorem 3.1.2. Suppose Conditions (H), (W ) and (QDB) hold. Then, on
B∗, (a) the Lindblad operator G′ is self-adjoint, (b) G′ ≤ 0, (c) L′

0 is anti-self-
adjoint, and (d) 0 is an eigenvalue of G′.

Let P ′ is the orthogonal projector in B∗ onto Null(G′) and P ′⊥ = 1− P ′.

Theorem 3.1.3. Assume Conditions (H), (W ) and (QDB) with ρ∗ = ρβ (see
(2.3.4)) hold. Then, the dual quantum evolution β′

t(A) converges to Null(G′)
in the ergodic sense:

s- lim
T→∞

1

T

∫ T

0

β′
tdt = P ′, (3.1.1)

strongly in B∗.

Theorem 3.1.4. Assume Conditions (H), (W ) and (QDB) with ρ∗ = ρβ.
Suppose further that

(Null) Null(G′) ⊆ Null(L′
0).

(a) If, in addition, the following condition is satisfied

(Spec) G′ has no singular continuous spectrum in a neighborhood of 0,

12
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then the dual quantum evolution β′
t(A) converges to Null(G′) in the sense that,

for all A ∈ D(L′),

∥β′
t(A)− P ′A∥obs,∗ → 0 as t→ ∞. (3.1.2)

(b) If, instead of Condition (Spec), we have

(Gap) the eigenvalue 0 of G′ is isolated,

then the dual quantum evolution β′
t(A) converges to the subspace Null(G′)

exponentially fast: for all A ∈ D(L′), we have

∥β′
t(A)− P ′A∥obs,∗ ≤ e−θt∥A∥obs,∗, (3.1.3)

where θ := dist(0, σ(G′) \ {0}).
(c) If, in addition to Condition (Gap), the eigenvalue 0 of G′ is simple,

then

∥β′
t(A)− cA1∥obs,∗ ≤ e−θt∥A∥obs,∗, (3.1.4)

where cA = ⟨1, A⟩obs,∗ = Tr(Aρ∗).

Theorem 3.1.5. Assume the Conditions (H), (W ), (QDC) with ρ∗ = ρβ,
and

(Compl) [Wj, A] = [W ∗
j , A] = 0 for all j ≥ 1 =⇒ A ∈ C · 1.

Then, for all A ∈ B∗, we have

lim
T→∞

1

T

∫ T

0

β′
t(A)dt = Tr(Aρ∗) · 1. (3.1.5)

Proofs of Theorems 3.1.2, 3.1.3, 3.1.4 and 3.1.5 are given in Subsection 4.1,
4.2, 4.4, and 4.6 respectively.

Remark 3.1.6. By considering B as a C∗-algebra, Condition (Compl) is satisfied
if the collection {Wj,W

∗
j }j≥1 of operators generates the whole algebra B.

Remark 3.1.7. For H = L2(Rd), the collection {Wj}2dj=1 of operators with
W2k−1 = xk/⟨x⟩ and W2k = pk/⟨p⟩, k = 1, ..., d, on L2(Rd) satisfies Condition
(Compl), where pj := iℏ∂xj are the quantum momentum operators, ⟨x⟩ ≡√

1 + |x|2 and similarly for ⟨p⟩.
Remark 3.1.8. Spectra of operators G and G′ (regarding them as operators on
S2) are described in Appendix B.
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3.2 The vNL equation

We begin with the existence result for the vNL equation.

Theorem 3.2.1. Assume Conditions (H), (W ) and (QDB) hold. Then, the
vNL operator generates a bounded semigroup, βt, on S∗. Consequently, the
vNL equation (1.1.1) has a unique weak solution for any initial condition in
S∗ and unique strong solution for any initial condition in D(L) (the domain
of L in S∗).

This theorem is proven in Appendix A.3. Recall that, by (2.3.2), 0 is an
eigenvalue of G with the eigenvector ρ∗. The relation between the resolvents
of G′ and G shows that:

If 0 is an isolated eigenvalue of G′, then the operator G also has an isolated
eigenvalue 0 (see the proof of Proposition 4.7.2 (c)).

Let P be the orthogonal projector onto Null(G) in S∗. We have

Theorem 3.2.2. Suppose the Conditions (H), (W ), (QDB), (Null) and
(Gap) hold. Then,

(a) the quantum evolution βt(ρ) converges exponentially fast to the subspace
Null(G):

∥βt(ρ)− P (ρ)∥st,∗ ≤ e−θt∥ρ∥st,∗, (3.2.1)

for all ρ ∈ S∗, where, recall, θ = dist(0, σ(G′) \ {0}).

(b) if, in addition, 0 is a simple eigenvalue of G′, then, for all density
operator ρ ∈ D(L),

∥βt(ρ)− ρ∗∥st,∗ ≤ e−θt∥ρ∥st,∗, (3.2.2)

where ρ∗ is the eigenvector of G corresponding to the eigenvalue 0.

Theorem 3.2.2 is proven in Subsection 4.7.

Remark 3.2.3. In the case where ρ∗ is the unique stationary solution of βt, the
asymptotic convergence of the dynamic βt(ρ) w.r.t. the trace-norm immediately
follows from Theorem 3.2.2 and the inequality:

∥ρ− ρ∗∥S1 ≤ ∥ρ− ρ∗∥st,∗ (3.2.3)

for ρ ∈ S∗, see (2.4.5).



Chapter 4

Proofs of main results

4.1 Lindblad operator G′: Proof of Theorem

3.1.2

(a) We begin with

Lemma 4.1.1. The dual Lindblad operator G′ satisfies Condition (QDB)
(2.3.1) w.r.t. ρ∗ if and only if G′ is symmetric w.r.t. the inner product (2.4.1):

⟨A,G′(B)⟩obs,∗ = ⟨G′(A), B⟩obs,∗ (4.1.1)

for all A,B ∈ B.

Proof. Suppose G′ satisfies Condition (QDB) (2.3.1). Since G′ is a ∗-map and
is dual operator of G, relation (2.3.1) yields

⟨G′(A), B⟩obs,∗ = Tr((G′(A))∗Bρ∗) = Tr(G′(A∗)Bρ∗)

= Tr(A∗G(Bρ∗)) = Tr(A∗G′(B)ρ∗) = ⟨A,G′(B)⟩obs,∗ (4.1.2)

for all A,B ∈ B, which proves (4.1.1). Conversely, suppose (4.1.1) holds for
all A,B ∈ B. By (4.1.2), we have

Tr(A∗G′(B)ρ∗) = ⟨A,G′(B)⟩obs,∗ = ⟨G′(A), G⟩obs,∗
= Tr(G′(A)∗Bρ∗) = Tr(G′(A∗)Bρ∗) (4.1.3)

Since G is dual w.r.t. G′, (4.1.3) implies that, for all A,B ∈ B,

Tr(A∗G′(B)ρ∗) = Tr(A∗G(Bρ∗)). (4.1.4)

Since this is true for all A,B ∈ B, we have G′(B)ρ∗ = G(Bρ∗) for all B ∈ B.
Therefore, G satisfies (QDB) (2.3.1) w.r.t. ρ∗.

15
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By Proposition A.1.1 and Lemma 4.1.1, G′ is bounded and symmetric w.r.t.
(2.4.1) on B so that G′ is symmetric on B∗ using a density argument of B in
B∗. Therefore, G

′ is self-adjoint on B∗.
(b) First, we introduce the dissipation function on B (c.f. [57])

DG′(A,B) := G′(A∗B)−G′(A)∗B − A∗G′(B). (4.1.5)

Lemma 4.1.2. For any A,B ∈ B, we have

DG′(A,B) =
∑
j≥1

[Wj, A]
∗[Wj, B]. (4.1.6)

Proof. By a straightforwad calculation, we have

DG′(A,B) =
∑
j≥1

(W ∗
j A

∗BWj −
1

2
{W ∗

jWj, A
∗B})

−
∑
j≥1

(W ∗
j A

∗WjB − 1

2
{W ∗

jWj, A
∗}B)

−
∑
j≥1

(A∗W ∗
j BWj −

1

2
A∗{W ∗

jWj, B})

=
∑
j≥1

(W ∗
j A

∗BWj −W ∗
j A

∗WjB − A∗W ∗
j BWj + A∗W ∗

jWjB)

=
∑
j≥1

[A∗,W ∗
j ][Wj, B]. (4.1.7)

Since [A∗,W ∗
j ] = [Wj, A]

∗ for each j, this gives (4.1.6).

Lemma 4.1.3. For all A,B ∈ B,

⟨A,G′(B)⟩obs,∗ = −1

2
Tr(DG′(A,B)ρ∗)

= −1

2

∑
j≥1

Tr([Wj, A]
∗[Wj, B]ρ∗). (4.1.8)

Proof. Since G′ is self-adjoint on B∗, G(ρ∗) = 0 and Tr(AG(ρ)) = Tr(G′(A)ρ),
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we have, by (4.1.5), for all A,B ∈ B,

⟨A,G′(B)⟩obs,∗ =
1

2
(⟨A,G′(B)⟩obs,∗ + ⟨G′(A), B⟩obs,∗)

=
1

2
(Tr(A∗G′(B)ρ∗) + Tr(G′(A)∗Bρ∗)− Tr(A∗BG(ρ∗)))

=
1

2
Tr((A∗G′(B) +G′(A)∗B −G′(A∗B))ρ∗)

= −1

2
Tr(DG′(A,B)ρ∗). (4.1.9)

By Lemma 4.1.2, we obtain (4.1.8).

By Lemma 4.1.3, we have, for any A ∈ B,

⟨A,G′(A)⟩obs,∗ = −1

2

∑
j≥1

Tr([Wj, A]
∗[Wj, A]ρ∗). (4.1.10)

Since [Wj, A]
∗[Wj, A] ≥ 0 for allA ∈ B and j ≥ 1, we have that ⟨A,G′(A)⟩obs,∗ ≤

0 for all A ∈ B. By a density argument, since G′ is bounded on B∗, we conclude
that G′ ≤ 0 on B∗. This proves Theorem 3.1.2 (b).

(c) We show that L′
0 is anti-symmetric on B∗ under (QDB). Indeed, since

L0ρ∗ = 0 under (QDB), then, for all A,B ∈ D(L′
0), we have

⟨L′
0A,B⟩obs,∗ = Tr((i[H,A])∗Bρ∗) = Tr(i[H,A∗]Bρ∗)

= Tr(i[H,A∗B]ρ∗)− Tr(A∗(i[H,B])ρ∗)

= Tr(A∗B(L0ρ∗))− ⟨A,L′
0B⟩obs,∗

= −⟨A,L′
0B⟩obs,∗. (4.1.11)

(d) The fact that 0 is an eigenvalue ofG′ on B∗ follows from the computation:

G′(1) =
∑
j≥1

(W ∗
jWj −

1

2
{W ∗

jWj,1}) = 0. (4.1.12)

This completes the proof of Theorem 3.1.2.

Remark 4.1.4. The r.h.s. of (4.1.10) is a special example of non-commutative
Dirichlet quadratic forms. See [1, 21, 31] for non-commutative Dirichlet quadratic
form on general C∗- and von Neumann algebras and relations to non-commutative
Markovian semigroups.

Define DjA := [Wj, A] and −∆ :=
∑

j≥1D
†
jDj/2, where D

†
j is the adjoint
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operator of Dj w.r.t. the inner product (2.4.1). Then, (4.1.10) becomes

⟨A,G′(A)⟩obs,∗ = −1

2

∑
j≥1

⟨DjA,DjA⟩obs,∗ = ⟨A,∆A⟩obs,∗. (4.1.13)

Thus, if we ignore L′
0, then the HL equation (2.1.1) on B∗ can be considered

as a non-commutative analogue of the heat equation.
Since Dj(1) = 0 for all j ≥ 1, the operator ∆ has the eigenvalue 0 with

eigenvector 1. An estimate of the second highest eigenvalue of ∆ would give
an estimate of the relaxation/mixing time.

4.2 Proof of Theorem 3.1.3

Throughout Subsections 4.2–4.4, we omit the subindex “obs, ∗” in the inner
product and norm in B∗. One should not confuse this norm with the operator
norm on B.

4.2.1 Commutativity of L′
0 and G′

First, we show the commutativity of L′
0 and G′, and then we use it to prove

Theorem 3.1.3.

Theorem 4.2.1. Assume Conditions (H), (W ) and (QDB) w.r.t. ρ∗ = ρβ
(defined in (2.3.4)). Then the semigroups eL

′
0t and eG

′t on B∗ commute, and,
consequently, β′

t = eL
′
0teG

′t.
Similarly, eL0t and eGt commute on S∗ and βt = eL0teGt.

Theorem 4.2.1 was proven in [15] for the finite-dimensional case, and was
sketched for the infinite-dimensional case in [40]. Below, we give a detailed
proof of this theorem.

We begin with some generalities. We use the following definition (see [12]).

Definition 4.2.2. We say two unbounded, self-adjoint operators H1 and
H2 commute strongly if the spectral projectors of H1 and H2 commute, or,
equivalently, if eiH1s and eiH2t commute for all s, t ∈ R.

Lemma 4.2.3. For a bounded operator B and unbounded self-adjoint operator
A, the following conditions are equivalent:

(i) B commutes strongly with A.

(ii) There is some core D for A such that BD ⊆ D and BAψ = ABψ for
all ψ ∈ D .
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(iii) The domain D(A) is invariant under B in the sense of BD(A) ⊆ D(A)
and, for all ψ ∈ D(A), BAψ = ABψ.

(iv) AB is an extension of BA, written as BA ⊂ AB (see [50], Chapter 3,
Section 5.6).

For a proof, see [12], Lemma 1.

Remark 4.2.4. The statements (ii)–(iv) for strong commutativity can be extended
for general closed (not necessarily self-adjoint) operators A.

Remark 4.2.5. Note that T ⊂ S implies that S∗ ⊂ T ∗ for general operators T
and S on a Hilbert space. If a bounded operator B commutes strongly with
some operator A, we have B∗A∗ ⊂ A∗B∗, i.e., B∗ commutes strongly with A∗.

We present the proof of Theorem 4.2.1 in the subsubsections 4.2.2–4.2.3.

4.2.2 Consequence of G′ being a ∗-map

We have shown in Appendix C that the triple (S2, π∗,Ω∗), where S2 is the

space of Hilbert-Schmidt operators on H, Ω∗ := ρ
1/2
∗ and π∗ is the linear

representation of B on S2 given by

π∗(A)κ = Aκ for all A ∈ B, (4.2.1)

yields the GNS representation associated with the pair (B, ω∗). Note that Ω∗
is cyclic for π∗(B) in S2 (see Appendix C for details).

The Lindblad operator G′ induces a linear operator Ĝ′, defined by

Ĝ′(π∗(A)Ω∗) := π∗(G
′(A))Ω∗, for all A ∈ B, (4.2.2)

on the dense set in S2, given by

F := π∗(A)Ω∗. (4.2.3)

Since G′ is bounded on B, Ĝ′ extends to a bounded operator on S2. We retain
the same notation Ĝ′ also for this extension.

Define the anti-unitary operator J on S2 by

Jκ = κ∗, for all κ ∈ S2. (4.2.4)

Note that J = J∗ = J−1 (see Proposition C.0.1 (d) for the proof).
A key to the proof of Theorem 4.2.1 is the following theorem, proven in

Appendix C:
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Theorem 4.2.6. ([44], Section V.1.4, Theorem 1.4.2) Let αt(A) := eiH∗tAe−iH∗t,
where H∗ = − ln ρ∗. Then, there is a (unbounded) self-adjoint operator L∗ such
that

π∗(αt(A)) = eiL∗tπ∗(A)e
−iL∗t, L∗Ω∗ = 0. (4.2.5)

Moreover, we have the following relation for operators J and L∗: For any
A ∈ B, π∗(A)Ω∗ ∈ D(e−L∗/2) and

Je−L∗/2(π∗(A)Ω∗) = π∗(A
∗)Ω∗, JΩ∗ = Ω∗. (4.2.6)

We define the anti-linear operator S on S2 by

S = Je−L∗/2. (4.2.7)

By relation (4.2.6), we have

S(π∗(A)Ω∗) = π∗(A
∗)Ω∗. (4.2.8)

Lemma 4.2.7. The set F is a core for S.

Proof. Since J is bounded and invertible, we have D(S) = D(e−L∗/2). Thus,
to show that F is a core for S, it suffices to show that it is a core for e−L∗/2.
Since L∗ is self-adjoint on S2, it generates a one-parameter group eiL∗t, t ∈ R,
of unitary operators on S2. By (4.2.5), for each t ∈ R and A ∈ B, we have

eiL∗t(π∗(A)Ω∗) = (eiL∗tπ∗(A)e
−iL∗t)Ω∗ = π∗(αt(A))Ω∗ ∈ F . (4.2.9)

Thus, eiL∗tF ⊆ F for each t ∈ R so that, by the density of F in S2, F is a
core for L∗ and therefore for S.

Recall that an operator K on B is called a ∗-map if it commutes with
taking the adjoint: K(A∗) = (KA)∗ for every A ∈ B.

In the next proposition, we relate G′ and S:

Proposition 4.2.8. The Lindblad operator G′ is a ∗-map on B if and only if
its induced operator Ĝ′ on S2 commutes strongly with S.

Proof. Suppose G′ is a ∗-map. Then, by Lemma 4.2.7, since F is a core for S
and Ĝ′F ⊆ F , for each A ∈ B, we have, by (4.2.8),

SĜ′(π∗(A)Ω∗) = S(π∗(G
′A)Ω∗) = π∗((G

′A)∗)Ω∗

= π∗(G
′(A∗))Ω∗ = Ĝ′(π∗(A

∗)Ω∗) = Ĝ′S(π∗(A)Ω∗). (4.2.10)

Thus, Ĝ′ commutes strongly with S.
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Conversely, by the same computations above, we obtain, for each A ∈ B,

(G′(A∗))ρ1/2∗ = π∗(G
′(A∗))Ω∗ = π∗((G

′A)∗)Ω∗ = (G′A)∗ρ1/2∗ . (4.2.11)

Since ρ∗ > 0, we haveG′(A∗) = (G′A)∗ for all A ∈ B. Hence, G′ is a ∗-map.

4.2.3 Consequence of Condition (QDB)

Now, we impose Condition (QDB) on G′. An immediate consequence of

Condition (QDB) is that the induced operator Ĝ′ is self-adjoint on S2:

Lemma 4.2.9. The Lindblad operator G′ satisfies Condition (QDB) w.r.t. ρ∗
if and only if the induced operator Ĝ′ is self-adjoint on S2.

Proof. Suppose G′ satisfies Condition (QDB). For any A,B ∈ B, we have

⟨Ĝ′(π∗(A)Ω∗), π∗(B)Ω∗⟩S2 = Tr((G′A)∗Bρ∗)

= Tr(A∗G(Bρ∗))

= Tr(A∗G′(B)ρ∗)

= ⟨π∗(A)Ω∗, Ĝ′(π∗(B)Ω∗)⟩S2 . (4.2.12)

Since F is dense in S2 and Ĝ′ is bounded, we can extend this equality to the
entire space S2. Thus, Ĝ′ is self-adjont on S2.

The converse follows from the same computation so that Ĝ′ is self-adjoint
on S2 implies that G′ satisfies Condition (QDB).

Using Proposition 4.2.8 and Lemma 4.2.9, we establish the strong commutativity
between Ĝ′ and e−L∗ :

Theorem 4.2.10. Suppose the Lindblad operator G′ satisfies Condition (QDB)

w.r.t. ρ∗. Then, the induced operator Ĝ′ commutes strongly with e−L∗.

Proof. First, by Proposition 4.2.8, Ĝ′ commutes strongly with S = Je−L∗/2 so
that Ĝ′S ⊂ SĜ′ (see Remark 4.2.4). Then, by taking adjoint and by Lemma
4.2.9 (see also Remark 4.2.5), we obtain

(SĜ′)∗ = Ĝ′S∗ ⊂ (Ĝ′S)∗ = S∗Ĝ′. (4.2.13)

Thus, Ĝ′ commutes strongly with S∗ = e−L∗/2J .
Now, using J2 = 1, we note that e−L∗ = (e−L∗/2J)(Je−L∗/2) = S∗S. Since

Ĝ′ commutes strongly with both S and S∗, it also commutes strongly with
e−L∗ .
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Proof of Theorem 4.2.1. Suppose ρ∗ = e−βH/Z(β). In this case, we have H∗ =

βH+lnZ(β) so that αt = eβL
′
0t. Then, by Theorem 4.2.10, Ĝ′ commutes with

eiL∗t so that, for all A ∈ B,

π∗(e
L′
0tG′A)Ω∗ = π∗(αt/β(G

′A))Ω∗ = eiL∗t/β(π∗(G
′A))Ω∗

= eiL∗t/βĜ′(π∗(A)Ω∗) = Ĝ′eiL∗t/β(π∗(A)Ω∗)

= Ĝ′(π∗(e
L′
0tA)Ω∗) = π∗(G

′eL
′
0tA)Ω∗. (4.2.14)

Since F is dense in S2, we have e
L′
0t and G′ commute on B. Since eL′

0t and G′

are bounded and B is dense in B∗, the commutativity between eL
′
0t and G′ can

be extended to the entire space B∗. Also, by the duality relation, we obtain
the strong commutativity between L0 and G. This proves Theorem 4.2.1.

4.3 Proof of Theorem 3.1.3

Theorem 3.1.3 follows from Theorem 4.2.1 and the following result.

Theorem 4.3.1. Assume Conditions (H), (W ) and (QDB) with ρ∗ = ρβ (see
(2.3.4)) hold and assume

(Com) G′ commutes with eL
′
0t for all t ∈ R.

Then, the dual quantum evolution β′
t(A) converges to Null(G′) in the ergodic

sense:

s- lim
T→∞

1

T

∫ T

0

β′
tdt = P ′, (4.3.1)

strongly in B∗.

Remark 4.3.2. Under Condition (Com), L′ is normal, i.e., [Re(L′), Im(L′)] =
[G′, L′

0] = 0.

Recall that P ′ is the orthogonal projector onto the subspace Null(G′) in
B∗ w.r.t. its inner product and let P ′⊥ = 1− P ′.

Let G′⊥ := G′P ′⊥. First, we show that Ran(G′⊥) = D((G′⊥)−1) is dense in
RanP⊥ =: B⊥

∗ . Let E(λ) be the spectral resolution of the self-adjoint operator
G′⊥. The set

D := {
∫
f(λ)dE(λ)A | A ∈ B⊥

∗ , f ∈ C(R) ∩ L∞(R),

and f = 0 in a vicinity of 0.} (4.3.2)
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is dense in RanP ′⊥ and (G′⊥)−1 is defined on D and is given by

(G′⊥)−1

∫
f(λ)dE(λ)A =

∫
λ−1f(λ)dE(λ)A. (4.3.3)

(By the condition of f , the operator on the r.h.s. is bounded in B∗ by
supλ |λ−1f(λ)|∥A∥.)

Next, by Theorem 4.2.1, we have β′
t = eL

′
0teG

′t for all t ≥ 0. Then, the
Cauchy-Schwarz and the Hölder inequalities yield, since L′

0 is anti-self-adjoint,
for any A ∈ D(L′) such that A⊥ := P ′⊥A ∈ D((G′⊥)−1) and any B ∈ B∗,

|⟨B, 1
T

∫ T

0

β′
t(P

′⊥A)dt⟩∗| ≤
1

T

∫ T

0

|⟨B, eL′
0teG

′tA⊥⟩∗|dt

=
1

T

∫ T

0

|⟨e−L′
0tB, eG

′⊥tA⊥⟩∗|dt ≤
1

T

∫ T

0

∥e−L′
0tB∥∥eG′⊥tA⊥∥dt

=
∥B∥
T

∫ T

0

∥eG′⊥tA⊥∥dt ≤ ∥B∥√
T

(∫ T

0

∥eG′⊥tA⊥∥2dt
)1/2

. (4.3.4)

Now, since G′ is self-adjoint on B∗, we have∫ T

0

∥eG′⊥tA⊥∥2dt =
∫ T

0

⟨A⊥, e2G
′⊥tA⊥⟩dt

= ⟨A⊥, (e2G
′⊥T − 1)(2G′⊥)−1A⊥⟩. (4.3.5)

Since G′ ≤ 0, we have ∥e2G′⊥T∥ ≤ 1 and therefore, by (4.3.5),∫ T

0

∥eG′⊥tA⊥∥2dt ≤ ∥(G′⊥)−1/2A⊥∥2. (4.3.6)

By (4.3.4) and (4.3.6), we have, for such A,B ∈ B∗,

|⟨B, 1
T

∫ T

0

β′
t(P

⊥A)dt⟩∗| ≤
1√
T
∥B∥∥(G′⊥)−1/2A⊥∥, (4.3.7)

which implies that, for all A ∈ B∗ such that P ′⊥A ∈ D((G′⊥)−1/2),

∥ 1
T

∫ T

0

β′
t(A)dt− P ′A∥ = ∥ 1

T

∫ T

0

β′
t(P

⊥A)dt∥

≤ 1√
T
∥(G′⊥)−1/2P ′⊥A∥ → 0 (4.3.8)

as T → ∞. Since D((G′⊥)−1) is dense in B⊥
∗ and 1

T

∫ T
0
β′
tdt − P ′ is bounded
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uniformly in T ,

∥ 1
T

∫ T

0

β′
t(A)dt− P ′A∥ ≤ 2∥A∥, (4.3.9)

for all A ∈ B∗, (4.3.8) implies that, strongly in B∗,

s- lim
T→∞

1

T

∫ T

0

β′
tdt = P ′. (4.3.10)

This proves Theorem 4.3.1.

Proof of Theorem 3.1.3. Theorem 3.1.3 follows from Theorems 4.2.1 and 4.3.1.

4.4 Proof of Theorem 3.1.4

(a) Before we proceed to the proof, we note that, by Theorem 4.2.1, since
[L′

0, G
′] = 0, L′

0 also commutes with all the spectral projections of G′. Hence,
for P̃ any spectral projection of G′ and any A ∈ Ran P̃ ∩ D(L′), by Leibniz
rule and Theorem 3.1.2 (a) and (c), we have

∂t∥At∥2 = ∂t⟨At, At⟩ = ⟨∂tAt, At⟩+ ⟨At, ∂tAt⟩
= ⟨L′At, At⟩+ ⟨At, L′At⟩
= ⟨At, (L′† + L′)At⟩
= 2⟨At, G′At⟩, (4.4.1)

where we denote, throughout this subsection, At := β′
t(A).

Recall that P ′⊥ := 1−P ′ and let U0 be an open neighborhood of 0 such that
G′ has no singular continuous spectrum on U0. We denote P1 and P2 as the
orthogonal projections onto the subspaces of point and absolutely continuous
spectra in U0, respectively. Furthermore, we denote P3 the spectral projection
of G′ onto σ(G′) \ U0. It follows from Condition (Spec) that P ′⊥ =

∑3
i=1 Pi.

We note that, by Theorem 4.2.1, L′
0 and G′ commute strongly, which then

implies that L′
0 also commutes with all the spectral projections of G′, which

implies that [L′
0, Pi] = 0 for each i = 1, 2, 3.

We denote At,i := PiAt for i = 1, 2, 3 and consider the Lyapunov functional
∥P ′⊥At∥2. By triangle inequality, we have

∥P ′⊥At∥2 ≤
3∑
i=1

∥At,i∥2. (4.4.2)
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We will show separately that ∥At,i∥2 → 0 for i = 1, 2, 3 as t→ ∞.
We begin with ∥At,1∥2. We observe that we can write P1 and G′|RanP1 as

P1 =
∑
n

Pen , G′|RanP1 =
∑
n

λnPen , (4.4.3)

where λn are eigenvalues of G
′ in U0 and en are the corresponding orthonormal

eigenvectors of G′. Since G′ < 0 on RanP1, we have λn < 0 for all n.
Let A

(n)
t := PenAt,1 for each n. By Theorem 4.2.1 and (4.4.1), we have

∂t∥A(n)
t ∥2 = 2⟨A(n)

t , G′A
(n)
t ⟩. (4.4.4)

With this notation, we have

⟨A(n)
t , G′A

(n)
t ⟩ = λn|⟨en, At,1⟩|2. (4.4.5)

Using the Plancherel’s theorem, we have

⟨A(n)
t , G′A

(n)
t ⟩ = λn|⟨en, At⟩|2 (4.4.6)

and introducing the notation an(t) := |⟨en, At⟩|2, we find from (4.4.4) that

∂t∥A(n)
t ∥2 = ∂tan(t) = 2λnan(t) (4.4.7)

with the initial condition

∥A(n)
t ∥2|t=0 = ∥A(n)

0 ∥2 = an(0), (4.4.8)

which is solved to be

an(t) = e2λntan(0). (4.4.9)

Since

∥At,1∥2 = ⟨At,1, At,1⟩ =
∑
n

⟨A(n)
t , A

(n)
t ⟩

=
∑
n

an(t) =
∑
n

e2λntan(0) (4.4.10)

and λn < 0 for each n, we have ∥At,1∥2 → 0 as t→ ∞.
Now, we consider ∥At,2∥2. Recall P2 is the orthogonal projection of G′

onto the subspace of absolutely continuous spectrum in U0. Let dEG′(λ) be
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the spectral measure of G′ on RanP2. Then, for each A ∈ RanP2, we have

⟨A,A⟩ =
∫
U0

dµA(λ), ⟨A,G′A⟩ =
∫
U0

λdµA(λ), (4.4.11)

where dµA(λ) := ⟨A, dEG′(λ)A⟩∗. Since dµA(λ) is absolutely continuous w.r.t.
the Lebesgue measure, there exists some positive, Lebesgue measurable function
fA(λ) such that dµA(λ) = fA(λ)dλ.

Let ft(λ) := fAt(λ). Then, by (4.4.1) and (4.4.11), we have

∂t

∫
U0

ft(λ)dλ =

∫
U0

2λft(λ)dλ (4.4.12)

with the initial condition(∫
U0

ft(λ)dλ

)
|t=0 =

∫
U0

f0(λ)dλ. (4.4.13)

Next, we observe that, for any subset V ⊆ U0 and PV corresponding
spectral projection onto the absolutely continuous spectrum in V , by Condition
(W ′) and (4.4.1), we have

∂t

∫
V

ft(λ)dλ =

∫
V

2λft(λ)dλ (4.4.14)

with the initial condition(∫
V

ft(λ)dλ

)
|t=0 =

∫
V

f0(λ)dλ. (4.4.15)

Now, for each λ ∈ U0, we take a sequence of open neighborhoods Vn ⊆ U0 of λ
such that Vn ⊇ Vn+1 and Vn → {λ} as n→ ∞. By the Lebesgue differentiation
theorem, we have, for almost all λ ∈ U0,

∂tft(λ) = lim
n→∞

1

m(Vn)

∫
Vn

ft(λ)dλ

= lim
n→∞

1

m(Vn)

∫
Vn

2λft(λ)dλ

= 2λft(λ)dλ (4.4.16)

and

f0(λ) = lim
n→∞

1

m(Vn)

∫
Vn

f0(λ)dλ, (4.4.17)
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where m(V ) is the Lebesgue measure of V . Then, for almost all λ ∈ U0, we
have

ft(λ) = e2λtf0(λ) (4.4.18)

so that

∥At,2∥2 =
∫
U0

ft(λ)dλ =

∫
U0

e2λtf0(λ)dλ. (4.4.19)

Since U0 ⊆ (−∞, 0), we have ∥At,2∥2 → 0 as t→ ∞.
Finally, we consider ∥At,3∥2. Since U0 is an open neighborhood of 0, there

exists some θ > 0 such that [−θ, θ] ∈ U0 so that

G′|RanP3 ≤ −θ. (4.4.20)

Then, by (4.4.1) and (4.4.20), we have

∂t∥At,3∥2 = 2⟨At,3, G′At,3⟩∗ ≤ −2θ∥At,3∥2 (4.4.21)

with the initial condition

∥At,3∥2|t=0 = ∥A0,3∥2. (4.4.22)

Inequality (4.4.21) is solved as

∥At,3∥ ≤ e−θt∥A0,3∥, (4.4.23)

which converges to 0 as t→ ∞. Therefore, (4.4.2) gives, as t→ ∞,

∥P ′⊥At∥ ≤
3∑
i=1

∥PiAt∥ → 0. (4.4.24)

To conclude this proof, by Condition (Null), we have [L0, P
′] = 0 and

RanP = Null(G′) ⊆ Null(L′
0). It follows that [L

′, P ′] = [L′
0 +G′, P ′] = 0 and

RanP ⊆ Null(L′). Thus, for all A ∈ B∗, we have

P ′At = P ′β′
t(A) = P ′eL

′tA = eL
′tP ′A = P ′A. (4.4.25)

Therefore, we have, as t→ ∞,

∥At − P ′A∥ = ∥At − P ′At∥ = ∥P⊥At∥ ≤
3∑
i=1

∥PiAt∥ → 0, (4.4.26)
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which proves (3.1.2).
(b) By Condition (Gap), we have P1 = P2 = 0 so that P ′⊥ = P3. It follows

from proof for part (a) that there exists some θ > 0 such that

∥At − P ′At∥ = ∥P ′⊥At∥ ≤ e−θt∥P ′⊥A0∥ ≤ e−θt∥A∥. (4.4.27)

It then follows from the same reason as in the last paragraph of proof for part
(a) that P ′At = P ′A, which, together with (4.4.27), implies (3.1.3).

(c) Since 0 is a simple eigenvalue ofG′ and 1 ∈ Null(G′), we have Null(G′) =
C · 1 ⊆ Null(L′

0) so that Null(G′) ⊆ Null(L′), [L′, P ′] = 0, and

P ′A = ⟨1, A⟩∗1 = Tr(Aρ∗)1. (4.4.28)

This and Theorem 3.1.4 (b) yield (3.1.4).

4.5 Uniqueness of stationary state

The next result gives a sufficient condition for an eigenvalue of G′ at 0 to be
simple (see [34, 38] for different proofs):

Proposition 4.5.1. Suppose Condition (W ), (QDB) and (Compl). Then 0
is a simple eigenvalue of G′ on B∗.

Proof. First, let A ∈ Null(G′) ∩ B. By (4.1.8), we have

0 = ⟨A,G′(A)⟩obs,∗ = −1

2

∑
j≥1

∥[Wj, A]∥2obs,∗. (4.5.1)

Since ∥[Wj, A]∥ ≥ 0 for all j ≥ 1, (4.5.1) implies that [Wj, A] = 0 for all j ≥ 1.
Next, since G′ is a ∗-map, we have G′(A∗) = 0 if A ∈ Null(G′)∩B and, by

(4.1.8) again,

0 = ⟨A∗, G′(A∗)⟩obs,∗ = −1

2

∑
j≥1

∥[Wj, A
∗]∥2obs,∗

= −1

2

∑
j≥1

∥[W ∗
j , A]∥2obs,∗ (4.5.2)

so that [W ∗
j , A] = 0 for all j ≥ 1. By Condition (Compl), we must have

A ∈ C · 1.
Since G′(1) = 0, we have Null(G′) ∩ B = C · 1. Since B is dense in B∗ and

G′ is bounded, we conclude that Null(G′) = C · 1.
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By Proposition 4.5.1, under Condition (Compl), the orthogonal projection
P ′ onto Null(G′) in B∗ is given by

P ′A = Tr(Aρ∗) · 1, ∀A ∈ B∗. (4.5.3)

4.6 Proof of Theorem 3.1.5

Recall P ′ denotes the orthogonal projection onto the subspace Null(G′) in B∗

w.r.t. the inner product (2.4.1). By Theorem 3.1.3, the integral 1
T

∫ T
0
β′
tdt

converges strongly to P ′ as T → ∞. By Proposition 4.5.1, Condition (Compl)
implies (4.5.3). This completes the proof of Theorem 3.1.5.

4.7 Proof of Theorem 3.2.2

We define the convenient subset of the Schatten space S1:

Ŝ∗ = {λ ∈ S1 | λ = Aρ∗, A ∈ B}. (4.7.1)

Lemma 4.7.1. (i) The set Ŝ∗ is dense in S∗.

(ii) The map φ : A ∈ B 7→ Aρ∗ ∈ Ŝ∗ can be extended to a unitary map from
B∗ to S∗ (for which we keep the symbol φ),

⟨φ(A), φ(B)⟩st,∗ = ⟨A,B⟩obs,∗ for all A,B ∈ B∗. (4.7.2)

Proof. (i) Since Ŝ∗ ⊆ S∗, it suffices to show that λ = 0 if λ ∈ S∗ and λ ⊥ Ŝ∗.

Suppose λ ∈ S∗ satisfies λ ⊥ Ŝ∗. Since, for any A ∈ B, we have

0 = ⟨λ,Aρ∗⟩st,∗ = Tr
(
λ∗(Aρ∗)ρ

−1
∗
)
= Tr(λ∗A). (4.7.3)

Since B is the dual of S1, this implies that λ = 0. Therefore, Ŝ∗ is dense in S∗.
(ii) It is easy to show (4.7.2) holds for any A,B ∈ B. Hence, φ is an

isometry. Since φ is invertible with the inverse φ−1(λ) = λρ−1
∗ and since B, Ŝ∗

are dense in B∗,S∗, respectively, we can extend this map to a unitary map
φ : B∗ → S∗ (using the same symbol).

The significance of the map φ and therefore the space S∗ lie in the fact
that (QDB) (2.3.1) can be written as

L0 ◦ φ = −φ ◦ L′
0, G ◦ φ = φ ◦G′. (4.7.4)

This will be used to translate our results for the HL equation to ones on the
vNL equation.
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Equations (4.7.2) and (4.7.4) imply that, for all A,B ∈ B∗,

⟨G(φ(A)), φ(B)⟩st,∗ = ⟨G′(A), B⟩obs,∗. (4.7.5)

Proposition 4.7.2. Suppose G satisfies (QDB). Then,

(a) G is self-adjoint on S∗,

(b) G ≤ 0 on S∗,

(c) σ(G) = σ(G′), σd(G) = σd(G
′),

(d) dimNull(G) = dimNull(G′).

(e) If Condition (Compl) holds, then Null(G) = C · ρ∗.

(f) L′
0 and G′ commute if and only if L0 and G commute,

(g) Null(G′) ⊆ Null(L′
0) if and only if Null(G) ⊆ Null(L0).

In the rest of this section, we drop the subscript “st, ∗” in the inner product
⟨·, ·⟩st,∗ and norm ∥ · ∥st,∗ and denote the adjoint of operators L0 and G on S∗

by L†
0 and G†, respectively.

Proof of Proposition 4.7.2. We compute

⟨G(φ(A)), φ(B)⟩ = ⟨φ(G′(A)), φ(B)⟩ = ⟨G′(A), B⟩obs,∗
= ⟨A,G′(B)⟩obs,∗ = ⟨φ(A), φ(G′(B))⟩
= ⟨φ(A), G(φ(B))⟩. (4.7.6)

Thus, G is self-adjoint on S∗, which proves (a). For (b), for all A ∈ B∗, using
(4.7.5) and Theorem 3.1.2 (or (4.1.8)), we obtain

⟨φ(A), G(φ(A))⟩ = ⟨A,G′(A)⟩obs,∗ ≤ 0. (4.7.7)

Therefore G ≤ 0 on S∗.
For (c), (4.7.4) implies (G− z)−1 ◦φ = φ◦ (G′− z)−1, which, together with

(4.7.2), yields σ(G) = σ(G′) and σd(G) = σd(G
′).

For (d), we note that, by (4.7.4), we have φ(Null(G′)) = Null(G). Since
φ : B∗ → S∗ is unitary, this implies (d).

If, in addition, Condition (Compl) holds, then, by (4.5.3), we have

⟨µ, Pλ⟩st,∗ = Tr
(
µ∗(Pλ)ρ−1

∗
)
= Tr

(
(ρ−1

∗ µ∗)Pλ
)
= Tr

(
P ′(ρ−1

∗ µ∗)λ
)

= Tr
(
ρ−1
∗ µ∗ρ∗

)
Tr(1 · λ) = ⟨µ, ρ∗⟩st,∗Tr(λ) (4.7.8)
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for any λ, µ ∈ S1 so that

Pλ = Tr(λ)ρ∗, (4.7.9)

which implies that Null(G) = C · ρ∗, i.e., ρ∗ is the unique density operator in
Null(G). This proves (e).

For (f), by (4.7.4), since φ is unitary, we have

eL
′
0t = e(−φ

−1◦L0◦φ)t = φ−1 ◦ e−L0t ◦ φ, (4.7.10)

eG
′t = φ−1 ◦ eG′t ◦ φ. (4.7.11)

Thus, eL
′
0teG

′t = eG
′teL

′
0t if and only if φ−1◦(e−L0teGt)◦φ = φ−1◦(eGte−L0t)◦φ,

which is true if and only if eL0teGt = eGteL0t. This proves (f).
Finally, since φ is unitary, we have Null(L0) = φ(Null(L′

0)) and Null(G) =
φ(Null(G′)), which proves (g).

Proof of Theorem 3.2.2. (a) Recall that P denotes the orthogonal projector
onto the subspace Null(G) ⊆ S∗ w.r.t. the inner product ⟨·, ·⟩ in the space of
observables and define P⊥ = 1 − P . In the following, we denote ρt = βt(ρ)
and ρ̄t = P⊥ρt. Similar to the proof of Theorem 3.1.2 in Subsection 4.4, we
consider the Lyapunov functional ∥ρ̄t∥2/2.

First, we note that, by Condition (Null), [L0, P ] = 0. Since L†
0 = −L0,

G† = G on S∗ and [L0, P
⊥] = [L0,1− P ] = 0, by Leibniz rule, we have

∂t∥ρ̄t∥2/2 = ∂t⟨ρ̄t, ρ̄t⟩/2 = ⟨ρ̄t, (L† + L)ρ̄t⟩/2 = ⟨ρ̄t, Gρ̄t⟩. (4.7.12)

By the Condition (Gap) and Proposition 4.7.2 (c), using spectral theory, there
exists some θ > 0 such that (−θ, θ) ∩ (σ(G) \ {0}) = ∅ so that

G|RanP⊥ ≤ −θ < 0 (4.7.13)

so that, by substituting (4.7.13) into (4.7.12), we obtain the following inequality

∂t∥ρ̄t∥2/2 = ⟨ρ̄t, Gρ̄t⟩ ≤ −θ∥ρ̄t∥2 (4.7.14)

with the initial condition

∥ρ̄t∥2|t=0 = ∥ρ̄0∥2. (4.7.15)

We solve this inequality to obtain

∥ρ̄t∥ ≤ e−θt∥ρ̄0∥, (4.7.16)
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giving

∥ρt − Pρt∥ ≤ e−θt∥ρ0∥. (4.7.17)

To complete the proof, we compute Pρt. Since, by Condition (Null) and
Proposition 4.7.2 (g), RanP = Null(G) ⊆ Null(L0) and [L0, P ] = 0, we have
RanP ⊆ Null(L) and [L, P ] = [L0 +G,P ] = 0. It follows that

Pρt = Pβt(ρ) = PeLtρ = eLtPρ = Pρ, (4.7.18)

which, together with (4.7.17), implies (3.2.1).
(b) Now, we suppose 0 is a simple eigenvalue ofG. Then, we have Null(G) =

C · ρ∗ because G(ρ∗) = 0 by (QDB). Let ρ ∈ D(L) with Tr ρ = 1. Then, by
cyclicity of trace, we have

Pρ = ⟨ρ∗, ρ⟩ρ∗ = Tr
(
ρ∗ρρ

−1
∗
)
· ρ∗ = Tr(ρ) · ρ∗ = ρ∗. (4.7.19)

By substituting this into (3.2.1), we obtain (3.2.2).
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Remarks and extensions

In this subsection, we present remarks, extensions and variants of the results
from Subsections 2.4, 3.1 and 3.2.

Remark 5.0.1. Condition (QDB) is a strong restriction implying essentially
that the jump operators Wj can be replaced by multiples of the eigenvectors

of the modular operator ∆̃∗A := ρ∗Aρ
−1
∗ (see [15] for H with dimH <∞).

Remark 5.0.2. Unlike for the von Neumann dynamics, for the von Neumann-
Lindblad one, we cannot pass to the Hilbert space framework by simply writing
Tr(Aρ) = Tr

(√
ρ∗A

√
ρ
)
≡ ⟨√ρ,A√ρ⟩. Indeed, since√

βtρ ̸= βt(
√
ρ)

(unlike for the unitary dynamics),
√
βtρ, entering in

Tr((β′
tA)ρ) = Tr(Aβtρ) = Tr

(
(
√
βtρ)

∗A
√
βtρ
)
≡ ⟨
√
βtρ,A

√
βtρ⟩,

does not satisfy a simple evolution equation.

Remark 5.0.3. Condition (QDB) is intimately related to the KMS-symmetric
Markovian semigroup as remarked in Section 1. Let φ be a faithful state on
a W ∗-algebra A. We call a semigroup Pt on A is KMS-symmetric if, for all
A,B ∈ A,

φ(PtAσ
φ
−i/2(B)) = φ(σφi/2(A)PtB), (5.0.1)

where σφt is the modular automorphism on A associated with φ. In our case,
we have A = B, Pt = eG

′t, φ is the faithful, normal state ω∗ determined by
ρ∗ and σφt = αt, where π∗ and αt are given in Theorem 4.2.6. Indeed, for
each A,B ∈ B, we use the commutativity between G′ and i[H∗, ·] (i.e., the
generator of αt) due to Condition (QDB), the self-adjointness on B∗ and the

33
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relation

ω∗(αi/2(A)B) = ω∗(Aα−i/2(B)) (5.0.2)

to obtain

ω∗(e
G′tAα−i/2(B)) = ω∗(Ae

G′tα−i/2(B))

= ω∗(Aα−i/2(e
G′tB)) = ω∗(αi/2(A)e

G′tB). (5.0.3)

This suggests to a generalization of our results to KMS-symmetric Markovian
semigroup on abstract von Neumann algebra.

Inner product (2.4.1) is a member of the family of inner products on B:
For each r ∈ [0, 1], we define the inner product

⟨A,B⟩obs,r = Tr
(
A∗ρr∗Bρ

1−r
∗
)
. (5.0.4)

Note that ⟨A,B⟩obs,0 = ⟨A,B⟩obs,∗ and ⟨A,B⟩obs,1 = ⟨B∗, A∗⟩obs,∗. G′ is
symmetric in ⟨·, ·⟩obs,1. Indeed, using the fact that G′ is a ∗-map and is
symmetric w.r.t. (2.4.1), we obtain

⟨G′(A), B⟩obs,1 = ⟨B∗, G′(A∗)⟩obs,∗
= ⟨G′(B∗), A∗⟩obs,∗ = ⟨A,G′(B)⟩obs,1. (5.0.5)

Similarly, we can define another Hilbert space of states as follows. Consider
the set

S̃⊺
∗ := {λ ∈ S1 | ρ−1/2

∗ λ ∈ S2} (5.0.6)

We define the Hilbert space S⊺
∗ as the completion of the set in (5.0.6) w.r.t.

the norm corresponding to the inner product

⟨λ, µ⟩⊺st,∗ := Tr
(
λ∗ρ−1

∗ µ
)
. (5.0.7)

Lemma 5.0.4. The spaces S∗ and S⊺
∗ are the dual of B∗ w.r.t. the couplings

Tr
(
Aρ

1/2
∗ λρ

−1/2
∗

)
and (A, λ) := Tr(Aλ), respectively.

Proof. We check only S⊺
∗ ; the space S∗ is done similarly. By the non-Abelian

Cauchy-Schwarz inequality, for each A ∈ B∗ and λ ∈ S⊺
∗ , we have

|Tr(Aλ)| = |Tr
(
Aρ1/2∗ ρ−1/2

∗ λ
)
| ≤ ∥Aρ1/2∗ ∥S2∥ρ−1/2

∗ λ∥S2

= (Tr(A∗Aρ∗))
1/2(Tr

(
λ∗ρ−1

∗ λ
)
)1/2

= ∥A∥obs,∗∥λ∥⊺st,∗ (5.0.8)
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so that

sup
∥A∥obs,∗=1

|Tr(Aλ)| ≤ ∥λ∥⊺st,∗. (5.0.9)

We now show that this is in fact an equality. By taking A = λ∗ρ−1
∗ , we have

∥A∥2obs,∗ = Tr(A∗Aρ∗) = Tr
(
ρ−1
∗ λλ∗

)
= (∥λ∥⊺st,∗)2 <∞ (5.0.10)

so that A ∈ B∗ and, by taking A′ = A/∥λ∥⊺st,∗, we have ∥A′∥obs,∗ = 1 and

Tr(A′λ) = (∥λ∥⊺st,∗)−1Tr
(
λ∗ρ−1

∗ λ
)
= ∥λ∥⊺st,∗. (5.0.11)

Therefore, S⊺
∗ is the dual space of B∗ w.r.t. the coupling (·, ·).

Similar to (4.7.1), we define a map

φ⊺(A) := ρ1/2∗ Aρ1/2∗ . (5.0.12)

By its definition, we have

⟨φ⊺(A), φ⊺(B)⟩⊺st,∗ = ⟨A,B⟩obs,∗. (5.0.13)

Remark 5.0.5. (a) The space S∗ is a point r = 0 in the family of Hilbert spaces

S(r)
∗ , r ∈ [0, 1], defined by the completion of the set

S̃(r) = {λ ∈ S1 | ρ−r/2∗ λρ−(1−r)/2
∗ ∈ S2}, (5.0.14)

under the norm ∥λ∥st,r :=
√

⟨λ, λ⟩st,r, corresponding to the inner product

⟨λ, σ⟩st,r := Tr
(
λ∗ρ−r∗ σρ−1+r

∗
)
. (5.0.15)

For each r ∈ [0, 1], the space S(r)
∗ and S2 are in one-to-one correspondence.

Indeed, we define the map

π(r) : S2 → S(r)
∗ π(r)(κ) := ρr/2∗ κρ(1−r)/2∗ . (5.0.16)

Obviously, the map π(r) is linear, bounded and invertible. Moreover, for all
λ, σ ∈ S2, by (5.0.15), (5.0.16) and the cyclicity of trace, we have

⟨π(r)(λ), π(r)(σ)⟩st,r = ⟨λ, σ⟩S2 (5.0.17)

so that π(r) is unitary. Hence, S(r)
∗ is isomorphic to S2.

(b) We note that the inner products (5.0.15), r ∈ [0, 1], are special examples
of the so-called quantum χ2-divergence (c.f. [68]).
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(c) Consider the family of maps φ(r) : B → S(r)
∗ , r ∈ [0, 1], as φ(r)(A) =

ρ
r/2
∗ Aρ

1−r/2
∗ . Since φ(r) maps B into S̃(r)

∗ and, for each A,B ∈ B,

⟨φ(r)(A), φ(r)(B)⟩st,r = Tr
(
(ρ1−r/2∗ A∗ρr/2∗ )ρ−r∗ (ρr/2∗ Bρ1−r/2∗ )ρ−1+r

∗
)

= Tr(A∗Bρ∗) = ⟨A,B⟩obs,∗. (5.0.18)

By a density argument, we can extend φ(r) to a unitary map from B∗ to S(r)
∗ ,

and we denote this extension also by φ(r). Thus, B∗ and S(r)
∗ are isomorphic.

Maps φ and φ⊺ in Lemma 4.7.1 and in (5.0.12) are the r = 0 and r = 1
cases of tNote that φ(r) is not ∗-map, unless r = 1.

(d) For any operator K on S1 and its dual K ′ on B, we have

K ′ = ∗φ−1K∗φ∗, (5.0.19)

where ∗ : A 7→ A∗ and the adjoint K∗ is taken w.r.t. (2.4.3). Indeed, for any
A ∈ B and λ ∈ S1, we have

(∗φ−1K∗φ ∗ A, λ) = Tr
(
(∗φ−1(K∗(A∗ρ∗)))λ

)
= Tr

(
((K∗(A∗ρ∗))ρ

−1
∗ )∗λ

)
= Tr

(
ρ−1
∗ (K∗(A∗ρ∗))

∗λ
)
= ⟨K∗(A∗ρ∗), λ⟩st,∗

= ⟨A∗ρ∗, Kλ⟩st,∗ = Tr
(
ρ∗A(Kλ)ρ

−1
∗
)

= Tr(A(Kλ)) = (A,Kλ) = (K ′A, λ), (5.0.20)

which implies (5.0.19).

Remark 5.0.6. The following result presents a variant of Theorem 3.2.2 for the
space S⊺

∗ .

Theorem 5.0.7. Assume Conditions (H), (W ), (QDB) and that 0 is a
simple, isolated eigenvalue of G′. Then, for all density operator ρ ∈ S⊺

∗ and
for θ = dist(0, σ(G′) \ {0}), we have

∥βt(ρ)− ρ∗∥⊺st,∗ ≤ e−θt∥ρ∥⊺st,∗. (5.0.21)

This theorem is proven below.

Remark 5.0.8. (i) The property G′ ≤ 0 is related to the contractivity of β′
t.

Indeed, for A(t) := β′
t(A), using the Leibniz rule and HL equation (2.1.1), we

find

∂t∥A(t)∥2obs,∗/2 = (⟨L′A(t), A⟩obs,∗ + ⟨A(t), L′A(t)⟩obs,∗)/2
= Re⟨A(t), L′A(t)⟩obs,∗. (5.0.22)
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Since L′
0 is anti-self-adjoint on B∗, we have

Re⟨A(t), L′
0A(t)⟩obs,∗ = 0. (5.0.23)

This, the relation L′ = L′
0 +G′ and the self-adjointness of G′ imply

Re⟨A(t), L′A(t)⟩obs,∗ = 2⟨A(t), G′A(t)⟩obs,∗,

and therefore,

∂t∥A(t)∥2obs,∗ = 2⟨A(t), G′A(t)⟩obs,∗ ≤ 0. (5.0.24)

(ii) The property DG′(A,A) ≥ 0 for all A ∈ B∗ is related to the complete
positivity of β′

t. Indeed, we can generalize the operator function (4.1.5) for L′

on D(L′) as

DL′(A,B) = L′(A∗B)− A∗L′(B)− (L′(A))∗B. (5.0.25)

Indeed, since L′
0 is a derivation, the domain D(L′) = D(L′

0) is a
∗-subalgebra in

B so that AB and A∗ ∈ D(L′), provided that A,B ∈ D(L′). By the definition
of derivations, we can show immediately that, for all A,B ∈ D(L′),

DL′(A,B) = DG′(A,B). (5.0.26)

Since G′ is bounded on B∗, we can extend DL′ to entire B∗. It then follows
from (4.1.8) that DL′(A,A) ≥ 0 for all A ∈ B∗.

Now, we show the positivity of DL′(A,A) follows from the property of
complete positivity of β′

t. To show this, since β′
t is completely positive and

β′
t(1) = 1, by Kraus’ theorem, we have, for each t ≥ 0,

β′
t(A) =

∑
k≥1

V ∗
k (t)AVk(t),

∑
k≥1

V ∗
k (t)Vk(t) = 1 (5.0.27)

where Vk(t) ∈ B for all k. Then, by the operator inequality (A.1.5), we obtain,
for each t ≥ 0,

0 ≤ β′
t(A

∗A)− β′
t(A)

∗β′
t(A). (5.0.28)

If we take A ∈ D(L′) and differentiate at t = 0, we obtain

0 ≤ L′(A∗A)− A∗L′(A)− (L′(A))∗A

= DL′(A,A) = DG′(A,A). (5.0.29)

In fact, it was shown in [57] that, in the case that L′ is bounded, the
positivity of DL′(A,A) for all A ∈ B∗ is also sufficient for L′ to generate a
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(norm continuous) completely positive semigroup.

Proof of Theorem 5.0.7. First of all, we note that, since Tr(ρ) = 1,

Tr(A(βt(ρ)− ρ∗)) = Tr(β′
t(A)ρ)− Tr(Aρ∗)

= Tr
(
(β′

t(A)− cA1)ρ
)
, (5.0.30)

where cA = Tr(Aρ∗).
Recall that, by Theorem 3.1.2 (b), G′ is self-adjoint and G′ ≤ 0 on the

space B∗. Since 0 is an isolated eigenvalue of G′, σ(G′) ∩ (−θ, θ) = ∅ for
θ := dist(0, σ(G′) \ {0}), and so, by (5.0.30) and (5.0.8), we have

∥βt(ρ)− ρ∗∥⊺st,∗ = sup
∥A∥obs,∗=1

|Tr(A(βt(ρ)− ρ∗))|

= sup
∥A∥obs,∗=1

|Tr
(
(β′

t(A)− cA1)ρ
)
|

≤ sup
∥A∥obs,∗=1

∥β′
t(A)− cA1∥obs,∗∥ρ∥⊺st,∗

≤ e−θt∥ρ∥⊺st,∗ sup
∥A∥st,∗=1

∥(1− P ′)A∥obs,∗

≤ e−θt∥ρ∥⊺st,∗. (5.0.31)

Now, using (3.1.4) and recalling that P ′ is the rank-1 projector onto Null(G′) =
C · ρ∗, we find ∥βt(ρ)− ρ∗∥⊺st,∗ ≤ e−θt∥ρ∥⊺st,∗, as desired.



Appendix A

Proofs of Theorems 2.2.1, 3.1.1
and 3.2.1

A.1 Dual Lindblad operator G′

Throughout this section, we assume Condition (W ) holds. Recall from Section
2.2 that the HL operator L′, acting on observables, is given by

L′ = L′
0 +G′, L′

0A = i[H,A], (A.1.1)

G′(A) :=
∑
j≥1

(W ∗
j AWj −

1

2
{W ∗

jWj, A}). (A.1.2)

We begin with two propositions stating the boundedness of the operator
G′ on space B and B∗.

Proposition A.1.1. The operator G′ is bounded on B.

Proof. Let

Φ(A) :=
∑
j≥1

W ∗
j AWj, Y := Φ(1) =

∑
j≥1

W ∗
jWj (A.1.3)

so that

G′(A) = Φ(A)− 1

2
{Y,A}. (A.1.4)

First, we estimate Φ(A). We claim that, for all A ∈ B,

Φ(A)∗Φ(A) ≤ ∥Φ(1)∥Φ(A∗A). (A.1.5)

39
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Indeed, for any u, v ∈ H and for any A ∈ B, we have

|⟨u,Φ(A)v⟩| ≤ |
∑
j≥1

⟨Wju,AWjv⟩|

≤

(∑
j≥1

∥Wju∥2
)1/2(∑

j≥1

∥AWjv∥2
)1/2

=

(∑
j≥1

⟨u,W ∗
jWju⟩

)1/2(∑
j≥1

⟨v,W ∗
j A

∗AWjv⟩

)1/2

= ⟨u,Φ(1)u⟩1/2⟨v,Φ(A∗A)v⟩1/2

≤ ∥Φ(1)∥1/2∥u∥⟨v,Φ(A∗A)v⟩1/2. (A.1.6)

By taking u = Φ(A)v, (A.1.6) implies that

∥Φ(A)v∥2 ≤ ∥Φ(1)∥⟨v,Φ(A∗A)v⟩, (A.1.7)

which, since ∥Φ(A)v∥2 = ⟨v,Φ(A)∗Φ(A)v⟩, gives

⟨v,Φ(A)∗Φ(A)v⟩ ≤ ∥Φ(1)∥⟨v,Φ(A∗A)v⟩ (A.1.8)

for all v ∈ H. This is equivalent to (A.1.5).
Next, we estimate, for all A ∈ B and v ∈ H,

⟨v,Φ(A∗A)v⟩ =
∑
j≥1

⟨AWjv,AWjv⟩ =
∑
j≥1

∥AWjv∥2

≤ ∥A∥2⟨v,
∑
j≥1

W ∗
jWjv⟩

≤ ∥Y ∥2∥A∥2∥v∥2. (A.1.9)

Using (A.1.5), (A.1.9) and the definition Y = Φ(1), we conclude that

∥Φ(A)v∥2 = ⟨v,Φ(A)∗Φ(A)v⟩
≤ ∥Y ∥⟨v,Φ(A∗A)v⟩ ≤ ∥Y ∥2∥A∥2∥v∥2. (A.1.10)

Therefore, we have

∥Φ(A)∥ ≤ ∥Y ∥∥A∥. (A.1.11)



APPENDIX A. PROOFS OF EXISTENCE THEOREMS 41

Now, for any A ∈ B, by triangle inequality and (A.1.9), we have

∥G′(A)∥ ≤ ∥Φ(A)∥+ 1

2
∥{Y,A}∥

≤ ∥Φ(A)∥+ 1

2
(∥Y A∥+ ∥AY ∥)

≤ ∥Φ(A)∥+ ∥Y ∥∥A∥
≤ 2∥Y ∥∥A∥. (A.1.12)

Therefore, G′ is bounded on B.

Remark A.1.2. For another proof for (A.1.5), we refer to [20], using the completely
positive property of Φ.

For the second proposition, we need the following

Lemma A.1.3. Suppose Condition (QDB) holds. Then,
∑

j≥1W
∗
jWj commutes

with ρ∗.

Proof. Let Y :=
∑

j≥1W
∗
jWj. By (2.3.1), for all A ∈ B, we have

G′(A)ρ∗ =
∑
j≥1

W ∗
j AWj −

1

2
{Y,A}ρ∗

=
∑
j≥1

WjAρ∗W
∗
j − 1

2
{Y,Aρ∗} = G(Aρ∗). (A.1.13)

Since this is true for all A ∈ B, we must have∑
j≥1

W ∗
j AWjρ∗ =

∑
j≥1

WjAρ∗W
∗
j , {Y,A}ρ∗ = {Y,Aρ∗}. (A.1.14)

From the second equality in (A.1.14), we must have

Y ρ∗ = ρ∗Y, (A.1.15)

which proves the result.

Proposition A.1.4. Suppose Condition (QDB) holds. Then, G′ is bounded
on B∗.

Proof. Since B∗ is the completion of B w.r.t. the norm ∥ · ∥obs,∗, then B is a
dense subspace of B∗. Hence, it suffices to show that G′ is bounded on B with
respect the the norm ∥ · ∥obs,∗.

By (A.1.4) and triangle inequality, we have

∥G′(A)∥obs,∗ ≤ ∥Φ(A)∥obs,∗ +
1

2
∥{Y,A}∥obs,∗. (A.1.16)
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To estimate the first term on the r.h.s. of (A.1.16), we use inequality (A.1.5).
Since ρ∗ > 0, this inequality, together with cyclicity of trace, gives

∥Φ(A)∥2obs,∗ = Tr(Φ(A)∗Φ(A)ρ∗) ≤ ∥Y ∥Tr(Φ(A∗A)ρ∗)

= ∥Y ∥Tr(A∗AΨ(ρ∗)). (A.1.17)

where Ψ(ρ) :=
∑

j≥1WjρW
∗
j , the dual of Φ. Since G(ρ∗) = 0 (see (2.3.1)) and,

by Lemma A.1.3, ρ∗ and Y commute, (2.2.3) implies that

Ψ(ρ∗) =
1

2
{Y, ρ∗} = ρ∗Y = ρ1/2∗ Y ρ1/2∗ , (A.1.18)

where, for the last equality in (A.1.18), we use that [ρ∗, Y ] = 0 implies

[ρ
1/2
∗ , Y ] = 0. Next, using cyclicity of trace and Lemma A.1.3, we obtain∑

j≥1

Tr
(
A∗AWjρ∗W

∗
j

)
= Tr(A∗Aρ∗Y ) = Tr

(
A∗Aρ1/2∗ Y ρ1/2∗

)
= Tr

(
Aρ1/2∗ Y ρ1/2∗ A∗) ≤ ∥Y ∥Tr(Aρ∗A∗) = ∥Y ∥∥A∥2obs,∗ (A.1.19)

so that, by substituting (A.1.18) into the last term in (A.1.17),

∥Φ(A)∥2obs,∗ ≤ ∥Y ∥2∥A∥2obs,∗. (A.1.20)

Finally, for the second term on the r.h.s. of (A.1.16), we use the triangle
inequality, cyclicty of trace and Lemma A.1.3 to obtain

∥{Y,A}∥2obs,∗ ≤ ∥Y A∥2obs,∗ + ∥AY ∥2obs,∗
= Tr

(
A∗Y 2Aρ∗

)
+ Tr(Y A∗AY ρ∗)

= Tr
(
ρ1/2∗ A∗Y 2Aρ1/2∗

)
+ Tr

(
ρ1/2∗ Y A∗AY ρ1/2∗

)
= Tr

(
ρ1/2∗ A∗Y 2Aρ1/2∗

)
+ Tr

(
Aρ1/2∗ Y 2ρ1/2∗ A∗). (A.1.21)

Using the operator inequality

A∗Y 2A ≤ ∥Y ∥2A∗A, Aρ1/2∗ Y 2ρ1/2∗ A∗ ≤ ∥Y ∥2Aρ∗A∗, (A.1.22)

we find

∥{Y,A}∥obs,∗ ≤ ∥Y ∥∥A∥obs,∗. (A.1.23)

By substituting (A.1.17) and (A.1.23) into (A.1.16), we obtain

∥G′(A)∥obs,∗ ≤ 2∥Y ∥∥A∥obs,∗ (A.1.24)
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so that G′ is bounded on B, hence is bounded on B∗, since B is dense in B∗.

A.2 Proof of Theorem 2.2.1

Theorem 2.2.1 (a) follows from the following abstract theorem (c.f. [13] Theorem
3.1.33):

Theorem A.2.1. Let X be a Banach space and let Vt be a C0- (resp. C
∗
0 -)

semigroup on X with generator S and let P be some bounded operator on X.
Then S + P generates a C0- (resp. C

∗
0 -) continuous semigroup V P

t on X.

Proof of Theorem 2.2.1 (a). Assume Condition (H) and (W ) hold. By Proposition
A.1.1, G′ is bounded on B, while L′

0 generates a one-parameter strongly
continuous group eL

′
0t of bounded operators on B:

eL
′
0tA = eiHtAe−iHt. (A.2.1)

Hence, Theorem A.2.1 implies that the HL operator L′ = L′
0 +G′ generates a

bounded semigroup β′
t on B. Therefore, the HL equation has a unique soluton

in B for any given initial condition in D(L′).

For part (b), we need the next proposition:

Proposition A.2.2. The operator G defined in (2.2.3) is bounded on the space
S1.

Proof. Since G is linear, it suffices to show that G is bounded for any ρ ≥ 0
in S1. Thus, without loss of generality, we assume ρ ≥ 0.

Clearly,
∑

jWjρW
∗
j ≥ 0 if ρ ≥ 0. Hence, let Y :=

∑
j≥1W

∗
jWj, by

the triangle inequality and Schwartz inequalities and the standing assumption
(W ), ∥∥∥∑

j
WjρW

∗
j

∥∥∥
S1

≤
∑

j

∥∥WjρW
∗
j

∥∥
S1

=
∑

j
Tr
(
WjρW

∗
j

)
=
∑

j
Tr
(
W ∗
jWjρ

)
= Tr (Y ρ)

≤ ∥Y ∥ ∥ρ∥S1 <∞. (A.2.2)

On the other hand, again by Condition (W ), then

∥{Y, ρ}∥S1
≤ ∥Y ρ∥S1

+ ∥ρY ∥S1
≤ 2∥Y ∥∥ρ∥S1 <∞. (A.2.3)

Therefore, the operator G is bounded on S1.
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Proof of Theorem 2.2.1 (b). Since L0 generates a one-parameter, strongly continuous
group of bounded operators on S1, given explicitly by eL0tρ = e−iHtρeiHt, and,
by Proposition A.2.2, G is bounded on S1, it follows from Theorem A.2.1,
with X = S1, that L = L0+G generates a one-parameter, strongly continuous
semigroup on S1.

For weak uniqueness, for any A ∈ D(L′) and ρ0 ∈ S1, we write ρt for a
solution to (2.2.1) with the initial condition ρ0 and ⟨A, ρ⟩ := Tr(Aρ) so that,
by Leibniz rule,

∂s⟨A, βt−s(ρs)⟩ = ∂s⟨β′
t−s(A), ρs⟩

= ⟨−L′β′
t−s(A), ρs⟩+ ⟨β′

t−s(A), Lρs⟩ = 0. (A.2.4)

This implies that

⟨A, ρt⟩ = ⟨A, β′
t−s(ρs)⟩|t=s = ⟨A, β′

t−s(ρs)⟩s=0 = ⟨A, βt(ρ0)⟩. (A.2.5)

This proves the weak uniqueness of solution to (2.2.1) with any initial condition
ρ ∈ S1.

For strong uniqueness, we proceed similarly by taking ρ0 ∈ D(L) and write
ρt for a solution to (2.2.1) with the initial condition ρ0. Then, we have

∂sβt−s(ρs) = −Lβt−s(ρs) + βt−s(Lρs)

= βt−s(−Lρs + Lρs) = 0. (A.2.6)

Thus, we have

ρt = βt−s(ρs)|t=s = βt−s(ρs)|s=0 = βt(ρ0). (A.2.7)

This completes the proof of Theorem 2.2.1 (b).

Lemma A.2.3. The semigroup βt is completely positive on S1.

Proof. The argument follows from Theorem 5.2 in [27]. For this, we rewrite
the vNL operator as

L(ρ) = −i[H, ρ] +
∑
j≥1

(WjρW
∗
j − 1

2
{W ∗

jWj, ρ})

= [−iH − Y, ρ] + F (ρ), (A.2.8)

where Y = Y ∗ = 1
2

∑
j≥1W

∗
jWj and Ψ(ρ) =

∑
j≥1WjρW

∗
j .

Let Bt := e−iHt−Y t, which is well-defined since Y is bounded. Then, the
semigroup St generated by −i[H − iY, ·] is given by

Tt(ρ) = BtρB
∗
t , (A.2.9)
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which defines a completely positive semigroup by Kraus’ theorem. On the
other hand, since, by Lemma A.2.2, the map Ψ is bounded on S1, Ψ generates
a semigroup on S1

eΨt :=
∞∑
k=0

tk

k!
Ψk. (A.2.10)

We note that, since Ψ is completely positive by Kraus’ theorem, so are Ψk

for any k = 0, 1, 2, ... and any linear combination of them. Therefore, eΨt is a
completely positive semigroup.

Then, it follows that, for any n ∈ N, the operator (Tt/neΨt/n)n is a completely
positive semigroup on S1.

Finally, by Trotter-Lie formula, we have

βt(ρ) = exp(L0 +G)(ρ) = lim
n→∞

(Tt/ne
Ψt/n)n(ρ), (A.2.11)

where the limit is taken in the trace norm, so that the semigroup βt is completely
positive.

Note that the proof of Lemma A.2.3 provides a different construction for
the semigroup βt.

A.3 Proof of Theorem 3.1.1

By Proposition A.1.4, G′ is bounded on B∗. Also, since L
′
0 is anti-self-adjoint

on B∗, it generates a one-parameter strongly continuous group eL
′
0t of unitary

operators on B∗ as in (A.2.1). Then, by Theorem A.2.1 again, the HL operator
L′ generates a bounded semigroup β′

t, and therefore the HL equation has a
unique soluton in B∗ for any given initial condition in D(L′).

Remark A.3.1. The unitarity of eL
′
0t can be proven directly as follows. For all

A,B ∈ B∗,

⟨eL′
0tA, eL

′
0tB⟩obs,∗ = Tr

(
eiHtA∗Be−iHtρ∗

)
= Tr

(
A∗Be−iHtρ∗e

iHt
)

= Tr(A∗Bρ∗) = ⟨A,B⟩obs,∗ (A.3.1)

by cyclicity of trace and the fact that L′
0ρ∗ = 0 by (QDB). Hence, it is unitary.

The semigroup, β′
t, generated by L′, is dual to βt. Indeed, the semigroup

β′
t has the generator L′:

∂t|t=0Tr(β
′
t(A)ρ) = ∂t|t=0 Tr(Aβt(ρ)) = Tr(AL(ρ)) = Tr(L′(A)ρ). (A.3.2)
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Given that G′ is bounded on B, the domain of L′ is the same as the domain
D(L′

0) of L
′
0, where

D(L′
0) := {A ∈ B | A(D(H)) ⊂ D(H) and HA− AH

defined on D(H) extends to an element in B}. (A.3.3)

A.4 Proof of Theorem 3.2.1

The proof Theorem 3.2.1 follow the same lines as in the previous subsection.

Proposition A.4.1. Assume Conditions (W ) and (QDB) hold. Then, G is
bounded and self-adjoint on S∗.

Proof. For boundedness, by (2.3.1), we have, for any λ ∈ Ŝ∗,

∥G(λ)∥st,∗ = ∥G′(A)ρ∗∥st,∗ = ∥G′(A)∥obs,∗
≤ ∥G′∥∥A∥obs,∗ = ∥G′∥∥Aρ∗∥st,∗, (A.4.1)

where A = λρ−1
∗ ∈ B. Since, by Lemma 4.7.1, Ŝ∗ is dense in S∗, then G is

bounded on S∗.
Now, we show that G is symmetric on S∗. By Lemma 4.1.1 and cyclicity

of trace, we have, for any λ, µ ∈ Ŝ∗, we take λ = Aρ∗ and µ = Bρ∗ so that

⟨λ,G(µ)⟩st,∗ = Tr
(
λ∗G(µ)ρ−1

∗
)
= Tr

(
ρ∗A

∗G(Bρ∗)ρ
−1
∗
)

= Tr(A∗G′(B)ρ∗) = ⟨A,G′(B)⟩obs,∗ = ⟨G′(A), B⟩obs,∗
= Tr((G′(A))∗Bρ∗) = Tr

(
ρ−1
∗ (G′(A)ρ∗)

∗Bρ∗
)

= Tr
(
ρ−1
∗ (G(Aρ∗))

∗Bρ∗
)
= Tr

(
ρ−1
∗ G(λ)∗µ

)
= ⟨G(λ), µ⟩st,∗. (A.4.2)

Therefore, G is symmetric on Ŝ∗ and hence, by a density argument, G is
symmetric on S∗. Since G is bounded on S∗, then G is self-adjoint on S∗.

Proposition A.4.2. Assume Conditions (H) and (QDB) hold. Then, L0 is
anti-self-adjoint on S∗.

Proof. By Stone’s theorem, it suffices to show that L0 generates a strongly
continuous group of unitary operators on S∗. By definition of L0, for any
λ ∈ S∗, we have eL0tλ = e−iHtλeiHt. The group property of eL0t follows from
the group property of e±iHt. The group eL0t is unitary on S∗ since, for any
λ, µ ∈ S∗ and t ∈ R, by cyclicity of trace and Condition (QDB), we have

⟨eL0tλ, eL0tµ⟩st,∗ = Tr
(
(e−iHtλeiHt)∗(e−iHtµe−iHt)ρ−1

∗
)

= Tr
(
λ∗µρ−1

∗
)
= ⟨λ, µ⟩st,∗. (A.4.3)
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Now, we show eL0t is strongly continuous on S∗. Recall that S∗ is the
completion of S̃∗ = {λ ∈ S1 | λρ−1/2

∗ ∈ S2} w.r.t. to the norm ∥ · ∥st,∗.
Let λ ∈ S̃∗. Then, there exists some κ ∈ S2 such that κ = λρ

−1/2
∗ so that,

by Condition (QDB), cyclicity of trace and the fact that e−iHt is strongly
continuous on H, we have

∥eL0tλ− λ∥2st,∗ = Tr
(
(e−iHtλeiHt − λ)∗(e−iHtλeiHt − λ)ρ−1

∗
)

= Tr
(
(e−iHtκeiHt − κ)∗(e−iHtκeiHt − κ)

)
= ∥e−iHtκeiHt − κ∥2S2

→ 0 (A.4.4)

as t→ 0. By a density argument and unitary property of eL0t, we can extend
this limit to the whole space S∗ so that eL0t is strongly continuous. Therefore,
the generator L0 is anti-self-adjoint on S∗.

Proof of Theorem 3.2.1. Since the operator L0 generates a one-parameter strongly
continuous group eL0t of unitary operators on S∗ (given explicitly by eL0tρ =
e−iHtρeiHt), and, by Proposition A.4.1, G is bounded on S∗. It follows from
Theorem A.2.1, with X = S∗, that L = L0 + G generates a one-parameter,
strongly continuous semigroup on S∗, which implies the statement of Theorem
3.2.1.

Remark A.4.3. One can also prove a version of Proposition A.4.1 with the
space S(1) (see Remark 5.0.5(a)) replacing S∗.

Remark A.4.4. It is not clear whether the semigroup βt is positive on S∗ under
(QDB), i.e., ⟨λ, βt(λ)⟩st,∗ is not necessarily non-negative. Indeed, βt is trace-
preserving and, by Lemma A.2.3, completely positive on S1 so, according to
[51, 52], there exists some family {Vk(t)}k≥1 of bounded operators on H such
that

βt(ρ) =
∑
k≥1

Vk(t)ρVk(t)
∗, (A.4.5)

where
∑

k≥1 Vk(t)
∗Vk(t) = 1. Then, for any λ ∈ S∗, by the cyclicity of trace,

⟨λ, βt(λ)⟩st,∗ =
∑
k≥1

Tr
(
λ∗Vk(t)λVk(t)

∗ρ−1
∗
)

=
∑
k≥1

⟨Vk(t)∗λ, λVk(t)∗⟩st,∗. (A.4.6)

However, for each k ≥ 1, ⟨Vk(t)∗λ, λVk(t)∗⟩st,∗ is not necessarily non-negative,
showing βt is not necessarily positive on S∗.



Appendix B

Spectra of G and G′

In this section, we study the spectra of G and G′ by regarding them as
operators on S2.

Proposition B.0.1. If the jump operatorsWj’s are normal, mutually commute
and have purely discrete spectra (σ(Wj) = σd(Wj) for all j ≥ 1), then G and
G′ have purely discrete spectra outside 0.

Proof. Since Wj’s commute, they have a joint orthonormal basis {ψk}. Let
λj,k be the corresponding eigenvalues:

Wjψk = λj,kψk. (B.0.1)

Let Pkl = |ψk⟩ ⟨ψl|. Since {ψk} is a complete orthonormal set in H, {Pkl}
forms an orthonormal basis in S2. Indeed, for each k, l,m, n, we have

⟨Pkl, Pmn⟩S2 = Tr(P ∗
klPmn) = Tr(|ψl⟩ ⟨ψk|ψm⟩ ⟨ψn|)

= ⟨ψk, ψm⟩H⟨ψn, ψl⟩H
= δkmδln (B.0.2)

so that {Pkl} are orthonormal in S2. Next, for any κ ∈ S2 such that ⟨Pkl, κ⟩S2 =
0 for all k, l, we have

0 = ⟨Pkl, κ⟩S2 = Tr(P ∗
klκ) = Tr(|ψl⟩ ⟨ψk|κ) = ⟨ψk, κψl⟩H. (B.0.3)

Hence, all matrix components of κ vanish, which implies that κ = 0. Therefore,
{Pkl} is a basis in S2.

48
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Now, for each j ≥ 1,

WjPklW
∗
j = |Wjψk⟩ ⟨Wjψl| = λj,kλj,lPkl, (B.0.4)

W ∗
j PklWj = λj,kλj,lPkl, (B.0.5)

{W ∗
jWj, Pkl} =

∣∣W ∗
jWjψk

〉
⟨ψl|+ |ψk⟩

〈
W ∗
jWjψl

∣∣
= (|λj,k|2 + |λj,l|2)Pkl (B.0.6)

so that

G(Pkl) =
∑
j≥1

(
WjPklW

∗
j − 1

2
{W ∗

jWj, Pkl}
)

=
(∑
j≥1

λj,kλj,l −
1

2
(|λj,k|2 + |λj,l|2)

)
Pkl (B.0.7)

and

G′(Pkl) =
∑
j≥1

(
W ∗
j PklWj −

1

2
{W ∗

jWj, Pkl}
)

=
(∑
j≥1

λj,kλj,l −
1

2
(|λj,k|2 + |λj,l|2)

)
Pkl. (B.0.8)

Thus, outside 0, G (resp. G′) has purely discrete spectrum with eigenvalues∑
j≥1 λj,kλj,l −

1
2
(|λj,k|2 + |λj,l|2) (resp.

∑
j≥1 λj,kλj,l −

1
2
(|λj,k|2 + |λj,l|2)), and

0 is an eigenvalue of infinite multiplicity with eigen-operators Pkk for all k,
proving the result.

Proposition B.0.2. Suppose the series
∑

j≥1W
∗
jWj converges in the operator

norm. If the jump operators Wj’s are normal, compact and Null(Wj) = {0}
for all j ≥ 1, then G and G′ are compact on S2.

Proof. First, we fix j. Let Φj(κ) := WjκW
∗
j and Ψj(κ) := −1

2
{W ∗

jWj, κ}.
Let {ψj,k} be an orthonormal basis of H consists of eigenvectors of Wj with

corresponding eigenvalues λj,k, i.e., Wjψj,k = λj,kψj,k for each k. Let P
(j)
kl =

|ψj,k⟩ ⟨ψj,l| so that {P (j)
kl } forms an orthonormal basis in S2. Since Wj’s are

normal, we have W ∗
j ψj,k = λj,kψj,k. By (B.0.4) and (B.0.6), we have, for each

k, l,

Φj(P
(j)
kl ) = λj,kλj,lP

(j)
kl , Ψj(P

(j)
kl ) = −1

2
(|λj,k|2 + |λj,l|2)P (j)

kl . (B.0.9)

We denote the eigenvalues µj,kl := λj,kλj,l and τj,kl := −1
2
(|λj,k|2 + |λj,l|2) of

Φj and Ψj, respectively. Since Null(Wj) = {0}, we have λj,k ̸= 0 so that
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Null(Φj) = Null(Ψj) = {0}. Furthermore, we note that

multi(µj,kl) = multi(τj,kl) = multi(λj,k)×multi(λj,l), (B.0.10)

where multi(λ) is the multiplicity of the eigenvalue λ. SinceWj’s are compact,
the eigenvalues µj,kl and τj,kl must have finite multiplicities for each k, l and
both converges to zero as k, l → ∞. Hence, Φj and Ψj are compact on S2.

Next, we define GN =
∑N

j=1(Φj + Ψj). Then, the compactness of GN

follows from the compactness of Φj and Ψj for each j.
Now, we observe that, for each positive κ ∈ S2, by the cyclicity of trace

and the normality of Wj’s,∥∥ ∑
j≥N+1

Φj(κ)
∥∥2
S2

=
∑

j,ℓ≥N+1

Tr
(
Wjκ

∗W ∗
jWℓκW

∗
ℓ

)
=

∑
j,ℓ≥N+1

Tr
(
κ1/2W ∗

jWℓκW
∗
ℓWjκ

1/2
)

≤ ∥κ∥
∑

j,ℓ≥N+1

Tr
(
κ1/2W ∗

j (W
∗
ℓWℓ)Wjκ

1/2
)

≤ ∥κ∥
∥∥ ∑
ℓ≥N+1

W ∗
ℓWℓ

∥∥ ∑
j≥N+1

Tr
(
κ1/2W ∗

jWjκ
1/2
)

≤
∥∥ ∑
j≥N+1

W ∗
jWj

∥∥2∥κ∥2S2
, (B.0.11)

where, in the last line, we used ∥κ∥ ≤ ∥κ∥S2 , and, similarly,∥∥ ∑
j≥N+1

Ψj(κ)
∥∥
S2

≤ 1

2

(∥∥ ∑
j≥N+1

W ∗
jWjκ

∥∥
S2

+
∥∥ ∑
j≥N+1

κW ∗
jWj

∥∥
S2

)
≤
∥∥ ∑
j≥N+1

W ∗
jWj

∥∥∥κ∥S2 . (B.0.12)

Thus, we have, as N → ∞,

∥G−GN∥S2→S2 =
∥∥ ∑
j≥N+1

Φj

∥∥
S2→S2

+
∥∥ ∑
j≥N+1

Ψj∥S2→S2

≤ 2
∥∥ ∑
j≥N+1

W ∗
jWj

∥∥→ 0 (B.0.13)

since
∑

j≥1W
∗
jWj converges in norm. SinceGN is compact for eachN , (B.0.13)

implies that G is compact on S2. Since G
′ is the adjoint of G on S2, G

′ is also
compact on S2.

Proposition B.0.3. Suppose the jump operators Wj = 0 for j ≥ 2 and W ≡
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W1 is self-adjoint and has a purely absolutely continuous (a.c.) spectrum on
H (i.e., σ(W ) = σac(W )). Then, G and G′ has a purely a.c. spectrum on S2.

Proof. First, let EW (λ) be the spectral resolution of the self-adjoint operator
W . Then, since W has a purely a.c. spectrum, for each ψ ∈ H, there exists
some unique positive fψ ∈ L1(R, dλ), whose support is contained in σ(W ) and
∥fψ∥L1 = ∥ψ∥2H, such that

⟨ψ,Wψ⟩H =

∫
R
λdµψ(λ) =

∫
R
λfψ(λ)dλ, (B.0.14)

where µψ is the spectral measure ofW associated with ψ and dλ is the Lebesgue
measure on R, i.e., fψ(λ) = dµψ(λ)/dλ is the Randon-Nikodym derivative of
µψ w.r.t. λ.

Next, let {ψk}k≥1 be an orthonormal basis forH and define Pkl := |ψk⟩ ⟨ψl|.
Then, {Pkl}k,l≥1 forms an orthonormal basis for S2. Furthermore, let LA : κ 7→
Aκ and RA : κ 7→ κA be the left- and the right-multiplication by A on S2,
respectively. First, we note that, sinceW is bounded and self-adjoint, LW and
RW are both bounded and self-adjoint on S2. Indeed, for each κ, σ ∈ S2, we
have

∥LWκ∥S2 = ∥Wκ∥S2 ≤ ∥W∥∥κ∥S2 (B.0.15)

and

⟨(LW )∗σ, κ⟩S2 = ⟨σ, LWκ⟩S2 = Tr(σ∗Wκ)

= Tr((Wσ)∗κ) = ⟨LWσ, κ⟩S2 . (B.0.16)

The claims for RW follows from a similar computations. Since [LW , RW ] = 0,
we have

G = G′ = LWRW − 1

2
(L2

W +R2
W ) = −1

2
(LW −RW )2. (B.0.17)

Hence, the spectral property of G is determined completely by that of ZW :=
LW − RW through the spectral mapping theorem, i.e., if ZW has a purely
a.c. spectrum on S2, then so does G. To show our result, since {Pkl}k,l≥1 is
a basis for S2, it suffices to show that {Pkl}k,l≥1 ⊆ [S2]ac, where [S2]ac is the
subspace of S2 consisting of vectors whose spectral measure corresponding to
ZW is absolutely continuous w.r.t. λ.

Now, we fix k, l. Since [LW , RW ] = 0 and LW , RW are self-adjoint, by
(B.0.14), the cyclicity of trace and the Fubini’s theorem, we have, for any
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n,m ∈ N,

⟨Pkl, (LW )n(RW )mPkl⟩S2 = Tr(P ∗
klW

nPklW
m)

= ⟨ψk,W nψk⟩H⟨ψl,Wmψl⟩H

=

∫
R2

λn1λ
m
2 F̃kl(λ1, λ2)dλ1dλ2, (B.0.18)

where Fkl(λ1, λ2) := fψk
(λ1)fψl

(λ2). By linearity, this can be extended to
arbitrary polynomial p(x, y) on R2, i.e.,

⟨Pkl, p(LW , RW )Pkl⟩S2 =

∫
R2

p(λ1, λ2)F̃kl(λ1, λ2)dλ1dλ2, (B.0.19)

which in turns implies that, for any measurable function χ on R, we have

⟨Pkl, χ(ZW )Pkl⟩S2 =

∫
R2

χ(λ1 − λ2)F̃kl(λ1, λ2)dλ1dλ2. (B.0.20)

Let F̃kl(λ) :=
∫
R Fkl(λ1, λ−λ1)dλ1, which satisfies ∥Fkl∥L1 = 1 by its definition.

Then, (B.0.20) becomes

⟨Pkl, χ(ZW )Pkl⟩S2 =

∫
R
χ(λ)F̃kl(λ)dλ. (B.0.21)

Hence, the spectral measure of ZW associated with Pkl is F̃kl(λ)dλ, which is
absolutely continuous w.r.t. λ. Therefore, ZW has a purely a.c. spectrum
on S2, which implies that, due to the spectral mapping theorem, G has an
purely a.c. spectrum on S2. Since this is true for any k, l, this completes the
proof.



Appendix C

GNS representation of (B, ω∗)

In this section, we define the GNS representation associated with the pair
(B, ω∗) (by regarding B as a von Neumann algebra and ω∗ as a normal state
on B). This section follows mainly according to [44].

Recall the state ω∗ is defined through a density operator ρ∗ > 0 and is
given, for any A ∈ B, by

ω∗(A) = Tr(Aρ∗). (C.0.1)

The operator Ω∗ := ρ
1/2
∗ is Hilbert-Schmidt. Note that, since ρ∗ > 0, the state

ω∗ is faithful. Indeed, for each A ∈ B, we have

ω∗(A
∗A) = Tr(A∗Aρ∗) = ∥AΩ∗∥2S2

(C.0.2)

so that ω∗(A
∗A) = 0 implies AΩ∗ = 0. Since Ω∗ > 0, we have A = 0.

Next, we define the representation π∗ of B acting on S2 by

π∗(A)κ = Aκ, κ ∈ S2, A ∈ B, (C.0.3)

i.e., the representation for left-action by B. Then, we have

ω∗(A) = ⟨Ω∗, π∗(A)Ω∗⟩S2 . (C.0.4)

Since S2 is a closed, two-sided ideal of B, there is another natural, anti-
linear representation π′

∗ of B on S2, given by

π′
∗(A)κ = κA∗, κ ∈ S2, A ∈ B, (C.0.5)

i.e., the representation for right-action by B. It is immediate from the definition
that π′

∗ satisfies

π′
∗(AB) = π′

∗(A)π
′
∗(B), π′

∗(A
∗) = (π′

∗(A))
∗. (C.0.6)
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We remark that the superscript ∗ on the r.h.s. of (C.0.6) is the adjoint
operation of the right-multiplication of A on S2, whereas the superscript ∗

on the l.h.s. is the adjoint operation of operators in B (abuse the notation).
Recall the definition of the anti-unitary operator J :

Jκ = κ∗, for all κ ∈ S2. (C.0.7)

Properties of Ω∗, π∗ and π′
∗ are summarized in the following proposition:

Proposition C.0.1. ([44], Section V.1.4, Theorem 1.4.1)

(a) The operator norm of π∗(A) and π
′
∗(A) on S2 are given by

∥π∗(A)∥ = ∥π′
∗(A)∥ = ∥A∥. (C.0.8)

(b) Ω∗ is cyclic and separating for both π∗(B) and π′
∗(B).

(c) J∗ = J , J2 = 1 and JΩ∗ = Ω∗.

(d) π∗ and π′
∗ are transformed to each other by the anti-unitary operator J

as

Jπ∗(A)J = π′
∗(A), for each A ∈ B. (C.0.9)

Proof. (a) By definition, we have

∥π∗(A)∥2S2
= sup

∥κ∥S2
=1

∥π∗(A)κ∥2S2
= sup

∥κ∥S2
=1

Tr(κ∗A∗Aκ) = ∥A∥2, (C.0.10)

where the last equality follows from by choosing κ as some rank-1 projection
operator. The norm for π′

∗(A) can be found in a similar way using cyclicity of
trace and the fact that ∥A∗∥ = ∥A∥.

(b) Suppose κ ∈ S2 is an element such that κ ⊥ π∗(A)Ω∗ for all A ∈ B.
Then, by taking A = κ (by viewing κ as an element in B), we have

0 = ⟨κ, π∗(κ)Ω∗⟩S2 = Tr
(
κ∗κρ1/2∗

)
. (C.0.11)

Since ρ
1/2
∗ > 0, we must have κ∗κ = 0, which implies that κ = 0. Together

with the faithfulness of ω∗, we see that Ω∗ is a cyclic and separating vector for
the representation π∗.

The cyclicity of Ω∗ for π′
∗(B) follows from the separability of Ω∗. The

separatibility of Ω∗ for π∗(B) and π′
∗(B) are proven similarly.

(c) Let J be as in (C.0.7). Since J2κ = (κ∗)∗ = κ for all κ ∈ S2, we have

J2 = 1. (C.0.12)
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Next, for each κ, σ ∈ S2, by cyclicity of trace and by the fact that J is
anti-linear, we have

⟨J∗κ, σ⟩S2 = ⟨κ, Jσ⟩S2 = ⟨Jσ, κ⟩S2 = Tr((σ∗)∗κ)

= Tr(σκ) = Tr((κ∗)∗σ) = ⟨κ∗, σ⟩S2 = ⟨Jκ, σ⟩S2 . (C.0.13)

Thus, J∗ = J .
Finally, by the definition (C.0.7), we have JΩ∗ = (ρ

1/2
∗ )∗ = ρ

1/2
∗ = Ω∗.

(d) For each A ∈ B, since JΩ∗ = Ω∗ from part (c), we have

π′
∗(A)Ω∗ = ρ1/2∗ A∗ = (Aρ1/2∗ )∗ = J(π∗(A)Ω∗) = (Jπ∗(A)J)Ω∗. (C.0.14)

Since Ω∗ is cyclic for both π∗(B) and π′
∗(B), we conclude that Jπ∗(A)J = π′

∗(A)
for all A ∈ B.

Thus, the triple (S2, π∗,Ω∗) gives the GNS representation associated with
(B, ω∗).

Proof of Theorem 4.2.6. Recall the definitions of the unbounded, self-adjoint
operator

H∗ := − ln ρ∗, so that ρ∗ = e−H∗ , (C.0.15)

and the automorphism group αt on B by

αt(A) = eiH∗tAe−iH∗t. (C.0.16)

We see that ω∗ is an invariant state under αt. Indeed, since α
′
t(ρ∗) ≡ e−iH∗tρ∗e

iH∗t =
ρ∗, we have, for each A ∈ B and t ∈ R,

ω∗(αt(A)) = Tr(Aα′
t(ρ∗)) = Tr(Aρ∗) = ω∗(A). (C.0.17)

We define the family of operators U(t) on S2, given by

U(t)(π∗(A)Ω∗) = π∗(αt(A))Ω∗, for all A ∈ B. (C.0.18)

By (C.0.8) and ∥αt(A)∥ = ∥A∥, for each t, the operator U(t) is an isometry.
Since αt is a

∗-automorphism group of B and ω∗ is invariant under αt, U(t) is
a one-parameter family of unitary operators and U(t)Ω∗ = Ω∗ for each t ∈ R
(see [13], Corollary 2.3.17). Furthermore, since αt is weakly

∗ continuous on B,
we have

Lemma C.0.2. The one-parameter group U(t) of unitary operators defined in
(C.0.18) is strongly continuous.
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Proof of Lemma C.0.2. For each A ∈ B, we have

∥U(t)(π∗(A)Ω∗)− π∗(A)Ω∗∥2S2

= 2ω∗(A
∗A)− ω∗(A

∗αt(A))− ω∗((αt(A))
∗A). (C.0.19)

Since αt is weakly∗ continuous, for each ϵ > 0, there exists some δ > 0 such
that, for any 0 < |t| < δ, the r.h.s. of (C.0.19) is less than ϵ2. Thus, for
0 < |t| < δ, we have

∥U(t)(π∗(A)Ω∗)− π∗(A)Ω∗∥S2 < ϵ. (C.0.20)

For general κ ∈ S2, since F is dense in S2, for each ϵ > 0, there exists some
A ∈ B such that ∥κ − π∗(A)Ω∗∥S2 < ϵ. By (C.0.20) and the fact that U(t) is
unitary for each t ∈ R, for any 0 < |t| < δ, we have

∥U(t)κ− κ∥S2 ≤ ∥U(t)(π∗(A)Ω∗)− π∗(A)Ω∗∥S2

+ 2∥κ− π∗(A)Ω∗∥S2 < ϵ+ 2ϵ = 3ϵ. (C.0.21)

Thus, U(t) is strongly continuous on S2.

Now, by the cyclicity of Ω∗ and the fact that U(t)Ω∗ = Ω∗, we have, for all
A ∈ B,

U(t)π∗(A)U(t)
∗ = π∗(αt(A)). (C.0.22)

Let L∗ be the generator of U(t). Then, we have

π∗(αt(A)) = eiL∗tπ∗(A)e
−iL∗t, L∗Ω∗ = 0, (C.0.23)

which proves (4.2.5).
To prove relation (4.2.6), we introduce entire analytic elements for αt (see

[13], Section 2.5.3).

Definition C.0.3. We say an operator A ∈ B is entire analytic for αt if there
exists a function f : C → B such that

(a) f(t) = αt(A) for t ∈ R.

(b) The function z 7→ ω(f(z)) is analytic on the entire plane C for all ω ∈ B′,
where B′ is the dual space of B.

We denote the set of entire analytic operators for αt by Bana.

By Lemma C.0.2, U(t) is strongly continuous, which leads to the following
lemma:
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Lemma C.0.4. For each A ∈ B and any ϵ > 0, there exists some B ∈ Bana

such that

∥(π∗(A)− π∗(B))Ω∗∥S2 < ϵ. (C.0.24)

Proof. We follow the argument in [13], Proposition 2.5.22. Let A ∈ B be fixed.
For each integer n ≥ 1, we define

An =

√
n

π

∫
R
αt(A)e

−nt2dt. (C.0.25)

Each An is entire analytic for αt. Indeed, for each z ∈ C, the function

fn(z) =

√
n

π

∫
R
αt(A)e

−n(t−z)2dt, (C.0.26)

is a well-defined function of z ∈ C since the function t 7→ e−(t−z)2 is integrable
for each z and, when z = s ∈ R, we have

fn(s) =

√
n

π

∫
R
αt(A)e

−n(t−s)2dt =

√
n

π

∫
R
αt+s(A)e

−nt2dt

= αs

[√
n

π

∫
R
αt(A)e

−nt2dt

]
= αs(An). (C.0.27)

Also, for each ω ∈ B′, we have

ω(fn(z)) =

√
n

π

∫
R
ω(αt(A))e

−n(t−z)2dt (C.0.28)

so that

|ω(fn(z))| ≤ ∥ω∥∥A∥
√
n

π

∫
R
|e−n(t−z)2|dt

≤ ∥ω∥∥A∥
√
n

π

∫
R
e−n(t−x)

2+ny2dt ≤ eny
2∥ω∥∥A∥, (C.0.29)

where z = x + iy. It then follows from the Lebesgue dominated convergence
theorem that the function z 7→ ω(fn(z)) is entire analytic. Thus, An is
analytic.

Next, we show that ∥(π∗(An)−π∗(A))Ω∗∥S2 → 0 as n→ ∞. For notational
simplicity, we drop the subscript in the norm ∥ · ∥S2 in the rest of this proof.
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Let ξA = π∗(A)Ω∗. Since
√

n
π

∫
R e

−nt2dt = 1, by (C.0.18), we have

∥(π∗(An)− π∗(A))Ω∗∥

≤
√
n

π

∫
R
e−nt

2∥π∗(αt(A))− π∗(A))Ω∗∥dt

=

√
n

π

∫
R
e−nt

2∥U(t)ξA − ξA∥dt (C.0.30)

By Lemma C.0.2, U(t) is strongly continuous so that, for any ϵ > 0, there
exists some δ such that, for all |t| < δ, ∥U(t)ξA − ξA∥ < ϵ. Note that the
choice of δ is independent of n. Thus, we choose n large enough so that√

n

π

∫
|t|≥δ

e−nt
2

dt <
ϵ

2∥A∥
. (C.0.31)

It follows that, since ∥U(t)ξA∥ = ∥ξA∥,√
n

π

∫
R
e−nt

2∥U(t)ξA − ξA∥dt

=

√
n

π

∫
|t|<δ

e−nt
2∥U(t)ξA − ξA∥dt

+

√
n

π

∫
|t|≥δ

e−nt
2∥U(t)ξA − ξA∥dt

≤ ϵ

√
n

π

∫
|t|<δ

e−nt
2

dt+

√
n

π

∫
|t|≥δ

e−nt
2

(∥U(t)ξA∥+ ∥ξA∥)dt

≤ ϵ+ 2∥ξA∥
√
n

π

∫
|t|≥δ

e−nt
2

dt

< ϵ+ ϵ = 2ϵ. (C.0.32)

This completes the proof.

Lemma C.0.5. Every element in Fana := π∗(Bana)Ω∗ is entire analytic for
U(t). Consequently, Fana ⊆ D(ezL∗) for all z ∈ C.

Proof of Lemma C.0.5. For all A ∈ Bana and σ ∈ S2, the function

z 7→ ⟨σ, U(z)(π∗(A)Ω∗)⟩S2 = ⟨σ, π∗(αz(A))Ω∗⟩S2

= Tr(σ∗αz(A)Ω∗) (C.0.33)

is analytic on C. Thus, every elements in Fana is entire analytic for U(t).
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Now, by Lemma C.0.5, for each A ∈ Bana, π∗(A)Ω∗ ∈ D(e−L∗/2) and

e−L∗/2(π∗(A)Ω∗) = π∗(αi/2(A))Ω∗ = αi/2(A)ρ
1/2
∗

= (ρ1/2∗ Aρ−1/2
∗ )ρ1/2∗ = ρ1/2∗ A

= (A∗ρ1/2∗ )∗ = J(π∗(A
∗)Ω∗). (C.0.34)

Since J2 = 1, this yields, for all A ∈ Bana,

π∗(A
∗)Ω∗ = Je−L∗/2(π∗(A)Ω∗). (C.0.35)

Next, for any A ∈ B, we construct a sequence {An} in Bana as in the proof
of Lemma C.0.4 so that, as n→ ∞,

∥π∗(An)Ω∗ − π∗(A)Ω∗∥S2 → 0, (C.0.36)

∥Je−L∗/2(π∗(An)Ω∗)− π∗(A
∗)Ω∗∥S2

= ∥π∗(A∗
n)Ω∗ − π∗(A

∗)Ω∗∥S2 → 0. (C.0.37)

By the closedness of the operator Je−L∗/2, we have π∗(A)Ω∗ ∈ D(e−L∗/2) and

Je−L∗/2(π∗(A)Ω∗) = π∗(A
∗)Ω∗, (C.0.38)

which proves (4.2.6).

Remark C.0.6. In our case, we can also define entire analytic elements for U(t)
in S2 in a similar way: An element κ ∈ S2 is entire analytic for U(t) if, for all
σ ∈ S2, the function z 7→ ⟨σ, U(z)κ⟩S2 is analytic on C.

Furthermore, we can define entire analytic elements for U(t) equivalently
using its generator L∗: An element κ ∈ S2 is entire analytic if κ ∈ D(Ln∗ ) for
all n ∈ N and, for all t > 0, the series

∞∑
n=0

tn

n!
∥Ln∗κ∥S2 <∞. (C.0.39)

Hence, κ ∈ D(ezL∗) for all z ∈ C if κ ∈ S2 is entire analytic for U(t). For
a proof of the equivalence of the above two definitions for entire analytic
elements, see [13], p.178–179.

Remark C.0.7. In fact, the state ω∗ is a KMS-state w.r.t. the automorphism
group αt, i.e., ω∗ is invariant under αt and, for each A,B ∈ B, the function
FA,B(z) := ω∗(αz(A)B) is analytic on the strip I := {z ∈ C | 0 < Im(z) < 1}
and continuous on I such that

FA,B(t) = ω∗(αt(A)B), FA,B(t+ i) = ω∗(Bαt(A)). (C.0.40)
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In other words, ω∗ is an equilibrium state of αt.

Remark C.0.8. Formally, by regarding eiH∗t as an element in B, we can write

U(t) = π∗(e
iH∗t)π′

∗(e
iH∗t) (C.0.41)

or, equivalently,

L∗ = π∗(H∗)− π′
∗(H∗) (C.0.42)

by extending the representations π∗ and π′
∗ to those unbounded operators

affiliated to B.
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