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Abstract

The directed landscape L introduced by Dauvergne, Ortmann, and Virág in 2018 in their ground-

breaking paper [9] has rapidly become a central object of study in modern probability theory. It

is believed by many that this random directed metric is possibly the universal scaling limit of the

random growth models in the KPZ universality class. It was proven by Dauvergne, Nica, and Virág

in 2021 in [11] that the directed landscape is, among other things, the scaling limit of at least six

different models of last passage percolation in the uniform on compact topology. This universality of

L as a scaling limit, as well as its ties to other random growth models, makes understanding anything

about its fractal structure and geometry of significant interest in the wider long-term endeavour to

fully understand the structure of the KPZ universality class.

In this thesis, we prove several results about the fractal structure of the level sets of L(0, 0; ·, ·)

as a function on R×R>0, which translate quite easily into very similar statements about the corre-

sponding level sets of L on its domain. We first prove that the h−level sets of rescaled Exponential

last passage percolation starting at (0,0) converge in the Hausdorff metric induced by the Euclidean

norm to the h−level set of L(0, 0; ·, ·) on any convex compact set K ⊆ R×R>0. We then prove that

the Hausdorff dimension of the h−level set of L(0, 0; ·, ·) is at most 5
3 almost surely for all h ∈ R. We

conclude this thesis by developing a strategy to systematically find lower bounds on the Hausdorff

dimension of random h−level sets of stochastic processes indexed by R2 that hold with a positive

h−dependent probability ph. We apply this strategy to L(0, 0; ·, ·) to establish that the h− level set

of L(0, 0; ·, ·) has Hausdorff dimension at least 3
2 with a positive h−dependent probability. In the

process of doing so, we also construct a partial-two point bound for L(0, 0; ·, ·).

This thesis is based on several projects of joint work conducted with Virginia Pedreira under the

supervision of Bálint Virág.
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Chapter 1

Preliminary Material

1.1 Introduction and Motivation

The Central Limit Theorem is arguably the single most important and impactful theorem in the

history of mathematics. Its ability to describe mass amounts of physical phenomena in the natural

world using the normal distribution has played an irreplaceable role in shaping centuries of scientific

and statistical research, and continues to do so to this day. It would not be hyperbole to state the

world would not be the same today without the immense utility that this theorem has provided in

every single domain with a notion of empirical evidence. The universality of this theorem, i.e. that

under light assumptions it does not depend on the specific underlying probability distributions being

studied, is essential in explaining its reach and its power. However, despite its vast reaches, there

are still many physical and mathematical phenomena that do not fall into the domain of the Central

Limit Theorem. Due to the profound impact that this theorem has had, finding other examples of

this sort of universal limiting behaviour in such contexts has been a longstanding topic of interest

within probability theory.

Several other examples of this sort of universal behaviour for different classes of random objects

and phenomena have been found throughout history, but one that has been of particular interest

over the past 40 years has been the so-called KPZ universality class. In their groundbreak-

ing paper [17] in 1986, Kardar, Parisi, and Zhang introduced the now famous eponymous KPZ

equation

∂tH = ν∂2
xH− λ (∂xH)

2
+

√
Dξ.

In this stochastic partial differential equation, ν, λ, and D are physical constants, ξ = ξ(x, t) is

spacetime white noise, and H(x, t) is interpreted as the height of a randomly growing interface H at

the spatial coordinate x at a point t in time. Corwin provides an excellent survey on the rich history

of this stochastic partial differential equation in both physics and mathematics in [6]. A similarly

comprehensive survey is provided by Quastel in [19]. Much can be and has been said about the KPZ

equation, but in the context of this thesis, two aspects of this equation stand out in particular.

The first was that under modest hypotheses, the random growth models which solve the KPZ

equation should be stable under changes to parameters of these models, such as the underlying

1



CHAPTER 1. PRELIMINARY MATERIAL 2

probability distributions or local rules and behaviours. The second and arguably most recognizable

aspect is the so-called KPZ scaling, often also known as the 1-2-3 scaling. Roughly speaking,

on a window of spacetime with space proportional to σ
2
3 and time proportional to σ that the fluc-

tuations of this random height function about its mean will be proportional to σ
1
3 . Despite proofs

of most claims about random growth models that fall into this universe remaining elusive, it is the

widespread occurrence of this scaling in randomly growing interfaces within physics and mathemat-

ics that leads to the belief in this universality. It is precisely the elusiveness of the global structure

of the KPZ universality class which had made the directed landscape, introduced by Dauvergne,

Ortmann, and Virág in [9], of such immediate and profound interest within the probability commu-

nity upon its discovery. The relationship between the directed will be expanded upon in section 1.4.

The potentially foundational role that the directed landscape will play in this unravelling the long-

standing mysteries of the random growth models in this universe makes understanding its structure

and geometric properties of significant interest within the probability community at large. Given

the high degrees of self-similarity and symmetries of the directed landscape, investigating its frac-

tal structure is a very natural avenue of research. Similar questions have been asked by Ganguly

and Zhang in [13], (though their techniques unfortunately do not extend to this context in partic-

ular), Basu and Bhatia in [2], Bhatia independently in [4], and Bates, Ganguly, and Hammond in [3].

We will specifically be investigating the level sets of the directed landscape, sometimes restricted

to convex and compact sets, in this thesis. A summary of our findings is presented at the end of

this chapter in section 1.7. Will now introduce some preliminary background information needed to

understand these results. This thesis is relatively self-contained and should be accessible to most

readers who have taken a full year of graduate level measure-theoretic probability theory.

1.2 The Parabolic Airy Line Ensemble

We begin our preliminary material by providing an expedited introduction to a particular line

ensemble of continuous functions from R to R known as the parabolic Airy line ensemble.

Just as understanding the normal distribution is key to understanding Brownian motion, a baseline

level familiarity with the parabolic Airy line ensemble is key to understanding the random objects

which will be working with in this thesis. In much the same way that one may intuitively think

of a Brownian motion as being an infinite number of normal random variables glued together in a

particularly nice way, one may also in a sense think of the directed landscape, the central random

object upon which we will focus, as being composed of an infinite number of copies of the top line of

the parabolic Airy line ensemble glued together in a particularly nice way. We borrow our definition

in this thesis from the exposition in [10].

Definition 1.2.1. The parabolic Airy line ensemble is a collection of functions A = (Ai)
∞
i=1 in

C(R,R) such that for all i ∈ Z, Ai > Ai+1, and the process(
Ai(r) + r2

)
r∈R
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is the unique determinantal process with kernel K given by

K
(

(x, s); (y, t)
)

=


∫∞
0

e−λ(s−t)Ai(x + λ)Ai(y + λ)dλ, if s ≥ t

−
∫ 0

−∞ e−λ(s−t)Ai(x + λ)Ai(y + λ)dλ, if s < t

where Ai is the Airy function.

The process
(
Ai(r) + r2

)
r∈R

is stationary and is referred to as the Airy line ensemble. For the

sake of brevity, we will not go into further detail in this thesis, but a more thorough introduction to

determinantal processes can be found in [14]. In the universe that we are working in, the full line

ensemble A, or at least large subsets of A, are often all used at once. However, in the work contained

in this thesis, we will only ever be working with A1, the top line of the parabolic Airy line ensemble.

It is also important to mention that the distribution of Ai(r) + r2 for any fixed r ∈ R is well-

understood. In particular, the distribution of Ai(r) + r2 is what is known as the Tracy-Widom2

distribution, denoted TW2. Much can be said about this distribution and its importance in the

context of the KPZ universality class, but we will include only the information strictly necessary to

understand this thesis. To that end, the most important facts that we will use about this distribu-

tion is that it has a bounded density with respect to the Lebesgue measure on R and that it has

strong upper and lower tail bounds. However, as we will never directly use the precise formula for

this density or the tail bounds of this distribution, we do not include them here for brevity. A more

thorough discussion about these ideas can be found in [15].

In 2013, Corwin and Hammond developed a technique called the Brownian Gibbs property

for working with the law of A and comparing it to the law of a collection of non-intersecting Brow-

nian bridges. A full exposition can be found in [7], but by thinking of the line ensemble A as a

function

A : Z>0 × R → R

(i, r) 7→ Ai(r)

the Brownian Gibbs property can essentially be thought of as saying that for any compact set

K = {i1, i2, . . . , in} × [a, b] ⊆ Z>0 × R,

if we condition on the values of A on KC , then the law of A restricted to K is absolutely continuous

with respect to the law of n non-intersecting Brownian bridges

Bi1 > Bi2 > · · · > Bin

with diffusion parameter 2 from (a,Aik(a)) to (b,Aik(b)) for each k ∈ {1, 2, . . . , n}. Although the

Brownian Gibbs property was originally introduced by Corwin and Hammond, in this thesis we opt

to use a version of this absolute continuity statement proven by Dauvergne in 2023 in [8] which has

stronger bounds on the Radon-Nikodym derivative than in the original version of the result.
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The following absolute continuity result from Theorem 1.8 of [8] will be at the core of our own

absolute continuity lemmas that we prove in sections 5.1 and 6.1. We do not need the full power of

Dauvergne’s theorem, however, so we will only state a weaker version of it here, which is outlined in

Example 1.7 of the same paper. We also note that although Dauvergne states the original version of

this result for an interval of the form [0, T ], the same result holds on a general interval [a0, a0 + T ]

for any a0 ∈ R due to the shift invariance of the parabolic Airy line ensemble.

Theorem 1.2.2 (Dauvergne, Example 1.7 in [8]). For any a0 ∈ R and T0 ≥ 1, there exists an

absolute constant c > 0 such that

Law

((
A1(r)

)
r∈[a0,a0+T0]

)
≤ ecT

3
0 Law

((
L1(r)

)
r∈[a0,a0+T0]

)

where we may decompose the stochastic process
(
L1(r)

)
r∈[a0,a+T0]

as

(
L1(r)

)
r∈[a0,a0+T0]

d
=
(
L(r) + B(r)

)
r∈[a0,a0+T0]

with B a diffusion parameter two Brownian bridge on [a0, a0 +T0] from 0 to 0 and L an affine linear

function which is independent of B satisfying

L(a0)
d
= L1(a0) and L(a0 + T0)

d
= L1(a0 + T0).

Moreover, there exist T0−dependent (and a0−independent) constants d1, d2 > 0 such that for all

m > 0, we have that

P
(
L(a0) ∨ L(a0 + T0) > m

)
≤ exp

(
−4

3
m

3
2 + d1m

5
4

)
(1.2.1)

P
(
L(a0) ∧ L(a0 + T0) < −m

)
≤ 2 exp

(
−d2m

3
)

(1.2.2)

P
(
|L(a0) − L(a0 + T0)| > m

)
≤ exp

(
− 1

4T0
m2 − 2

3
m

3
2 + d1m

5
4

)
. (1.2.3)

Due to the fact that the bound on the Radon-Nikodym derivative above grows exponentially as

T0 → ∞, Theorem 1.2.2 is not well suited for dealing with A1 on arbitrarily long intervals [a0, a0+T0].

However, it is often that case that when working with A1 on extremely long intervals, we are actually

only interested in understanding A1 on a very specific and finite collection of subintervals within

that singular extremely large interval [a0, a0T0]. In this situation where the values of A1(r) are of

no concern for the vast majority of the points r ∈ [a0, a0 +T0], Dauvergne extends Theorem 1.8 and

provides a stronger version which is capable of handling the distribution of A1 on a finite disjoint

union of closed intervals. As before, we will not need the full power of Dauvergne’s work, so we only

present a simpler version of that theorem here.

Theorem 1.2.3 (Dauvergne, Theorem 3.8 in [8]). Fix T0 ≥ 1 and a = (a1, a2) ∈ R2 such that

a1 + T0 < a2. Then there exists an absolute constant c > 0 and a random process (La
1 (r))r∈R such
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that

Law
(

(A1(r))r∈[a1,a1+T0]
, (A1(r))r∈[a2,a2+T0]

)
≤ ecT

3
0 Law

(
(La

1 (r))r∈[a1,a1+T0]
, (La

1 (r))r∈[a2,a2+T0]

)
.

Moreover, for each j ∈ {1, 2} we can write

(
La
j (r)

)
r∈[aj ,aj+T0]

d
=
(
Bj(r) + Lj(r)

)
r∈[aj ,aj+T0]

where Bj is a diffusion parameter 2 Brownian bridge from 0 to 0 on [aj , aj +T0], B1 is independent

of B2, (B1, B2) is independent of (L1, L2), we have the decomposition in law

(
Lj(r)

)
r∈[aj ,aj+T0]

d
=

(
(aj + T0) − r

T0
La
1 (aj) +

r − aj
T0

La
1 (aj + T0)

)
r∈[aj ,aj+T0]

(1.2.4)

and for some T0−dependent constants c1, c2 > 0 we have that for all m > 0,

P
(
|Lj(aj) + a2j | > m

)
= P

(
|L(aj) + a2j | > m

)
≤ c1e

−c2m
3/2

P
(
|Li(aj + T0) + (aj + T0)2| > m

)
= P

(
|L(aj + T0) + (aj + T0)2| > m

)
≤ c1e

−c2m
3/2

. (1.2.5)

Though this is at its core only a minor adjustment to the exact phrasing used by Dauvergne, this

does vary slightly from his original presnetation of this result. For the sake of completeness, we now

take a moment to elaborate a bit more on how exactly this follows from the original statement of

Dauvergne’s Theorem 3.8. In Dauvergne’s original, fully generalized version of this theorem, what

we first have is that under these same hypotheses,

Law
(

(A1(r))r∈[a1,a2+T0]

)
≤ ecT

3
0 Law

(
(La

1 (r))r∈[a1,a2+T0]

)
where the stochastic process La

1 has the property that

Law
(

(La
1 (r))r∈[a1,a2+T0]

)
= Law

(
(B(r) + L(r))r∈[a1,a2+T0]

)
.

The stochastic process
(
L(r)

)
r∈[a1,a2+T0]

is the random line segment on [a1, a2 + T0] such that

L(a1) = La
1 (a1) and L(a2 + T0) = La

1 (a2 + T0)

which characterizes it uniquely almost surely. The stochastic process
(
B(r)

)
r∈[a1,a2+T0]

is defined

by the property (among others) that (
B(r)

)
r∈[a1,a1+T0]

is a diffusion parameter 2 Brownian bridge from
(
a1, 0

)
to
(
a1 + T0, L(a1 + T0)

)
, and that

(
B(r)

)
r∈[a2,a2+T0]
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is a diffusion parameter 2 Brownian bridge from
(
a2, L(a2)

)
to
(
a2 +T0, 0

)
. Based on this, we are

able to then write that (
B(r)

)
r∈[a1−T0,a1+T0]

d
=
(
B1(r) + ℓ1(r)

)
r∈[a1,a1+T0]

where B1 is a diffusion parameter 2 Brownian bridge from (a1, 0) to (a1+T0, 0) and ℓ1 is the random

affine function such that

ℓ1(a1) = 0 and ℓ1(a1 + T0) = L(a1 + T0).

Similarly, we can also write that(
B(r)

)
r∈[a2−T0,a2+T0]

d
=
(
B2(r) + ℓ2(r)

)
r∈[a2,a2+T0]

where B2 is a diffusion parameter 2 Brownian bridge from (a2, 0) to (a2+T0, 0) and ℓ2 is the random

affine function such that

ℓ2(a2) = L(a2) and ℓ2(a2 + T0) = 0.

In this setup, B1 and B2 are both independent of all other terms that we have extracted from La
1 .

Putting all of these observations together, we then obtain that

Law

((
A1(r)

)
r∈[a1,a1+T0]

,
(
A1(r)

)
r∈[a2,a2+T0]

)
≤ ecT

3
0 Law

((
La
1 (r)

)
r∈[a1,a1+T0]

,
(
La
1 (r)

)
r∈[a2,a2+T0]

)
= ecT

3
0 Law

((
B1(r) + L(r) + ℓ1(r)

)
r∈[a1,a1+T0]

,
(
B2(r) + L(r) + ℓ2(r)

)
r∈[a2,a2+T0]

)
=: ecT

3
0 Law

((
B1(r) + L1(r)

)
r∈[a1,a1+T0]

,
(
B2(r) + L2(r)

)
r∈[a2,a2+T0]

)
.

We also note that it is the equality of laws

Law

((
La
1 (r)

)
r∈[a1,a1+T0]

,
(
La
1 (r)

)
r∈[a2,a2+T0]

)
= Law

((
B1(r) + L(r) + ℓ1(r)

)
r∈[a1,a1+T0]

,
(
B2(r) + L(r) + ℓ2(r)

)
r∈[a2,a2+T0]

)
and the fact that B1(a1 + T0) = B2(a2) = 0, which implies that

L1(a1 + T0)
d
= La

1 (a1 + T0) and L2(a2)
d
= La

1 (a2)

in Theorem 1.2.3. The tail bounds in equation (1.2.5) follow from applying the same general tech-

niques used by Dauvergne in [8] to find tail bounds for the process introduced in Theorem 1.8.
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1.3 Last Passage Percolation

The first and most fundamental definition that we will introduce in this section is the notion of

a directed metric. This will essentially be a metric where we relax the requirement that it be

non-negative, and allow it to take on at most one of ∞ and −∞ in addition to real values.

Definition 1.3.1. A directed metric of positive sign on a set S is a function d : S2 → R∪{∞}
such that

d(p, p) = 0 for all p ∈ S

d(p, q) + d(q, r) ≥ d(p, r) for all p, q, r ∈ S.

A function d : S2 → R ∪ {−∞} is called a directed metric of negative sign on S if −d is a

directed metric of positive sign on S.

While there is no shortage of examples of directed metrics of negative or positive sign (including all

true metrics for instance), the directed metrics of negative sign that we will be most interested in

will arise in the random growth model called last passage percolation.

Definition 1.3.2. Let G = (V,E) be the directed graph defined by V := Z>0 × Z>0 and

E :=
{(

(x1, y1), (x2, y2)
)

: (x2, y2) = (x1 + 1, y1) or (x2, y2) = (x1, y1 + 1)
}
.

For each v ∈ V place an i.i.d. random weight Wv on the vertex v. Letting P be the set of paths in

G, i.e. the up-right paths on the lattice V , define the random directed metric of negative sign dLPP

on the directed graph G by

dLPP (p, q) := sup

{∑
v∈π

Wv : π = π1π2 . . . πn ∈ P, π1 = p, and πn = q

}
(1.3.1)

for all p, q ∈ V . The last passage value from p to q is defined as the value dLPP (p, q).

Several other variations of this definition also exist, but for our purposes we will only consider Expo-

nential last passage values (i.e. where the weights are i.i.d. Exponential random variables), with the

knowledge that switching between different models has no impact whatsoever on any result in this

thesis. Exponential last passage values can also be extended to all points in R2 via standard quan-

tization methods. The primary reason for introducing last passage percolation, aside from having

a concrete example of a random growth model in hand, is that it belongs to the KPZ universality

class. An explanation of this membership can be found in [10].

In fact, in this same paper, Dauvergne, Nica, and Virág proved that this model of last passage

percolation and several others have an extremely important scaling limit in the uniform on compact

topology on C(R4
↑,R), where the set R4

↑ is defined as

R4
↑ :=

{
(x, s; y, t) ∈ R4 : s < t

}
.
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Figure 1.1: A visual representation of a path in a last passage percolation model. Here we are
identifying squares in the grid with points in the lattice V = Z>0 × Z>0. Paths in this graph are
just up-right paths on the grid, and the last passage value gives us the maximal weight of a path
between two points. We are indicating the path π of maximal weight from (1, 1) to (6, 6) with blue
squares. This optimal path π will be an up-right path-valued random variable in general.

This scaling limit of these various last passage percolation models is a random directed metric of

negative sign, which appears to be intimately related to the KPZ universality class as a whole.

This random directed metric of negative sign is called the directed landscape, denoted L, and

was originally introduced by Dauvergne, Ortmann, and Virág in their groundbreaking paper [9] in

2018. The original definition of the directed landscape is independent of its characterization as the

uniform on compact limit of lass passage percolation, but requires a modest amount of overhead and

terminology to state. In the interest of maximizing readability, we will use Dauvergne, Nica, and

Virág’s characterization of L as a limit as our definition in this thesis, and introduce its defining

properties afterwards as propositions.

We will introduce this limit theorem in the following section. We also note however that due

to the immense generality of the full version of this result, we will again limit our scope to a single

demonstrative example in the case of Exponential last passage percolation. We will also remove a

degree of choice in the original system by fixing a value of one of the original theorem’s parameters

ρ. As before, this choice is done simply to maximize readability and has no influence at all on the

results which build upon this theorem.

1.4 The Directed Landscape

In this section, we will briefly introduce the definition of the directed landscape, as well as the

most relevant propositions and theorems related to it for the results in this thesis. Much, much more

than this can be said, however, due to the importance of this random object within the context of

trying to understand the KPZ universality class. It is the belief of Virág and numerous others

working in this domain that the directed landscape is either the central limiting random object in

this class, or at the very least, a very large component of this elusive limiting random object. A much

fuller and richer discussion about the directed landscape and its origins can be read in [9], as well as
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in [11] where Dauvergne, Nica, and Virág explicitly prove the universality of the directed landscape

for several well-known random growth models in the KPZ class. We will provide a significantly

simplified and lightly rephrased version of that result in the case of last passage percolation, and

take it to be our definition of the directed landscape. After this, we will introduce its most relevant

properties for this thesis.

Theorem 1.4.1 (Dauvergne, Nica, and Virág, Theorem 1.7 in [11]). For any (p, q) ∈ R4
↑, let

dLPP (p, q) be the Exponential last passage value from p to q, and define four positive constants

α, β, χ, and τ by

α := 8, β := 2, χ := 2
4
3 , and τ := 2

5
4 . (1.4.1)

There exists a random directed metric of negative sign L ∈ C(R4
↑,R), independent of the choice of

α, β, χ, and τ with the following property: For any sequence σ → ∞, there is a coupling of L and

identically distributed copies dσ of dLPP such that

dσ
(
0, 0; yσ2τ + tσ3,−tσ3

)
→ L(0, 0; y, t)

uniformly in (y, t) as σ → ∞ on any compact K ⊂ R×R>0, as functions in C(K,R), almost surely.

We have kept the notation used in Theorem 1.4.1 unchanged to ease the transition between our

formulation and the original theorem in [10], but going forward we will make several notational

changes to remove ambiguity in the context of this thesis. Namely, we will use the sequence (n)∞n=1

instead of an arbitrary sequence σ which goes to ∞, and will refer to the identically distributed

copies of dLPP by {
d
(n)
LPP

}∞

n=1
.

This notation and this theorem will only be relevant in Chapter 2, but similar-looking notation

will be used throughout our other work, so we choose to remove any ambiguity here as a matter of

prudence. With this theorem now clearly stated, we can introduce the following definition.

Definition 1.4.2. The directed landscape is defined to be the random directed metric of negative

sign L ∈ C(R4
↑,R) in Theorem 1.4.1.

It was proven via an equivalent definition in [9] that L exists and is unique almost surely. However,

because this is not the original definition of the directed landscape, we will state the properties that

uniquely characterize it in its original definition as a proposition here.

Proposition 1.4.3. The directed landscape L satisfies the following three properties.

• (Metric composition law): Almost surely, for any (x, s; y, t) ∈ R4
↑ and any s < r < t we

always have that

L(x, s; y, t) = max
z∈R

(
L(x, s; z, r) + L(z, r; y, t)

)
.

• (Independent temporal increments): For any collection of disjoint time intervals {(si, ti)}ni=1 ,

the random functions in the collection{
L(·, si; ·, ti)

}n

i=1
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are all mutually independent.

• (Parabolic Airy marginals): For any fixed time interval [s, t] with s < t, the random

function in C(R2,R) given by

(x, y) 7→ L(x, s; y, t)

is equal in distribution to the function

(x, y) 7→ (t− s)
1
3A1

(
(t− s)−

2
3 (x− y)

)
.

We note here that this third property is a slightly weaker version of the actual statement in [9]. We

choose to omit that stronger property for the sake of brevity. The weaker version that we present

here will be sufficient for our purposes throughout this thesis.

The second proposition that we will make extensive use of is the fact that the directed landscape

has a considerable number of symmetries, giving it its robust fractal structure.

Proposition 1.4.4. As functions in C
(
R4

↑,R
)
we have the following equalities in distribution for

any (x, t; y, t + s) ∈ R4
↑, r, c ∈ R and any q > 0:

• (Spatial stationarity): L(x, t; y, t + s)
d
= L(x, t + r; y, t + s + r)

• (Temporal stationarity): L(x, t; y, t + s)
d
= L(x + c, t; y + c, t + s)

• (Flip symmetry): L(x, t; y, t + s)
d
= L(−y,−s− t; −x,−t)

• (Skew stationarity): L(x, t; y, t + s)
d
= L(x + ct, t; y + ct + sc, t + s) +

((x−y−sc)2−(x−y)2)
s

• (KPZ rescaling): L(x, t; y, t + s)
d
= L

(
q−2x, q−3t; q−2y, q−3(t + s)

)
Another extremely useful property of the directed landscape is that it satisfies a very strong mod-

ulus of continuity on compact subsets of R4
↑. The existence of this modulus of continuity, as well

as the very strong tail bound on the random constant appearing within it, will be instrumental in

establishing an upper bound on the Hausdorff dimension of the level sets of the directed landscape

(intersected with any compact set). However, as we will only use this modulus of continuity Chapter

3 and its statement is quite technical, we defer stating it until it is about to be used, in order to

once again maximize readability later on. For the sake of completeness, the modulus of continuity

is given as Theorem 3.0.2.

Noting that the convergence in Theorem 1.4.1 is limited to the uniform on compact topology, this

suggests that it is quite natural to restrict our attention to the behaviour of the directed landscape

on compact subsets K ⊆ R4
↑. Moreover, as a consequence of the temporal and spatial stationarity of

L we also see that

L(x, s; y, t)
d
= L(0, 0; y − x, t− s)

for any (x, s; y, t) ∈ R4
↑. In this sense, it is actually more natural to think of L as really being a

two-parameter function of the two increments y−x and t−s, where y−x can be arbitrary and t−s
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Figure 1.2: A visual representation of the metric composition law of L, borrowed from [9]. L
induces a notion of directed geodesics on R4

↑, and the value of L(x, r; y, t) is the length of a
directed geodesic under L from (x, r) to (y, t). Given a fixed intermediate point (z, s), concatenating
the geodesics under L from (x, r) to (z, s) and from (z, s) to (y, t) yields a candidate path for the
directed geodesic from (x, r) to (y, t). Maximizing the values of L on these two concatenated paths
over all choices of z for a fixed s yields the optimal path, which passes through (z∗, s). It is worth
mentioning that this supremal value is always achieved at some z∗ ∈ R, making it a true maximum.

must be strictly positive. As such, in order to understand the behaviour of L on the whole of R4
↑, it

is equivalent to understand the behaviour of the function

L(0, 0, ·, ·) : R× R>0 → R

(x, s) 7→ L(0, 0;x, s).

Similarly, to understand the behaviour of L on a given compact subset K ⊆ R4
↑ it is equivalent to

understand the behaviour of the function

L(0, 0, ·, ·) : [−n, n] ×
[

1

n
, n

]
→ R

(x, s) 7→ L(0, 0;x, s).

for a sufficiently large choice of n ∈ Z>0. For the sake of simplicity, we choose to work with

L(0, 0; ·, ·) instead of with L throughout this thesis, with the knowledge that every statement we

prove about L(0, 0; ·, ·) translates into a statement about L as a whole by replacing (x, s) with a

tuple of increments (y − x, t− s) ∈ R× R>0.
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1.5 The Hausdorff Metric

In Chapter 2, we will be investigating whether the level sets of the rescaled last passage values

in Theorem 1.4.1 converge to the corresponding level sets of L(0, 0; ·, ·) on compact and convex

set subsets of R × R>0. This means that we must necessarily decide on what exactly it means for

a sequence of subsets of R × R>0 to converge to another limiting subset of the same space, and

whether that precise mathematical definition agrees with what we intuitively imagine this sort of

convergence would look like. There is by no means a unique answer to this problem, but one such

possible answer is to use the topology generated by the Hausdorff metric.

Definition 1.5.1. Let (M,ρ) be an arbitrary metric space. For any x ∈ M and A ⊆ M , let

d(x,A) = d(a,X) := inf
a∈A

ρ(x, a).

The Hausdorff metric, induced by ρ, is the metric dH on 2M , the power set of M , defined for any

two subsets A1, A2 ⊆ M by

dH(A1, A2) = dH(A2, A1) := max

{
sup

a1∈A1

d(a1, A2), sup
a2∈A2

d(A1, a2)

}
.

Equivalently, if for each A ⊆ Rm and each δ > 0 we define

Aδ :=
⋃
a∈A

{
x ∈ Rm : ρ(x, a) ≤ δ

}
then we may also define dH(A1, A2) by

dH(A1, A2) = dH(A2, A1) := inf
{
δ > 0 : A1 ⊆

(
A2

)
δ

and A2 ⊆
(
A1

)
δ

}
.

In simpler terms, the Hausdorff distance between two sets A1 and A2 is the infimal δ > 0 such that

every point a1 ∈ A1 is within δ of a point in A2, and every point a2 ∈ A2 is within δ of a point in

A1. This second characterization of the Hausdorff metric also yields a very nice visual interpretation

of what convergence in the topology generated by dH means. In particular, it essentially says that

if for some sequence of sets (An)∞n=1 and A in Rm we have that

lim
n→∞

dH(An, A) = 0

then intuitively speaking, An and A must have extremely similar shapes in the naive visual sense

for sufficiently large n ∈ Z>0. More specifically, for every δ > 0, there exists an N = N(δ) ∈ Z>0

such that for n ≥ N , An looks exactly the same as A up to perturbations along its boundary of

size no more than δ. Thus, thinking of subsets of Rm as being m−dimensional shapes, the topology

generated by this metric aligns extremely well with a naive guess of what it should mean for a

sequence of shapes to converge to a limit shape. We do note however that this is by no means the

only possible choice here. It is entirely possible that in the context of our work in Chapter 2 that

using a different underlying metric for the Hausdorff metric, or even a different metric than the

Hausdorff metric altogether, could be of equal or greater interest.



CHAPTER 1. PRELIMINARY MATERIAL 13

1.6 The Hausdorff Dimension and Related Ideas

When working with geometric objects that display a high degree of self-similarity, i.e. a fractal-like

structure, one of the most useful and intrinsic properties of such objects is their fractal dimension.

These definitions in this section are all standard, but for the sake of transparency, we borrow them

from [5]. There are several different notions of what the dimension of a fractal is, all of which extend

the usual notion of dimension for regular geometric objects such as hyperplanes and polygons, each

having their own strengths and weaknesses. We will use two such notions of fractal dimension in this

thesis, the Minkowski dimension and the Hausdorff dimension, and will then provide several

extremely useful lemmas which enable us to find them systematically. We begin by recalling the

definition of a totally bounded set in a metric space.

Definition 1.6.1. Let (M,ρ) be a metric space, and let K ⊆ M . K is totally bounded if for any

ε > 0, there exists a finite collection of points m1,m2, . . . ,mn ∈ M such that

K ⊆
n⋃

j=1

{
x ∈ M : ρ(x,m1) ≤ ε

}
.

In a Euclidean space Rm, this property is equivalent to simply being a bounded set by the Heine-

Borel theorem. Thus, as we will only be looking at subsets of R2 in this thesis, we will never need

to verify that this property holds before using the subsequent definitions.

In order to motivate the definition of a fractal dimension below, we first observe the following

pattern in Rd for any d ∈ Z>0. Suppose that for each ε > 0 we wish to cover the unit d−cube

D ⊆ Rd using a finite number of sets of diameter at most ε. Upon a moment of reflection, we would

see that the most efficient such covering would be to cover D by d−cubes of side length ε and that

the total number of such cubes needed to cover D is ε−d. More generally, if we replace D by a

d−cube of arbitrary side length r, the number of such cubes that will be needed is Cε−d for some

ε−independent but r−dependent constant C. Given that this holds for any ε > 0, this means that

we can write for any fixed d−cube D that

lim
ε→0+

log (N(D, ε))

log
(
1
ε

) = lim
ε→0+

log
(
Cε−d

)
log
(
1
ε

) = lim
ε→0+

log
(
ε−d
)

log
(
1
ε

) − lim
ε→0+

log (C)

log
(
1
ε

) = d

where N(D, ε) is the infimal number of sets of diameter at most ε needed to cover D.

Thus, the limit above successfully recovers the dimension of any d−cube D in Rd, for any d ∈ Z>0.

The same phenomenon will also hold for balls in Rd as well by an analogous argument. Since any

sensible notion of a fractal dimension should agree with the usual notion of dimension for any nice

sets such as these, it is this illustrative example which motivates our first definition of the fractal

dimension of a general set. Note that it for these reasons that the Minkowski dimension is often

referred to as the box-counting dimension.

Definition 1.6.2. Let (M,ρ) be a metric space and let K ⊆ M be totally bound. For each ε > 0,

let N(K, ε) be the minimal number of open balls of diameter ε needed to cover K. The upper
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Minkowski dimension of K, denoted dimMK), is defined as

dimM (K) := lim sup
ε→0+

log (N(K, ε))

log
(
1
ε

) .

The lower Minkowski dimension of K, denoted dimM (K), is defined as

dimM (K) := lim inf
ε→0+

log (N(K, ε))

log
(
1
ε

) .

If it is the case that dimM (K) = dimM (K) then this value, denoted by dimM (K), is called the

Minkowski dimension of K.

It is worth mentioning that rather than just using balls of radius ε > 0, N(K, ε) can equivalently

be defined using sets of diameter at most ε. Additional intuition motivating this definition can be

found in [5] and in [18]. Though the upper and lower Minkowski dimensions are relatively easy to

describe, they do not match in general, so many sets will have different upper and lower Minkowski

dimensions. Another important pitfall of the upper and lower Minkowski dimensions is that even

when they do agree, the Minkowski dimension is finitely stable but not countably stable. This is a

major limitation in many situations. To obtain these nicer properties, a stronger notion of fractal

dimension is needed. For us, this stronger notion will be the Hausdorff dimension, which requires

us to first define the α− Hausdorff content of a set.

Definition 1.6.3. Let (M,ρ) be a metric space, and let K ⊆ M . For any α > 0, the α−Hausdorff

content of K, denoted H α
∞(K) is defined as

H α
∞(K) := inf

{∑
i∈I

(diam(Ui))
α

: K ⊆
⋃
i∈I

Ui and {Ui}i∈I is a countable set of subsets of M

}
.

This preliminary definition now allows us to state our first definition of the Hausdorff dimension.

Note that the α−Hausdorff content is a direction generalization of the quantity N(K, ε) that we had

in the definition of the Minkowski dimension, lending credence to the idea that the definition below

does indeed generalize the Minkowski dimension.

Definition 1.6.4. Let (M,ρ) be a metric space, and let K ⊆ M . The Hausdorff dimension of

K, denoted dimH(K), is defined as

dimH(K) := inf
{
α ∈ R>0 : H α

∞(K) = 0
}
.

Though the physical intuition for the Hausdorff dimension is not as immediately obvious as that of

the Minkowski dimension, the reasonability of this definition can again be understood by observing

how it applies to d−cubes and d−balls in Rd. Readers who are not already familiar with this definition

are encouraged to prove that if K is any unit cube in Rd, then

H α
∞(K) = 0
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for any α < d. This in turn means that dimH(K) ≥ d, and since we clearly have that

dimH(K) ≤ dimH

(
Rd
)
≤ d

based on this definition of dimH , we do indeed have that the Hausdorff dimension of any d−cube

or d−ball is again always d. More generally, we also observe in these simpler tangible cases that

H α
∞(K) = ∞ for any α > d, in the exact same way that the total length of any covering of a

plane by line segments is infinite, or the total area of any covering of a d−ball by finite rectangles

is infinite. This observation that the only possible answers when measuring the dimensionality of a

set in Rd using the “wrong dimension” are 0 and ∞ will appear frequently in the exposition to come.

Note that because the Hausdorff dimension is defined as an infimum, it always exists for any set,

unlike the Minkowski dimension. Moreover, for any totally bounded set K in a metric space (M,ρ),

dimH(K) ≤ dimM (K) ≤ dimM (K).

Since the upper Minkowski dimension is always an upper bound on the Hausdorff dimension, upper

bounding dimM (K) is often a convenient way to indirectly bound dimH(K) from above. This

technique is extremely common in the literature and is what we will employ later on in chapter 3.

It simply requires showing that a lim sup goes to zero for one specific type of finite covering of the

set K in question. Another very important advantage that the Hausdorff dimension has over the

Minkowski dimension is that the Hausdorff dimension is countably stable. In other words, for any

collection of sets (Kj)
∞
j=1 it is always true that

dimH

 ∞⋃
j=1

Kj

 = sup
j∈Z>0

dimH(Kj),

The countable stability of dimH will also be of the utmost utility in our work in Chapter 3.

Unfortunately, this definition of the Hausdorff measure dimH can be a bit challenging to work with

directly. To help combat this, a different but closely related quantity called the α-dimensional

Hausdorff measure is typically used to recharacterize dimH . This measure also serves the dual

purpose of providing a more intuitive understanding of what exactly it means to say that a set has

Hausdorff dimension α.

Definition 1.6.5. Let (M,ρ) be a metric space, and let K ⊆ M . For any α, δ > 0, define the

quantity H α
δ (K) by

H α
δ (K) := inf

{∑
i∈I

(diam(Ui))
α

: K ⊆
⋃
i∈I

Ui , I is at most countable, and sup
i∈I

diam(Ui) < δ

}
.

The α−dimensional Hausdorff measure of K, denoted H α(K), is defined as

H α(K) := lim
δ→0+

H α
δ (K).
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Note that for any fixed set K ⊆ M and fixed α ≥ 0, the function δ 7→ H α
δ (K) is monotonically de-

creasing in δ, as any covering eligble for a smaller δ remains eligible for a larger one. This means that

the limit as δ → 0+ is well-defined. Moreover, under these hypotheses, the function K 7→ H α
δ (K)

is monotonic and countably subadditive, so it defines an outer measure on (M,ρ). In particular, the

α−dimensional Hausdorff measure H α
δ is even a Borel measure on Euclidean spaces Rm.

By observing that for any δ, α, β > 0, with β > α and any subset K of a metric space (M,ρ)

that

H β
δ (K) ≤ δβ−αH α

δ (K)

it immediately follows by letting δ → 0+ that

H α(K) < ∞ =⇒ H β(K) = 0

for all β > α. It can be shown that this elementary observation then implies the following proposition

about the relationship between the α−dimensional Hausdorff dimension of a set, and the Hausdorff

dimension of that same set.

Proposition 1.6.6. Let (M,ρ) be a metric space and let α > 0. Then H α(M) = 0 if and only if

H α
∞(M) = 0. Furthermore, this means that

dimH(M) = inf
{
α ∈ R>0 : H α(M) = 0

}
= inf

{
α ∈ R>0 : H α(M) < ∞

}
= sup

{
α ∈ R>0 : H α(M) > 0

}
= sup

{
α ∈ R>0 : H α(M) = ∞

}
.

This alternate characterization of dimH is particularly useful when trying to bound the Hausdorff

dimension of a set from below. Finding a lower bound on the Hausdorff dimension is always signifi-

cantly harder than finding an upper bound, as this requires making a statement about every possible

covering of the set at once. This process generally varies significantly from setting to setting, and

typically depends heavily on the nature and structure of the set in question. Fortunately, some gen-

eral techniques for finding a lower bound on the Hausdorff dimension of a set more systematically

exist. The first of these such results is the Mass Distribution Principle below. We introduce one

final preliminary definition before stating this theorem.

Definition 1.6.7. Let (M,ρ) be a metric space, and let µ be a Borel measure on (M,ρ). If

0 < µ(M) < ∞

then µ is a mass distribution on (M,ρ).

With this in mind, we now state the Mass Distribution Principle. Note that we once again state
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a slightly weaker but simpler version that is sufficient for our purposes. The full version of this

theorem can be found in [5].

Theorem 1.6.8 (Mass Distribution Principle). Let (M,ρ) be a metric space and suppose that α ≥ 0.

If there exists a mass distribution µ on (M,ρ) and an absolute constant C > 0 such that for any

δ > 0 and x ∈ M

µ
({

m ∈ M : ρ(x,m) ≤ δ
})

≤ Cδα,

then we have that

Hα(M) ≥ H ∞
α (M) ≥ µ(M)

C
> 0

and hence that dimH(M) ≥ α.

However in many situations, including those which will appear in this thesis, using the following

consequence of the Mass Distribution Principle is much more directly useful. We refer the reader

to [18] or [5] for proofs of these two results, as well as the additional discussion surrounding them.

This energy method was originally proven by Frostman in 1935.

Theorem 1.6.9 (Energy Method). Let (M,ρ) be a metric space, and let K ⊆ M. If µ is a mass

distribution on (K, ρ) and ∫
K

∫
K

1

ρ(x, y)α
dµ(x)dµ(y) < ∞

for some α ≥ 0, then H α
∞(K) = ∞ and hence dimH(K) ≥ α.

Constructing a mass distribution µh on the h−level set of the L(0, 0; ·, ·), which we will again restrict

to a compact subset of R× R>0, in order to use Theorem 1.6.9 will be the focus of Chapter 4.

1.7 Outline of Thesis and Synopses of Main Results

There are four main ideas that are explored in this thesis. The first topic that we address is proving

that when restricted to compact sets, the level sets of the sequence of rescaled last passage values in

Theorem 1.4.1 converge to the corresponding level sets of L(0, 0; ·, ·) restricted to that same compact

set. We first prove a sufficient pathwise condition for level set convergence under the (Euclidean)

Hausdorff metric for deterministic functions, and prove that this condition is satisfied pathwise al-

most surely in the setting of Theorem 1.4.1. The key idea is establishing that the minimum and the

maximum of L(0, 0; ·, ·) have no atoms in any convex and compact subset of R×R>0. This property,

along with several small technical lemmas, will then yield our first result. Our main tools for proving

that this criterion is satisfied pathwise almost surely will be the Brownian Gibbs property of A, and

the numerous symmetries and properties of L. Our final result is stated as Theorem 2.0.1. Chapter

2 is independent of the other chapters that follow.

Our next major topic is establishing an upper bound on the upper Minkowski dimension of the

entire h−level set of L(0, 0; ·, ·), Our approach is to mimic the standard proof used to prove that

the zero set of Brownian motion has upper Minkowski dimension at most 1
2 . However, the classic
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proof relies quite heavily on the strong Markov property, which L(0, 0; ·, ·) has no analogue for. The

strong Markov property is used to obtain an upper bound on

P
(

0 ∈ W([a, a + ε)
)

(1.7.1)

where W is a standard Brownian motion, a ∈ R, and ε > 0. This upper bound on the probability

of having a zero in any given interval of length ε > 0 is then used to obtain an upper estimate on

E[Nm], the expected number of intervals of length 2−m needed to cover the zero set of W, for each

m ∈ Z>0. By bounding (1.7.1) by an adequately sharp function of ε, it can then be shown that

lim sup
m→∞

E [Nm]

2
m
2 +γ

< ∞

for any γ > 0, which proves that the upper Minkowski dimension of the zero set of W is at most 1
2

with probability 1. Since we do not have the luxury of the strong Markov property to bound the

analogue of (1.7.1) in the case of L(0, 0; ·, ·), we instead rely on some careful manipulations of the

modulus of continuity of L on a specific class of compact subsets of R4
↑ to achieve a different but

similar result in the end. This final result for the upper bound is stated in Theorem 3.0.1.

The third major topic is systematically constructing a mass distribution on the h−level set of

stochastic process (X(x, s))(x,s)∈R2 . This mass distribution will then be used with Theorem 1.6.9 to

obtain a lower bound on the Hausdorff dimension of the h−level set of X that holds with a positive

h−dependent probability. The inputs for this technique will be upper and lower bounds on the one

point distribution of X, and an upper bound on its two-point distribution. Both bounds need only

hold on a compact subset of R2 for our purposes.

This procedure was originally inspired by a similar result for Brownian motion outlined in [1].

However, that result relied on the existence of characteristic functions for the marginal distributions

of Brownian motion, and the fact that Brownian motion has the strong Markov property. These

tools were once again not available to us, so quite a few modifications to that general argument

needed to be made in order for it to generalize to the types of stochastic processes we are interested

in here. The final version of this argument for stochastic processes indexed by subsets of R2 is given

in Theorem 4.1.1.

Chapters 5 and 6 are dedicated to establishing a partial upper bound on the two-point distribu-

tion of the directed landscape. In particular, we will be developing an upper bound on probabilities

of the form

P
(
L(0, 0;x, s) ∈ (h− ε, h + ε), L(0, 0; y, t) ∈ (h− ε, h + ε)

)
≤ P

(
L(0, 0;x, s) ∈ (h− ε, h + ε), |L(0, 0; y, t) − L(0, 0;x, s)| ≤ 2ε

)
(1.7.2)

where (x, s), (y, t) ∈ [1, 2] ×
[
1, 11

10

]
. This task is the most challenging part of this project and

comprises the majority of the work within it. To set up the construction of this two-point bound, we

first heavily exploit the symmetries of the directed landscape in Proposition 1.4.4 and its defining
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properties in Proposition 1.4.3 to reduce this problem to understanding the behaviour of a certain

measurable function si(A1, Ã1) (where A and Ã are independent copies of the parabolic Airy line

ensemble) on a partition of R into small closed intervals indexed by i ∈ Z. This partition will be of

the form

R =

∞⋃
i=−∞

[
|t− s| 23 i− 1

2
|t− s| 23 , |t− s| 23 i +

1

2
|t− s| 23

]
.

We will be assuming that t > s without loss of generality. We use this particular partition because

upon using the metric composition law, the temporal and spatial stationarity of L, its independent

increments property, and its relationship to A1, the dominant term that emerges in the difference

|L(0, 0; y, t) − L(0, 0;x, s)| will be equal in distribution to the process(
(t− s)

1
3 Ã1

(
z + (x− y)

(t− s)
2
3

))
z∈[i− 1

2 ,i+
1
2 ]

where i ∈ Z. Working on intervals of length (t − s)
2
3 will therefore neutralize the rescaling in the

argument of the dominant term and set everything else in motion afterwards.

Next, we use Dauvergne’s specific formulations of the Brownian Gibbs property of A1 in The-

orem 1.2.2 and Theorem 1.2.3 to construct a family of random vectors
{

(Xi, Yi)
}
i∈Z

such that

Law
(

(Xi, Yi)
)

dominates Law
(
si(A1, Ã1)

)
for each i ∈ Z. The construction of these random vec-

tors will be split into two cases depending on how the index i compares to 10|t− s|− 2
3 , for reasons

that will be explained later on. We then establish that each Law
(

(Xi, Yi)
)

has a density ρi with

respect to the Lebesgue measure on R2, that each ρi has a strong uniform bound, and that the two

sums ∑
|i|≤10|t−s|−

2
3

ρi and
∑

|i|>10|t−s|−
2
3

ρi

each have a relatively strong uniform upper bound on their domain in R2. The construction of

(Xi, Yi), and hence of ρi, will again be somewhat different when we pass from the first regime to

the second, but will involve very similar ideas. These sufficiently good uniform upper bounds on

the sums above are then used to prove the existence of a sufficiently good two-point bound for

probabilities of the form (1.7.2). The two-point bound is stated explicitly in Theorem 4.3.1 before

being proven. The work done across these chapters to understand the Hausdorff dimension of the

level sets of L(0, 0; ·, ·) is compiled into one final main result in Theorem 4.3.2 before we prove the

existence of our partial two-point bound.

We will conclude this thesis by providing closing thoughts on the work that we have done, and

will provide several ideas for possibly improving our main result in Theorem 4.3.2. We do not ex-

pect this result to be optimal by any stretch of the imagination, and view it primarily as an initial

attempt to use this general technique that we have developed. This can be found in Chapter 7.
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1.8 Explanation of Joint Work

In this section, we provide an explanation of how the joint work during these projects was dis-

tributed. The one-parameter case will refer to the endeavour of understanding the Hausdorff

dimension of the level sets of the function t 7→ L(0, 0; 0, t), in which the goal was to find upper and

lower bounds of 2
3 . The two-parameter case refers to the content of this thesis in particular, i.e.

understanding the Hausdorff dimension of the level sets of the function (x, s) 7→ L(0, 0;x, s).

The original work underlying the results in Chapter 2 and Chapter 3 was done almost entirely

collaboratively. This was originally done several years ago and mistakes were recently found, so

new proofs with more mature approaches to correct these mistakes were written independently by

each of us in our theses. Note that for Chapter 3, our original work was in the two-parameter case.

Simplifying our problems to the one-parameter case only became initially necessary when working

on the lower bound. A noticeably more clear-cut division of labour emerged during the course of

our third and fourth projects.

In the third project, the definition of the measures µh,ε suggested by our advisor. After conducting

literature review to find a proof in [1] which used the energy method to find a lower bound on

the Hausdorff dimension of the zero set of Brownian motion, Virginia adapted the argument for

analogues of subsections 4.2.2, 4.2.3, and 4.2.5 in the one-parameter case from Adler’s proof. The

original version of the argument in subsection 4.2.2 and 4.2.5 specifically required a considerable

amount of care, as much of Adler’s proof did not generalize without the numerous powerful prop-

erties possessed by Brownian motion on R. I worked on subsection 4.2.4 independently during this

time. I later adapted the work in those subsections independently to the two-parameter case, and

made several modest generalizations to the level of generality of the argument. Lemma 4.2.2 was

the result of a one-on-one discussion with my advisor and I.

The fourth project began with the one-parameter case. Numerous intermediate problems not appear-

ing in this thesis were first worked on to build intuition and a rough framework for the one-parameter

result. Virginia spent a considerable amount of time and energy at the beginning of this trying to

set up an initial deconstruction of

{
L(0, 0; 0, s) ∈ (h− ε, h + ε)

}
∩
{∣∣∣∣sup

z∈R
L(0, 0; 0, s) + L(z, s; 0, t) − L(0, 0; 0, s)

∣∣∣∣ ≤ 2ε

}
into more manageable sub-events that we could work with, before we arrived at the right notation to

crystallize these ideas. During this phase of the process, I moulded Lemma 5.1.1 into a concrete and

precise statement mostly independently. This was based on heuristics from our advisor and several

joint discussions with the three of us about the intuition underlying this lemma. At this point, our

work for the first regime in the one-parameter case was quite messy as it contained work from three

different people with three different voices, so after completing Lemma 5.1.1, I focused on a first

attempt at reshaping our work at the time into something more cohesive. During that phase of our

work, Virginia focused on utilizing Lemma 5.1.1 while thinking about what exactly should follow

our extant work at the time. She also worked out Lemma 5.2.1 during this same general timeframe.
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After completing my first round of revisions to our old work, I worked independently on gener-

alizing Lemma 5.1.1 to Lemma 6.1.1. Upon completing this new lemma, Virginia and I split off and

worked mostly independently for the remainder of our work. Virginia completed the remaining work

in the one-parameter case after building intuition for how the one-parameter version of the second

regime should work. The generalization of our old work to the full two-parameter case was done

almost entirely independently by me. The process of further restructuring our still somewhat hazy

original work in the one-parameter case and working out how to generalize it to the two-parameter

case led to several insights about mistakes and optimizations that could be used back in the one-

parameter case as well. The most valuable of these new insights was using the approach in section

5.3 to thoroughly understand the structure of Gi as it is, which led to key realizations about how

to successfully set up density bounds for ρi.

The initial idea for navigating the presence of the random fluctuation ξi in our tail bounds was

first worked out by Virginia in the one-parameter case. As the parabola appearing in the two-

parameter is significantly more complex due to its coefficients’ additional heavy dependence on the

values of x, (x−y), and (t−s), quite a bit of additional work was still required in order to generalize

that approach to the two-parameter case. Upon completing this step, the last remaining piece in

both the one and two-parameter cases was working out Lemma 5.4.1 and Lemma 5.4.2. I wrote

these lemmas independently based on a one-on-one discussion with our advisor following a close but

incorrect earlier attempt at lemmas of this form.

The results and joint work from the one-parameter case have been omitted from this thesis for

length-based considerations, but can be found in Virginia’s thesis.



Chapter 2

Level Set Convergence in the

Hausdorff Metric

Our goal in this chapter is to establish level set convergence in the context of the uniform convergence

on compact sets in Theorem 1.4.1. More specifically, we want to show that the following theorem

is true. Note that in this theorem, we will be viewing the last passage metrics and L(0, 0; ·, ·) as

being random functions in C(K,R) for each K ⊆ R × R>0. We will also be using the metric space

(M,ρ) = (K, || · ||2), meaning that the topology with respect to which the convergence below takes

place will change as the choice of K varies.

Theorem 2.0.1. Let K ⊆ R× R>0 be compact and convex, and for each h ∈ R define the random

set Z
(K)
h ⊆ R× R>0 by

Z
(K)
h :=

{
(x, s) ∈ K : L(0, 0;x, s) = h

}
.

For any point (p; q) ∈ R4
↑, let dLPP (p, q) be the Exponential last passage value from p to q. Define

the constants α, β, τ, and χ according to equation (1.4.1), and for each n ∈ Z>0 define the random

function f
(K)
n ∈ C(K,R) by

f (K)
n (y, t) :=

d
(n)
LPP

(
0, 0 ; yn2τ + tn3,−tn3

)
− (β − 2) τn2y − n3αt

nχ

where we have used the coupling of L with an infinite set of identically distributed copies{
d
(n)
LPP

}∞

n=1

of the last passage directed metric dLPP from Theorem 1.4.1. For each h ∈ R we define the set

Z
(K)
h,n :=

{
(x, s) ∈ K : f (K)

n (x, s) = h
}
.

If dH is the Hausdorff metric induced by the Euclidean norm on K, then for all h ∈ R,

lim
n→∞

dH

(
Z

(K)
h,n , Z

(K)
h

)
= 0.

22
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Note that although we will only explicitly prove this result for Exponential last passage percolation

specifically, the proof is completely agnostic of this choice provided that the constants α, β, τ, and χ

are adjusted accordingly as the last passage model is changed. We only restrict our focus to this case

in particular for concreteness, and to remove the additional overhead necessary to explain the other

models of last passage percolation that exist. Due to the fact that the convergence in Theorem 1.4.1

is in the uniform on compact topology, if any other random growth models are found to fall into

the scope of this theorem, then our argument should also immediately extend to those new random

growth models as well.

Our strategy to prove that Theorem 2.0.1 is true will be to find a sufficient condition for level

set convergence under the Euclidean Hausdorff metric on convex and compact sets that holds for

a sequence of deterministic functions (gn)∞n=1 with uniform limit g. We will then show that with

probability 1, this sufficient condition for deterministic functions holds pathwise for each realization

of L and the last passage percolation model in the setting of Theorem 2.0.1. Our sufficient condition

will only place impositions on the limit function g, which is why our theorem here is independent of

the choice of the model of last passage percolation, provided we use the coupling stated in Theorem

1.4.1.

Lemma 2.0.2. Let K ⊆ R2 be a convex and compact set, and let (gn)∞n=1 be a sequence in C(K,R)

with a uniform limit g. Suppose that g has no local maximum or minimum with value 0. Then the

sequence of level sets
(
g−1
n (0)

)∞
n=1

converges to g−1(0) with respect to the Hausdorff metric dH on

K induced by the Euclidean norm.

Proof. For any subset A ⊆ K and any δ > 0 we will denote by Aδ ⊆ K the set

Aδ :=
{

(x, y) ∈ K :
√

(x− a1)2 + (y − a2)2 < δ for some (a1, a2) ∈ A
}
.

For each x = (x1, x2) ∈ R2 and r > 0, we will denote by B(x, r) the set

B(x, r) :=
{

(y1, y2) ∈ K :
√

(x1 − y1)2 + (x2 − y2)2 ≤ r
}

We will first show that for any arbitrarily small δ > 0, g−1(0) ⊆ (f−1
n (0))δ for n sufficiently large.

First, suppose that x ∈ g−1(0). Since x cannot be a local maximum or minimum of g, there

must be a sequence of values (δm)∞m=1 decreasing monotonically to 0 such that for each m ∈ Z>0,

there are two points x+
m, x−

m ∈ B(x, δm) such that

f(x−
m) < f(x) = 0 < f(x+

m).

Since we are assuming that gn → g uniformly, we know that there must exist a positive integer

N1 = N1(x−
m, δm) such that for all n ≥ N1, gn(x−

m) < 0. Similarly, there must also exist another

positive integer N2 = N2(x+
m, δm) such that for all n ≥ N2, 0 < gn(x+

m). Thus if we take N = N1∨N2,

then for all n ≥ N we will have that

gn(x−
m) < 0 < gn(x+

m).
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By the assumption that each gn is a continuous function on the convex and compact set K (and

hence on the convex and compact subset B(x, δm) as well), the two-dimensional version of the Inter-

mediate Value Theorem applies and there must exist at least one point xn ∈ B(x, δm)∩g−1
n (0) for all

n ≥ N = N(x, δm). Note that B(x, δm) being convex and compact is what ensures that each zero xn

does indeed belong to B(x, δm). Moreover, because gn → g uniformly, this threshold N will be inde-

pendent of the choice of x and only depends on the choice of δm > 0. As such, we thus see that by

let δm → 0, g−1(0) is always contained in
(
g−1
n (0)

)
δ

for any δ > 0 if we take n ∈ Z>0 sufficiently large.

We now prove that for any δ > 0, the reverse inclusion g−1
n (0) ⊆ (g−1(0))δ holds for n ∈ Z>0

sufficiently large. Suppose for contradiction that there exists some δ > 0 such that there is no

threshold n ≥ N after which the inclusion g−1
n (0) ⊆ (g−1(0))δ always holds. This implies that there

must exist a sequence of zeros (ynk
)
∞
k=1 with ynk

∈ g−1
nk

(0) such that for any x ∈ g−1(0), we always

have that ||x− ynk
||2 > δ.

Fix an arbitrary x ∈ g−1(0). By the compactness of K, we know that (ynk
)
∞
k=1 must have a conver-

gent subsequence, so without loss of generality we will assume that (ynk
)
∞
k=1 itself converges to some

y ∈ K. We claim that y ∈ g−1(0). To see that this is true, the triangle inequality gives us that

|g(y)| = |g(y) − gnk
(y) + gnk

(y) − gnk
(ynk

) + gnk
(ynk

)|

≤ |g(y) − gnk
(y)| + |gnk

(y) − gnk
(ynk

)| + |gnk
(ynk

)| .

By definition of ynk
, g(ynk

) = 0. Secondly, by the uniform convergence of gn → g, we see immedi-

ately that lim
k→∞

|g(y) − gnk
(y)| = 0. Thirdly, by the continuity of each function gnk

we also have that

lim
k→∞

|gnk
(y) − gnk

(ynk
)| = 0. This means that by taking k → ∞, we can upper bound |g(y)| by an

arbitrarily small positive number. Thus, the only remaining possibility is that g(y) = 0. However,

since ynk
→ y ∈ g−1(0), this is a contradiction, which proves that the reverse inclusion does indeed

hold.

Based on these two inclusions, we have therefore proven that for any δ > 0,

dH
(
g−1
n (0), g−1(0)

)
= inf

{
δ ∈ (0,∞) : g−1

n (0) ⊆
(
g−1(0)

)
δ

and g−1(0) ⊆
(
g−1
n (0)

)
δ

}
< δ

for all n ∈ Z>0 sufficiently large. By definition of convergence under the Hausdorff metric dH , this

means that we have thus proven that

lim
n→∞

dH
(
g−1
n (0), g−1(0)

)
= 0.

As an immediate consequence of this lemma holding for the zero set, we have the following corollary

for any arbitrary h−level set.

Corollary 2.0.3. Let K ⊆ R2 be a convex and compact set, and let (gn)∞n=1 be a sequence in

C(K,R) with a uniform limit g. Let h ∈ R be arbitrary and suppose that g has no local maximum
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or minimum with value h. Then the sequence of level sets
(
g−1
n (h)

)∞
n=1

converges to g−1(h) with

respect to the Hausdorff metric dH on K induced by the Euclidean distance.

Proof. Replace the sequence of functions (gn)∞n=1 with the sequence (gn−h)∞n=1 and the limit function

g with g − h in the proof of Lemma 2.0.2.

With Corollary 2.0.3 established, we will prove one additional preliminary but fairly elementary

technical lemma about the law of a sum of independent random variables.

Lemma 2.0.4. Let X and Y be independent R−valued random variables and assume that Law(X)

has a density fX with respect to the Lebesgue measure on R. Then Law(X + Y ) has no atoms.

Proof. Let FY be the cumulative distribution function of Y. Since X and Y are independent by

hypothesis, this means that

Law(X + Y ) = Law(X) ∗ Law(Y ).

Since Law(X) has a density fX , this in turn means that Law(X + Y ) also has a density fX+Y with

respect to the Lebesgue measure. Explicitly, letting FX+Y be the cumulative distribution function

of X + Y, we may write that for any z ∈ R,

FX+Y (z) =

∫
R
FY (x)fX(z − x)dx.

To see that FX+Y is continuous, we observe that for any z, δ0 ∈ R,

|FX+Y (z) − FX+Y (z + δ0)| =

∣∣∣∣∫
R
FY (x)fX(z − x)dx−

∫
R
FY (x)fX(z + δ0 − x)dx

∣∣∣∣
=

∫
R
|FY (x)||fX(z − x) − fX(z + δ0 − x)|dx

≤
∫
R
|fX(z − x) − fX(z + δ0 − x)|dx

=

∫
R
|fX(u) − fX(u− δ0)|du

= ||fX(·) − fX(· − δ0)||L1(R). (2.0.1)

Note that the norm in the last line is the 1−norm in the function space L1(R) and that every

probability density function belongs to L1(R) by definition. It is a standard fact from functional

analysis that for any function f ∈ L1(R), it is always true that for every ε > 0, there exists δ > 0

such that

|δ0| < δ =⇒ ||fX(·) − fX(· − δ0)||L1(R) < ε.

Using this standard fact in conjunction with equation (2.0.1) immediately implies that FX+Y is a

continuous function on all of R, and so it cannot have any jump discontinuities. Thus, since the

atoms of Law(X + Y ) are precisely the jump discontinuities of FX+Y , this means that Law(X + Y )

has no atoms.

We now turn our attention towards our specific problem. To prove Theorem 2.0.1, we will need two
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more supporting results. We begin by proving the existence of an elementary but extremely useful

way to decompose a Brownian bridge on an arbitrary domain into a Gaussian and independent

stochastic process. Though elementary, this lemma will be used extensively throughout this thesis.

Lemma 2.0.5. Let a ∈ R, T > 0, and let (B(r))r∈[a,a+T ] be a Brownian bridge with diffusion

parameter k > 0 with arbitrary start and end values. Then for any δ ∈
(
0, 1

2

)
, we may write(

B(r)
)
r∈[a+δT,a+(1−δ)T ]

= N +
(
B(r) −N

)
r∈[a+δT,a+(1−δ)T ]

where N ∼ N
(
0, kδT

2

)
and is independent of the process

(
B(r) −N

)
r∈[a+δT,a+(1−δ)T ]

.

Proof. By subtracting a deterministic linear function, we may assume that B(a) = B(a + T ) =

0 without loss of generality. Moreover, by using the Brownian scaling of Brownian bridges and

multiplying every value of B in the computations below by
√
k, we may also assume without loss of

generality that k = 1. With these simplifications in mind, define

N :=
B(a + δT ) + B(a + (1 − δ)T )

2

and let r ∈ [a + δT, a + (1 − δ)T ]. We then compute that

Cov (N,B(r)) = Cov

(
B(a + δT )

2
, B(r)

)
+ Cov

(
B(a + (1 − δ)T )

2
, B(r)

)
=

1

2

((a + T ) − r)((a + δT ) − a)

T
+

1

2

((a + T ) − (a + (1 − δ)T ))(r − a)

T

=
1

2

((a + T ) − r)δT

T
+

1

2

δT (r − a)

T

=
1

2
δT.

We also see immediately that

Var(N) =
1

4
Var (B(a + δT )) +

1

4
Var (B(a + (1 − δ)T ) +

1

2
Cov (B(a + δT ), B(a + (1 − δ)T ))

=
1

4

(1 − δ)T (δT )

T
+

1

4

δT (1 − δ)T

T
+

1

2

((a + T ) − (a + (1 − δ)T ))((a + δT ) − a)

T

=
1

4
(δT − δ2T ) +

1

4
(δT − δ2T ) +

1

2
δ2T

=
1

2
δT.

Therefore, for each r ∈ [a + δT, a + (1 − δ)T ] we have that

Cov (N,B(r) −N)) = Cov (N,B(r)) − Var(N) = 0.

Thus the process (B(r) −N)r∈[a+δT,a+(1−δ)T ] is uncorrelated with N , and hence the two are inde-

pendent as claimed.

Next we prove the following Proposition about the extrema of L(0, 0; ·, ·) on compact sets.
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Proposition 2.0.6. Let K ⊆ R× R>0 be a convex and compact set. Then for any h ∈ R,

P
(

max
(y,t)∈K

L(0, 0; y, t) = h

)
= P

(
min

(y,t)∈K
L(0, 0; y, t) = h

)
= 0. (2.0.2)

Proof. Fix an arbitrary h ∈ R. Since every compact and convex set K ⊆ R× R>0 is contained in a

finite square, it suffices to prove that

P
(

max
(y,t)∈[a,a+T ]×[2b,2b+T ]

L(0, 0; y, t) = h

)
= P

(
min

(y,t)∈[a,a+T ]×[2b,2b+T ]
L(0, 0; y, t) = h

)
= 0 (2.0.3)

for any (a, b) ∈ R × R>0 with T ≥ 1. In other words, we need only show that the hypotheses of

Corollary 2.0.3 are satisfied pathwise almost surely on every square K = [a, a + T ] × [2b, 2b + T ].

This will be a consequence of the Brownian-Gibbs property of the parabolic Airy line ensemble, the

metric composition law of L, and the independent increments property of L.

We begin by fixing an arbitrary (a, b) ∈ R × R>0 and T ≥ 1. Without loss of generality we will

only prove that

P
(

max
(y,t)∈[a,a+T ]×[2b,2b+T ]

L(0, 0; y, t) = h

)
= 0, (2.0.4)

with the knowledge that by replacing each instance of

max
(y,t)∈[a,a+T ]×[2b,2b+T ]

in the subsequent argument with an instance of

min
(y,t)∈[a,a+T ]×[2b,2b+T ]

we are left with a complete and virtually identical proof that

P
(

min
(y,t)∈[a,a+T ]×[2b,2b+T ]

L(0, 0; y, t) = h

)
= 0

as well, with no other changes required. With this in mind, we recall that by the metric composition

law of the directed landscape, we may write that

max
(y,t)∈[a,a+T ]×[2b,2b+T ]

L(0, 0; y, t)
d
= max

(y,t)∈[a,a+T ]×[2b,2b+T ]

(
max
x∈R

L(0, 0;x, b) + L(x, b; y, t)

)
,

with L(0, 0;x, b) independent of L(x, b; y, t) for all x ∈ R. Moreover, note that the only variable

remaining in the arguments of L(x, b; y, t) is the spatial variable x, so its distribution is completely

unaffected by the choice of (y, t) ∈ [a, a + T ] × [2b, 2b + T ]. This independence of the value of (y, t)

will be very important momentarily.

By these observations and Proposition 1.4.3, we may then say that

max
(y,t)∈[a,a+T ]×[2b,2b+T ]

L(0, 0; y, t)
d
= max

(y,t)∈[a,a+T ]×[2b,2b+T ]

(
max
x∈R

b
1
3A1

(
b−

2
3x
)

+ L(x, b; y, t)

)
.
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Now by taking a union bound, we may use this equality in distribution to write that

P
(

max
(y,t)∈[a,a+T ]×[2b,2b+T ]

L(0, 0; y, t) = h

)
≤

∞∑
n=1

P
(

max
(y,t)∈[a,a+T ]×[2b,2b+T ]

(
max

x∈[−n,n]
b

1
3A1

(
b−

2
3x
)

+ L(x, b; y, t)

)
= h

)

=

∞∑
n=1

P

 max
(y,t)∈[a,a+T ]×[2b,2b+T ]

 max
x∈

[
−nb−

2
3 ,nb−

2
3

] b
1
3A1(x) + L

(
b

2
3x, b; y, t

) = h


so to prove that equation (2.0.4) holds, it suffices to prove that

P

 max
(y,t)∈[a,a+T ]×[2b,2b+T ]

 max
x∈

[
−nb−

2
3 ,nb−

2
3

] b
1
3A1(x) + L

(
b

2
3x, b; y, t

) = h

 = 0

for each n ∈ Z>0. We will do this by using the Brownian-Gibbs property of A.

In particular, we will apply Theorem 1.2.2 on the interval [a0, a0 + T0] =
[
−1 − nb−

2
3 , 1 + nb−

2
3

]
to

obtain that for some absolute constant c > 0,

Law

((
A1(x)

)
x∈

[
−1−nb−

2
3 ,1+nb−

2
3

]
)

≤ e
c
(
1+nb−

2
3

)3

Law

((
B(x) + L(x)

)
x∈

[
−1−nb−

2
3 ,1+nb−

2
3

]
)

where B is a diffusion parameter two Brownian bridge on
[
−1 − nb−

2
3 , 1 + nb−

2
3

]
from 0 to 0, and

L is a random affine function on the same interval independent of B such that

L
(
−1 − nb−

2
3

)
d
= A1

(
−1 − nb−

2
3

)
and L

(
1 + nb−

2
3

)
d
= A1

(
1 + nb−

2
3

)
.

For convenience, we will denote

Cn,b := e
c
(
1+nb−

2
3

)3

.

Now by elementary measure theory, this Brownian-Gibbs absolute continuity statement implies that

P

 max
(y,t)∈[a,a+T ]×[2b,2b+T ]

 max
x∈

[
−nb−

2
3 ,nb−

2
3

] b
1
3A1(x) + L

(
b

2
3x, b; y, t

) = h


≤ Cn,b P

 max
(y,t)∈[a,a+T ]×[2b,2b+T ]

 max
x∈

[
−nb−

2
3 ,nb−

2
3

] b
1
3B(x) + b

1
3L(x) + L

(
b

2
3x, b; y, t

) = h

 .

Then, by invoking Lemma 2.0.5 with the parameters k = 2, a = −1 − nb−
2
3 , T = 2 + 2nb−

2
3 > 2,

and δ = 1
T < 1

2 , we can write that

Law

((
B(x)

)
x∈

[
−nb−

2
3 ,nb−

2
3

]
)

= Law

(
N +

(
B(x) −N

)
x∈

[
−nb−

2
3 ,nb−

2
3

]
)
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where N ∼ N (0, 1) is independent of the process
(
B(x) −N

)
x∈

[
−nb−

2
3 ,nb−

2
3

].
At this stage, because δ =

(
2 + 2nb−

2
3

)−1

is completely independent of x, y, and t, the Gaus-

sian random variable N is completely independent of everything else in these two suprema. As such,

we may now write that

max
(y,t)∈[a,a+T ]×[2b,2b+T ]

 max
x∈

[
−nb−

2
3 ,nb−

2
3

] b
1
3B(x) + b

1
3L(x) + L

(
b

2
3x, b; y, t

)
d
= b

1
3N + max

(y,t)∈[a,a+T ]×[2b,2b+T ]

 max
x∈

[
−nb−

2
3 ,nb−

2
3

] b
1
3 (B(x) −N) + b

1
3L(x) + L

(
b

2
3x, b; y, t

)
=: b

1
3N + S(a, b, n)

with the random variables b
1
3N and S(a, b, n) independent. Moreover, because b

1
3N is a Gaussian,

it has a density with respect to the Lebesgue measure, and so by Lemma 2.0.4, we see that

Law
(
b

1
3N + S(a, b, n)

)
= Law

(
b

1
3N
)
∗ Law

(
S(a, b, n)

)
has no atoms. As such, we have now established that

P

 max
(y,t)∈[a,a+T ]×[2b,2b+T ]

 max
x∈

[
−nb−

2
3 ,nb−

2
3

] b
1
3A1(x) + L

(
b

2
3x, b; y, t

) = h


≤ Cn,b P

 max
(y,t)∈[a,a+T ]×[2b,2b+T ]

 max
x∈

[
−nb−

2
3 ,nb−

2
3

] b
1
3B(x) + b

1
3L(x) + L

(
b

2
3x, b; y, t

) = h


= Cn,b P

(
b

1
3N + S(a, b, n) = h

)
= 0

for all n ∈ Z>0. This therefore proves that

P
(

max
(y,t)∈[a,a+T ]×[2b,2b+T ]

L(0, 0; y, t) = h

)
≤

∞∑
n=1

P
(

max
(y,t)∈[a,a+T ]×[2b,2b+T ]

(
max

x∈[−n,n]
b

1
3A1

(
b−

2
3x
)

+ L(x, b; y, t)

)
= h

)

=

∞∑
n=1

P

 max
(y,t)∈[a,a+T ]×[2b,2b+T ]

 max
x∈

[
−nb−

2
3 ,nb−

2
3

] b
1
3A1(x) + L

(
b

2
3x, b; y, t

) = h


= 0

for any (a, b) ∈ R× R>0, any T ≥ 1, and any h ∈ R, which completes our proof.

With Proposition 2.0.6 now proven, there is nothing left to do in order to prove that Theorem

2.0.1 holds. Proposition 2.0.6 confirms that for any h ∈ R and any convex and compact subset



CHAPTER 2. LEVEL SET CONVERGENCE IN THE HAUSDORFF METRIC 30

K ⊆ R × R>0, the limit function L(0, 0; ·, ·) has no local maximum or local minimum with value h

on K with probability 1. This means that P−almost surely, we do indeed have that

lim
n→∞

dH

(
Z

(K)
h,n , Z

(K)
h

)
= 0.

This concludes our proof of Theorem 2.0.1 and we now proceed to our next project in the following

chapter. The remaining work in this thesis is completely independent of the work done in this

chapter.



Chapter 3

An Upper Bound on the Hausdorff

Dimension of the h−Level Set

Our goal in this chapter will be to establish the following theorem:

Theorem 3.0.1. For each h ∈ R, let Zh be the random set

Zh :=
{

(x, s) ∈ R× R>0 : L(0, 0;x, s) = h
}
.

Then for any h ∈ R,

P
(

dimH(Zh) ≤ 5

3

)
= 1.

We will do so by adapting the standard proof of a similar result for the level sets of Brownian motion

found in [5]. In particular, we will derive this almost-sure upper bound on dimH(Zh) by proving

that the upper Minkowski dimension of Zh ∩
(
[−n, n] ×

[
1
n , n

])
for any h ∈ R and any n ∈ Z>0 is at

most 5
3 + η + γ for any η > 0 and 0 < γ < 1

3 , and exploiting the countable stability of the Hausdorff

dimension. To do this, we begin by recalling that we have the following modulus of continuity for

(the stationary version K of) the directed landscape L from [9]:

Theorem 3.0.2 (Proposition 10.5 in [9]). Let K(x, t, y, t + s) := L(x, t, y, t + s) + (x−y)2

s for each

(x, t, y, t + s) ∈ R4
↑ with s > 0. For each n ≥ 2 and each 0 < δ ≤ 1 define the set

Kδ
n := [−n, n]4 ∩

{
(x, t; y, t + s) ∈ R4

↑ : s ≥ δ
}
.

Let u1, u2 = (x1, t1, y1, t1 + s1), (x2, t2, y2, t2 + s2) ∈ Kδ
n and define the positive constants ξ and τ by

ξ = ξ(u1, u2) = ||(x1, y1) − (x2, y2)|| and τ = τ(u1, u2) = ||(t1, t1 + s1) − (t2, t2 + s2)||.

If τ ≤ δ3

n3 then there exists a random constant C
(
Kδ

n

)
depending only on the choice of the compact

set Kδ
n such that

|K(u1) −K(u2)| ≤ C
(
Kδ

n

) (
τ

1
3 log

2
3
(
τ−1

)
+ ξ

1
2 log

1
2
(
4nξ−1

))
.

31
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Moreover, there exist absolute constants c, d > 0 such that for all M > 0,

P
(
C
(
Kδ

n

)
> M

)
≤ cn10δ−6e−dM

3
2 .

This modulus of continuity will be at the foundation of our proof of Theorem 3.0.1. We also take a

moment to note that, as previously mentioned in section 1.7, the fact that this modulus of continuity

involves a random constant as opposed to the deterministic constant found in Levy’s modulus of

continuity for Brownian motion (as well as the fact that L(0, 0; ·, ·) is not Markov) necessitates

several adjustments to the classical proof for Brownian motion. While having a random constant in

a modulus of continuity could theoretically be quite challenging to navigate in a problem like this,

this case in particular will fortunately not pose any significant issues due to the strong upper tail

bounds on these random constants.

Proof. The first step in our proof will be to derive a suitable upper bound on

P
(
Zh ∩ ([a, a + ε] × [b, b + ε]) ̸= ∅

)
for an arbitrary a, b ∈ R and ε > 0 which decays to 0 as ε → 0+. This bound will then be used in

conjunction with the Monotone Convergence Theorem to find an upper estimate on the expected

number of sets of diameter at most 2−m needed to cover Zh for an arbitrary (sufficiently large)

m ∈ Z>0. This upper estimate will be precisely what we use to obtain our upper bound on

dimM

(
Zh ∩

(
[−n, n] ×

[
1

n
, n

]))
,

and hence an upper bound on

dimH

(
Zh ∩

(
[−n, n] ×

[
1

n
, n

]))
.

By the countable stability of the Hausdorff dimension, showing that

dimM

(
Zh ∩

(
[−n, n] ×

[
1

n
, n

]))
≤ 5

3

almost surely for each n ∈ Z≥2 is sufficient. This extra step allows us to limit our focus to compact

sets, which then allows us to more easily leverage the modulus of continuity of K in our argument.

Given this observation, we begin this process by considering the behaviour of the function

L(0, 0, ·, ·) : [−n, n] ×
[

1

n
, n

]
→ R

(x, s) 7→ L(0, 0;x, s).

where n ∈ Z>0 is arbitrary. By applying Theorem 3.0.2 with δ = 1
n , and ξ = τ = ε ∈

(
0, n−6

)
, there
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exists an n−dependent random constant C
(
K

1
n
n

)
such that for any (x, s), (y, t) ∈ [−n, n] ×

[
1
n , n

]
,

∣∣∣∣L(0, 0;x, s) +
x2

s
− L(0, 0; y, t) − y2

t

∣∣∣∣ ≤ C
(
K

1
n
n

)(
ε

1
3 log

2
3
(
ε−1
)

+ ε
1
2 log

1
2
(
4nε−1

))
, (3.0.1)

where for any M > 0 we have that

P
(
C
(
K

1
n
n

)
> M

)
≤ cn16e−dM

3
2 .

With this setup in mind, fix a, b ∈ R and 0 < ε < n−6 such that

[a, a + ε] × [b, b + ε] ⊆ [−n, n] ×
[

1

n
, n

]
and suppose that for some (x, s) ∈ [a, a + ε] × [b, b + ε] that L(0, 0;x, s) = h. If this is true, then

based on our choice of [a, a + ε] × [b, b + ε] we have by equation (3.0.1) and the reverse triangle

inequality that for all (y, t) ∈ [a, a + ε] × [b, b + ε],

|L(0, 0; y, t) − h| ≤ C
(
K

1
n
n

)(
ε

1
3 log

2
3
(
ε−1
)

+ ε
1
2 log

1
2
(
4nε−1

))
+

∣∣∣∣x2

s
− y2

t

∣∣∣∣
≤ C

(
K

1
n
n

)(
ε

1
3 log

2
3
(
ε−1
)

+ ε
1
2 log

1
2
(
4nε−1

))
+

(|a| + ε)2

b
− a2

b + ε

= C
(
K

1
n
n

)(
ε

1
3 log

2
3
(
ε−1
)

+ ε
1
2 log

1
2
(
4nε−1

))
+

(|a| + ε)2(b + ε) − a2b

b(b + ε)

=: C
(
K

1
n
n

)(
ε

1
3 log

2
3
(
ε−1
)

+ ε
1
2 log

1
2
(
4nε−1

))
+ Ka,b,ε. (3.0.2)

Because this bound holds uniformly for all choices of (y, t) ∈ [a, a + ε] × [b, b + ε], this means that

we then obtain a bound

P
(
Zh ∩ ([a, a + ε] × [b, b + ε]) ̸= ∅

)
≤ P

(
|L(0, 0, a + ε, b + ε) − h| ≤ C

(
Kδ

n

) (
ε

1
3 log

2
3
(
1 + ε−1

)
+ ε

1
2 log

1
2
(
1 + ε−1

))
+ Ka,b,ε

)
≤ P

(
|L(0, 0, a + ε, b + ε) − h| ≤ C

(
Kδ

n

) (
ε

1
3 log

2
3
(
1 + ε−1

)
+ ε

1
2 log

1
2
(
1 + ε−1

)
+ Ka,b,ε

))
.

(3.0.3)

We will now develop an upper bound on the probability above. We first recall that for any 0 < γ < 1
3

we have that

lim
ε→0+

ε
1
3 log

2
3 (ε−1)

ε
1
3−γ

= lim
ε→0+

ε
1
2 log

1
2 (4nε−1)

ε
1
2−γ

= 0

for any fixed value of n ∈ Z>0, which in turn gives us the pair of upper bounds

ε
1
3 log

2
3 (ε−1) ≤ ε

1
3−γ

and

ε
1
2 log

1
2 (4nε−1) ≤ ε

1
2−γ

for these same sufficiently small positive values of γ. Combining these bounds with equation (3.0.3),
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we get a further upper bound

P
(
Zh ∩ ([a, a + ε] × [b, b + ε]) ̸= ∅

)
≤ P

(
|L(0, 0, a + ε, b + ε) − h| ≤ C

(
Kδ

n

) (
ε

1
3 log

2
3
(
ε−1
)

+ ε
1
2 log

1
2
(
4nε−1

)
+ Ka,b,ε

))
≤ P

(
|L(0, 0, a + ε, b + ε) − h| ≤ C

(
Kδ

n

) (
ε

1
3−γ + ε

1
2−γ + Ka,b,ε

))
. (3.0.4)

We will now invoke the relationship between the directed landscape at a fixed point in R4
↑ and the top

line of the parabolic Airy process A1 to bound this probability in terms of a, b, and ε. In particular,

we will be using the fact

L(0, 0, a + ε, b + ε)
d
= (b + ε)

1
3A1

(
a + ε

(b + ε)
2
3

)
in conjunction with the fact that for any fixed x ∈ R, A1(x)+x2 ∼ TW2 has a bounded density with

respect to the Lebesgue measure on R, with the bound independent of the choice of x. We also take

a moment to recall that a translation by a constant and a dilation of the argument of A1(x) + x2

does not change the uniform bound on its density. We also observe that if X,Y are random variables

such that |X| ≤ Y almost surely and x, y ∈ R>0 then we always have that

P
(
|X| ≤ Y x

)
= P

(
{|X| ≤ Y x} ∩ {Y ≤ y}

)
+ P

(
{|X| ≤ Y x} ∩ {Y > y}

)
≤ P

(
|X| ≤ yx

)
+ P

(
Y > y

)
When these observations are applied to equation (3.0.4), our upper bound can be extended to

P
(
Zh ∩ ([a, a + ε] × [b, b + ε]) ̸= ∅

)
≤ P

(
|L(0, 0, a + ε, b + ε) − h| ≤ C

(
K

1
n
n

)(
ε

1
3 log

2
3
(
ε−1
)

+ ε
1
2 log

1
2
(
4nε−1

)
+ Ka,b,ε

))
≤ P

(
|L(0, 0, a + ε, b + ε) − h| ≤ C

(
K

1
n
n

)(
ε

1
3−γ + ε

1
2−γ + Ka,b,ε

))
≤ P

(
|L(0, 0, a + ε, b + ε) − h| ≤ M

(
ε

1
3−γ + ε

1
2−γ + Ka,b,ε

))
+ P

(
C
(
K

1
n
n

)
> M

)
.

≤ P
(
|L(0, 0, a + ε, b + ε) − h| ≤ M

(
ε

1
3−γ + ε

1
2−γ + Ka,b,ε

))
+ cn16e−dM

3
2

≤ P
(∣∣∣∣(b + ε)

1
3A1

(
a + ε

(b + ε)
2
3

)
− h

∣∣∣∣ ≤ M
(
ε

1
3−γ + ε

1
2−γ + Ka,b,ε

))
+ cn16e−dM

3
2

≤ 2Mκ(b + ε)−1
(
ε

1
3−γ + ε

1
2−γ + Ka,b,ε

)
+ cn16e−dM

3
2

≤ 2Mnκ
(
ε

1
3−γ + ε

1
2−γ + Ka,b,ε

)
+ cn16e−dM

3
2

where M > 0 and κ > 0 is the uniform upper bound on the density of A1

(
a+ε

(b+ε)
2
3

)
i.e. the density

bound of the Tracy-Widom2 distribution. We will specify the precise value of M > 0 that we will be

using later on when the motivation for that particular choice is more readily apparent. Moreover,

by using the elementary facts that

0 < ε < n−6 and [a, a + ε] × [b, b + ε] ⊆ [−n, n] ×
[

1

n
, n

]
and lim

ε→0
(a + ε)2(b + ε) − a2b = 0,
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we see that for any ε > 0 sufficiently small, we can bound the constant Ka,b,ε for any fixed pair of

values a, b ∈ [−n, n] ×
[
1
n , n

]
by

Ka,b,ε =
(|a| + ε)2(b + ε) − a2b

b(b + ε)

=
ε
(
b(2|a| + ε) + (|a| + ε)2

)
b(b + ε)

≤
ε
(
b(3|a|) + (2|a|)2

)
b2

≤ 7n2 ε

b2
.

Given this and the fact that 1
n ≤ (b + ε)−1 < b−1 ≤ n, we can simplify our new upper bound even

further and write that

P
(
Zh ∩ ([a, a + ε] × [b, b + ε]) ̸= ∅

)
≤ 2Mnκ

(
ε

1
3−γ + ε

1
2−γ + Ka,b,ε

)
+ cn16e−dM

3
2

≤ 2Mnκ
(
ε

1
3−γ + ε

1
2−γ + 7n2 ε

b2

)
+ cn16e−dM

3
2

≤ 2Mnκ
(
ε

1
3−γ + ε

1
2−γ + 7n4ε

)
+ cn16e−dM

3
2

≤ 14Mn5κ
(
ε

1
3−γ + ε

1
2−γ + ε

)
+ cn16e−dM

3
2 .

With this bound on the probability of hitting h somewhere a given square of area ε2 in [−n, n]×
[
1
n , n

]
,

we are now ready to prove that the upper Minkowski dimension of Zh∩
(
[−n, n] ×

[
1
n , n

])
is at most

5
3 . To do this, we will set ε = 2−m with m ≥ 6 log2(n), so that 2−m < n−6, which will yield that

P
(
Zh ∩

([
a, a + 2−m

]
×
[
b, b + 2−m

])
̸= ∅
)
≤ 14Mn5κ

(
2−

m
3 +mγ + 2−

m
2 +mγ + 2−m

)
+ cn16e−dM

3
2

≤
(
42Mn5κ

)
2−

m
3 +mγ + cn16e−dM

3
2 . (3.0.5)

Noting that for any m ∈ Z>0 we have the covering

[−n, n]×
[

1

n
, n

]
⊆

2mn⊔
j=1−2mn

⌈(n− 1
n )2m⌉⊔

k=1

([
2−m(j − 1), 2−mj

]
×
[
2−m

(
1

n
+ k − 1

)
, 2−m

(
1

n
+ k

)])
,

if for each m ∈ Z>0 we define the random variable Nm by

Nm :=

2mn∑
j=1−2mn

⌈(n− 1
n )2m⌉∑

k=1

1{Zh∩([2−m(j−1),2−mj]×[2−m( 1
n+k−1), 2−m( 1

n+k)])̸=∅},

then E [Nm] will give an upper bound on the expected number of sets of diameter no more than 2−m

needed to cover Zh∩
(
[−n, n] ×

[
1
n , n

])
. By applying the bound we obtained in equation (3.0.5) and
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using the linearity of expectation, we obtain the bound

E [Nm] = E

 2mn∑
j=1−2mn

⌈(n− 1
n )2m⌉∑

k=1

1{Zh∩([2−m(j−1),2−mj]×[2−m( 1
n+k−1), 2−m( 1

n+k)]) ̸=∅}


=

2mn∑
j=1−2mn

⌈(n− 1
n )2m⌉∑

k=1

P
(
Zh ∩

([
2−m(j − 1), 2−mj

]
×
[
2−m

(
1

n
+ k − 1

)
, 2−m

(
1

n
+ k

)])
̸= ∅
)

≤
2mn∑

j=1−2mn

⌈(n− 1
n )2m⌉∑

k=1

((
42Mn5κ

)
2−

m
3 +mγ + cn16e−dM

3
2

)

≤ 2n

(⌈
n− 1

n

⌉)
22m

((
42Mn5κ

)
2−

m
3 +mγ + cn16e−dM

3
2

)
≤ 2n222m

((
42Mn5κ

)
2−

m
3 +mγ + cn16e−dM

3
2

)
≤ 84Mn7κ

(
2m( 5

3+γ)
)

+ 2cn18e−dM
3
2
(
22m

)
.

At this stage, we will now set M =
(
m
3d

) 2
3 so that our final version of this upper bound on E [Nm]

becomes the far more useful bound

E [Nm] ≤ 84n7(3d)−
2
3

(
m

2
3 2m( 5

3+γ)
)

+ 2cn18
(
22me−

m
3

)
. (3.0.6)

Now given this bound on E [Nm] for a given m ≥ 6 log2(n), consider the expectation of the infinite

series

E

 ∞∑
m=⌈6 log2(n)⌉

Nm

2m( 5
3+γ+η)


for an arbitrary η > 0. By using the Monotone Convergence Theorem and equation (3.0.6), we can

then see that the expected value of this series is no more than

E

 ∞∑
m=⌈6 log2(n)⌉

Nm

2m( 5
3+γ+η)

 ≤
∞∑

m=⌈6 log2(n)⌉

E [Nm]

2m( 5
3+γ+η)

≤ 84n7(3d)−
2
3

∞∑
m=⌈6 log2(n)⌉

m
2
3 2m( 5

3+γ)

2m( 5
3+γ+η)

+ 2cn18
∞∑

m=⌈6 log2(n)⌉

22me−
m
3

2m( 5
3+γ+η)

= 84n7(3d)−
2
3

∞∑
m=⌈6 log2(n)⌉

m
2
3 2−mη + 2cn18

∞∑
m=⌈6 log2(n)⌉

2−m(γ+η)

(
2

e

)m
3

which is finite for all η > 0 and γ ∈
(
0, 1

3

)
. Thus, since its expected value is finite, this implies that

the random series
∞∑

m=1

Nm

2m( 5
3+γ+η)

is also finite almost surely for any η > 0 and γ ∈ (0, 3). Furthermore, because this series converges
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almost surely, we must also have that for any fixed choice of these constants γ and η,

lim sup
m→∞

Nm

2m( 5
3+γ+η)

= 0

almost surely. Note that this is also true independently of the choice of n ∈ Z>0.

Now by recalling the definition of the upper Minkowski dimension in Definition 1.6.2, this shows

that

dimM

(
Zh ∩ [−n, n] ×

[
1

n
, n

])
≤ 5

3
+ γ + η

for all n ∈ Z>0, η > 0, and γ ∈
(
0, 1

3

)
. Letting η and γ go to 0 then gives the sharper upper bound

dimM

(
Zh ∩ [−n, n] ×

[
1

n
, n

])
≤ 5

3

for each n ∈ Z>0. Finally, using the countable stability of the Hausdorff dimension, the fact that

the upper Minkowski dimension is always greater than the Hausdorff dimension, and the fact

R× (0,∞) =

∞⋃
n=1

(
[−n, n] ×

[
1

n
, n

])
,

we conclude our proof of this theorem by observing that

dimH(Zh) = dimH

( ∞⋃
n=1

(
[−n, n] ×

[
1

n
, n

])
∩ Zh

)

= sup
n∈Z>0

dimH

((
[−n, n] ×

[
1

n
, n

])
∩ Zh

)
≤ sup

n∈Z>0

dimM

((
[−n, n] ×

[
1

n
, n

])
∩ Zh

)
≤ 5

3
.

As is typical when finding the Hausdorff dimension of any set, this upper bound is relatively quick

and painless to obtain as we only needed to find one covering of dimension at most 5
3 . However,

the task of finding a lower bound on the Hausdorff dimension of any possible covering of Zh is

considerably more difficult and complex. We present our strategy for finding these sorts of bounds

systematically in the next chapter. We will establish a general strategy that works for any sufficiently

nice stochastic process before verifying that the directed landscape meets the hypotheses required

for this technique.



Chapter 4

Lower Bounding the Hausdorff

Dimension of Random Level Sets

4.1 Statement of General Strategy

In this chapter we provide a general argument for systematically establishing a lower bound on the

Hausdorff dimension dimH of the level sets of a stochastic process X indexed by R2. that holds

with an h−dependent positive probability ph > 0. This procedure was assembled with the h−level

sets Zh of L(0, 0, ·, ·) and results we are able to obtain for the directed landscape in particular in

mind, so many of our choices and assumptions below are purely for convenience in that setting. The

dimension that our processes take values in, the dimension of their index sets, the subsets with which

we intersect their level sets, and even the nature of the bound (4.1.3) are all highly customizable in

general.

Theorem 4.1.1. Let
(
X(x1, t1)

)
(x1,t1)∈R2

be a stochastic process, let h, x0, y0 ∈ R be arbitrary,

and let δx, δt ∈ (0, 1]. Assume that for some m ∈ Z>0 there exist constants a1, . . . , am, b1, . . . , bm ∈
(−1, 1), some real number ε0 > 0, and two positive h (and in general x0, t0, δx, and δt)-dependent

constants ch and c′h such that for all tuples (x1, t1), (x2, t2) ∈ [x0, x0 + δx]× [t0, t0 + δt] with t1 ̸= t2,

P
(
X(x1, t1) ∈ (h− ε, h + ε)

)
≤ 2chε (4.1.1)

P
(
X(x1, t1) ∈ (h− ε, h + ε)

)
≥ 2c′hε (4.1.2)

P
(
|X(x1, t1) − h| < ε, |X(x2, t2) − h| < ε

)
≤ 4chε

2

(
m∑
i=1

|x1 − x2|ai |t1 − t2|bi
)

(4.1.3)

for all 0 < ε ≤ ε0. If β := 2 ∧
(

min
i∈{1,...m}

(ai + bi + 2)

)
, then

P
(

dimH

(
X−1(h)

)
≥ β

)
≥ P

(
dimH

(
X−1 (h) ∩

(
[x0, x0 + δx] × [t0, t0 + δt]

))
≥ β

)
≥ ph,

38
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where the positive constant ph > 0 is defined as

ph :=
(c′h)

2

64ch

(
m∑
i=1

δai
x δbit

(ai + 1) (bi + 1)

)−1

.

Note. Because P is a probability measure, we must necessarily have that the positive constants ph

tend to 0 as |h| → ∞. In particular, this will happen because c′h must shrink to 0 as |h| → ∞.

Moreover, the probability ph of this lower bound on the Hausdorff dimension holding will achieve

its largest values on the regions of R in which

Law

((
X(x1, t1)

)
(x1,t1)∈[x0,x0+δx]×[t0,t0+δt]

)
concentrates its mass the most, since these will be the regions which lead to the largest possible

constants c′h. In the event that this law has a continuous, strictly positive density with respect to

the Lebesgue measure whose support contains [h− ε, h + ε], the existence of these constants c′h > 0

and ch > 0 will always be an immediate consequence of the Extreme Value Theorem.

4.2 Proof of General Strategy

Proof. We will break down the proof of this theorem into 5 steps as follows.

4.2.1 Build a Sequence of Random Measures Supported on h−Level Set

Fix an arbitrary h ∈ R. For each ε ∈ (0, ε0), we define a random measure µh,ε on [x0, x0 + δx] ×
[t0, t0 + δt] by

µh,ε(A) :=
1

2ε
λ
({

(x1, t1) ∈ [x0, x0 + δx] × [t0, t0 + δt] : (x, s,X(x1, t1)) ∈ A× (h− ε, h + ε)
})

where λ is the Lebesgue measure on R2. We will rewrite the measure of each such event as the

integral

µh,ε(A) =
1

2ε

∫
A

1{X(x1,t1)∈(h−ε,h+ε}dλ(x1, t1). (4.2.1)

The intention will be to use this collection of measures to build a mass distribution of the h−level

set of X. Though this choice of approximating measures for our eventual mass distribution feels

reasonable intuitively, we do note that this is by no means the only possible choice for this sequence.

It is quite possible in general, and possibly even here in the case of the directed landscape, that a

different type of measure may yield stronger results than this.

4.2.2 Sequence of Random Measures has a Subsequential Limit in Law

A natural way to prove the precompactness of a sequence of random measures is to prove that the

sequence of random measures is tight. We will use the following form of Prokhorov’s Theorem:
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Theorem 4.2.1 (Kallenberg, Lemma 14.15 in [16]). Let µ1, µ2, . . . be random measures on a lo-

cally compact simply connected Hausdorff space S. Then the sequence (µn) is relatively compact in

distribution if and only if (µn(A)) is tight in R≥0 for every measurable A ∈ S.

Let (εn)∞n=1 be some monotone sequence of positive real numbers in (0, ε0) such that εn → 0. This

time, we will take S = [x0, x0+δx]×[t0, t0+δt], µn = µh,εn , and will let A be an arbitrary measurable

subset of [x0, x0 + δx] × [t0, t0 + δt]. To prove that our sequence (µh,εn(A))∞n=1 is tight in R+, it is

enough to prove that the sequence (E [µh,εn(A)])∞n=1 is uniformly bounded in n. Since (µh,ε(A)) is

non-zero for all h ∈ R and ε ∈ (0, ε0), this means that we only need to find a uniform upper bound

in n on E [µh,εn(A)].

Using (4.2.1), we have that by definition,

E [µh,ε(A)] =
1

2ε
E
[∫

A

1{X(x1,t1)∈(h−ε,h+ε}dλ(x1, t1)

]
.

for all ε > 0. By Fubini’s theorem, the expectation above is equal to

1

2ε

∫
A

P
(
X(x1, t1) ∈ (h− ε, h + ε)

)
dλ(x1, t1). (4.2.2)

By hypothesis, the integrand above can be bounded using (4.1.1) by 2chε leaving us with

E [µh,ε(A)] ≤ ch

∫
A

1dλ(x1, t1) ≤ ch,

where we use that λ(A) ≤ λ ([x0, x0 + δx] × [t0, t0 + δt]) ≤ 1. This proves that (µh,εn(A))∞n=1 is tight

for all measurable sets A and thus there exists a convergent subsequence of measures (µh,εnk
)∞k=1

that converges in distribution to a measure µh. Without loss of generality, we will simply take

(µh,εn)∞n=1 to be (µh,εnk
)∞k=1. We will now prove that this limiting measure µh is mass distribution

with finite α−energy for all α < β on X−1(h) over the course of the next three sections.

4.2.3 Limit is a Positive Measure with Positive Probability

If we can establish bounds of the form

E
[
µh,ε ([x0, x0 + δx] × [t0, t0 + δt])

]
≥ Kh > 0

E
[
µh,ε ([x0, x0 + δx] × [t0, t0 + δt])

]
≤ Ch < ∞

where K and C are strictly positive constants independent of the choice of ε, we can prove that

µh,ε ([x0, x0 + δx] × [t0, t0 + δt]) > 0 with positive probability. If we can find such bounds and choose
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θh ∈ [0, 1 ∧Kh], then the Payley-Zigmund inequality implies that for each 0 < ε < ε0,

P
(
µh,ε ([x0, x0 + δx] × [t0, t0 + δt]) > θh

)
≥

1 − θh

E
[
µh,ε ([x0, x0 + δx] × [t0, t0 + δt])

]
2

E
[
µh,ε ([x0, x0 + δx] × [t0, t0 + δt])

]2
E
[
µh,ε

(
([x0, x0 + δx] × [t0, t0 + δt])

2
) ]

≥
(

1 − θh
Kh

)2
K2

h

Ch
.

In particular, this will mean that

P
(
µh,ε ([x0, x0 + δx] × [t0, t0 + δt]) > 0

)
≥ K2

h

Ch
=: ph > 0.

We will now prove that these bounds on the moments of µh,ε ([x0, x0 + δx] × [t0, t0 + δt]) exist.

We first need to find a lower bound for E
[
µh,ε ([x0, x0 + δx] × [t0, t0 + δt])

]
. By combining equation

(4.2.2) with the assumed bound (4.1.2), we see immediately that

E
[
µh,ε ([x0, x0 + δx] × [t0, t0 + δt])

]
=

1

2ε

∫ t0+δt

t0

∫ xo+δx

x0

P(X(x1, t1) ∈ (h− ε, h + ε))dxdt

≥
∫ t0+δt

t0

∫ x0+δx

x0

c′hdxdt

= δtδxc
′
h =: Kh.

To find an upper bound Ch on the second moment, we start by observing that we may write

E
[

(µh,ε ([x0, x0 + δx] × [t0, t0 + δt]))
2
]

=
1

4ε2

∫ t0+δt

t0

∫ x0+δx

x0

∫ t0+δt

t0

∫ x0+δx

x0

P
(
|X(x1, t1) − h| ≤ ε, |X(x2, t2) − h| ≤ ε

)
dx1dt1dx2dt2.

By invoking the assumed two-point distribution bound in (4.1.3), this can be bounded further as

E
[

(µh,ε ([x0, x0 + δx] × [t0, t0 + δt]))
2
]

≤ ch

∫ t0+δt

t0

∫ x0+δx

x0

∫ t0+δt

t0

∫ x0+δx

x0

m∑
i=1

|x1 − x2|ai |t1 − t2|bidxdsdydt.

Next, by performing the change of variables

(u1, v1, u2, v2) = (x1 − x2, t1 − t2, x1 + x2, t1 + t2) (4.2.3)
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this then becomes

E
[(

µh,ε ([x0, x0 + δx] × [t0, t0 + δt])
)2]

≤ ch

∫ t0+δt

t0

∫ x0+δx

x0

∫ t0+δt

t0

∫ x0+δx

x0

m∑
i=0

|x1 − x2|ai |t1 − t2|bidx1dt1dx2dt2

= 4ch

m∑
i=1

∫ 2t0+2δt

2t0

∫ 2x0+2δx

2x0

∫ δt

−δt

∫ δx

−δx

|u1|ai |v1|bidu1dv1du2dv2

= 64δxδtch

m∑
i=1

∫ δt

0

∫ δx

0

uai
1 vbi1 du1dv1

= 64δxδtch

m∑
i=1

δai+1
x δbi+1

t

(ai + 1)(bi + 1)
=: Ch,

thus giving us our desired upper bound Ch, which is independent of the choice of ε. Moreover,

because the bounds (4.1.2) and (4.1.3) hold for all ε ∈ (0, ε0), we have that these bounds hold for

the same choice of Ch and Kh for each random measure in (µh,εn)∞n=1. Hence, for each measure

µh,εn we have just shown that

P
(
µh,εn ([x0, x0 + δx] × [t0, t0 + δt]) > 0

)
≥ ph > 0

for all θh ∈ (0, 1 ∧Kh). All that remains now is to show that this lower bound is also inherited by

the limiting measure µh. Because µh is the limit in distribution of (µh,εn)∞n=1 we indeed have that

P
(
µh ([x0, x0 + δx] × [t0, t0 + δt]) ≥ 0

)
≥ lim sup

n→∞
P
(
µh,εn ([x0, x0 + δx] × [t0, t0 + δt]) ≥ 0

)
≥ lim sup

n→∞
P
(
µh,εn ([x0, x0 + δx] × [t0, t0 + δt]) > 0

)
≥ ph,

and thus µh is a positive measure with non-zero probability.

4.2.4 Limit is a Mass Distribution on the h−Level Set of X

We will next prove that the limiting measure µh is supported on (a subset of) the h−level set of

the random process (X(x1, t1))(x1,t1)∈[x0,x0+δx]×[t0,t0+δt]. This step is necessary since we only have

a limit in law, and not a pointwise or uniform limit. To begin, take
(

Ω,F ,P
)

to be the underlying

probability space on which X and our sequence of random measures (µh,εn)∞n=1 are defined, i.e.

X :
(

Ω,F ,P
)
→
(
C ([x0, x0 + δx] × [t0, t0 + δt]) , σ(τunif)

)
µh,εn :

(
Ω,F ,P

)
→
(
M[x0,x0+δx]×[t0,t0+δt], σ(τvague)

)
where M[x0,x0+δx]×[t0,t0+δt] is the space of finite (positive) measures on [x0, x0 + δx] × [t0, t0 + δt],

σ(τunif) is the sigma algebra generated by the topology of uniform convergence, and σ(τvague) is the

sigma algebra generated by the vague topology on M[x0,x0+δx]×[t0,t0+δt]. Note that M[x0,x0+δx]×[t0,t0+δt]

is a Polish space and that C ([x0, x0 + δx] × [t0, t0 + δt]) is a complete, separable metric space under
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the sup-norm by the Stone-Weierstrass theorem.

Next, let dvague be the metric generating the vague topology on [x0, x0 + δx] × [t0, t0 + δt] and

define a metric dprod on the product of these two spaces by

dprod :
(
M[x0,x0+δx]×[t0,t0+δt] × C ([x0, x0 + δx] × [t0, t0 + δt])

)2 → R+

(
(f, µ), (g, ν)

)
7→

√√√√dvague(µ, ν)2 +

(
sup

(x1,t1)∈[x0,x0+δx]×[t0,t0+δt]

|f(x1, t1) − g(x1, t1)|

)2

. (4.2.4)

Under this metric then see immediately that the product space(
M[x0,x0+δx]×[t0,t0+δt] × C ([x0, x0 + δx] × [t0, t0 + δt]) , dprod

)
is again a complete, separable metric space. Let τprod denote the topology generated by the metric

dprod and σ(τprod) be the Borel sigma algebra generated by this topology. Under these conventions,

any finite measure on the product space endowed with σ(τprod) will automatically have compact

support.

We will now shift our attention back to the sequence of random measures (µh,εn)∞n=1 and its limit in

distribution µh. With the conventions in this subsection thus far, we can view the pairs (µh,εn , X)

as random elements(
µh,εn , X

)
:
(

Ω,F ,P
)
→
(
M[x0,x0+δx]×[t0,t0+δt] × C ([x0, x0 + δx] × [t0, t0 + δt]) , σ(τprod)

)
.

Given this, if we define for each n ∈ Z>0 the probability measure

Qn = Law
(

(µh,εn , X)
)

on
(
M[x0,x0+δx]×[t0,t0+δt] × C ([x0, x0 + δx] × [t0, t0 + δt]) , σ(τprod)

)
, then the sequence of probability

measures (Qn)∞n=1 will have a weak limit Q∞. Moreover, each probability measure Qn (including

n = ∞) will also have separable support. Thus, we may use the Skorokhod Representation Theorem

to construct a new probability space
(

Ω̃, F̃ , P̃
)

and random elements

Yn :
(

Ω̃, F̃ , P̃
)
→
(
M[x0,x0+δx]×[t0,t0+δt] × C ([x0, x0 + δx] × [t0, t0 + δt]) , σ(τprod)

)
for each n > 0 (including n = ∞) such that Yn → Y∞ P̃−almost surely, and such that

Law
(
Yn

)
= Qn

for each n. For the sake of convenience, for each n ∈ Z>0 we will write

Yn =:
(
µ̃h,εn , X

(n)
)
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and for n = ∞, we will similarly write

Y∞ =:
(
µh, X

(∞)
)
.

Now because the almost-sure convergence Yn → Y∞ is with respect to the metric dprod, we have by

(4.2.4) that as n → ∞,

µ̃h,εn → µh (4.2.5)

P̃−almost surely in the vague topology on M[x0,x0+δx]×[t0,t0+δt]. The same reasoning gives us that

X(n) → X(∞)

with respect to the sup-norm on C ([x0, x0 + δx] × [t0, t0 + δt]) P̃−almost surely.

We now take a moment to observe that each X(n) (including n = ∞) is a copy of the random

process X created on
(

Ω̃, F̃ , P̃
)

, though they are not necessarily the same realization of X. We will

show that this potential ambiguity with different realizations of the same process is not an issue.

To that end, we will make several elementary observations before resolving this. First, we establish

that for each finite n,

supp µ̃h,εn ⊆
(
X(n)

)−1 (
[h− εn, h + εn]

)
(4.2.6)

P̃−almost surely. Letting π1 and π2 be the usual projection maps on the product space

M[x0,x0+δx]×[t0,t0+δt] × C([x0, x0 + δx] × [t0, t0 + δt]),

this follows immediately from the fact that

P̃
(
µ̃h,εn

((
X(n)

)−1 (
[h− εn, h + εn]C

))
> 0

)
= P̃

(
π1(Yn)

(
π2 (Yn)

−1 (
[h− εn, h + εn]C

))
> 0
)

= P
(
µh,εn

(
X−1

(
[h− εn, h + εn]C

))
> 0
)

= 0

based on our original definition of µh,εn in terms of X.

Next we fix some small δ > 0 and recall that P̃−almost surely, there exists N = N(δ, ω) such

that for all n > N and εn < δ/2,

sup
(x1,t1)∈[1,2]×[1, 1110 ]

∣∣∣X(n)(ω)(x1, t1) −X(∞)(ω)(x1, t1)
∣∣∣ < δ/2. (4.2.7)

As an immediate consequence of (4.2.7) and the fact that εn + δ/2 < δ, we have that for all n > N ,(
X(n)

)−1

([h− εn, h + εn]) ⊆
(
X(∞)

)−1

([h− δ, h + δ]) (4.2.8)
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P̃−almost surely. In conjunction with (4.2.6), this means that

supp µ̃h,εn ⊆
(
X(∞)

)−1

([h− δ, h + δ])

P̃−almost surely. With this we are now able to establish that P̃−almost surely,

suppµh ⊆ (X(∞))−1([h− δ, h + δ]) (4.2.9)

for any δ > 0, i.e. that

suppµh ⊆
(
X(∞)

)−1

(h) (4.2.10)

as desired. To prove that (4.2.9) is true, it suffices to show that for any continuous

f : [x0, x0 + δx] × [t0, t0 + δt] → R

vanishing on an arbitrary open neighbourhood of
(
X(∞)

)−1
([h− δ, h + δ]) that∫∫

[x0,x0+δx]×[t0,t0+δt]

f(x1, t1)dµh(ω)(x1, t1) = 0.

By (4.2.5), we know that for any such function f ,∫∫
[x0,x0+δx]×[t0,t0+δt]

f(x1, t1)dµh(ω)(x1, t1) = lim
n→∞

∫∫
[x0,x0+δx]×[t0,t0+δt]

f(x1, t1)dµh,εn(ω)(x1, t1).

By (4.2.8) and the hypothesis about the support of f, we know that for n > N = N(δ, ω), each

integral on the right-hand side above will be exactly 0. This in turn establishes (4.2.9) for any fixed

δ > 0 and by letting δ → 0, this finally proves that (4.2.10) is true. This completes our goal for this

subsection and confirms that µh is a valid mass distribution for the h−level set of X. For the sake

of convenience going forward, we will take the random measures and stochastic processes that we

have on the original probability space
(

Ω,F ,P
)

to be the realizations that we have just constructed

on
(

Ω̃, F̃ , P̃
)
.

4.2.5 Mass Distribution has Finite Energy for α < β

In order to invoke Theorem 1.6.9 with our mass distribution µh, we need to determine for which

α ≥ 0 the integral∫∫∫∫
([x0,x0+δx]×[t0,t0+δt])

2

1

||(x1, t1) − (x2, t2)||α
dµh(x1, t1)dµh(x2, t2) < ∞ (4.2.11)

converges almost surely. Notice that since this is a random integral, to prove that this integral is

finite, it is enough to show that its expectation is finite. First, we will prove that the mean of the
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energy integral for each µh,ε is uniformly bounded. By the definition of µh,ε,

E

[∫∫∫∫
([x0,x0+δx]×[t0,t0+δt])

2

1

||(x1, t1) − (x2, t2)||α
dµh,ε(x1, t1)dµh,ε(x2, t2)

]

= E

[
1

4ε2

∫∫∫∫
([x0,x0+δx]×[t0,t0+δt])

2

1{(X(x1,t1)∈[h−ε,h+ε]}1{(X(x2,t2)∈[h−ε,h+ε]}

||(x1 − x2, s− t)||α
dλ(x1, t1)dλ(x2, t2)

]
.

By Fubini’s Theorem, the expected value on the right-hand side is equal to

1

4ε2

∫ t0+δt

t0

∫ x0+δx

x0

∫ t0+δt

t0

∫ x0+δx

x0

P
(
|X(x1, t1) − h| < ε, |X(x2, t2) − h| < ε

)
||(x1 − x2, s− t)||α

dx1dt1dx2dt2.

As before, we can use the two-point distribution bound (4.1.3) to obtain the subsequent bound

E

[∫∫∫∫
([x0,x0+δx]×[t0,t0+δt])

2

1

||(x1, t1) − (x2, t2)||α
dµh,ε(x1, t1)dµh,ε(x2, t2)

]

≤ch

m∑
i=1

∫ t0+1

t0

∫ x0+1

x0

∫ t0+1

t0

∫ x0+1

x0

|x1 − x2|ai |t1 − t2|bi
||(x1 − x2, s− t)||α

dx1dt1dx2dt2.

By once again using the change of variables (4.2.3), the right-hand side of the expression above can

be rewritten as

ch

m∑
i=1

∫ t0+1

t0

∫ x0+1

x0

∫ t0+1

t0

∫ x0+1

x0

|x1 − x2|ai |t1 − t2|bi
||(x1 − x2, s− t)||α

dx1dt1dx2dt2

= 4ch

m∑
i=1

∫ 2t0+2

2t0

∫ 2x0+2

2x0

∫ 1

−1

∫ 1

−1

|u1|ai |v1|bi
||(u1, v1)||α

du1dv1du2dv2

= 64ch

m∑
i=1

∫ 1

0

∫ 1

0

uai
1 vbi1

(u2
1 + v21)α/2

du1dv1. (4.2.12)

The convergence of the integral above in the right-hand side of (4.2.12) is best understood by using

the following proposition about the calculus of the Γ−distribution.

Lemma 4.2.2. For any real numbers a, b > 0, the integral∫ 1

0

∫ 1

0

ua−1vb−1

(u2 + v2)
α
2
dudv =

∫ 1

0

∫ 1

0

ua−1vb−1

||(u, v)||α2
dudv

converges for all 0 ≤ α < a + b.

Proof. We first recall that since all norms on R2 are equivalent to the infinity norm, there exist

positive constants c, C > 0 such that

c||(u, v)||α1 ≤ ||(u, v)||α2 ≤ C||(u, v)||α1
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so we immediately have the upper bound∫ 1

0

∫ 1

0

ua−1vb−1

(u2 + v2)
α
2
dudv ≤ c

∫ 1

0

∫ 1

0

ua−1vb−1

(u + v)α
dudv.

Now let U and V be independent random variables with U ∼ Γ(a, 1) and V ∼ Γ(b, 1) and consider

E
[

1

(U + V )α
1{U≤1}1{V≤1}

]
.

By definition, this expectation is equal to∫ 1

0

∫ 1

0

1

(u + v)α

(
ua−1e−u

Γ(a)

)(
vb−1e−v

Γ(b)

)
dudv ≥ e−2

Γ(a)Γ(b)

∫ 1

0

∫ 1

0

ua−1vb−1

(u + v)α
dudv

which then allows us to say that∫ 1

0

∫ 1

0

ua−1vb−1

(u2 + v2)
α
2
dudv ≤ ce2Γ(a)Γ(b)E

[
1

(U + V )α
1{U≤1}1{V≤1}

]
.

Moreover, by the independence of U and V , we also know that W := U + V ∼ Γ(a + b, 1). With

this observation in mind, we can then say that∫ 1

0

∫ 1

0

ua−1vb−1

(u2 + v2)
α
2
dudv ≤ ce2Γ(a)Γ(b)E

[
1

(U + V )α
1{U≤1}1{V≤1}

]
≤ ce2Γ(a)Γ(b)E

[
1

Wα
1{W≤2}

]
= ce2Γ(a)Γ(b)

∫ 2

0

1

wα

wa+b−1e−w

Γ(a + b)
dw

≤ ce2Γ(a)Γ(b)

Γ(a + b)

∫ 2

0

wa+b−α−1dw.

This upper bound is finite if and only∫ 1

0

wa+b−α−1dw < ∞ ⇐⇒ a + b− 1 − α > −1 ⇐⇒ α < a + b.

Therefore, for all 0 ≤ α < a + b, we have that∫ 1

0

∫ 1

0

ua−1vb−1

(u2 + v2)
α
2
dudv < ∞.

Using Lemma 4.2.2, we see immediately that the improper integral∫ 1

0

∫ 1

0

uai
1 vbi1

(u2
1 + v21)

α
2
dudv

converges for all 0 ≤ α < ai + bi + 2. Moreover, because the integrand above is a non-negative



CHAPTER 4. LOWER BOUNDING THE HAUSDORFF DIMENSION OF RANDOM LEVEL SETS 48

measureable function for each i ∈ {1, . . . ,m}, Tonelli’s theorem tells us that

m∑
i=1

∫ 1

0

∫ 1

0

uai
1 vbi1

(u2
1 + v21)α/2

du1dv1 < ∞ ⇐⇒
∫ 1

0

∫ 1

0

uai
1 vbi1

(u2
1 + v21)

α
2
du1dv1 < ∞ for all i ∈ {1, . . . ,m}.

As such, by Tonelli’s Theorem and Lemma 4.2.2 we have that

m∑
i=1

∫ 1

0

∫ 1

0

uai
1 vbi1

(u2
1 + v21)α/2

du1dv1 < ∞

for all 0 ≤ α < β = 2 ∧
(

min
i∈{1,...m}

(ai + bi + 2)

)
. From these observations, we then get that for all

choices of 0 ≤ α < β,

E

[∫∫∫∫
([x0,x0+δx]×[t0,t0+δt])

2

1

||(x1, t1) − (x2, t2)||α
dµh,ε(x1, t1)dµh,ε(x2, t2)

]
≤ 64chRα < ∞.

(4.2.13)

for all ε ∈ (0, ε0), for some α−dependent but h−independent constant Rα ∈ R≥0.

We now return to our original goal of verifying that equation (4.2.11) holds almost surely. We

will do this by showing that the expected value of the energy integral in (4.2.11) is finite almost

surely, and relating the expected value of that energy integral to the uniform bound we have found

in (4.2.13).

Let the probability space
(

Ω,F ,P
)

be as in the preceding section. As previously discussed, we

know that as n → ∞,

µh,εn(ω) −→ µh(ω) (4.2.14)

for P−almost every ω ∈ Ω, in the sense described in (4.2.5). For any such ω ∈ Ω, (µh,εn × µh,εn)(ω)

is a product measure on ([x0, x0 + δx] × [t0, t0 + δt])
2
. Since we have previously established that the

convergence in (4.2.14) is true, we have immediately that for any such ω ∈ Ω,

(µh,εn × µh,εn) (ω) −→ (µh × µh) (ω)

in distribution in
(
M([x0,x0+δx]×[t0,t0+δt])

2 , σ(τvague)
)

, which we recall is the space of finite positive

measures on ([x0, x0 + δx] × [t0, t0 + δt])
2

equipped with the topology of vague convergence.

To relate the energy integral of the sequence to the energy integral of the limit, we will make

use of Fatou’s Lemma. In particular, we will use Fatou’s Lemma for weakly convergent measures.

By invoking Theorem 2.4 in [12], we know that∫∫∫∫
([x0,x0+δx]×[t0,t0+δt])

2

lim inf
(x′,s′,y′,t′)→(x,s,y,t)

1

||(x′, s′) − (y′, t′)||α
dµh(x1, t1)dµh(x2, t2)

≤ lim inf
n→∞

∫∫∫∫
([x0,x0+δx]×[t0,t0+δt])

2

1

||(x1, t1) − (x2, t2)||α
dµh,εn(x1, t1)dµh,εn(x2, t2).
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since (µh,εn × µh,εn) converges weakly to (µh × µh) and

f(x, s, y, t) := ||(x1 − x2, s− t)||−α

is a measurable function taking values in R ∪ {∞}. Moreover, because we have that

lim inf
(x′,s′,y′,t′)→(x,s,y,t)

1

||(x′, s′) − (y′, t′)||α
=

1

||(x1, t1) − (x2, t2)||α

this new integral bound can be simplified to∫∫∫∫
([x0,x0+δx]×[t0,t0+δt])

2

1

||(x1, t1) − (x2, t2)||α
dµh(x1, t1)dµh(x2, t2)

≤ lim inf
n→∞

∫∫∫∫
([x0,x0+δx]×[t0,t0+δt])

2

1

||(x1, t1) − (x2, t2)||α
dµh,εn(x1, t1)dµh,εn(x2, t2).

By taking the expectation on both sides of the inequality above, we then get that

E

[∫∫∫∫
([x0,x0+δx]×[t0,t0+δt])

2

1

||(x1, t1) − (x2, t2)||α
dµh(x1, t1)dµh(x2, t2)

]

≤ E

[
lim inf
n→∞

∫∫∫∫
([x0,x0+δx]×[t0,t0+δt])

2

1

||(x1, t1) − (x2, t2)||α
dµh,εn(x1, t1)dµh,εn(x2, t2)

]
.

Finally, by using the regular version of Fatou’s Lemma on the upper bound above in conjunction

with our uniform bound (4.2.13), we finally obtain that

E

[∫∫∫∫
([x0,x0+δx]×[t0,t0+δt])

2

1

||(x1, t1) − (x2, t2)||α
dµh(x1, t1)dµh(x2, t2)

]

≤ E

[
lim inf
n→∞

∫∫∫∫
([x0,x0+δx]×[t0,t0+δt])

2

1

||(x1, t1) − (x2, t2)||α
dµh,εn(x1, t1)dµh,εn(x2, t2)

]
< ∞,

for all 0 ≤ α < β. Thus we have now proven that∫∫∫∫
([x0,x0+δx]×[t0,t0+δt])

2

1

||(x1, t1) − (x2, t2)||α
dµh(x1, t1)dµh(x2, t2) < ∞

for all 0 ≤ α < β, completing our proof of Theorem 4.1.1 via Theorem 1.6.9.

4.3 The General Strategy Applied to L(0, 0; ·, ·)

In this section, we will outline how we intend to use Theorem 4.1.1 to develop a lower bound on the

level sets of the Hausdorff dimension of the directed landscape restricted to a compact set. This task

will comprise almost all the remaining work in this thesis. As mentioned previously in section 1.2,

the bounds in (4.1.2) and (4.1.1) are already known to exist in the case where the stochastic process

X = L(0, 0; ·, ·), via its relationship with A1. Thus, the only hypothesis that needs to be verified is

the existence of a two-point bound of the form (4.1.3) for L(0, 0; ·, ·).
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Given this information, our goal over the course of the rest of this paper will be to establish a

partial two-point bound for the directed landscape of the following form.

Theorem 4.3.1. Let h ∈ R be arbitrary and define a positive constant ε0 > 0 by

ε0 := min
(x,s)∈[1,2]×[1, 1110 ]

x2

2s
=

5

11
.

Then there exists an absolute, h−independent constant κ > 0 such that for all 0 < ε < ε0,

P
(
|L(0, 0;x, s) − h| ≤ ε, |L(0, 0; y, t) − h| ≤ ε

)
≤ κε2

(
1 + |t− s|− 1

2 + |x− y| 12 |t− s|− 2
3 |
)

(4.3.1)

for all (x, s), (y, t) ∈ [1, 2] ×
[
1, 11

10

]
.

Upon establishing Theorem 4.3.1, we will have the final ingredient needed to obtain a lower bound

of 3
2 on the Hausdorff dimension of the h−level set of L(0, 0; ·, ·) which holds with (h−dependent)

probability at least ph > 0. We also note that the two-point bound (4.3.1), while sufficient for our

purposes, is almost certainly not optimal. It is highly likely and expected that a true optimal two-

point using these techniques would be defined piecewise and will depend heavily on the relationship

between x− y and t− s, as well as their actual values and their signs. Because of this, there is likely

quite a bit of room for further optimization, even within the context of this specific result. Some

suggestions for possible improvements will be discussed later in Chapter 7.

Before beginning our proof of the partial two-point bound in Theorem 4.3.1, we will use its conclusion

to state and prove the cumulative result of the work in this thesis, via Theorem 4.1.1.

Theorem 4.3.2. Let fTW2
be the density of A1(0) with respect to the Lebesgue measure, fix an

arbitrary h ∈ R, and let the absolute constant κ > 0 be as in Theorem 4.3.1. If h ≥ 0, define two

positive constants c′h, ch > 0 by

c′h :=

(
10

11

) 1
3

min

{
fTW2

(u) : u ∈

[(
10

11

) 5
3

+

(
10

11

) 1
3

h− 5

11
, 4 + h +

5

11

]}
and

ch := κ ∨ max

{
fTW2

(u) : u ∈

[(
10

11

) 5
3

+

(
10

11

) 1
3

h− 5

11
, 4 + h +

5

11

]}
.

If h < 0 then define these positive constants ch, c
′
h > 0 instead by

c′h :=

(
10

11

) 1
3

min

{
fTW2

(u) : u ∈

[(
10

11

) 5
3

+ h− 5

11
, 4 +

(
10

11

) 1
3

h +
5

11

]}
and

ch :=
κ

4
∨ max

{
fTW2

(u) : u ∈

[(
10

11

) 5
3

+ h− 5

11
, 4 +

(
10

11

) 1
3

h +
5

11

]}
.
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If the random set Zh ⊆ R× R>0 is defined as Zh :=
{

(x, s) ∈ R× R>0 : L(0, 0;x, s) = h
}
, then

P
(

dimH(Zh) ≤ 5

3

)
= 1 and P

(
dimH(Zh) ≥ 3

2

)
≥ (c′h)

2

64ch
(
1 + 2

√
10 + 2 3

√
100
) .

Proof. Theorem 3.0.1 directly gives us that

P
(

dimH(Zh) ≤ 5

3

)
= 1

for all h ∈ R, so we only need to verify that

P
(

dimH(Zh) ≥ 3

2

)
≥ (c′h)

2

64ch
(
1 + 2

√
10 + 2 3

√
100
) .

Now since we know that, by definition of the directed landscape,

L(0, 0;x, s)
d
= A

(s)
1 (x) = s

1
3A1

(
s−

2
3x
)

d
= s

1
3A1(0) − s−

4
3x2

for any (x, s) ∈ [1, 2] ×
[
1, 11

10

]
. As such, for fixed (x, s) we see that

P
(
L(0, 0;x, s) ∈ (h− ε, h + ε)

)
= P

(
s

1
3A1(0) − s−

4
3x2 ∈ (h− ε, h + ε)

)
= P

(
A1(0) ∈

(
s−

5
3x2 + s−

1
3 (h− ε), s−

5
3x2 + s−

1
3 (h + ε)

))
= P

(
TW2 ∈

(
s−

5
3x2 + s−

1
3 (h− ε), s−

5
3x2 + s−

1
3 (h + ε)

))
=

∫ s−
5
3 x2+s−

1
3 (h+ε)

s−
5
3 x2+s−

1
3 (h−ε)

fTW2
(u)du. (4.3.2)

This means that, in accordance with equations (4.1.2) and (4.1.1), we need to find two h−dependent

constants ch, c
′
h > 0 such that

2c′hε ≤
∫ s−

5
3 x2+s−

1
3 (h+ε)

s−
5
3 x2+s−

1
3 (h−ε)

fTW2
(u)du ≤ 2chε

holds for each 0 < ε < 5
11 and simultaneously for all choices of (x, s) ∈ [1, 2] ×

[
1, 11

10

]
.

As the subsequent argument changes only superficially as sign (h) changes, without loss of gen-

erality, assume that h ≥ 0. To find these constants ch, c
′
h > 0 we start by observing that for all

choices of (x, s) and all 0 < ε < 5
11 we have the inequalities

(
10

11

) 5
3

+

(
10

11

) 1
3

h− 5

11
≤ s−

5
3x2 + s−

1
3 (h− ε) < s−

5
3x2 + s−

1
3 (h + ε) ≤ 4 + h +

5

11
.
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These inequalities in turn lead the chain of inequalities

min

{
fTW2(u) : u ∈

[(
10

11

) 5
3

+

(
10

11

) 1
3

h− 5

11
, 4 + h +

5

11

]}
≤ min

{
fTW2

(u) : u ∈
[
s−

5
3x2 + s−

1
3 (h− ε), s−

5
3x2 + s−

1
3 (h + ε)

]}
≤ max

{
fTW2

(u) : u ∈
[
s−

5
3x2 + s−

1
3 (h− ε), s−

5
3x2 + s−

1
3 (h + ε)

]}
≤ max

{
fTW2(u) : u ∈

[(
10

11

) 5
3

+

(
10

11

) 1
3

h− 5

11
, 4 + h +

5

11

]}

for any (x, s) ∈ [1, 2] ×
[
1, 11

10

]
and 0 < ε < 5

11 . Given this, we will define

c′h :=

(
10

11

) 1
3

min

{
fTW2

(u) : u ∈

[(
10

11

) 5
3

+

(
10

11

) 1
3
(
h− 5

11

)
, 4 +

(
h +

5

11

)]}
(4.3.3)

and letting κ > 0 be as in Theorem 4.3.1,

ch :=
κ

4
∨

(
max

{
fTW2(u) : u ∈

[(
10

11

) 5
3

+

(
10

11

) 1
3
(
h− 5

11

)
, 4 +

(
h +

5

11

)]})
. (4.3.4)

With these definitions in place, we see that for all choices of h ∈ R, ε ∈
(
0, 5

11

)
, and (x, s) we have

∫ s−
5
3 x2+s−

1
3 (h+ε)

s−
5
3 x2+s−

1
3 (h−ε)

fTW2
(u)du ≥

∫ s−
5
3 x2+s−

1
3 (h+ε)

s−
5
3 x2+s−

1
3 (h−ε)

(
11

10

) 1
3

c′hdu ≥ 2s−
1
3

(
11

10

) 1
3

(c′hε) ≥ 2c′hε,

and similarly that

∫ s−
5
3 x2+s−

1
3 (h+ε)

s−
5
3 x2+s−

1
3 (h−ε)

fTW2(u)du ≤
∫ s−

5
3 x2+s−

1
3 (h+ε)

s−
5
3 x2+s−

1
3 (h−ε)

chdu = (2ch)s−
1
3 ε ≤ 2chε.

This proves that the definitions of ch, c
′
h > 0 in equations (4.3.3) and (4.3.4) satisfy the requirements

in (4.1.2) and (4.1.1) of Theorem 4.1.1. In the language of our general strategy, the parameters

a1, . . . , am, b1, . . . bm, x0, t0, δx, and δt that appear in our two-point bound (4.3.1) are

(a1, a2, a3) =

(
0, 0,

1

2

)
, (b1, b2, b3) =

(
0,−1

2
,−2

3

)
, (x0, t0) = (1, 1) , and (δx, δt) =

(
1,

1

10

)
.

We also note that this means that the threshold β > 0 becomes

β = 2 ∧
(

min
i∈{1,2,3}

ai + bi + 2

)
=

3

2
.

Thus, in conjunction with Theorem 4.3.1, the conclusion of Theorem 4.1.1 yields that

P
(

dimH(Zh) ≥ 3

2

)
≥ ph =

(c′h)
2

64ch

(
3∑

i=1

δai
x δbit

(ai + 1) (bi + 1)

)−1

=
(c′h)

2

64ch
(
1 + 2

√
10 + 2 3

√
100
) > 0.



Chapter 5

A Partial Two-Point Bound for

L(0, 0; ·, ·): The First Regime

With our ultimate goal now clearly in mind, we proceed to the long task of proving the existence of

our partial two-point bound for L(0, 0; ·, ·). Throughout the course of these arguments, we will work

with the rectangle [1, 2] × [1, 11
10 ] for simplicity/convenience, but the subsequent arguments will also

generalize to any box of the form [u, u + δu] × [v, v + δv] provided that u, v > 0 and that numerous

constants, bounds, and inequalities are adjusted accordingly along the way. Note that because the

directed landscape L is only real-valued on R4
↑, R× R>0 is the only domain on which bounding

P
(
L(0, 0;x, s) ∈ (h− ε, h + ε), L(0, 0; y, t) ∈ (h− ε, h + ε)

)
would be meaningful and non-trivial. For technical reasons later on in the course of our arguments,

the assumption that 0 < ε < ε0 will be crucial for obtaining the specific polynomial density bound

that we have.

We begin by remarking that if both L(0, 0;x, s) and L(0, 0; y, t) are close to h then intuitively

they must also be quite close to one another. Recall that we are assuming without loss of generality

that s < t. As such, we immediately obtain the elementary inequality

P
(
L(0, 0;x, s) ∈ (h− ε, h + ε),L(0, 0; y, t) ∈ (h− ε, h + ε)

)
≤ P

(
L(0, 0;x, s) ∈ (h− ε, h + ε), |L(0, 0; y, t) − L(0, 0;x, s)| ≤ 2ε

)
. (5.0.1)

By using the metric composition law of L, we also have that

L(0, 0; y, t) = sup
z∈R

L(0, 0; z, s) + L(z, s; y, t).

Moreover, as a consequence of the skew stationarity property of the directed landscape, we have for

all fixed x, s ∈ [1, 2] and for all z ∈ R the equality in distribution

L(0, 0; z, s)
d
= L(0, 0; z − x, s) + s−1(2xz + x2).

53
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As such, we can rewrite the right-hand side of the inequality (5.0.1) as

P
(
L(0, 0;x, s) ∈ (h− ε, h + ε),

∣∣∣∣sup
z∈R

L(0, 0; z, s) + L(z, s; y, t) − L(0, 0;x, s)

∣∣∣∣ ≤ 2ε

)
= P

(
Ax,s,h,ε ∩

{∣∣∣∣sup
z∈R

L(0, 0; z − x, s) + L(z, s; y, t) − L(0, 0; 0, s) +
2xz − x2

s

∣∣∣∣ ≤ 2ε

})
= P

(
Ax,s,h,ε ∩

{∣∣∣∣sup
z∈R

L(0, 0; z, s) + L(z + x, s; y, t) − L(0, 0; 0, s) +
2xz + x2

s

∣∣∣∣ ≤ 2ε

})
. (5.0.2)

where we have defined the (x, s), h, ε−dependent event Ax,s,h,ε as

Ax,s,h,ε :=

{∣∣∣∣L(0, 0; 0, s) +
3x2

s
− h

∣∣∣∣ ≤ ε

}
.

The independent increment property of the directed landscape yields that L(0, 0; z, s) and L(z, s; 0, t)

are independent, which is what allows us to legitimately use this sheer on every term except for

L(z, s; y, t) above. In addition to this independence, by the temporal stationarity, spatial stationarity,

and flip symmetry of L we also have that for all z ∈ R,

L(z, s; y, t)
d
= L̃(0, 0; z − y, t− s)

where L̃ an independent copy of the directed landscape. This allows us to rewrite the probability

(5.0.2) once more as

P
(
Ax,s,h,ε ∩

{∣∣∣∣sup
z∈R

L(0, 0; z, s) + L̃(0, 0; z + x− y, t− s) − L(0, 0; 0, s) +
2xz + x2

s

∣∣∣∣ ≤ 2ε

})
.

(5.0.3)

Now by the definition of the directed landscape, we have that for all z, s, y, t ∈ R the equality

in distribution

L̃(0, 0; z + (x− y), t− s)
d
= (t− s)1/3A1

(
z + (x− y)

(t− s)2/3

)
(5.0.4)

where A1 is the top line of the parabolic Airy line ensemble. In order to obtain our (partial) two-point

bound (4.3.1), we will condition on the location of the argmax of the sup in the second coordinate

of (5.0.3) and then use a union bound to bound the probability of these events by an infinite sum

of the probabilities of somewhat simpler events. In particular, we will partition R into the intervals

of length σ
2
3 := (t− s)

2
3 [

iσ
2
3 ± σ

2
3

2

]
=

[
iσ

2
3 − σ

2
3

2
, iσ

2
3 +

σ
2
3

2

]
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where we allow i to range over all of Z and adopt the notational convention that [a±b] := [a−b, a+b]

for convenience. With this in mind, we are able to obtain the upper bound

P
(
L(0, 0;x, s) ∈ (h− ε, h + ε),L(0, 0; y, t) ∈ (h− ε, h + ε)

)
≤
∑
i∈Z

P

Ax,s,h,ε ∩


∣∣∣∣∣∣ sup

z

σ2/3
∈[i±1/2]

L(0, 0; z, s) + L̃(0, 0; z + ∆, σ) − L(0, 0; 0, s) +
2xz + x2

s

∣∣∣∣∣∣ ≤ 2ε




(5.0.5)

where, for ease of readability, we have also defined ∆ := (x− y).

Based on our choice of the partition for R, we will observe two distinct behaviours in the supremum

in A(x,s),(y,t),i,ε as i ranges over Z. One such reason for this distinction is that these behaviours

partly correspond to whether or not the deterministic parabola ”hidden” inside the terms from L
appearing in the supremum above is positive or negative. This will be expounded upon in more

detail in section 5.3.

At a high level, we will essentially have a parabola in the variable i with x, s, σ−1,∆−dependent

coefficients. Moreover, this parabola will open upwards and will always have a positive root and a

negative root based on our domain for x and our choice of ε0. Thus, in our analysis of the probabilities

P

Ax,s,h,ε ∩


∣∣∣∣∣∣ sup

z

σ2/3
∈[i±1/2]

L(0, 0; z, s) + L̃(0, 0; z + ∆, σ) − L(0, 0; 0, s) +
2xz + x2

s

∣∣∣∣∣∣ ≤ 2ε




the behaviour of the second event will be heavily influenced by where each i ∈ Z falls in relation

to the zeros of this parabola. By analyzing the discriminant of this polynomial, finding an upper

bound on its magnitude, and noting that σ−1 is the only unbounded parameter in the parabola’s

coefficients, we can therefore find a partition of Z of the form

Z =
(

[−n(σ), n(σ)] ∩ Z
)⊔(

[−n(σ), n(σ)]C ∩ Z
)

for some function n of σ with [−n(σ), n(σ)] ∩ Z containing the integers in between the zeros of this

parabola. As a result, we will have that the parabola is strictly positive on the second subset of Z
and will assume all of its negative values on the first set. Because of this, splitting our analysis into

two distinct cases already feels quite natural.

The other, and much more significant, reason for splitting this task in two is that when we work on

[−n(σ), n(σ)] ∩ Z,

we will only ever need to understand the behaviour of L(0, 0; ·, ·) on a compact set, which greatly

simplifies many of our computations and the types of tools that we need to develop. In partic-

ular, this is because there will always be a finite maximal distance between the arguments of
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L(0, 0; z, s),L(0, 0; 0, s), and L(0, 0; z+δ, σ). Conversely, when we work on the complementary region

[−n(σ), n(σ)]C ∩ Z,

z will belong to an interval that can be arbitrarily far away from 0, meaning that we will need to

understand the behaviour of L(0, 0; ·, ·), and hence the behaviour of A1 on arbitrarily large intervals.

This is a fundamentally very different task than the former, and so a different approach will be

needed to elegantly manage the presence of these arbitrarily large gaps between the intervals that

we actually care about.

It is important to note however that in a vacuum, this problem of large gaps is agnostic to how

we define our cutoff point n(σ). Given this information, it is therefore quite natural to choose the

cutoff point n(σ) in a way such that the analysis of the second regime of these probabilities, i.e.

the regime where the intervals can be arbitrarily far apart, is simplified as much as possible. Thus,

given the dependence of the event
∣∣∣∣∣∣ sup

z

σ2/3
∈[i±1/2]

L(0, 0; z, s) + L̃(0, 0; z + ∆, σ) − L(0, 0; 0, s) +
2xz + x2

s

∣∣∣∣∣∣ ≤ 2ε


on the behaviour of the hidden deterministic parabola, we will split Z in a way such that we are

guaranteed that this parabola is strictly positive in the second regime.

Although there are an infinite number of valid choices for the cutoff point N(σ), we will choose

to use n(σ) = 10σ− 2
3 . The relevance of having a factor of σ− 2

3 will become apparent throughout the

course of our work, and the factor is simply chosen for convenience. A sharper constant factor would

likely exists, but there is no additional benefit gained from optimizing that particular factor. This

means that we will define our two distinct regimes to be when |i| ≤ 10σ− 2
3 and when |i| > 10σ− 2

3 .

We also note that because we have defined σ := (t − s), σ ∈
[
0, 1

10

]
. Importantly, we are only

interested in deriving a bound when σ > 0, since t ̸= s by hypothesis in Theorem 4.1.1.

For the sake of readability we introduce the notation that for any λ ̸= 0

A
(λ)
1 (x) := λ1/3A1

( x

λ2/3

)
. (5.0.6)

With this convention in mind, we now have that by the definition of the directed landscape the

equality in distribution

L(0, 0;x, s)
d
= s1/3A1

( x

s2/3

)
= A

(s)
1 (x).
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As such, we may now rewrite each summand in (5.0.5) as

P

Ax,s,h,ε ∩


∣∣∣∣∣∣ sup

z

σ2/3
∈[i±1/2]

L(0, 0; z, s) + L̃(0, 0; z + ∆, σ) − L(0, 0; 0, s) +
2xz + x2

s

∣∣∣∣∣∣ ≤ 2ε




= P

∣∣∣∣A(s)
1 (0) − h +

3x2

s

∣∣∣∣ ≤ ε,

∣∣∣∣∣∣ sup
z

σ2/3
∈[i±1/2]

A
(s)
1 (z) + Ã

(σ)
1 (z + ∆) − A

(s)
1 (0) +

2xz + x2

s

∣∣∣∣∣∣ ≤ 2ε

 .

(5.0.7)

Our goal will be to dominate these probabilities for each i by the probability of a certain random

vector with a bounded density being in a box of area 8ε2σ− 1
3 . The precise construction of this

random vector will change as we switch from the first regime to the second regime, but will be quite

similar in both cases. In order to construct these random vectors, however, we will need to develop

a pair of absolute continuity statements building off of the work of Dauvergne in [8]. We introduce

the first of these absolute continuity statements in the following section.

5.1 The First Airy Comparison Lemma

The following lemma builds off of Theorem 1.2.2 to dominate the law of A1 on an interval of the

form [a−T, a+T ] by a mean zero Gaussian random variable and an independent stochastic process

with strong T−dependent upper and lower tail bounds. Importantly, this lemma also extends to

law of A
(λ)
1 for any λ > 0. It will be instrumental in developing bounds on probabilities of the form

(5.0.7) in both the first and second regimes.

Lemma 5.1.1. Let a ∈ R and let T > 1
6 . Let ℓa be the function on R defined by

ℓa(r) = (r − a)2 − r2 = −a(2r − a) = a2 − 2ra

and let Ia denote the interval

Ia := [a− T, a + T ]

Then there exists an absolute constant c > 0, two T−dependent constants c1, c2 > 0, and a random

function (F(r))r∈Ia such that

Law

((
A1(r)

)
r∈Ia

)
≤ ecT

3

Law

((√
2TN +

(
F(r) + la(r)

)
r∈Ia

))
(5.1.1)

where N is a standard Gaussian independent of
(
F(r)

)
r∈Ia

and for all m > 0,

P
(

sup
r∈Ia

|F(r)| ≥ m

)
≤ c1e

−c2m
3
2 . (5.1.2)

More generally, for any constant λ > 0, let A
(λ)
1 be as in (5.0.6) and denote by I

(λ)
a the interval

I(λ)a :=
[
aλ

2
3 − Tλ

2
3 , aλ

2
3 + Tλ

2
3

]
.
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Then as a consequence of (5.1.1), there exists a random λ−dependent function (F (λ)(r))
r∈I

(λ)
a

and

an independent standard Gaussian N such that

Law

((
A

(λ)
1 (r)

)
r∈I

(λ)
a

)
≤ ecT

3

Law

((
λ

1
3

√
2TN +

(
F (λ)(r) + λ

1
3 la(rλ− 2

3 )
))

r∈I
(λ)
a

)
, (5.1.3)

and that for the same constants c1 and c2 and all m > 0,

P

(
sup

r∈I
(λ)
a

∣∣∣λ− 1
3F (λ)(r)

∣∣∣ ≥ m

)
≤ c1e

−c2m
3
2 . (5.1.4)

In particular, there exist random constants A and C such that we may write(
F (λ)(aλ

2
3 + δ)

)
δ∈I

(λ)
0

d
=
(
W(2δ + 6Tλ

2
3 ) + λ− 1

3Aδ + λ
1
3C
)
δ∈I

(λ)
0

(5.1.5)

where W is a standard two-sided Brownian motion, and for all m > 0,

P
(
|A| ≥ m

)
+ P

(
|C| ≥ m

)
≤ 2c1e

−c2m
3
2 . (5.1.6)

No claims are made about the independence or lack thereof amongst A,W and C.

Proof. By the stationarity of the stationary Airy process, we have the equality in distribution(
A1(r)

)
r∈[a±3T ]

d
=
((

A1(r − a) + (r − a)2
)
− r2

)
r∈[a±3T ]

=
(
A1(r) + r2 − (r + a)2

)
r∈[0±3T ]

.

which can be thus be condensed into the equality of laws

Law
(

(A1(r))r∈[a±3T ]

)
= Law

((
A1(r) + r2 − (r + a)2

)
r∈[0±3T ]

)
.

By Theorem 1.2.2, there exists a diffusion parameter 2 Brownian bridge B on [−3T, 3T ] from 0 to

0 and an independent random affine function L on [−3T, 3T ] such that

Law

((
A1(r)

)
r∈[a±3T ]

)
= Law

((
A1(r) + r2 − (r + a)2

)
r∈[0±3T ]

)
≤ e216cT

3

Law

((
B(r) + L(r) + r2 − (r + a)2

)
r∈[0±3T ]

)
We note here that although we do have the option to apply Theorem 1.2.2 on the original interval

[a±3T ], it is better for our purposes to apply it on [0±3T ]. The main benefit to making this choice

is that this isolates the dependency on the center of the interval a in a single deterministic parabolic

term. In doing so, we see that any and all behaviours of L and B on [0 ± 3T ] now have absolutely

no relation to the value of a. This will be quite useful later on.

Thus by restricting both (A1(r))r∈[a±3T ] and
(
B(r) + L(r) + r2 − (r + a)2

)
r∈[0±3T ]

to the middle

thirds of their domains, we may use Lemma 2.0.5 with the parameters δ = 1
3 and k = 2 to conclude
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that

Law

((
A1(r)

)
r∈Ia

)
≤ e216cT

3

Law
((

B(r) + L(r) + r2 − (r + a)2
)
r∈[0±T ]

)
= e216cT

3

Law

((√
2TN + (B(r) −

√
2TN) + L(r) + r2 − (r + a)2

)
r∈[0±T ]

)
= e216cT

3

Law

((√
2TN + (B(r − a) −

√
2TN) + L(r − a) + (r − a)2 − r2

)
r∈Ia

)
= e216cT

3

Law

((√
2TN + F(r) + la(r)

)
r∈Ia

)
with N a standard Gaussian independent of the process (B −

√
2TN)r∈[0±T ], and where we have

defined (
F(r)

)
r∈Ia

:=
((

B(r − a) −
√

2TN
)

+ L(r − a)
)
r∈Ia

. (5.1.7)

Now that we have defined our process (F(r))r∈Ia
, we will next prove that the tail bound (5.1.2) is

true. We first observe that

sup
r∈Ia

|F(r)| = sup
r∈[a±T ]

∣∣∣B(r − a) −
√

2TN + L(r − a)
∣∣∣ ≤ sup

r∈[−T,T ]

|B(r)| +
√

2T |N | + sup
r∈[−T,T ]

|L(r)| .

(5.1.8)

Moreover, recalling that L is a straight line segment from L(−3t) to L(3t) we have the elementary

bound

sup
r∈[−T,T ]

|L(r)| ≤ sup
r∈[−3T,3T ]

|L(r)| ≤ max{|L(−3t)| , |L(3t)|} ≤ |L(−3t)| + |L(3t)| . (5.1.9)

By invoking the bounds (1.2.1) and (1.2.2) in Theorem 1.2.2, we obtain in our case that

P
(
L(−3t) ∧  L(3t) < −m

)
≤ 2e−dm3

and P
(
L(−3t) ∨ L(3t) > m

)
≤ e−

4
3m

3
2 +cm

5
4 (5.1.10)

for some T−dependent constants c, d > 0. This means that by taking union bounds, combining

equations (5.1.9) and (5.1.10) gives us a chain of inequalities

P

(
sup

r∈[−T,T ]

|L(r)| ≥ 2m

)
≤ P

(
|L(−3t)| + |L(3t)| ≥ 2m

)
≤ P

(
|L(−3t)| ≥ m

)
+ P

(
|L(3t)| ≥ m

)
≤ 2P

(
L(−3t) ∧ L(3t) < −m

)
+ 2P

(
L(−3t) ∨ L(3t) > m

)
≤ 2

(
e−

4
3m

3
2 +cm

5
4 + 2e−dm3

)
≤ c1e

−c2m
3
2 (5.1.11)

for some T−dependent constants c1, c2 > 0. We now turn our attention to the Brownian bridge B.

Since B is a Brownian bridge of diffusion parameter 2, we may write(
B(r)

)
r∈[−3T,3T ]

d
=
(
W(2r + 6T ) − r + 3T

6T
W(12T )

)
r∈[−3T,3T ]

(5.1.12)

where W is a standard two-sided Brownian motion. Based on this decomposition in law we have
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the upper bound

sup
r∈[−T,T ]

|B(r)| ≤ |W(12T )| + sup
r∈[0,6T ]

|W(2r)| = |W(12T )| + sup
r∈[0,12T ]

|W(r)| .

In turn this, this implies the chain of inequalities

P

(
sup

r∈[−T,T ]

|B(r)| ≥ 2m

)
≤ P

(
|W(12T )| + sup

r∈[0,12T ]

|W(r)| ≥ 2m

)

≤ P
(
|W(12T )| ≥ m

)
+ P

(
sup

r∈[0,12T ]

|W(r)| ≥ m

)

= P
(
|W(12T )| ≥ m

)
+ P

(
sup

r∈[0,12T ]

W(r) ≥ m

)
+ P

(
sup

r∈[0,12T ]

−W(r) ≥ m

)

= P
(
|W(12T )| ≥ m

)
+ 2P

(
sup

r∈[0,12T ]

W(r) ≥ m

)
= 3P

(
|W(12T )| ≥ m

)
≤ 6e−m2/(24t) (5.1.13)

using the fact that −W d
= W, the known distribution for the running maximum of a Brownian

motion, and the standard Gaussian concentration bound. As such, by combining equations (5.1.8),

(5.1.11), and (5.1.13), we see that we can find positive T−dependent constants c1, c2 > 0 such that

P
(

sup
r∈Ia

|F(r)| ≥ m
)
≤ P

(
sup

r∈[−T,T ]

|B(r)| ≥ m/3
)

+ P
(√

2T |N | ≥ m/3
)

+ P
(

sup
r∈[−T,T ]

|L(r)| ≥ m/3
)

≤ c1e
−c2m

3/2

as claimed in equation (5.1.2). The extension of our result to the rescaled Airy process A(λ)
1 in

(5.1.3) is an immediate consequence of the base case when λ = 1. To see this explicitly, we observe

that

Law

((
A

(λ)
1 (r)

)
r∈I

(λ)
a

)
= Law

((
λ

1
3A1(r)

)
r∈Ia

)
≤ e216cT

3

Law

((
λ

1
3

√
2TN + λ

1
3F(r) + λ

1
3 la(r)

)
r∈[a±T ]

)
= e216cT

3

Law

((
λ

1
3

√
2TN + λ

1
3F(rλ−2/3) + λ

1
3 la(rλ−2/3)

)
r∈[aλ2/3±Tλ2/3]

)
= e216cT

3

Law

((
λ

1
3

√
2TN + F (λ)(r) + λ

1
3 la(rλ−2/3)

)
r∈I

(λ)
a

)

where we have defined the rescaled random function
(
F (λ)(r)

)
r∈I

(λ)
a

by

(
F (λ)(r)

)
r∈I

(λ)
a

=
(
λ

1
3

(
B(rλ−2/3 − a) −

√
2TN + L(rλ−2/3 − a)

))
r∈I

(λ)
a

(5.1.14)

via our original definition in equation (5.1.7). Equation (5.1.4) then follows from (5.1.2) and the



CHAPTER 5. A PARTIAL TWO-POINT BOUND FOR L(0, 0; ·, ·): THE FIRST REGIME 61

fact that (
λ− 1

3F (λ)(r)
)
r∈I

(λ)
a

=
(
F(r)

)
r∈Ia

.

We now turn our attention to establishing the decomposition in law in equation (5.1.5). Given the

definition of
(
F (λ)(r)

)
r∈I

(λ)
a

above, we first recall that we may write

(
L(r)

)
r∈[−3T,3T ]

=

(
1

6T

(
L1(3T ) − L1(−3T )

)
r +

1

2

(
L1(−3T ) − L1(3T )

))
r∈[−3T,3T ]

.

Similarly, equation (5.1.12) can be decomposed and rewritten in law as

(
B(r)

)
r∈[−3T,3T ]

d
=

(
W(2r + 6T ) − 1

2
W(12T ) − 1

6T
W(12T )r

)
r∈[−3T,3T ]

.

As an immediate consequence of the above, we also have that

(
λ

1
3B
(
δλ− 2

3

))
δ∈I

(λ)
0

d
=

(
W
(

2δ + 6Tλ
2
3

)
− λ

1
3

1

2
W(12T )λ− 1

3
W(12T )

6T
δ

)
δ∈[−3,3]

where the first term was simplified by Brownian scaling. Using these decompositions and the explicit

definition of
(
F (λ)(r)

)
r∈I

(λ)
a

in (5.1.14), we have the equalities in distribution

(
F (λ)

(
aλ2/3 + δ

))
δ∈I

(λ)
0

=
(
λ

1
3B
(
δλ−2/3

)
− λ

1
3

√
2TN + λ

1
3L
(
δλ− 2

3

))
δ∈I

(λ)
0

d
=
(
W
(

2δ + 6Tλ
2
3

)
+ λ− 1

3Aδ + λ
1
3C
)
δ∈I

(λ)
0

where we have defined the random constants A and C as

A :=
1

6T

(
W(12T ) + L1(3T ) − L1(−3T )

)
C :=

1

2

(
−W(12T ) + L1(−3T ) − L1(3T )

)
−
√

2TN.

Observing that the triangle inequality gives us the two upper bounds

|A| ≤ 1

6T
|W(12T )| +

1

6T
|L1(3T ) − L1(−3T )|

|C| ≤ 1

2
|W(12T )| +

1

2
|L1(3T ) − L1(−3T )| +

√
2T |N |,

the tail bounds in equation (5.1.6) follow immediately from the standard Gaussian concentration

inequality and equation (1.2.3) of Theorem 1.2.2, after possibly redefining our original choice of the

T−dependent constants c1, c2 > 0. This completes our proof.

Remark. Note that although the constants c, c1, c2 > 0 are T−dependent, if we only ever use values

of T that are bounded above and below by absolute constants, we can take c, c1, c2 to actually be

absolute constants as well without of loss of generality. The values of T that we choose to work

with specifically will be continuous univariate functions of s, and since s lives in a finite interval,

our choices of T will indeed be bounded by absolute constants. Thus, in the work that follows, we

will implicitly optimize our choices of c, c1, c2 as functions of s to obtain absolute constants.
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5.2 The Big Picture in the First Regime

Recall that the notation Ã
(σ)
1 and A

(s)
1 is introduced in equation (5.0.6). As both terms appear in

(5.0.7), we will use Lemma 5.1.1 individually on both processes. The application of Lemma 5.1.1 to

the process Ã
(σ)
1 appearing in the probability (5.0.7) will be fairly standard. Based on the domain of

the supremum that we see in the second coordinate and the fact that the argument has a translation

by ∆ = (x− y), our first application of Lemma 5.1.1 will use the parameters a = i− ∆σ− 2
3 , λ = σ,

and T = 1
2 . This corresponds to the absolute continuity statement

Law

((
A

(σ)
1 (z + ∆)

)
z∈[iσ2/3±σ2/3]

)
= Law

((
A

(σ)
1 (z)

)
z∈[(iσ2/3+∆)±σ2/3]

)
= Law

((
A

(σ)
1 (z)

)
z∈I

(σ)
a

)
≤ ec Law

((
σ

1
3

√
2TN +

(
F (σ)(z) + σ

1
3 ℓ

i+∆σ− 2
3

(zσ− 2
3 )
))

z∈[(iσ2/3+∆)±σ2/3]

)
≤ ec Law

((
σ

1
3N +

(
F (σ)(z + ∆) + σ

1
3 ℓ

i+∆σ− 2
3

((z + ∆)σ− 2
3 )
))

z∈[iσ2/3±σ2/3]

)
. (5.2.1)

The application of Lemma 5.1.1 to the process A
(s)
1 is more complicated however since in the second

coordinate of (5.0.7), A
(s)
1 does not naturally appear on an interval whose length is of order s

2
3 .

Moreover, there is a mismatch between the scale of the parabolic Airy values and the domain of

the supremum. We also need the interval that we apply Lemma 5.1.1 on to contain every value of

A
(s)
1 that appears in the two coordinates. Because of this, extra care is needed when selecting the

parameters a and T during this application of our lemma.

The first coordinate of (5.0.7) necessitates a process dominating A
(s)
1 near 0. This poses no problems.

For the second coordinate of (5.0.7), we need to dominate A
(s)
1 over an interval of scale s

2
3 which

contains every value in the interval [iσ
2
3 ± 1

2σ
2
3 ]. However, σ will eventually take on every value in

(0, 1
10 ] so an interval whose length is simply a multiple of σ

2
3 would violate the hypothesis in Lemma

5.1.1 which requires that the parameter T > 1
6 . To avoid this incompatibility, we will apply our

lemma to A
(s)
1 on an interval which is a superset of [iσ

2
3 ± 1

2σ
2
3 ] and whose length is a multiple of

s
2
3 .

Recalling that σ ∈ (0, 1
10 ] and that |i| ≤ 10σ

2
3 in the first regime, we know that every possible

value that could appear in [iσ
2
3 ± 1

2σ
2
3 ] will belong to the interval [− 21

2 , 21
2 ]. Moreover, because

s ∈ [1, 11
10 ], s−

2
3 ∈

[
3

√
100
121 , 1

]
. This means that we always have that 21

2 s−
2
3 > 1

6 , making it a legiti-

mate choice for the parameter T . However, we will take a slightly larger choice of T to simplify the

value of
√

2T . With these considerations in mind, if we apply Lemma 5.1.1 to the process A
(s)
1 on

the interval

I
(s)
0 = [−16, 16] =

[
−s

2
3 (16s−

2
3 ), s

2
3 (16s−

2
3 )
]
,

corresponding to the parameters a = 0, λ = s, and T = 8s−
2
3 , we will indeed have a process

dominating A
(s)
1 at every value in the first and second coordinates of (5.0.7). In particular, this will
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translate to the absolute continuity statement

Law

((
A

(s)
1 (r)

)
r∈I

(s)
0

)
≤ e729cs

−2

Law

((
s

1
3

√
16s−

2
3N +

(
F (s)(r)

))
r∈[−16,16]

)
≤ e729c/4 Law

((
4N +

(
F (s)(r)

))
r∈[−16,16]

)
(5.2.2)

where we have also used that ℓ0 ≡ 0. Note that in the more general setting where s, t belong to an

interval other than [1, 11
10 ], it is quite possible that a different choice for T would be more suitable.

There are even other equally valid choices of T even in the simplified case we present here in the

first regime. In either case however, this will not have a significant impact on the arguments that

follow.

For the sake of readability, we will denote by (G,Gi) the random vector

(G,Gi) = (G(x, s), Gi(x, s,∆, σ))

:=

F (s)(0) +
3x2

s
, sup

zσ− 2
3 ∈[i± 1

2 ]

(
F (s)(z) −F (s)(0) + F (σ) (z + ∆)

)
σ

1
3

+ gi(z)

 (5.2.3)

where the deterministic function gi(z) is defined as

gi(z) = gi(z;x, s,∆, σ) := l
i+∆σ− 2

3

(
z + ∆

σ
2
3

)
+

2xz + x2

sσ
1
3

(5.2.4)

for each i in the first regime. Recalling that we set ℓa(r) = (r − a)2 − r2 = a2 − 2ra, we note that

l
i+∆σ− 2

3

(
z + ∆

σ
2
3

)
= (i + ∆σ− 2

3 )2 − 2σ− 2
3 (z + ∆)(i + ∆σ− 2

3 )

= i2 − 2izσ− 2
3 − 2∆σ− 4

3 (z − ∆). (5.2.5)

for completeness. We will next define the bivariate Gaussian vector
(
N ′, Ñ

)
by

(
N ′, Ñ

)
:=
(

4N, Ñ
)
.



CHAPTER 5. A PARTIAL TWO-POINT BOUND FOR L(0, 0; ·, ·): THE FIRST REGIME 64

With these choices in mind, equation (5.2.1), equation (5.2.2), and basic measure theory allow us to

extend the upper bound in probability (5.0.7) and write that

P

Ax,s,h,ε ∩


∣∣∣∣∣∣ sup
zσ− 2

3 ∈[i± 1
2 ]

L(0, 0; z, s) + L̃(0, 0; z + ∆, σ) − L(0, 0; 0, s) +
2xz + x2

s

∣∣∣∣∣∣ ≤ 2ε




= P

∣∣∣∣A(s)
1 (0) − h +

3x2

s

∣∣∣∣ ≤ ε,

∣∣∣∣∣∣ sup
zσ− 2

3 ∈[i± 1
2 ]

A
(s)
1 (z) + Ã

(σ)
1 (z + ∆) − A

(s)
1 (0) +

2xz + x2

s

∣∣∣∣∣∣ ≤ 2ε


= P

∣∣∣∣A(s)
1 (0) − h +

3x2

s

∣∣∣∣ ≤ ε,

∣∣∣∣∣∣ sup
zσ− 2

3 ∈[i± 1
2 ]

A
(s)
1 (z) + Ã

(σ)
1 (z + ∆) − A

(s)
1 (0) + 2xz+x2

s

σ
1
3

∣∣∣∣∣∣ ≤ 2εσ− 1
3


≤ κ2

1P
((

N ′ + G, Ñ + Gi

)
∈
[
h± ε

]
×
[
0 ± 2εσ− 1

3

])
(5.2.6)

where κ1 = max{e729c/4, ec} = e729c/4. Furthermore, with this setup we also have that
(
N ′, Ñ

)
and(

G,Gi

)
are independent random vectors. This independence in equation (5.2.6) will be instrumental

in establishing the overall two-point bound that we desire. Before proceeding further, we now recall

a simple but extremely useful fact from measure theory, which will guarantee that the sum of these

two random vectors has a density with respect to the Lebesgue measure.

Lemma 5.2.1. Let µ and ν be independent finite measures on Rn. Let the random measure µ

be absolutely continuous with respect to the Lebesgue measure with Radon-Nikodym derivative fµ.

Then, the measure µ ∗ ν is also absolutely continuous with respect to the Lebesgue measure and

∥fµ∗ν∥∞ ≤ ∥fµ∥∞ν(Rn),

where fµ∗ν is the Radon–Nikodym derivative of the measure µ∗ν with respect to the Lebesgue measure.

Proof. We begin by proving that µ∗ν is absolutely continuous with respect to the Lebesgue measure.

We denote the Lebesgue measure as | · |. Take A a Lebesgue measurable set such that |A| = 0. Then,

µ ∗ ν(A) =

∫∫
1A(x + y)dµ(x)dν(y) =

∫∫
1A−y(x)fµ(x)dxdν(y).

The Lebesgue measure is invariant under translation so |A − y| = |A| = 0. This implies that the

inner integral in the right hand side expression above is 0.

We have proved that µ ∗ ν ≪ | · | so there exists an integrable function fµ∗ν on Rn such that

µ ∗ ν(A) =

∫
A

fµ∗ν(x)dx

for all Borel sets A in Rn. To prove that the Radon-Nikodym derivative fµ∗ν is bounded it suffices

to show that

µ ∗ ν(A) ≤ ∥fµ∥∞ν(Rn)|A|
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for all Borel sets A in Rn. Let A be a Borel set in Rn. Then, as before,

µ ∗ ν(A) =

∫∫
1A−y(x)fµ(x)dxdν(y).

We bound the function fµ with its norm and get an upper bound on the right-hand side as follows:∫ ∫
A−y

∥fµ∥∞dxdν(y) = ∥fµ∥∞
∫

|A|dν(y) = ∥fµ∥∞ν(Rn)|A|

where again we have used the fact that the Lebesgue measure is invariant under translation.

Since
(
N ′, Ñ

)
is a bivariate Gaussian vector (with independent components), Lemma 5.2.1 guaran-

tees that

Law
((

N ′, Ñ
)

+
(
G,Gi

))
will have a density ρi with respect to the Lebesgue measure for each i in the first regime. Given

this, we can take the last line in our expression (5.2.6) one step further and write it as an integral

P
((

N ′ + G, Ñ + Gi

)
∈
[
h± ε

]
×
[
0 ± 2εσ− 1

3

])
=

∫∫[
h±ε

]
×
[
0±2εσ− 1

3

] ρi(h1, h2)dh1dh2. (5.2.7)

We will now explain our general strategy for using these findings to start the construction of the

bound in equation (4.3.1). Suppose that for all (h1, h2) ∈
[
h± ε

]
×
[
0 ± 2εσ− 1

3

]
we had a uniform

bound of the form ∑
|i|≤10σ− 2

3

ρi (h1, h2) <
(
k′ + k′σ− 1

6 + k′σ− 1
3 |∆| 12

)
,

where k′ was a non-negative absolute constant independent of the choice of (x, s), (y, t) ∈ [1, 2]×[1, 11
10 ]

(and hence also independent of σ and ∆). In this case, if we define for each i and for each 0 < ε < ε0

the probabilities

Pi,ε = P

∣∣∣∣A(s)
1 (0) +

3x2

s
− h

∣∣∣∣ ≤ ε,

∣∣∣∣∣∣ sup
zσ− 2

3 ∈[i± 1
2 ]

A
(s)
1 (z) + Ã

(σ)
1 (z + ∆) − A

(s)
1 (0) +

2xz + x2

sσ
1
3

∣∣∣∣∣∣ ≤ 2ε

 ,

(5.2.8)



CHAPTER 5. A PARTIAL TWO-POINT BOUND FOR L(0, 0; ·, ·): THE FIRST REGIME 66

then by combining equations (5.0.1), (5.0.5), (5.0.7), (5.2.6), and (5.2.7) we would have that

P
(
L(0, 0;x, s) ∈ (h− ε, h + ε);L(0, 0; y, t) ∈ (h− ε, h + ε)

)
≤ P

(
L(0, 0;x, s) ∈ (h− ε, h + ε), |L(0, 0; y, t) − L(0, 0;x, s)| ≤ 2ε

)
≤
∑
i∈Z

P

Ax,s,h,ε ∩


∣∣∣∣∣∣ sup
zσ− 2

3 ∈[i± 1
2 ]

L(0, 0; z, s) + L̃(0, 0; z + ∆, σ) − L(0, 0; 0, s) +
2xz + x2

s

∣∣∣∣∣∣ ≤ 2ε




=
∑
i∈Z

P

∣∣∣∣A(s)
1 (0) +

3x2

s
− h

∣∣∣∣ ≤ ε,

∣∣∣∣∣∣ sup
zσ− 2

3 ∈[i± 1
2 ]

A
(s)
1 (z) + Ã

(σ)
1 (z + ∆) − A

(s)
1 (0) +

2xz + x2

s

∣∣∣∣∣∣ ≤ 2ε


≤ κ2

1

∑
|i|≤10σ− 2

3

P
((

N ′ + G
)
∈
[
h± ε

]
,
(
Ñ + Gi

)
∈
[
0 ± 2εσ− 1

3

])
+

∑
|i|>10σ− 2

3

pi,ε

= κ2
1

∑
|i|≤10σ− 2

3

∫∫[
h±ε

]
×
[
0±2εσ− 1

3

] ρi(h1, h2)dh1dh2 +
∑

|i|>10σ− 2
3

pi,ε

= κ2
1

∫∫[
h±ε

]
×
[
0±2εσ− 1

3

]
 ∑

|i|≤10σ− 2
3

ρi(h1, h2)

 dh1dh2 +
∑

|i|>10σ− 2
3

pi,ε

≤ κ2
1

∫∫[
h±ε

]
×
[
0±2εσ− 1

3

] (k′ + k′σ− 1
6 + k′σ− 1

3 |∆| 12
)
dh1dh2 +

∑
|i|>10σ− 2

3

pi,ε

= 8κ2
1ε

2
(
k′σ− 1

3 + k′σ− 1
2 + k′σ− 2

3 |∆| 12
)

+
∑

|i|>10σ− 2
3

pi,ε.

(5.2.9)

This would reduce our remaining work to developing a similar upper bound for the tail sum in the

second regime above. We will revisit this problem in the following section after verifying that such

a bound (k′ + k′σ− 1
6 + k′σ− 1

3 |∆| 12 ) does exist.

5.3 The Internal Structure of Gi for Small i

Before we proceed further, we will take some time to better understand the nature of the random

variables Gi, which will inform the manner in which we construct our density bounds on ρi. Due

to the presence of the parabola gi(z) in the definition (5.2.3), there will be quite a few distinct

cases in the first regime in our following strategy. We first note that by combining (5.2.2) with the

decomposition in law (5.1.5), we may write that for all z ∈ [−16, 16] and x ∈ [1, 2],

σ− 1
3

(
F (s)(z) −F (s)(0)

)
d
= σ− 1

3

(
W(2z + 96) −W(96) + s

1
3Az

)
d
= σ− 1

3W(2|z|) +
( s
σ

) 1
3

Az.

In particular, this means that for any z ∈
[
i± 1

2

]
we will have

σ− 1
3

(
F (s)

(
σ

2
3 z
)
−F (s)(0)

)
d
= W(2|z|) + (sσ)

1
3Az. (5.3.1)
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We also note that both W and A have symmetric upper and lower tail bounds about 0, via (5.1.6)

and the fact that W is a standard Brownian motion. Similarly, by recalling the absolute continuity

statement (5.2.1) and the tail bound (5.1.4) we see that

P
(
σ− 1

3F (σ)(z + ∆) ≥ m
)

+ P
(
σ− 1

3F (σ)(z + ∆) ≤ −m
)

= P
(
σ− 1

3 |F (σ)(z + ∆)| ≥ m
)

≤ P

 sup
zσ− 2

3 ∈[i± 1
2 ]

σ− 1
3 |F (σ)(z + ∆)| ≥ m


= P

(
sup

z∈I
(σ)
a

σ− 1
3 |F (σ)(z)| ≥ m

)
≤ c1 exp

(
−c2m

3
2

)
(5.3.2)

for all z ∈ [iσ
2
3 ± 1

2σ
2
3 ] and all m ≥ 0. Now for each i in the first regime, define the R−valued

random variable z∗i = z∗i (x, s; ∆, σ) by

z∗i = arg max
z∈[i± 1

2 ]

(
F (s)

(
σ

2
3 z
)
−F (s)(0) + F̃ (σ)

(
σ

2
3 z + ∆

))
σ

1
3

+ gi

(
σ

2
3 z
)

which is guaranteed to exist by the Extreme Value Theorem. If multiple maximizers exist, we will

take σ
2
3 z∗i to be the largest amongst them to make the choice unique. With this in mind, we can

then write Gi more explicitly as

Gi
d
=

(
F (s)

(
σ

2
3 z∗i

)
−F (s)(0) + F̃ (σ)

(
σ

2
3 z∗i + ∆

))
σ

1
3

+ gi

(
σ

2
3 z∗i

)
d
= N (0, |2z∗i |) + (sσ)

1
3Az∗i +

(
F̃ (σ)

(
σ

2
3 z∗i + ∆

))
σ

1
3

+ gi

(
σ

2
3 z∗i

)
=: G∗

i

(
σ

2
3 z∗i

)
+ gi

(
σ

2
3 z∗i

)
. (5.3.3)

Given this new more explicit decomposition of Gi we can now state the previously mentioned two

distinct cases. In the first case where the parabola gi

(
σ

2
3 z∗i

)
≤ 0, we will have that Gi has the same

distribution as a random variable G∗
i

(
σ

2
3 z∗i

)
with symmetric tail bounds about 0 plus a (random

and dependent) negative parabola. This makes it harder for Gi to achieve large positive values so

in this setting we expect to have strong upper tail bounds for Gi. Similarly, when the parabola

gi

(
σ

2
3 z∗i

)
≥ 0, Gi will be distributed as a random variable with symmetric tail bounds about 0 plus

a positive (random and dependent) parabola, making it harder to achieve large negative values. In

this second case, we expect to have strong lower tail bounds for Gi.

For our purposes in particular, we will be interested in bounding the sets of values (keeping in

mind that 0 < ε < ε0 = 1
2 min
(x,s)

x2

s = 5
11 by hypothesis)

{
ρi (h1, h2)

∣∣∣ h1 ∈ R, |h2| ≤ 2εσ− 1
3

}
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for each i ∈ Z with |i| ≤ 10σ− 2
3 .

In the work that follows, we will show that there exists a collection of random variables

{ξi}|i|≤10σ− 2
3

such that the value ρi(h1, h2) for each pair can be bounded above by either

e
− 1

8

(
h2−gi

(
σ

2
3 i

))2

+ P
(
Gi ≥

h2

2

)

= e
− 1

8

(
h2−gi

(
σ

2
3 i

))2

+ P

G∗
i

(
σ

2
3 z∗i

)
+ ξi ≥

h2 − gi

(
σ

2
3 i
)

2


whenever h2 − gi

(
σ

2
3 i
)
≥ 0, or by

e
− 1

8

(
h2−gi

(
σ

2
3 i

))2

+ P
(
Gi ≤

h2

2

)

= e
− 1

8

(
h2−gi

(
σ

2
3 i

))2

+ P

G∗
i

(
σ

2
3 z∗i

)
+ ξi ≤

h2 − gi

(
σ

2
3 i
)

2


whenever h2 − gi

(
σ

2
3 i
)
≤ 0.

Because of this, rather than being interested in just the parabola gi

(
σ

2
3 z∗i

)
, we are actually more

interested in the behaviour of h2 − gi

(
σ

2
3 z∗i

)
. In doing so, we can more easily leverage the tail

bounds of G∗
i

(
σ

2
3 z∗i

)
about 0 in the two probabilities above. For the remainder of this section, we

will be operating under the assumption that |h2| ≤ 2εσ− 1
3 .

We will now analyze the behaviour of the parabola h2 − gi

(
σ

2
3 z∗i

)
as a function of |i|. We will

begin with the simpler problem of understanding the explicit form of h2− gi

(
iσ

2
3

)
which by (5.2.4)

simplifies to the (deterministic) parabola

h2 − gi

(
iσ

2
3

)
= i2 +

(
2∆σ− 2

3 − 2x

s
σ

2
3

)
i−
(

2∆2σ− 4
3 +

x2

s
σ− 1

3 − h2

)
. (5.3.4)

While there are in principle many distinct possible behaviours for this parabola, particularly de-

pending on the relationship between ∆ and σ, for reasons that will be discussed later on, all that

will matter throughout the course of these arguments is that this parabola opens upwards and that

the constant term is guaranteed to be strictly negative. The assumption that ε < ε0 in particular is

what ensures that the constant term is always strictly negative. We also note that this guarantees

that for all i and all choices of (x, s), (y, t) the parabola h2 − gi

(
iσ

2
3

)
will always have a strictly

positive root and a strictly negative root.

We now consider the more general form of gi

(
σ

2
3 z∗i

)
and how it differs from the case when z∗i = i.
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Using the fact that we can always express z∗i = i + pi for some random pi ∈
[
− 1

2 ,
1
2

]
we can write

h2 − gi

(
σ

2
3 z∗i

)
= h2 − gi

(
iσ

2
3 + piσ

2
3

)
= i2 +

(
2∆σ− 2

3 + 2pi −
2x

s
σ

2
3

)
i−
(

2∆2σ− 4
3 − 2∆σ− 2

3 pi +
x2

s
σ− 1

3 +
2x

s
piσ

1
3 − h2

)
= h2 − gi

(
iσ

2
3

)
+

(
2∆σ− 2

3 + 2i− 2x

s
σ

1
3

)
pi (5.3.5)

=: h2 − gi

(
iσ

2
3

)
− ξi.

Thus, h2 − gi

(
σ

2
3 z∗i

)
is the same deterministic parabola as before plus a randomly fluctuating

degree 1 polynomial arising from the uncertainty in the location of z∗i . Given this, by carefully

manoeuvring around the random fluctuation ξi, it will be sufficient to understand the behaviour of

the deterministic sequence of parabolas gi

(
σ

2
3 i
)

. With these observations, we can now say that for

all i in the first regime, we will have the decomposition in law

Gi
d
= G∗

i

(
σ

2
3 z∗i

)
+ gi

(
σ

2
3 z∗i

)
d
= G∗

i

(
σ

2
3 i
)

+ ξi + gi

(
σ

2
3 z∗i

)
.

It is this final reformulation of Gi in particular, where we have extracted and isolated all of its

randomness into the random variables G∗
i

(
σ

2
3 i
)

+ ξi, that will enable us to efficiently find upper

and lower tail bounds for the random variable Gi. In turn, as we previously claimed, those tail

bounds will be essential in proving that the sum of densities ρi in the first regime is uniformly

bounded. We will now use these newfound insights into Gi to build our density bounds on ρi.

5.4 Technical Lemma for Summing Exponential Series

Before proceeding to the construction of our density bounds, we introduce two technical lemmas

about certain exponential sums. These lemmas will be crucial in understanding why the numerous

sums that appear in the following sections all converge to absolute constants independently of the

choice of (x, s), (y, t).

Lemma 5.4.1. Let β1, β2, β3 ∈ R with β2 ≤ 0. For each i ∈ Z̸=0, define the sequence (Ψi)i∈Z̸=0
by

Ψi := |i| + β1 sign(i) +
β2

|i|
+ β3.

If r ≥ 1, and γ > 0, then

−1∑
i=−∞

(
e−γ(Ψi)

r
)
1{Ψi≥0} +

∞∑
i=1

(
e−γ(Ψi)

r
)
1{Ψi≥0} <

2

1 − e−γ
.

Proof. First observe that for any u ∈ [0,∞) and any r ≥ 1 it is always true that ur ≥ u − 1. This
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means that we will always have that

∞∑
i=1

(
e−γ(Ψi)

r
)
1{Ψi≥0} ≤

∞∑
i=1

(
e−γ(Ψi−1)

)
1{Ψi≥0} = eγ

∞∑
i=1

(
e−γΨi

)
1{Ψi≥0}

and similarly that

−1∑
i=−∞

(
e−γ(Ψi)

r
)
1{Ψi≥0} ≤

−1∑
i=−∞

(
e−γ(Ψi−1)

)
1{Ψi≥0} = eγ

−1∑
i=−∞

(
e−γΨi

)
1{Ψi≥0}.

We begin with the case when β2 ≤ 0. If this is true then we have that

(Ψi)
′

=

(
i + β1 sign(i) +

β2

i
+ β3

)′

= 1 − β2

i2
≥ 1

for all i > 0. By expressing the increment Ψi+1 − Ψi as in integral, we then see that

Ψi+1 = Ψi + (Ψi+1 − Ψi) ≥ Ψi + 1

for all i > 0. Now if we set i0 ∈ Z>0 to be the minimal positive integer such that Ψi0 ≥ 0 then we

can say that

eγ
∞∑
i=1

(
e−γΨi

)
1{Ψi≥0} = eγ

∞∑
i=i0

e−γΨi ≤ eγ
∞∑

i=i0

e−γ(Ψi0
+(i−i0)) ≤ eγ

∞∑
i=i0

e−γ(i−i0) =
1

1 − e−γ
.

Now consider the sum over the negative integers when β ≤ 0. In this case, we see that

Ψi = −i− β1 +
β2

−i
+ β3

so if we make the change of variables j = −i then

Ψi = j − β1 +
β2

j
+ β3 = Ψ−j

with j ≥ 1. For convenience, let ζj := Ψ−j . With this change in mind we see that

eγ
−1∑

i=−∞

(
e−γΨi

)
1{Ψi≥0} = eγ

∞∑
j=1

(
e−γζj

)
1{ζj≥0}

and that as before, for all j ≥ 1

(ζj)
′ =

(
j − β1 +

β2

j
+ β3

)′

= 1 − β2

j2
≥ 1

as was the case when i ≥ 1. As such, if we set j0 to the minimal j ∈ Z>0 such that ζj ≥ 0 then we

have that by the exact same reasoning,

eγ
1∑

i=−∞

(
e−γΨi

)
1{Ψi≥0} = eγ

∞∑
j=1

(
e−γζj

)
1{ζj≥0} ≤ eγ

∞∑
j=j0

e−γ(j−j0) =
1

1 − e−γ
.
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Putting everything together, this means that when β2 ≤ 0,

−1∑
i=−∞

(
e−γ(Ψi)

r
)
1{Ψi≥0} +

∞∑
i=1

(
e−γ(Ψi)

r
)
1{Ψi≥0} <

2

1 − e−γ
.

as we originally claimed.

This lemma will be used to bound terms when the parabola is positive. Note the equivalence of

condition with condition on parabola. Mention that in our setup, this is why we introduce the

constraint on ε0 and do not allow x to ever be zero, as this is what ensures that the constants β2

which actually appear in our work are always non-positive. We also prove an analogous technical

lemma for the indices corresponding to the area in between the roots of the parabola.

Lemma 5.4.2. Let β1, β2, β3γ, r ∈ R with β2 ≤ 0. For each i ∈ Z̸=0, define

Ψi := |i| + β1 sign(i) +
β2

|i|
+ β3.

If γ > 0 and r ≥ 1, then ∑
i∈Z

e−γ|Ψi|r1{Ψi<0} <
2

1 − e−γ
.

Proof. This proof will be largely the same as that of the proof of the preceding lemma. We first

observe that if β3 = 0 then

|i| + β1 sign(i) +
β2

|i|
< 0 ⇐⇒ i2 + β1i + β2 < 0 ⇐⇒

∣∣∣∣i +
β1

2

∣∣∣∣ ≤
√
β2
1 + 4β2

2

meaning that we know exactly which integers are included in this sum. We will be including every

integer beginning with the leftmost zero of the parabola i2 + β1i + β2 to the rightmost zero of the

same parabola. Importantly, because the parabola opens upwards and has a negative vertical inter-

cept, it must have both a negative zero and a positive zero. This means that our sum’s index set

will contain both positive and negative integers. Having a non-zero value of β3 will translate and

dilate this set of integers, but will not change the fact that it is always finite or that it will contain

both negative and positive integers. We will now split our work into two cases as before.

When i > 0, since β2 ≥ 0 by hypothesis we see that

(Ψi)
′ =

(
i + β1 +

β2

i
+ β3

)′

= 1 − β2

i2
≥ 1.

This means that for any i > 0, Ψi+1 ≥ Ψi + 1 or equivalently, Ψi ≤ Ψi+1 − 1. Set

imax := max {i ∈ Z>0 : Ψi ≤ 0} .

By iterating this property until we reach imax, we see then that Ψi ≤ Ψimax
− (imax − i) < 0 for all
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0 < i ≤ imax. Then implies that

∞∑
i=1

eγ|Ψi|r1{Ψi<0} ≤ eγ
∞∑
i=1

e−γ|Ψi|1{Ψi<0} = eγ
imax∑
i=1

eγΨi

≤ eγ
imax∑
i=1

eγ(Ψimax−(imax−i))

≤ eγ
imax∑
i=1

eγ(i−imax)eγΨimax

≤ eγ
imax∑
i=1

eγ(i−imax)

≤ eγ
∞∑
k=1

e−γk

since eγΨimax ≤ 1 by definition of imax.

The case when i < 0 is similar. If i < 0 then

(Ψi)
′ =

(
−i− β1 −

β2

i
+ β3

)′

= −1 +
β2

i2
≤ −1.

This means that for any i < 0, Ψi ≤ Ψi−1 − 1. Similarly to before, set

imin := min {i ∈ Z<0 : Ψi ≤ 0} .

By iterating property above until we reach imin, we also have that Ψi ≤ Ψimin
− (i − imin) < 0 for

all imin ≤ i < 0. This then implies that

−1∑
i=−∞

eγ|Ψi|r1{Ψi<0} ≤ eγ
−1∑

i=−∞
e−γ|Ψi|1{Ψi<0} = eγ

−1∑
i=imin

eγΨi

≤ eγ
−1∑

i=imin

eγ(Ψimin
−(i−imin))

≤ eγ
−1∑

i=imin

e−γ(i−imin)eγΨimin

≤ eγ
−1∑

i=imin

eγ(imin−i)

= eγ
−1∑

i=imin

eγi

≤ eγ
−1∑

k=−∞

eγk
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since by definition, eγΨimin ≤ 1. Thus putting these two sums together we see that

∑
i∈Z

e−γ|Ψi|r1{f(i)<0} ≤ 2eγ
∞∑
k=1

e−γk =
2

1 − e−γ
< ∞.

With these two results in mind, we now have all the ingredients we will need in order to build good

density bounds for each density ρi. We begin this process in the next section.

5.5 Density Bounds for ρi for Small i

Based on the preceding discussion, since we can now rewrite

P
(
Gi ≥ h2

)
= P

(
G∗

i

(
σ

2
3 z∗i

)
+ gi

(
σ

2
3 z∗i

)
≥ h2

)
and likewise that

P
(
Gi ≤ h2

)
= P

(
G∗

i

(
σ

2
3 z∗i

)
+ gi

(
σ

2
3 z∗i

)
≤ h2

)
.

We now see that, at least intuitively speaking, for any h2 ∈ R, Gi will only have good upper tail

bounds when

h2 − gi

(
σ

2
3 z∗i

)
≥ 0

and similarly, will only ever have good lower tail bounds when

h2 − gi

(
σ

2
3 z∗i

)
≤ 0.

By recalling that the only source of randomness in the parabola gi

(
z∗i σ

2
3

)
is the randomness intro-

duced by pi, we can isolate all the randomness by again writing the parabola as

gi

(
z∗i σ

2
3

)
= gi

(
iσ

2
3

)
−
(

2∆σ− 2
3 + 2i− 2x

s
σ

1
3

)
pi = gi

(
iσ

2
3

)
+ ξi.

From here, if we let φi be the density of the random vector(
N ′, Ñ

)
+
(
G,G∗

i

(
σ

2
3 z∗i

)
+ ξi

)
then we can say that for all i in the first regime,∫∫[

h±ε

]
×
[
0±2εσ− 1

3

] ρi(h1, h2)dh1dh2 =

∫∫[
h±ε

]
×
[
−gi

(
iσ

2
3

)
±2εσ− 1

3

] φi(h1, h2)dh1dh2.

This observation is elementary but by passing from the original densities ρi to the new densities φi,

the structure and underlying behaviour of our density bounds will become easier to decipher.

We will now split the construction of our upper bounds for the densities φi into two distinct cases.
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First, for all h2 ≥ 0 we will bound φi(h1, h2) by

φi(h1, h2)

= P
(
N ′ + G ∈ dh1, Ñ + G∗

i

(
σ

2
3 z∗i

)
+ ξi ∈ dh2

)
≤ P

(
N ′ + G ∈ dh1, Ñ + G∗

i

(
σ

2
3 z∗i

)
+ ξi ∈ dh2

∣∣∣ Ñ ≥ h2

2

)
P
(
Ñ ≥ h2

2

)
+

P
(
N ′ + G ∈ dh1, Ñ + G∗

i

(
σ

2
3 z∗i

)
+ ξi ∈ dh2

∣∣∣ G∗
i

(
σ

2
3 z∗i

)
+ ξi ≥

h2

2

)
P
(
G∗

i

(
σ

2
3 z∗i

)
+ ξi ≥

h2

2

)
.

(5.5.1)

This density bound we eventually obtain from this initial bound will be used to bound the supremum

of the set of values {
φi

(
h1, h2 − gi

(
σ

2
3 i
)) ∣∣∣ h1 ∈ R, |h2| ≤ 2εσ− 1

3

}
for each pair (i, h2) such that

h2 − gi

(
σ

2
3 i
)
≥ 0.

Similarly, when h2 < 0 we will instead use the density bound

φi(h1, h2)

= P
(
N ′ + G ∈ dh1, Ñ + G∗

i (σ
2
3 z∗i ) + ξi ∈ dh2

)
≤ P

(
N ′ + G ∈ dh1, Ñ + G∗

i (σ
2
3 z∗i ) + ξi ∈ dh2

∣∣∣ Ñ ≤ h2

2

)
P
(
Ñ ≤ h2

2

)
+

P
(
N ′ + G ∈ dh1, Ñ + G∗

i

(
σ

2
3 z∗i

)
+ ξi ∈ dh2

∣∣∣ G∗
i

(
σ

2
3 z∗i

)
+ ξi ≤

h2

2

)
P
(
G∗

i

(
σ

2
3 z∗i

)
+ ξi ≤

h2

2

)
.

This density bound we eventually obtain from this initial bound will be used to bound the supremum

of the set of values {
ρi

(
h1, h2 − gi

(
σ

2
3 i
)) ∣∣∣ h1 ∈ R, |h2| ≤ 2εσ− 1

3

}
for each pair (i, h2) such that

h2 − gi

(
σ

2
3 i
)
< 0.

With this strategy in mind, let h2 ≥ 0 be arbitrary. Before proceeding further, we take a mo-

ment to recall that for all a, b satisfying −∞ ≤ a < b ≤ ∞ the probability measure

Law
(
Ñ
∣∣∣ {a ≤ Ñ ≤ b}

)
is the law of a truncated standard Gaussian random variable with lower truncation bound a and

trivial upper truncation bound b. Crucially, this distribution has an explicit bounded density

fÑ |{a≤Ñ≤b}(u) =
1√
2π

exp
(
− 1

2u
2
)
1{a≤u≤b}

Φ (b) − Φ (a)
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where Φ is the cumulative distribution function of a standard Gaussian. Note that if a = −∞ and

b ≤ 0 then

fÑ |{Ñ≤b}(u) ≤ e−
1
2 b

2

Φ(b)

whereas if 0 ≤ a and b = ∞ then

fÑ |{Ñ≥a}(u) ≤ e−
1
2a

2

1 − Φ(a)
.

Using this, the independence of (N ′, Ñ) and
(
G,G∗

i

(
σ

2
3 z∗i

)
+ ξi

)
, defining for each (h1, h2) ∈ R2

and each δ > 0 the sets

Eh1,h2,δ = [h1, h1 + δ] × [h2, h2 + δ],

and letting f
(N ′,Ñ)|{Ñ≥h2

2 } be the density of

Law

((
N ′, Ñ

)∣∣∣{Ñ ≥ h2

2

})
∗ Law

((
G,G∗

i

(
σ

2
3 z∗i

)
− ξi

))
we have that

P
(
N ′ + G ∈ dh1, Ñ + G∗

i

(
σ

2
3 z∗i

)
+ ξi ∈ dh2

∣∣∣ Ñ ≥ h2

2

)
= lim

δ→0+

1

δ2
P
(
N ′ + G ∈ (h1, h1 + δ), Ñ + G∗

i

(
σ

2
3 z∗i

)
+ ξi ∈ (h2, h2 + δ)

∣∣∣ Ñ ≥ h2

2

)
= lim

δ→0+

1

δ2
Law

(
(N ′, Ñ)

∣∣∣ {Ñ ≥ h2

2

})
∗ Law

((
G,G∗

i (σ
2
3 z∗i ) + ξi

))
(Eh1,h2,δ)

= lim
δ→0+

1

δ2
Law

(
(N ′, h2/2 ≤Ñ≤∞)

)
∗ Law

((
G,G∗

i (σ
2
3 z∗i ) + ξi

))
(Eh1,h2,δ)

≤ lim
δ→0+

1

δ2

(∫ h1+δ

h1

∫ h2+δ

h2

∣∣∣∣∣∣f(N ′,Ñ)|{Ñ≥h2
2 }

∣∣∣∣∣∣
∞

(u, v)dudv

)
(5.5.2)

≤ lim
δ→0+

1

δ2

(∫ h1+δ

h1

∫ h2+δ

h2

||fN ′(u)||∞
∣∣∣∣∣∣fÑ |{Ñ≥h2

2 }(v)
∣∣∣∣∣∣
∞
dudv

)

≤ lim
δ→0+

1

δ2

(∫ h1+δ

h1

∫ h2+δ

h2

exp
(
− 1

8h
2
2

)
1 − Φ

(
h2

2

) dudv)

=
exp

(
− 1

8h
2
2

)
1 − Φ

(
h2

2

)
where the inequality (5.5.2) comes from bounding the sup norm of the density of the convolution

(which is guaranteed to exist by Lemma 5.2.1) by the sup norm of the joint density of

Law

((
N ′, Ñ

)∣∣∣{Ñ ≥ h2

2

})
.

This is then bounded above by the product of the marginal densities, since the two components of

this truncated bivariate Gaussian vector are still independent even after conditioning. We can now

bound the first probability in the second product in the upper bound in (5.5.1) using essentially the
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same argument. Explicitly, we have that

P
(
N ′ + G ∈ dh1, Ñ + G∗

i (σ
2
3 z∗i ) + ξi ∈ dh2

∣∣∣ G∗
i (σ

2
3 z∗i ) + ξi ≥

h2

2

)
= lim

δ→0+

1

δ2
P
(
|N ′ + G− h1| ≤ δ, |Ñ + G∗

i (σ
2
3 z∗i ) + ξi − h2| ≤ δ

∣∣∣ G∗
i (σ

2
3 z∗i ) + ξi ≥

h2

2

)
= lim

δ→0+

1

δ2
Law

(
(N ′, Ñ) +

(
G,G∗

i (σ
2
3 z∗i ) + ξi

) ∣∣∣ G∗
i (σ

2
3 z∗i ) + ξi ≥

h2

2

)
(Eh1,h2,δ)

= lim
δ→0+

1

δ2
Law

(
(N ′, Ñ)

)
∗ Law

((
G,G∗

i (σ
2
3 z∗i ) + ξi

) ∣∣∣ G∗
i (σ

2
3 z∗i ) + ξi ≥

h2

2

)
(Eh1,h2,δ)

≤ lim
δ→0+

1

δ2

(∫ h1+δ

h1

∫ h2+δ

h2

1dudv

)
= 1

where we use the fact that the sup norm of the joint density of the bivariate Gaussian (N ′, Ñ) is at

most 1. Based on these two computations, we then arrive at an h2−dependent upper bound

φi(h1, h2) = P
(
N ′ + G ∈ dh1, Ñ + G∗

i (σ
2
3 z∗i ) + ξi ∈ dh2

)
≤ e−

1
8h

2
2 + P

(
G∗

i (σ
2
3 z∗i ) + ξi ≥

h2

2

)
which holds at all points (h1, h2) ∈ R× [0,∞). As mentioned previously, by repeating this procedure

for all (h1, h2) ∈ R× (−∞, 0], we obtain analogously

φi(h1, h2) = P
(
N ′ + G ∈ dh1, Ñ + G∗

i (σ
2
3 z∗i ) + ξi ∈ dh2

)
≤ e−

1
8h

2
2 + P

(
G∗

i (σ
2
3 z∗i ) + ξi ≤

h2

2

)
.

Overall, we have therefore shown that

φi(h1, h2) ≤ e−
1
8h

2
2 + P

(
G∗

i (σ
2
3 z∗i ) + ξi ≤

h2

2

)
1{h2<0} + P

(
G∗

i (σ
2
3 z∗i ) + ξi ≥

h2

2

)
1{h2≥0}

for all |i| ≤ 10σ− 3
2 and all (h1, h2) ∈ R2. Finally, by putting all the work in this section together,

we have thus obtained the density bound

ρi(h1, h2)

= φi

(
h1, h2 − gi(σ

2
3 i)
)

≤ e
− 1

8

(
h2−gi(σ

2
3 i)

)2

+ P

(
G∗

i (σ
2
3 z∗i ) + ξi ≤

h2

2
− gi(σ

2
3 i)

2

)
1{

h2−gi(σ
2
3 i)<0

}

+P

(
G∗

i (σ
2
3 z∗i ) + ξi ≥

h2

2
− gi(σ

2
3 i)

2

)
1{

h2−gi(σ
2
3 i)≥0

} (5.5.3)
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We restate here for convenience that, via equation (5.3.5), we have that

P

(
G∗

i (σ
2
3 z∗i ) + ξi <

h2

2
− gi(σ

2
3 i)

2

)
1{

h2−gi(σ
2
3 i)<0

} (5.5.4)

= P

(
G∗

i (σ
2
3 z∗i ) −

(
2∆σ− 2

3 + 2i− 2x

s
σ

1
3

)
pi <

h2

2
− gi(σ

2
3 i)

2

)
1{

h2−gi(σ
2
3 i)<0

}.

and likewise that

P

(
G∗

i (σ
2
3 z∗i ) + ξi ≥

h2

2
+

gi(σ
2
3 i)

2

)
1{

h2+gi(σ
2
3 i)≥0

} (5.5.5)

= P

(
G∗

i (σ
2
3 z∗i ) −

(
2∆σ− 2

3 + 2i− 2x

s
σ

1
3

)
pi ≥

h2

2
− gi(σ

2
3 i)

2

)
1{

h2−gi(σ
2
3 i)≥0

}.

We will address the summability of the exponential terms for all h2 ∈ [0±2εσ− 1
3 ] here and deal with

the other two summands separately in the following sections. Recall that as stated in the expansion

(5.3.4),

h2 − gi

(
σ

2
3 i
)

= i2 +

(
2∆σ− 2

3 − 2x

s
σ

2
3

)
i−
(

2∆2σ− 4
3 +

x2

s
σ− 1

3 − h2

)
so for all i ̸= 0 we will always have that

∣∣∣h2 − gi

(
σ

2
3 i
)∣∣∣ ≥

∣∣∣∣∣∣
h2 − gi

(
σ

2
3 i
)

|i|

∣∣∣∣∣∣ =

∣∣∣∣|i| + β1 sign(i) − β2

|i|

∣∣∣∣ =: |Ψi| ,

where the constants β1, β2 ∈ R are defined as

(β1, β2) :=

(
2∆σ− 2

3 − 2x

s
σ

2
3 , −

(
2∆2σ− 4

3 +
x2

s
σ− 1

3 − h2

))
.

With this convention, we will always have that β2 < 0 based on our definition of ε0 and the

requirement that 0 < ε < ε0. As such, by invoking Lemma 5.4.1 and Lemma 5.4.2 with r = 2 and

γ = 1
8 , we can conclude that

∞∑
i=−∞

e
− 1

8

(
h2−gi

(
σ

2
3 i

))2

≤ 1 +
∑
i̸=0

e
− 1

8

(
h2−gi

(
σ

2
3 i

))2

≤ 1 +
∑
i̸=0

e−
1
8 (Ψi)

2

1{Ψi≥0} +
∑
i ̸=0

e−
1
8 (|Ψi|)21{Ψi<0}

≤ 1 +
4

1 − e−
1
8

. (5.5.6)

Thus we now need only be concerned about finding similar bounds for the series of upper and lower

tail bounds of Gi. Doing this will complete our work for the first regime.
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5.6 Managing the Fluctuation ξi for Small i

Note that while G∗
i

(
σ

2
3 z∗i

)
has known upper tail bounds (as mentioned in section 5.3), these bounds

are centred at 0 specifically, and we are not able to meaningfully bound probabilities of the form

P
(
G∗

i

(
σ

2
3 z∗i

)
< m

)
or P

(
G∗

i

(
σ

2
3 z∗i

)
> −m

)
for m > 0 with the information available to us about the components inside G∗

i

(
σ

2
3 z∗i

)
. However,

because ξi is theoretically capable of having a larger magnitude than the parabola while having the

opposite parity of the parabola for a large number of i for some choices of (x, s), (y, t) ∈ [1, 2]×
[
1, 11

10

]
,

the situation above would become unavoidable during our energy integral computation if we simply

try to bound ξi from above or below by something deterministic in (5.5.4) and (5.5.5) without any

thought. Fortunately, a workaround to this problem does exist.

We begin with the elementary observation that by definition of the argmax z∗i ,

G∗
i

(
σ

2
3 z∗i

)
+ ξi = G∗

i

(
σ

2
3 z∗i

)
−
(

2∆σ− 2
3 + 2i− 2x

s
σ

1
3

)
(z∗i − i) ≥ G∗

i

(
σ

2
3 i
)

where we are also using the fact that

z∗i = arg max
z∈[i± 1

2 ]

(
G∗

i

(
σ

2
3 z
)

+ gi

(
σ

2
3 z
))

= arg max
z∈[i± 1

2 ]

(
G∗

i

(
σ

2
3 z
)

+ gi

(
σ

2
3 i
)
−
(

2∆σ− 2
3 + 2i− 2x

s
σ

1
3

)
(z − i)

)
= arg max

z∈[i± 1
2 ]

(
G∗

i

(
σ

2
3 z
)
−
(

2∆σ− 2
3 + 2i− 2x

s
σ

1
3

)
(z − i)

)
= arg max

z∈[i± 1
2 ]

(
G∗

i

(
σ

2
3 z
)

+ ξi

)
.

With this observation in tow, we can then bound equation (5.5.4) by

P

G∗
i

(
σ

2
3 z∗i

)
+ ξi ≤

h2

2
−

gi

(
σ

2
3 i
)

2

1{
h2−gi

(
σ

2
3 i

)
<0

}

≤ P

G∗
i

(
σ

2
3 i
)
≤ h2

2
−

gi

(
σ

2
3 i
)

2

1{
h2−gi

(
σ

2
3 i

)
<0

}

whose tail bounds we will obtain in the following section.

What reminds is determining how to bound equation (5.5.5). We start by observing that

ξi = −2
(

∆σ− 2
3 + i− x

s
σ

1
3

)
pi ≤ |∆|σ− 2

3 + |i| + 2
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for all |i| ≤ 10σ− 2
3 and all (x, s), (y, t) ∈ [1, 2] × [1, 11

10 ]. As such, this means that we may bound

equation (5.5.5) by

P

G∗
i

(
σ

2
3 z∗i

)
+ ξi ≥

h2

2
−

gi

(
σ

2
3 i
)

2

1{
h2−gi

(
σ

2
3 i

)
≥0

}

≤ P

G∗
i

(
σ

2
3 z∗i

)
+
(

∆σ− 2
3 + |i| + 2

)
≥ h2

2
−

gi

(
σ

2
3 i
)

2

1{
h2−gi

(
σ

2
3 i

)
≥0

} (5.6.1)

which will have exponential tail bounds for all i in the first regime such that

h2 − gi

(
σ

2
3 i
)
≥ 0 and h2 − gi

(
σ

2
3 i
)
− 2

(
|∆|σ− 2

3 + |i| + 2
)
≥ 0.

When the second condition above fails to hold, our only recourse is to bound equation (5.6.1) by

1 for all such values of i. Thus we will now shift our attention to finding an upper bound on the

number of integers i in the first regime such that

h2 − gi

(
σ

2
3 i
)
≥ 0 and h2 − gi

(
σ

2
3 i
)
− 2

(
|∆|σ− 2

3 + |i| + 2
)
< 0. (5.6.2)

By once again recalling the expansion in equation (5.3.4), we can write

h2 − gi

(
iσ

2
3

)
= i2 +

(
2∆σ− 2

3 − 2x

s
σ

2
3

)
i−
(

2∆2σ− 4
3 +

x2

s
σ− 1

3 − h2

)
≥ 0

which as a consequence gives us that

h2 − gi

(
σ

2
3 i
)
− 2

(
∆σ− 2

3 + |i| + 1
)

= i2 +

(
2∆σ− 2

3 − 2x

s
σ

2
3

)
i− 2|i| −

(
2∆2σ− 4

3 + 2|∆|σ− 2
3 +

x2

s
σ− 1

3 − h2 + 4

)
< 0.

How many i with |i| ≤ 10σ− 2
3 satisfy both of the conditions above?

First suppose that i < 0. In this case, for any choice of (x, s) ∈ [1, 2]× [1, 11
10 ] and h2 ∈

[
0 ± 2εσ− 1

3

]
,

the solutions to the system of equations (5.6.2) will all solve the slightly weaker system of inequalities

i2 +
(

2∆σ− 2
3 − 4

)
i−
(

2∆2σ− 4
3

)
≥ 0

and

i2 +
(

2∆σ− 2
3 + 2

)
i−
(

2∆2σ− 4
3 + 2|∆|σ− 2

3 + 5σ− 1
3 + 4

)
< 0.

Note that we are using the fact that for any functions f1, f2, f3, f4 from R to R such that f1 ≤ f2

and f3 ≤ f4, we have the implication for all x ∈ R that

f1(x) ≥ 0 and f4(x) < 0 =⇒ f2(x) ≥ 0 and f3(x) < 0
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meaning that {x ∈ R : f1(x) ≥ 0 and f4(x) < 0} ⊆ {x ∈ R : f2(x) ≥ 0 and f3(x) < 0}.

For simplicity, we first solve the analogous system of inequalities

i2 +
(
2ba2 − 4

)
i−
(
2b2a4

)
≥ 0

and

i2 +
(
2ba2 + 2

)
i−
(
2b2a4 + 2|b|a2 + 5a + 4

)
< 0

where 2 ≤ a, −1 ≤ b ≤ 1, and −10a2 ≤ i < 0. Using Mathematica, there are 10 classes of integer

solutions −10a2 ≤ i < 0 depending on the relationship between a and b. However, upon repeatedly

using the fact that |
√
u −

√
v| ≤

√
|u− v| to determine of the order of each such solution set in

terms of powers of a and b, we can see that there exists an absolute constant k > 0 such that in all

cases, there are no more than

k + ka
1
2 + ka|b| 12

solutions for any choice of a, b. As such, by setting a = σ− 1
3 , b = ∆, and using the fact that

σ−1 ≥ 10, we see that (5.6.2) has no more than

k + kσ− 1
6 + kσ− 1

3 |∆| 12

integer solutions i such that −10σ− 2
3 ≤ i < 0. We also note that although we did not work out an

explicit value for k, an explicit value for this absolute constant can be found, albeit with quite a bit

of extremely tedious arithmetic.

Now consider the case where 0 ≤ i ≤ 10σ− 2
3 . In this setting, all integer solutions to the system

of inequalities (5.6.2) will belong to the solution set of the weaker system

i2 +
(

2∆σ− 2
3

)
i−
(

2∆2σ− 4
3

)
≥ 0

and

i2 +
(

2∆σ− 2
3 − 6

)
i−
(

2∆2σ− 4
3 + 2|∆|σ− 2

3 + 5σ− 1
3 + 4

)
< 0.

As before, we consider the analogous system of inequalities

i2 +
(
2ba2

)
i−
(
2b2a4

)
≥ 0

and

i2 +
(
2ba2 − 6

)
i−
(
2b2a4 + 2|b|a2 + 5a + 4

)
< 0

with 2 ≤ a, −1 ≤ b ≤ 1, and 0 ≤ i ≤ 10a2. Using Mathematica, there are at most

7 + 3a|b| 12 + 3a
1
2
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integer solutions 0 ≤ i ≤ 10a2 for any choice of a, b. As such, by setting a = σ− 1
3 , b = ∆, and using

the fact that σ−1 ≥ 10, we see that (5.6.2) has no more than

7 + 3σ− 1
6 + 3σ− 1

3 |∆| 12

integer solutions 0 ≤ i ≤ 10a2 for any choice of a, b.

Moreover, by combining these two cases we see that we can now say that for any pair of points

(x, s), (y, t) ∈ [1, 2] × [1, 11
10 ], the system of inequalities (5.6.2) has no more than

k′ + k′σ− 1
6 + k′σ− 1

3 |∆| 12

integer solutions i with |i| ≤ 10σ− 2
3 . Hence, there are at most k′ + k′σ− 1

6 + k′σ− 1
3 |∆| 12 indices i in

the first regime that need to be discarded before we can ensure that the products in (5.6.1) always

have exponentially decaying tail bounds.

Note that because we considered the worst case scenario for h2, this same bound on the num-

ber of problematic indices i holds for all other choices of h2 as well. The specific integer solutions

will change as we vary the value of h2 in general, but this will not impact our overall density bound b′.

Now for each h2 ∈
[
0 ± 2εσ− 1

3

]
, define the subset of Z

S(h2) = S(h2;x, s,∆, σ) :=
{
i ∈ Z ∩

[
0 ± 10σ− 2

3

]
: the system of inequalities (5.6.2) is consistent

}
.

Based on the preceeding work in this section, S(h2) will be empty for all h2 ∈
[
0 ± 2εσ− 1

3

]
for most

choices of (x, s), (y, t) ∈ [1, 2] × [1, 11
10 ], and for all choices of (x, s), (y, t) that do have solutions, our

upper bound on the cardinality of S(h2) will be independent of the choice of h2. With this notation

established, we can then say that whenever h2 − gi

(
σ

2
3 i
)
≥ 0,

∑
|i|≤10σ− 2

3

P

G∗
i

(
σ

2
3 z∗i

)
+ ξi ≥

h2 − gi

(
σ

2
3 i
)

2

1{
h2−gi

(
σ

2
3 i

)
≥0

}

≤
∑

|i|≤10σ− 2
3

P
(
G∗

i

(
σ

2
3 z∗i

)
≥ ϕi(h2)

)
1{

h2−gi
(
σ

2
3 i

)
≥0

}

≤ |S(h2)| +
∑

i∈(S(h2))
C

P
(
G∗

i

(
σ

2
3 z∗i

)
≥ ϕi(h2)

)
1{

h2−gi
(
σ

2
3 i

)
≥0

}

≤ |S(h2)| +
∑

|i|≤10σ− 2
3

P
(
G∗

i

(
σ

2
3 z∗i

)
≥ ϕi(h2)

)
1{ϕi(h2)≥0}

≤ k′ + k′σ− 1
6 + k′σ− 1

3 |∆| 12 +
∑

|i|≤10σ− 2
3

P
(
G∗

i

(
σ

2
3 z∗i

)
≥ ϕi(h2)

)
1{ϕi(h2)≥0}. (5.6.3)
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where for the sake of formatting we have temporarily set

ϕi(h2) = ϕi (h2;x, s,∆, σ) :=
h2 − gi

(
σ

2
3 i
)

2
−
(
|∆|σ− 2

3 + |i| + 1
)

We conclude this portion of the argument by briefly summarizing our strategy for using (5.6.3) to

build the overall density bound in (5.2.9). The idea will be to use Lemma 5.4.1 to find a positive

absolute constant b1 > 0 such that∑
|i|≤10σ− 2

3

P
(
G∗

i

(
σ

2
3 z∗i

)
≥ ϕi(h2)

)
1{ϕi(h2)≥0} < b1

and similarly, to use Lemma 5.4.2 to find a positive absolute constant b2 > 0 such that

∑
|i|≤10σ− 2

3

P

G∗
i

(
σ

2
3 i
)
≤

h2 − gi

(
σ

2
3 i
)

2

1{
h2−gi

(
σ

2
3 i

)
<0

} < b2

Together, these will imply that

∑
|i|≤10σ− 2

3

P

G∗
i

(
σ

2
3 z∗i

)
+ ξi ≤

h2 − gi

(
σ

2
3 i
)

2

1{
h2−gi

(
σ

2
3 i

)
<0

}

+
∑

|i|≤10σ− 2
3

P

G∗
i

(
σ

2
3 z∗i

)
+ ξi ≥

h2 − gi

(
σ

2
3 i
)

2

1{
h2−gi

(
σ

2
3 i

)
≥0

}

≤ b2 +
(
k′ + k′σ− 1

6 + k′σ− 1
3 |∆| 12 + b1

)
.

This will in turn mean that in conjunction with equations (5.5.3) and (5.5.6),

∑
|i|≤10σ− 2

3

ρi (h1, h2) ≤ 1 +
2

1 − e−
1
8

+ b2 +
(
k′ + k′σ− 1

6 + k′σ− 1
3 |∆| 12 + b1

)
(5.6.4)

≤ k′σ− 1
3 |∆| 12 + k′σ− 1

6 + k′.

after redefining the absolute constant k′ > 0. Once again, the precise value of k′ can be computed

explicitly, at least in principle, if need be. We will now establish the existence of these absolute

constants b1 and b2 in the next section.

5.7 Tail Bounds for G∗
i

(
σ

2
3z∗i

)
and G∗

i

(
σ

2
3 i
)
for Small i

We first recall the decomposition in law in equation (5.3.3)

Gi
d
= N (0, 2|z∗i |) + (sσ)

1
3Az∗i +

(
F̃ (σ)

(
σ

2
3 z∗i + ∆

))
σ

1
3

+ gi

(
σ

2
3 z∗i

)
.
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We will also define the three random variables {G∗
i,j(z

∗
i )}3j=1 for i ̸= 0 by

G∗
i,1(z∗i ) := N (0, 2|z∗i |)

G∗
i,2(z∗i ) := (sσ)

1
3Az∗i

G∗
i,3(z∗i ) :=

(
F̃ (σ)

(
σ

2
3 z∗i + ∆

))
σ

1
3

.

We are excluding the case where i = 0 in particular because this will ensure that we are always able

to safely divide by |i| and z∗i in our tail bounds. For the case of i = 0 specifically, we will just use

the trivial tail bound of 1 for Gi’s upper and lower tail bounds. With that said, we now move on to

the i ̸= 0 case.

We begin by deriving an upper bound for the sum

∑
|i|≤10σ− 2

3

P

G∗
i

(
σ

2
3 z∗i

)
≥

h2 − gi

(
σ

2
3 i
)

2
−
(

∆σ− 2
3 + |i| + 1

)1{
h2−gi

(
σ

2
3 i

)
−2

(
∆σ− 2

3 +|i|+1
)
≥0

}.

Suppose that |i| ≤ 10σ− 2
3 and that h2−gi

(
σ

2
3 i
)
−2
(

∆σ− 2
3 + |i| + 1

)
≥ 0. First, by taking a union

bound, we see that

P

G∗
i

(
σ

2
3 z∗i

)
≥

h2 − gi

(
σ

2
3 i
)

2
−
(

∆σ− 2
3 + |i| + 1

)1{
h2−gi

(
σ

2
3 i

)
−2

(
∆σ− 2

3 +|i|+1
)
≥0

}

= P

 3∑
j=1

G∗
i,j(z

∗
i ) ≥

h2 − gi

(
σ

2
3 i
)

2
−
(

∆σ− 2
3 + |i| + 1

)1{
h2−gi

(
σ

2
3 i

)
−2

(
∆σ− 2

3 +|i|+1
)
≥0

}

≤
3∑

j=1

P

G∗
i,j(z

∗
i ) ≥

h2 − gi

(
σ

2
3 i
)

6
−

(
∆σ− 2

3 + |i| + 1
)

3

1{
h2−gi

(
σ

2
3 i

)
−2

(
∆σ− 2

3 +|i|+1
)
≥0

}.
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Next, since z∗i ∈
[
i± 1

2

]
implies that 2|z∗i | ≤ 3|i|, G∗

i,1(z∗i ) has an upper tail bound

P

G∗
i,1(z∗i ) ≥

h2 − gi

(
σ

2
3 i
)

6
−

(
∆σ− 2

3 + |i| + 1
)

3


= P

N (0, 2|z∗i |) ≥
h2 − gi

(
σ

2
3 i
)

6
−

(
∆σ− 2

3 + |i| + 1
)

3


≤ P

3|i||N (0, 1)| ≥
h2 − gi

(
σ

2
3 i
)

6
−

(
∆σ− 2

3 + |i| + 1
)

3


≤ 2 exp

−1

2

h2 − gi

(
σ

2
3 i
)

18|i|
−

(
∆σ− 2

3 + |i| + 1
)

9|i|

2


= 2 exp

− 1

628

h2 − gi

(
σ

2
3 i
)
− 2

(
∆σ− 2

3 + |i| + 1
)

|i|

2
 (5.7.1)

via the standard Gaussian concentration inequality. For the second summand G∗
i,2(z∗i ), we have by

equation (5.1.6) of Lemma 5.1.1 the sequence of bounds

P

G∗
i,2(z∗i ) ≥

h2 − gi

(
σ

2
3 i
)

6
−

(
∆σ− 2

3 + |i| + 1
)

3


= P

(sσ)
1
3Az∗i ≥

h2 − gi

(
σ

2
3 i
)

6
−

(
∆σ− 2

3 + |i| + 1
)

3


≤ P

∣∣∣sσ| 13 |Az∗i

∣∣∣ ≥ h2 − gi

(
σ

2
3 i
)

6
−

(
∆σ− 2

3 + |i| + 1
)

3


≤ P

4|i||A| ≥
h2 − gi

(
σ

2
3 i
)

6
−

(
∆σ− 2

3 + |i| + 1
)

3


≤ P

|A| ≥
h2 − gi

(
σ

2
3 i
)

24|i|
−

(
∆σ− 2

3 + |i| + 1
)

12|i|



≤ 2c1 exp

−c2

h2 − gi

(
σ

2
3 i
)

24|i|
−

(
∆σ− 2

3 + |i| + 1
)

12|i|


3
2


= 2c1 exp

− c2

24
√

24

h2 − gi

(
σ

2
3 i
)
− 2

(
∆σ− 2

3 + |i| + 1
)

|i|


3
2
 (5.7.2)
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where we have used the fact that s ∈ [1, 11
10 ] and that σ ∈ (0, 1

10 ]. Finally, we observe that we have

already explained in equation (5.3.2) that

P
(
G∗

i,3(z∗i ) ≥ m
)

= P
(
σ− 1

3 F̃ (σ)
(
z∗i σ

2
3 + ∆

)
≥ m

)
≤ c1 exp

(
−c2m

3
2

)
.

for all m ≥ 0, so as a direct application of that previously stated bound,

P

G∗
i,3(z∗i ) ≥

h2 − gi

(
σ

2
3 i
)

6
−

(
∆σ− 2

3 + |i| + 1
)

3



≤ c1 exp

−c2

h2 − gi

(
σ

2
3 i
)

6
−

(
∆σ− 2

3 + |i| + 1
)

3


3
2


=c1 exp

(
− c2

6
√

6

(
h2 − gi

(
σ

2
3 i
)
− 2

(
∆σ− 2

3 + |i| + 1
)) 3

2

)
. (5.7.3)

Using the fact that (5.7.2) decays the slowest amongst equations (5.7.1), (5.7.2), and (5.7.3) as

|i| → ∞, there exist absolute constants c′1, c
′
2 > 0 such that

P

G∗
i (σ

2
3 z∗i ) ≥

h2 − gi

(
σ

2
3 i
)

2
−
(

∆σ− 2
3 + |i| + 1

)1{
h2−gi

(
σ

2
3 i

)
−2

(
∆σ− 2

3 +|i|+1
)
≥0

}

≤ c′1 exp

−c′2

h2 − gi

(
σ

2
3 i
)
− 2

(
∆σ− 2

3 + |i| + 1
)

|i|


3
2
1{

h2−gi
(
σ

2
3 i

)
−2

(
∆σ− 2

3 +|i|+1
)
≥0

}

for all i in the first regime.

Recalling (5.3.4), we see that we may write

h2 − gi

(
σ

2
3 i
)
− 2

(
∆σ− 2

3 + |i| + 1
)

= |i| + β1 sign(i) − 2 +
β2

|i|

where the constants β1, β2 ∈ R are defined as

(β1, β2) :=

(
2∆σ− 2

3 − 2x

s
σ

2
3 , −

(
2∆2σ− 4

3 + 2∆σ− 2
3 +

x2

s
σ− 1

3 − h2 + 2

))
.
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Thus, by invoking Lemma 5.4.1 and observing that we always have that β2 ≤ 0, we obtain that

∑
|i|≤10σ− 2

3

P

(
G∗

i (σ
2
3 z∗i ) ≥ h2

2
− gi(σ

2
3 i)

2
−
(

∆σ− 2
3 + |i| + 1

))
1{

h2−gi
(
σ

2
3 i

)
−2

(
∆σ− 2

3 +|i|+1
)
≥0

}

≤
∞∑

i=−∞
P

G∗
i (σ

2
3 z∗i ) ≥

h2 − gi

(
σ

2
3 i
)

2
−
(

∆σ− 2
3 + |i| + 1

)1{
h2−gi

(
σ

2
3 i

)
−2

(
∆σ− 2

3 +|i|+1
)
≥0

}

≤ 1 +
∑
i ̸=0

c′1 exp

−c′2

h2 − gi

(
σ

2
3 i
)
− 2

(
∆σ− 2

3 + |i| + 1
)

|i|


3
2
1{

h2−gi
(
σ

2
3 i

)
−2

(
∆σ− 2

3 +|i|+1
)
≥0

}

= 1 +
∑
i ̸=0

c′1 exp

(
−c′2

(
|i| + β1 sign(i) − 2 +

β2

|i|

) 3
2

)
1{|i|+β1 sign(i)−2+

β2
|i| ≥0}

≤ 1 +
2

1 − exp(−c′2)
.

We now turn our attention to further bounding the inequality

∑
|i|≤10σ− 2

3

P

G∗
i

(
σ

2
3 z∗i

)
+ ξi ≤

h2 − gi

(
σ

2
3 i
)

2

1{
h2−gi

(
σ

2
3 i

)
<0

}

≤
∑

|i|≤10σ− 2
3

P

G∗
i

(
σ

2
3 i
)
≤

h2 − gi

(
σ

2
3 i
)

2

1{
h2−gi

(
σ

2
3 i

)
<0

}.

By mimicking the same general sequence of steps used to find the upper bound for the series of

upper tail bonds, we arrive at a similar bound

P

G∗
i

(
σ

2
3 z∗i

)
+ ξi ≤

h2 − gi

(
σ

2
3 i
)

2

1{
h2−gi

(
σ

2
3 i

)
<0

}

≤ P

G∗
i

(
σ

2
3 i
)
≤

h2 − gi

(
σ

2
3 i
)

2

1{
h2−gi

(
σ

2
3 i

)
<0

}

≤ c′1 exp

−c′2

∣∣∣∣∣∣
h2 − gi

(
σ

2
3 i
)

|i|

∣∣∣∣∣∣
3
2
1{

h2−gi
(
σ

2
3 i

)
<0

}

for all i ̸= 0 in the first regime, after possibly redefining the original choice of the absolute constants

c′1, c
′
2 > 0. Thus, by updating the constants β1, β2 to be

(β1, β2) :=

(
2∆σ− 2

3 − 2x

s
σ

2
3 , −

(
2∆2σ− 4

3 +
x2

s
σ− 1

3 − h2

))
so that we may write

h2 − gi

(
σ

2
3 i
)

= |i| + β1 sign(i) +
β2

|i|
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then since we always have that β2 ≤ 0, Lemma 5.4.2 yields that

∑
|i|≤10σ− 2

3

P

G∗
i

(
σ

2
3 z∗i

)
+ ξi ≤

h2 − gi

(
σ

2
3 i
)

2

1{
h2−gi

(
σ

2
3 i

)
<0

}

≤
∑

|i|≤10σ− 2
3

P

G∗
i

(
σ

2
3 i
)
≤

h2 − gi

(
σ

2
3 i
)

2

1{
h2−gi

(
σ

2
3 i

)
<0

}

≤ 1 +
∑
i ̸=0

c′1 exp

−c′2

∣∣∣∣∣∣
h2 − gi

(
σ

2
3 i
)

|i|

∣∣∣∣∣∣
3
2
1{

h2−gi
(
σ

2
3 i

)
<0

}

= 1 +
∑
i ̸=0

c′1 exp

(
−c′2

∣∣∣∣|i| + β1 sign(i) +
β2

|i|

∣∣∣∣ 32
)
1{|i|+β1 sign(i)+

β2
|i| <0}

≤ 1 +
2

1 − exp(−c′2)
.

Thus, by setting b1 = b2 = 1 + 2
(

1 − exp(−c′2)
)−1

, the work above confirms the existence of the

absolute constants b1, b2 > 0 in equation (5.6.4) and completes the argument for the first regime.

We now proceed to the second regime in the following chapter.



Chapter 6

A Partial Two-Point Bound for

L(0, 0; ·, ·): The Second Regime

6.1 The Second Airy Comparison Lemma

Recall that in the first regime, because we knew that |i| ≤ 10σ− 2
3 , this meant that there was a max-

imal and finite interval [a−T, a+T ] ∈ R containing both 0 and every possible interval
[
σ

2
3 i± 1

2σ
2
3

]
simultaneously. This meant that we were able to use a single application of Lemma 5.1.1 that ap-

plied to every single probability pi,ε for each i in the first regime. Moreover, because this parameter

T was bounded, this meant that the Radon-Nikodym derivative ecT
3

appearing in the application

of this lemma remained finite.

This trick will no longer work in the second regime, since it is characterized by |i| > 10σ− 2
3 . Since

the same intervals
[
σ

2
3 i± 1

2σ
2
3

]
can now be arbitrarily far from 0, and we will need to control the

behaviour of A
(s)
1 on both these intervals and near 0, this is deeply problematic. This would cause

the parameter T in each application of Lemma 5.1.1 to pi,ε to grow exponentially quickly to ∞ as

|i| → ∞. Recalling the definition of pi,ε in (5.2.8), this would make it extremely improbable that

any bound we obtained on the tail sum ∑
|i|>10σ− 2

3

pi,ε

using our original lemma would converge. In light of this observation, a new lemma is needed to

deal with the law of A
(s)
1 for each of these large integers i in the second regime. Fortunately, due

to the nature of the events pi,ε, we only actually need to concern ourselves with the behaviour of

A
(s)
1 near 0 and on the interval

[
σ

2
3 i± 1

2σ
2
3

]
. Because the intermediate values of A

(s)
1 are completely

irrelevant to us, this makes Theorem 1.2.3 a perfect foundation upon which to build an analogue of

Lemma 5.1.1 for our work in the second regime. We will now use the remainder of this section to

prove that generalization of our original Airy comparison lemma.

88
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Lemma 6.1.1. Let a1, a2 ∈ R ̸=0 and T > 1
6 such that a1 + 3T < a2 − 3T. Let I1 = [a1 ± T ] and

I2 = [a2 ± T ]. Let faj be the linear function on [aj ± 3T ] satisfying

faj
(aj − 3T ) = −(aj − 3T )2 and faj

(aj + 3T ) = −(aj + 3T )2.

Then there exists a constant c ∈ R>0 and random functions

((
F1(r)

)
r∈I1

,
(
F2(r)

)
r∈I2

)
such that

Law

((
A1(r)

)
r∈I1

,
(
A1(r)

)
r∈I2

)
≤ ecT

3

Law
((√

2TN1 + (F1(r) + fa1(r))r∈I1

)
,
(√

2TN2 + (F2(r) + fa2(r))r∈I2

))
(6.1.1)

where N1 and N2 are independent standard Gaussian random variables. Moreover, the pairs (N1, N2)

and
(

(F1(r))r∈I1 , (F2(r))r∈I2

)
are independent, and there exist T−dependent constants c1, c2 > 0

such that for each j ∈ {1, 2},

P

(
sup
r∈Ij

|Fi(r)| > m

)
≤ c1 exp

(
−c2m

3
2

)
(6.1.2)

for all m > 0. More generally, for any λ > 0, let A
(λ)
1 be as in (5.0.6). Denote by I

(λ)
j the interval

I
(λ)
j := λ2/3Ij =

[
ajλ

2/3 − Tλ2/3, ajλ
2/3 + Tλ2/3

]
.

Then as a consequence of (6.1.1), we have that

Law

((
A

(λ)
1 (r)

)
r∈I

(λ)
1

,
(
A

(λ)
1 (r)

)
r∈I

(λ)
2

)
≤ ecT

3

Law

(((
F (λ)

j (r) + λ1/3
(√

2TNj + faj (rλ− 2
3 )
))

r∈I
(λ)
j

)2

j=1

)
(6.1.3)

with N1 and N2 as before. For each j ∈ {1, 2}, F (λ)
j is a λ−dependent random function such that

for all m > 0,

P

 sup
r∈I

(λ)
j

∣∣∣λ−1/3F (λ)
j (r)

∣∣∣ > m

 ≤ c1 exp
(
−c2m

3
2

)
(6.1.4)

for the same T−dependent constants c1, c2 > 0.

We may also write for each j ∈ {1, 2} the random function F
(λ)
j as(

F (λ)
j (r)

)
r∈I

(λ)
j

d
=
(
Wj

(
2r − 2(aj − 3T )λ

2
3

)
+ Ajλ

− 1
3 r + Cjλ

1
3

)
r∈I

(λ)
j

(6.1.5)

where Wj is a standard Brownian motion, and Aj and Cj are random constants such that,

P (|Aj | > m) ≤ c1 exp
(
−c2m

3
2

)
and P (|Cj | > m) ≤ c1 exp

(
−c2

(
m

|aj |

) 3
2

)
(6.1.6)



CHAPTER 6. A PARTIAL TWO-POINT BOUND FOR L(0, 0; ·, ·): THE SECOND REGIME 90

for all m > 0. There are no claims made about any independence amongst Wj , Aj , and Cj.

Proof. By invoking Theorem 1.2.3 with T0 = 6T and a = (a1 − 3T, a2 − 3T ), we have that

Law

((
A1(r)

)
r∈[a1±3T ]

,
(
A1(r)

)
r∈[a2±3T ]

)
≤ e216cT

3

Law

((
B1(r) + L1(r)

)
r∈[a1±3T ]

,
(
B2(r) + L2(r)

)
r∈[a2±3T ]

)
.

Since Ij is the middle third of the interval [aj ± 3T ], we may invoke Lemma 2.0.5 with k = 1 and

δ = 1
3 on [aj ± 3T ] for each j ∈ {1, 2} to get the decomposition in law(

Bj(r)
)
r∈Ij

d
=

√
TNj +

(
Bj(r) −

√
2TNj

)
r∈Ij

where Nj is a standard Gaussian, Nj is independent of the process (Bj(r) − Nj)r∈Ij , and N1 is

independent of N2. As such, we can now write that

Law

((
A1(r)

)
r∈I1

,
(
A1(r)

)
r∈I2

)
≤ e216cT

3

Law

((√
2TN1 + (F1(r) + fa1(r)

)
r∈I1

,
(√

2TN2 + (F2(r) + fa2(r)
)
r∈I2

)
where for each j ∈ {1, 2} we have defined(

Fj(r)
)
r∈Ij

:=
(
Lj(r) − faj

(r) + Bj(r) −
√

2TNj

)
r∈Ij

and for r ∈ [aj ± 3T ], we have defined faj
by

faj
(r) = − (aj + 3T ) − r

6T
(aj − 3T )2 − r − (aj − 3T )

6T
(aj + 3T )2.

This establishes (6.1.1) so all that remains is to establish (6.1.2). To that end, we employ the same

general argument used in Lemma 5.1.1 previously, independently in each coordinate of (6.1.2).

We begin by observing the chain of inequalities

sup
r∈Ij

|Fj(r)| ≤ sup
r∈Ij

|Lj(r) + faj
(r)| + sup

r∈Ij

|Bj(r)| + |
√

2TNj |

≤ |Lj(aj − 3T ) − faj
(aj − 3T )| ∨ |Lj(aj + 3T ) − faj

(ai + 3T )| + sup
r∈Ij

|Bj(r)| + |
√

2TNj |

= |Lj(aj − 3T ) + (aj − 3T )2| ∨ |Lj(aj + 3T ) + (aj + 3T )2| + sup
r∈Ij

|Bj(r)| + |
√

2TNj |.

(6.1.7)

Note that we are using the fact that because Lj − faj
is a (random) line segment, its maximum

absolute value is obtained at one of its two endpoints. We will now adopt the convention that for

any a ∈ R, Ba,6T is a diffusion parameter 2 Brownian bridge on [a, a + 6T ] from 0 to 0. With this



CHAPTER 6. A PARTIAL TWO-POINT BOUND FOR L(0, 0; ·, ·): THE SECOND REGIME 91

convention, we may write that(
B0,6T (r)

)
r∈[0,6T ]

d
=
(
W(2r) − r

6T
W(12T )

)
r∈[0,6T ]

where W is a standard Brownian motion. Given this, we may then say that

P

(
sup
r∈Ij

|Bj(r)| > 2m

)
= P

(
sup

r∈[2T,4T ]

|B0,6T (r)| > 2m

)

≤ P

(
sup

r∈[0,6T ]

|B0,6T (r)| > 2m

)

= P

(
sup

r∈[0,6T ]

∣∣∣W(2r) − r

6T
W(12T )

∣∣∣ > 2m

)

≤ P

(
|W(12T )| + sup

r∈[0,6T ]

|W(2r)| > 2m

)

≤ P
(
|W(12T )| > m

)
+ P

(
sup

r∈[0,12T ]

|W(r)| > m

)

≤ P
(
|W(12T )| > m

)
+ 2P

(
sup

r∈[0,12T ]

W(r) > m

)
= P

(
|W(12T )| > m) + 2P(|W(12T )| > m

)
= 3P

(
|W(12T )| > m

)
using that W is equal in law to −W , and the known distribution of the running maximum of a

standard Brownian motion.

We may use this elementary bound in conjunction with (6.1.7) to obtain the union bound

P

(
sup
r∈Ij

|Fi(r)| > 4m

)
≤ P

(
|Lj(aj − 3T ) + (aj − 3T )2| ∨ |Lj(ai + 3T ) + (aj + 3T )2| > m

)
+P

(
sup
r∈Ij

|Bj(r)| > 2m

)
+ P

(
|
√

2TNj | > m
)

≤ P
(
|Lj(aj − 3T ) + (aj − 3T )2| ∨ |Lj(aj + 3T ) + (aj + 3T )2| > m

)
+3P

(
|W(12T )| > m

)
+ P

(
|
√

2TNj | > m
)
.

Using the standard sub-Gaussian concentration inequalities for the latter two summmands, and the

tail bounds in equation (1.2.5) for the first summand above yields

P

(
sup
r∈Ij

|Fj(r)| > 4m

)
≤ c1e

−c2m
3
2 + 6e

− m2

2(12T )2 + 2e
− m2

2(2T )2 ≤ c1e
−c2m

3
2

by redefining the original choice of c1 and c2 as needed, thus establishing (6.1.2) and completing the
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proof of the base case.

Equations (6.1.3) and (6.1.4) are immediate consequences of (6.1.1) and (6.1.2), respectively. To see

this explicitly, we need only observe that (6.1.1) gives us the chain of equalities

Law

((
A

(λ)
1 (r)

)
r∈I

(λ)
1

,
(
A

(λ)
1 (r)

)
r∈I

(λ)
2

)
= Law

((
λ1/3A1(rλ−2/3)

)
r∈λ2/3I1

,
(
λ1/3A1(rλ−2/3)

)
r∈λ2/3I2

)
= Law

((
λ1/3A1(r)

)
r∈I1

,
(
λ1/3A1(r)

)
r∈I2

)
≤ e216cT

3

Law

((
λ1/3

(√
2TNj + (Fj(r) + faj

(r))
)
r∈Ij

)2

j=1

)

= e216cT
3

Law

((
λ1/3

(√
2TNj +

(
Fj(rλ

−2/3) + faj (rλ− 2
3 )
))

r∈I
(λ)
j

)2

j=1

)

= e216cT
3

Law

(((
F (λ)

j + λ1/3
(√

2TNj + faj
(rλ− 2

3 )
))

r∈I
(λ)
j

)2

j=1

)

where we have that F (λ)
j is defined for each j ∈ {1, 2} by(

F (λ)
j (r)

)
r∈I

(λ)
j

:=
(
λ

1
3Fj(rλ

− 2
3 )
)
r∈I

(λ)
j

(6.1.8)

=
(
λ

1
3Lj(rλ

− 2
3 ) − λ

1
3 faj

(rλ− 2
3 ) + λ

1
3Bj(rλ

− 2
3 ) − λ

1
3

√
2TNj

)
r∈

[
λ

2
3 aj±Tλ

2
3

] .
All the claimed independence properties of the decomposition (6.1.8) are inherited from the base

case of this proof. Establishing the tail bound (6.1.4) follows immediately from (6.1.2) and the fact

that (
Fj(r)

)
r∈Ij

=
(
λ−1/3F

(λ)
j (r)

)
r∈I

(λ)
j

.

We now provide a decomposition of the functions
(
F (λ)

j (r)
)
r∈I

(λ)
j

which will enable us to estab-

lish the tail bounds (6.1.6). By invoking the decomposition in equation (1.2.4), we obtain that

(
Lj(r)

)
r∈[aj±3T ]

d
=

(
(aj + 3T ) − r

6T
La
1 (aj − 3T ) +

r − (aj − 3T )

6T
La
1 (aj + 3T )

)
r∈[aj±3T ]

.

The right-hand side can then be rewritten as(
La
1 (aj + 3T ) − La

1(aj − 3T )

6T
· r +

(aj + 3T )La
1 (aj − 3T ) − (aj − 3T )La

1(aj + 3T )

6T

)
r∈[aj±3T ]

.

(6.1.9)
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Similarly, we may write for each r ∈ [aj ± 3T ] that

faj
(r) = − (aj + 3T )2 − (aj − 3T )2

6T
r − (aj + 3T )(aj − 3T )2 − (aj − 3T )(aj + 3T )2

6T
(6.1.10)

= −(2aj)r +
(
a2j − 9T 2

)
.

We begin with the definition in (6.1.8), which gives us for each r ∈ I
(λ)
j =

[
ajλ

2/3 ± 3Tλ2/3
]

the

decomposition in law

F (λ)
j (r) = λ

1
3Fj

(
rλ−2/3

)
= λ

1
3Lj

(
rλ−2/3

)
− λ

1
3 faj

(
rλ−2/3

)
+ λ

1
3Bj

(
rλ−2/3

)
− λ

1
3

√
TNj

d
= λ

1
3Lj

(
rλ−2/3

)
− λ

1
3 faj

(
rλ−2/3

)
+ λ

1
3B0,6T

(
rλ−2/3 − (aj − 3T )

)
− λ

1
3

√
TNj

(6.1.11)

where as before, Ba,6T is a diffusion parameter 2 Brownian bridge on [a, a+ 6T ] from 0 to 0. Noting

that for any a, k ∈ R the scaling properties of Brownian bridges give us that(
k−1B0,6T (k2r − k2a)

)
r∈[a,a+6T ]

d
=
(
k−1Bk2a,6k2T (r − k2a)

)
r∈[k2a,k2(a+6T )]

d
=
(
k−1B0,6k2T (r)

)
r∈[0,k2(6T ))]

d
=
(
W(2r) − k−2r

6T
W(12k2T )

)
r∈[0,k2(6T ))]

d
=
(
W(2r − 2k2a) − k−2r − a

6T
W(12k2T )

)
r∈[k2a,k2(a+6T )]

d
=
(
W(2r − 2k2a) − k−1r − ka

6T
W(12T )

)
r∈[k2a,k2(a+6T )]

we may refine (6.1.11) further, for all r ∈ I
(λ)
j =

[
λ

2
3 aj ± λ

2
3T
]
, as

F (λ)
j (r) + λ

1
3

√
2TNj

d
= λ

1
3Lj

(
rλ− 2

3

)
− λ

1
3 faj

(
rλ− 2

3

)
+ λ

1
3B0,6T

(
rλ− 2

3 − (aj − 3T )
)

d
= λ

1
3Lj

(
rλ− 2

3

)
− λ

1
3 faj

(
rλ− 2

3

)
+ Wj

(
2r − (2aj − 6T )λ

2
3

)
− rλ− 1

3 − (aj − 3T )λ
1
3

6T
Wj(12T ).

(6.1.12)

To remove any ambiguity in the application of this lemma, we will adopt the convention that W1 and

W2 are independent standard Brownian motions that we associate with the independent Brownian

bridges B1 and B2 respectively.

Now by using (6.1.12) in conjunction with (6.1.9) and (6.1.10) we can obtain the decomposition

in law (
F

(λ)
j (r)

)
r∈I

(λ)
j

d
=
(
Wj

(
2r − (2aj − 6T )λ

2
3

)
+ Ajrλ

−1/3 + Cjλ
1/3
)
r∈I

(λ)
j
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where the random constants Aj , and Cj are defined as

Aj :=

(
(La

1 (aj + 3T ) − (aj + 3T )2) − (La
1 (aj) − a2j )

3T
− 1

6T
Wj(12T )

)

Cj :=

(
(aj + 3T )(La

1 (aj − 3T ) − (aj − 3T )2) − (aj − 3T )(La
1 (aj + 3T ) − (aj + 3T )2)

6T

)
+

aj − 3T

6T
Wj(12T ) −

√
2TNj .

We now establish tail bounds for the random constants Aj and Cj . Using the standard Gaussian

tail bounds and the tail bounds in (1.2.5), we see that for all m > 0,

P
(
|Aj | > m

)
≤ P

(∣∣∣∣La
1 (aj + 3T ) − (aj + 3T )2

6T

∣∣∣∣+

∣∣∣∣La
1 (aj − 3T ) − (aj − 3T )2

6T

∣∣∣∣+

∣∣∣∣ 1

6T
Wj(12T )

∣∣∣∣ > m

)
≤ P

(∣∣∣∣La
1(aj + 3T ) − (aj + 3T )2

6T

∣∣∣∣ > m

3

)
+ P

(∣∣∣∣La
1 (aj − 3T ) − (aj − 3T )2

6T

∣∣∣∣ > m

3

)
+ P

( ∣∣∣∣ 1

12T
Wj(6T )

∣∣∣∣ > m

3

)
≤ P

( ∣∣La
1 (aj + 3T ) − (aj + 3T )2

∣∣ > 2mT
)

+ P
( ∣∣La

1 (aj − 3T ) − (aj − 3T )2
∣∣ > 2mT

)
+ P

(
|Wj(12T )| > 2mT

)
≤ c1e

−c2(2mT )
3
2 + c1e

−c2(2mT )
3
2 + 2e−

(2mT )2

2(12T )

≤ c1e
−c2m

3
2

where the T−dependent constants c1, c2 have been redefined in the final inequality as needed. Sim-

ilarly, for the random constant Cj we may obtain the tail bound

P
(
|Cj | > m

)
≤ P

(∣∣∣∣ (aj + 3T )(La
1 (aj − 3T ) − (aj − 3T )2)

6T

∣∣∣∣ > m

4

)
+ P

(∣∣∣∣ (aj − 3T )(La
1 (aj + 3T ) − (aj + 3T )2)

6T

∣∣∣∣ > m

4

)
+ P

(∣∣∣∣ (aj − 3T )Wj(12T )

6T

∣∣∣∣ > m

4

)
+ P

(∣∣∣√2TNj

∣∣∣ > m

4

)
= P

(∣∣La
1 (aj − 3T ) − (aj − 3T )2)

∣∣ > 3mT

2|aj + 3T |

)
+ P

(∣∣La
1 (aj + 3T ) − (aj + 3T )2)

∣∣ > 3mT

2|aj − 3T |

)
+ P

(
|Wj(12T )| > 3mT

2|aj − 3T |

)
+ P

(
|
√

2TNj | >
m

4

)
≤ c1e

−c2
(

3mT
2|aj+3T |

) 3
2

+ c1e
−c2

(
3mT

2|aj−3T |

) 3
2

+ 2e
− 1

24T

(
3mT

2|aj−3T |

)2

+ 2e−
1

4T (m
4 )

2

≤ c1e
−c2

(
m

|aj |

) 3
2

where we have once again redefined the values of c1 and c2 so that the final inequality holds as well.

This therefore establishes (6.1.6) and completes the proof of Lemma 6.1.1.
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6.2 The Big Picture in the Second Regime

To complete our proof of the two-point bound (4.3.1), we need to bound
∑

|i|>10σ− 2
3

pi,ε , where we

remind the reader that we have defined pi,ε as

pi,ε := P

∣∣∣∣A(s)
1 (0) +

3x2

s
− h

∣∣∣∣ ≤ ε,
∣∣∣ sup

z

σ2/3
∈[i±1/2]

A
(s)
1 (z) + Ã

(σ)
1 (z + ∆) − A

(s)
1 (0) +

2xz + x2

sσ
1
3

∣∣∣ ≤ 2ε

 .

We will do so by mimicking the same general sequence of steps used in the first regime. To that

end, we will use Lemma 5.1.1 and Lemma 6.1.1 to build a set of random vectors{(
Z, Z̃

)
+
(
G,Gi

)
: |i| > 10σ− 2

3

}
with

(
Z, Z̃

)
a bivariate Gaussian random vector independent of the random vector (G,Gi) such

that for some absolute constant κ2 > 0

pi,ε ≤ κ2
2P
((

Z, Z̃
)

+
(
G,Gi

)
∈
[
h± ε

]
×
[
0 ± 2εσ− 2

3

])
for all i in the second regime.

We begin this procedure by first applying Lemma 5.1.1 to the process Ã
(σ)
1 . There will actually

be no changes whatsoever to how we use Lemma 5.1.1 on Ã
(σ)
1 in the second regime, so we will

reuse the absolute continuity statement (5.2.1) completely verbatim. However, because the maximal

distance between 0 and the interval
[
σ

2
3 i± 1

2σ
2
3

]
is unbounded in the second regime, the absolute

continuity statement that we develop for A
(s)
1 will be quite different this time.

In particular, we will need to use Lemma 6.1.1 on A
(s)
1 over an interval containing 0 and on a

separate disjoint interval containing the domain of our supremum
[
σ

2
3 i± 1

2σ
2
3

]
. In order to do this,

the only decision we need to make is the selection of a constant T > 1
6 and two intervals I1 = [a1±3T ]

and [a2 ± 3T ]. However, because we require that I2 = a1 + 3T < a2 − 3T , there is a natural order

to the selection of these intervals which will not by symmetric when sign(i) changes. If i > 10σ− 2
3

then we will want to have 0 ∈ I
(s)
1 and

[
σ

2
3 i± 1

2σ
2
3

]
⊆ I

(s)
2 , and if i < −10σ− 2

3 , then we will want

to have
[
σ

2
3 i± 1

2σ
2
3

]
⊆ I

(s)
1 and 0 ∈ I

(s)
2 . Recall that we have defined I

(s)
j :=

[
s

2
3 aj ± Ts

2
3

]
.

Fortunately, although this asymmetry will slightly change the nomenclature used to apply Lemma

6.1.1 to A
(s)
1 , it will have no impact on the absolute continuity statement generated from its applica-

tion. So without loss of generality, we will just illustrate the application of this for i > 10σ− 2
3 with

the knowledge that reversing the order of the intervals changes nothing important in the end. Given

this, since 1
2σ

2
3 ≤ 1 ≤ 2s−

2
3 for all s ∈

[
1, 11

10

]
, we will choose the parameters λ = s, T = 2s−

2
3 ,
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a1 = s−
2
3σ

1
3 , and a2 = s−

2
3σ

2
3 i to generate the new absolute continuity statement

Law

((
A

(s)
1 (r)

)
r∈

[
σ

1
3 ±4

] ,(A(s)
1 (r)

)
r∈

[
σ

2
3 i±4

]
)

= Law

((
A

(s)
1 (r)

)
r∈I

(s)
1

,
(
A

(s)
1 (r)

)
r∈I

(s)
2

)
≤ e64cs

−2

Law

(((
F (s)

j (r) + s
1
3

(√
2TNj + faj

(rs−
2
3 )
))

r∈I
(s)
j

)2

j=1

)

≤ e64c Law

(((
F (s)

j (r) + 2Nj + s
1
3 faj

(rs−
2
3 )
)
r∈I

(s)
j

)2

j=1

)
.

Note that the condition |i| > 10σ− 2
3 is what ensures that a1 + 3T < a2 − 3T for all i. For the sake

of readability, we will first introduce the definitions of
(
Z, Z̃

)
and the new random vectors (G,Gi)

before using bounding the probabilities piε. For all i > 10σ− 2
3 we will define(

Z, Z̃
)

:=
(

2N1, 2σ− 1
3N2 + Ñ − 2σ− 1

3N1

)
(6.2.1)

and the independent random vector (G,Gi) by

(
G,Gi

)
:=

F (s)
1 (0) + f 1

10
(0) +

3x2

s
, sup
zσ− 2

3 ∈[i±1/2]

F̃ (σ)(z + ∆) + F (s)
2 (z) −F (s)

1 (0)

σ
1
3

+ gi(z)


(6.2.2)

where we define the deterministic function gi(z) for all such i as

gi(z) = gi(z;x, s,∆, σ)

:=
( s
σ

) 1
3

f
s−

2
3 σ

2
3 i

(
zs−

2
3

)
+ ℓ

i+∆σ− 2
3

(
(z + ∆σ− 2

3 )
)
−
( s
σ

) 1
3

f
s−

2
3 σ

1
3

(0) +
2xz + x2

sσ
1
3

. (6.2.3)

With these definitions in place, we then have that by elementary measure theory,

P

∣∣∣∣A(s)
1 (0) +

3x2

s
− h

∣∣∣∣ ≤ ε,
∣∣∣ sup
zσ− 2

3 ∈[i±1/2]

A
(s)
1 (z) + Ã

(σ)
1 (z + ∆) − A

(s)
1 (0) +

2xz + x2

sσ
1
3

∣∣∣ ≤ 2ε


≤ κ2

2P
((

Z + G
)
∈
[
h± ε

]
,
(
Z̃ + Gi

)
∈
[
0 ± 2εσ− 1

3

])
= κ2

2P
((

Z, Z̃
)

+
(
G,Gi

)
∈
[
h± ε

]
×
[
0 ± 2εσ− 2

3

])
where the constant κ2 := max{ec, e64c} = e64c. Before proceeding further, we take a moment to

observe that by the independence of the standard Gaussians N,N1, and N2, the bivariate Gaussian

random vector (Z, Z̃) is distributed as

(Z, Z̃) ∼ N (µ,Σ) := N

(
[0, 0]

T
,

[
4 −4σ− 1

3

−4σ− 1
3 4σ− 2

3 + 1

])
.
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Moreover, by observing that for all u ∈ R we always have that[
4 −4u

−4u 4u2 + 1

]−1

=
1

4

[
4u2 + 1 4u

4u 4

]
and det

([
4 −4u

−4u 4u2 + 1

])
= 4,

we can compute explicitly that the joint density f(Z,Z̃) is given for all (z, z̃) ∈ R2 by

f(Z,Z̃)(z, z̃) =
1

2π
√

det (Σ)
exp

(
−1

2

[
z z̃2

]
Σ−1

[
z

z̃

])

=
1

4π
exp

(
−1

8

[
z z̃

] [4σ− 2
3 + 1 4σ− 1

3

4σ− 1
3 4

][
z

z̃

])

=
1

4π
exp

(
−1

8

((
4σ− 2

3 + 1
)
z2 + 8σ− 1

3 zz̃ + 4z̃2
))

. (6.2.4)

Note that because Σ is positive semi-definite, we have by definition that

−1

8

((
4σ− 2

3 + 1
)
z2 + 8σ− 1

3 zz̃ + 4z̃2
)
≤ 0

for all (z, z̃) ∈ R × [0,∞), which ensures that the density is bounded above by a finite absolute

constant. In the work to come, this will mean that for any h2 ≥ 0, the law of the random vector

(Z, Z̃) conditioned on the event
{
Z̃ ≥ h2

}
will also have a bounded density. Moreover, this maximal

value will be a function of h2 which decays to −∞ as h2 → ∞.

As was the case in the first regime, by Lemma 5.2.1 we know that for all i ∈ Z with |i| > 10σ− 2
3 ,

there exists a density ρi with respect to the Lebesgue measure on R2, which has (x, s),∆, and σ as

parameters, such that we may write

P
(

(Z ′, Z) + (G,Gi) ∈
[
h± ε

]
×
[
0 ± 2εσ− 2

3

])
=

∫∫[
h±ε

]
×
[
0±2εσ− 2

3

] ρi(h1, h2)dh1dh2. (6.2.5)

From this point onward, our strategy will be to prove that there exists an absolute constant b′′ > 0

such that we have a uniform bound of the form∑
|i|>10σ− 2

3

ρi (h1, h2) < b′′. (6.2.6)
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Such a uniform bound would allow us to extend the chain of upper bounds (5.2.9) to get

P
(
L(0, 0;x, s) ∈ (h− ε, h + ε), L(0, 0; y, t) ∈ (h− ε, h + ε)

)
≤ P

(
L(0, 0;x, s) ∈ (h− ε, h + ε), |L(0, 0; y, t) − L(0, 0;x, s)| ≤ 2ε

)
≤
∑
i∈Z

P

Ax,s,h,ε ∩


∣∣∣∣∣∣ sup
zσ− 2

3 ∈[i± 1
2 ]

L(0, 0; z, s) + L̃(0, 0; z + ∆, σ) − L(0, 0; 0, s) +
2xz + x2

s

∣∣∣∣∣∣ ≤ 2ε




=
∑
i∈Z

P

∣∣∣∣A(s)
1 (0) +

3x2

s
− h

∣∣∣∣ ≤ ε,
∣∣∣ sup
zσ− 2

3 ∈[i± 1
2 ]

A
(s)
1 (z) + Ã

(σ)
1 (z + ∆) − A

(s)
1 (0) +

2xz + x2

s

∣∣∣ ≤ 2ε


≤ κ2

1

∑
|i|≤10σ− 2

3

P
((

N ′, Ñ
)

+
(
G,Gi

)
∈
[
h± ε

]
×
[
0 ± 2εσ− 1

3

])
+

∑
|i|>10σ− 2

3

pi,ε

= κ2
1

∑
|i|≤10σ− 2

3

∫∫[
h±ε

]
×
[
0±2εσ− 1

3

] ρi(h1, h2)dh1dh2 +
∑

|i|>10σ− 2
3

pi,ε

= κ2
1

∫∫[
h±ε

]
×
[
0±2εσ− 1

3

]
 ∑

|i|≤10σ− 2
3

ρi(h1, h2)

 dh1dh2 +
∑

|i|>10σ− 2
3

pi,ε

≤ κ2
1

∫∫[
h±ε

]
×
[
0±2εσ− 1

3

] (k′ + k′σ− 1
6 + k′σ− 1

3 |∆| 12
)
dh1dh2 +

∑
|i|>10σ− 2

3

pi,ε

= 8κ2
1ε

2
(
k′σ− 1

3 + k′σ− 1
2 + k′σ− 2

3 |∆| 12
)

+
∑

|i|>10σ− 2
3

pi,ε

≤ 8κ2
1ε

2
(
k′σ− 1

3 + k′σ− 1
2 + k′σ− 2

3 |∆| 12
)

+ κ2
2

∑
|i|>10σ− 2

3

P
((

Z, Z̃
)

+
(
G,Gi

)
∈
[
h± ε

]
×
[
0 ± 2εσ− 2

3

])

≤ 8κ2
1ε

2
(
k′σ− 1

3 + k′σ− 1
2 + k′σ− 2

3 |∆| 12
)

+ κ2
2

∑
|i|>10σ− 2

3

∫∫[
h±ε

]
×
[
0±2εσ− 2

3

] ρi(h1, h2)dh1dh2

≤ 8κ2
1ε

2
(
k′σ− 1

3 + k′σ− 1
2 + k′σ− 2

3 |∆| 12
)

+ κ2
2

∫∫[
h±ε

]
×
[
0±2εσ− 2

3

]
 ∑

|i|>10σ− 2
3

ρi(h1, h2)

 dh1dh2

≤ 8κ2
1ε

2
(
k′σ− 1

3 + k′σ− 1
2 + k′σ− 2

3 |∆| 12
)

+ κ2
2

∫∫[
h±ε

]
×
[
0±2εσ− 2

3

] b′′dh1dh2

= 8κ2
1ε

2
(
k′σ− 1

3 + k′σ− 1
2 + k′σ− 2

3 |∆| 12
)

+ 8κ2
2ε

2b′′

≤ κε2
(
k′σ− 1

3 + k′σ− 1
2 + k′σ− 2

3 |∆| 12
)

(6.2.7)

for some absolute multiplicative constant κ > 0. Upon proving the bound (6.2.6) we will have

completed our proof of the two-point bound (4.3.1).
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6.3 The Internal Structure of Gi for Large i

The first step towards building the bound (6.2.6) will be understanding the behaviour of the random

variable Gi. The decomposition of Gi will be more complex in the second regime than it was in the

first regime, due to the fact that we are replacing the old increment F (s)(z) − F (s)(0), which had

terms cancelling, with a new increment F (s)
2 (z) − F (s)

1 (0), which has no such cancellations. There

will be more random variables in our decomposition of Gi which will necessitate moderately more

work later on, but the same general ideas overall will still work in this new setting.

We begin by observing that by (6.1.5) we can decompose F (s)
1 (0) in law as

F (s)
1 (0)

d
= W1

(
−2(a1 − 3T )s

2
3

)
+ C1s

1
3 = W1

(
24 − 2σ

1
3

)
+ C1s

1
3 (6.3.1)

and similarly, since I
(s)
2 =

[
s

2
3 a2 ± s

2
3T
]

=
[
σ

2
3 i± 4

]
, we can write

(
F (s)

2 (z)
)
z∈

[
σ

2
3 i±4

] d
=
(
W2

(
2z − 2(a2 − 3T )s

2
3

)
+ A2zs

− 1
3 + C2s

1
3

)
z∈

[
σ

2
3 i±4

]
d
=
(
W2

(
2z − 2σ

2
3 i + 24

)
+ A2zs

− 1
3 + C2s

1
3

)
z∈

[
σ

2
3 i±4

]
.

(6.3.2)

These two decompositions in law mean that we may also write that

σ− 1
3

(
F (s)

2 (z) −F (s)
1 (0)

)
d
= σ− 1

3

(
W2

(
2z − 2σ

2
3 i + 24

)
−W1

(
24 − 2σ

1
3

)
+ A2zs

− 1
3 + C2s

1
3 − C1s

1
3

)
d
= σ− 1

3

(
N
(

0,
∣∣∣2z − 2σ

2
3 i− 2σ

1
3

∣∣∣)+ A2zs
− 1

3 + C2s
1
3 − C1s

1
3

)
using the fact that W1 and W2 are independent standard Brownian motions. Thus, by recalling

equation (6.2.2) we can decompose Hi more transparently as

Gi = sup
zσ− 2

3 ∈[i±1/2]

F̃ (σ)(z + ∆) + F (s)
2 (z) −F (s)

1 (0)

σ
1
3

+ gi(z)

d
= sup

zσ− 2
3 ∈[i±1/2]

F̃ (σ)(z + ∆) + N
(

0,
∣∣∣2z − 2σ

2
3 i− 2σ

1
3

∣∣∣)+ A2zs
− 1

3 + C2s
1
3 − C1s

1
3

σ
1
3

+ gi(z).

(6.3.3)

Note that similarly to our decomposition in law in the first regime, all five random variables in

the supremum above have known exponential tail bounds which are symmetric about 0 for all

z ∈
[
σ

2
3 i± 1

2σ
2
3

]
.

We now define a family of random variables {z∗i }|i|>10σ− 2
3

by setting for each such i

z∗i := arg max
z∈[i± 1

2 ]

(
F (s)

2 (zσ
2
3 ) −F (s)

1 (0) + F̃ (σ)(zσ
2
3 + ∆)

)
σ

1
3

+ gi

(
σ

2
3 z
)
.
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As before, if supremum above has more than one arg max, we will take z∗i to be the largest amongst

them, making the choice unique. Given this new version of z∗i , if we then define the random variables{
G∗

i

(
σ

2
3 z∗i

)}
|i|>10σ− 2

3
for all such i ∈ Z by

G∗
i

(
σ

2
3 z∗i

)
:=

F̃ (σ)(σ
2
3 z∗i + ∆) + N

(
0,
∣∣∣2σ 2

3 z∗i − 2σ
2
3 i− 2σ

1
3

∣∣∣)
σ

1
3

+
( s
σ

)− 1
3

A2z
∗
i +

( s
σ

) 1
3

(C2 − C1)

(6.3.4)

then we can say that for all i in the second regime that

Gi = sup
zσ− 2

3 ∈[i±1/2]

F̃ (σ)(z + ∆) + F (s)
2 (z) −F (s)

1 (0)

σ
1
3

+ gi(z)
d
= G∗

i

(
σ

2
3 z∗i

)
+ gi

(
σ

2
3 z∗i

)

where the random variable G∗
i

(
σ

2
3 z∗i

)
has symmetric upper and lower tail bounds about 0, and

gi

(
σ

2
3 z∗i

)
is a random parabola in the variable i. As we mentioned earlier, because G∗

i

(
σ

2
3 z∗i

)
now

contains five random variables instead of three, establishing its tail bounds will be slightly more

tedious than it was previously but it will be no more complex than that.

We will now turn our attention towards understanding the structure of the new random parabola

gi

(
σ

2
3 z∗i

)
. For the sake of simplicity, we will begin by understanding the deterministic parabola

gi

(
σ

2
3 i
)

before moving onto the general case where z∗i ̸= i. Recalling equations (5.2.5) and (6.1.10)

we have

ℓ
i+∆σ− 2

3

(
z + ∆

σ
2
3

)
= i2 − 2izσ− 2

3 − 2∆σ− 4
3 (z − ∆)

s
1
3 f

s−
2
3 σ

2
3 i

(
zs−

2
3

)
=

(
2σ

2
3 iz +

(
σ

4
3 i2 − 9(16)

))
s

= −σ
4
3 i2 + 2σ

2
3 iz − 144

s

s
1
3 f

s−
2
3 σ

1
3

(0) = −σ
2
3 − 144

s
.

Given this and the definition of gi(z) in (6.2.3), we then have that

gi(z) :=
( s
σ

) 1
3

f
s−

2
3 σ

2
3 i

(
zs−

2
3

)
+ ℓ

i+∆σ− 2
3

(
(z + ∆σ− 2

3 )
)
−
( s
σ

) 1
3

f
s−

2
3 1

10

(0) +
2xz + x2

sσ
1
3

=
(

1 − σ

s

)
i2 −

(
2zσ− 2

3 +
2σ

1
3 z

s

)
i +

(
2∆2σ− 4

3 − 2∆zσ− 4
3 +

2xz + x2

s
σ− 1

3 +
1

s
σ

1
3

)
.

As such, if we set z = σ
2
3 i in particular, this equation becomes

gi

(
σ

2
3 i
)

=
(

1 − σ

s

)
i2 −

(
2i +

2iσ

s

)
i +

(
2∆2σ− 4

3 − 2i∆σ− 2
3 +

2xσ
2
3 i + x2

s
σ− 1

3 +
1

s
σ

1
3

)

= −
(

1 +
3σ

s

)
i2 −

(
2∆σ− 2

3 − 2xσ
1
3

s

)
i +

(
2∆2σ− 4

3 +
x2

s
σ− 1

3 +
1

s
σ

1
3

)
. (6.3.5)
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We will again be more interested in the behaviour of h2 − gi

(
σ

2
3 i
)

specifically. For the sake of

completeness,

h2 − gi

(
σ

2
3 i
)

=

(
1 +

3σ

s

)
i2 +

(
2∆σ− 2

3 − 2xσ
1
3

s

)
i−
(

2∆2σ− 4
3 +

x2

s
σ− 1

3 +
1

s
σ

1
3 − h2

)
.

From this, we see that the general longterm behaviour of h2 − gi

(
σ

2
3 i
)

is more or less the same as

that of the parabolas in the first regime, so we will keep our analysis of this new parabola brief. The

main point of interest in this case is finding a positive integer K > 0 such that h2 − gi

(
σ

2
3 i
)
≥ 0

for all i ∈ Z with |i| ≥ Kσ− 2
3 . and |h2| ≤ 2ε0σ

− 1
3 . By observing that we can bound the magnitude

of the degree ≤ 1 terms by∣∣∣∣∣
(

2∆σ− 2
3 − 2xσ

1
3

s

)
i−
(

2∆2σ− 4
3 +

2x2

s
σ− 1

3 +
1

s
σ

1
3 − h2

)∣∣∣∣∣
≤

(∣∣∣2∆σ− 2
3

∣∣∣+

∣∣∣∣∣2xσ
1
3

s

∣∣∣∣∣
)
|i| +

∣∣∣2∆2σ− 4
3

∣∣∣+

∣∣∣∣x2

s
σ− 1

3

∣∣∣∣+

∣∣∣∣1sσ 1
3

∣∣∣∣+ |h2|

≤
(

2σ− 2
3 + 4

)
|i| + 2σ− 4

3 + 1

≤ 4σ− 2
3 |i| + 3σ− 4

3 + 5σ− 1
3 + 1

it suffices to guarantee that the weaker inequality

|i|2 − 4σ− 2
3 |i| − 3σ− 4

3 − 5σ− 1
3 − 1 ≥ 0

always holds for all |i| ≥ Kσ− 2
3 . This inequality holds whenever i lies outside the region in between

the zeros of the parabola. By the quadratic formula, the zeroes of this parabola will have a magnitude

of no more than

2σ− 2
3 +

1

2

√
4σ− 4

3 + 12σ− 4
3 + 20σ− 1

3 + 4 ≤ 2σ− 2
3 +

√
4σ− 4

3 + 5σ− 1
3 + 1

< 2σ− 2
3 +

√
10σ− 4

3

< 6σ− 2
3 .

Given this and the fact that our parabola opens upwards, we obtain a chain of implications

|i| > 10σ− 2
3 =⇒ |i|2 − 4σ− 2

3 |i| − 3σ− 4
3 − 5σ− 1

3 − 1 ≥ 0 =⇒ h2 − gi

(
σ

2
3 i
)
≥ 0.

Thus, because the second regime was defined by the requirement that |i| > 10σ− 2
3 , we have now veri-

fied that h2−gi

(
σ

2
3 i
)

is always non-negative in the second regime. The guaranteed non-negativity of

h2−gi

(
σ

2
3 i
)

for any h2 in our domain of integration will also be useful in the work to come. We also

take a moment to note that as was the case in the first regime, the constant term of h2− gi

(
σ

2
3 i
)

is

guaranteed to be negative by definition of ε0. This will again be extremely useful in the work to come.

We now consider the more general case with h2 − gi

(
σ

2
3 z∗i

)
. By once again writing z∗i = i + pi
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where pi is a random variable taking values in
[
− 1

2 ,
1
2

]
, we see that

h2 − gi

(
σ

2
3 z∗i

)
= h2 − gi

(
σ

2
3 (i + pi)

)
=

(
1 +

3σ

s

)
i2 +

(
2∆σ− 2

3 − 2xσ
1
3

s

)
i−
(

2∆2σ− 4
3 +

x2

s
σ− 1

3 +
1

s
σ

1
3 − h2

)
− ξi

= h2 − gi

(
σ

2
3 i
)
− ξi (6.3.6)

where we have defined the family of random fluctuations {ξi}|i|>10σ− 2
3

for each such i by

ξi := −2

(
∆σ− 2

3 +
(1 + σ)

s
i− xσ

1
3

s

)
pi. (6.3.7)

As was the case in the first regime, the random fluctuation ξi represents the uncertainty in the

parabola gi

(
σ

2
3 z∗i

)
stemming from the fact that the arg max z∗i is random. Once again, since we

will simply be adapting our previous work in the first regime to the natural analogues in the second

regime, there is no need at this time for any deeper analysis of ξi itself. In conclusion, we have

established the decomposition in law

Gi
d
= G∗

i

(
σ

2
3 z∗i

)
+ ξi + gi

(
σ

2
3 i
)

where gi

(
σ

2
3 i
)

is deterministic and the remaining two terms are random variables. Our goal in the

following work will once again be to leverage the strong tail bounds about 0 of G∗
i

(
σ

2
3 i
)

as much

as possible while minimizing the influence of ξi on our subsequent computations.

6.4 Density Bounds for ρi for Large i

With our newfound understanding of the random variables {Gi}|i|>10σ− 2
3

we are now ready to de-

velop density bounds on the family {ρi}|i|>10σ− 2
3

using Lemma 5.2.1.

Let the collection {φi}|i|>10σ− 2
3

be the densities of the random vectors

{(
Z, Z̃

)
+
(
G,G∗

i

(
σ

2
3 i
)

+ ξi

)}
|i|>10σ− 2

3

respectively so that we may write∫∫[
h±ε

]
×
[
0±2εσ− 2

3

] ρi(h1, h2)dh1dh2 =

∫∫[
h±ε

]
×
[
−gi

(
σ

2
3 i

)
±2εσ− 2

3

] φi(h1, h2)dh1dh2.

We will bound ρi(h1, h2) by first bounding φi(h1, h2) and then translating the second coordinate of

the latter by −gi

(
σ

2
3 i
)

. Lemma 5.2.1 ensures that φi has a bounded density because
(
Z ′, Z

)
is a

bivariate Gaussian. We will now find an explicit bound on each of these densities ρi.

By the definition of an absolutely continuous probability density function with respect to the
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Lebesgue measure, we can write for each i and all (h1, h2) ∈ R2 that

φi(h1, h2)

= P
(
Z ′ + G ∈ dh1, Z + G∗

i

(
σ

2
3 z∗i

)
+ ξi ∈ dh2

)
≤ P

(
Z ′ + G ∈ dh1, Z + G∗

i

(
σ

2
3 z∗i

)
+ ξi ∈ dh2

∣∣∣ Z ≥ h2

2

)
P
(
Z ≥ h2

2

)
+

P
(
Z ′ + G ∈ dh1, Z + G∗

i

(
σ

2
3 z∗i

)
+ ξi ∈ dh2

∣∣∣ G∗
i

(
σ

2
3 z∗i

)
+ ξi ≥

h2

2

)
P
(
G∗

i

(
σ

2
3 z∗i

)
+ ξi ≥

h2

2

)
.

(6.4.1)

Before proceeding further, we take a moment to review the distribution of a truncated bivariate

Gaussian random vector. This is slightly more complicated than it was in the first regime since(
Z, Z̃

)
does not have independent components like

(
N ′, Ñ

)
did, but the same general ideas will

still apply here as well.

By the definition of a truncated random vector in R2, we know that for any h2 ≥ 0, the condi-

tional law Law
((

Z, Z̃
)∣∣∣{Z̃ ≥ h2}

)
has a density given by

f(Z,Z̃)|{Z̃≥h2} =
1

P
(
Z̃ ≥ h2

)f(Z,Z̃)1{R×[h2,∞)}

with respect to the Lebesgue measure on R2. Using (6.2.4) we have that for all (z, z̃) ∈ R2,

f(Z,Z̃)|{Z̃≥h2}(z, z̃) =
1{z̃≥h2}

4πP
(
Z̃ ≥ h2

) exp

(
−1

8

((
4σ− 2

3 + 1
)
z2 + 8σ− 1

3 zz̃ + 4z̃2
))

The exponent above as a function of (z, z̃) has a single critical point at the origin and is clearly

unbounded below on the region R2 as ||(z, z̃)|| → ∞. From this, we can infer that the only extrema

of the conditional density above over the region R × [h2,∞) will be a global maximum along the

boundary curve z̃ = h2. Upon making the substitution z̃ = h2 and optimizing the resulting exponent

as a function of z, we see that the maximum occurs at the point

(z, z̃) =

(
−4σ− 1

3h2

8σ− 2
3 + h2

, h2

)
.

By evaluating the conditional density at this maximizer, we obtain the uniform bound on R×[h2,∞)

f(Z,Z̃)|{Z̃≥h2}(z, z̃) ≤ 1

4πP
(
Z̃ ≥ h2

) exp

(
− h2

2

8σ− 2
3 + 2

)
. (6.4.2)

With this established, we can now develop our upper bound on (6.4.1).

For convenience, we will again define for each δ > 0 and (h1, h2) ∈ R× [0,∞), the sets

Eh1,h2,δ := [h1, h1 + δ] × [h1, h2 + δ].
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By mimicking our work for the density bounds in the first regime, we can then say that

P
(
Z ′ + G ∈ dh1, Z̃ + G∗

i

(
σ

2
3 z∗i

)
+ ξi ∈ dh2

∣∣∣ Z̃ ≥ h2

2

)
= lim

δ→0+

1

δ2
P
(
Z ′ + G ∈ (h1, h1 + δ), Z̃ + G∗

i

(
σ

2
3 z∗i

)
+ ξi ∈ (h2, h2 + δ)

∣∣∣ Z̃ ≥ h2

2

)
= lim

δ→0+

1

δ2
Law

((
Z ′, Z̃

) ∣∣∣ {Z̃ ≥ h2

2

})
∗ Law

((
G,G∗

i

(
σ

2
3 z∗i

)
+ ξi

))(
Eh1,h2,δ

)
≤ lim

δ→0+

1

δ2

(∫ h1+δ

h1

∫ h2+δ

h2

∣∣∣∣∣∣f(Z,Z̃)|{Z̃≥h2
2 }(u, v)

∣∣∣∣∣∣
∞
dudv

)
(6.4.3)

≤ lim
δ→0+

1

δ2

∫ h1+δ

h1

∫ h2+δ

h2

1

4πP
(
Z̃ ≥ h2

) exp

(
−

(
h2

2

)2
8σ− 2

3 + 2

)
dudv


=

1

4πP
(
Z̃ ≥ h2

) exp

(
− h2

2

32σ− 2
3 + 8

)

where the inequality (6.4.3) follows from the fact that

Law

((
Z ′, Z̃

) ∣∣∣ {Z̃ ≥ h2

2

})
∗ Law

((
G,G∗

i (σ
2
3 z∗i ) + ξi

))
has a density uniformly bounded above by

∣∣∣∣∣∣f(Z,Z̃)|{Z̃≥h2}(u, v)
∣∣∣∣∣∣
∞

via Lemma 5.2.1. Moreover,

because we are assuming that |i| > 10σ− 2
3 and σ−1 ≥ 10 we can bound this even further as

P
(
Z ′ +G ∈ dh1, Z̃ +G∗

i

(
σ

2
3 z∗i

)
+ ξi ∈ dh2

∣∣∣ Z̃ ≥ h2/2
)
≤ 1

P
(
Z̃ ≥ h2

) exp

(
−1

4

(
h2

|i|

)2
)
. (6.4.4)

Similarly, with these same conventions we also obtain that

P
(
Z + G ∈ dh1, Z̃ + G∗

i (σ
2
3 z∗i ) + ξi ∈ dh2

∣∣∣ G∗
i

(
σ

2
3 z∗i

)
+ ξi ≥

h2

2

)
= lim

δ→0+

1

δ2
P
(
|Z + G− h1| ≤ δ,

∣∣∣Z̃ + G∗
i

(
σ

2
3 z∗i

)
+ ξi − h2

∣∣∣ ≤ δ
∣∣∣ {G∗

i

(
σ

2
3 z∗i

)
+ ξi ≥

h2

2

})
= lim

δ→0+

1

δ2
Law

((
Z, Z̃

)
+
(
G,G∗

i

(
σ

2
3 z∗i

)
+ ξi

) ∣∣∣ {G∗
i

(
σ

2
3 z∗i

)
+ ξi ≥

h2

2

})(
Eh1,h2,δ

)
= lim

δ→0+

1

δ2
Law

((
Z, Z̃

))
∗ Law

((
G,G∗

i

(
σ

2
3 z∗i

)
+ ξi

) ∣∣∣ {G∗
i

(
σ

2
3 z∗i

)
+ ξi ≥

h2

2

})(
Eh1,h2,δ

)
≤ lim

δ→0+

1

δ2

(∫ h1+δ

h1

∫ h2+δ

h2

∣∣∣∣∣∣f(Z,Z̃)(u, v)
∣∣∣∣∣∣
∞
dudv

)

≤ lim
δ→0+

1

δ2

(∫ h1+δ

h1

∫ h2+δ

h2

1dudv

)
= 1.
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By combining these observations with equation (6.4.1), we get the density bound

φi(h1, h2) = P
(
Z + G ∈ dh1, Z̃ + G∗

i

(
σ

2
3 z∗i

)
+ ξi ∈ dh2

)
≤ exp

(
−1

4

(
h2

|i|

)2
)

+ P
(
G∗

i

(
σ

2
3 z∗i

)
+ ξi ≥

h2

2

)
.

Using our previous observation that h2 − gi

(
σ

2
3 i
)

is always non-negative in the second regime, and

the definition of φi in terms of ρi, this implies that

ρi(h1, h2) = φi

(
h1, h2 − gi

(
σ

2
3 i
))

≤ exp

−1

4

h2 − gi

(
σ

2
3 i
)

|i|

2
+ P

G∗
i (σ

2
3 z∗i ) + ξi ≥

h2 − gi

(
σ

2
3 i
)

2

 .

Thus, we now have that for all (h1, h2) ∈ R×
[
0 ± 2εσ− 1

3

]
,

∑
|i|>10σ− 2

3

ρi(h1, h2)

≤
∑

|i|>10σ− 2
3

exp

−1

4

h2 − gi

(
σ

2
3 i
)

|i|

2
+

∑
|i|>10σ− 2

3

P

G∗
i

(
σ

2
3 z∗i

)
+ ξi ≥

h2 − gi

(
σ

2
3 i
)

2

 .

We will address the summability of the second tail series in the following two subsections. Proving

that the first series converges and is bounded by an absolute constant will again be a consequence

of Lemma 5.4.1. In particular, by recalling (6.3.5) we have that for all i in the second regime,

h2 − gi

(
σ

2
3 i
)

|i|
=

(
1 +

3σ

s

)
|i| +

(
2∆σ− 2

3 − 2xσ
1
3

s

)
sign(i) −

(
2∆2σ− 4

3 + x2

s σ− 1
3 + 1

sσ
1
3 − h2

)
|i|

≥ |i| +

(
2∆σ− 2

3 − 2xσ
1
3

s

)
sign(i) −

(
2∆2σ− 4

3 + x2

s σ− 1
3 + 1

sσ
1
3 − h2

)
|i|

=: |i| + β1 sign(i) +
β2

|i|
.

where we also recall that |i| + β1 sign(i) + β2

|i| is always nonnegative when |i| > 10σ− 2
3 . As was the

case in the first regime, based on our definition of the threshold ε0, we will always have that β2 ≤ 0.
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So by invoking Lemma 5.4.1 we see that

∑
|i|>10σ− 2

3

exp

−1

4

h2 − gi

(
σ

2
3 i
)

|i|

2


≤
∑

|i|>10σ− 2
3

exp

(
−1

4

(
|i| + β1 sign(i) +

β2

|i|

)2
)

≤
∑
i̸=0

exp

(
−1

4

(
|i| + β1 sign(i) +

β2

|i|

)2
)
1{|i|+β1 sign(i)+

β2
|i| ≥0}

≤ 2

1 − exp
(
− 1

4

) . (6.4.5)

We will now show that the remaining tail series has a similar geoemtric bound.

6.5 Managing the Fluctuation ξi for Large i

To build our density bound in the second regime, we will have to understand

P

G∗
i

(
σ

2
3 z∗i

)
+ ξi ≥

h2

2
−

gi

(
σ

2
3 i
)

2

 . (6.5.1)

As before, the problem will be ξi since the righthand side is guaranteed to always be positive in the

second regime. The trick is to bound ξi from above by something deterministic like last time. In

particular, because (x, s) ∈ [1, 2] ×
[
1, 11

10

]
and σ ∈

(
0, 1

10

)
, we have that

ξi = −2

(
∆σ− 2

3 +
(1 + σ)

s
i− xσ

1
3

s

)
pi ≤ |∆|σ− 2

3 +
(1 + σ)

s
|i| +

xσ
1
3

s
≤ |∆|σ− 2

3 + 2|i| + 2. (6.5.2)

This means that

P

G∗
i

(
σ

2
3 i
)

+ ξi ≥
h2

2
−

gi

(
σ

2
3 i
)

2

 ≤ P

G∗
i

(
σ

2
3 i
)
≥ h2

2
−

gi

(
σ

2
3 i
)

2
−
(
|∆|σ− 2

3 + 2|i| + 2
)

which we will have to bound trivially by 1 for all |i| > 10σ− 2
3 such that

h2 − gi

(
σ

2
3 i
)
≥ 0 and h2 − gi

(
σ

2
3 i
)
− 2

(
|∆|σ− 2

3 + 2|i| + 2
)
< 0. (6.5.3)

How many such bad integers i exist in the second regime?

As we explained earlier,

h2 − gi

(
σ

2
3 i
)

=

(
1 +

3σ

s

)
i2 +

(
2∆σ− 2

3 − 2xσ
1
3

s

)
i−
(

2∆2σ− 4
3 +

x2

s
σ− 1

3 +
1

s
σ

1
3 − h2

)
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so our system of inequalities can be written more explicitly as

(
1 +

3σ

s

)
i2 +

(
2∆σ− 2

3 − 2xσ
1
3

s

)
i−
(

2∆2σ− 4
3 +

x2

s
σ− 1

3 +
1

s
σ

1
3 − h2

)
≥ 0

and(
1 +

3σ

s

)
i2 +

(
2∆σ− 2

3 − 2xσ
1
3

s

)
i− 4|i| −

(
2∆2σ− 4

3 +
x2

s
σ− 1

3 +
1

s
σ

1
3 − h2 + 2|∆|σ− 2

3 + 4

)
< 0.

We will split this task into two cases again depending on sign(i). First consider i < −10σ− 2
3 . In this

case, all solutions to the system above will solve the weaker system of inequalities

(1 + 3σ) i2 +
(

2∆σ− 2
3 + 4

)
i−
(

2∆2σ− 4
3

)
≥ 0

and(
1 +

30σ

11

)
i2 +

(
2∆σ− 2

3 + 4
)
i−
(

2∆2σ− 4
3 + 2|∆|σ− 2

3 + 5σ− 1
3 + 5

)
< 0.

As before, consider the simplified system(
1 +

3

a

)
i2 +

(
2ba2 + 4

)
i−
(
2b2a4

)
≥ 0

and(
1 +

30

11a

)
i2 +

(
2ba2 + 4

)
i−
(
2b2a4 + 2|b|a2 + 5a + 5

)
< 0

where −1 ≤ b ≤ 1, a ≥ 2, and i < −10a2. Using Mathematica, this system has no integer solutions

i < −10a2. Hence neither does our actual system of inequalities. Intuitively, this is once again

because the second parabola opens upwards and both of its roots have magnitudes strictly smaller

than 10σ− 2
3 .

Now suppose that i > 10σ− 2
3 . In this case, all solutions of the original system of inequalities will

belong to the solution set of the weaker system

(1 + 3σ) i2 +
(

2∆σ− 2
3

)
i−
(

2∆2σ− 4
3

)
≥ 0

and(
1 +

30σ

11

)
i2 +

(
2∆σ− 2

3 − 12
)
i−
(

2∆2σ− 4
3 + 2|∆|σ− 2

3 + 5σ− 1
3 + 5

)
< 0.

We now pass to the analogous simplified system of inequalities

(
1 + 3a−1

)
i2 +

(
2ba2

)
i−
(
2b2a4

)
≥ 0

and(
1 +

30a−1

11

)
i2 +

(
2ba2 − 12

)
i−
(
2b2a4 + 2|b|a2 + 5a + 5

)
< 0
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where −1 ≤ b ≤ 1, a ≥ 2, and i > 10a2. Once again, using Mathematica we see that this system also

has no integer solutions i > 10a2. Hence neither does our actual system of inequalities. Given these

observations, we conclude that (6.5.3) never occurs when |i| > 10σ− 2
3 , and so it is always true that

h2 − gi

(
σ

2
3 i
)
− 2

(
|∆|σ− 2

3 + 2|i| + 2
)
≥ 0

in the second regime. This will allow us to use our yet-to-be derived upper tail bound of G∗
i

(
σ

2
3 z∗i

)
directly on the probability

P

G∗
i

(
σ

2
3 z∗i

)
≥

h2 − gi

(
σ

2
3 i
)

2
−
(
|∆|σ− 2

3 + 2|i| + 2
)

without having to throw away any initial indices i. We now construct this upper tail bound.

6.6 An Upper Tail Bound for G∗
i

(
σ

2
3z∗i

)
for Large i

The last step of our argument is to find upper tail bound for G∗
i

(
σ

2
3 z∗i

)
in second regime and to

prove that that tail bound is summable. We begin by letting m > 0 be arbitrary and considering

the probability

P
(
G∗

i

(
σ

2
3 z∗i

)
≥ 5m

)
.

Recalling (6.3.4), we have the decomposition in law

G∗
i

(
σ

2
3 z∗i

)
d
=

F̃ (σ)
(
σ

2
3 z∗i + ∆

)
+ N

(
0,
∣∣∣2σ 2

3 z∗i − 2σ
2
3 i− 2σ

1
3

∣∣∣)
σ

1
3

+
( s
σ

)− 1
3

A2z
∗
i +

( s
σ

) 1
3

(C2 − C1)

so we will define the collection of five random variables
{
G∗

i,j (z∗i )
}5
j=1

by

G∗
i,1 (z∗i ) := σ− 1

3 F̃ (σ)
(
σ

2
3 z∗i + ∆

)
G∗

i,2 (z∗i ) := σ− 1
3N

(
0,
∣∣∣2σ 2

3 z∗i − 2σ
2
3 i− 2σ

1
3

∣∣∣)
G∗

i,3 (z∗i ) := (sσ)
− 1

3 A2z
∗
i

G∗
i,4 (z∗i ) :=

( s
σ

) 1
3

C2

G∗
i,5 (z∗i ) := −

( s
σ

) 1
3

C1.

With these definitions, we can now write more compactly that

G∗
i

(
σ

2
3 z∗i

)
d
=

5∑
j=1

G∗
i,j (z∗i ) .
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Based on this equality in law, we can say now say that via a union bound,

P
(
G∗

i

(
σ

2
3 z∗i

)
≥ 5m

)
= P

 5∑
j=1

G∗
i,j (z∗i ) ≥ 5m

 ≤
5∑

j=1

P
(
G∗

i,j (z∗i ) ≥ m
)
. (6.6.1)

We will now establish exponential upper tail bounds for all five of the summands above. We start

with the simplest bound, which is when j = 1. Just as we observed in the first regime, by equation

(6.1.4), there are two absolute constants c1, c2 > 0 such that

P
(
G∗

i,1 (z∗i ) ≥ m
)

= P
(
σ− 1

3 F̃ (σ)
(
σ

2
3 z∗i + ∆

)
≥ m

)
≤ c1e

−c2m
3
2 .

The case when j = 2 is similarly simple to compute. Using the facts that |i| > 10σ− 2
3 , s ∈

[
1, 11

10

]
,

σ−1 ≥ 10, and that |z∗i − i| = |pi| ≤ 1
2 , we arrive at the chain of upper bounds

P
(
G∗

i,2 (z∗i ) ≥ m
)

= P
(
σ− 1

3N
(

0,
∣∣∣2σ 2

3 z∗i − 2σ
2
3 i− 2σ

1
3

∣∣∣) ≥ m
)

≤ P
(∣∣∣σ− 1

3N
(

0,
∣∣∣2σ 2

3 z∗i − 2σ
2
3 i− 2σ

1
3

∣∣∣)∣∣∣ ≥ m
)

≤ P

(
σ− 1

3

√∣∣∣2σ 2
3 (z∗i − i) − 2σ

1
3

∣∣∣ |N (0, 1))| ≥ m

)

≤ P
(
|i|
√
σ

2
3 + 2σ

1
3 |N (0, 1))| ≥ m

)
≤ P

(
2|i| |N (0, 1))| ≥ m

)
≤ 2 exp

(
−1

8

(
m

|i|

)2
)
.

We now consider the case when j = 3. Based on equation (6.1.6) and the domains of σ and s,

P
(
G∗

i,2 (z∗i ) ≥ m
)

= P
(( s

σ

)− 1
3

A2z
∗
i ≥ m

)
≤ P

(( s
σ

)− 1
3 |A2| |z∗i | ≥ m

)
≤ P

((
|i| +

1

2

)
|A2| ≥ m

)
≤ P

(
|A2| ≥

m

2|i|

)
≤ c1 exp

(
−c2

(
m

2|i|

) 3
2

)
.

For j = 4 and j = 5 we first recall that we have set a1 = s−
2
3σ

1
3 and a2 = s−

2
3σ

2
3 i. Using
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these once more in conjunction with (6.1.6) we have that

P
(
G∗

i,4 (z∗i ) ≥ m
)

= P
(( s

σ

) 1
3

C2 ≥ m

)
≤ P

(
2σ− 1

3 |C2| ≥ m
)

≤ c1 exp

−c2

(
mσ

1
3

2|a2|

) 3
2


= c1 exp

−c2

(
mσ

1
3

2s−
2
3σ

2
3 |i|

) 3
2


= c1 exp

(
−c2sσ

−1

(
m

2|i|

) 3
2

)

≤ c1 exp

(
−10c2

(
m

2|i|

) 3
2

)

and by the exact same reasoning with j = 5, our final upper tail bound

P
(
G∗

i,5 (z∗i ) ≥ m
)

= P
(
−
( s
σ

) 1
3

C1 ≥ m

)
≤ c1 exp

−c2

(
mσ

1
3

2|a1|

) 3
2

 ≤ c1 exp

(
−10c2

(m
2

) 3
2

)
.

By combining these five individual tail bounds with (6.6.1), we see that

P
(
G∗

i

(
σ

2
3 z∗i

)
≥ 5m

)
≤ c1e

−c2m
3
2 + 2e−

1
8 ( m

|i| )
2

+ c1e
− c2

4 ( m
|i| )

3
2

+ c1e
−10c2( m

2|i| )
3
2

+ c1e
−10c2(m

2 )
3
2

≤ c′1e
−c′2( m

|i| )
3
2

(6.6.2)

as m → ∞ for some absolute constants c′1, c
′
2 > 0. By specializing to the case where

5m =
h2 − gi

(
σ

2
3 i
)

2
−
(
|∆|σ− 2

3 + 2|i| + 2
)

we therefore have established the upper tail bound

P

G∗
i

(
σ

2
3 z∗i

)
≥

h2 − gi

(
σ

2
3 i
)

2
−
(
|∆|σ− 2

3 + 2|i| + 2
)

≤ c′1 exp

−c′2

h2 − gi

(
σ

2
3 i
)

10|i|
− |∆|σ− 2

3 + 2|i| + 2

5|i|


3
2


≤ c′1 exp

−10−
3
2 c′2

h2 − gi

(
σ

2
3 i
)
− 2

(
|∆|σ− 2

3 + 2|i| + 2
)

|i|


3
2
 .
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Given this, if we now set the constants β1, β2, β3 ∈ R to be

(β1, β2, β3) :=

(
2∆σ− 2

3 − 2x

s
σ

1
3 , −

(
2∆2σ− 4

3 + 2|∆|σ− 2
3 − x2

s
σ− 1

3 +
1

s
σ

1
3 − h2 + 4

)
, −4

)
then we may write that

h2 − gi

(
σ

2
3 i
)
− 2

(
|∆|σ− 2

3 + 2|i| + 2
)

|i|
= |i| + β1 sign(i) +

β2

|i|
+ β3

with β2 < 0. Thus by using the fact that |i| + β1 sign(i) + β2

|i| + β3 is non-negative whenever

|i| > 10σ− 2
3 , Lemma 5.4.1 yields that

∑
|i|>10σ− 2

3

P

G∗
i (σ

2
3 z∗i ) + ξi ≥

h2 − gi

(
σ

2
3 i
)

2


≤

∑
|i|>10σ− 2

3

P

G∗
i

(
σ

2
3 z∗i

)
≥

h2 − gi

(
σ

2
3 i
)

2
−
(
|∆|σ− 2

3 + 2|i| + 2
)

=
∑

|i|>10σ− 2
3

P

G∗
i

(
σ

2
3 z∗i

)
≥

h2 − gi

(
σ

2
3 i
)

2
−
(
|∆|σ− 2

3 + 2|i| + 2
)1{

h2−gi
(
σ

2
3 i

)
−2

(
∆σ− 2

3 +2|i|+2
)
≥0

}

≤
∑

|i|>10σ− 2
3

c′1 exp

(
−10−

3
2 c′2

(
|i| + β1 sign(i) +

β2

|i|
+ β3

) 3
2

)
1{|i|+β1 sign(i)+

β2
|i| +β3≥0}

<
2c′1

1 − exp
(

10−
3
2 c′2

) .
In conjunction with (6.4.5), setting b′′ =

2c′1

1−exp
(
10−

3
2 c′2

) + 2

1−exp(− 1
4 )

completes (6.2.7) and thus

establishes the original bound (4.3.1), completing our proof of the two-point bound on [1, 2]×
[
1, 11

10

]
.



Chapter 7

Further Ideas

Due to the amount of concessions and arbitrary decisions made throughout the course of chapters

5 and 6, it is likely that there is a large amount of room for further optimization. Some possible

optimizations and improvements for these chapters include but are not limited to:

• Change the rectangle [1, 2]×
[
1, 11

10

]
: Beyond satisfying the requirement that the coordinate

(x0, t0) of the bottom-left corner of the rectangle that we use in Theorem 4.3.1 has both

x0, t0 > 0, this choice was made purely for convenience. Even the imposition that the rectangle

have side lengths at most 1 is not strictly necessary; it would simply mean that there is possibly

more tedious work to sort through when developing the two-point bound. It is quite likely

that experimenting with the location and size of this rectangle will improve the lower bound

ph to some extent.

• Develop a sharper, piecewise two-point bound: As mentioned before, the choice to build

a global two-point bound was made because it was simpler but it also certainly quite far from

optimal. Using a global upper bound removes quite a bit of sharpness from the two-point

bound, which in turn leads to a larger second moment for the measures µh,ε in Chapter 4.

These larger second moments then shrink the probability ph. Optimizing this two-point bound

will almost certainly lead to a noticeably higher value of ph.

• Improve the lower bound on dimH(Zh) to 5
3 : Based on the Hölder continuity of the

directed landscape, it is expected that 5
3 is the Hausdorff dimension of all of its level sets. It

is highly unlikely he lower bound of 3
2 that we obtained in this thesis is the true Hausdorff

dimension of the h−level sets, and improving the sharpness of the two-point bound will likely

bridge this gap.

• Building a different mass distribution on Zh: As mentioned before, the measures µh,ε

who had a subsequential limit which was a mass distribution on Zh were chosen because

they are easy to understand intuitively. There is no inherent reason to believe that they are

the optimal choice for the directed landscape specifically. Replacing them with a different

sequence of random measures more finely attuned to the structure of L may lead to a better

mass distribution than the one we built in the general case.

• Find an alternative to the Paley-Zigmund inequality: The Paley-Zigmund inequality
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was our only means of verifying that the random measure µh was actually a mass distribution

on Zh with positive probability. The quality of the lower bound that we obtain from this

inequality places somewhat of a ceiling on the probability of our lower bound on the Hausdorff

dimension holding. Finding a way to upgrade this and alter Theorem 4.1.1 could prove very

fruitful, but this feels like somewhat of an unrealistic goal, at least in the general case, based

on the existing tools in the literature.

• Extend the argument to a three-point bound and beyond: It is my personal belief

that though it would likely be very cumbersome, these same techniques can also be used

to develop a rudimentary three-point bound for L and possibly even an n−point bound in

general. Dauvergne’s full version of Theorem 1.2.3 works for any finite collection of intervals

{[aj , aj + T0]}nj=1 instead of just a pair of intervals, and so Lemma 6.1.1 should extend to the

case of n disjoint segments of A1 fairly easily. Lemma 5.1.1 could likely still be used in much

the same way for a three-point bound argument and possibly an n−point bound argument.

This would likely require an n−fold sum and taking several suprema at once, though the exact

form that these details would take is also unclear to me. The key would be to impose the

condition that 0 < t1 < t2 < · · · < tn and observe that

P

(
n⋂

k=1

{
L(0, 0;xk, tk) ∈ (h− ε, h + ε)

})

≤ P

({
|L(0, 0;x1, t1) − h| < ε

}
∩

n−1⋂
k=1

{
|L(0, 0;xk+1, tk+1) − L(0, 0;xk, tk)| < (k + 1)ε

})
.

Similar techniques with the metric composition law and the independent temporal increments

of L would likely eventually work to bound this upper bound here too, although likely at the

expense of a daunting amount of tedium and regret.
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