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Abstract

This thesis addresses the problem of recovering the community structure in the stochastic block model with

two communities. The stochastic block model is a random graph model with planted clusters widely employed

as the canonical model to study clustering and community detection. The focus is on the fundamental limits

of community detection, quantified by the asymptotic mutual information between the observed network

and the actual community structure. This mutual information is studied using the Hamilton-Jacobi approach,

pioneered by Jean-Christophe Mourrat.

The first contribution of this thesis is a detailed description of the Hamilton-Jacobi approach, and its

application to computing the limit of the mutual information in the dense stochastic block model, where the

average degree of a node diverges with the total number of nodes. The main novelty is a well-posedness theory

for Hamilton-Jacobi equations on positive half-space that leverages the monotonicity of the non-linearity to

circumvent the imposition of an artificial boundary condition as previously done in the literature.

The second contribution of this thesis is a novel well-posedness theory for an infinite-dimensional Hamilton-

Jacobi equation posed on the set of non-negative measures and with a monotonic non-linearity. Such an

infinite-dimensional Hamilton-Jacobi equation appears naturally when applying the Hamilton-Jacobi approach

to the sparse stochastic block model, where the total number of nodes diverges while the average degree of

a node remains bounded. The solution to the infinite-dimensional Hamilton-Jacobi equation is defined as

the limit of the solutions to an approximating family of finite-dimensional Hamilton-Jacobi equations on

positive half-space. In the special setting of a convex non-linearity, a Hopf-Lax variational representation of

the solution is also established.

The third contribution of this thesis is a conjecture for the limit of the mutual information in the sparse

stochastic block model, and a proof that this conjectured limit provides a lower bound for the asymptotic

mutual information. In the case when links across communities are more likely than links within communities,

the asymptotic mutual information is known to be given by a variational formula. It is also shown that the

conjectured limit coincides with this formula in this case.
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Chapter 1

Introduction

This thesis is centred around the Hamilton-Jacobi approach pioneered by Jean-Christophe Mourrat [50, 83,
84, 85, 86, 87, 88] for studying the behaviour of mean-field systems with disordered interactions. This novel
technique is applied to the problem of recovering the community structure in the stochastic block model with
two communities. The focus is on the fundamental limits of community detection, analyzed through the lens
of the asymptotic mutual information between the observed network and the actual community structure. The
asymptotic value of the mutual information has been computed in the dense regime [11, 45, 68], where the
average degree of a node diverges with the total number of nodes, and in the sparse disassortative regime
[3, 38], where the average degree of a node remains bounded as the total number of nodes diverges and
where links across communities are more likely than links within communities. However, its determination
has proved more challenging in the assortative sparse regime, where the average degree of a node remains
bounded as the total number of nodes diverges and where links within communities are more likely than links
across communities. The main contributions of this thesis are a detailed and pedagogical description of the
Hamilton-Jacobi approach through its application to computing the limit of the mutual information in the
dense regime, a conjecture for the limit of the mutual information in the sparse regime, which is expressed
in terms of an infinite-dimensional Hamilton-Jacobi equation posed over a space of probability measures,
a well-posedness theory for infinite-dimensional Hamilton-Jacobi equations of this form, a proof that the
conjectured limit provides a lower bound for the asymptotic mutual information both in the assortative and
disassortative settings, and a proof that the conjectured limit coincides with the known variational formula in
the disassortative setting.

1.1 The community detection problem and the stochastic block model

The basic community detection problem consists in partitioning the vertices of a graph into clusters that are
more densely connected. A classical real-world example due to Adamic and Glance [6] consists in classifying
blogs about US politics into Democrat and Republican leaning by observing only which blog refers to which
other blog via a hyperlink. To abstract this problem, one can build a graph of interactions among the blogs,
connecting two blogs, or nodes of the graph, via an edge if there is a hyperlink between them — for simplicity,
the direction of the hyperlink can be ignored. The classification task then consists in colouring each node
blue or red depending on whether it is Democrat or Republican leaning. Intuitively, the graph of interactions
should carry meaningful information about the underlying community structure since hyperlinks are more

1



CHAPTER 1. INTRODUCTION 2

likely between blogs of the same political inclination. A graphical representation of the community detection
problem is provided in Figure 1.1.

Figure 1.1: The two figures display the same graph of interactions with 100 red nodes and 100 blue nodes, and
with each node having on average 10 links with nodes of the same colour and 1 link with a node of a different
colour (all edges are independent). On the left figure, the blue and the red nodes have been placed uniformly at
random over the entire area, and the colours have been concealed. On the right figure, the blue and the red
nodes have been classified by placing them randomly to the left and to the right of the area respectively. In the
community detection problem, the left figure is shown to the statistician, whose goal is to infer the colouring
of the nodes.

The stochastic block model is the simplest generative model for networks with a community structure.
It was first introduced in the machine learning and statistics literature [56, 63, 105, 106] but soon emerged
independently in a variety of other scientific disciplines. In the theoretical computer science community, it is
often termed the planted partition model [19, 21, 51] while the mathematics literature often refers to it as the
inhomogeneous random graph model [18]. Since its introduction, the stochastic block model has become a
test bed for clustering and community detection algorithms used in social networks [89], protein-to-protein
interaction networks [37], recommendation systems [71], medical prognosis [103], DNA folding [22], image
segmentation [102], and natural language processing [10] among others. In this thesis the focus is on the
stochastic block model with two communities now described.

Consider N individuals, each belonging to exactly one of two communities. The individuals are encoded
as elements of {1, . . . ,N}, and the community structure is represented using a vector

σ
∗ ∶= (σ∗1 , . . . ,σ∗N) ∈ ΣN ∶= {−1,+1}N . (1.1)

It is understood that individuals i and j belong to the same community if and only if σ
∗
i = σ

∗
j . The labels

(σ∗i )i⩽N are sampled independently from a Bernoulli distribution P1 with probability of success p ∈ (0,1) and
expectation m,

p ∶= P1{1} = P{σ i = 1} and m ∶=Eσ1 = 2p−1. (1.2)

The assignment vector σ
∗ is thus distributed according to the product law

σ
∗ ∼ P∗N ∶= (P∗)⊗N , (1.3)

and the expected sizes of the communities are N p and N(1− p). Using the assignment vector σ
∗, a random

undirected graph GN ∶= (Gi j)i, j⩽N with vertex set {1, . . . ,N} is constructed by stipulating that an edge between
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node i and node j is present with conditional probability

P{Gi j = 1 ∣ σ∗} ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

aN if σ
∗
i = σ

∗
j ,

bN if σ
∗
i ≠ σ

∗
j ,

(1.4)

for some aN ,bN ∈ (0,1), independently of all other edges. In other words, the probability that an edge is
present between node i and node j depends only on whether or not the individuals i and j belong to the same
community. To express (1.4) more succinctly, it is convenient to introduce the average and the gap of aN and
bN ,

cN ∶=
aN +bN

2
and ∆N ∶=

aN −bN

2
∈ (−cN ,cN), (1.5)

in such a way that
P{Gi j = 1 ∣ σ∗} = cN +∆Nσ

∗
i σ
∗
j . (1.6)

The data GN = (Gi j)i, j⩽N is said to be sampled from the stochastic block model, and the inference task is to
reconstruct the community structure σ

∗ as best as possible given the observation of the network of interactions
GN = (Gi j)i, j⩽N . When p = 1/2, the symmetry between the two communities makes it clear that σ

∗ can at
best be recovered up to a change of sign. In the case when ∆N ⩽ 0, it is more likely for an edge to be present
between nodes in different communities, and the model is called disassortative. When ∆N > 0 connections are
more likely between individuals in the same community, and the model is termed assortative.

In practice, real-world data can be fitted to the stochastic block model. The example of blogs about US
politics discussed above would be fitted to an assortative stochastic block model since hyperlinks are more
likely between blogs of the same political inclination. The information-theoretic results of this thesis can then
be used to determine whether the data is in a regime where the communities can be reliably recovered. This
has important algorithmic implications [5, 76, 100, 101]. It is worth noting that the results of this thesis do not
address the question of whether the stochastic block model is an adequate model for the data — they merely
provide insights on whether the data can be reliably classified assuming it is generated from this model. A
survey of community detection is [1].

1.2 Mutual information in the stochastic block model

Recently, the stochastic block model has attracted much renewed attention. On a practical level, it has, for
instance, seen extensions allowing for overlapping communities [7] that have proved to be a good fit for real
data sets in massive networks [60]. On a theoretical level, the predictions put forth in [44] using deep but
non-rigorous statistical physics arguments have been particularly stimulating. The theoretical study of the
stochastic block model has seen significant progress in two main directions: exact recovery and detection. The
exact recovery task aims to determine the regimes of aN and bN , or equivalently of cN and ∆N , for which there
exists an algorithm that completely recovers the two communities with high probability, up to a global change
of sign. A necessary condition for exact recovery is that the random graph GN be connected; this makes exact
recovery impossible in the sparse regime. The sharp threshold for exact recovery was obtained in [2, 80],
where it was shown that in the symmetric dense regime, p = 1/2, aN = a log(N)/N and bN = b log(N)/N, exact
recovery is possible, and efficiently so, if and only if

√
a−
√

b ≥ 2. On the other hand, the detection task is to
construct a partition of the graph GN that is positively correlated with the assignment vector σ

∗ with high
probability, possibly up to a global change of sign. The sharp threshold for detection in the sparse regime
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was obtained in [74, 78, 81], where it was shown that in the symmetric sparse regime, p = 1/2, aN = a/N and
bN = b/N, detection is solvable, and efficiently so, if and only if (a−b)2 > 2(a+b). Notice that detection is
much easier in the asymmetric case [23]. Indeed, the expected degree of node i conditional on its community
membership is given by

E[deg(i)∣σ∗i ] = (N −1)(cN +m∆Nσ
∗
i ), (1.7)

so meaningful information about the community structure is revealed from the degrees of nodes.
Despite this clear picture regarding the thresholds for exact recovery and detection in the setting of two

communities, several questions remain open. In this thesis, the focus is on the problem of quantifying exactly
how much information about the communities can be recovered by observing the graph GN . This is encoded
by the mutual information between the assignment vector σ

∗ and the random graph GN ,

I(GN ;σ
∗) ∶=E log

P(GN ,σ
∗)

P(GN)P(σ∗)
=E
ˆ
RN

log(
dPσ∗∣GN

dP∗N
(σ)) dPσ∗∣GN (σ). (1.8)

Here Pσ∗∣GN denotes the conditional law of σ
∗ given GN . The mutual information is intimately related to the

relative entropy, see Exercise 4.3 in [50], and it is a measure of the “amount of information” obtained about
the vector σ

∗ by observing GN . The asymptotic value of this mutual information has been computed in the
dense regime [11, 45, 68] and in the sparse disassortative regime [3, 38]. Its determination in the assortative
sparse regime has proved far more challenging. After the publication of the results of this thesis [49], this
problem was resolved in [107] in the symmetric case, p = 1/2, building upon the earlier works [4, 66, 79, 82].
The approach developed there does not generalize well to more complex models such as when more than two
communities are present [61]. In contrast, this thesis aims to propose a new approach to the analysis of the
community detection problem that would be robust to model modifications.

1.2.1 Mutual information in the dense stochastic block model

The dense stochastic block model refers to the stochastic block model in the regime where the average degree
of a node diverges with the number of nodes. In this thesis, this will be encoded by the following assumptions
on cN in (1.5) and on the quantity

λN ∶=
N∆

2
N

cN(1−cN)
. (1.9)

A1 The sequence (λN)N⩾1 converges to some value λ ≥ 0.

A2 The sequence (NcN(1−cN))N⩾1 diverges to infinity.

The second of these assumptions implies that the average degree of a node i is

Edeg(i) = (N −1)(cN +m∆N), (1.10)

and therefore diverges with N. In this dense setting, a universality property of the mutual information (1.8)
makes it possible to understand the information-theoretic properties of the stochastic block model by mapping
it to a symmetric rank-one matrix estimation problem. This symmetric rank-one matrix estimation problem
has been widely studied, with the most general results obtained in [36] by leveraging the Hamilton-Jacobi
approach. Alternative methods that so far have not reached the level of generality of [36] include [12, 13, 16,
46, 52, 68, 69]. To state these results, it will be convenient to fix a standard Gaussian random variable z and
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introduce the function ψ ∶R⩾0→R defined by

ψ(h) ∶=E log
ˆ

Σ1

exp(
√

2hσz+2hσσ
∗
1 −h) dP∗(σ). (1.11)

Mapping the results of [36] back to the dense stochastic block model gives the following variational formula
for the limit of the mutual information.

Theorem 1.1. Under assumptions (A1) and (A2), the limit of the mutual information (1.8) in the dense

stochastic block model admits the variational representation

lim
N→+∞

1
N

I(GN ;σ
∗) = λ

4
− sup

h≥0
(ψ(h)− h2

λ
). (1.12)

The main difference between the approach taken in this thesis to prove Theorem 1.1 and that proposed
in [36] is the solution theory for the Hamilton-Jacobi equation that will describe the limit of the mutual
information. Instead of imposing an artificial boundary condition, the results in [33] will be used to ignore the
boundary altogether and establish a robust well-posedness theory for Hamilton-Jacobi equations on positive
half-space. This well-posedness theory plays an important role in the analysis of the more interesting sparse
stochastic block model.

1.2.2 Mutual information in the sparse stochastic block model

The sparse stochastic block model refers to the stochastic block model in the regime where the average degree
of a node remains bounded as the number of nodes diverges. In this thesis, this will be encoded by the
assumption that cN and ∆N in (1.5) are given by

cN ∶=
c
N

and ∆N ∶=
∆

N
(1.13)

for some c > 0 and some non-zero ∆ ∈ (−c,c). The case ∆ = 0 is trivial since it corresponds to the case where
the graph GN and the assignment vector σ

∗ are independent. The probability (1.6) that an edge is present
between node i and node j becomes

P{Gi j = 1∣σ∗} =
c+∆σ

∗
i σ
∗
j

N
(1.14)

for the family of conditionally independent Bernoulli random variables GN = (Gi j)i, j⩽N . The expected degree
of any node i remains bounded with N,

Edeg(i) = N −1
N
(c+∆m2), (1.15)

so the stochastic block model is indeed in the sparse regime.
The limit of the mutual information (1.8) in the symmetric disassortative setting, ∆ ⩽ 0 and p = 1/2, was

first established in the seminal paper [38]. A more direct proof in the disassortative setting allowing for
arbitrary p ∈ (0,1) was then obtained in [14] using an interpolation argument and a cavity computation. To
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state this result concisely, denote by

Mp ∶= {µ ∈ Pr[−1,1] ∣
ˆ 1

−1
x dµ =m} (1.16)

the set of probability measures with mean m = 2p−1, and define the functional ψ ∶Mp→R by

ψ(µ) ∶= −c+ pE log
ˆ

Σ1

exp(−∆σm) ∏
x∈Π+(µ)

(c+∆σx) dP∗(σ)

+(1− p)E log
ˆ

Σ1

exp(−∆σm) ∏
x∈Π−(µ)

(c+∆σx) dP∗(σ), (1.17)

where Π±(µ) denotes the Poisson point process with mean measure (c±∆x) dµ(x) on [−1,1]. For the
definition and basic properties of a Poisson point process see Chapter 5 in [50]. The limit of the mutual
information may be expressed as a variational formula involving the functional P ∶Mp→R defined by

P(µ) ∶=ψ(µ)+ c
2
+ ∆m2

2
− 1

2
E(c+∆x1x2) log(c+∆x1x2), (1.18)

where x1 and x2 are independent samples from the probability measure µ .

Theorem 1.2. The limit of the mutual information (1.8) in the disassortative sparse stochastic block model

with ∆ ⩽ 0 admits the variational representation

lim
N→+∞

1
N

I(GN ;σ
∗) = 1

2
E(c+∆σ

∗
1 σ
∗
2 ) log(c+∆σ

∗
1 σ
∗
2 )−

c
2
− ∆m2

2
− sup

µ∈Mp

P(µ). (1.19)

The limit of the mutual information (1.8) in the assortative setting, ∆ > 0, has been explored in the recent
works [4, 61, 66, 79, 82, 107]. Noticing that the graph GN locally looks like a tree, these works aim to leverage
a connection between community detection and a process of broadcasting on trees. For convenience, the latter
problem will be briefly described on a regular tree. First, attribute a random ±1 variable σ

∗ to the root node.
Then, recursively and independently along each edge, “broadcast” it to each child node by flipping the sign
of the spin with some fixed probability δ ∈ (0,1). A basic question is to determine the mutual information
between the spin σ

∗ attributed to the root node and the spins on all the nodes at a given depth, in the limit of
large depth. A fruitful variant of this question consists of adding a “survey” of all nodes by randomly revealing
the spins attached to each node independently with some fixed probability ε . If, in the limit of large depth,
the knowledge of the spins on all the leaf vertices does not bring meaningful additional information on σ

∗

on top of surveying compared with surveying alone, then one can relate the mutual information between σ
∗

and the survey to the mutual information in the community detection problem; in this case, one may speak of
“boundary irrelevance”. To decide whether boundary irrelevance holds, one can study the evolution of the
log-likelihood ratio between the two hypotheses σ

∗ = ±1 upon revealing the boundary information at a given
depth. One can calculate the law of this quantity recursively as the depth varies by iterating a fixed map called
the “BP operator”. The property of boundary irrelevance essentially corresponds to this BP operator admitting
a unique non-trivial fixed point. Building upon earlier works, it was recently established in [107] that this
uniqueness property holds in the setting of two balanced communities, p = 1/2. As a byproduct, this yields
a full identification of the limit mutual information (1.8) in this case. The uniqueness of a non-trivial fixed
point to the BP operator has subsequently been shown to be false in general for models with more than two
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communities [61]. This means that the approach developed in these recent works does not generalize well to
more complex models. In contrast, the Hamilton-Jacobi approach proposed in this thesis is designed to be
robust to model modifications. The connections between the results of this thesis and the series of works just
discussed will be explored in Section 6.5.

1.3 Main contributions of this thesis

This thesis is based on two papers [48, 49] and a book [50] published by the author and Jean-Christophe
Mourrat. The paper [49] was published in the Annals of Probability, and it is an analysis of the sparse
stochastic block model using the Hamilton-Jacobi approach. The companion paper [48] is in the late review
stages in the SIAM Journal on Mathematical Analysis (SIMA), and it develops the well-posedness theory
for infinite-dimensional Hamilton-Jacobi equations required to apply the Hamilton-Jacobi approach to the
sparse stochastic block model. The book [50] will be published by the European Mathematical Association,
and it is an introductory text on the Hamilton-Jacobi approach for studying the behaviour of mean-field
systems with disordered interactions. During his doctoral studies, the author also published a paper on the
`p-Gaussian-Grothendieck problem with vector spins [47] in the Electronic Journal of Probability, and two
papers on mathematical finance [96, 97], but chose not to include their contents in this thesis.

To state the main contributions of this thesis concisely, it will be convenient to introduce additional notation.
For the main result on the dense stochastic block model, introduce the non-linearity H(p) ∶= p21{p ⩾ 0} and
its associated finite-dimensional Hamilton-Jacobi equation,

∂t f (t,h)−H(∂h f (t,h)) = 0 on R>0×R>0. (1.20)

For the results on the sparse stochastic block model, denote byM+ the cone of finite positive measures on
[−1,1],

M+ ∶= {µ ∣ µ is a finite non-negative measure on [−1,1]}, (1.21)

and let g ∶ [−1,1]→R be the function defined by

g(z) ∶= (c+∆z)( log(c+∆z)−1) = (c+∆z) log(c)+c∑
n⩾2

(−∆/c)n
n(n−1) zn−c. (1.22)

Introduce the cone of functions

C∞ ∶= {Gµ ∶ [−1,1]→R ∣Gµ(x) ∶=
ˆ 1

−1
g(xy) dµ(y) for some µ ∈M+}, (1.23)

and the non-linearity C∞ ∶ C∞→R defined on this cone by

C∞(Gµ) ∶=
1
2

ˆ 1

−1
Gµ(x) dµ(x). (1.24)

This non-linearity is well-defined by the Fubini-Tonelli theorem (see equations (3.71) - (3.72)). The equation
of interest in the sparse stochastic block model will be the infinite-dimensional Hamilton-Jacobi equation

∂t f (t,µ) = C∞(Dµ f (t,µ)) on R>0×M+, (1.25)
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where Dµ f (t,µ) denotes the Gateaux derivative density of the function f (t, ⋅) (see equations (4.4)- (4.5)).
The initial condition associated with this Hamilton-Jacobi will be the functional ψ ∶M+→R defined by

ψ(µ) ∶= −µ[−1,1]c+ pE log
ˆ

Σ1

exp(−µ[−1,1]∆σEx1) ∏
x∈Π+(µ)

(c+∆σx) dP∗(σ)

+(1− p)E log
ˆ

Σ1

exp(−µ[−1,1]∆σEx1) ∏
x∈Π−(µ)

(c+∆σx) dP∗(σ), (1.26)

where Π±(µ) denotes the Poisson point process with mean measure (c±∆x) dµ(x) on [−1,1] and x1 is
sampled from the probability measure µ ∶= µ

µ[−1,1] . Notice that this initial condition is an extension of the
functional (1.17). The six main contributions of the works [48, 49, 50] discussed in this thesis are the following.

(i) A detailed and pedagogical description of the Hamilton-Jacobi approach through its application to proving
Theorem 1.1 on the limit of the mutual information in the dense stochastic block model. This is the
content of Chapter 2, and its main result is the following.

Theorem 1.3. Assuming (A1) and (A2), if f denotes the unique viscosity solution to the Hamilton-Jacobi

equation (1.20) subject to the initial condition (1.11), then the asymptotic value of the mutual information

(1.8) is

lim
N→+∞

1
N

I(GN ;σ
∗) = λ

4
− f(λ

4
,0) = λ

4
− sup

h≥0
(ψ(h)− h2

λ
). (1.27)

(ii) A conjecture for the limit of the mutual information both in the disassortative and assortative regimes.
This conjecture is derived in Chapter 3 and expressed in terms of the infinite-dimensional Hamilton-Jacobi
equation (1.25). It reads as follows.

Conjecture 1.4. If f denotes the unique viscosity solution to the infinite-dimensional Hamilton-Jacobi

equation (1.25) subject to the initial condition (1.26), then the asymptotic value of the mutual information

(1.8) is

lim
N→+∞

1
N

I(GN ;σ
∗) = 1

2
E(c+∆σ

∗
1 σ
∗
2 ) log(c+∆σ

∗
1 σ
∗
2 )−

c
2
− ∆m2

2
− f (1,0). (1.28)

(iii) A well-posedness theory for infinite-dimensional Hamilton-Jacobi equations of this form. This is the
content of Chapter 4, and it leads to the following well-posedness result.

Theorem 1.5. The limit (6.10) exists, is finite, and is independent of the parameters R and b. This limit

is defined to be the solution to the infinite-dimensional Hamilton-Jacobi equation (1.25). Moreover, if

the non-linearity in the infinite-dimensional Hamilton-Jacobi equation (1.25) is convex in the sense of

(H5), then the solution to this equation at the point (t,µ) ∈R⩾0×M+ admits the Hopf-Lax variational

representation

f (t,µ) = sup
ν∈Pr[−1,1]

(ψ(µ + tν)− t
2

ˆ 1

−1
Gν(y) dν(y)). (1.29)

(iv) A finitary version of the main multioverlap result in [15]. This is the content of Chapter 5, and the main
results are Propositions 5.2 and 5.4.

(v) A proof that the conjectured limit provides a lower bound for the asymptotic mutual information in
both the disassortative and assortative regimes. This is the first main result of Chapter 6, and it reads as
follows.
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Theorem 1.6. If f denotes the unique viscosity solution to the infinite-dimensional Hamilton-Jacobi

equation (1.25) subject to the initial condition (1.26), then the asymptotic value of the mutual information

(1.8) in the sparse stochastic block model satisfies the lower bound

liminf
N→+∞

1
N

I(GN ;σ
∗) ⩾ 1

2
E(c+∆σ

∗
1 σ
∗
2 ) log(c+∆σ

∗
1 σ
∗
2 )−

c
2
− ∆m2

2
− f (1,0). (1.30)

(vi) A proof that in the disassortative regime, ∆ ⩽ 0, the conjectured limit coincides with the variational
formula in Theorem 1.2. This is the second main result of Chapter 6, and it reads as follows.

Theorem 1.7. If f denotes the unique viscosity solution to the infinite-dimensional Hamilton-Jacobi

equation (1.25) subject to the initial condition (1.26), then the asymptotic value of the mutual information

(1.8) in the disassortative sparse stochastic block model admits the Hamilton-Jacobi representation

lim
N→+∞

1
N

I(GN ;σ
∗) = 1

2
E(c+∆σ

∗
1 σ
∗
2 ) log(c+∆σ

∗
1 σ
∗
2 )−

c
2
− ∆m2

2
− f (1,0). (1.31)

Moreover, the function f at the point (1,0) ∈R⩾0×M+ admits the variational representation

f (1,0) = sup
µ∈Mp

P(µ), (1.32)

where P ∶Mp→R denotes the functional defined in (1.18).

These results are obtained by leveraging the Hamilton-Jacobi approach developed by Jean-Christophe
Mourrat [83, 84, 85, 86, 87, 88], and formalized in the book [50] by the author and Jean-Christophe Mourrat.
The observation underlying the Hamilton-Jacobi approach is that, up to an additive constant that can be
computed explicitly, the mutual information (1.8) can be interpreted as the free energy of a statistical physics
system which, when appropriately enriched, satisfies a Hamilton-Jacobi equation up to an error term that
vanishes in the limit of large system size. This leads to the conjecture that, up to an additive constant, the
asymptotic mutual information is the unique solution to a Hamilton-Jacobi equation. In the presence of
convexity, the Hopf or Hopf-Lax formulas can be used to represent this solution variationally, and therefore
obtain variational formulas such as (1.27) or (1.32) for the asymptotic mutual information.

To render the Hamilton-Jacobi approach rigorous, a well-posedness theory for the Hamilton-Jacobi
equation must be developed, and the error term associated with the mutual information must be carefully
analyzed and controlled. The inability to prove the matching lower bound in Conjecture 1.4 stems from the
relatively weak control of this error term. In particular, it is not expected that this error becomes small as
N tends to infinity for each individual choice of the equation’s parameters. On the other hand, controlling
the error after performing a small averaging over the parameters is possible, but does not suffice for the
identification of the limit. As will be shown in the context of the dense stochastic block model, this obstacle
can be circumvented under modest convexity assumptions through a convenient “selection principle” which
allows the identification of the unique solution to a Hamilton-Jacobi equation. Unfortunately, in the context of
the sparse stochastic block model, these convexity conditions do not hold [67] so the matching lower bound in
Conjecture 1.4 cannot be obtained by appropriately modifying known techniques. Nonetheless, the result in
Theorem 1.7 gives some support in favour of Conjecture 1.4 by showing that, in the disassortative regime,
it matches the variational formula obtained in [38] and stated in Theorem 1.2. This lack of convexity also
implies that no variational formula is to be expected for the assortative sparse stochastic block model.
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The results of this thesis generalize immediately to the case in which the measure P∗ is arbitrary with
compact support. It is also believed by the author that they generalize without much change to settings with
more than two communities, although not every technical detail has been verified.

1.4 Organization of this thesis

This thesis is organized as follows.
In Chapter 2, the Hamilton-Jacobi approach is described, and it is applied to analyze the dense stochastic

block model and prove Theorem 1.3. A universality property of the mutual information in the dense regime
is leveraged to map the dense stochastic block model to a symmetric rank-one matrix estimation problem.
The arguments in [36] are then used to analyze this matrix estimation problem via the Hamilton-Jacobi
approach. This chapter draws heavily on Chapters 3 and 4 in [50]. The main novelty relative to [36, 50] is
a well-posedness theory for Hamilton-Jacobi equations on positive half-space. This allows consideration of
the Hamilton-Jacobi equation appearing in the symmetric rank-one matrix estimation problem directly on its
natural domain as opposed to appealing to a symmetrization trick as in [50] or imposing an artificial boundary
condition as in [36].

In Chapter 3, the first steps required to apply the Hamilton-Jacobi approach to the sparse stochastic block
model are taken, and an appropriately translated enrichment of the mutual information is formally shown to
satisfy the infinite-dimensional Hamilton-Jacobi equation (1.25) provided that all multioverlaps concentrate in
the limit of large system size. This chapter is taken from Section 2 in [49], and it leads to Conjecture 1.4.

In Chapter 4, the techniques used to establish the well-posedness of Hamilton-Jacobi equations on positive
half-space are refined to obtain the well-posedness of infinite-dimensional Hamilton-Jacobi equations posed
on the set of non-negative measures and with a monotonic non-linearity. The strategy is to introduce an
approximating family of finite-dimensional Hamilton-Jacobi equations and to use the monotonicity of the
non-linearity to show that, just like in Chapter 2, no boundary condition needs to be prescribed to establish
well-posedness. The solution to the infinite-dimensional Hamilton-Jacobi equation is then defined as the limit
of these approximating solutions. In the special setting of a convex non-linearity, a Hopf-Lax variational
representation of the solution is also established. This chapter is taken from [48], and it leads to Theorem 1.5.

In Chapter 5 a finitary version of the main result in [15] regarding the concentration of multioverlaps is
established. In addition to being finitary, the most notable difference between this multioverlap result and that
in [15] is that multioverlap concentration is shown for any perturbation parameter satisfying a condition that
may be verified in practice, as opposed to on average over the set of perturbation parameters. This additional
control is essential in the proof of Theorem 1.6. This chapter is taken from Appendix C in [49].

Finally, in Chapter 6, Theorems 1.6 and 1.7 are established using the Hamilton-Jacobi approach. Combining
ideas from the theory of viscosity solutions with the finitary multioverlap concentration result in Chapter 5,
one inequality between the limit mutual information and the translated solution to the infinite-dimensional
Hamilton-Jacobi equation (1.25) is proved both in the assortative and disassortative regimes. An interpolation
argument taken from [14] and the Hopf-Lax variational formula (1.29) are then used to establish the converse
inequality as well as the variational representation (1.32) in the disassortative regime. Although the converse
bound is also expected to be valid in the assortative regime, significant technical challenges stand in the way
of proving it at the moment. This chapter is taken from [49].

To not disrupt the flow but provide as self-contained a presentation as possible, several basic results in
analysis and probability used throughout the thesis are given in Appendix A.



Chapter 2

The dense stochastic block model

In this chapter, the Hamilton-Jacobi approach is introduced and used to compute the limit of the mutual
information in the dense stochastic block model. The Hamilton-Jacobi approach was developed by Jean-
Christophe Mourrat in the context of statistical mechanics to study the behaviour of mean-field systems with
disordered interactions through the lens of the free energy [50, 83, 84, 85, 86, 87, 88]. The key insight
underlying the Hamilton-Jacobi approach is that the mutual information in a statistical inference problem
such as the dense stochastic block model can be identified with the free energy in a statistical mechanics
problem up to an explicit additive constant and that this finite-volume free energy can be shown to satisfy a
Hamilton-Jacobi equation up to an error term that vanishes in the limit of large system size. In Section 2.1, the
problem of computing the limit of the mutual information in the dense stochastic block model is reformulated
using the language of statistical mechanics by introducing a relevant Gibbs measure and free energy. In Section
2.2, the symmetric rank-one matrix estimation problem [12, 13, 16, 36, 46, 52, 68, 69] is described, and a
universality property of the free energy is used to relate it to the dense stochastic block model. In Section 2.3,
the Gaussian integration by parts formula is leveraged to derive a Hamilton-Jacobi equation posed on positive
half-space for an “enrichment” of the free energy in the symmetric rank-one matrix estimation problem. The
well-posedness of this Hamilton-Jacobi equation is established in Section 2.4, where the arguments in [33] are
used to ignore the boundary of the domain. This is possible because the non-linearity in the Hamilton-Jacobi
equation “points in the right direction”. With this well-posedness theory at hand, the Hamilton-Jacobi equation
for the symmetric rank-one matrix estimation problem is revisited in Section 2.5, and it is shown that the limit
of the enriched free energy is its unique solution. The Hopf-Lax variational formula then yields a variational
representation for the limit free energy in the symmetric rank-one matrix estimation problem which can be
combined with the results in Sections 2.2 and 2.3 to establish Theorem 1.3. Unfortunately, for more general
models such as those studied in [36], the supersolution criterion for the Hamilton-Jacobi equation cannot be
verified directly. To ensure the generalizability of the Hamilton-Jacobi approach described in this chapter,
in Section 2.6, a selection principle for Hamilton-Jacobi equations is developed. This selection principle
ensures that a convex function that satisfies a Hamilton-Jacobi equation on a dense set must satisfy the equation
everywhere, and it is applied in Section 2.7 to provide an alternative proof of Theorem 1.3. The contents of
this chapter rely heavily on Chapters 3 and 4 in [50] which are in turn based on [36].

11
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2.1 From statistical inference to statistical mechanics

The community detection problem associated with the dense stochastic block model consists in recovering the
assignment vector

σ
∗ ∶= (σ1, . . . ,σN) ∈ ΣN ∶= {−1,+1}N (2.1)

given the random undirected graph GN ∶= (Gi j)i, j⩽N with vertex set {1, . . . ,N} constructed by stipulating that
an edge between node i and node j is present with conditional probability

P{Gi j = 1 ∣ σ∗} = cN +σ
∗
i σ
∗
j ∆N (2.2)

for some cN and ∆N satisfying assumptions (A1) and (A2). Recall that the labels σ
∗
i ∼ P∗ are taken to be i.i.d.

Bernoulli random variables with probability of success p ∈ (0,1) and expectation m,

p ∶= P∗(1) = P{σ∗i = 1} and m ∶=Eσ
∗
1 = 2p−1. (2.3)

This means that the assignment vector σ
∗ follows a product distribution,

σ
∗ ∼ P∗N ∶= (P∗)⊗N . (2.4)

To understand the mutual information

I(GN ;σ
∗) ∶=E log

P(GN ,σ
∗)

P(GN)P(σ∗)
=E
ˆ
RN

log(
dPσ∗∣GN

dP∗N
(σ)) dPσ∗∣GN (σ) (2.5)

between the assignment vector σ
∗ and the graph GN , it will be useful to get a better grasp on the conditional

law Pσ∗∣GN of the assignment vector σ
∗ given the graph GN . Observing that

P{GN = (Gi j) ∣ σ∗ = σ} =∏
i< j
(cN +∆Nσ

∗
i σ
∗
j )Gi j(1−cN −∆Nσ

∗
i σ
∗
j )1−Gi j , (2.6)

Bayes’ formula can be used to obtain the law of the assignment vector σ
∗ conditionally on the observation of

GN . It can be written in the form of a Gibbs measure,

P{σ∗ = σ ∣GN = (Gi j)} =
expHSBM

N (σ)P∗N (σ)´
ΣN

expHSBM
N (τ) dP∗N (τ)

, (2.7)

for the Hamiltonian

HSBM
N (σ) ∶=∑

i< j
log[(1+ ∆N

cN
σiσ j)

Gi j

(1− ∆N

1−cN
σiσ j)

1−Gi j

]. (2.8)

Denoting its associated average free energy by

F
SBM
N ∶= 1

N
E log

ˆ
ΣN

expHSBM
N (σ) dP∗N (σ), (2.9)

in the limit of large N, this average free energy coincides with the mutual information (2.5) up to an explicit
additive constant.
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Proposition 2.1. Under assumptions (A1) and (A2), the limits of the average free energy (2.9) and of the

mutual information (2.5) differ by an additive constant,

1
N

I(GN ;σ
∗) = λ

4
−F

SBM
N +o(1). (2.10)

Proof. The explicit form of the likelihood in (2.6) and the definition of the Hamiltonian in (2.8) imply that

1
N

I(GN ;σ
∗) = 1

N
EHSBM

N (σ∗)−F
SBM
N . (2.11)

Since the coordinates of the assignment vector σ
∗ are i.i.d., the first term simplifies to

1
N
EHSBM

N (σ∗) = 1
N
⋅(N

2
) ⋅[EG12 log(1+ ∆N

cN
σ
∗
1 σ
∗
2 )+E(1−G12) log(1− ∆N

1−cN
σ
∗
1 σ
∗
2 )].

Averaging with respect to the randomness of G12 conditionally on the randomness of the assignment vector
σ
∗ reveals that this is equal to

N −1
2
[cNE(1+

∆N

cN
σ
∗
1 σ
∗
2 ) log(1+ ∆N

cN
σ
∗
1 σ
∗
2 )+(1−cN)E(1−

∆N

1−cN
σ
∗
1 σ
∗
2 ) log(1− ∆N

1−cN
σ
∗
1 σ
∗
2 )].

Taylor expanding the logarithm shows that

1
N
EHSBM

N (σ∗) = N −1
4
⋅[ ∆

2
N

cN(1−cN)
+O(∆

3
N

c2
N
+ ∆

3
N

(1−cN)2
)].

Recalling the definition of the constant λN in (1.9), observing that cN ∈ (0,1), and remembering (2.11) gives

1
N

I(GN ;σ
∗) = N −1

N
⋅ λN

4
−F

SBM
N +O(N −1

N
⋅

λ
3/2
N√

NcN(1−cN)
).

Invoking assumptions (A1) and (A2) completes the proof. ∎

This result reduces the task of understanding the limit of the mutual information (2.5), an information-
theoretic quantity, to computing the limit of the free energy (2.9), a statistical mechanics quantity. The limit of
this free energy will be determined indirectly by leveraging a universality property that allows one to map the
free energy in the dense stochastic block model to that in the symmetric rank-one matrix estimation problem.
The limit of the free energy in the symmetric rank-one matrix estimation problem can be computed using the
Hamilton-Jacobi approach.

2.2 A symmetric rank-one matrix estimation problem

The problem of symmetric rank-one matrix estimation consists of recovering the symmetric rank-one matrix
generated by a vector

x ∶= (x1, . . . ,xN) ∈RN (2.12)
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of independent entries sampled from a bounded probability measure P1 on the real line, given its noisy
observation

Y ∶=
√

2t
N

xx⊺+W ∈RN×N . (2.13)

The noise matrix W ∶= (Wi j)1⩽i, j⩽N ∈ RN×N is made of independent standard Gaussian random variables
independent of the vector x, and the parameter t ≥ 0 is called the signal-to-noise ratio. The vector x follows a
product distribution,

PN ∶= (P1)⊗N . (2.14)

As in the dense stochastic block model, it will be useful to determine the conditional law of the signal x given
the observation Y . For every x ∈RN and y ∈RN×N , a formal computation reveals that

P{x = x ∣Y = y} = P{x = x and Y = y}
P{Y = y} =

exp(− 1
2 ∣y−

√
2t
N xx⊺∣2) dPN(x)

´
RN exp(− 1

2 ∣y−
√

2t
N x′x′⊺∣2) dPN(x′)

, (2.15)

where, for any two matrices a,b ∈Rd×d ,

a ⋅b ∶= tr(ab⊺) =
d

∑
i=1

aibi and ∣a∣ ∶= (a ⋅a) 1
2 = (

d

∑
i=1
∣ai∣2)

1
2

(2.16)

denote the entry-wise scalar product and the Euclidean norm, respectively. More precisely, introducing the
Hamiltonian

H○N(t,x) ∶=
√

2t
N

x ⋅Y x− t
N
∣x∣4 =

√
2t
N

x ⋅Wx+ 2t
N
(x ⋅x)2− t

N
∣x∣4, (2.17)

for every bounded measurable function f ∶RN →R,

E[ f (x) ∣Y ] =
´
RN f (x)expH○N(t,x) dPN(x)´

RN expH○N(t,x) dPN(x)
. (2.18)

This is verified rigorously in Exercise 4.2 of [50]. In other words, the conditional law of x given Y is the Gibbs
measure associated with the Hamiltonian H○N(t, ⋅). The associated free energy is denoted by

F○N(t) ∶=
1
N

log
ˆ
RN

expH○N(t,x) dPN(x). (2.19)

Notice that the Hamiltonian H○N(t,σ) is a random quantity, as it depends on x and W through Y . In particular,
the free energy (2.19) is also random, and its average is denoted by

F
○
N(t) ∶=EF○N(t) =

1
N
E log

ˆ
RN

expH○N(t,x) dPN(x). (2.20)

Slightly abusing terminology, the average free energy (2.20) will often be referred to as simply the free energy.
It will be convenient to introduce notation for a random variable whose law is the random Gibbs measure (2.18).
For every bounded measurable function f ∶RN →R, write

⟨ f (x)⟩ ∶=
ˆ
RN

f (x) dPx∣Y (x) =
´
RN f (x)expH○N(t,x) dPN(x)´

RN expH○N(t,x) dPN(x)
. (2.21)
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Although this is kept implicit in the notation, the bracket ⟨⋅⟩ is a random quantity that depends on t and on Y .
Whenever expressions such as ⟨g(x,x)⟩ are written, it is understood that the variable x is integrated against the
conditional probability measure Px∣Y , while keeping x fixed. In more explicit notation,

⟨g(x,x)⟩ =
ˆ
RN

g(x,x) dPx∣Y (x) =
´
RN g(x,x)expH○N(t,x) dPN(x)´

RN expH○N(t,x) dPN(x)
, (2.22)

not to be confused with E[g(x,x) ∣ Y ] for instance. If no information about the signal x is given by the
observation of Y , when t = 0, then x is simply an independent copy of x. On the other hand, if perfect
information about x is possessed, for instance, if x is observed with no noise, then x is equal to x. It will also
be convenient to introduce independent copies of x under the Gibbs average ⟨⋅⟩, often called replicas, which
are denoted by x′, x′′, or also x1, x2, x3, and so on if an arbitrary number of replicas needs to be considered.
Explicitly, for every bounded measurable function f ∶RN ×RN →R,

⟨ f (x,x′)⟩ =
´
RN

´
RN f (x,x′)exp(H○N(t,x)+H○N(t,x′)) dPN(x) dPN(x′)

(
´
RN expH○N(t,x) dPN(x))

2 , (2.23)

with the natural generalization of this expression in the case of more replicas. The fact that the Gibbs
measure (2.18) is a conditional expectation will fundamentally simplify the analysis — in the language of
statistical mechanics, the symmetric rank-one matrix estimation problem is always replica symmetric. The
replica symmetry derives from the Nishimori identity which allows the replacement of one replica x by the
ground-truth signal x, provided that all sources of randomness are averaged.

Proposition 2.2 (Nishimori identity). For all bounded measurable functions f ∶ RN ×RN×N → R and g ∶
RN ×RN ×RN×N →R,

E⟨ f (x,Y)⟩ =E⟨ f (x,Y)⟩ and E⟨g(x,x′,Y)⟩ =E⟨g(x,x,Y)⟩, (2.24)

and so on with more replicas, that is, for every integer ` ≥ 1 and bounded measurable function h ∶ (RN)` ×
RN×N →R,

E⟨h(x1,x2, . . . ,x`,Y)⟩ =E⟨h(x1,x2, . . . ,x`−1,x,Y)⟩. (2.25)

Proof. It suffices to prove (2.25). By Dynkin’s π-λ theorem (Theorem A.5 in [50]), it suffices to verify this
identity for functions that factorize over the variables. Precisely, assume that the function h can be written in
the form

h(x1, . . . ,x`,Y) = h1(x1, . . . ,x`−1)h2(x`)h3(Y), (2.26)

for some bounded measurable functions h1,h2,h3. It then follows that

E⟨h(x1, . . . ,x`,Y)⟩ =E(⟨h1(x1, . . . ,x`−1,Y)⟩⟨h2(x`)⟩h3(Y))
=E(⟨h1(x1, . . . ,x`−1,Y)⟩E[h2(x) ∣Y ]h3(Y)),

where the last identity uses that the Gibbs measure (2.21) is the conditional law of x given the observation Y .
Recalling that the measure ⟨⋅⟩ depends on the randomness only through Y , and thus that ⟨h1(x1, . . . ,x`−1,Y)⟩
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is Y -measurable, reveals that

E⟨h(x1, . . . ,x`,Y)⟩ =E(E[⟨h1(x1, . . . ,x`−1,Y)⟩h2(x)h3(Y) ∣Y ])
=E(⟨h1(x1, . . . ,x`−1,Y)⟩h2(x)h3(Y))
=E(⟨h1(x1, . . . ,x`−1,Y)⟩h2(x)h3(Y)).

Combining this with the definition (2.26) of the function h completes the proof. ∎

A universality property of the free energy (2.9) in the dense stochastic block model ensures that it is
asymptotically equivalent to the free energy (2.20) in the symmetric rank-one matrix estimation problem for
the appropriate choice of prior and signal-to-noise ratio.

Proposition 2.3. Under assumptions (A1) and (A2), the free energy (2.9) in the stochastic block model is

asymptotically equivalent to the free energy (2.20) in the symmetric rank-one matrix estimation problem with

Bernoulli prior,

F
SBM
N = F

○
N(

λ

4
)+o(1). (2.27)

Before delving into the proof of this result, it will be convenient to simplify the expression of the
Hamiltonian HSBM

N in (2.8), and discard some lower-order terms to gain intuition. Taylor expanding the
logarithm in the definition of this Hamiltonian reveals that

HSBM
N (σ) = H̃SBM

N (σ)+∑
i< j
[Gi j(

∆
2
N

2(1−cN)2
− ∆

2
N

2c2
N
)− ∆

2
N

2(1−cN)2
]

+∑
i< j
O(Gi j

∆
3
N

c3
N
+(1−Gi j)

∆
3
N

(1−cN)3
) (2.28)

for the Hamiltonian
H̃SBM

N (σ) ∶=∑
i< j

∆N

cN(1−cN)
(Gi j −cN)σiσ j. (2.29)

Introducing the free energy

F̃SBM
N ∶= 1

N
E
ˆ

ΣN

expH̃SBM
N (σ) dP∗N (σ) (2.30)

associated with the Hamiltonian (2.29), the equality (2.28) implies that

F
SBM
N = F̃SBM

N + 1
N
∑
i< j

E[Gi j(
∆

2
N

2(1−cN)2
− ∆

2
N

2c2
N
)− ∆

2
N

2(1−cN)2
]

+∑
i< j
O(EGi j

∆
3
N

c3
N
+(1−EGi j)

∆
3
N

(1−cN)3
). (2.31)

Noticing that EGi j = cN +∆Nm2, and remembering the definition of λN in (1.9), this becomes

F
SBM
N = F̃SBM

N − N −1
N
⋅ λN

4
+O(N −1

N
⋅

λ
3/2
N√

NcN(1−cN)
). (2.32)
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Leveraging the assumptions (A1) and (A2) shows that

F
SBM
N = F̃SBM

N − λ

4
+o(1) (2.33)

so the free energies (2.9) and (2.30) are equal up to an additive constant. The free energy (2.30) starts to look
more like the free energy (2.20) in the symmetric rank-one matrix estimation problem. Indeed, introducing the
centred random variables

G̃i j ∶=
∆N

cN(1−cN)
(Gi j −cN −∆Nσ

∗
i σ
∗
j ), (2.34)

the Hamiltonian (2.29) may be written as

H̃SBM
N (σ) =∑

i< j
(G̃i jσiσ j +

λN

N
σ
∗
i σ
∗
j σiσ j). (2.35)

A direct computation shows that the random variables G̃i j have variance

EG̃2
i j =

λN

NcN(1−cN)
E(1−cN −∆Nσ

∗
i σ
∗
j )(cN +∆Nσ

∗
i σ
∗
j )

= λN

N
+O(λN

N
⋅(
¿
ÁÁÀ λN

NcN(1−cN)
+ λN

N
)). (2.36)

Recall that under assumption (A2), the average degree of a node diverges as N tends to infinity. This gives
some credence to the idea that in the limit of large system size, a sort of central limit theorem takes place, and
the random variables (G̃i j)i, j⩽N may as well be substituted by centred Gaussian random variables with the
same variance. In other words, the free energy (2.30) may be expected to be asymptotically equivalent to the
Gaussian free energy

F
gauss
N (λ) ∶= 1

N
E log

ˆ
ΣN

expHgauss
N (λ ,σ) dP∗N (σ) (2.37)

associated with the Hamiltonian

Hgauss
N (λ ,σ) ∶=∑

i< j
(
√

λ

N
Wi jσ jσ j +

λ

N
σ
∗
i σ
∗
j σiσ j). (2.38)

Noticing that Wi j+W ji√
2

is again a standard Gaussian, the equality in distribution

Hgauss
N (λ ,σ) d=H○N(

λ

4
)+ Nλ

4
−

N

∑
i=1

λ

2N
Wii−

λ

2
(2.39)

holds jointly over σ . For the choice of Bernoulli prior P1 = P∗, this implies that

F
gauss
N (λ) = F

○
N(

λ

4
)+ λ

4
− λ

2N
, (2.40)

where it has been used that EWii = 0. To establish Proposition 2.3 it remains to prove rigorously that the free
energies (2.30) and (2.37) are asymptotically equivalent up to an additive constant. This will be done through
an interpolation argument taken from Theorem 3.9 in [95].
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Proof of Proposition 2.3. By the asymptotic equivalences (2.33) and (2.40), it suffices to show that

F̃SBM
N = F

gauss
N (λ)+o(1). (2.41)

To alleviate notation, the dependence on λ will be kept implicit. The proof proceeds by interpolation. For each
t ∈ [0,1], define the interpolating Hamiltonian

HN,t(σ) ∶=∑
i< j
[(
√

tG̃i j +
√

1− t

√
λ

N
Wi j)σiσ j +(t ⋅

λN

N
+(1− t) ⋅ λ

N
)σ∗i σ

∗
j σiσ j],

and the interpolating free energy

FN(t) ∶=
1
N
E log

ˆ
ΣN

expHN,t(σ) dPN(σ).

By the fundamental theorem of calculus,

∣F̃SBM
N −F

gauss
N ∣ = ∣FN(1)−FN(0)∣ ⩽ sup

t∈[0,1]
∣F ′N(t)∣. (2.42)

To compute this derivative, write ⟨⋅⟩t for the average with respect to the Gibbs measure associated with the
interpolating Hamiltonian HN,t , and observe that

F
′
N(t) =

1
2N
√

t
∑
i< j

EG̃i j⟨σiσ j⟩t −
√

λ

2N3/2
√

1− t
∑
i< j

EWi j⟨σiσ j⟩t

+(λN −λ) ⋅ 1
N2∑

i< j
E⟨σ∗i σ

∗
j σiσ j⟩t . (2.43)

At this point, fix indices i < j and introduce the function F(G̃i j) = ⟨σiσ j⟩t . A direct computation reveals that

∂G̃i j
F = ⟨σiσ j∂G̃i j

HN,t(σ)⟩t − ⟨σiσ j⟩t⟨∂G̃i j
HN,t(σ)⟩t =

√
t(1− ⟨σiσ j⟩2t )

∂
2
G̃i j

F = −2
√

t⟨σiσ j⟩t ⋅∂G̃i j
F = −2t(⟨σiσ j⟩t − ⟨σiσ j⟩3t )

so the approximate Gaussian integration by parts formula (Exercise 4.6 in [50]) gives

EG̃i j⟨σiσ j⟩t =
√

tEG̃2
i j(1−E⟨σiσ j⟩2t )+O(E∣G̃i j ∣3).

On the other hand, the Gaussian integration by parts formula (Theorem 4.5 in [50]) shows that

EWi j⟨σiσ j⟩t =
√

1− t ⋅
√

λ

N
⋅(1−E⟨σiσ j⟩2t ).

It follows by (2.43) that

F
′
N(t) =

1
2N
∑
i< j

EG̃2
i j(1−E⟨σiσ j⟩2t )−

λ

2N2∑
i< j
(1−E⟨σiσ j⟩2t )+O(NE∣G̃12∣3+ ∣λN −λ ∣).
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Together with (2.36) and (2.42), this implies that

F̃SBM
N = F

gauss
N +O(λN ⋅(

¿
ÁÁÀ λN

NcN(1−cN)
+ λN

N
)+NE∣G̃12∣3+ ∣λN −λ ∣).

Observing that

E∣G̃12∣3 ⩽ ∣
∆

3
N

c3
N(1−cN)3

∣E∣(1−cN −∆Nσ iσ j)(cN +∆Nσ iσ j)∣ ⩽
4λ

3/2
N

N
√

NcN(1−cN)
,

and remembering the assumptions (A1) and (A2) establishes (2.41) and completes the proof. ∎

This result reduces the task of understanding the limit of the free energy (2.9), and hence of the mutual
information (2.5), to computing the limit of the free energy (2.20) in the rank-one matrix estimation problem.
To do so, the Hamilton-Jacobi approach will be used. The structure of the argument closely resembles that in
[36] — the only difference will be in the well-posedness theory for the Hamilton-Jacobi equation.

2.3 A matrix estimation Hamilton-Jacobi equation

To determine the limit free energy in the symmetric rank-one matrix estimation problem using the Hamilton-
Jacobi approach, a partial differential equation satisfied by the free energy (2.20) up to an error that vanishes
with N needs to be derived. Notice that the limits of the random free energy (2.19) and its average (2.20),
provided that they exist, are the same.

Lemma 2.4. The free energy (2.19) concentrates about its average (2.20); that is, for every T < +∞, there is

a constant C < +∞ such that for every t ∈ [0,T ] and λ > 0,

P{∣F○N(t)−F
○
N(t)∣ ⩾ λ} ⩽ 2exp(− Nλ

2

C
). (2.44)

In particular, for every t ⩾ 0, the free energy (2.19) and its average (2.20) are asymptotically equivalent,

limsup
N→+∞

∣F○N(t)−F
○
N(t)∣ = 0. (2.45)

Proof. The free energy (2.19) in the symmetric rank-one matrix estimation problem is a function of the
Gaussian noise W and the signal x. To make this dependence explicit, temporarily change the notation and
write the free energy as

F○N(t,W,x) ∶= F○N(t).

Letting a > 0 be such that the support of the measure P1 is contained in the interval [−√a,
√

a], the measure
PN is supported in the closed Euclidean ball B√aN(0) of radius

√
aN centred at the origin. This means that for

t ⩾ 0, x ∈RN and W 1,W 2 ∈RN×N ,

F○N(t,W 1,x) ⩽
√

2t
N3 sup

x∈B√aN(0)
(x ⋅W 1x−x ⋅W 2x)+F○N(t,W 2,x). (2.46)



CHAPTER 2. THE DENSE STOCHASTIC BLOCK MODEL 20

Using that x ⋅(W 1−W 2)x = (W 1−W 2) ⋅(x∗x) and invoking the Cauchy-Schwarz inequality reveals that

F○N(t,W 1,x)−F○N(t,W 2,x) ⩽
√

2t
N3 sup

x∈B√aN(0)
∣x∣2∣W 1−W 2∣ ⩽ a

√
2t
N
∣W 1−W 2∣. (2.47)

Since the right side of (2.47) is symmetric in the pair (W 1,W 2), this estimate gives an upper bound on the
Lipschitz semi-norm of the map W ↦ F○N(t,W,x). It thus follows by the Gaussian concentration inequality
(Theorem 4.7 in [50]) applied conditionally on the randomness of the signal x that, for any λ > 0,

P{∣F○N(t,W,x)−EW F○N(t,W,x)∣ ⩾ λ} ⩽ 2exp(− Nλ
2

4a2t
), (2.48)

where EW denotes the average only with respect to the randomness of the Gaussian noise W . To obtain the
concentration of the free energy, it remains to establish the concentration of EW F○N(t,W,x) about its average
with respect to the signal x. Fix t ⩾ 0,W ∈RN×N and x ∈RN . A direct computation reveals that for any 1 ⩽ i ⩽N,

∂xiF
○
N(t,W,x) = 4t

N2 ⟨(x ⋅x).xi⟩. (2.49)

Letting a > 0 be such that the support of the measure P1 is contained in the interval [−√a,
√

a], this implies
that

∣∂xiF
○
N(t,W,x)∣ ⩽ 4ta3/2

N
. (2.50)

Averaging over the randomness of the Gaussian noise W and using Jensen’s inequality shows that this upper
bound also holds for the averaged free energy EW F○N(t,W,x). Combining this with the mean value theorem
shows that for any i ∈ {1, . . . ,N} and x1, . . . ,xN ,x′i ∈ [−

√
a,
√

a],

∣EW F○N(t,W,x1, . . . ,xi−1,x′i ,xi+1, . . . ,xn)

−EW F○N(x1, . . . ,xi−1,xi,xi+1,xn)∣ ⩽
4ta3/2

N
∣xi−x′i ∣ =

8ta2

N
. (2.51)

It follows by the McDiarmid inequality (Theorem 4.8 in [50]) that

P{∣EW F○N(t,W,x)−EF○N(t,W,x)∣ ⩾ λ} ⩽ 2exp(− Nλ
2

32t2a4 ). (2.52)

Together with the triangle inequality and the upper bound (2.48), this establishes the exponential concentration
(2.44) of the free energy about its average. Since the right side of this expression is summable, invoking the
Borel-Cantelli lemma completes the proof. ∎

The Gaussian integration by parts formula (Theorem 4.5 in [50]) reveals that

E⟨x ⋅Wx⟩ =
√

2t
N
(E⟨∣x∣4⟩−E⟨(x ⋅x′)2⟩). (2.53)

Together with a direct derivative computation, this implies that

∂tF
○
N(t) =

1
N2E⟨(x ⋅x)

2⟩. (2.54)
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Unfortunately, there is no way of closing this equation if only derivatives in t of the free energy can be
computed. Indeed, the situation is analogous to that encountered if one were to study a Curie-Weiss model
without any magnetization part, where there would be no parameter h with respect to which to differentiate and
close the equation — see Chapter 3 of [50] for a detailed discussion of the Curie-Weiss model and its analysis
via the Hamilton-Jacobi approach. To overcome this issue, an “enriched” free energy that also depends on
an additional parameter h will be defined. The enriched free energy FN(t,h) should extend the free energy
F
○
N(t), in the sense that there is some h0 with FN(⋅,h0) = F

○
N(⋅); it should be simple enough that the limit of

its initial condition FN(0, ⋅) can be computed explicitly; and it should be rich enough that it allows to close
the equation, up to a small error term. In the context of statistical inference models, one also needs to ensure
that the enrichment does not destroy the fact that the Gibbs measure is a conditional expectation. Indeed, this
property gives access to the Nishimori identity (Proposition 2.2), which plays a fundamental role in simplifying
statistical inference models and distinguishing them from the more complicated spin-glass models.

In the context of the symmetric rank-one matrix estimation problem, the appropriate enrichment of the
free energy is obtained by assuming that, in addition to observing the noisy rank-one matrix Y in (2.13), a
noisy version Ỹ of the signal vector x is also observed,

Ỹ ∶=
√

2hx+ z. (2.55)

The noise vector z ∶= (zi)i⩽N ∈RN is made of independent standard Gaussian random variables independent of
the vector x and the noise matrix W , and the parameter h ≥ 0 is a signal-to-noise ratio. The enriched symmetric
rank-one matrix estimation problem is to infer the signal x from the observation Y ∶= (Y,Ỹ). Applying Bayes’
formula shows that the law of the signal x given the observation of Y is the Gibbs measure whose Hamiltonian
on RN is

HN(t,h,x) ∶=H○N(t,x)+
√

2hỸ ⋅x−h∣x∣2. (2.56)

In other words, for any bounded measurable function f ∶RN →R,

E[ f (x) ∣Y] =
´
RN f (x)expHN(t,h,x) dPN(x)´

RN expHN(t,h,x) dPN(x)
. (2.57)

The free energy

FN(t,h) ∶=
1
N

log
ˆ
RN

expHN(t,h,x) dPN(x) (2.58)

of this model is again random, as it depends on x, W , and z, and its average is again denoted by

FN(t,h) ∶=EFN(t,h) =
1
N
E log

ˆ
RN

expHN(t,h,x) dPN(x). (2.59)

The average free energy (2.59) will often be referred to as simply the free energy. Through a slight abuse of
notation, as before, ⟨⋅⟩ will denote the average with respect to the Gibbs measure (2.57), and x,x′,x′′, and so
on, will be independent random variables sampled according to this probability measure. That is, for every
bounded measurable function f ∶RN →R,

⟨ f (x)⟩ ∶=
´
RN f (x)expHN(t,h,x) dPN(x)´

RN expHN(t,h,x) dPN(x)
, (2.60)

and so on as in (2.23) with more replicas. The derivation of the identity (2.54) is unchanged for this more
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general Gibbs measure: for all t,h ≥ 0,

∂tFN(t,h) =
1

N2E⟨(x ⋅x)
2⟩. (2.61)

Recalling from (2.55) and (2.56) that

HN(t,h,x) =H○N(t,x)+2hx ⋅x+
√

2hz ⋅x−h∣x∣2, (2.62)

it is also possible to compute the spatial derivative of the free energy: for all t,h ≥ 0,

∂hFN(t,h) =
1

N
√

2h
E⟨z ⋅x⟩+ 2

N
E⟨x ⋅x⟩− 1

N
E⟨∣x∣2⟩. (2.63)

The Gaussian integration by parts formula (Theorem 4.5 in [50]) reveals that

E⟨z ⋅x⟩ =
√

2h(E⟨∣x∣2⟩−E⟨x ⋅x′⟩) (2.64)

which together with the Nishimori identity implies that

∂hFN(t,h) =
1
N
E⟨x ⋅x⟩ = 1

N
E∣⟨x⟩∣2. (2.65)

It is reasonable to expect the variance of the inner product, or overlap, N−1x ⋅x between a sample x from the
Gibbs measure (2.57) and the ground-truth signal x to be small, simply because it is the average of a large
number of variables. If this is so, then the difference between the time derivative (2.61) and the square of the
spatial derivative (2.65) would also be small since

∂tFN(t,h)−(∂hFN(t,h))
2 =Var(x ⋅x

N
). (2.66)

This suggests that the enriched free energy (2.59) should converge to the function f solving the Hamilton-Jacobi
equation

∂t f (t,h)−(∂h f (t,h))2 = 0 on R>0×R>0 (2.67)

subject to the initial condition
ψ(h) ∶= lim

N→+∞
FN(0,h) = F1(0,h). (2.68)

The assumption that PN is a product measure has been used to assert that the initial condition is independent of
N. To make this argument rigorous, a well-posedness theory for the Hamilton-Jacobi equation (2.67) needs
to be established. The general well-posedness theory for Hamilton-Jacobi equations on positive half-space
developed in the next section relies on the assumptions that the non-linearity is locally Lipschitz continuous
and non-decreasing. Given a set D ⊆Rd , a function h ∶D→R is said to be non-decreasing if, for all y,y′ ∈D,

y ⩽ y′ Ô⇒ h(y) ⩽ h(y′), (2.69)

where ⩽ denotes the partial order,
y ⩽ y′ ⇐⇒ y′−y ∈Rd

⩾0. (2.70)

Although the non-linearity H(p) ∶= p2 in the Hamilton-Jacobi equation (2.73) is locally Lipschitz continuous,
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it fails to be non-decreasing on R; however its modification

H(p) ∶= p21{p ⩾ 0} (2.71)

is both locally Lipschitz continuous and non-decreasing on the real line. Moreover, the derivative computation
(2.65) suggests that for all t,h ⩾ 0,

(∂h f (t,h))2 =H(∂h f (t,h)) =H(∂h f (t,h)) (2.72)

which means that the enriched free energy (2.59) should converge to the function f solving the Hamilton-Jacobi
equation

∂t f (t,h)−H(∂h f (t,h)) = 0 on R>0×R>0 (2.73)

subject to the initial condition f (0, ⋅) =ψ(⋅). The well-posedness of this Hamilton-Jacobi equation will be
established in the next section. The focus will then be on controlling the error term on the right side of (2.66),
and proving that the limit of the free energy indeed solves the Hamilton-Jacobi equation (2.73). Together
with the Hopf-Lax variational formula, this will lead to the following result for the limit free energy in the
symmetric rank-one matrix estimation problem.

Theorem 2.5. For every N ⩾ 1, denote by FN ∶R⩾0×R⩾0→R the enriched free energy (2.59) in the symmetric

rank-one matrix estimation problem. For every t,h ⩾ 0, the sequence (FN(t,h))N⩾1 converges to f (t,h) as N

tends to infinity, where f ∶R⩾0×R⩾0→R is the unique viscosity solution to the Hamilton-Jacobi equation (2.73)
subject to the initial condition ψ ∶R⩾0 →R defined in (2.68). Moreover, the limit free energy f admits the

Hopf-Lax representation, for every t,h ≥ 0,

f (t,h) = sup
h′∈R⩾0

(ψ(h′)− (h
′−h)2
4t

). (2.74)

In particular, the limit of the free energy F
○
N defined in (2.20) is given by

lim
N→+∞

F
○
N(t) = sup

h∈R⩾0

(ψ(h)− h2

4t
). (2.75)

Together with Propositions 2.3 and 2.1 this result implies Theorem 1.3. The remainder of this chapter will
therefore be devoted to proving Theorem 2.5.

2.4 Hamilton-Jacobi equations on positive half-space

The simplest setting in which to establish a well-posedness theory for Hamilton-Jacobi equations is on
Euclidean space R>0 ×Rd — see Chapter 3 of [50] for a detailed discussion of this well-posedness theory.
Unfortunately, the Hamilton-Jacobi equation (2.73) that appears in the context of the symmetric rank-one
matrix estimation problem is defined on the positive half-space R>0×R>0 as opposed to the Euclidean space
R>0 ×R. In this section, a well-posedness theory for Hamilton-Jacobi equations on positive half-space is
developed following [33, 48]. This requires additional technical effort relative to the Euclidean setting; the
upshot of the analysis will be that, for all equations of relevance, no boundary condition for the solution needs
to be prescribed, and in effect, the boundary can simply be ignored. Intuitively, this is possible because the
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characteristic lines always go towards the boundary as t increases rather than away from it.
To motivate the appropriate notion of solution to the Hamilton-Jacobi equation (2.73), temporarily assume

that the initial condition ψ is convex and non-decreasing, and take Theorem 2.5 for granted. The Fenchel-
Moreau theorem on positive half-space (Proposition A.6) then implies that the unique solution f ∶R⩾0×R⩾0→R
to the Hamilton-Jacobi equation (2.73) is given by

f (t,h) = sup
h′∈R⩾0

(ψ(h′)− (h
′−h)2
4t

) = sup
m,h′∈R⩾0

(mh′−ψ
∗(m)− (h

′−h)2)
4t

), (2.76)

where ψ
∗(m) = suph′∈R⩾0

(h′m−ψ(h′)) denotes the convex dual of ψ defined in (A.7). Since the function
x↦ 1

2 ∣x∣
2 is its own convex dual (Exercise 2.8 in [50]), the solution f may be written as

f (t,h) = sup
m∈R⩾0

(mh+ tm2−ψ
∗(m)). (2.77)

Leveraging the envelope theorem (Theorem 2.22 in [50]), one can show that at every point (t,h) ∈R>0×R>0

of differentiability of f ,

∂t f (t,h) =m2
0(t,h) and ∂h f (t,h) =m0(t,h) (2.78)

for a maximizer m0(t,h) of the right side of (2.77). In particular, the limit free energy f does indeed satisfy
the Hamilton-Jacobi equation (2.73) at all its points of differentiability. Together with Rademacher’s theorem
(Theorem 2.10 in [50]), this implies that f satisfies the equation (2.73) almost everywhere. Notice that f is
Lipschitz continuous because each FN is by (2.61) and (2.65). A natural question arises at this point. Could
the limit free energy f be identified as the unique Lipschitz continuous function with f (0, ⋅) = ψ(⋅) which
satisfies the equation (2.73) almost everywhere? Unfortunately, the answer is no. In fact, the following
construction shows that this Hamilton-Jacobi equation admits infinitely many almost-everywhere solutions
that are Lipschitz continuous.

Example 2.6. For simplicity, infinitely many Lipschitz functions that satisfy the Hamilton-Jacobi equa-
tion (2.73) almost everywhere and are constant equal to zero at the initial time will be constructed. Similar but
more complicated constructions can be performed for more general initial conditions.

−t t

t

h

f̃(h)

t− h−t+ h

Figure 2.1: Graph of the function h↦ f̃ (t,h), for a fixed value of t > 0.



CHAPTER 2. THE DENSE STOCHASTIC BLOCK MODEL 25

Temporarily disregarding the question of the initial condition, notice that the functions (t,h)↦ 0, (t,h)↦
t +h and (t,h)↦ t −h are all solutions to (2.73). It thus follows that the Lipschitz function

f̃ (t,h) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t +h if h ∈ [−t,0]
t −h if h ∈ [0,t]
0 otherwise

displayed in Figure 2.1 is an almost everywhere solution to (2.73), as it is obtained by “gluing together” these
different solutions, and the measure-zero set of points where they are joined together can be disregarded. By
construction, the function f̃ is such that f̃ (0, ⋅) = 0. The null solution also satisfies these properties, so this
construction yields two almost-everywhere solutions with the same initial condition. Moreover, any translation
in space of f̃ also satisfies this property; and the “emergence of the corner” can also be delayed to some
arbitrary time. So in fact, there are uncountably many Lipschitz functions that solve the equation (2.73) almost
everywhere and vanish at the initial time.

One could try to impose the uniqueness of solutions by strengthening the regularity assumptions; for
instance, one could impose that a solution f to (2.73) be C1(R⩾0×R⩾0;R) and solve the equation everywhere.
The problem with this idea is that in this case, the set of solutions can be empty. A notion of solution that
is more stringent than the “almost-everywhere solutions” explored above, but less stringent than asking the
solution to be continuously differentiable on R⩾0 ×R⩾0 therefore needs to be identified. In a nutshell, the
function f will be required to satisfy a certain form of the maximum principle. Observe that whenever two
functions f and g satisfy the Hamilton-Jacobi equation (2.73) with “viscosity” parameter ε > 0,

∂t f (t,h)−H(∂h f (t,h)) = ε∆ f (t,h) on R>0×R>0, (2.79)

if their initial conditions are ordered, say f (0, ⋅) ⩽ g(0, ⋅), then this ordering is preserved at all later times t ⩾ 0
as well, f (t, ⋅) ⩽ g(t, ⋅). While this monotonicity property will be obtained as a consequence of the definition
of solution explained below, one can essentially also go the other way around [8].

To strive for generality, as opposed to focusing exclusively on the Hamilton-Jacobi equation (2.73), for
the remainder of this section, fix a Lipschitz initial condition ψ ∶ Rd

⩾0 → R, and a locally Lipschitz and
non-decreasing non-linearity H ∶Rd →R, and consider the Hamilton-Jacobi equation

∂t f (t,x)−H(∇ f (t,x)) = 0 on R>0×Rd
>0, (2.80)

subject to the initial condition f (0, ⋅) = ψ(⋅). In this equation, the gradient is taken with respect to the x

variable, leaving the t variable aside: ∇ f (x) = (∂x1 f , . . . ,∂xd f ). The Hamilton-Jacobi equation (2.73) arising
in the context of the symmetric rank-one matrix estimation problem corresponds to the one-dimensional case,
d = 1, the convex non-linearity H =H defined in (2.71), and the initial condition ψ defined in (2.68).

As previously alluded to, a natural way to define a solution to the Hamilton-Jacobi equation (2.80) is to
add a small “viscosity” parameter ε > 0, and to consider the second-order parabolic equation

∂t fε(t,x)−H(∇ fε(t,x)) = ε∆ fε(t,x) on R>0×Rd
>0 (2.81)

subject to the initial condition fε(0, ⋅) = ψ(⋅). That smooth solutions exist for (2.81) subject to appropriate
boundary conditions can be shown by classical techniques, because the Laplacian term is dominant on very
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small scales, being of higher order than the other terms of the equation. The solution to the Hamilton-Jacobi
equation (2.80) can then be defined as the limit of the solutions to (2.81) as the viscosity parameter ε tends
to zero. Although this route will not be pursued rigorously here, suppose for a moment that for each ε > 0,
a smooth solution fε ∶R⩾0 ×Rd

⩾0 →R to (2.81) has been defined, and that, as ε tends to zero, the sequence
( fε)ε>0 converges to some function f ∶R⩾0×Rd

⩾0→R in the topology of local uniform convergence. In some
sense to be discovered, one would like to say that the limit thus obtained is a solution to (2.80). The main
difficulty is that a solution to (2.80) should not be imposed to be differentiable everywhere; but uniqueness is
not obtained if points of non-differentiability are simply ignored. In analogy with the notion of weak solutions,
it would be desirable to introduce smooth test functions and somehow move the derivatives of f onto the
test functions. This way, constraints can be established regarding what a solution is allowed to do at points
of non-differentiability. This transfer of the derivatives onto the test functions will not be obtained by some
integration by parts here. Rather, a strategy that accords well with the fact that the approximations ( fε)ε>0

satisfy the maximum principle will be sought. Pick a test function φ ∈C∞(R>0×Rd
>0;R), and assume that

f −φ achieves a strict local maximum at the point (t∗,x∗) ∈R>0×Rd
>0. If f is smooth at (t∗,x∗), then

(∂tφ(t∗,x∗),∇φ(t∗,x∗)) = (∂t f (t∗,x∗),∇ f (t∗,x∗)), (2.82)

so it is expected that
∂tφ(t∗,x∗)−H(∇φ(t∗,x∗)) = 0. (2.83)

This identity may no longer be valid when f is not differentiable at (t∗,x∗), but it turns out that the quantity
on the left side of (2.83) must always be non-positive. Showing this requires a simple technical result that will
be used consistently throughout this thesis. Write Br(x) for the Euclidean ball of radius r > 0 centred at x ∈Rd ,
and Br(x) for its closure.

Lemma 2.7. Let ( fN)N⩾1 be a sequence of continuous functions on some open set U ⊆Rd converging locally

uniformly to a function f ∶U →R. If f has a strict local maximum at x ∈U, then there exists r > 0 and a sequence

of points (xN)N⩾1 ⊆U converging to x such that, for every N sufficiently large, one has fN(xN) = supBr(x) fN .

Proof. Fix r > 0 sufficiently small that x is a strict maximum of f in Br(x) ⊆U . By continuity of fN and
compactness of Br(x), let xN ∈ Br(x) be such that fN(xN) ≥ fN(y) for every y ∈ Br(x). Since (xN)N⩾1 stays
in a compact set, it admits a subsequence converging to some x∗ ∈ Br(x). Together with the local uniform
convergence of fN to f , this implies that f (x∗) ⩾ f (y) for every y ∈ Br(x). Since x is a strict maximum, it must
be that x∗ = x, so the only limit point of (xN)N⩾1 is x. This implies that (xN)N⩾1 converges to x as required. In
particular, for N sufficiently large xN is in the open ball Br(x), and is thus a local maximum of fN . ∎

Using Lemma 2.7, find a sequence (t∗ε ,x∗ε )ε>0 converging to (t∗,x∗) with the property that, for every ε > 0
sufficiently small, the function fε −φ achieves a local maximum at (t∗ε ,x∗ε ) ∈R>0×Rd

>0, and therefore

∂t( fε −φ)(t∗ε ,x∗ε ) = 0, ∇( fε −φ)(t∗ε ,x∗ε ) = 0, and ∆( fε −φ)(t∗ε ,x∗ε ) ⩽ 0. (2.84)

It follows by (2.81) that

(∂tφ −H(∇φ))(t∗ε ,x∗ε ) = (∂t f −H(∇ f ))(t∗ε ,x∗ε ) = ε ∆ fε(t∗ε ,x∗ε ) ⩽ ε ∆φ(t∗ε ,x∗ε ).
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Letting ε tend to zero and leveraging the smoothness of φ shows that

(∂tφ −H(∇φ))(t∗,x∗) ⩽ 0. (2.85)

This argument shows that whenever a smooth function φ is such that f −φ has a strict local maximum at
(t∗,x∗) ∈R>0×Rd

>0, the inequality (2.85) holds at (t∗,x∗). An analogous argument shows that whenever a
smooth function φ is such that f −φ has a strict local minimum at (t∗,x∗) ∈R>0×Rd

>0,

(∂tφ −H(∇φ))(t∗,x∗) ⩾ 0. (2.86)

As will be seen, these properties of f just derived are sufficient to determine it uniquely once the initial
condition f (0, ⋅) is fixed. They will therefore be taken as the definition of being a solution to the Hamilton-
Jacobi equation (2.80). In fact, given any domain D ⊆Rd , they will also be taken as the definition of being a
solution to the Hamilton-Jacobi equation

∂t f (t,x) =H(∇ f (t,x)) on R>0×D. (2.87)

It may seem surprising that no boundary condition has to be imposed for this equation; this is because the
non-linearity “points in the right direction” in the sense that it is non-decreasing.

Definition 2.8. An upper semi-continuous function u ∶R⩾0×D→R is a viscosity subsolution to the Hamilton-
Jacobi equation (2.87) if, for every (t∗,x∗) ∈R>0×D and φ ∈C∞(R>0×D;R) with the property that u−φ

has a local maximum at the point (t∗,x∗) ∈R>0×D,

(∂tφ −H(∇φ))(t∗,x∗) ⩽ 0. (2.88)

A lower semi-continuous function v ∶R⩾0×D→R is a viscosity supersolution to the Hamilton-Jacobi equation
(2.87) if, for every (t∗,x∗) ∈R>0×D and φ ∈C∞(R>0×D;R)with the property that v−φ has a local minimum
at the point (t∗,x∗) ∈R>0×D,

(∂tφ −H(∇φ))(t∗,x∗) ⩾ 0. (2.89)

A continuous function f ∈C(R⩾0×D;R) is a viscosity solution to to the Hamilton-Jacobi equation (2.87) if it
is both a viscosity subsolution and a viscosity supersolution to (2.87).

When f −φ has a local maximum at (t∗,x∗), one says that “φ touches f from above at (t∗,x∗)”. The
reason is that, when discussing well-posedness, adding a constant to the test function φ is irrelevant to the
discussion, so it may as well be assumed that indeed ( f −φ)(t∗,x∗) = 0. The point (t∗,x∗) is often termed the
“contact point”. This wording has some intuitive appeal, as one can imagine taking some arbitrary smooth
function φ that is way above f , and then progressively “sliding it down” until the graphs of φ and f touch —
at the contact point. This is illustrated in Figure 2.2. Notice that not every point can be “touched” in this way.
For instance, there is no smooth function that touches the absolute value function from above at the origin.

As shown in Exercises 3.2 – 3.4 of [50], in the definition of a viscosity subsolution or viscosity super-
solution, replacing “local maximum” by “strict local maximum” or by “global maximum”, or replacing
the requirement that φ ∈C∞(R>0 ×D;R) by the requirement that φ ∈C1(R>0 ×D;R) leads to equivalent
definitions. In Exercise 3.5 of [50], it is also shown that a continuously differentiable function that satisfies
the equation (2.87) everywhere is indeed a viscosity solution, so the notion of viscosity solution is more



CHAPTER 2. THE DENSE STOCHASTIC BLOCK MODEL 28

“permissive” than prescribing the function to be C1(R⩾0×D;R) and to solve the equation everywhere. One
can also show that a viscosity solution must satisfy the equation (2.87) at every point of differentiability
(Theorem 10.1.2.1 in [53]). By the Rademacher theorem (Theorem 2.10 in [50]), a Lipschitz viscosity solution
must therefore satisfy the equation (2.87) almost everywhere. In other words, the notion of a viscosity solution
is indeed more stringent than that of an “almost-everywhere solution” explored at the start of this section.

f(t, x)

ϕ+(t, x)

ϕ−(t, x)

(t∗, x∗)

R≥0 × Rd

R

Figure 2.2: The function φ+ touches the function f from above at the point (t∗,x∗) while the function φ−
touches the function f from below at the point (t∗,x∗).

The well-posedness of the Hamilton-Jacobi equation (2.80) will be established over the space of func-
tions with Lipschitz initial condition that grow at most linearly in time. Given functions h ∶ Rd

⩾0 → R and
u ∶R⩾0×Rd

⩾0→R, it will be convenient to introduce the semi-norms

∥h∥Lip ∶= sup
x≠x′∈Rd

⩾0

∣h(x)−h(x′)∣
∣x−x′∣ and [u]0 ∶= sup

t>0
x∈Rd

⩾0

∣u(t,x)−u(0,x)∣
t

, (2.90)

as well as the space of functions with Lipschitz initial condition that grow at most linearly in time,

L ∶= {u ∶R⩾0×Rd
⩾0→R ∣ u(0, ⋅) is Lipschitz continuous and [u]0 < +∞}, (2.91)

and its subset of uniformly Lipschitz continuous functions,

Lunif ∶= {u ∈L ∣ sup
t⩾0
∥u(t, ⋅)∥Lip < +∞}. (2.92)

The main well-posedness result of this section reads as follows.

Proposition 2.9. If ψ ∶Rd
⩾0 →R is a Lipschitz initial condition, and H ∶Rd →R is a locally Lipschitz and

non-decreasing non-linearity, then the Hamilton-Jacobi equation (2.80) admits a unique viscosity solution

f ∈Lunif with

sup
t>0
∥ f (t, ⋅)∥Lip = ∥ψ∥Lip. (2.93)
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Moreover, if u,v ∈Lunif are a continuous subsolution and a continuous supersolution to (2.80), then

sup
R⩾0×Rd

⩾0

(u(t,x)−v(t,x)) = sup
Rd
⩾0

(u(0,x)−v(0,x)). (2.94)

To be more specific, given δ0 > 0, introduce the Lipschitz constants

L ∶=max(sup
t>0
∥u(t, ⋅)∥Lip,sup

t>0
∥v(t, ⋅)∥Lip) and V ∶= sup{∣H(p

′)−H(p)∣
∣p′− p∣ ∣ ∣p∣, ∣p′∣ ⩽ L+δ0}, (2.95)

then for every R ∈R and M > 2L, the map

(t,x)↦ u(t,x)−v(t,x)−M(∣x∣+Vt −R)+ (2.96)

achieves its supremum on {0}×Rd
⩾0.

In the statement above, the notation r+ ∶=max(0,r) is used to denote the positive part of a real number r ∈R.
This result will be combined with the Hopf-Lax variational formula to establish Theorem 2.5. Recall the
definition of the convex dual in (A.7).

Proposition 2.10 (Hopf-Lax formula). If ψ ∶Rd
⩾0 →R is a Lipschitz initial condition, and H ∶Rd →R is a

locally Lipschitz, non-decreasing, and convex non-linearity, then the Hopf-Lax function

f (t,x) ∶= sup
y∈Rd

⩾0

(ψ(x+y)− tH∗(y
t
)) (2.97)

is the unique viscosity solution in Lunif to the Hamilton-Jacobi equation (2.80).

Since the proofs in this section are quite long and technical, the reader may consider skipping these proofs
on the first reading and simply taking Propositions 2.9 and 2.10 for granted. This will allow the reader to get
a clearer picture of how the Hamilton-Jacobi approach can be used to study mean-field disordered systems
before investing the time and energy required to understand Hamilton-Jacobi equations on positive half-space.

To prove Proposition 2.9, its analog for the Hamilton-Jacobi equation

∂t f (t,x)−H(∇ f (t,x)) = 0 on R>0×Rd
⩾0, (2.98)

will first be established, and it will then be shown that solutions to the Hamilton-Jacobi equations (2.98) and
(2.80) coincide. To be more precise, in Section 2.4.1, a comparison principle for the Hamilton-Jacobi equation
(2.98) which ensures the uniqueness of solutions over the space L is established. It is also shown that any
solution in L with a Lipschitz initial condition must in fact belong to the solution space Lunif. In Section 2.4.2,
this comparison principle is leveraged to apply the classical Perron argument to the Hamilton-Jacobi equation
(2.98), and show that it admits a solution in the solution space Lunif. Full details have been provided when
applying Perron’s method; although the arguments will certainly be seen as classical by experts, the hope
is that the reader will find these details helpful. In Section 2.4.3, it is shown that solutions to (2.80) and
(2.98) coincide. This is then used to prove Proposition 2.9 by translating the well-posedness theory for the
Hamilton-Jacobi equation (2.98) into a well-posedness theory for the Hamilton-Jacobi equation (2.80). Finally,
in Section 2.4.4, under appropriate convexity assumptions, the Hopf-Lax formula stated in Proposition 2.10
for the unique solution to the Hamilton-Jacobi equations (2.80) and (2.98) is established.
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2.4.1 Comparison principle and Lipschitz continuity of solutions on Rd
⩾0

The comparison principle formalizes the idea that the Hamilton-Jacobi equation (2.98) should preserve the
ordering of initial conditions. In fact, since the equation is invariant under the addition of a constant to the
solution, it will be shown that if u is a subsolution and v is a supersolution to (2.98), then the function u−v

achieves its supremum at time zero. In particular, if u(0, ⋅) ⩽ v(0, ⋅), then this ordering is preserved by the
evolution.

If one assumes for a moment that u and v are smooth functions, then one can argue heuristically to get a
sense of why this result might be true. For smooth functions u and v, saying that u and v are a subsolution and
a supersolution to the Hamilton-Jacobi equation (2.98) amounts to saying that

∂tu−H(∇u) ⩽ 0 and ∂tv−H(∇v) ⩾ 0. (2.99)

Arguing by contradiction, suppose that

sup
R⩾0×Rd

⩾0

(u−v) > sup
{0}×Rd

⩾0

(u−v). (2.100)

Up to subtracting a small increasing function of t to u, such as εt for some sufficiently small ε > 0, it is possible
to ensure that (2.100) is still valid, and also that (2.99) has been improved into

∂tu−H(∇u) < 0 and ∂tv−H(∇v) ⩾ 0. (2.101)

Assuming that the supremum on the left side of (2.100) is achieved at some point (t∗,x∗) ∈R⩾0×Rd
>0, then

it must be that t∗ > 0, so the first order derivatives of u and v must coincide at this point. This contradicts
(2.101), so (2.100) cannot be true. Of course, there is much left to be desired with this argument, since it was
assumed that u and v are smooth, and also that the supremum on the left side of (2.100) is achieved at some
point outside the boundary of the positive half-space R⩾0×Rd

⩾0.
The simplest issue to address is how one can go around the possibility of the supremum not being achieved.

To simplify the discussion, assume temporarily that the space Rd
⩾0 is replaced by the unit torus Td =Rd/Zd

so that the variable x lives in a compact space without boundary. Take u,v ∶R⩾0×Td →R to be a viscosity
subsolution and supersolution to (2.98) respectively, and assume that they are smooth. The starting point is
again to argue by contradiction, assuming that there exists some time T > 0 with

sup
[0,T]×Td

(u−v) > sup
{0}×Td

(u−v). (2.102)

Denoting χ(t) ∶= ε

T−t , select ε > 0 sufficiently small that

sup
[0,T]×Td

(u−v−χ) > sup
{0}×Td

(u−v−χ). (2.103)

Since u−v is uniformly bounded over [0,T ]×Td , it is clear that approximate optimizers of the left side of
(2.103) will remain away from the final time T . Using also that [0,T ]×Td is compact, construct an optimizer
(t∗,x∗) ∈ [0,T ]×Td for this supremum. By construction, it is clear that t∗ ∈ (0,T). Once this is verified, the
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differential condition at the maximum can be used to ascertain that

∂t(u−v)(t∗,x∗)− ε

(T − t∗)2 = ∂t(u−v−χ)(t∗,x∗) = 0 and ∇(u−v)(t∗,x∗) = 0. (2.104)

Since v is a smooth supersolution to the equation, this can be combined with the second inequality in (2.99) to
obtain that

ε

(T − t∗)2 ⩽
(∂tu−H(∇u))(t∗,x∗). (2.105)

This contradicts the assumption (2.99) that u is a smooth subsolution to the Hamilton-Jacobi equation
(2.98). The role of the perturbation function χ is therefore two-fold. First, it ensures that the optimum t∗ is
detached from the right endpoint of the interval [0,T ], that is, t∗ < T . Second, it allows one to strengthen the
inequalities (2.99) into those in (2.101), if it is understood that the function u is redefined to be u−χ .

To preclude the supremum on the left side of (2.100) from being achieved at a point whose spatial
component belongs to the boundary of the positive half-space Rd

⩾0, the function χ will be further perturbed
using the reciprocal of the function d ∶Rd

⩾0→R defined by

d(x) ∶= inf
∣y∣=1

y∈Rd
⩾0

y ⋅x. (2.106)

This function essentially measures the distance to the boundary of the domain Rd
⩾0 in the sense that it vanishes

exactly on the boundary ∂Rd
⩾0. This, along with other basic properties of the function d, is the content of the

following technical result. Recall that the superdifferential of a function h ∶Rd
⩾0→R at a point x ∈Rd

>0 is the set

∂h(x) ∶= {p ∈Rd ∣ h(x′) ⩽ h(x)+ p ⋅(x′−x)+o(x′−x) as x′→ x in Rd
⩾0}. (2.107)

Lemma 2.11. The function d ∶Rd
⩾0→R⩾0 defined in (2.106) satisfies the following basic properties.

(i) The infimum defining d(x) is achieved for every x ∈Rd
⩾0.

(ii) d(x) = 0 if and only if x ∈ ∂Rd
⩾0.

(iii) d is Lipschitz continuous with Lipschitz constant at most one.

(iv) d is concave and non-decreasing.

(v) If x ∈Rd
>0, then ∂ d(x) ⊆Rd

⩾0. Moreover, any p ∈ ∂ d(x) is such that ∣p∣ ⩽ 1.

(vi) If h ∶Rd →R is a differentiable function and x↦ h(x)− 1
d(x) achieves a local maximum at a point x0 ∈Rd

>0,

then −d(x0)2∇h(x0) ∈ ∂ d(x0).

Proof. Each property is treated separately.

(i) Consider a sequence (yn)n⩾1 ⊆Rd
⩾0 with ∣yn∣ = 1 and yn ⋅x→ d(x). Since (yn)n⩾1 is uniformly bounded, it

admits a subsequential limit y ∈Rd
⩾0 with ∣y∣ = 1 and y ⋅x = d(x). The fact that Rd

⩾0 is closed has played its
part. This shows that the infimum in the definition of d(x) is attained.

(ii) If d(x) = 0, then there exists y ∈Rd
⩾0 with ∣y∣ = 1 and y ⋅x = 0. This shows that x ∈ ∂Rd

⩾0. On the other hand,
if x ∈ ∂Rd

⩾0, then there exists a non-zero z ∈Rd
⩾0 with z ⋅x = 0. Taking y ∶= z/∣z∣ gives y ∈Rd

⩾0 with ∣y∣ = 1
and d(x) ⩽ y ⋅x = 0. This shows that d(x) = 0.
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(iii) Fix x,y ∈Rd
⩾0, and let z ∈Rd

⩾0 with ∣z∣ = 1 be such that d(y) = z ⋅y. By the Cauchy-Schwarz inequality,

d(x)−d(y) ⩽ z ⋅x− z ⋅y = z ⋅(y−x) ⩽ ∣z∣∣y−x∣ = ∣y−x∣.

Reversing the roles of x and y shows that d is Lipschitz continuous with Lipschitz constant at most one.

(iv) Fix x,y ∈Rd
⩾0 as well as t ∈ [0,1], and let z ∈Rd

⩾0 achieve the infimum for d(tx+(1− t)y). It is clear that

d(tx+(1− t)y) = z ⋅(tx+(1− t)y) = t(z ⋅x)+(1− t)(z ⋅y) ⩾ t d(x)+(1− t)d(y).

This shows that d is concave. To see that d is non-decreasing, fix x,x′ ∈Rd
⩾0 with x′−x ∈Rd

⩾0, and let
y ∈Rd

⩾0 attain the infimum defining d(x′). Since x′−x ∈Rd
⩾0,

d(x′)−d(x) ⩾ y ⋅x′−y ⋅x = (x′−x) ⋅y ⩾ 0

as required.

(v) Fix x ∈Rd
>0, z ∈Rd

⩾0, and p ∈ ∂ d(x). Notice that ∂ d(x) ≠ ∅ by Proposition A.8 as d is concave, and
thus −d is convex. Since εz ∈Rd

⩾0 for every ε > 0, the non-decreasingness of d and the definition of the
superdifferential imply that

0 ⩽ d(x+εz)−d(x) ⩽ p ⋅εz+o(εz).

Dividing by ε and letting ε tend to zero shows that p ⋅z ⩾ 0 for all z ∈Rd
⩾0. It follows that p ∈Rd

⩾0. Now, fix
p ∈ ∂ d(x) as well as y ∈Rd

⩾0 with ∣y∣ = 1, and find ε > 0 small enough so that x−εy ∈Rd
⩾0. The definition

of the superdifferential implies that

d(x−εy) ⩽ d(x)−ε p ⋅y+o(εy).

Rearranging and using the 1-Lipschitz continuity of d reveals that

ε p ⋅y ⩽ ε ∣y∣+o(εy) = ε +o(εy).

Dividing by ε and letting ε tend to zero shows that p ⋅ y ⩽ 1 for every y ∈ Rd with ∣y∣ = 1. Choosing
y ∶= p/∣p∣ gives ∣p∣ ⩽ 1.

(vi) Fix z ∈Rd
⩾0. Since x0 ∈Rd

>0 is a local maximum of the map x↦ h(x)− 1
d(x) , for every ε > 0 small enough,

h(x0)−
1

d(x0)
⩾ h(x0+εz)− 1

d(x0+εz) .

Rearranging and using the 1-Lipschitz continuity of d as well as the differentiability of h reveals that

d(x0+εz) ⩽ d(x0)−d(x0)d(x0+εz)(h(x0+εz)−h(x0))
= d(x0)−d(x0)2∇h(x0) ⋅εz+o(εz).

This shows that −d(x0)2∇h(x0) ∈ ∂ d(x0) and completes the proof. ∎

In summary, to establish the comparison principle rigorously, three main issues need to be resolved. The
first, and most fundamental, is of course that u and v cannot be assumed to be differentiable. The second
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is that the spatial variable takes values in Rd
⩾0 rather than the torus. The third is that the spatial variable of

the perturbed difference u−v should not be maximized on the boundary of Rd
⩾0. To tackle the first of these

matters, the variables will be doubled, and rather than optimizing u(t,x)− v(t,x), a function that involves
u(t,x)−v(t′,x′) plus a smooth penalty term that strongly encourages (t,x) and (t′,x′) to stay close together
will be optimized instead. This will naturally provide smooth test functions that touch u and v from above and
below respectively. The second problem, that the variable x lives in an unbounded space, will be tackled by
introducing another “cutoff” function, similar to the function χ used above, but in the space variable. The third
problem, that the difference u−v perturbed by the function χ should be maximized away from the boundary
∂Rd
⩾0, will be handled by introducing yet another cutoff function that is proportional to the reciprocal of the

distance-like function (2.106).

Proposition 2.12 (Comparison principle). Suppose H ∶ Rd → R is a locally Lipschitz and non-decreasing

non-linearity, and let u,v ∈Lunif be a viscosity subsolution and a viscosity supersolution to the Hamilton-Jacobi

equation (2.98), respectively. Given δ0 > 0, introduce the Lipschitz constants

L ∶=max(sup
t⩾0
∥u(t, ⋅)∥Lip,sup

t⩾0
∥v(t, ⋅)∥Lip) and V ∶= sup{∣H(p

′)−H(p)∣
∣p′− p∣ ∣ ∣p∣, ∣p′∣ ⩽ L+δ0}. (2.108)

For every R ∈R and M > 2L, the mapping

(t,x)↦ u(t,x)−v(t,x)−M(∣x∣+Vt −R)+ (2.109)

achieves its supremum at a point in {0}×Rd .

Since the proof of Proposition 2.12 is a bit long, the reader is encouraged to ignore any term related to the
cutoff in space M(∣x∣+Vt−R)+ and its smoothed variants on the first reading, in effect showing the comparison
principle with the unbounded space domain Rd

⩾0 replaced by the compact space Td .

Proof of Proposition 2.12. Suppose for the sake of contradiction that there exists T > 0 with

sup
[0,T]×Rd

⩾0

(u−v−ϕ) > sup
{0}×Rd

⩾0

(u−v−ϕ), (2.110)

where ϕ(t,x) ∶=M(∣x∣+Vt−R)+. The proof proceeds in three steps. First (2.110) is smoothened and perturbed,
then a variable doubling argument is used to obtain a system of inequalities, and finally, this system of
inequalities is contradicted.

Step 1: smoothing and perturbing. Let ε0 ∈ (0,1) be a parameter to be determined, and let θ ∈C∞(R;R) be
an increasing function such that, for every r ∈R,

(r−ε0)+ ⩽ θ(r) ⩽ r+

Introduce the function
Φ(t,x) ∶=Mθ((ε0+ ∣x∣2)

1/2+Vt −R)

defined on R⩾0×Rd
⩾0. The choice of θ and the bound (a+b)+ ⩽ a++b+ imply that

ϕ(t,x) ⩽Φ(t,x)+Mε0 ⩽ ϕ(t,x)+Mε
1/2
0 +Mε0,
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where the second inequality uses that (a+b) 1
2 ⩽ a

1
2 +b

1
2 for a,b > 0. It follows by (2.110) that

sup
{0}×Rd

⩾0

(u−v−Φ) < sup
[0,T]×Rd

⩾0

(u−v−Φ)+Mε0+Mε
1/2
0 ,

so choosing ε0 > 0 small enough guarantees that

sup
[0,T]×Rd

⩾0

(u−v−Φ) > sup
{0}×Rd

⩾0

(u−v−Φ). (2.111)

This is a smoothed version of the hypothesis (2.110). A cutoff function in time and a cutoff function in space
are now also added to ensure that the supremum in (2.111) is achieved away from the boundary of the domain
R⩾0 ×Rd

⩾0. Recall the definition of the distance-like function d ∶Rd
⩾0 →R in (2.106). For small parameters

ε,ε ′,δ ,δ ′ > 0 to be determined, introduce the functions

χ1(t,x) ∶=Φ(t,x)+ ε

T − t
+ε
′t and χ2(t,x) ∶=

δ

d(x) +δ
′∣x∣,

defined on R⩾0×Rd
⩾0. Choosing ε,ε ′,δ ,δ ′ > 0 small enough ensures that

sup
[0,T]×Rd

⩾0

(u−v−χ1−χ2) > sup
{0}×Rd

⩾0

(u−v−χ1−χ2). (2.112)

This is the smoothed and perturbed version of the hypothesis (2.110) that will be used to reach a contradiction.

Step 2: system of inequalities. For each α ⩾ 1, define the function Ψα ∶ [0,T ]×Rd
⩾0 × [0,T ]×Rd

⩾0 ×Rd
⩾0 →

R∪{−∞} by

Ψα(t,x,t′,x′,y) ∶= u(t,x)−v(t′,x′)− α

2
(∣t − t′∣2+ ∣x−x′∣2+ ∣x−y∣2)−χ1(t,x)−χ2(t,y). (2.113)

It is now argued that the function Ψα achieves its supremum at a point (tα ,xα ,t′α ,x
′
α ,yα) which remains

bounded as α tends to infinity with the coordinate yα also staying bounded away from the boundary ∂Rd
⩾0.

To do so, write C < +∞ for a constant whose value might change throughout the argument, and which may
depend on L, M, R, T , V , u(0,0), [u]0, v(0,0) and [v]0. Fix an arbitrary y′ ∈Rd

>0 as well as some x ∈Rd
⩾0 with

∣x∣ > R+1 and α ⩾ 1. The bound Φ(t,x) ⩾M(∣x∣+Vt −R−1)+ reveals that

Ψα(t,x,t′,x′,y) ⩽ u(0,x)−v(0,x′)+ t[u]0+ t′[v]0−
α

2
∣x−x′∣2−Φ(t,x)−δ

′∣y∣

⩽ L(∣x∣+ ∣x′∣)− α

2
∣x−x′∣2−M∣x∣−δ

′∣y∣+C

⩽ (2L−M)∣x∣+(L− α

2
)∣x−x′∣2−δ

′∣y∣+C.

Observe also that the supremum of (2.113) is bounded from below by Ψα(0,y′,0,y′,y′), which does not
depend on α , and that M > 2L. This implies that xα , x′α and yα remain bounded as α tends to infinity, and that

α(∣tα − t′α ∣2+ ∣xα −x′α ∣2+ ∣xα −yα ∣2)+
ε

T − tα
+ δ

d(yα)
≤C. (2.114)

It follows that, up to the extraction of a subsequence, there exist t0 ∈ [0,T ] and x0 ∈ Rd
⩾0 such that tα → t0,
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t′α → t0, xα → x0, x′α → x0 and yα → x0 as α → +∞. By (2.114) and property (ii) in Lemma 2.11, it must be that
t0 ∈ [0,T) and x0 ∈Rd

>0. On the other hand, the semi-continuity of u, v, χ1 and χ2 together with the bounds

sup
[0,T]×Rd

⩾0

(u−v−χ1−χ2) ⩽Ψα(tα ,xα ,t′α ,x
′
α ,yα) ⩽ u(tα ,xα)−v(t′α ,x′α)−χ1(tα ,xα)−χ2(tα ,yα)

imply that
(u−v−χ1−χ2)(t0,x0) = sup

[0,T]×Rd
⩾0

(u−v−χ1−χ2).

By (2.112), it must therefore be that t0 ∈ (0,T) and that tα ,t′α ∈ (0,T) for all α large enough. This means that
(tα ,xα ,t′α ,x

′
α ,yα)α⩾1 is a sequence of quintuples such that Ψα achieves its supremum at (tα ,xα ,t′α ,x

′
α ,yα),

and with tα ,t′α ∈ (0,T) and xα ,x′α ,yα ∈Rd
>0 for α large enough. With this in mind, fix α ⩾ 1 large enough, and

introduce the functions φ ,φ ′ ∈C∞((0,T)×Rd
⩾0;R) defined by

φ(t,x) ∶= v(t′α ,x′α)+
α

2
(∣t − t′α ∣2+ ∣x−x′α ∣2+ ∣x−yα ∣2)+χ1(t,x)+χ2(t,yα),

φ
′(t′,x′) ∶= u(tα ,xα)−

α

2
(∣t′− tα ∣2+ ∣x′−xα ∣2+ ∣xα −yα ∣2)−χ1(tα ,xα)−χ2(tα ,yα).

Since (tα ,xα ,t′α ,x
′
α ,yα) maximizes Ψα , the function u−φ achieves a local maximum at the point (tα ,xα) ∈

R>0 ×Rd
>0, while the function v−φ

′ achieves a local minimum at (t′α ,x′α) ∈ R>0 ×Rd
>0. It follows by the

definition of a viscosity subsolution and supersolution that

(∂tφ −H(∇φ))(tα ,xα) ⩽ 0 and (∂tφ
′−H(∇φ

′))(t′α ,x′α) ⩾ 0. (2.115)

This is the system of inequalities that will be contradicted.

Step 3: reaching a contradiction. A direct computation shows that

(∂tφ −H(∇φ))(tα ,xα) = ε
′+α(tα − t′α)+∂tΦ(tα ,xα)+

ε

(T − tα)2
−H(∇φ(tα ,xα)) (2.116)

and
(∂tφ

′−H(∇φ
′))(t′α ,x′α) = α(tα − t′α)−H(∇φ

′(t′α ,x′α)). (2.117)

To compare these two quantities, the non-decreasingness and local Lipschitz continuity of the non-linearity H

will be used to replace the gradient

∇φ(tα ,xα) = α(xα −x′α)+α(xα −yα)+∇Φ(tα ,xα). (2.118)

by the gradient
∇φ
′(t′α ,x′α) = α(xα −x′α)

in (2.116). With the definition of V in mind, it is first shown that

∣∇φ(tα ,xα)∣ ⩽ L and ∣∇φ
′(t′α ,x′α)∣ ⩽ L. (2.119)

Fix z ∈ Rd and η > 0. Since u−φ achieves a local maximum at (tα ,xα) ∈ R>0 ×Rd
>0, and u is uniformly
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Lipschitz continuous with Lipschitz constant L,

φ(tα ,xα +ηz)−φ(tα ,xα) ⩾ u(tα ,xα +ηz)−u(tα ,xα) ⩾ −ηL∣z∣.

Dividing by η and letting η tend to zero reveals that

∇φ(tα ,xα) ⋅ z ⩾ −L∣z∣.

Choosing z ∶=−∇φ(tα ,xα) gives the first inequality in (2.119); the second inequality is obtained in an identical
manner. These bounds would be sufficient if the term α ∣xα −yα ∣ could be made arbitrarily small. To overcome
this issue, the non-decreasingness of H will be leveraged. Since the function y↦Ψα(tα ,xα ,t′α ,x

′
α ,y) achieves

its maximum at yα ∈Rd
>0, properties (v) and (vi) in Lemma 2.11 imply that

1
δ

d(yα)2(α(yα −xα)+δ
′ yα

∣yα ∣
) ∈ ∂ d(yα) ⊆Rd

⩾0 and d(yα)2∣α(yα −xα)+δ
′ yα

∣yα ∣
∣ ⩽ δ .

Decreasing δ if necessary, and setting pα ∶= δ
′ yα

∣yα ∣ gives a vector pα ∈Rd
⩾0 with ∣pα ∣ = δ

′ as well as

pα −α(xα −yα) ∈Rd
⩾0 and ∣pα −α(xα −yα)∣ ⩽ δ0. (2.120)

To obtain the second bound in this display, after possibly decreasing δ , the fact that (yα)α⩾1 converges to
y0 ∈ Rd

>0 has been combined with property (ii) in Lemma 2.11. Remembering (2.118), and combining the
non-decreasingness of the non-linearity H with (2.120) yields

H(∇φ(tα ,xα)) ⩽H(α(xα −x′α)+ pα +∇Φ(tα ,xα)) ⩽H(∇φ
′(t′α ,x′α))+V δ

′+V ∣∇Φ(tα ,xα)∣.

The second inequality implicitly uses that by (2.118) and (2.119),

∣α(xα −x′α)+ pα +∇Φ(tα ,xα)∣ ⩽ ∣∇φ(tα ,xα)∣+ ∣pα −α(xα −yα)∣ ⩽ L+δ0.

It follows by (2.116) that

(∂tφ −H(∇φ))(tα ,xα) > ε
′+α(tα − t′α)+∂tΦ(tα ,xα)−H(∇φ

′(t′α ,x′α))−V δ
′−V ∣∇Φ(tα ,xα)∣.

A direct computation shows that V ∣∇Φ(tα ,xα)∣ ⩽ ∂tΦ(tα ,xα), so in fact

(∂tφ −H(∇φ))(tα ,xα) > ε
′+α(tα − t′α)−H(∇φ

′(t′α ,x′α))−V δ
′ = (∂ ′t φ −H(∇φ

′))(t′α ,x′α)+ε
′−V δ

′

⩾ ε
′−V δ

′,

where (2.117) and the second inequality in (2.115) have been used. Choosing δ
′ < ε

′/V contradicts the first
inequality in (2.115) and completes the proof. ∎

The comparison principle is now extended to viscosity solutions in L provided that they are initially
Lipschitz continuous. This is done by proving that the Lipschitz semi-norm of the solution to the Hamilton-
Jacobi equation (2.98) is maximized at the initial time. This will give a uniqueness theory for the Hamilton-
Jacobi equation (2.98) on the solution space L.
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Proposition 2.13. If H ∶Rd →R is a locally Lipschitz non-linearity, and f ∈L is a viscosity solution to the

Hamilton-Jacobi equation (2.98), then

sup
t⩾0
∥ f (t, ⋅)∥Lip = ∥ f (0, ⋅)∥Lip. (2.121)

Proof. Let L ∶= ∥ f (0, ⋅)∥Lip denote the Lipschitz semi-norm of the initial condition, and suppose for the sake
of contradiction that there exists T > 0 with

sup
[0,T]×Rd

⩾0×R
d
⩾0

( f (t,x)− f (t,x′)−L∣x−x′∣) > 0 ⩾ sup
Rd
⩾0×R

d
⩾0

( f (0,x)− f (0,x′)−L∣x−x′∣). (2.122)

The proof proceeds in three steps. First (2.122) is perturbed, then a variable doubling argument is used to
obtain a system of inequalities, and finally, this system of inequalities is contradicted.

Step 1: perturbing. Let δ0 > 0 be fixed, and let θ ∈C∞(R;R) be an increasing function such that, for every
r ∈R,

(r−1)+ ⩽ θ(r) ⩽ r+ and ∣θ ′(r)∣ ⩽ 1.

For a constant R > 0 to be chosen and the local Lipschitz constant

V ∶= sup{∣H(p
′)−H(p)∣
∣p′− p∣ ∣ ∣p∣, ∣p′∣ ⩽ L+δ0},

introduce the function
Φ(t,x) ∶= δ0θ((1+ ∣x∣2)1/2+Vt −R)

defined on R⩾0×Rd
⩾0. For small parameters ε,ε ′ > 0 to be determined, introduce the functions

χ1(t,x) ∶=Φ(t,x)+ ε

T − t
+ε
′t and χ2(t′,x′) ∶=Φ(t′,x′)+ ε

T − t′

defined on R⩾0×Rd
⩾0. Choosing R > 0 large enough and ε,ε ′ > 0 small enough ensures that

sup
[0,T]×Rd

⩾0×R
d
⩾0

( f (t,x)− f (t,x′)−L∣x−x′∣−χ1(t,x)−χ2(t,x′))

> 0 ⩾ sup
Rd
⩾0×R

d
⩾0

( f (0,x)− f (0,x′)−L∣x−x′∣−χ1(0,x)−χ2(0,x′)). (2.123)

This is the perturbed version of the hypothesis (2.122) that will be used to reach a contradiction.

Step 2: system of inequalities. For each α ⩾ 1, define the function Ψα ∶R⩾0×Rd
⩾0×R⩾0×Rd

⩾0→R∪{−∞} by

Ψα(t,x,t′,x′) ∶= f (t,x)− f (t′,x′)−L∣x−x′∣− α

2
∣t − t′∣2−χ1(t,x)−χ2(t′,x′). (2.124)

It is now argued that the function Ψα achieves its supremum at a point (tα ,xα ,t′α ,x
′
α) which remains bounded

as α tends to infinity. To do so, write C < +∞ for a constant whose value might change throughout the
argument, and which may depend on δ0, R, T , V , f (0,0) and [ f ]0. For every x ∈Rd

⩾0 with ∣x∣ > R+1 and α ⩾ 1,
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the bound Φ(t,x) ⩾ δ0(∣x∣+Vt −R−1) reveals that

Ψα(t,x,t′,x′) ⩽ f (0,x)− f (0,x′)+(t + t′)[ f ]0−L∣x−x′∣−Φ(t,x)−Φ(t′,x′) ⩽ −δ0(∣x∣+ ∣x′∣)+C.

Observe also that the supremum of (2.124) is bounded from below by Ψα(0,0,0,0), which does not depend
on α . This implies that xα and x′α remain bounded as α tends to infinity, and that

α ∣tα − t′α ∣2+
ε

T − tα
⩽C. (2.125)

It follows that, up to the extraction of a subsequence, there exist t0 ∈ [0,T ] and x0,x′0 ∈Rd
⩾0 such that tα → t0,

t′α → t0, xα → x0 and x′α → x′0 as α → +∞. By (2.125) it must be that t0 ∈ [0,T). On the other hand, the
continuity of f together with the fact that for all (t,x,x′) ∈R⩾0×Rd

⩾0×Rd
⩾0,

f (tα ,xα)− f (tα ,x′α)−L∣xα −x′α ∣−χ1(tα ,xα)−χ2(tα ,x′α) ⩾Ψα(tα ,xα ,t′α ,x
′
α) ⩾Ψα(t,x,t,x′),

implies that

f (t0,x0)− f (t0,x′0)−L∣x0−x′0∣−χ1(t0,x0)−χ2(t0,x′0)
⩾ sup
[0,T]×Rd

⩾0×R
d
⩾0

( f (t,x)− f (t,x′)−L∣x−x′∣−χ1(t,x)−χ2(t,x′)) (2.126)

By (2.123) it must therefore be that t0 > 0. Moreover, if it were the case that x0 = x′0, then the left side of
the inequality (2.123) would be bounded from above by −χ1(t0,x0)−χ2(t0,x0) ⩽ 0; however, this quantity
is strictly positive. This means that tα ,t′α ∈ (0,T) and xα ≠ x′α for α large enough, so (tα ,xα ,t′α ,x

′
α)α⩾1 is a

sequence of quadruples such that Ψα achieves its supremum at (tα ,xα ,t′α ,x
′
α), and with tα ,t′α ∈ (0,T) and

xα ≠ x′α for α large enough. With this in mind, fix α ⩾ 1 large enough, and introduce the smooth functions
φ ,φ ′ ∈C∞((0,T)×Rd

⩾0;R) defined by

φ(t,x) ∶= f (t′α ,x′α)+L∣x−x′α ∣+
α

2
∣t − t′α ∣2+χ1(t,x)+χ2(t′α ,x′α),

φ
′(t′,x′) ∶= f (tα ,xα)−L∣x′−xα ∣−

α

2
∣t′− tα ∣2−χ1(tα ,xα)−χ2(t′,x′).

Since (tα ,xα ,t′α ,x
′
α) maximizes Ψα , the function f −φ achieves a local maximum at (tα ,xα) ∈R>0×Rd

⩾0,
while f −φ

′ achieves a local minimum at (t′α ,x′α) ∈R>0×Rd
⩾0. It follows by the definition of a viscosity

solution that
(∂tφ −H(∇φ))(tα ,xα) ⩽ 0 and (∂tφ

′−H(∇φ
′))(t′α ,x′α) ⩾ 0. (2.127)

This is the system of inequalities that will be contradicted.

Step 3: reaching a contradiction. A direct computation shows that

(∂tφ −H(∇φ))(tα ,xα) = ε
′+α(tα − t′α)+∂tΦ(tα ,xα)+

ε

(T − tα)2
−H(∇φ(tα ,xα)), (2.128)

and
(∂tφ

′−H(∇φ
′))(t′α ,x′α) = α(tα − t′α)−∂tΦ(t′α ,x′α)−

ε

(T − t′α)2
−H(∇φ

′(t′α ,x′α)). (2.129)

To compare these two quantities, the non-decreasingness and local Lipschitz continuity of the non-linearity H
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will be used to replace the gradient

∇φ(tα ,xα) = L
xα −x′α
∣xα −x′α ∣

+∇Φ(tα ,xα)

by the gradient

∇φ
′(t′α ,x′α) = L

xα −x′α
∣xα −x′α ∣

−∇Φ(t′α ,x′α)

in (2.128). Since ∣θ ′∣ ⩽ 1, a direct computation shows that ∣∇Φ∣ ⩽ δ0. Together with the definition of V and the
fact that xα ≠ x′α , this implies that

H(∇φ(tα ,xα)) ⩽H(∇φ
′(t′α ,x′α))+V ∣∇Φ(tα ,xα)∣+V ∣∇Φ(t′α ,x′α)∣.

It follows by (2.128) and (2.129) that

(∂tφ−H(∇φ))(tα ,xα)
> ε
′+∂tΦ(tα ,xα)−V ∣∇Φ(tα ,xα)∣+∂tΦ(t′α ,x′α)−V ∣∇Φ(t′α ,x′α)∣+(∂tφ

′−H(∇φ
′))(t′α ,x′α)

A direct computation shows that V ∣∇Φ(tα ,xα)∣ ⩽ ∂tΦ(tα ,xα) and V ∣∇Φ(t′α ,x′α)∣ ⩽ ∂tΦ(t′α ,x′α), so in fact

(∂tφ −H(∇φ))(tα ,xα) > ε
′+(∂tφ

′−H(∇φ
′))(t′α ,x′α) ⩾ ε

′,

where the second inequality in (2.127) has been used. This contradicts the first inequality in (2.127) and
completes the proof. ∎

Corollary 2.14. If H ∶Rd →R is a locally Lipschitz and non-decreasing non-linearity, and u,v ∈Lunif are a

viscosity subsolution and a viscosity supersolution to the Hamilton-Jacobi equation (2.98), respectively, then

sup
R⩾0×Rd

⩾0

(u−v) = sup
{0}×Rd

⩾0

(u−v). (2.130)

Proof. Suppose for the sake of contradiction that there is a point (t∗,x∗) ∈R>0×Rd
⩾0 such that

(u−v)(t∗,x∗) > sup
{0}×Rd

⩾0

(u−v). (2.131)

In the notation of Proposition 2.12, choose M ∶= 2L+1 and R ∶= ∣x∗∣+Vt∗, so that

u(t∗,x∗)−v(t∗,x∗)−M(∣x∗∣+Vt∗−R)+ = (u−v)(t∗,x∗).

By the assumption (2.131), this is strictly greater than

sup
x∈Rd
(u(0,x)−v(0,x)) ⩾ sup

x∈Rd
(u(0,x)−v(0,x)−M(∣x∣−R)+).

This contradicts Proposition 2.12 and thus completes the proof. ∎

Corollary 2.15. If H ∶Rd →R is a locally Lipschitz and non-decreasing non-linearity, and u,v ∈L are viscosity

solutions to the Hamilton-Jacobi equation (2.98) with the same initial condition u(0, ⋅) = v(0, ⋅), then u = v.
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Proof. The definition of the space L ensures that u and v have Lipschitz initial conditions, so Proposition
2.13 implies that u,v ∈ Lunif. Applying Corollary 2.14 with u treated as a viscosity subsolution and v as a
viscosity supersolution reveals that u ⩽ v. A symmetric argument shows that v ⩽ u, and therefore that u = v.
This completes the proof. ∎

This settles the uniqueness side of the well-posedness theory for the Hamilton-Jacobi equation (2.98) on
the solution space L. The matter of existence is now discussed.

2.4.2 Existence of solutions on Rd
⩾0

The existence of solutions to the Hamilton-Jacobi equation (2.98) can be established using the classical Perron
method [17, 39, 48]. Full details of the Perron method will be provided; although the arguments will certainly
be seen as classical by experts, the hope is that the reader will find them helpful. This section closely follows
Chapter 5 in [17]. It will be convenient to fix a positive constant

K > sup{∣H(y)∣ ∣ y ∈Rd with ∣y∣ ⩽ ∥ψ∥Lip}, (2.132)

and to define the continuous functions u± ∶R⩾0×Rd
⩾0→R by

u±(t,x) ∶=ψ(x)±Kt. (2.133)

The importance of these functions is that they are a viscosity subsolution and a viscosity supersolution to the
Hamilton-Jacobi equation (2.98).

Lemma 2.16. If ψ ∶Rd
⩾0→R is a Lipschitz initial condition, and H ∶Rd →R is a locally Lipschitz and non-

decreasing non-linearity, then the functions u− and u+ defined in (2.133) are a subsolution and a supersolution

to the Hamilton-Jacobi equation (2.98), respectively.

Proof. Consider a smooth function φ ∈C∞(R>0×Rd
⩾0;R) with the property that u−−φ has a local maximum

at a point (t∗,x∗) ∈R>0×Rd
⩾0. For any x ∈Rd

⩾0 and ε > 0,

φ(t∗,x∗+εx)−φ(t∗,x∗) ⩾ u−(t∗,x∗+εx)−u−(t∗,x∗) =ψ(x∗+εx)−ψ(x∗) ⩾ −ε∥ψ∥Lip∣x∣

Dividing by ε and letting ε tend to zero shows that for all x ∈Rd
⩾0,

∇φ(t∗,x∗) ⋅x ⩾ −∥ψ∥Lip∣x∣ = p ⋅x

where the vector p ∶= − ∥ψ∥Lip
∣x∣ x has been introduced. It follows that ∇φ(t∗,x∗) − p ∈ Rd

⩾0, so the non-
decreasingness of H and the fact that t∗ > 0 imply that

(∂tφ −H(∇φ))(t∗,x∗) ⩽ ∂tu−(t∗,x∗)−H(p) = −K−H(p). (2.134)

Remembering the definition of K shows that u− is a subsolution to the Hamilton-Jacobi equation (2.98). An
identical argument shows that u+ is a supersolution to the Hamilton-Jacobi equation (2.98). This completes
the proof. ∎
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The Perron method consists of proving that the function f ∶R⩾0×Rd
⩾0→R defined by

f (t,x) ∶= sup
u∈S

u(t,x) (2.135)

for the set
S ∶= {u ∶R⩾0×Rd

⩾0→R ∣ u− ⩽ u ⩽ u+ and u is a subsolution to (2.98)} (2.136)

is a viscosity solution to the Hamilton-Jacobi equation (2.98). See Appendix A.4 for the definitions and
basic properties of lower and upper semi-continuous envelopes of a function u, which are denoted by u and u

respectively. The strategy will be to show that f is a viscosity subsolution to the Hamilton-Jacobi equation
(2.98) while f is a viscosity supersolution to this equation. The comparison principle in Corollary 2.14 will
then imply that f is a viscosity solution to the Hamilton-Jacobi equation (2.98). Throughout this section,

Br(t∗,x∗) ∶= {(t,x) ∈R>0×Rd
⩾0 ∣ ∣t − t∗∣2+ ∣x−x∗∣2 ⩽ r2} (2.137)

will denote the Euclidean ball of radius r > 0 centred at the point (t∗,x∗) ∈R⩾0×Rd
⩾0. It is readily verified that

f is a subsolution.

Lemma 2.17. If H ∶Rd →R is a locally Lipschitz non-linearity, then the upper semi-continuous envelope f of

the function (2.135) is a viscosity subsolution to the Hamilton-Jacobi equation (2.98). In particular, f ∈ S .

Proof. Consider a smooth function φ ∈C∞(R>0×Rd
⩾0;R) with the property that f − φ has a strict local

maximum at the point (t∗,x∗) ∈R>0×Rd
⩾0. To be more precise, suppose that

( f −φ)(t∗,x∗) > ( f −φ)(t,x)

for all (t,x) ∈ Br(t∗,x∗)∖{(t∗,x∗)}. By definition of the upper semi-continuous envelope and continuity of φ ,
it is possible to find points (tn,xn)n⩾1 ⊆ Br(t∗,x∗) converging to (t∗,x∗) such that, for every n ⩾ 1,

( f −φ)(tn,xn) ⩾ ( f −φ)(t∗,x∗)− 1
n
.

Similarly, by definition of f , it is possible find a sequence of functions (un)n⩾1 ⊆ S such that, for every n ⩾ 1,

f (tn,xn)−
1
n
⩽ un(tn,xn).

If (t′n,x′n) ∈ Br(t∗,x∗) denotes the maximum of un−φ on Br(t∗,x∗), then the fact that un is a subsolution to
(2.98) implies that

(∂tφ −H(∇φ))(t′n,x′n) ⩽ 0. (2.138)

Notice that un −φ achieves its maximum on the compact set Br(t∗,x∗) as it is an upper semi-continuous
function by Proposition A.13. Remembering that un ⩾ un reveals that

( f −φ)(t′n,x′n) ⩾ (un−φ)(t′n,x′n) ⩾ (un− f )(tn,xn)+( f −φ)(tn,xn) ⩾ ( f −φ)(t∗,x∗)− 2
n
,

where the first inequality uses that un ⩽ f as un ⩽ f . If (t′∞,x′∞) denotes any subsequential limit of (t′n,x′n),
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then the upper semi-continuity of f established in Proposition A.13 gives

( f −φ)(t′∞,x′∞) ⩾ ( f −φ)(t∗,x∗).

Since (t∗,x∗) is a strict local maximum of f −φ on Br(t∗,x∗), this implies that (t′∞,x′∞) = (t∗,x∗). Letting n

tend to infinity in (2.138) shows that f is viscosity subsolution to the Hamilton-Jacobi equation (2.98). It is
clear by the definition of f in (2.135) that u− ⩽ f ⩽ u+, so f ∈ S. This completes the proof. ∎

Showing that f is a viscosity supersolution requires more work, and relies upon the following modification
of Lemma 2.12 in [17].

Lemma 2.18. If H ∶ Rd → R is a locally Lipschitz and non-decreasing non-linearity, and if u ∈ S is such

that u is not a viscosity supersolution to the Hamilton-Jacobi equation (2.98), then there exist v ∈ S and

(t,x) ∈R>0×Rd
⩾0 with v(t,x) > u(t,x).

Proof. The assumption that u is not a viscosity supersolution to the Hamilton-Jacobi equation (2.98) gives
φ ∈C∞(R>0×Rd

⩾0;R) and (t∗,x∗) ∈ R>0 ×Rd
⩾0 with the property that u−φ has a strict local minimum at

(t∗,x∗) but (∂tφ −H(∇φ))(t∗,x∗) < 0. To be more precise, there exist ε > 0 and r > 0 such that for all
(t,x) ∈ Br(t∗,x∗)∖{(t∗,x∗)},

(u−φ)(t,x) > (u−φ)(t∗,x∗), (2.139)

and for all (t,x) ∈ Br(t∗,x∗),
(∂tφ −H(∇φ))(t,x) < −ε (2.140)

Notice that u(t∗,x∗) < u+(t∗,x∗). Indeed, if this were not the case, the assumption that u ∈ S would imply that
u(t∗,x∗) = u+(t∗,x∗), and therefore, for (t,x) ∈ Br(t∗,x∗)∖{(t∗,x∗)},

(u+−φ)(t,x) ⩾ (u−φ)(t,x) > (u−φ)(t∗,x∗) = (u+−φ)(t∗,x∗).

In other words, the supersolution u+ would be such that u+−φ achieves a local maximum at (t∗,x∗). This
would contradict (2.140). Decreasing r > 0 if necessary and using the continuity of φ and u+, it is therefore
possible to find δ > 0 such that for all (t,x) ∈ Br(t∗,x∗),

u(t∗,x∗)+δ < u+(t∗,x∗)−δ ⩽ u+(t,x) and φ(t,x) ⩽ φ(t∗,x∗)+ δ

2
. (2.141)

With this in mind, given ε
′ < 1

4 min(r2,δ), introduce the function

w(t,x) ∶= φ(t,x)+ε
′− ∣x−x∗∣2− ∣t − t∗∣2+(u−φ)(t∗,x∗),

and define v ∶R⩾0×Rd
⩾0→R by

v(t,x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

max(u(t,x),w(t,x)) if (t,x) ∈ Br(t∗,x∗),
u(t,x) if (t,x) ∉ Br(t∗,x∗).

It is clear from the assumption u ∈ S that v ⩾ u ⩾ u−. Moreover, for (t,x) ∈ Br(t∗,x∗),

w(t,x) ⩽ φ(t∗,x∗)+ δ

2
+ δ

2
+(u−φ)(t∗,x∗) = u(t∗,x∗)+δ ⩽ u+(t,x),
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where (2.141) and the fact that ε
′ ⩽ δ/2 have been used. Together with the assumption u ∈ S, this shows that

v ⩽ u+, and therefore that u− ⩽ v ⩽ u+. Furthermore, the definition of the lower semi-continuous envelope gives
points (tn,xn)n⩾1 ⊆ Br(t∗,x∗) with (tn,xn)→ (t∗,x∗) and u(tn,xn)→ u(t∗,x∗). Since v ⩾ w on Br(t∗,x∗), it
follows that

liminf
n→+∞

v(tn,xn) ⩾ liminf
n→+∞

w(tn,xn) = φ(t∗,x∗)+ε
′+(u−φ)(t∗,x∗) = u(t∗,x∗)+ε

′.

This means that for any n large enough,

v(tn,xn) ⩾ u(tn,xn)+
ε
′

2
> u(tn,xn),

so there exists a point (t,x) ∈R>0×Rd
⩾0 with v(t,x) > u(t,x). All that remains is to verify that v is a subsolution

to the Hamilton-Jacobi equation (2.98). Consider β ∈C∞(R>0×Rd
⩾0;R) and (t0,x0) ∈ R>0 ×Rd

⩾0 with the
property that v−β has a strict local maximum on Br′(t0,x0) at (t0,x0). The definition of the upper semi-
continuous envelope gives points (tn,xn)n⩾1 ⊆ Br′(t0,x0) converging to (t0,x0) with

v(tn,xn) ⩾ v(t0,x0)−
1
n
. (2.142)

Since v(tn,xn) is either equal to w(tn,xn) or u(tn,xn), passing to a subsequence, it is possible to assume that
v(tn,xn) =w(tn,xn) for all n ⩾ 1 or that v(tn,xn) = u(tn,xn) for all n ⩾ 1. These two cases are treated separately.

Case 1: v(tn,xn) =w(tn,xn) for all n ⩾ 1. In this case, it must be that (tn,xn) ∈ Br(t∗,x∗) for all n ⩾ 1. Indeed,
for (t,x) ∉ Br/2(t∗,x∗),

(w−u)(t,x) ⩽ (w−u)(t,x) ⩽ (φ −u)(t,x)+ε
′− r2

4
+(u−φ)(t∗,x∗) < ε

′− r2

4
⩽ 0,

where (2.139) and the fact that ε
′ < r2/4 have been used. If (t′n,x′n) denotes the maximum of w−β on

Br(t∗,x∗)∩Br′(t0,x0), arguing as in the proof of Lemma 2.16 shows that

∂tβ(t′n,x′n) = ∂tw(t′n,x′n) = ∂tφ(t′n,x′n)−2(t′n− t∗),
∇β(t′n,x′n) ⩾∇w(t′n,x′n) =∇φ(t′n,x′n)−2(x′n−x∗).

It follows by local Lipschitz continuity and non-decreasingness of the non-linearity H as well as (2.140) that
for some large enough constant V ,

(∂tβ −H(∇β))(t′n,x′n) ⩽ ∂tφ(t′n,x′n)−H(∇φ(t′n,x′n))+2∣t′n− t∗∣+V ∣x′n−x∗∣
⩽ −ε +2∣t′n− t∗∣+V ∣x′n−x∗∣.

Decreasing r if necessary, it is therefore possible to ensure that (∂tβ −H(∇β))(t′n,x′n) ⩽ 0. To leverage this
bound, observe that by (2.142), the continuity of β , and the fact that (tn,xn) converges to (t0,x0),

(v−β)(t′n,x′n) ⩾ (w−β)(t′n,x′n) ⩾ (w−β)(tn,xn) = (v−β)(tn,xn) ⩾ (v−β)(t0,x0)−
2
n
.
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In particular, any subsequential limit (t′∞,x′∞) of (t′n,x′n) must satisfy

(v−β)(t′∞,x′∞) ⩾ (v−β)(t0,x0) and (∂tβ −H(∇β))(t′∞,x′∞) ⩽ 0.

Since (t0,x0) is a strict local maximum of v−β on Br′(t0,x0), the first of these inequalities shows that
(t′∞,x′∞) = (t0,x0) while the second implies the required subsolution criterion.

Case 2: v(tn,xn) = u(tn,xn) for all n ⩾ 1. In this case, let (t′n,x′n) denote the maximum of u−β on Br′(t0,x0).
Since u is a viscosity subsolution to the Hamilton-Jacobi equation (2.98),

(∂tβ −H(∇β))(t′n,x′n) ⩽ 0.

On the other hand, the inequality v ⩾ u and (2.142) reveal that

(v−β)(t′n,x′n) ⩾ (u−β)(t′n,x′n) ⩾ (u−β)(tn,xn) ⩾ (u−β)(tn,xn) = (v−β)(tn,xn)

⩾ (v−β)(t0,x0)−
1
n
,

so any subsequential limit (t′∞,x′∞) of (t′n,x′n) must satisfy

(v−β)(t′∞,x′∞) ⩾ (v−β)(t0,x0) and (∂tβ −H(∇β))(t′∞,x′∞) ⩽ 0.

Since (t0,x0) is a strict local maximum of v−β on Br′(t0,x0), the first of these inequalities shows that
(t′∞,x′∞) = (t0,x0) while the second implies the required subsolution criterion. This completes the proof. ∎

Corollary 2.19. If H ∶Rd →R is a locally Lipschitz and non-decreasing non-linearity, then the lower semi-

continuous envelope f of the function (2.135) is a viscosity supersolution to the Hamilton-Jacobi equation

(2.98).

Proof. Suppose for the sake of contradiction that f is not a supersolution to the Hamilton-Jacobi equation
(2.98). Combining Lemmas 2.17 and 2.18 gives a function v ∈ S and a point (t,x) ∈R>0×Rd

⩾0 with v(t,x) >
f (t,x). The contradiction

f (t,x) = sup
u∈S

u(t,x) ⩾ v(t,x) > f (t,x)

completes the proof. ∎

Together with Lemma 2.17, the comparison principle in Corollary 2.14, and the Lipschitz bound in
Proposition 2.13, this result allows one to establish the well-posedness of the Hamilton-Jacobi equation (2.98).

Proposition 2.20. If ψ ∶Rd
⩾0 →R is a Lipschitz initial condition, and H ∶Rd →R is a locally Lipschitz and

non-decreasing non-linearity, then the Hamilton-Jacobi equation (2.98) admits a unique viscosity solution

f ∈L subject to the initial condition ψ . Moreover,

sup
t>0
∥ f (t, ⋅)∥Lip = ∥ψ∥Lip. (2.143)

Proof. Denote by f the function defined in (2.135). Combining Lemma 2.17 and Corollary 2.19 shows that f

is a viscosity subsolution to the Hamilton-Jacobi equation (2.98) while f is a viscosity supersolution to this
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equation. By Proposition A.13 and continuity of u− and u+,

u− ⩽ f ⩽ f ⩽ f ⩽ u+.

Moreover, any function h ∶R⩾0×Rd
⩾0→R with u− ⩽ h ⩽ u+ satisfies the bounds

ψ(x) = u−(0,x) ⩽ h(0,x) ⩽ u+(0,x) =ψ(x),
h(t,x)−h(0,x) ⩽ u+(t,x)−ψ(x) =Kt,

h(0,x)−h(t,x) ⩽ψ(x)−u−(t,x) ⩽Kt,

h(t,x)−h(t,x′) ⩽ u+(t,x)−u−(t,x′) =ψ(x)−ψ(x′) ⩽ ∥ψ∥Lip∣x−x′∣,
h(t,x)−h(t,x′) ⩾ u−(t,x)−u+(t,x′) =ψ(x)−ψ(x′) ⩾ −∥ψ∥Lip∣x−x′∣,

for all t > 0 and every x,x′ ∈ Rd
⩾0. In particular, it belongs to the solution space Lunif. This means that

f , f , f ∈ Lunif. It follows by the comparison principle in Corollary 2.14 that f ⩽ f . Since f ⩽ f ⩽ f by
Proposition A.13, it must be that f = f = f . In particular, the function f ∈L is a continuous viscosity solution
to the Hamilton-Jacobi equation (2.98). The uniqueness of such a viscosity solution is guaranteed by Corollary
2.15. Recalling Proposition 2.13 gives the Lipschitz bound (2.143) and completes the proof. ∎

This settles the well-posedness theory for the Hamilton-Jacobi equation (2.98) on the solution space L.
The non-decreasingness of the non-linearity H is now leveraged to show that solutions to (2.80) and (2.98)
coincide. This allows translation of the well-posedness theory just established for (2.98) into a well-posedness
theory for the Hamilton-Jacobi equation (2.80), thereby proving Proposition 2.9.

2.4.3 Equivalence of solutions on Rd
⩾0 and Rd

>0

The notion of solution to the Hamilton-Jacobi equation (2.98) does not require the imposition of a boundary
condition. Intuitively, this is possible because the characteristic lines always go towards the boundary as t

increases rather than away from it, and it suggests that the boundary can simply be ignored. In other words,
solutions to the Hamilton-Jacobi equations (2.98) and (2.80) should coincide. To show that this is indeed the
case, one can argue as in Proposition 2.1 of [33] which is inspired by [43, 104]. The main difference between
[33] and [43, 104] is in the definition of the distance-like function (2.106) to the boundary of the domain on
which the Hamilton-Jacobi equation is defined.

Proposition 2.21. If H ∶Rd →R is a locally Lipschitz and non-decreasing non-linearity, then a continuous

function u ∶R⩾0×Rd
⩾0→R is a viscosity subsolution to the Hamilton-Jacobi equation (2.98) if and only if it

is a viscosity subsolution to the Hamilton-Jacobi equation (2.80). An identical statement holds for viscosity

supersolutions.

Proof. The argument for viscosity subsolutions and viscosity supersolutions being almost identical, the focus
is exclusively on the case of viscosity subsolutions. To begin with, suppose that u is a viscosity subsolution to
the Hamilton-Jacobi equation (2.98), and let φ ∈C∞(R>0×Rd

>0;R) be a function with the property that u−φ

has a local maximum at (t∗,x∗) ∈R>0×Rd
>0. After modifying φ outside a small enough neighbourhood of

(t∗,x∗) so that it becomes a smooth function defined on the larger domain R>0×Rd
⩾0, apply the subsolution

criterion for (2.98) to obtain the result.
Conversely, suppose that u is a continuous viscosity subsolution to the Hamilton-Jacobi equation (2.80),

and consider a smooth function φ ∈C∞(R>0×Rd
⩾0;R) with the property that u−φ has a local maximum
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at (t∗,x∗) ∈R>0×Rd
⩾0. If x∗ ∈Rd

>0 there is nothing to prove, so assume that x∗ ∈ ∂Rd
⩾0. Perturbing the test

function φ by a small quadratic function if necessary, suppose further that (t∗,x∗) is a strict local maximum of
u−φ . To be more precise, assume that

u(t,x)−φ(t,x) < u(t∗,x∗)−φ(t∗,x∗) (2.144)

for any (t,x) other than (t∗,x∗) in the closure of the open neighbourhood

Or ∶= (t∗− r,t∗+ r)×(Br(x∗)∩Rd
>0) ⊆R>0×Rd

>0.

The proof of the subsolution criterion for (2.98) now proceeds in three steps. First, it is shown that there
exists an almost maximizer of u−φ in Or, then a variable doubling argument is used to obtain a system of
inequalities, and finally, this system of inequalities is leveraged to establish the required subsolution criterion.

Step 1: almost maximizer of u−φ in Or. Recall the definition of the distance-like function d ∶Rd
⩾0 →R in

(2.106). For a small parameter ε > 0 to be determined, introduce the function

ψε(s,y) ∶= u(s,y)−φ(s,y)− ε

d(y)

defined on R⩾0 ×Rd
⩾0. Since ψε is upper semi-continuous with values in R∪ {−∞}, it is maximized on

the compact set Or at some point (sε ,yε) ∈Or. The strict inequality (2.144) implies that choosing ε > 0
small enough, it is actually possible to ensure that (sε ,yε) ∈ Or. Indeed, the continuity of u− φ gives
(t,x) ∈Or independent of ε > 0 such that for ε > 0 small enough and (s,y) ∈Or with s ∈ {t∗− r,t∗+ r} or
y ∈ ∂Br(x∗)∩Rd

⩾0,
ψε(s,y) <ψε(t,x).

Due to the term ε/d(y) in the definition of ψε , this inequality extends to all (s,y) ∈ ∂Or, thus showing that
(sε ,yε) ∈Or.

Step 2: system of inequalities. Fix a smooth function ζε ∶R×Rd → [0,1] with

suppζε ⊆Or and ζε(sε ,yε) = 1, (2.145)

and for each θ > 0 define the θ -modulus of continuity of u on Or,

ωu(θ) ∶= sup{∣u(t,x)−u(s,y)∣ ∣ (t,x),(s,y) ∈Or and ∣t − s∣2+ ∣x−y∣2 ⩽ θ
2}.

Given a small parameter δ > 0 that will eventually be sent to zero, use the uniform continuity of u on the
compact set Or to find θ = θ(δ) > 0 with

ωu(θ) < δ . (2.146)

Define the function Ψε,δ ,θ ∶Or ×Or →R by

Ψε,δ ,θ (t,x,s,y) ∶= u(t,x)−φ(s,y)− ε

d(y) −
2Mu

θ 2 (∣t − s∣2+ ∣x−y∣2)+δζε(s,y),

where Mu ∶= supOr
∣u∣. It is now argued that the function Ψε,δ ,θ achieves its supremum at a point (t0,x0,s0,y0) ∈

Or×Or. Given (t,x,s,y) ∈Or ×Or with ∣t − s∣2+ ∣x−y∣2 ⩽ θ
2, the triangle inequality and the definition of the
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modulus of continuity reveal that

Ψε,δ ,θ (t,x,s,y) ⩽ωu(θ)+u(s,y)−φ(s,y)− ε

d(y) +δζε(s,y) =ωu(θ)+ψε(s,y)+δζε(s,y).

On the other hand, given (t,x,s,y) ∈Or ×Or with ∣t − s∣2+ ∣x−y∣2 > θ
2, the triangle inequality, the definition

of Mu, and the non-negativity of the modulus of continuity imply that

Ψε,δ ,θ (t,x,s,y) ⩽ u(s,y)−φ(s,y)− ε

d(y) +δζε(s,y) ⩽ωu(θ)+ψε(s,y)+δζε(s,y).

It follows that for every (t,x) ∈Or and (s,y) ∈Or ∖ suppζε ,

Ψε,δ ,θ (t,x,s,y) ⩽ωu(θ)+ψε(sε ,yε)+δζε(s,y) =ωu(θ)+Ψε,δ ,θ (sε ,yε ,sε ,yε)−δ

<Ψε,δ ,θ (sε ,yε ,sε ,yε),

where (2.145) and (2.146) have been used. It must therefore be that (s0,y0) ∈ suppζε ⊆Or. To show that
(t0,x0) also belongs to this open set, suppose that ∣t0 − s0∣2 + ∣x0 −y0∣2 > θ

2. The triangle inequality and the
definition of Mu ensure that

Ψε,δ ,θ (t0,x0,s0,y0) ⩽ u(t0,x0)−φ(s0,y0)−
ε

d(y0)
−2Mu+δζε(s0,y0) ⩽Ψε,δ ,θ (s0,y0,s0,y0),

so, up to replacing (t0,x0) with (s0,y0), assume without loss of generality that

∣t0− s0∣2+ ∣x0−y0∣2 ⩽ θ
2. (2.147)

Decreasing θ if necessary and recalling that Or is open shows that indeed (t0,x0,s0,y0) ∈Or×Or. With this
in mind, introduce the functions ϕ ∈C∞(R>0×Rd

>0;R) and h ∈C∞(R>0;R) defined by

ϕ(t,x) ∶= φ(s0,y0)+
ε

d(y0)
+ 2Mu

θ 2 (∣t − s0∣2+ ∣x−y0∣2)+δζε(s0,y0),

h(y) ∶= 1
ε
(u(t0,x0)−φ(s0,y)−

2Mu

θ 2 (∣t0− s0∣2+ ∣y−x0∣2)+δζε(s0,y)).

Since (t0,x0,s0,y0) maximizes Ψε,δ ,θ , the function u−ϕ achieves a local maximum at the point (t0,x0) ∈
R>0 ×Rd

>0, the function y↦ h(y)− 1
d(y) achieves a local maximum at the point y0 ∈ R>0, and the function

s↦Ψε,δ ,θ (t0,x0,s,y0) achieves a local maximum at the point t0 ∈R>0. It follows by the definition of a viscosity
subsolution and property (vi) in Lemma 2.11 that

(∂tϕ −H(∇ϕ))(t0,x0) ⩽ 0, −d(y0)2∇h(y0) ∈ ∂ d(y0) and ∂sΨε,δ ,θ (t0,x0,s0,y0) = 0. (2.148)

This is the system of inequalities that will be leveraged to verify the subsolution criterion for φ at the contact
point (t∗,x∗).

Step 3: subsolution criterion. A direct computation shows that

(∂tϕ −H(∇ϕ))(t0,x0) =
4Mu

θ 2 (t0− s0)−H(
4Mu

θ 2 (x0−y0)) ⩽ 0, (2.149)
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and

−d(y0)2∇h(y0) =
d(y0)2

ε
(∇φ(s0,y0)+

4Mu

θ 2 (y0−x0)−δζε(s0,y0)) ∈ ∂ d(y0).

Invoking property (v) in Lemma 2.11 gives p ∈Rd
⩾0 with

4Mu

θ 2 (x0−y0) =∇φ(s0,y0)− p−δζε(s0,y0),

Together with (2.149) and the non-decreasingness of the non-linearity H, this implies that

4Mu

θ 2 (t0− s0)−H(∇φ(s0,y0)−δζε(s0,y0)) ⩽ 0.

Another direct computation reveals that

−∂tΨε,δ ,θ (t0,x0,s0,y0) = ∂sφ(s0,y0)−
4Mu

θ 2 (t0− s0)−δ∂tζε(s0,y0) = 0,

so in fact,
∂tφ(s0,y0)−H(∇φ(s0,y0)−δζε(s0,y0))−δ∂tζε(s0,y0) ⩽ 0. (2.150)

Recalling that (s0,y0) ∈ suppζε depends on ε,δ and θ , and that θ = θ(δ) was chosen small enough in terms
of δ , one would now like to let θ , then δ , and finally ε tend to zero to establish the subsolution criterion at the
contact point (t∗,x∗) ∈R>0×∂Rd

⩾0. Denote by (t1,x1) ∈ suppζε ⊆Or and (s1,y1) ∈ suppζε ⊆Or subsequential
limits of the sequences (t0,x0) and (s0,y0) as θ and then δ tend to zero. The bound (2.147) ensures that s1 = t1
and y1 = x1. On the other hand, the fact that for (t,x) ∈Or,

u(t0,x0)−φ(s0,y0)−
ε

d(y0)
+δζε(s0,y0) ⩾Ψε,δ ,θ (t0,x0,s0,y0) ⩾ψε(t,x)+δζε(t,x),

and the continuity of u,φ ,d, and ζε , imply that for all (t,x) ∈Or,

u(t1,x1)−φ(t1,x1) ⩾ u(t1,x1)−φ(t1,x1)−
ε

d(x1)
⩾ u(t,x)−φ(t,x)− ε

d(x) .

At this point, denote by (t2,x2) ∈Or a subsequential limit of the sequence (t1,x1) as ε tends to zero. By
continuity of u and φ , for all (t,x) ∈Or,

u(t2,x2)−φ(t2,x2) ⩾ u(t,x)−φ(t,x).

Since (t∗,x∗) ∈R>0×Rd
⩾0 is a strict local maximum of u−φ on Or, and this inequality extends to the closure

Or by continuity of u and φ , it must be the case that t2 = t∗ and x2 = x∗. It follows by letting δ , then θ , and
finally ε tend to zero in (2.150) that

(∂tφ −H(∇φ))(t∗,x∗) ⩽ 0.

This completes the proof. ∎

Proof of Proposition 2.9. This is now an immediate consequence of Corollary 2.14 and of Propositions 2.12,
2.20 and 2.21. ∎
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2.4.4 Variational representations of viscosity solutions

In the context of the Hamilton-Jacobi approach, a variational formula for the solution to the Hamilton-Jacobi
equation (2.80) allows one to go beyond the identification of the limit free energy as the unique viscosity
solution to a Hamilton-Jacobi equation. Indeed, it allows one to write an explicit variational formula such as
(2.74) for this limit free energy. Two classical variational formulas will be stated, the Hopf-Lax formula in the
setting when the non-linearity H is convex, and the Hopf formula in the setting when the initial condition ψ

is convex. Only the Hopf-Lax formula will be proved as this is the variational formula that will be used to
establish Theorem 2.5. These variational formulas give an alternative proof to the existence of solutions to the
Hamilton-Jacobi equation (2.80) under the stated convexity assumptions.

In the Euclidean setting, under different assumptions, the Hopf-Lax and the Hopf formulas allow one to
write the solution to the Hamilton-Jacobi equation

∂t f (t,x)−H(∇ f (t,x)) = 0 on R>0×Rd (2.151)

with initial condition ψ ∶Rd →R as a saddle-point problem for the functional defined, for each (t,x) ∈R⩾0×Rd

and (y, p) ∈Rd ×Rd , by
Jt,x(y, p) ∶=ψ(y)+ p ⋅(x−y)+ tH(p). (2.152)

More precisely, the Hopf-Lax formula states that when the non-linearity H is convex, then the function

f (t,x) ∶= sup
y∈Rd

inf
p∈Rd
Jt,x(y, p) = sup

y∈Rd
(ψ(y)− tH∗(

y−x
t
)) (2.153)

is the unique viscosity solution to the Hamilton-Jacobi equation (2.151). Here H∗ denotes the convex dual of
H defined in (A.4). Similarly, the Hopf formula states that when the initial condition ψ is convex, then the
function

f (t,x) ∶= sup
p∈Rd

inf
y∈Rd
Jt,x(y, p) = sup

p∈Rd
inf

y∈Rd
(ψ(y)+ p ⋅(x−y)+ tH(p)) (2.154)

is the unique viscosity solution to the Hamilton-Jacobi equation (2.151). Notice that for each fixed (y, p) ∈
Rd ×Rd , the mapping (t,x)↦Jt,x(y, p) is a solution to (2.151), so the Hopf-Lax and Hopf formulas can be
thought of as representations of the solution with initial condition ψ as envelopes of this family of solutions.
At a point of differentiability of this envelope function, the function will be tangent to one particular solution
in this set indexed by (y, p) ∈Rd ×Rd , and since the equation is of first order, a function that is tangent to a
smooth solution at a point must solve the equation at that point. Of course, this is only an informal discussion,
and the interested reader is referred to Chapter 3 in [50] for precise statements and rigorous proofs of the
Hopf-Lax and Hopf formulas in the Euclidean setting.

The Hopf-Lax and Hopf formulas admit natural analogs in the setting of positive half-space. A first
guess at what these may be is that the optimization domain Rd ×Rd in (2.153) and (2.154) is simply replaced
by Rd

⩾0×Rd
⩾0. This guess turns out to be correct for the Hopf formula provided that the initial condition is

non-decreasing.

Proposition 2.22 (Hopf formula). If ψ ∶Rd →R is a Lipschitz, non-decreasing and convex initial condition,
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and H ∶Rd →R is a locally Lipschitz and non-decreasing non-linearity, then the Hopf function

f (t,x) ∶= sup
p∈Rd

⩾0

inf
y∈Rd

⩾0

Jt,x(y, p) = sup
p∈Rd

⩾0

inf
y∈Rd

⩾0

(ψ(y)+ p ⋅(x−y)+ tH(p)) (2.155)

is the unique viscosity solution in L to the Hamilton-Jacobi equation (2.80).

Proof. See Proposition 6.3 in [33]. ∎

To the best of the author’s knowledge, for the Hopf-Lax formula, this guess turns out to be too naive; it is more
convenient to replace the optimization domain Rd and the convex dual H∗ by the optimization domain Rd

⩾0

and the convex dual H∗ in the representation

f (t,x) = sup
y∈Rd
(ψ(x+y)− tH∗(

y
t
)) (2.156)

of the Euclidean Hopf-Lax function (2.153). A precise statement of the Hopf-Lax formula for positive
half-space is given in Proposition 2.10. To prove this result, it is first verified that the Hopf-Lax function (2.97)
satisfies the right initial condition, and that the supremum in its definition is attained. It is then shown that the
Hopf-Lax function satisfies a semigroup property from which it is deduced that it belongs to the solution space
L. Finally, it is shown that the Hopf-Lax function is the unique viscosity solution in L to the Hamilton-Jacobi
equation (2.80).

Lemma 2.23. Under the assumptions of Proposition 2.10, the Hopf-Lax function (2.97) satisfies the right

initial condition,

f (0, ⋅) =ψ(⋅). (2.157)

Proof. At t = 0, the formula in (2.97) is interpreted as

f (0,x) = sup
y∈Rd

⩾0

inf
p∈Rd

⩾0

(ψ(x+y)− p ⋅y).

Taking y = 0 on the right side of this expression gives the lower bound

f (0,x) ⩾ψ(x).

On the other hand, given y ∈Rd
⩾0, choosing p ∶= ∥ψ∥Lip

y
∣y∣ gives the upper bound

f (0,x) = sup
y∈Rd
(ψ(x+y)−∥ψ∥Lip∣y∣) ⩽ψ(x),

where the Lipschitz continuity of the initial condition ψ has been used. Combining these lower and upper
bounds completes the proof. ∎

Lemma 2.24. Under the assumptions of Proposition 2.10, for any (t,x) ∈R⩾0×Rd
⩾0, there exists y ∈Rd

⩾0 with

f (t,x) =ψ(x+y)− tH∗(y
t
). (2.158)
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Proof. Fix λ > 0 and y ∈Rd
⩾0, and observe that

H∗(y) = sup
p∈Rd

⩾0

(p ⋅y−H(p)) ⩾ λ ∣y∣− sup
∣z∣⩽λ

∣H(z)∣,

where the inequality is obtained by taking p ∶= λ
y
∣y∣ . Since H is locally Lipschitz continuous, and therefore

locally bounded, the supremum on the right side of this expression is finite. Dividing by ∣y∣, letting λ tend to
infinity, and then letting ∣y∣ tend to infinity reveals that

liminf
∣y∣→+∞
y∈Rd

⩾0

H∗(y)
∣y∣ = +∞. (2.159)

This confirms that tH∗( y
t ) should be interpreted as +∞ when t = 0 and y ≠ 0. It also implies that, given

(t,x) ∈R>0×Rd
⩾0, there exists R > 0 large enough such that for all y ∈Rd

⩾0 with ∣y∣ > tR,

tH∗(y
t
) ⩾ (∥ψ∥Lip+1)∣y∣.

It follows by the Lipschitz continuity of ψ that for all y ∈Rd
⩾0 with ∣y∣ > tR,

ψ(x+y)− tH∗(y
t
) ⩽ψ(x)− ∣y∣.

This means that the supremum defining the Hopf-Lax function in (2.97) may be restricted to a bounded set.
Together with the fact that the function y↦ψ(x+y)− tH∗( y

t ) is upper semi-continuous and locally bounded
from above, as H∗(z) ⩾ −H(0), this implies that the supremum on the right side of (2.97) is achieved at some
point y ∈Rd

⩾0. This completes the proof. ∎

Lemma 2.25 (Semigroup property). Under the assumptions of Proposition 2.10, for every pair t > s ⩾ 0 and

x ∈Rd
⩾0,

f (t,x) = sup
y∈Rd

⩾0

( f (s,x+y)−(t − s)H∗( y
t − s
)). (2.160)

Proof. Fix y,z ∈Rd
⩾0. Since H∗ is convex,

H∗(y+ z
t
) ⩽ s

t
H∗(y

s
)+ t − s

t
H∗( z

t − s
).

Taking y+ z ∈Rd
⩾0 in (2.97), and leveraging this bound yields

f (t,x) ⩾ψ(x+y+ z)− sH∗(y
s
)−(t − s)H∗( z

t − s
).

Taking the supremum over all y ∈Rd
⩾0 gives

f (t,x) ⩾ f (s,x+ z)−(t − s)H∗( z
t − s
),



CHAPTER 2. THE DENSE STOCHASTIC BLOCK MODEL 52

and taking the supremum over all z ∈Rd
⩾0 establishes the lower bound

f (t,x) ⩾ sup
y∈Rd

⩾0

( f (s,x+y)−(t − s)H∗( y
t − s
)).

To obtain the matching upper bound, invoke Lemma 2.24 to find y ∈Rd
⩾0 with

f (t,x) =ψ(x+y)− tH∗(y
t
).

Defining z ∶= t−s
t y, observe that

z
t − s
= y− z

s
= y

t
.

In particular, taking y− z ∈Rd
⩾0 in (2.97) gives

f (s,x+ z)−(t − s)H∗( z
t − s
) ⩾ψ(x+y)− sH∗(y− z

s
)−(t − s)H∗( z

t − s
)

=ψ(x+y)− tH∗(y
t
)

= f (t,x).

Taking the supremum over z ∈Rd
⩾0 establishes the matching upper bound and completes the proof. ∎

Lemma 2.26. Under the assumptions of Proposition 2.10, the Hopf-Lax function f belongs to the solution

space Lunif with

sup
t⩾0
∥ f (t, ⋅)∥Lip = ∥ψ∥Lip. (2.161)

Proof. Fix (t,x,x′) ∈R⩾0×Rd
⩾0×Rd

⩾0, and invoke Lemma 2.24 to find y ∈Rd
⩾0 with

f (t,x) =ψ(x+y)− tH∗(y
t
).

Taking y ∈Rd
⩾0 in (2.97) gives the lower bound

f (t,x′) ⩾ψ(x′+y)− tH∗(y
t
).

It follows that
f (t,x)− f (t,x′) ⩽ψ(x+y)−ψ(x′+y) ⩽ ∥ψ∥Lip∣x−x′∣.

Reversing the roles of x and x′ gives y′ ∈Rd with

f (t,x′)− f (t,x) ⩽ψ(x′+y′)−ψ(x+y′) ⩽ ∥ψ∥Lip∣x−x′∣.

Combining these two bounds establishes the spatial Lipschitz continuity (2.161) of the Hopf-Lax function. To
conclude that f ∈Lunif, there remains to show that f is also continuous in time; it is now shown that it is, in
fact, Lipschitz continuous in time as well. Fix x ∈Rd

⩾0 and t > s ⩾ 0. The semigroup property in Lemma 2.25
with y = 0 and the non-decreasingness of the non-linearity H imply that

f (t,x) ⩾ f (s,x)−(t − s)H∗(0) ⩾ f (s,x)−(t − s)∣H(0)∣. (2.162)
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Combining the semigroup property in Lemma 2.25 with the spatial Lipschitz continuity (2.161) reveals that

f (t,x) ⩽ f (s,x)+ sup
y∈Rd

⩾0

(∥ψ∥Lip∣y∣−(t − s)H∗( y
t − s
))

= f (s,x)+(t − s) sup
z∈Rd
⩾0

(∥ψ∥Lip∣z∣−H∗(z))

⩽ f (s,x)+(t − s) sup
∣p∣⩽∥ψ∥Lip

sup
z∈Rd
⩾0

(z ⋅ p−H∗(z)),

where the final inequality uses that ∥ψ∥Lip∣z∣ = z ⋅ ∥ψ∥Lipz
∣z∣ . Invoking the Fenchel-Moreau theorem on positive

half-space (Proposition A.6) and remembering (2.162) establishes the temporal Lipschitz continuity of the
Hopf-Lax function,

∣ f (t,x)− f (s,x)∣ ⩽ ∣t − s∣ sup
∣p∣⩽∥ψ∥Lip

∣H(p)∣. (2.163)

The convexity of the non-linearity H has played its part. This completes the proof. ∎

Proof of Proposition 2.10. The proof proceeds in two steps. First, it is shown that the Hopf-Lax function
(2.97) is a viscosity supersolution to the Hamilton-Jacobi equation (2.80), and then that it is also a viscosity
subsolution to this equation. Together with Lemma 2.26 and the uniqueness result in Proposition 2.9, this
proves that the Hopf-Lax function (2.97) is the unique viscosity solution in Lunif to the Hamilton-Jacobi
equation (2.80).

Step 1: viscosity supersolution. Consider a smooth function φ ∈C∞(R>0×Rd
>0;R) with the property that f −φ

has a local minimum at the point (t∗,x∗) ∈R>0×Rd
>0. By definition of a local minimum, for every s ∈ (0,t∗)

sufficiently small and y ∈Rd
⩾0,

φ(t∗,x∗)−φ(t∗− s,x∗+ sy) ⩾ f (t∗,x∗)− f (t∗− s,x∗+ sy).

It follows by the semigroup property in Lemma 2.25 that

φ(t∗,x∗)−φ(t∗− s,x∗+ sy) ⩾ sH∗( sy
s
) = sH∗(y).

Dividing by s and letting s tend to zero reveals that

∂tφ(t∗,x∗)−y ⋅∇φ(t∗,x∗)+H∗(y) ⩾ 0.

Taking the supremum over y ∈Rd
⩾0 and invoking the Fenchel-Moreau theorem on positive half-space (Proposi-

tion A.6) shows that

(∂tφ −H(∇φ))(t∗,x∗) = ∂tφ(t∗,x∗)−H∗∗(∇φ(t∗,x∗)) ⩾ 0.

The convexity of the non-linearity H has played its part. This verifies the supersolution criterion.

Step 2: viscosity subsolution. Consider a smooth function φ ∈C∞(R>0×Rd
>0;R) with the property that f −φ

has a local maximum at the point (t∗,x∗) ∈R>0×Rd
>0, and suppose for the sake of contradiction that there is
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δ > 0 such that for all (t′,x′) sufficiently close to (t∗,x∗),

(∂tφ −H(∇φ))(t′,x′) ⩾ δ > 0.

Using the convexity of H and the Fenchel-Moreau theorem on positive half-space, this may be recast as the
assumption that for all (t′,x′) sufficiently close to (t∗,x∗) and all y ∈Rd

⩾0,

∂tφ(t′,x′)−y ⋅∇φ(t′,x′)+H∗(y) ⩾ δ . (2.164)

Leveraging the semigroup property in Lemma 2.25 and arguing exactly as in the proof of Lemma 2.26, it is
possible to find R > 0 with the property that for all s > 0 sufficiently small there is ys ∈Rd

⩾0 with ∣ys∣ ⩽ Rs and

f (t∗,x∗) = f (t∗− s,x∗+ys)− sH∗(ys

s
).

If u(r) ∶= (t∗+(r−1)s,x∗+(1− r)ys), then it follows by the fundamental theorem of calculus and the absurd
assumption (2.164) with y ∶= ys

s that

φ(t∗,x∗)−φ(t∗− s,x∗+ys) =
ˆ 1

0

d
dr

φ(u(r)) dr

=
ˆ 1

0
(s∂tφ −ys ⋅∇φ)(u(r)) dr

⩾ sδ − sH∗(ys

s
)

= sδ + f (t∗,x∗)− f (t∗− s,x∗+ys).

Rearranging shows that for s sufficiently small,

f (t∗− s,x∗+ys)−φ(t∗− s,x∗+ys) ⩾ sδ + f (t∗,x∗)−φ(t∗,x∗).

This contradicts the local maximality of f −φ at (t∗,x∗) and completes the proof. ∎

As will be seen below, in the symmetric rank-one matrix estimation problem, as well as the broader class
of models from statistical inference considered in [30], the free energy is always convex. If one can show
that it converges to the solution to a Hamilton-Jacobi equation, then one can represent its limit variationally
using the Hopf variational formula. This convexity property of the free energy is however lost in the realm
of the sparse stochastic block model studied later in this thesis or of spin glasses [86]. In some cases, the
non-linearity appearing in the relevant Hamilton-Jacobi equation is convex. This allows one to appeal to the
Hopf-Lax formula instead and to still represent the solution variationally. However, in the assortative sparse
stochastic block model, and many spin-glass models of interest such as the bipartite model, the non-linearity in
the equation is neither convex nor concave. In this case, it is not yet known whether the free energy converges
to the viscosity solution of the relevant Hamilton-Jacobi equation. Partial results for the sparse stochastic
block model first obtained in [49] are the content of Theorems 1.6 and 1.7. Partial results for spin glasses
have also been obtained in [83, 86]. In this context, it is interesting to wonder whether, for general solutions
to Hamilton-Jacobi equations, any aspect of the variational structure displayed in the Hopf and Hopf-Lax
formulas is preserved in the absence of any convexity or concavity assumption on the initial condition or the
non-linearity. More specifically, if the solution f (t,x) to the Hamilton-Jacobi equation (2.80) can always
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be represented as a critical value of the function Jt,x; in other words, whether it is always possible to find a
point (y∗, p∗) such that ∇Jt,x(y∗, p∗) = 0 and f (t,x) = Jt,x(y∗, p∗). For a detailed discussion on this topic,
the interested reader is referred to Chapter 3 in [50].

2.5 Revisiting the matrix estimation Hamilton-Jacobi equation

Equipped with a well-posedness theory for general Hamilton-Jacobi equations on positive half-space, the
Hamilton-Jacobi equation (2.73) derived in the context of the symmetric rank-one matrix estimation problem
is now revisited. This Hamilton-Jacobi equation admits a unique viscosity solution by Proposition 2.9. To
prove Theorem 2.5, the goal will be to show that the limit of the free energy (2.59) is this unique solution.
Appealing to the Hopf-Lax formula in Proposition 2.10 will then give the variational representation (2.74).

To show that the limit of the free energy (2.59) is a viscosity solution to the Hamilton-Jacobi equation
(2.73), the idea will be to start from (2.66) and obtain more tractable bounds on the left side of this equality.

Proposition 2.27. The enriched free energy (2.59) in the symmetric rank-one matrix estimation problem

satisfies the approximate Hamilton-Jacobi equation

0 ⩽ ∂tFN(t,h)−(∂hFN(t,h))
2 ⩽ 1

N
∂

2
h FN(t,h)+E(∂hFN −∂hFN)

2(t,h). (2.165)

Proof. The lower bound in (2.165) is immediate from (2.66) and the non-negativity of the variance. To
establish the upper bound, by (2.66), it suffices to show that

Var(x ⋅x
N
) ⩽ 1

N
∂

2
h FN(t,h)+E(∂hFN −∂hFN)

2(t,h). (2.166)

It is reasonable to expect this variance term to be related to ∂
2
h FN(t,h). To compute this derivative, it will be

convenient to introduce the Hamiltonian

H′N(h,x) ∶=
1√
2h

z ⋅x+2x ⋅x− ∣x∣2 (2.167)

in such a way that the derivative of the free energy (2.58) prior to averaging may be expressed concisely as

∂hFN(t,h) =
1
N
⟨H′N⟩.

Differentiating this expression reveals that

∂
2
h FN(t,h) =

1
N
⟨∂hH′N⟩+

1
N
⟨(H′N)2⟩−

1
N
⟨H′N⟩2 =

1
N
⟨(H′N)2⟩−

1
N
⟨H′N⟩2−

1
N(2h)3/2

⟨z ⋅x⟩.

Together with the Gaussian integration by parts formula (Theorem 4.5 in [50]) and the Nishimori identity, this
implies that

∂
2
h FN(t,h) =

1
N
E⟨(H′N)2⟩−

1
N
E⟨H′N⟩2−

1
2hN
(E⟨∣x∣2⟩−E⟨x ⋅x⟩)

= 1
N
E⟨(H′N)2⟩−

1
N
E⟨H′N⟩2−

1
2hN
(E⟨∣x∣2⟩−E∣⟨x⟩∣2).
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Notice that the variance of H′N may be written as

Var(H′N) =E⟨(H′N − ⟨H′N⟩)
2⟩+E(⟨H′N⟩−E⟨H′N⟩)

2

=E⟨(H′N)2⟩−E⟨H′N⟩2+N2E(∂hFN −∂hFN)
2(t,h).

Up to lower-order terms, the proof consists in showing that the variance of x ⋅x is bounded from above by the
variance of H′N , which in turn is essentially the right side of (2.165) up to scaling. To justify this precisely,
write

1
N

∂
2
h FN(t,h) =

1
N2 Var(H′N)−E(∂hFN −∂hFN)

2(t,h)− 1
2hN2 (E⟨∣x∣

2⟩−E∣⟨x⟩∣2).

To relate this back to the variance term in (2.166), observe that by the derivative computation (2.65),

1
N2 Var(H′N)−

1
N2 Var(x ⋅x) = 1

N2E⟨(H
′
N)2⟩−

1
N2E⟨(x ⋅x)

2⟩.

It follows that

Var(x ⋅x
N
) ⩽ 1

N
∂

2
h FN(t,h)+E(∂hFN −∂hFN)

2(t,h)+ 1
2hN2E⟨∣x∣

2⟩− 1
N2E⟨(H

′
N)2⟩+

1
N2E⟨(x ⋅x)

2⟩. (2.168)

What is important for the sequel is to verify that the last two terms in this expression are of lower order
in N due to a cancellation between E⟨(H′N)2⟩ and E⟨(x ⋅x)2⟩. In fact, it will be shown that these terms are
non-positive. Observe that

E⟨(H′N)2⟩ =
1

2h
E⟨(z ⋅x)2⟩+ 2√

2h
E⟨z ⋅x(2x ⋅x− ∣x∣2)⟩+4E⟨x ⋅x(x ⋅x− ∣x∣2)⟩+E⟨∣x∣4⟩,

and fix indices 1 ⩽ i, j ⩽N. Two applications of the Gaussian integration by parts formula reveal that for i ≠ j,

E⟨ziz jxix j⟩ =
√

2hE⟨z jx j(x2
i −xix′i)⟩ = 2hE⟨(x2

i −xix′i)(x2
j +x jx′j −2x jx′′j )⟩,

while for i = j,

E⟨z2
i x2

i ⟩ =
√

2hE⟨zixi(x2
i −xix′i)⟩+E⟨x2

i ⟩ = 2hE⟨(x2
i −xix′i)(x2

i +xix′i −2xix′′i )⟩+E⟨x2
i ⟩.

Together with the Nishimori identity, this shows that

1
2h

E⟨(z ⋅x)2⟩ =E⟨∣x∣4⟩−2E⟨∣x∣2(x ⋅x)⟩−E⟨(x ⋅x)2⟩+2E⟨(x ⋅x)(x ⋅x′)⟩+ 1
2h

E⟨∣x∣2⟩.

A similar computation using the Gaussian integration by parts formula gives

2√
2h

E⟨z ⋅x(2x ⋅x− ∣x∣2)⟩ = 2E⟨(2x ⋅x− ∣x∣2)(∣x∣2−(x ⋅x′)⟩

= 6E⟨∣x∣2(x ⋅x)⟩−4E⟨(x ⋅x)(x ⋅x′)⟩−2E⟨∣x∣4⟩.

It follows by the Cauchy-Schwarz inequality that

E⟨(H′N)2⟩ = 3E⟨(x ⋅x)2⟩−2E⟨(x ⋅x)(x ⋅x′)⟩+ 1
2h

E⟨∣x∣2⟩ ⩾E⟨(x ⋅x)2⟩+ 1
2h

E⟨∣x∣2⟩.
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This shows that the last two terms in (2.168) are non-positive and establishes the upper bound (2.166), thereby
completing the proof. ∎

To control the error term on the right side of the approximate Hamilton-Jacobi equation (2.165), at first
glance, it seems like one needs to establish the concentration of the derivative of the enriched free energy
(2.58) about its average. However, even in the simpler setting of the Curie-Weiss model, it is possible to
construct examples in which the derivative of the free energy is not small at some special points — those at
which the limit free energy is not differentiable. It should therefore not be expected that the derivative of the
free energy concentrates at all points, and indeed, the concentration of this derivative will only be needed at
contact points (tN ,hN). It turns out that at these points, the variance of the derivative of the free energy can be
controlled in terms of

E sup
(t,h)∈[0,M]2

∣FN(t,h)−FN(t,h)∣2 (2.169)

for an adequate choice of M > 0. Leveraging the Gaussian concentration inequality and a covering argument,
it can be shown that (2.169) is essentially of order N−1, and therefore vanishes when taking the limit along
the sequence (tN ,hN)N⩾1 of contact points. The starting point is a Gaussian-type estimate on the tail of the
random variable in (2.169).

Lemma 2.28. For each M ∈R⩾0, there exists C < +∞ such that for all λ >CN−1/2√log(N),

P{ sup
(t,h)∈[0,M]2

∣FN(t,h)−FN(t,h)∣ ≥ λ} ≤ exp(− Nλ
2

C
). (2.170)

Proof. Write C < +∞ for a constant that does not depend on N or λ whose value may change throughout the
proof, and introduce the random norm

∥W∥∗ ∶= sup
∣x∣⩽1
∣Wx∣.

The proof proceeds in two steps. First a concentration inequality for the random norm ∥W∥∗ is established by
showing that there exists a constant C < +∞ such that for every a ⩾C,

P{∥W∥2∗ ⩾ aN} ⩽ exp(− aN
C
), (2.171)

and then a covering argument is leveraged to deduce (2.170).

Step 1: concentration inequality. To begin with, a pointwise upper bound on ∣Wx∣ for each unit vector x ∈RN

is established, and then a covering argument is used to extend this pointwise bound into the uniform bound
required to control the random norm ∥W∥∗. Fix µ > 0 and x ∈RN of unit norm. Chebyshev’s inequality reveals
that

P{∣Wx∣2 ⩾ aN} ⩽ exp(−µaN)Eexp(µ ∣Wx∣2). (2.172)

The random variables ((Wx)i)i⩽N are independent and standard Gaussian. It follows that

Eexp(µ ∣Wx∣2) =E
N

∏
i=1

exp(µ(Wx)2i ) = (Eexp(µZ2))N
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for a standard Gaussian random variable Z. A change of variables shows that for µ < 1/2,

Eexp(µZ2) = 1√
2π

ˆ
R

e−x2( 1
2−µ) dx = 1√

1−2µ

1√
2π

ˆ
R

e−
y2

2 dy = 1√
1−2µ

,

so in fact Eexp(µ ∣Wx∣2) ⩽ exp(CN). Substituting this into (2.172) gives the pointwise upper bound

P{∣Wx∣2 ⩾ aN} ≤ exp((C− a
C
)N). (2.173)

To extend this into a uniform bound, a covering argument is used. Recall that the smallest number of balls of
radius ε > 0 required to cover a compact set K is known as the covering number of the set K, and it is denoted
by N (K,ε). A related quantity is the packing number of a compact set K. A subset N of K is ε-separated if
∣x−y∣ > ε for all distinct points x,y ∈N . The packing number of K is the size of the largest possible ε-separated
subset of K, and it is denoted by P(K,ε). By maximality, it is clear that the balls of radius ε > 0 centred at the
points in an ε-separated subset of K cover the set K. In particular, the covering number is bounded by the
packing number,

N (K,ε) ⩽P(K,ε).

This observation is now used to find an upper bound on the covering number of the unit ball B1(0) ⊆ RN .
Denote by m Lebesgue measure on RN , fix ε > 0 and let P be a maximal ε-separated subset of B1(0). Since
∣x−y∣ > ε for all distinct points x,y ∈ P, the balls (Bε/2(x))x∈P are disjoint and contained in the expanded unit
ball B1+ε/2(0). It follows by the additivity and scaling properties of the Lebesgue measure that

P(B1(0),ε)(
ε

2
)

N

m(B1(0)) =∑
x∈P

m(Bε/2(x)) ⩽ (1+
ε

2
)

N

m(B0(1)).

Rearranging reveals that

N (B1(0),ε) ⩽P(B1(0),ε) ⩽ (1+
2
ε
)

N

.

Choosing ε ∶= 1/2, it is therefore possible to find a set A of size 5N with the property that for every x ∈RN with
∣x∣ ⩽ 1, there exists y ∈ A such that ∣x−y∣ ≤ 1

2 . In particular,

∣Wx∣ ⩽ ∥W∥∗∣x−y∣+ ∣Wy∣ ⩽ 1
2
∥W∥∗+ sup

y∈A
∣Wy∣,

and taking the supremum in x shows that ∥W∥∗ ⩽ 2supy∈A∣Wy∣. Together with the pointwise upper bound
(2.173), this implies that

P{∥W∥2∗ ⩾ aN} ⩽ P{4sup
y∈A
∣Wy∣2 ⩾ aN} ⩽ 5N exp((C− a

C
)N).

Redefining the constant C establishes the concentration inequality (2.171).

Step 2: covering argument. To run a covering argument, first, the Hölder continuity of the free energy FN is
established. Fix t,t′,h,h′ ∈ [0,M] as well as x in the support of PN , and observe that by the Cauchy-Schwarz
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inequality and the boundedness of the support of P1,

∣HN(t,h,x)−HN(t′,h′,x)∣ ⩽
RRRRRRRRRRR

√
2t
N
−
√

2t′

N

RRRRRRRRRRR
∣x ⋅Wx∣+ 1

N
∣t − t′∣(2(x ⋅x)2+ ∣x∣4)

+ ∣
√

2h−
√

2h′∣∣x ⋅ z∣+ ∣h−h′∣(2∣x ⋅x∣+ ∣x∣2)

⩽C
√

N(∣
√

t −
√

t′∣∥W∥∗+ ∣
√

h−
√

h′∣∣z∣)+CN(∣t − t′∣+ ∣h−h′∣).

Together with the observation that
√

y−
√

y′ ⩽ ∣y−y′∣1/2 and ∣y−y′∣ ⩽ 2∣y∣∣y−y′∣1/2 for y,y′ ∈R⩾0 with y ⩾ y′,
this bound on the Hamiltonian implies that the free energy (2.58) is Hölder continuous on [0,M]2 with

∣FN(t,h)−FN(t′,h′)∣ ⩽C(∣t − t′∣1/2+ ∣h−h′∣1/2)X

for the random variable
X ∶= 1+ ∥W∥∗√

N
+ ∣z∣√

N
.

Averaging this inequality also shows that the free energy (2.59) is Hölder continuous with

∣FN(t,h)−FN(t′,h′)∣ ⩽C(∣t − t′∣1/2+ ∣h−h′∣1/2)EX .

These two bounds imply that for any λ > 0 and ε > 0,

P{ sup
[0,M]2

∣FN(t,h)−FN(t,h)∣ ⩾ λ} ⩽ P{sup
Aε

∣FN(t,h)−FN(t,h)∣ ⩾ λ/2}+P{X ⩾ ε
−1/2

λ/C}

for the set Aε ∶= εZ2∩ [0,M]2. Indeed, every point (t,h) ∈ [0,M]2 is at distance at most ε from a point in Aε .
A union bound and the fact that the cardinality of Aε is bounded by Cε

−2 yield that this is further bounded by

Cε
−2 sup

Aε

P{∣FN(t,h)−FN(t,h)∣ ⩾ λ/2}+P{X ⩾ ε
−1/2

λ/C}.

A simple extension of the proof of the free energy concentration inequality (2.44) reveals that for any λ > 0
and (t,h) ∈ [0,M]2,

P{∣FN(t,h)−FN(t,h)∣ > λ} ⩽ 2exp(− Nλ
2

C
).

On the other hand, the Gaussian concentration inequality (Theorem 4.7 in [50]) and the concentration inequality
(2.171) imply that for some constant C′ < +∞ and any ε > 0 and λ >C′

√
ε ,

P{X ⩾ ε
−1/2

λ/C} ⩽ exp(− Nλ
2

εC
).

Combining these two bounds and choosing ε ∶=N−1 reveals that for any λ >C′N−1/2,

P{ sup
[0,M]2

∣FN(t,h)−FN(t,h)∣ ⩾ λ} ⩽CN2 exp(− Nλ
2

C
).

Whenever λ >C′N−1/2√log(N) for some sufficiently large constant C′ < +∞, the term N2 can be absorbed
into the exponential to obtain (2.170) and complete the proof. ∎
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It is now possible to verify that any subsequential limit of the enriched free energy (2.59) satisfies the
subsolution criterion in the Hamilton-Jacobi equation (2.73).

Lemma 2.29. Let f be any subsequential limit of the sequence (FN)N⩾1 of enriched free energies in the

symmetric rank-one matrix estimation problem, and fix t∗,h∗ > 0. If φ ∈C∞(R>0×R>0;R) is a smooth function

with the property that f −φ has a strict local maximum at (t∗,h∗) ∈R>0×R>0, then

(∂tφ −H(∂hφ))(t∗,h∗) = 0 (2.174)

Proof. Through a slight abuse of notation, the subsequence along which the convergence of FN to f occurs
is not denoted explicitly, in effect pretending that the convergence occurs along the whole sequence. Using
Lemma 2.7, find a sequence (tN ,hN)N⩾1 converging to (t∗,h∗) such that FN −φ has a local maximum at
(tN ,hN); this lemma also guarantees that the neighbourhood over which (tN ,hN) is a local maximum can be
chosen independently of N. To control the right side of the approximate Hamilton-Jacobi equation (2.165) at
each contact point (tN ,hN), essentially, the idea will be to argue that whenever a sequence of convex functions
converges to a point of differentiability of its limiting function, the sequence of derivatives also converges to
the derivative of the limiting function at this point. Although it is not yet known that the free energy is convex,
it will be possible to prove upper and lower bounds on its Hessian. The proof proceeds in three steps. First the
upper deviation of FN from its tangent at (tN ,hN) is controlled by a parabola, then the lower deviation of FN

from its tangent at (tN ,hN) is controlled by a random parabola, and finally these two ingredients are combined
to control the right side of the approximate Hamilton-Jacobi equation (2.165).

Step 1: Hessian of FN upper bound. Since FN −φ has a local maximum at (tN ,hN) and φ is smooth, there
exists C < +∞ such that for all h′ ∈R with ∣h′∣ ⩽C−1,

FN(tN ,hN +h′)−FN(tN ,hN) ⩽ φ(tN ,hN +h′)−φ(tN ,hN) ⩽ h′∂hφ(tN ,hN)+C∣h′∣2.

For every N sufficiently large, one has hN > 0, and therefore

∂h(FN −φ)(tN ,hN) = 0. (2.175)

It follows that for every h′ ∈R with ∣h′∣ ⩽C−1,

FN(tN ,hN +h′)−FN(tN ,hN) ≤ h′∂hFN(tN ,hN)+C∣h′∣2. (2.176)

In particular,
∂

2
h FN(tN ,hN) ⩽C. (2.177)

Throughout this proof, it is understood that the constant C < +∞ may change from one occurrence to the next,
only making sure that it does not depend on N.

Step 2: Hessian of FN lower bound. Recalling the definition of the Hamiltonian H′N in (2.167), a direct
computation reveals that

∂
2
h FN(tN ,hN +h′) = 1

N
⟨(H′N)2⟩−

1
N
⟨H′N⟩2−

1
N(2(hN +h′))3/2

⟨z ⋅x⟩.

Since hN converges to h∗ > 0, it remains bounded away from zero for N sufficiently large. Using also the
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non-negativity of the variance, the Cauchy-Schwarz inequality, and the fact that the measure P1 has bounded
support, it is possible to deduce that for every ∣h′∣ ≤C−1,

∂
2
h FN(tN ,hN +h′) ⩾ −C∣z∣√

N
.

It follows by Taylor’s theorem that for every ∣h′∣ ≤C−1,

FN(tN ,hN +h′)−FN(tN ,hN)−h′∂hFN(tN ,hN) ⩾ −
C∣z∣√

N
∣h′∣2 (2.178)

which is the sought after control of the lower deviation of FN from its tangent at (tN ,hN) by a random parabola.

Step 3: controlling the right side of (2.165). Combining (2.176) and (2.178) with the fact that (tN ,hN)N⩾1

converges to (t∗,h∗) gives a neighborhood V of (t∗,h∗) with

h′(∂hFN −∂hFN)(tN ,hN) ⩽ 2sup
V
∣FN −FN ∣+C∣h′∣2(1+ ∣z∣√

N
). (2.179)

In particular, given a deterministic λ ∈ [0,C−1], the bound (2.179) for

h′ ∶= λ
∂hFN −∂hFN

∣∂hFN −∂hFN ∣
(tN ,hN)

reads

λ ∣∂hFN −∂hFN ∣(tN ,hN) ⩽ 2sup
V
∣FN −FN ∣+Cλ

2(1+ ∣z∣√
N
).

Squaring both sides of this inequality, taking expectations, and leveraging the concentration inequality in
Lemma 2.28 yields

λ
2E(∂hFN −∂hFN)

2(tN ,hN) ⩽ 8Esup
V
(FN −FN)

2+Cλ
4E(1+ ∣z∣√

N
)

2

⩽ C
N1/2 +Cλ

4,

where the fact that E∣z∣2 =NEz2
1 =N has also been used. Choosing λ ∶=N−1/8 leads to the upper bound

E(∂hFN −∂hFN)
2(tN ,hN) ⩽

C
N1/4 . (2.180)

Substituting this into the approximate Hamilton-Jacobi equation in Proposition 2.27 and remembering the
Hessian bound (2.177) gives

0 ⩽ (∂tφ −(∂hφ)2)(tN ,hN) = (∂tFN −(∂hFN)2)(tN ,hN) ⩽
C
N
+ C

N1/4 .

Letting N tend to infinity and using the smoothness of φ reveals that

(∂tφ −(∂hφ)2)(t∗,h∗) = 0.

Combining (2.175) and (2.65) with the smoothness of φ shows that ∂hφ(t∗,h∗) ⩾ 0. Remembering the
definition of the non-linearity H in (2.71) completes the proof. ∎
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That any subsequential limit of the enriched free energy (2.59) satisfies the supersolution criterion in the
Hamilton-Jacobi equation (2.73) is much easier to verify by simply leveraging the lower bound in Proposition
2.27. Together with the Hopf-Lax formula, this gives a first proof of Theorem 2.5.

Proof of Theorem 2.5. The Arzelà-Ascoli theorem, the derivative computations (2.61) and (2.65), and the
boundedness of the support of P1 imply that the sequence (FN)N⩾1 is precompact. Denote by f any subse-
quential limit of this sequence of enriched free energies. The subsequence along which the convergence of
FN to f occurs is not denoted explicitly, in effect pretending that the convergence occurs along the whole
sequence. Lemma 2.29 shows that f is a viscosity subsolution to the Hamilton-Jacobi equation (2.73). To
verify the supersolution criterion, let φ ∈C∞(R>0×R>0;R) be a smooth function with the property that f −φ

has a strict local minimum at (t∗,h∗) ∈R>0×R>0. Using Lemma 2.7, find a sequence (tN ,hN)N⩾1 converging
to (t∗,h∗) such that FN −φ has a local minimum at (tN ,hN). For N large enough, one has (tN ,hN) ∈R>0×R>0,
and therefore

∂tFN(tN ,hN) = ∂tφ(tN ,hN) and ∂hFN(tN ,hN) = ∂hφ(tN ,hN).

It follows by the lower bound in Proposition 2.27 and the definition of the non-linearity H in (2.71) that

0 ⩽ (∂tφ −(∂hφ)2)(tN ,hN) = (∂tφ −H(∂hφ))(tN ,hN).

Letting N tend to infinity, and leveraging the continuity of H and the smoothness of φ shows that f is a viscosity
supersolution to the Hamilton-Jacobi equation (2.73). Together with the uniqueness result in Proposition 2.9,
this implies that the sequence (FN)N⩾1 converges to the unique viscosity solution f to the Hamilton-Jacobi
equation (2.73). The Hopf-Lax formula (Proposition 2.10), the definition of the non-linearity H in (2.71), and
the fact that the square function x↦ 1

2 ∣x∣
2 is its own convex dual (Exercise 2.8 in [50]) imply that for all t,h ⩾ 0,

f (t,h) = sup
h′∈R⩾0

(ψ(h′)− (h
′−h)2
4t

).

Remembering that the free energy (2.20) can be recovered from the enriched free energy (2.59) by evaluating
at h = 0, that is, F

○
N(t) = FN(t,0), gives the representation (2.75) and completes the proof. ∎

As was already discussed, together with Propositions 2.1 and 2.3, this result implies Theorem 1.3 on the
limit of the mutual information in the dense stochastic block model. For more general models, such as those
discussed in [36], or the sparse stochastic block model discussed in later chapters of this thesis, the bound in
Proposition 2.27 is of the form

∣∂tFN(t,h)−(∂hFN(t,h))
2∣ ⩽ 1

N
∂

2
h FN(t,h)+E(∂hFN −∂hFN)

2(t,h). (2.181)

In such cases, the subsolution criterion can be established as in Lemma 2.29 but the inequality is too weak
to prove the supersolution criterion. Indeed, the gradient of the free energy cannot be shown to concentrate
as in (2.180) when the free energy is touched from below by a smooth function. The subsolution criterion
can be combined with the comparison principle in Proposition 2.9 to show that any subsequential limit of the
free energy is bounded from above by the solution to the Hamilton-Jacobi equation (2.73). This is the idea
behind the proof of the lower bound of Conjecture 1.4 in Theorem 1.6 — recall that the mutual information is
minus the free energy up to an additive constant, so an upper bound on the free energy corresponds to a lower
bound on the mutual information. In the simpler setting of [36], the matching lower bound on the free energy
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is obtained through a selection principle for the Hamilton-Jacobi equation (2.80) that ensures that a convex
function that satisfies the equation on a dense set must in fact satisfy the equation everywhere. Unfortunately,
the convexity assumptions required to appeal to this selection criterion do not hold in the setting of the sparse
stochastic block model [67] — this is why the upper bound in Conjecture 1.4 remains open.

2.6 Leveraging convexity to identify viscosity solutions

In this section a tool known as the convex selection principle is introduced to identify when a convex function
is a viscosity solution to the Hamilton-Jacobi equation (2.80). In Example 2.6, a function that satisfies a
Hamilton-Jacobi equation almost everywhere but is not a viscosity solution to this equation was described.
Notice that this counterexample had corner singularities “in both directions”; formally, the second derivative
was neither bounded from above nor from below. A convex function cannot look like this, since its Hessian
must be non-negative. Roughly speaking, the convex selection principle states that imposing the function to be
convex completely rules out the emergence of non-viscosity-type singularities, and thus restores uniqueness.
This result will be established in the general setting of the Hamilton-Jacobi equation (2.80).

Proposition 2.30 (Convex selection principle). If H ∶ Rd → R is a locally Lipschitz and non-decreasing

non-linearity, and f ∶ R⩾0 ×Rd
⩾0 → R is a jointly convex and jointly Lipschitz continuous function with

f (0, ⋅) ∈C1(Rd
⩾0;R) that satisfies the Hamilton-Jacobi equation (2.80) on a dense subset of R⩾0×Rd

⩾0, then f

is a viscosity solution to the Hamilton-Jacobi equation (2.80).

The statement that the function f satisfies the Hamilton-Jacobi equation (2.80) on a dense subset of
R⩾0×Rd

⩾0 means that the set

{(t,x) ∈R>0×Rd
>0 ∣ f is differentiable at (t,x) and (∂t f −H(∇ f ))(t,x) = 0} (2.182)

is dense in R⩾0 ×Rd
⩾0. Naturally, Proposition 2.30 also holds if “convex” is replaced by “concave” in

its statement. It was already stressed that, in some sense, the notion of viscosity solution is tailored to
approximations in which a small positive term times the Laplacian of f appears on the right side of (2.80). In
particular, the notion of viscosity solution is sensitive to the orientation of time; in general, it is not the case
that the time-reversed viscosity solution to some equation will be the viscosity solution to the time-reversed
equation. However, superficially, the statement of Proposition 2.30 looks invariant under time reversal. The
only assumption that breaks this symmetry is that f (0, ⋅) ∈C1(Rd

⩾0;R). This already hints at the fact that
this assumption is necessary. In other words, Proposition 2.30 states that under the convexity assumption,
pathological solutions cannot spontaneously emerge when starting from a smooth initial condition. However,
when starting from a Lipschitz function that does not have this form, it may be possible to exploit the
singularities of the initial condition to create solutions that differ from the viscosity solution.

To prove the convex selection principle, first, it will be shown that the function f in its statement must
actually satisfy (2.80) at all its points of differentiability.

Lemma 2.31. If H ∶Rd →R is a locally Lipschitz non-linearity, and f ∶R⩾0×Rd
⩾0→R is a jointly convex and

jointly Lipschitz continuous function that satisfies the Hamilton-Jacobi equation (2.80) on a dense subset of

R⩾0×Rd
⩾0, then it satisfies the Hamilton-Jacobi equation (2.80) at all its points of differentiability in R>0×Rd

>0.

Moreover, for every (t,x) ∈R⩾0×Rd
⩾0, there exists (b,q) ∈ ∂ f (t,x) such that b−H(q) = 0.
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Proof. Fix (t,x) ∈R⩾0×Rd
⩾0, and let (tn,xn)n⩾1 ⊆R>0×Rd

>0 be a sequence of points of differentiability of f

converging to (t,x) at which
(∂t f −H(∇ f ))(tn,xn) = 0. (2.183)

Since f is differentiable at the interior point (tn,xn) ∈ R>0 ×Rd
>0, Proposition A.9 implies that ∂ f (tn,xn) =

{(∂t f (tn,xn),∇ f (tn,xn))}. The joint Lipschitz continuity of f implies that, up to the extraction of a sub-
sequence, the sequence (∂t f (tn,xn),∇ f (tn,xn))n⩾1 of gradients converges to some point (b,q) ∈ R×Rd .
By Proposition A.10, it must be that (b,q) ∈ ∂ f (t,x), and by (2.183) and the continuity of H, the pair
(b,q) ∈ ∂ f (t,x) is such that b−H(q) = 0. This establishes the second part of the statement. If (t,x) ∈R>0×Rd

>0

and f is differentiable at (t,x), then Proposition A.9 implies that ∂ f (t,x) = {(∂t f (t,x),∇ f (t,x))}. It must
therefore be the case that (b,q) = (∂t f (t,x),∇ f (t,x)), and thus that f satisfies the Hamilton-Jacobi equation
(2.80) at the point (t,x). This completes the proof. ∎

Proof of Proposition 2.30. The proof is decomposed into two steps. First it is shown that f is a viscosity
subsolution to the Hamilton-Jacobi equation (2.80), and then that it is a supersolution to this equation. The
assumption on the initial condition will only play a part in showing that f is a viscosity supersolution to (2.80).

Step 1: viscosity subsolution. Consider a smooth function φ ∈C∞(R>0×Rd
>0;R) with the property that f −φ

has a local maximum at the point (t∗,x∗) ∈R>0×Rd
>0. It will be shown that f is differentiable at the contact

point (t∗,x∗). By Proposition A.8, the subdifferential ∂ f (t∗,x∗) contains at least one element, say (a, p). By
the definition of the subdifferential and of a local maximum, for every (t′,x′) sufficiently close to (t∗,x∗),

a(t′− t∗)+ p ⋅(x′−x∗) ⩽ f (t′,x′)− f (t∗,x∗) ⩽ φ(t′,x′)−φ(t∗,x∗). (2.184)

It follows by smoothness of φ that, as (t′,x′) tends to (t∗,x∗),

(t′− t∗)(a−∂tφ(t∗,x∗))+(x′−x∗)(p−∇φ(t∗,x∗)) = o(∣t′− t∗∣+ ∣x′−x∗∣).

This implies that (a, p) = (∂tφ ,∇φ)(t∗,x∗). Using (2.184) once more shows that f is differentiable at (t∗,x∗),
and that (∂t f ,∇ f )(t∗,x∗) = (∂tφ ,∇φ)(t∗,x∗). It follows by Lemma 2.31 that

(∂tφ −H(∇φ))(t∗,x∗) = (∂t f −H(∇ f ))(t∗,x∗) = 0.

This completes the verification that f is a viscosity subsolution to the Hamilton-Jacobi equation (2.80).

Step 2: viscosity supersolution. Consider a smooth function φ ∈C∞(R>0×Rd
>0;R) with the property that f −φ

has a local minimum at the point (t∗,x∗) ∈R>0×Rd
>0. Together with the convexity of f , this implies that for

every (t′,x′) ∈R⩾0×Rd
⩾0 and ε > 0 small enough,

f (t′,x′)− f (t∗,x∗) ≥ ε
−1( f ((t∗,x∗)+ε(t′− t∗,x′−x∗))− f (t∗,x∗))

≥ ε
−1(φ((t∗,x∗)+ε(t′− t∗,x′−x∗))−φ(t∗,x∗)).

Letting ε tend to zero shows that (∂tφ ,∇φ)(t∗,x∗) ∈ ∂ f (t∗,x∗). It therefore suffices to fix (a, p) ∈ ∂ f (t∗,x∗)
and prove that

a−H(p) ⩾ 0. (2.185)

Since (a, p) ∈ ∂ f (t∗,x∗), the definition of the subdifferential implies that f (0,y) ⩾ f (t∗,x∗)−at∗+(y−x∗) ⋅ p
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for every y ∈Rd
⩾0. Rearranging shows that for every y ∈Rd

⩾0,

f (0,y)−y ⋅ p ⩾ f (t∗,x∗)−at∗− p ⋅x∗. (2.186)

Inspired by the Hopf formula, it is tempting to consider an optimizer of the minimization problem

inf
y∈Rd

⩾0

( f (0,y)−y ⋅ p). (2.187)

Since the existence of such an optimizer cannot be guaranteed, a small parameter ε > 0 is introduced, and the
perturbed minimization problem

inf
y∈Rd

⩾0

( f (0,y)−y ⋅ p+ε

√
1+ ∣y∣2) (2.188)

is considered instead. From (2.186), it is apparent that the infimum in (2.188) may be restricted to values of y

that range in a compact set (which depends on ε). Together with the continuity of the functions involved, this
shows that the infimum in (2.188) is achieved, say at yε ∈Rd

⩾0. Observe that

lim
ε→0

inf
y∈Rd

⩾0

( f (0,y)−y ⋅ p+ε

√
1+ ∣y∣2) = inf

y∈Rd
⩾0

( f (0,y)−y ⋅ p). (2.189)

Indeed, the existence of the limit on the left side of (2.189) and the fact that it is lower bounded by the right
side are immediate. Conversely, for each δ > 0, it is possible to find y∗

δ
∈Rd
⩾0 such that

f (0,y∗
δ
)−y∗

δ
⋅ p ⩽ inf

y∈Rd
⩾0

( f (0,y)−y ⋅ p)+δ ,

and the upper bound in (2.189) is obtained up to an error of δ > 0 by using y∗
δ

as a candidate in the infimum on
the left side of (2.189). Letting δ > 0 tend to zero shows shows (2.189). Since

inf
y∈Rd

⩾0

( f (0,y)−y ⋅ p)+ε

√
1+ ∣yε ∣2) ≤ f (0,yε)−yε ⋅ p+ε

√
1+ ∣yε ∣2 = inf

y∈Rd
⩾0

( f (0,y)−y ⋅ p+ε

√
1+ ∣y∣2),

the equality (2.189) implies that
lim
ε→0

ε ∣yε ∣ = 0. (2.190)

The optimality of yε also imposes that for any coordinate i ∈ {1, . . . ,d},

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂xiψ(yε)+ ε(yε)i√
1+∣yε ∣2

= pi if (yε)i > 0

∂xiψ(yε)+ ε(yε)i√
1+∣yε ∣2

⩾ pi if (yε)i = 0
(2.191)

At this point, let (yε,n)n⩾1 ⊆Rd
>0 be a sequence converging to yε . For each n ⩾ 1, invoke Lemma 2.31 to find

(bε,n,qε,n) ∈ ∂ f (0,yε,n) with bε,n −H(qε,n) = 0. The assumption that ψ ∈C1(Rd
⩾0;R), the observation that

qε,n ∈Rd
>0∩∂ψ(yε,n) for each n ⩾ 1, and Proposition A.9 reveal that

(bε,n,qε,n) = (H(∇ψ(yε,n)),∇ψ(yε,n)).

The joint Lipschitz continuity of f implies that, up to the extraction of a subsequence, the sequence
(bε,n,qε,n)n⩾1 converges to some point (bε ,qε) ∈ R×Rd . By Proposition A.10, it must be that (bε ,qε) ∈
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∂ f (0,yε), and by continuity of H and ∇ψ ,

(bε ,qε) = (H(∇ψ(yε)),∇ψ(yε)) ∈ ∂ f (0,yε). (2.192)

Together with the fact that (a, p) ∈ ∂ f (t∗,x∗), this shows that

f (t∗,x∗) ⩾ f (0,yε)+bε t∗+qε ⋅(x∗−yε) and f (0,yε) ⩾ f (t∗,x∗)−at∗+ p ⋅(yε −x∗).

Combining these two inequalities reveals that at∗ ⩾ bε t∗+(qε − p) ⋅(x∗−yε). Using (2.190)- (2.192) and the
non-decreasingness of H yields that

at∗ ⩾H(qε)t∗+(∇ψ(yε)+
εyε√

1+ ∣yε ∣2
− p) ⋅(x∗−yε)+oε(1) ⩾H(p− εyε√

1+ ∣yε ∣2
)t∗+oε(1).

Since H is continuous, dividing by t∗ and letting ε tend to zero establishes (2.185). This completes the
proof. ∎

Before leveraging the convex selection principle to provide an alternative proof of Theorem 2.5, it is worth
noting that the differentiability assumption ψ ∈C1(Rd

⩾0;R) in the convex selection principle cannot be dropped
in general. For an explicit counterexample, see Example 3.25 in [50].

2.7 Another Hamilton-Jacobi approach to matrix estimation

Using the results of the previous section, it is now possible to give an alternative proof of Theorem 2.5 on the
limit of the enriched free energy (2.59) in the symmetric rank-one matrix estimation problem. The approach
discussed in this section generalizes to models where the approximate Hamilton-Jacobi equation in Proposition
2.27 is replaced by the weaker approximate Hamilton-Jacobi equation (2.181) provided that the free energy is
convex. This is for instance the case for the statistical inference models studied in [36]. The idea will be to
apply the convex selection principle (Proposition 2.30) to any subsequential limit f of the sequence (FN)N⩾1

of enriched free energies. It must therefore be verified that the enriched free energy FN is jointly convex,
Lipschitz continuous, and non-decreasing. Lemma 2.29 can then be combined with the convex selection
principle to conclude that f is the unique viscosity solution to the Hamilton-Jacobi equation (2.73).

Proposition 2.32. The enriched free energy (2.59) in the symmetric rank-one matrix estimation problem is

jointly convex, non-decreasing, and Lipschitz continuous uniformly over N.

The proof that the free energy FN is convex involves a somewhat lengthy calculation. This may come
as a surprise, since for simpler models such as the Curie-Weiss model, the convexity of the free energy is a
consequence of the very general observation that the log-Laplace transform of a random variable is convex.
This argument cannot be applied here, however. One may wonder whether this comes from the square roots
acting on the parameters t and h in the definition of the problem; indeed, the function F̃N ∶ (t,h)↦ FN(t2,h2)
is convex. So is the question being made uselessly complicated here? The main reason to insist on showing
the convexity property is that this is a requirement for the validity of the convex selection principle. The proof
of this result relies on the fact that the underlying Hamilton-Jacobi equation does not explicitly depend on the
parameters t and h. In the Hamilton-Jacobi equation for F̃N , the parameters t and h are explicitly present in the
equation; and the convex selection principle is actually false in this more general setting.
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In the context of statistical inference, there is however a fundamental information-theoretic reason to expect
that the free energy FN defined in (2.59) is convex but not necessarily jointly convex. Denoting by IN(Y,x)
the mutual information between the signal x and the observation Y , a direct computation as in Proposition
2.1 shows that the convexity of FN(⋅,0) is equivalent to the concavity of the mutual information IN(Y,x).
Moreover, it is possible to show that when Y is observed, exactly as much information is gained about the
signal x as that provided by observing, for two independent copies W 1 and W 2 of W , the quantities

√
t
N

xx⊺+W 1 and

√
t
N

xx⊺+W 2. (2.193)

Notice that compared with the definition of Y in (2.13), the variable t has been replaced by t/2 in each of the
two quantities above. Finally, having observed the first of the two quantities in (2.193), one can verify that
at most as much information is gained upon subsequently observing the second quantity in (2.193). In other
words, the mutual information IN(Y,x) satisfies a sort of subadditivity property, and elementary properties of
the mutual information allow one to upgrade this to the fact that IN(Y,x) is a concave function. The argument
just sketched therefore leads to the conclusion that the function FN(⋅,0) is convex. Minor variants of this
argument yield that the function FN is convex in each of the variables separately. It may seem plausible that
this argument can be generalized and lead to a conceptual information-theoretic proof that the function FN is
convex jointly in (t,h). However, pushing this argument to a setting with multiple variables yields instead
that every entry of the Hessian of FN is non-negative. Surprisingly, for the sparse stochastic block model,
which unlike the situation considered in this chapter is not reducible to a problem with Gaussian noise, one
can indeed show that the relevant free energy is not convex in general [67].

To sum up this informal discussion, the proof that FN is jointly convex does have to use some of the
particular structure of the class of problems considered, and thus at least some calculations do need to be
made. The interested reader is referred to Proposition 3.1 of [67] for a somewhat more general view on such
calculations.

Proof of Proposition 2.32. The derivative computations (2.61) and (2.65), and the boundedness of the sup-
port of P1 imply that the first order derivatives of the enriched free energy FN are uniformly bounded. This
establishes the uniform Lipschitz continuity of FN . That FN is non-decreasing follows from the derivative com-
putation (2.65). To prove the convexity of FN , its Hessian is shown to be non-negative definite. Differentiating
the expression (2.65) in h and recalling (2.62) reveals that

N∂
2
h FN(t,h) =E⟨(x ⋅x)∂hHN(t,h,x)⟩−E⟨(x ⋅x)∂hHN(t,h,x′)⟩

= 1√
2h

E⟨(x ⋅x)(z ⋅x− z ⋅x′)⟩+2E⟨(x ⋅x)(x ⋅x−x′ ⋅x)⟩−E⟨(x ⋅x)(∣x∣2− ∣x′∣2)⟩.

The Gaussian integration by parts formula (Theorem 4.5 in [50]) is now used to integrate out the noise z.
Recalling also that when the Gibbs measure is an average over the two variables x and x′, the underlying
Hamiltonian is HN(t,h,x)+HN(t,h,x′),

E⟨(x ⋅x)(z ⋅x)⟩ =
√

2hE⟨(x ⋅x)(∣x∣2−x ⋅x′)⟩ and E⟨(x ⋅x)(z ⋅x′)⟩ =
√

2hE⟨(x ⋅x)(∣x′∣2+x ⋅x′−2x′ ⋅x′′)⟩.

It follows by the Nishimori identity that

N∂
2
h FN(t,h) = 2E⟨(x ⋅x′)2⟩−4E⟨(x ⋅x′)(x ⋅x′′)⟩+2E⟨(x ⋅x′)(x′′ ⋅x′′′)⟩. (2.194)
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At this point, introduce the re-scaled and centred variable

y ∶= 1√
N
(x− ⟨x⟩),

with y′,y′′,y′′′ denoting independent copies of y under the measure ⟨⋅⟩, so that

N2E⟨(y ⋅y′)2⟩ =E⟨(x ⋅x′)2⟩−2E⟨(x ⋅x′)(x ⋅x′′)⟩+E⟨(x ⋅x′)(x′′ ⋅x′′′)⟩ = N
2

∂
2
h FN(t,h). (2.195)

This already shows that FN is convex in the h variable. To compute the second derivative in t, rewrite (2.61) in
the form

N2
∂tFN(t,h) =E⟨xx⊺ ⋅xx⊺⟩, (2.196)

and follow through the same calculation as for the second derivative in h; the only difference is that each
occurrence of x is replaced by xx⊺, each occurrence of x is replaced by xx⊺, and so on, with z being replaced
by W . This leads to

N3
∂

2
t FN(t,h) = 2E⟨(xx⊺ ⋅x′x′⊺)2⟩−4E⟨(xx⊺ ⋅x′x′⊺)(xx⊺ ⋅x′′x′′⊺)⟩+2E⟨(xx⊺ ⋅x′x′⊺)(x′′x′′⊺ ⋅x′′′x′′′⊺)⟩,

so in terms of the re-scaled and centred variable

ξ ∶= 1
N
(xx⊺− ⟨xx⊺⟩),

this reads
1

2N
∂

2
t FN(t,h) =E⟨(ξ ⋅ξ ′)2⟩.

For the cross-derivative, start from (2.196) and differentiate in h to obtain

N2
∂h∂tFN(t,h) =

1√
2h

E⟨(xx⊺ ⋅xx⊺)(z ⋅x− z ⋅x′)⟩+2E⟨(xx⊺ ⋅xx⊺)(x ⋅x−x′ ⋅x)⟩−E⟨(xx⊺ ⋅xx⊺)(∣x∣2− ∣x′∣2)⟩.

A Gaussian integration by parts allows to rewrite the first term on the right side above as

E⟨(xx⊺ ⋅xx⊺)(∣x∣2−x ⋅x′−(∣x′∣2+x ⋅x′−2x′ ⋅x′′))⟩.

An application of the Nishimori identity therefore yields that

N2
∂h∂tFN(t,h) = 2E⟨(xx⊺ ⋅x′x′⊺)(x ⋅x′)⟩−4E⟨(xx⊺ ⋅x′x′⊺)(x ⋅x′′)⟩−2E⟨(xx⊺ ⋅x′x′⊺)(x′′ ⋅x′′′)⟩,

which can be rewritten in terms of the re-scaled and centred variables ξ as

1
2N

∂h∂tFN(t,h) =E⟨(ξ ⋅ξ ′)(y ⋅y′)⟩.

To see that the Hessian of FN is non-negative definite, take w = (a,b) ∈R2 and observe that

1
2N

w ⋅∇2FN(t,h)w = a2E⟨(ξ ⋅ξ ′)2⟩+b2E⟨(y ⋅y′)2⟩+2abE⟨(ξ ⋅ξ ′)(y ⋅y′)⟩ =E⟨(aξ ⋅ξ ′+by ⋅y′)2⟩ ≥ 0,

as desired. ∎
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Alternative proof of Theorem 2.5. The Arzelà-Ascoli theorem, the derivative computations (2.61) and (2.65),
and the boundedness of the support of P1 imply that the sequence (FN)N⩾1 is precompact. Denoting by f a
subsequential limit, the idea is to apply the convex selection principle (Proposition 2.30) to f and show that it
is the unique viscosity solution to the Hamilton-Jacobi equation (2.73). The proof therefore proceeds in two
steps. First, it is shown that f satisfies the Hamilton-Jacobi equation (2.73) on a dense subset of R⩾0×R⩾0,
and then the convex selection principle is invoked.

Step 1: f satisfies (2.73) on a dense set. The goal of this step is to show that the set

A ∶= {(t∗,h∗) ∈R>0×R>0 ∣ f is differentiable at (t∗,h∗) and (∂t f −H(∂h f ))(t∗,h∗) = 0}

is dense in R>0×R>0, and therefore in R⩾0×R⩾0. Fix (t0,h0) ∈R>0×R>0, and let V be a compact neighbour-
hood of (t0,h0) in R⩾0×R⩾0. For each α ≥ 1, consider the mapping

φα(t,h) ∶=
α

2
(∣t − t0∣2+ ∣h−h0∣2),

and denote by (tα ,hα) a maximizer of f −φα on V . Writing L for the joint Lipschitz constant of f and
rearranging the bound

f (tα ,hα)−
α

2
(∣tα − t0∣2+ ∣hα −h0∣2) = ( f −φα)(tα ,hα) ⩾ ( f −φα)(t0,h0) = f (t0,h0)

reveals that
(∣tα − t0∣+ ∣hα −h0∣)

2 ⩽ 2
α
∣ f (tα ,hα)− f (t0,h0)∣ ⩽

2L
α
(∣tα − t0∣+ ∣hα −h0∣).

It follows that
∣tα − t0∣+ ∣hα −h0∣ ⩽

2L
α

,

so the sequence (tα ,hα)α⩾1 tends to (t0,h0) as α tends to infinity. In particular, for α sufficiently large, the
point (tα ,hα) is in the interior of V , and so is a local maximum of f −φα as a function on R>0×R>0. It will
be a strict local maximum for the mapping (t,x)↦ φα(t,x)−(∣t − tα ∣2+ ∣h−hα ∣2), so, up to modifying φα by
this small parabola, assume without loss of generality that (tα ,hα) is a strict local maximum of f −φα as
a function on R>0 ×R>0. Arguing as in Step 1 of the proof of the convex selection principle, it is possible
to show that f is differentiable at the contact point (tα ,hα) with (∂t f ,∂h f )(tα ,hα) = (∂tφα ,∂hφα)(tα ,hα).
Invoking Lemma 2.29 implies that for every α sufficiently large, the point (tα ,hα) belongs to A. Recalling
that (tα ,hα)α⩾1 tends to (t0,h0) as α tends to infinity, shows that A is dense in R>0×R>0, as desired.

Step 2: applying the convex selection principle. Combining the previous step with the convex selection
principle shows that f is a viscosity solution to the Hamilton-Jacobi equation (2.73). Together with the
uniqueness result in Proposition 2.9, this implies that the sequence (FN)N⩾1 converges to the unique viscosity
solution f to the Hamilton-Jacobi equation (2.73). The rest of the proof is identical to that of the first proof of
Theorem 2.5 given in Section 2.5. ∎

Having established Theorem 1.3 on the mutual information in the dense stochastic block model, the rest of
this thesis is devoted to understanding the limit of the mutual information in the much harder context of the
sparse stochastic block model using the Hamilton-Jacobi approach developed in this chapter.



Chapter 3

A Hamilton-Jacobi equation for the
sparse stochastic block model

In this chapter, the first steps to study the sparse stochastic block model using the Hamilton-Jacobi approach
are taken. Just like in the dense stochastic block model, it will be shown that the mutual information in the
sparse stochastic block model can be identified with the free energy in a statistical inference problem up
to an explicit additive constant and that this finite-volume free energy satisfies a Hamilton-Jacobi equation
up to an error term that is expected to vanish in the limit of large system size. The main differences with
the dense stochastic block model are that the Hamilton-Jacobi equation will now be infinite-dimensional
and that the error term will be considerably harder to control. Establishing a well-posedness theory for the
infinite-dimensional Hamilton-Jacobi equation will be the content of Chapter 4, and controlling the error term
will be done in Chapter 6 leveraging the multioverlap concentration result developed in Chapter 5. The focus
of this chapter is simply to derive the approximate infinite-dimensional Hamilton-Jacobi equation satisfied by
the finite-volume free energy. In Section 3.1, the problem of computing the limit of the mutual information in
the sparse stochastic block model is reformulated using the language of statistical mechanics by introducing
a relevant Gibbs measure and free energy. In Section 3.2, this free energy is modified without changing its
limiting value by introducing a Poisson random variable that depends on a continuous time parameter t ⩾ 0.
This allows one to compute the time derivative of the free energy. To be able to close the equation, the free
energy is also enriched by adding a term that depends on a non-negative measure µ to its Hamiltonian. The
original free energy in the sparse stochastic block model will be given by the enriched free energy evaluated
at the point (t,µ) = (1,0). Notice that this is precisely the point appearing in Conjecture 1.4. In Section 3.3,
the time derivative and the Gateaux derivative of the enriched free energy are computed. Finally, in Section
3.4 the limit of the enriched free energy at the initial time is computed, and an approximate Hamilton-Jacobi
equation for the enriched free energy is derived. This leads to Conjecture 1.4. This chapter parallels Sections
2.1 – 2.3 of Chapter 2, and its contents rely heavily on Sections 2 and 3 of [49].

3.1 From statistical inference to statistical mechanics

The community detection problem associated with the sparse stochastic block model consists in recovering the
assignment vector

σ
∗ ∶= (σ∗1 , . . . ,σ∗N) ∈ ΣN ∶= {−1,+1}N (3.1)

70
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given the random undirected graph GN ∶= (Gi j)i, j⩽N with vertex set {1, . . . ,N} constructed by stipulating that
an edge between node i and node j is present with conditional probability

P{Gi j = 1∣σ∗} ∶=
c+∆σ

∗
i σ
∗
j

N
(3.2)

for some c > 0 and ∆ ∈ (−c,c). Recall that the labels σ
∗
i ∼ P∗ are taken to be i.i.d. Bernoulli random variables

with probability of success p ∈ (0,1) and expectation m,

p ∶= P∗(1) = P{σ∗i = 1} and m ∶=Eσ
∗
1 = 2p−1. (3.3)

This means that the assignment vector σ
∗ follows a product distribution

σ
∗ ∼ P∗N ∶= (P∗)⊗N . (3.4)

To understand the mutual information

I(GN ;σ
∗) ∶=E log

P(GN ,σ
∗)

P(GN)P(σ∗)
=E
ˆ
RN

log(
dPσ∗∣GN

dP∗N
(σ)) dPσ∗∣GN (σ) (3.5)

between the assignment vector σ
∗ and the graph GN , it will be useful to get a better grasp on the conditional

law Pσ∗∣GN of the assignment vector σ
∗ given the graph GN . Observing that

P{GN = (Gi j)∣σ∗ = σ} =∏
i< j
(c+∆σiσ j

N
)

Gi j
(1− c+∆σiσ j

N
)

1−Gi j
, (3.6)

Bayes’ formula can be used to obtain the law of the assignment vector σ
∗ conditionally on the observation of

GN . It can be written in the form of a Gibbs measure,

P{σ∗ = σ ∣GN = (Gi j)} =
exp(H○N(σ))P∗N (σ)´

ΣN
exp(H○N(τ)) dP∗N (τ)

, (3.7)

for the Hamiltonian

H○N(σ) ∶=∑
i< j

log[(c+∆σiσ j)Gi j(1− c+∆σiσ j

N
)

1−Gi j
]. (3.8)

Denoting its associated average free energy by

F
○
N ∶=

1
N
E log

ˆ
ΣN

expH○N(σ) dP∗N (σ), (3.9)

in the limit of large N, this average free energy coincides with the mutual information (3.5) up to an explicit
additive constant. Indeed, (3.6) and Bayes’ formula imply that

I(GN ;σ
∗) = (N

2
)E log(c+∆σ

∗
1 σ
∗
2 )G12(1− c+∆σ

∗
1 σ
∗
2

N
)

1−G12
−NF

○
N . (3.10)

Averaging with respect to the randomness of G12, and Taylor expanding the logarithm reveals that

1
N

I(GN ;σ
∗) = 1

2
E(c+∆σ

∗
1 σ
∗
2 ) log(c+∆σ

∗
1 σ
∗
2 )−

c
2
− ∆m2

2
−F
○
N +O(N−1). (3.11)
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Just like in the dense stochastic block model, this observation reduces the task of understanding the limit of the
mutual information (3.5), an information-theoretic quantity, to computing the limit of the free energy (3.9), a
statistical mechanics quantity. Unlike for the dense stochastic block model, there is no universality property of
the free energy (3.9) that allows one to map the sparse stochastic block model to a statistical inference problem
with Gaussian noise such as the rank-one matrix estimation problem. The sparse stochastic block model itself
therefore has to be understood using the Hamilton-Jacobi approach.

3.2 Modifying and enriching the sparse stochastic block model

To apply the Hamilton-Jacobi approach, the free energy (3.9) will be enriched so that it depends on a temporal
variable and a spatial variable with respect to which derivatives can be taken. Before enriching the free energy,
it will be convenient to modify it without changing its limiting value. Conditionally on the assignment vector
σ
∗, the modified Hamiltonian will be a sum of independent random variables, and the sum will be over a

Poisson number of terms. The main advantage of this construction is that it will allow for the introduction of a
continuous parameter t ⩾ 0 tuning the mean of the Poisson random variable. This will constitute the temporal
enrichment of the free energy. The spatial enrichment is more sophisticated and will be discussed in due
course.

To define the modified free energy more precisely, introduce a random variable Π1 ∼ Poi(N2) as well as an
independent family of i.i.d. random matrices (Gk)k⩾1 each having conditionally independent entries (Gk

i, j)i, j⩽N

taking values in {0,1} with conditional distribution

P{Gk
i, j = 1∣σ∗} ∶=

c+∆σ
∗
i σ
∗
j

N
. (3.12)

Given a collection of random indices (ik, jk)k⩾1 sampled uniformly at random from {1, . . . ,N}2, independently
of the other random variables, define the Hamiltonian HN on ΣN by

HN(σ) ∶= ∑
k⩽Π1

log[(c+∆σik σ jk)
Gk

ik , jk (1−
c+∆σik σ jk

N
)

1−Gk
ik , jk ], (3.13)

and write
FN ∶=

1
N
E log

ˆ
ΣN

expHN(σ) dP∗N (σ) (3.14)

for its associated free energy. Through a slight abuse of terminology, the modified Hamiltonian (3.13) and
the modified free energy (3.14) will often be termed the Hamiltonian and the free energy, respectively. This
is justified because the free energies (3.9) and (3.14) are asymptotically equivalent by the Binomial-Poisson
approximation theorem (Proposition A.15).

Proposition 3.1. The free energies (3.9) and (3.14) are asymptotically equivalent,

lim
N→+∞

∣FN −F
○
N ∣ = 0. (3.15)

Proof. Introduce the Hamiltonians

H̃○N(σ) ∶=∑
i< j
(Gi j log(c+∆σiσ j)−

c+∆σiσ j

N
) and H̃N(σ) ∶= ∑

k⩽Π1

(Gk
ik, jk log(c+∆σik σ jk)−

c+∆σik σ jk

N
)
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on ΣN , and denote by

F̃○N ∶=
1
N
E log

ˆ
ΣN

expH̃○N(σ) dP∗N (σ) and F̃N ∶=
1
N
E log

ˆ
ΣN

expH̃N(σ) dP∗N (σ)

their associated free energy functionals. The proof proceeds in three steps. First, a Taylor expansion is used to
show that F

○
N and F̃○N are asymptotically equivalent and that FN and F̃N are asymptotically equivalent. This

reduces the task of showing that F
○
N and FN are asymptotically equivalent to that of showing that F̃○N and F̃N

are asymptotically equivalent. The free energy functional F̃N is then shown to be asymptotically equivalent
to a functional F̃ ′N which has the same structure as F̃○N . Finally, an interpolation argument leveraging this
similarity in structure and the Binomial-Poisson approximation theorem is used to prove that F̃○N and F̃ ′N are
asymptotically equivalent.

Step 1: reducing to the asymptotic equivalence of F̃○N and F̃N . A Taylor expansion of the logarithm shows that
for any σ ∈ ΣN ,

∣H○N(σ)− H̃○N(σ)∣ ⩽∑
i< j
∣c+∆σiσ j

N
−(1−Gi j)(

c+∆σiσ j

N
)∣+O(1) ⩽ c+ ∣∆∣

N
∑
i< j

Gi j +O(1)

∣HN(σ)− H̃N(σ)∣ ⩽ ∑
k⩽Π1

∣
c+∆σik σ jk

N
−(1−Gk

ik, jk)(
c+∆σik σ jk

N
)∣+O(Π1

N2 ) ⩽
c+ ∣∆∣

N
∑

k⩽Π1

Gk
ik, jk +O(

Π1

N2 ).

Since these bounds are uniform in σ ∈ ΣN and EΠ1 = (N2), they imply that

∣F○N − F̃○N ∣ ⩽
c+ ∣∆∣

N2 ∑
i< j

EGi j +O(N−1) ⩽ (c+ ∣∆∣)
2

N
+O(N−1) =O(N−1),

∣FN − F̃N ∣ ⩽
c+ ∣∆∣

N2 E ∑
k⩽Π1

Gk
ik, jk +O(EΠ1/N3) ⩽ (c+ ∣∆∣)

2

N3 EΠ1+O(N−1) =O(N−1).

By the triangle inequality, it therefore suffices to show that F̃○N and F̃N are asymptotically equivalent.

Step 2: asymptotic equivalence of F̃N and F̃ ′N . The free energy F̃N is now rewritten in a way that more closely
resembles F̃○N . For each pair 1 ⩽ i ⩽ j ⩽N, introduce the random index set Ii, j ∶= {k ⩽Π1 ∣ {ik, jk} = {i, j}} in
such a way that

H̃N(σ) =∑
i< j
(G̃i, j log(c+∆σiσ j)−

c+∆σiσ j

N
)−∑

i⩽N
(G̃i,i log(c+∆)− c+∆

N
)

for the random variables G̃i, j ∶=∑k∈Ii, j
Gk

i, j. Observe that G̃i, j counts the number of indices k ⩽Π1 with
{ik, jk} = {i, j} and Gk

i, j = 1. By independence of the random variables involved and the Poisson colouring
theorem, G̃i, j is a Poisson random variable with mean

λ̃i, j ∶=EΠ1P{{i1, j1} = {i, j}}P{G1
i, j = 1} =O(N−1)

This motivates the introduction of the Hamiltonian

H̃′N(σ) ∶=∑
i< j
(G̃i, j log(c+∆σiσ j)−

c+∆σiσ j

N
)
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and of its associated free energy

F̃ ′N ∶=
1
N
E log

ˆ
ΣN

expH̃′N(σ) dP∗N (σ).

Indeed, the free energy functionals F̃N and F̃ ′N are asymptotically equivalent,

∣F̃ ′N − F̃N ∣ ⩽
∣log(c+∆)∣

N
∑
i⩽N

EG̃i,i+
c+ ∣∆∣

N
⩽ ∣log(c+∆)∣

N
∑
i⩽N

λ̃i,i+
2c
N
=O(N−1).

By the previous step and the triangle inequality, it therefore suffices to show that F̃○N and F̃ ′N are asymptotically
equivalent.

Step 3: interpolating between F̃○N and F̃ ′N . For any random vector Y ∶= (Yi, j)i< j introduce the Hamiltonian
H̃N(⋅,Y) and the measure P̃⋆N on ΣN defined by

H̃N(σ ,Y) ∶=∑
i< j

Yi, j log(c+∆σiσ j) and P̃∗N (σ) ∶= exp(−∑
i< j

c+∆σiσ j

N
)P∗N (σ).

As usual, write

FN(Y) ∶=
1
N

log
ˆ

ΣN

expH̃N(σ ,Y) d P̃∗N (σ) and F̃N(Y) ∶=EFN(Y)

for the associated free energy functionals, and ⟨⋅⟩ for the associated Gibbs measure. Conditionally on the
randomness of the assignment vector σ

∗, for each 1 ⩽ i < j ⩽N, introduce a Poisson random variable Πi, j with
mean λi, j ∶=N−1(c+∆σ

∗
i σ
∗
j ). A direct computation shows that there exists a constant C < +∞ such that for

any random vector Y ,

∣∂Yi, j FN(Y)∣ =
1
N
∣⟨∂Yi, j H̃N(σ ,Y)⟩∣ = 1

N
∣⟨log(c+∆σiσ j)⟩∣ ⩽

C
N

It is understood that the constant C < +∞ may change from one occurrence to the next, only making sure that
it does not depend on N. It follows by the mean value theorem that

∣F̃ ′N − F̃N(Π)∣ = ∣F̃N(G̃)− F̃N(Π)∣ ⩽
C
N
∑
i< j

E∣G̃i, j −Πi, j∣,

∣F̃N(Π)− F̃○N ∣ = ∣F̃N(Π)− F̃N(G)∣ ⩽
C
N
∑
i< j

E∣Πi, j −Gi j∣.

To bound the first expression in this display, recall that G̃i, j is a Poisson random variable with mean

λ̃i, j =
N −1

N
⋅
c+∆σ

∗
i σ
∗
j

N
= λi, j −

λi, j

N
.

This means that, conditionally on the randomness of σ
∗, the Poisson random variable Πi, j is equal in

distribution to G̃i, j +Π
′
i, j for a Poisson random variable Π

′
i, j with mean λ

′
i, j ∶=N−1

λi, j. It follows that

∣F̃ ′N − F̃N(Π)∣ ⩽
C
N
∑
i< j

EΠ
′
i, j =

C
N
∑
i< j

λ
′
i, j =O(N−1). (3.16)
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To bound the second expression in the previous display, observe that by the triangle inequality,

E∣Πi, j −Gi j∣ ⩽E∣Πi, j −Gi j∣1{Πi, j ⩾ 2}+E∣Πi, j −Gi j∣1{Πi, j ⩽ 2}1{Πi, j ≠Gi j}
⩽EΠi, j1{Πi, j ⩾ 2}+P{Πi, j ⩾ 2}+3P{Πi, j ≠Gi j}
⩽ 3P{Πi, j ≠Gi j}+O(λ 2

i, j).

Taking the infimum over all couplings of Πi, j and Gi j, recalling the definition of the total variation distance in
(A.28), and invoking the Binomial-Poisson approximation theorem shows that

∣F̃N(Π)− F̃○N ∣ ⩽
C
N
∑
i< j
(TV(Πi, j,Gi j)+O(λ 2

i, j)) =O(Nλ
2
i, j) =O(N−1).

This establishes the asymptotic equivalence of F̃○N and F̃ ′N , and completes the proof. ∎

Together with the relationship (3.11) between the free energy (3.9) and the mutual information (3.5), this
result implies that

1
N

I(GN ;σ
∗) = 1

2
E(c+∆σ

∗
1 σ
∗
2 ) log(c+∆σ

∗
1 σ
∗
2 )−

c
2
− ∆m2

2
−FN +o(1). (3.17)

The problem of finding the asymptotic value of the mutual information (3.5) has therefore been reduced to the
task of determining the limit of the free energy (3.14).

The advantage of the free energy (3.14) over the free energy (3.9) is that it can easily be enriched in time.
For each t ⩾ 0, let Πt ∼ Poit(N2) be a Poisson random variable with mean t(N2), and consider a time-dependent
version of the Hamiltonian (3.13) defined on ΣN by

Ht
N(σ) ∶= ∑

k⩽Πt

log[(c+∆σik σ jk)
Gk

ik , jk (1−
c+∆σik σ jk

N
)

1−Gk
ik , jk ]. (3.18)

Notice that this is the Hamiltonian associated with the task of inferring the signal σ
∗ from the data

Dt
N ∶= (Πt ,(ik, jk)k⩽Πt ,(Gk

ik, jk)k⩽Πt ) (3.19)

in the sense that the Gibbs measure associated with H̃t
N is the conditional law of σ

∗ given the data D̃t
N .

Although the free energy associated with the Hamiltonian (3.18) can be differentiated in time, there is no
way of closing the equation without being able to take derivatives in a spatial variable. Indeed, the situation
is analogous to that encountered in Section 2.3 in the context of the symmetric rank-one matrix estimation
problem. Once again, the free energy will have to be enriched by adding a spatial component to the Hamiltonian.
The main difference between the present setting and that of the symmetric rank-one matrix estimation problem
is that the finite-dimensional spatial variable h ∈R⩾0 will be replaced by an infinite-dimensional variable µ

corresponding to a non-negative measure. The non-negative measure µ will be decomposed as µ = sµ for s ⩾ 0
and a probability measure µ . It will be used to consider a situation in which the graph of connections of a
simpler setting in which each individual i can form connections with its own set of neighbour candidates is
also observed. To be more specific, each individual i will have an independent number Poi(sN) of neighbour
candidates indexed by the pairs (i,k) for k ⩽ Poi(sN). Each candidate neighbour (i,k) will be independently
assigned a random “type” xi,k sampled from the distribution µ , and an edge will be present between individual
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i and its candidate neighbour (i,k) with probability N−1(c+∆σ
∗
i xi,k). In the inference problem, the “types”

xi,k will be revealed to the statistician. The lack of interactions between individuals makes this piece of
information much simpler to understand than the original community detection problem associated with
the sparse stochastic block model. Together, the temporal enrichment previously discussed and this spatial
enrichment, will lead to an “enriched” free energy, function of t and µ , and it will be possible to recover the
free energy (3.14) by evaluating this enriched free energy at the point (t,µ) = (1,0).

To define the spatial enrichment of the free energy (3.14) precisely, denote by Pr[−1,1] the set of probability
measures on [−1,1], and given µ ∈ Pr[−1,1], consider a sequence x = (xi,k)i,k⩾1 of i.i.d. random variables
with law µ . For each s > 0 and i ⩾ 1, let Πi,s ∼ Poi(sN) be Poisson random variables with mean sN that are
independent over i ⩾ 1. Introduce the Hamiltonian on ΣN defined by

H̃s,µ
N (σ) ∶=∑

i⩽N
∑

k⩽Πi,s

log[(c+∆σixi,k)G̃
x
i,k(1− c+∆σixi,k

N
)

1−G̃x
i,k], (3.20)

where the random variables (G̃x
i,k)i,k⩾1 are conditionally independent with conditional distribution

P{G̃x
i,k = 1∣σ∗,x} ∶= c+∆σ

∗
i xi,k

N
. (3.21)

As alluded to above, this is the Hamiltonian associated with the task of inferring the signal σ
∗ from the data

D̃s,µ
N ∶= (Πi,s,(xi,k)k⩽Πi,s ,(G̃i,k)k⩽Πi,s)i⩽N , (3.22)

in the sense that the Gibbs measure associated with H̃s,µ
N is the conditional law of σ

∗ given the data D̃s,µ
N .

The temporal and spatial enrichments of the free energy (3.14) can now be combined to define the enriched
free energy. Introduce the enriched Hamiltonian on ΣN defined by

H̃t,s,µ
N (σ) ∶=Ht

N(σ)+ H̃s,µ
N (σ), (3.23)

and denote by

F̃N(t,s,µ) ∶=
1
N
E log

ˆ
ΣN

expH̃t,s,µ
N (σ) dP∗N (σ) (3.24)

its associated free energy. Observe that F̃N(1,0,µ) = FN and that (3.23) is the Hamiltonian associated with the
task of inferring the signal σ

∗ from the data

D̃t,s,µ
N ∶= (Dt

N ,D̃
s,µ
N ), (3.25)

where the randomness in these two data sets is taken to be independent conditionally on σ
∗. To obtain a

Hamilton-Jacobi equation, it will be convenient to reinterpret the enriched free energy (3.24) as a function
of the time-parameter t > 0 and a finite measure µ; the parameter s will become the total mass of this finite
measure. Denote byMs the space of signed measures on [−1,1],

Ms ∶= {µ ∣ µ is a signed measure on [−1,1]}, (3.26)
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and byM+ the cone of non-negative measures on this interval,

M+ ∶= {µ ∈Ms ∣ µ is a non-negative measure}. (3.27)

The convention that a signed measure can only take finite values is followed, so every µ ∈M+ must have finite
total mass. This implies that every non-zero measure µ ∈M+ induces a probability measure,

µ ∶= µ

µ[−1,1] ∈ Pr[−1,1]. (3.28)

Given a measure µ ∈M+, the enriched Hamiltonian Ht,µ
N on ΣN is defined by

Ht,µ
N (σ) ∶= H̃t,µ[−1,1],µ

N (σ), (3.29)

where H̃0,0
N = 0 for the zero measure by continuity. The free energy associated with this Hamiltonian is given

by
FN(t,µ) ∶= F̃N(t,µ[−1,1],µ), (3.30)

and once again FN = FN(1,0), where 0 denotes the zero measure. The free energy in (3.30) will be termed the
enriched free energy, and it will now be shown that, up to an error that is expected to be small, it satisfies an
infinite-dimensional Hamilton-Jacobi equation.

3.3 Differentiating the sparse stochastic block model free energy

To derive the approximate infinite-dimensional Hamilton-Jacobi equation satisfied by the enriched free energy
(3.30), its temporal and spatial derivatives must first be computed. It will be convenient to write ⟨⋅⟩ for the
average with respect to the Gibbs measure associated with the Hamiltonian (3.29). This means that for any
bounded measurable function f = f (σ1, . . . ,σn) of finitely many replicas,

⟨ f (σ1, . . . ,σn)⟩ ∶=

´
Σn

N
f (σ1, . . . ,σn)∏`⩽n expHt,µ

N (σ `) dP∗N (σ `)

(
´

ΣN
expHt,µ

N (σ) dP∗N (σ))
n . (3.31)

In this notation, the replicas σ
1, . . . ,σn represent i.i.d. samples under the random measure ⟨⋅⟩. By construction,

⟨ f (σ1)⟩ =E[ f (σ∗)∣Dt,µ
N ], (3.32)

whereDt,µ
N ∶= D̃

t,µ[−1,1],µ
N is the data defined in (3.25). Just like in the setting of the symmetric rank-one matrix

estimation problem, computations will be considerably simplified by the Nishimori identity (Proposition 2.2).
This identity allows the interchange of one replica σ

` by the signal σ
∗ when taking an average with respect to

all sources of randomness, thus avoiding a cascade of new replicas as the free energy is differentiated. In the
present context, it states that, for every bounded measurable function f = f (σ1, . . . ,σn,Dt,µ

N ) of finitely many
replicas and the data,

E⟨ f (σ1,σ2, . . . ,σn,Dt,µ
N )⟩ =E⟨ f (σ

∗,σ2, . . . ,σn,Dt,µ
N )⟩. (3.33)
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This can be first verified for functions of product form using (3.32), and then extended to all bounded
measurable functions using Dynkin’s π-λ theorem as in Proposition 2.2.

3.3.1 Computing the time derivative of the enriched free energy

To begin with, the time derivative of the enriched free energy (3.30) is computed with the spatial parameter
fixed to some finite measure µ ∈M+. The calculations of this section and the next closely follow [14] and
Lemma 6 of [92]. For each parameter λ > 0 and every integer m ⩾ 0, write

π(λ ,m) ∶= λ
m

m!
exp(−λ) (3.34)

for the mass attributed to the atom m by a Poi(λ) distribution, with the convention that π(λ ,−1) = 0. Denote
by

HN,m(σ) ∶= ∑
k⩽m

log[(c+∆σik σ jk)
Gk

ik , jk (1−
c+∆σik σ jk

N
)

1−Gk
ik , jk ] (3.35)

the Hamiltonian (3.13) conditional on there being m terms in the sum, and introduce the partition function

ZN,m ∶=
ˆ

ΣN

exp(HN,m(σ)+ H̃µ[−1,1],µ
N (σ)) dP∗N (σ). (3.36)

In this notation, the enriched free energy (3.30) may be expressed as

FN(t,µ) =
1
N
∑
m⩾0

π(t(N
2
),m)E logZN,m. (3.37)

To take the time derivative of this expression, it will be convenient to observe that

∂λ π(λ ,m) = π(λ ,m−1)−π(λ ,m). (3.38)

Lemma 3.2. For any t > 0 and µ ∈M+,

∂tFN(t,µ) =
1
2
E(c+∆⟨σiσ j⟩) log(c+∆⟨σiσ j⟩)−

∆m2

2
− c

2
+O(N−1), (3.39)

where the indices i, j ∈ {1, . . . ,N} are uniformly sampled independently of all other sources of randomness.

Proof. To simplify notation, let λ(t) ∶= t(N2). Leveraging (3.38) to differentiate the right side of (3.37) yields

∂tFN(t,µ) =
1
N
(N

2
)∑

m⩾0
(π(λ(t),m−1)−π(λ(t),m))E logZN,m

= 1
N
(N

2
)∑

m⩾0
π(λ(t),m)E log

ZN,m+1

ZN,m
. (3.40)

Denote by i, j ∈ {1, . . . ,N} uniformly sampled indices, and write Gi, j for a random variable with conditional
distribution (3.2). These random variables are taken to be independent of all other sources of randomness and
of each other. Since

ZN,m+1
d=
ˆ

ΣN

(c+∆σiσ j)Gi, j(1− c+∆σiσ j

N
)

1−Gi, j
exp(HN,m(σ)+Hµ[−1,1],µ

N (σ)) dP∗N (σ),
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where d= denotes equality in distribution, it follows by (3.40) and the definition of the Gibbs average in (3.31)
that

∂tFN(t,µ) =
1
N
(N

2
)E log⟨(c+∆σiσ j)Gi, j(1− c+∆σiσ j

N
)

1−Gi, j
⟩.

Remembering the explicit form of the conditional distribution (3.2), and averaging with respect to the
randomness of Gi, j reveals that

∂tFN(t,s,µ) =
1
2
E(c+∆σ

∗
i σ
∗
j ) log⟨c+∆σiσ j⟩+

N
2
E(1−

c+∆σ
∗
i σ
∗
j

N
) log⟨1− c+∆σiσ j

N
⟩+O(N−1).

Taylor expanding the logarithm and keeping only first-order terms reduces this to

∂tFN(t,µ) =
1
2
E(c+∆σ

∗
i σ
∗
j ) log⟨c+∆σiσ j⟩−

∆

2
E⟨σiσ j⟩−

c
2
+O(N−1)

= 1
2
E(c+∆σ

∗
i σ
∗
j ) log⟨c+∆σiσ j⟩−

∆

2
Eσ
∗
i σ
∗
j −

c
2
+O(N−1)

= 1
2
E(c+∆σ

∗
i σ
∗
j ) log(c+∆⟨σiσ j⟩)−

∆m2

2
− c

2
+O(N−1),

where the second equality uses the Nishimori identity (3.33) and the third equality uses the fact that i and j are
distinct with overwhelming probability. Noticing that the Gibbs average ⟨σiσ j⟩ is a measurable function of the
data by (3.32), and applying the Nishimori identity (3.33) completes the proof. ∎

To compare (3.39) with the Gateaux derivative of the enriched free energy which will be computed below,
it will be convenient to Taylor expand the logarithm. This will make the dependence of the time derivative of
the enriched free energy on the multioverlaps

R`1,...,`n ∶=
1
N
∑
i⩽N

σ
`1
i ⋯σ

`n
i (3.41)

associated with the enriched Hamiltonian (3.29) explicit. Here (σ `)`⩾1 denotes a sequence of i.i.d. replicas
sampled from the Gibbs measure (3.31). To simplify notation, it will be convenient to write R[n] ∶= R1,...,n.

Corollary 3.3. For any t > 0 and µ ∈M+,

∂tFN(t,µ) =
1
2
(c+∆m2) log(c)+ c

2
∑
n⩾2

(−∆/c)n
n(n−1)E

⟨R2
[n]⟩−

c
2
+O(N−1). (3.42)

Proof. A Taylor expansion of the logarithm shows that

log(c+∆⟨σiσ j⟩) = log(c)+ log(1+ ∆

c
⟨σiσ j⟩) = log(c)−∑

n⩾1

(−∆/c)n
n

⟨σiσ j⟩n.

Together with the Nishimori identity (3.33) this implies that

E(c+∆⟨σiσ j⟩) log(c+∆⟨σiσ j⟩) = (c+∆m2) log(c)−∑
n⩾1

(−∆/c)n
n

E(c+∆⟨σiσ j⟩)⟨σiσ j⟩n. (3.43)

Averaging with respect to the randomness of the uniformly sampled indices i, j ∈ {1, . . . ,N} reveals that

E(c+∆⟨σiσ j⟩)⟨σiσ j⟩n = cE⟨R2
[n]⟩+∆E⟨R2

[n+1]⟩.
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Remembering that ∣∆∣ < c, and noticing that E⟨R2
1⟩ =m2+O(N−1) by the Nishimori identity, it follows that

∑
n⩾1

(−∆/c)n
n

E(c+∆⟨σiσ j⟩)⟨σiσ j⟩n = −∆E⟨R2
1⟩+c∑

n⩾2
((−∆/c)n

n
− (−∆/c)n

n−1
)E⟨R2

[n]⟩+O(N
−1)

= −∆m2−c∑
n⩾2

(−∆/c)n
n(n−1)E

⟨R2
[n]⟩+O(N

−1).

Substituting this into (3.43) and invoking Lemma 3.2 completes the proof. ∎

3.3.2 Computing the Gateaux derivative of the enriched free energy

The computation of the Gateaux derivative of the enriched free energy (3.30) at a measure µ ∈M+ in the
direction of a probability measure ν ∈ Pr[−1,1],

Dµ FN(t,µ;ν) ∶= lim
ε→0

FN(t,µ +εν)−FN(t,µ)
ε

, (3.44)

is slightly more involved. It will be useful to compute the derivative of the free energy (3.24) with respect to
the parameter s ⩾ 0 first. Fix a probability measure µ ∈ Pr[−1,1] and a time t ⩾ 0. For each i ⩽N, write

H̃s,i
N,m(σ) ∶=∑

j≠i
∑

k⩽Π j,s

log[(c+∆σ jx j,k)G̃
x
j,k(1−

c+∆σ jx j,k

N
)

1−G̃x
j,k]

+∑
k⩽m

log[(c+∆σixi,k)G̃
x
i,k(1− c+∆σixi,k

N
)

1−G̃x
i,k] (3.45)

for the Hamiltonian (3.20) conditional on the i’th Poisson sum containing m terms, and denote by

Zs,i
N,m ∶=

ˆ
ΣN

exp(Ht
N(σ)+ H̃s,i

N,m(σ)) dP∗N (σ) (3.46)

its associated partition function. In this notation, the free energy (3.24) may be expressed as

F̃N(t,s,µ) =
1
N
∑
m⩾0

π(sN,m)E logZs,i
N,m. (3.47)

Lemma 3.4. For any t > 0, s > 0 and µ ∈ Pr[−1,1],

∂sF̃N(t,s,µ) =E(c+∆⟨σi⟩xi) log(c+∆⟨σi⟩xi)−c−∆mEx1+O(N−1), (3.48)

where the index i ∈ {1, . . . ,N} is uniformly sampled and the random variables (xi)i⩾1 are sampled from the

measure µ independently of all other sources of randomness.

Proof. Conditioning on the number of terms in each of the Poisson sums that appear in the definition of the
free energy (3.24), and leveraging the product rule as well as equations (3.47) and (3.38), one can show that

∂sF̃N(t,s,µ) =
1
N
∑
i⩽N
∑
m⩾0

∂sπ(sN,m)E logZs,i
N,m =∑

i⩽N
∑
m⩾0

π(sN,m)E log
Zs,i

N,m+1

Zs,i
N,m

. (3.49)

For each i ⩽N, denote by xi a sample from the measure µ , and write G̃x
i for a random variable with conditional



CHAPTER 3. A HAMILTON-JACOBI EQUATION FOR THE SPARSE STOCHASTIC BLOCK MODEL 81

distribution (3.21). These random variables are taken to be independent for different values of i ⩽ N, and
independent of all other sources of randomness. Since

Zs,i
N,m+1

d=
ˆ

ΣN

(c+∆σixi)G̃
x
i (1− c+∆σixi

N
)

1−G̃x
i
exp(Ht

N(σ)+ H̃s,i
N,m(σ)) dP∗N (σ), (3.50)

where d= denotes equality in distribution, it follows by (3.49) and the definition of the Gibbs average in (3.31)
that

∂sF̃N(t,s,µ) =∑
i⩽N

E log⟨(c+∆σixi)G̃
x
i (1− c+∆σixi

N
)

1−G̃x
i ⟩. (3.51)

Remembering the explicit form of the conditional distribution (3.21) reveals that

∂sF̃N(t,s,µ) =
1
N
∑
i⩽N

E(c+∆σ
∗
i xi) log⟨c+∆σixi⟩+∑

i⩽N
E(1− c+∆σ

∗
i xi

N
) log⟨1− c+∆σixi

N
⟩.

Taylor expanding the logarithm and keeping only first-order terms reduces this to

∂sF̃N(t,s,µ) =
1
N
∑
i⩽N

E(c+∆σ
∗
i xi) log⟨c+∆σixi⟩−c− ∆

N
∑
i⩽N

ExiE⟨σi⟩+O(N−1)

= 1
N
∑
i⩽N

E(c+∆σ
∗
i xi) log(c+∆⟨σi⟩xi)−c−∆mEx1+O(N−1),

where the second equality uses the Nishimori identity (3.33). Noticing that the Gibbs average ⟨σi⟩ is a
measurable function of the data by (3.32), and applying the Nishimori identity (3.33) completes the proof. ∎

Before leveraging this result to compute the Gateaux derivative (3.44), it will be convenient to discuss some
distributional identities which will simplify the calculation. Fix a finite measure µ ∈M+ and a probability
measure ν ∈ Pr[−1,1]. Let s ∶= µ[−1,1] and fix ε > 0. Introduce the measure λ ∶= µ +εν , and observe that

λ = λ

s+ε
= s

s+ε
µ + ε

s+ε
ν . (3.52)

Denote by (xi,k)i,k⩾1 i.i.d. random variables sampled from the measure µ , and write (yi,k)i,k⩾1 for i.i.d. random
variables sampled from the measure ν . Given i.i.d. random variables (wi,k)i,k⩾1 with distribution Ber( s

s+ε
),

notice that by (3.52) the random variables

zi,k ∶= x
wi,k
i,k y

1−wi,k
i,k (3.53)

are i.i.d. with distribution λ . In particular, if (G̃z
i,k)i,k⩾1 are independent random variables with conditional

distribution (3.21), the Hamiltonian (3.20) may be expressed as

H̃s+ε,λ
N (σ) d=∑

i⩽N
∑

k⩽Πi,s+ε

log[(c+∆σizi,k)G̃
z
i,k(1− c+∆σizi,k

N
)

1−G̃z
i,k], (3.54)

where d= denotes equality in distribution. This identity will allow for the linearization of the enriched free
energy (3.30) upon realizing that

FN(t,µ +εν) = F̃N(t,s+ε,λ). (3.55)
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To make the computation as clear as possible, it will also be convenient to introduce additional notation. In the
same spirit as (3.45), for each i ⩽N, write

H̃s,i,+
N,m (σ) ∶= H̃s,i

N,m+ log[(c+∆σiyi)G̃
y
i (1− c+∆σiyi

N
)

1−G̃y
i ] (3.56)

for the Hamiltonian (3.20) conditional on the i’th Poisson sum containing m+1 terms one of which is sampled
from the measure ν . Denote by

Zs,i,+
N,m ∶=

ˆ
ΣN

exp(Ht
N(σ)+ H̃s,i,+

N,m (σ)) dP∗N (3.57)

its associated partition function. Finally, it will be useful to record the following consequence of Taylor’s
theorem,

( s
s+ε
)
∑i⩽N mi

= 1− ε

s+ε
∑
i⩽N

mi+o(ε), (3.58)

as well as the elementary identity,
mπ(λ ,m) = λπ(λ ,m−1). (3.59)

Lemma 3.5. For any t > 0, µ ∈M+ and ν ∈ Pr[−1,1],

Dµ FN(t,µ;ν) =E(c+∆⟨σi⟩yi) log(c+∆⟨σi⟩yi)+NE(1− c+∆⟨σi⟩yi

N
) log(1− c+∆⟨σi⟩yi

N
) (3.60)

where the index i ∈ {1, . . . ,N} is uniformly sampled and the random variables (yi)i⩾1 are sampled from the

measure ν independently of all other sources of randomness.

Proof. Leveraging (3.54), conditioning on the number of random variables (wi,k)i,k⩾1 that are equal to one,
and using (3.58), one can show that

F̃N(t,s+ε,λ) = F̃N(t,s+ε,µ)− ε

s+ε
∑
i⩽N
∑
m⩾0

mπ((s+ε)N,m) 1
N
E logZs+ε,i

n,m

+ ε

s+ε
∑
i⩽N
∑
m⩾0
(m+1)π((s+ε)N,m+1) 1

N
E logZs+ε,i,+

N,m +o(ε).

Keeping in mind (3.59), this simplifies to

F̃N(t,s+ε,λ) = F̃N(t,s+ε,µ)+ε∑
i⩽N
∑
m⩾0

π((s+ε)N,m)(E log
Zs+ε,i,+

N,m

Zs+ε,i
N,m

−E log
Zs+ε,i

N,m+1

Zs+ε,i
N,m

)+o(ε). (3.61)

For each i ⩽ N, denote by xi a sample from the measure µ and by yi a sample from the measure ν . Write
G̃x

i and G̃y
i for random variables with conditional distribution (3.21). These random variables are taken to be

independent for different values of i ⩽ N, and independent of all other sources of randomness. Combining
(3.61) with (3.50) and the identity

Zs+ε,i,+
N,m

d=
ˆ

ΣN

(c+∆σiyi)G̃
y
i (1− c+∆σiyi

N
)

1−G̃y
i
exp(Ht

N(σ)+ H̃s+ε,i
N,m (σ)) dP∗N (σ),
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where d= denotes equality in distribution, yields

F̃N(t,s+ε,λ) = F̃N(t,s+ε,µ)+ε∑
i⩽N

E log⟨(c+∆σiyi)G̃
y
i (1− c+∆σiyi

N
)

1−G̃y
i ⟩

−ε∑
i⩽N

E log⟨(c+∆σixi)G̃
x
i (1− c+∆σixi

N
)

1−G̃x
i ⟩+o(ε). (3.62)

Together with (3.51), this implies that

Dµ FN(t,µ;ν) = lim
ε→0

F̃N(t,s+ε,λ)− F̃N(t,s+ε,µ)
ε

+∂sFN(t,s,µ)

=∑
i⩽N

E log⟨(c+∆σiyi)G̃
y
i (1− c+∆σiyi

N
)

1−G̃y
i ⟩.

Notice that the Gibbs averages in (3.62) depend on ε , so in taking this limit it has been implicitly used that this
dependence is continuous. Proceeding exactly as in the proof of Lemma 3.4 (after display (3.51)) completes
the proof. ∎

To compare (3.60) with the time derivative of the enriched free energy in Corollary 3.3 it will be useful to
once again Taylor expand the logarithm. The comparison will in fact be between the time derivative of the
enriched free energy and the density of its Gateaux derivative,

Dµ FN(t,µ,x) ∶=E(c+∆⟨σi⟩x) log(c+∆⟨σi⟩x)+NE(1− c+∆⟨σi⟩x
N

) log(1− c+∆⟨σi⟩x
N

). (3.63)

By density it is meant that for every measure ν ∈M+, the Gateaux derivative (3.44) may be expressed as

Dµ FN(t,µ;ν) =
ˆ 1

−1
Dµ FN(t,µ,x) dν(x). (3.64)

Taylor expanding the logarithm shows that

Dµ FN(t,µ,x) =E(c+∆⟨σi⟩x) log(c+∆⟨σi⟩x)−c−∆mx+O(N−1). (3.65)

Corollary 3.6. For every t > 0 and µ ∈M+,

Dµ FN(t,µ,x) = (c+∆mx) log(c)+c∑
n⩾2

(−∆/c)n
n(n−1)E⟨R[n]⟩x

n−c+O(N−1). (3.66)

Proof. Fix ν ∈ Pr[−1,1], and recall that the random variable yi appearing in Lemma 3.5 is sampled from ν . A
Taylor expansion of the logarithm shows that

E(c+∆⟨σi⟩yi) log(c+∆⟨σi⟩yi) = (c+∆mEy1) log(c)−∑
n⩾1

(−∆/c)n
n

E(c+∆⟨σi⟩yi)yn
i ⟨σi⟩n. (3.67)
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Since ∣∆∣ < c and E⟨σi⟩ =m by the Nishimori identity,

∑
n⩾1

(−∆/c)n
n

E(c+∆⟨σi⟩yi)yn
i ⟨σi⟩n =∑

n⩾1

(−∆/c)n
n

(cEyn
i E⟨σi⟩n+∆Eyn+1

i E⟨σi⟩n+1)

= −∆EyiE⟨σi⟩+c∑
n⩾2
((−∆/c)n

n
− (−∆/c)n

n−1
)Eyn

i E⟨σi⟩n

= −∆mEy1−c∑
n⩾2

(−∆/c)n
n(n−1)E⟨R[n]⟩Eyn

i .

Substituting this into (3.67) and recalling (3.65) completes the proof. ∎

With the time derivative (3.42) and the Gateaux derivative (3.66) at hand, the infinite-dimensional Hamilton-
Jacobi equation for the enriched free energy (3.30) may now be derived by identifying a non-linearity that
maps the Gateaux derivative to the time derivative, up to a small error that is expected to vanish in the limit of
large system size.

3.4 A sparse stochastic block model Hamilton-Jacobi equation

To relate the time derivative (3.42) and the Gateaux derivative (3.66) of the enriched free energy (3.30) it will
be convenient to introduce additional notation. Let g ∶ [−1,1]→R denote the function defined by

g(z) ∶= (c+∆z)( log(c+∆z)−1) = (c+∆z) log(c)+c∑
n⩾2

(−∆/c)n
n(n−1) zn−c, (3.68)

and introduce the cone of functions

C∞ ∶= {Gµ ∶ [−1,1]→R ∣Gµ(x) ∶=
ˆ 1

−1
g(xy) dµ(y) for some µ ∈M+} (3.69)

as well as the non-linearity C∞ ∶ C∞→R given by

C∞(Gµ) ∶=
1
2

ˆ 1

−1
Gµ(x) dµ(x). (3.70)

This non-linearity is well-defined by the Fubini-Tonelli theorem. Indeed, if Gµ = Gν for some measures
µ,ν ∈M+, then

ˆ 1

−1
Gµ(x) dµ(x) =

ˆ 1

−1
Gν(x) dµ(x) =

ˆ 1

−1

ˆ 1

−1
g(xy) dµ(x) dν(x), (3.71)

while ˆ 1

−1
Gν(x) dν(x) =

ˆ 1

−1
Gµ(x) dν(x) =

ˆ 1

−1

ˆ 1

−1
g(xy) dµ(y) dν(x), (3.72)

and the symmetry of the map (x,y)↦ g(xy) implies that these two expressions coincide. Corollary 3.6 implies
that the Gateaux derivative density (3.63) is close to an element in the cone of functions (3.69). Indeed, if
µ
∗ ∶=L(⟨σi⟩) denotes the law of the Gibbs average of a uniformly sampled spin coordinate, then (3.66) may

be formally written as

Dµ FN(t,µ,x) ≃
ˆ 1

−1
g(xy) dµ

∗(y) =Gµ∗(x), (3.73)
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where the Nishimori identity (3.33) has been used to assert that E⟨σi⟩ =m. It follows by another application of
the Nishimori identity that

C∞(Dµ FN(t,µ)) ≃
1
2
(c+∆m2) log(c)+ c

2
∑
n⩾2

(−∆/c)n
n(n−1)

(E⟨R[n]⟩)
2− c

2
. (3.74)

Comparing this with the expression in Corollary 3.3, and assuming the approximate concentration of all the
multioverlaps,

E⟨R2
[n]⟩ ≃ (E⟨R[n]⟩)

2
, (3.75)

reveals that, up to a small error, the enriched free energy (3.30) formally satisfies the infinite-dimensional
Hamilton-Jacobi equation

∂t f (t,µ) = C∞(Dµ f (t,µ)) on R>0×M+. (3.76)

The difficulty in making this informal derivation rigorous is two-fold. On the one hand, infinite-dimensional
Hamilton-Jacobi equations of the form (3.76) are not well-studied in the literature. This will be resolved in the
next chapter, where the well-posedness theory for Hamilton-Jacobi equations on positive half-space developed
in Section 2.4 is leveraged to establish the well-posedness of infinite-dimensional Hamilton-Jacobi equations
of the form (3.76). On the other hand, the concentration of the multioverlaps (3.75) is not expected to be
valid for each choice of the parameters t and µ . On the positive side, the arguments in [15] reveal that the
concentration of the multioverlaps can be enforced through a small perturbation of the Hamiltonian which
does not affect the limit of the free energy for most values of the perturbation parameters. Yet, the solution
theory for Hamilton-Jacobi equations is rather sensitive to details, and in particular, this control “for most
values” or after a suitable local averaging is not sufficient to run the Hamilton-Jacobi approach. The situation
is analogous to that encountered in the context of the symmetric rank-one matrix estimation problem when
having to control the right side of the approximate Hamilton-Jacobi equation in Proposition 2.27. There, it
was possible to control this error term at contact points when the free energy was touched from above — see
Lemma 2.29. However, the author is not aware of any way to control this error term at contact points when
the free energy is touched from below. This same phenomenon will occur in the present context of the sparse
stochastic block model. The inability to control the error term when the free energy is touched from below is
the reason why the upper bound in Conjecture 1.4 remains open. Notice that this control is not required in the
symmetric rank-one matrix estimation problem due to the lower bound in the approximate Hamilton-Jacobi
equation (2.165). This error term, and more specifically the concentration of the multioverlaps (3.41), will
be discussed further in Chapters 5 and 6. This chapter closes with the identification of the initial condition
associated with the infinite-dimensional Hamilton-Jacobi equation (3.76).

For each integer N ⩾ 1, denote by

ψN(µ) ∶= FN(0,µ) = F̃N(0,µ[−1,1],µ) (3.77)

the initial condition associated with the finite-volume enriched free energy (3.30), and notice that the initial
condition ψ ∶M+→R associated with the infinite-dimensional Hamilton-Jacobi equation (3.76) should be the
limit of the initial conditions (ψN)N⩾1. Following [14], this limit will first be computed for discrete measures
µ ∈M+. A density argument will then be used to show that the convergence extends to all measures inM+.
Given a measure µ ∈M+, it will be convenient to write Π±(µ) for the Poisson point process with mean
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measure (c±∆x) dµ(x) on [−1,1]. For the definition and basic properties of a Poisson point process, see
Chapter 5 in [50]. It turns out that the limit of the initial conditions (3.77) is given by an appropriate average
with respect to the randomness of the Poisson point processes Π±(µ).

Lemma 3.7. For any discrete measure µ ∈M+, the sequence (ψN(µ))N⩾1 converges to

ψ(µ) ∶= −µ[−1,1]c+ pE log
ˆ

Σ1

exp(−µ[−1,1]∆σEx1) ∏
x∈Π+(µ)

(c+∆σx) dP∗(σ)

+(1− p)E log
ˆ

Σ1

exp(−µ[−1,1]∆σEx1) ∏
x∈Π−(µ)

(c+∆σx) dP∗(σ), (3.78)

where x1 has law µ .

Remark 3.8. From this lemma and its extension to any µ ∈M+ proved in Proposition 3.12 below, one can
also show that for every µ ∈M+, the density of the Gateaux derivative Dµ ψ(µ) is

Dµ ψ(µ,x) = pE⟨c+∆σx⟩+ log⟨c+∆σx⟩++(1− p)E⟨c+∆σx⟩− log⟨c+∆σx⟩−−c−∆mx, (3.79)

where ⟨⋅⟩± denote the Gibbs averages given by

⟨ f (σ)⟩± ∶=
´

Σ1
f (σ)exp(−µ[−1,1]∆σEx1)∏x∈Π±(µ)(c+∆σx) dP∗(σ)´
Σ1

exp(−µ[−1,1]∆σEx1)∏x∈Π±(µ)(c+∆σx) dP∗(σ) . (3.80)

Proof of Lemma 3.7. Since µ ∈M+ is a discrete measure, it may be expressed as

µ ∶=∑
`⩽K

p`δa`

for some integer K ⩾ 1, some atoms a` ∈ [−1,1], and some weights p` ⩾ 0. Let s ∶= µ[−1,1], and introduce
independent Poisson random variables Πi,s ∼ Poi(sN) in such a way that

ψN(µ) =
1
N
∑
i⩽N

E log
ˆ

Σ1

exp ∑
k⩽Πi,s

log[(c+∆σxi,k)G̃
x
i,k(1− c+∆σxi,k

N
)

1−G̃x
i,k] dP∗(σ),

where (xi,k)i,k⩾1 are i.i.d. random variables with law µ . Since each of the expectations in this average is the
same,

ψN(µ) =E log
ˆ

Σ1

exp ∑
k⩽Π1,s

log[(c+∆σxk)G̃
x
k(1− c+∆σxk

N
)

1−G̃x
k] dP∗(σ), (3.81)

where (xk)k⩾1 are i.i.d. random variables with law µ and G̃x
k has conditional distribution (3.21) for i = 1 and

x1,k replaced by xk. To simplify this further, introduce the random index sets

I0 ∶= {k ⩽Π1,s ∣ G̃x
k = 0} and I1 ∶= {k ⩽Π1,s ∣ G̃x

k = 1}.

Decomposing the sum in (3.81) according to the partition {k ⩽Π1,s} = I0⊔I1, and applying Taylor’s theorem
to the logarithm reveals that

ψN(µ) =E log
ˆ

Σ1

∏
k∈I1

(c+∆σxk)exp(− ∆σ

N
∑

k∈I0

xk) dP∗(σ)−( c
N
+O(N−2))E∣I0∣.
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Conditionally on σ
∗, Π1,s and (xk)k⩾1, the random variable ∣I0∣ is a sum of Bernoulli random variables with

probability of success 1− c+∆σ
∗
1 xk

N . It therefore has mean

E∣I0∣ =EΠ1,sE(1−
c+∆σ

∗
1 x1

N
) = sN(1− c+∆mEx1

N
) (3.82)

and variance bounded by

Var∣I0∣ =EΠ1,sE(1−
c+∆σ

∗
1 x1

N
)(c+∆σ

∗
1 x1

N
) ⩽ s(c+ ∣∆∣). (3.83)

Using (3.82) and introducing the random index sets I`1 ∶= {k ∈ I1 ∣ xk = a`} reveals that

ψN(µ) =E log
ˆ

Σ1

∏
`⩽K
∏

k∈I`1

(c+∆σa`)exp(− ∆σ

N
∑

k∈I0

xk) dP∗(σ)−cs+O(N−1).

Observe that for any σ ∈ Σ1,

E∣− ∆σ

N
∑

k∈I0

xk +∆σsEx1∣ ⩽ ∣∆∣sE∣
1

Ns
∑

k∈I0

xk −Ex1∣ ⩽ ∣∆∣sE∣
1

Ns
∑

k⩽Ns
xk −Ex1∣+

∆

N
(Var∣I0∣+ ∣E∣I0∣−Ns∣)

where the fact that ∣xk∣ ⩽ 1 and Jensen’s inequality have been used in the second inequality. Recalling (3.83)
and invoking the strong law of large numbers shows that

ψN(µ) =E log
ˆ

Σ1

exp(−∆σsEx1)∏
`⩽K
∏

k∈I`1

(c+∆σa`) dP∗(σ)−cs+o(1). (3.84)

The Poisson colouring theorem (Proposition A.16) implies that ∣I`1∣ is a Poisson random variable with mean

EΠ1,s ⋅P{G̃x
1 = 1,x1 = a`} = sN ⋅ c+∆σ

∗
1 a`

N
⋅µ(a`) = (c+∆σ

∗
1 a`)µ(a`),

so averaging (3.84) over the randomness of σ
∗ yields

ψN(µ) = −cs+ pE log
ˆ

Σ1

exp(−∆σsEx1) ∏
x∈Π+(µ)

(c+∆σx) dP∗(σ)

+(1− p)E log
ˆ

Σ1

exp(−∆σsEx1) ∏
x∈Π−(µ)

(c+∆σx) dP∗(σ)+o(1).

This completes the proof. ∎

To extend this convergence to all measures inM+, the continuity of the functional (3.78) with respect to
the Wasserstein distance on the space of probability measures will be used. The Wasserstein distance between
two probability measure P,Q ∈ Pr[−1,1] is defined by

W(P,Q) ∶= sup{∣
ˆ 1

−1
h(x) dP(x)−

ˆ 1

−1
h(x) dQ(x)∣ ∣ h ∶ [−1,1]→R is Lipschitz with ∥h∥Lip ⩽ 1} (3.85)

= inf{
ˆ
[−1,1]2

∣x−y∣ dν(x,y) ∣ ν ∈ Pr([−1,1]2) has marginals P and Q}, (3.86)
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where ∥⋅∥Lip denotes the Lipschitz semi-norm defined in (2.90). The equality of the representations (3.85) and
(3.86) is guaranteed by the Kantorovich-Rubinstein theorem (Theorem 4.15 in [90]). This continuity will be
obtained as a consequence of the following uniform bound on the spatial derivatives of the Gateaux derivative
density (3.63).

Lemma 3.9. For every N large enough (relative to c), µ ∈M+, t ⩾ 0 and x ∈ [−1,1],

∣Dµ FN(t,µ,x)∣ ⩽ 2c(2+ ∣log(2c)∣+ ∣log(c− ∣∆∣)∣), (3.87)

∣∂xDµ FN(t,µ,x)∣ ⩽ c(1+ ∣log(2c)∣+ ∣log(c− ∣∆∣)∣). (3.88)

Proof. Recall from (3.63) that

Dµ FN(t,µ,x) =E(c+∆⟨σi⟩x) log(c+∆⟨σi⟩x)+NE(1− c+∆⟨σi⟩x
N

) log(1− c+∆⟨σi⟩x
N

).

It follows by a direct computation that

∂xDµ FN(t,µ,x) = ∆E⟨σi⟩ log(c+∆⟨σi⟩x)−∆E⟨σi⟩ log(1− c+∆⟨σi⟩x
N

).

Since all spin configuration coordinates are bounded by one and ∣∆∣ < c, Taylor’s theorem implies that for N

large enough,

∣Dµ FN(t,µ,x)∣ ⩽ 2c(2+ ∣log(2c)∣+ ∣log(c− ∣∆∣)∣),
∣∂xDµ FN(t,µ,x)∣ ⩽ c(1+ ∣log(2c)∣+ ∣log(c− ∣∆∣)∣).

Notice that the choice of N only depends on c as x ∈ [−1,1] and ∣∆∣ < c. This completes the proof. ∎

Lemma 3.10. The initial condition ψN satisfies the Lipschitz bound

∣ψN(P)−ψN(Q)∣ ⩽ c(1+ ∣log(2c)∣+ ∣log(c− ∣∆∣)∣))W(P,Q) (3.89)

for all probability measures P,Q ∈ Pr[−1,1].

Proof. The fundamental theorem of calculus and the definition of the Gateaux derivative in (3.44) imply that

ψN(P)−ψN(Q) =
ˆ 1

0

d
dt

ψN(Q+ t(P−Q)) dt =
ˆ 1

0
Dµ ψN(Q+ t(P−Q);P−Q) dt.

Since the Gateaux derivative of the initial condition admits a continuously differentiable density,

∣ψN(P)−ψN(Q)∣ ⩽
ˆ 1

0
∣
ˆ 1

−1
ft(x) dP(x)−

ˆ 1

−1
ft(x) dQ(x)∣ dt

for the continuously differentiable function ft(x) ∶= Dµ ψN(Q+ t(P−Q),x). The mean value theorem and
(3.88) reveal that ∥ ft∥Lip ⩽ c(1+ ∣log(2c)∣+ ∣log(c− ∣∆∣)∣). It follows by definition of the Wasserstein distance
(3.85) that

∣ψN(µ)−ψN(ν)∣ ⩽ c(1+ ∣log(2c)∣+ ∣log(c− ∣∆∣)∣)W(P,Q).

This completes the proof. ∎
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Lemma 3.11. The functional ψ ∶M+→R defined by (3.78) is continuous with respect to the weak convergence

of measures. This means that for any sequence of measures (µn)n⩾1 ⊆M+ converging weakly to a measure

µ ∈M+,

lim
N→+∞

ψ(µn) =ψ(µ). (3.90)

Proof. To alleviate the exposition, the continuity of the functional

ψ
1(µ) ∶=E log

ˆ
Σ1

exp(−µ[−1,1]∆σEx1) ∏
x∈Π+(µ)

(c+∆σx) dP∗(σ)

with respect to the weak convergence of measures will be proved instead. Up to an additive constant, the
asymptotic initial condition ψ(µ) is the weighted average of ψ

1(µ) and another functional of the same form
whose continuity can be established using an identical argument, so this suffices. For each measure µ ∈M+
introduce the Hamiltonian

H(σ ,µ) ∶= −∆σ

ˆ 1

−1
x dµ(x)+ ∑

x∈Π+(µ)
(c+∆σx)

in such a way that the asymptotic initial condition is its associated free energy,

ψ
1(µ) =E log

ˆ
Σ1

expH(σ ,µ) dP∗(σ).

Consider a sequence of measures (µn)n⩾1 ⊆M+ converging weakly to a measure µ ∈M+, and let Πn and
Π be independent Poisson random variables with means µn[−1,1] and µ[−1,1], respectively. Introduce a
collection (Xn

k ,Xk)k⩾1 of i.i.d. random vectors with joint law ν ∈ Pr([−1,1]2) having marginals µn and µ . In
this way, the coordinates (Xn

k )k⩾1 are i.i.d. with law µn, the coordinates (Xk)k⩾1 are i.i.d. with law µ , and

∑
x∈Π+(µn)

(c+∆σx) d= ∑
k⩽Πn

(c+∆σXn
k ) and ∑

x∈Π+(µ)
(c+∆x) d= ∑

k⩽Π

(c+∆σXk),

where d= denotes equality in distribution. It follows that for any σ ∈ Σ1,

∣H(σ ,µn)−H(σ ,µ)∣ ⩽ ∣∆∣∣
ˆ 1

−1
x dµn(x)−

ˆ 1

−1
x dµ(x)∣+c∣Πn−Π∣+ ∣∆∣∣ ∑

k⩽Πn

Xn
k −∑

k⩽Π

Xk∣,

and therefore,

∣ψ1(µn)−ψ
1(µ)∣ ⩽ ∣∆∣∣

ˆ 1

−1
x dµn(x)−

ˆ 1

−1
x dµ(x)∣+cE∣Πn−Π∣+ ∣∆∣E∣ ∑

k⩽Πn

Xn
k −∑

k⩽Π

Xk∣.

To simplify this further, define the random variable Π
′
n ∶=min(Πn,Π), introduce a Poisson random variable

Π
′′
n independent of all other sources of randomness with mean ∣µn[−1,1]−µ[−1,1]∣, and define the collection

of random variables (Zn
k )k⩾1 by

Zn
k ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Xn
k if Π

′
n =Π

Xk otherwise
.
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The basic properties of Poisson random variables and the fact that ∣Zn
k ∣ ⩽ 1 imply that

∣ψ1(µn)−ψ
1(µ)∣ ⩽ c∣∆∣∣

ˆ 1

−1
x d(µn−µ)(x)∣+cEΠ

′′
n + ∣∆∣E ∑

k⩽Π′′n

∣Zn
k ∣+ ∣∆∣E ∑

k⩽Π′n

∣Xn
k −Xk∣

⩽ c(∣
ˆ 1

−1
x d(µn−µ)(x)∣+2EΠ

′′
n +EΠ

′
n

ˆ
[−1,1]2

∣x−y∣ dν(x,y)∣).

Taking the infimum over all couplings ν ∈ Pr([−1,1]2) with marginals µn and µ reveals that for n large
enough,

∣ψ1(µn)−ψ
1(µ)∣ ⩽ c(∣

ˆ 1

−1
x d(µn−µ)(x)∣+2∣µn[−1,1]−µ[−1,1]∣+3µ[−1,1]W(µn,µ)),

where it has been used that EΠ
′
n ⩽ EΠ+EΠn ⩽ 3µ[−1,1] for n large enough as µn converges weakly to µ .

Letting n tend to infinity and recalling that the Wasserstein distance (3.86) metrizes the weak convergence of
probability measures completes the proof. ∎

Proposition 3.12. For any measure µ ∈M+, the sequence (ψN(µ))N⩾1 converges to ψ(µ) defined in (3.78).

Proof. Consider a sequence (µn)n⩾1 of discrete measures such that µn[−1,1] = µ[−1,1] for all n ⩾ 1 and
µn→ µ with respect to the Wasserstein distance (3.85). By the triangle inequality and Theorem 3.10,

∣ψ(µ)−ψN(µ)∣ ⩽ ∣ψ(µ)−ψ(µn)∣+ ∣ψ(µn)−ψN(µn)∣+ ∣ψN(µn)−ψN(µ)∣
⩽ ∣ψ(µ)−ψ(µn)∣+ ∣ψ(µn)−ψN(µn)∣+c(1+ ∣log(2c)∣+ ∣log(c− ∣∆∣)∣)W(µn,µ),

where the choice that µn[−1,1] = µ[−1,1] has played its part. Invoking Lemmas 3.7 and 3.11 to let N tend to
infinity and then n tend to infinity completes the proof. ∎

This result identifies the initial condition for the Hamilton-Jacobi equation (3.76), and suggests that
the limit of the enriched free energy (3.30) should be the solution, in a sense to be made precise, to the
infinite-dimensional Hamilton-Jacobi equation

∂t f (t,µ) = C∞(Dµ f (t,µ)) on R>0×M+ (3.91)

subject to the initial condition ψ ∶M+→R defined by

ψ(µ) ∶= −µ[−1,1]c+ pE log
ˆ

Σ1

exp(−µ[−1,1]∆σEx1) ∏
x∈Π+(µ)

(c+∆σx) dP∗(σ)

+(1− p)E log
ˆ

Σ1

exp(−µ[−1,1]∆σEx1) ∏
x∈Π−(µ)

(c+∆σx) dP∗(σ), (3.92)

where x1 has law µ . Together with (3.17) and the fact that the free energy (3.14) in the sparse stochastic block
model can be obtained by evaluating the enriched free energy (3.30) at the point (1,0), that is FN = FN(1,0),
this leads to Conjecture 1.4. Leveraging the well-posedness theory for Hamilton-Jacobi equations on positive
half-space discussed in Section 2.4, a well-posedness theory for the infinite-dimensional Hamilton-Jacobi
equation (3.91) will be developed in the next chapter.



Chapter 4

Well-posedness of infinite-dimensional
Hamilton-Jacobi equations

In this chapter, the well-posedness of the infinite-dimensional Hamilton-Jacobi equation (3.91) is established.
Previous attempts to apply the Hamilton-Jacobi approach to study mean-field disordered systems had either
led to finite-dimensional Hamilton-Jacobi equations posed on closed convex cones [27, 30, 34, 36, 84, 85], in
the context of statistical inference problems, or to infinite-dimensional Hamilton-Jacobi equations of transport
type [83, 86, 87], in the context of spin-glass models. A general well-posedness theory for the former was
established in [32] while one for the latter was developed in [33]. In Chapter 3, an infinite-dimensional
Hamilton-Jacobi equation posed over a space of probability measures, but featuring derivatives of “affine”
rather than transport type, was proposed to describe the asymptotic mutual information in the sparse stochastic
block model. To strive for generality, as opposed to focusing exclusively on the infinite-dimensional Hamilton-
Jacobi equation (3.91), a broader class of equations that is expected to appear in other mean-field problems
with sparse interactions is considered. Recall the notationMs andM+ introduced in (3.26) and (3.27) for the
space of signed measures on [−1,1] and the cone of non-negative measures on this interval. Fix a continuously
differentiable function g ∶ [−1,1]→R, and for each measure µ ∈M+, define the function Gµ ∶ [−1,1]→R by

Gµ(x) ∶=
ˆ 1

−1
g(xy) dµ(y). (4.1)

Introduce the cone of functions
C∞ ∶= {Gµ ∣ µ ∈M+} (4.2)

as well as the non-linearity C∞ ∶ C∞→R defined on this cone by

C∞(Gµ) ∶=
1
2

ˆ 1

−1
Gµ(x) dµ(x) = 1

2

ˆ 1

−1

ˆ 1

−1
g(xy) dµ(y) dµ(x). (4.3)

This non-linearity is well-defined by the Fubini-Tonelli theorem (see equations (3.71)-(3.72)). Given a function
f ∶R⩾0×M+ →R and measures µ,ν ∈M+, denote by Dµ f (t,µ;ν) the Gateaux derivative of the function
f (t, ⋅) at the measure µ in the direction ν ,

Dµ f (t,µ;ν) ∶= lim
ε→0

f (t,µ +εν)− f (t,µ)
ε

. (4.4)

91
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As in Section 3.3, the Gateaux derivative of f (t, ⋅) at the measure µ ∈M+ is said to admit a density if there
exists a bounded measurable function x↦ Dµ f (t,µ,x) defined on the interval [−1,1] such that, for every
measure ν ∈M+,

Dµ f (t,µ;ν) =
ˆ 1

−1
Dµ f (t,µ,x) dν(x). (4.5)

Abusing notation, the density Dµ f (t,µ, ⋅) will often be identified with the Gateaux derivative Dµ f (t,µ). The
purpose of this chapter is to establish the well-posedness of the infinite-dimensional Hamilton-Jacobi equation

∂t f (t,µ) = C∞(Dµ f (t,µ)) on R>0×M+ (4.6)

subject to some initial condition f (0, ⋅) =ψ(⋅) under appropriate assumptions on the kernel g and the initial
condition ψ ∶M+→R. In particular, these assumptions will imply that, in a suitably weak sense, for all t ≥ 0
and µ ∈M+, the Gateaux derivative of the solution Dµ f (t,µ) belongs to the cone C∞. The sparse stochastic
block model will correspond to the choice of g in (3.68) and of initial condition ψ in (3.92).

In Section 4.1, the infinite-dimensional Hamilton-Jacobi equation (4.6) is projected onto a positive half-
space with dimension monotone in some integer parameter K ⩾ 1 to obtain a family of approximating finite-
dimensional Hamilton-Jacobi equations. The expectation is that the sequence of solutions to the approximating
equations converges to the solution of the infinite-dimensional equation (4.6) upon letting this parameter K

tend to infinity. The assumptions on the kernel g and initial condition ψ taken throughout this chapter are also
stated in this section, with one of these assumptions imposing a constraint on the gradient of the projected
initial conditions. In Section 4.2, the well-posedness of the infinite-dimensional Hamilton-Jacobi equation
(4.6) is established. This is done by extending the non-linearity of each of the approximating Hamilton-
Jacobi equations from the projection of the cone (4.2) where it is naturally defined to all of Euclidean space,
establishing the well-posedness of this extended finite-dimensional approximating Hamilton-Jacobi equation
using the techniques developed in Section 2.4, and finally showing that the sequence of solutions to each
of these Hamilton-Jacobi equations converges when the parameter K is sent to infinity. The solution to the
infinite-dimensional Hamilton-Jacobi equation (4.6) is defined to be the limit of these approximating solutions.
In Section 4.3, under appropriate convexity assumptions, a Hopf-Lax variational formula is established for
the infinite-dimensional Hamilton-Jacobi equation (4.6) by finding a Hopf-Lax variational formula for the
solution to each of the approximating equations, and sending the parameter K to infinity. It will be convenient
to first establish all these results under a positivity assumption on the kernel g. In Section 4.4 this assumption
will be lifted at the cost of strengthening the assumption on the gradient of the projected initial conditions, and
the well-posedness results previously discussed will be extended to this setting.

It may seem surprising to the reader that a well-posedness theory for the infinite-dimensional Hamilton-
Jacobi equation (4.6), or at the very least the equation (3.91) appearing in the context of the sparse stochastic
block model, cannot be found in the literature. The study of equations posed on infinite-dimensional Banach
spaces was initiated in [40, 41, 42]. The assumptions imposed on the Banach space preclude the possibility
of applying the results presented there to the space of bounded measures. There, the existence of solutions
is obtained via a connection with differential games. An example is also given in which solutions to natural
finite-dimensional approximations fail to converge to the solution of the infinite-dimensional equation. This
phenomenon is not expected to occur for the equation considered in this chapter, and in any case, the definition
of solution as the limit of finite-dimensional approximations is the one used when studying the sparse stochastic
block model in Chapter 6. Moreover, for the equations of transport type appearing in the context of mean-field
spin glasses, it was shown in [32] that finite-dimensional approximations do converge to the intrinsic viscosity
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solution of the infinite-dimensional equation. Equations that are posed over a space of probability measures,
or more general metric spaces, have been considered in several works including [9, 24, 25, 26, 54, 55, 58,
59]. These works revolve around equations involving derivatives of transport type for probability measures
over Rd . Since transportation of mass over Rd can be carried without limit, questions of boundary conditions
do not arise there, unlike in the more recent works [32, 83, 86] in which probability measures over Rd

⩾0 or the
space of non-negative definite matrices are considered. The author is not aware of previous works considering
equations that involve derivatives of “affine” type, as is done here. In this context, the natural “movements”
are different from those appearing for the transport geometry, and the additional constraint that non-negative
measures must be considered introduces boundary issues.

The well-posedness results for the infinite-dimensional Hamilton-Jacobi equation (4.6) required to study
the sparse stochastic block model are all stated in Section 4.1. The reader eager to return to the study of the
sparse stochastic block model may therefore consider reading only Section 4.1, taking the results stated there
for granted and skipping the rest of this chapter on first reading. This chapter parallels and draws heavily upon
Section 2.4 of Chapter 2, and its contents are taken from [48].

4.1 Projections, assumptions, and key well-posedness results

To study the Hamilton-Jacobi equation (4.6), it will be projected from the infinite-dimensional space of
measuresM+ to a family of finite-dimensional spaces of measuresM(K)

+ with dimension monotone in some
integer parameter K ⩾ 1. In previous works [83, 86, 87], derivatives of transport type were the primary focus
of investigation, and it was thus natural to discretize the space of measures by restricting to measures of the
form K−1∑K

k=1 δxk , only allowing the xk’s to vary but keeping the weight of each atom fixed. Due to the nature
of the derivatives appearing in (4.6), here it will be convenient to define the finite-dimensional approximating
space as the cone of non-negative measures supported on dyadic rationals in the interval [−1,1]. That is, the
weights will be allowed to vary, provided that they remain non-negative, but positions of the atoms will be
kept fixed. Given an integer K ⩾ 1, write

DK ∶= {k =
i

2K ∣ −2K ⩽ i < 2K} (4.7)

for the set of dyadic rationals on [−1,1] at scale K. It will be convenient to index vectors using the set of
dyadic rationals, writing x = (xk)k∈DK ∈RDK . The set of discrete measures supported on the dyadic rationals at
scale K in the interval [−1,1] is denoted by

M(K)
+ ∶= {µ ∈M+ ∣ µ =

1
∣DK ∣

∑
k∈DK

xkδk for some x = (xk)k∈DK ∈R
DK
⩾0 }. (4.8)

A natural way to project a general measure µ ∈M+ ontoM(K)
+ is via the mapping

x(K)(µ) ∶= (∣DK ∣µ[k,k+2−K))
k∈DK

∈RDK
⩾0 . (4.9)

For µ ∈M(K)
+ , the image of µ is simply the sequence of weights of the measure µ at each point in DK , up to

multiplication by ∣DK ∣. The inverse of this mapping assigns to each x ∈RDK
⩾0 the measure

µ
(K)
x ∶= 1

∣DK ∣
∑

k∈DK

xkδk ∈M(K)
+ . (4.10)
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These projections can be used to devise finite-dimensional approximations to the Hamilton-Jacobi equation
(4.6). These will be posed on the cone R⩾0×RDK

⩾0 . Indeed, any real-valued function f ∶R⩾0×M(K)
+ →R may

be identified with the function
f (K)(t,x) ∶= f (t,µ(K)x ) (4.11)

defined on R⩾0×RDK
⩾0 . Moreover, the Gateaux derivative at the measure µ ∈M(K)

+ may be identified with the
gradient ∣DK ∣∇ f (K)(t,x(K)(µ)) by duality. Indeed, for any direction ν ∈M(K)

+ ,

Dµ f (t,µ;ν) = d
dε
∣
ε=0

f (K)(t,x(K)(µ)+εx(K)(ν)) =∇ f (K)(t,x(K)(µ)) ⋅x(K)(ν). (4.12)

The additional factor of ∣DK ∣ appears because x(K)(ν) has `1-norm ∣DK ∣ whenever ν is a probability measure.
The corresponding initial condition becomes the function ψ

(K) ∶RDK
⩾0 →R defined by

ψ
(K)(x) ∶=ψ(µ(K)x ). (4.13)

The cone (4.2) and the non-linearity (4.3) may be projected similarly. Introduce the symmetric matrix

G(K) ∶= 1
∣DK ∣2

(g(kk′))k,k′∈DK
∈RDK×DK , (4.14)

and observe that for every µ ∈M(K)
+ and k ∈DK ,

Gµ(k) = ∑
k′∈DK

g(kk′)µ(k′) = 1
∣DK ∣

∑
k′∈DK

g(kk′)x(K)(µ)k′ = ∣DK ∣(G(K)x(K)(µ))k. (4.15)

This motivates the definition of the projected cone,

CK ∶= {G(K)x(K)(µ) ∈RDK ∣ µ ∈M(K)
+ } = {G(K)x ∈RDK ∣ x ∈RDK

⩾0 }, (4.16)

and the projected non-linearity CK ∶ CK →R given by

CK(G(K)x) ∶=
1
2

G(K)x ⋅x = 1
2∣DK ∣2

∑
k,k′∈DK

g(kk′)xkxk′ = C∞(G
µ
(K)
x
). (4.17)

This projected non-linearity is well-defined by the Fubini-Tonelli theorem (see equations (3.71)-(3.72)). In
this notation, the finite-dimensional approximation of the Hamilton-Jacobi equation (4.6) reads

∂t f (K)(t,x) = CK(∇ f (K)(t,x)) on R>0×RDK
⩾0 (4.18)

subject to the initial condition f (K)(0, ⋅) = ψ
(K)(⋅) on RDK

⩾0 . Just like the equations studied in Section 2.4,
this Hamilton-Jacobi equation is posed on positive half-space; however, its non-linearity CK is defined on
the cone CK as opposed to the Euclidean space RDK . To overcome this difference, an appropriate extension
HK ∶RDK →R of the non-linearity CK will be introduced, and instead the Hamilton-Jacobi equation

∂t f (K)(t,x) =HK(∇ f (K)(t,x)) on R>0×RDK
>0 (4.19)

subject to the initial condition f (K)(0, ⋅) = ψ
(K)(⋅) on RDK

⩾0 will be considered. Notice that the cone RDK
>0

has been used as opposed to the more intuitive cone RDK
⩾0 . As in Section 2.4, the non-decreasingness of the
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projected non-linearity (4.17) will make these two choices equivalent. In particular, it will not be necessary to
endow the projected Hamilton-Jacobi equation with a boundary condition. Remembering that this Hamilton-
Jacobi equation appears in the context of statistical inference makes this insight rather reassuring. Indeed, the
statistical inference model does not suggest an obvious choice of boundary condition—given that ultimately the
value of the solution at a point in R⩾0×{0} is the quantity of interest, at least a Dirichlet boundary condition
should not be used! In earlier works, the imposition of a Neumann-type boundary condition was observed
to be a workable option [83, 85, 86]; however, in [33], it was shown that this somewhat artificial choice is
not necessary, and no boundary condition needs to be specified, because the non-linearity “points in the right
direction”.

The precise assumptions on the initial condition ψ and the kernel g that will be used to obtain the well-
posedness of the infinite-dimensional Hamilton-Jacobi equation (4.6) are now stated. In the same spirit as
Section 2.4 and [32, 33, 83, 86], the initial conditions ψ

(K) and ψ will need to satisfy a certain number of
Lipschitz continuity assumptions. For the theory developed to encapsulate the Hamilton-Jacobi equation (3.91)
appearing in the context of the sparse stochastic block model, these Lipschitz conditions will be relative to the
normalized-`1 and normalized-`1,∗ norms as opposed to the Euclidean norm. Given an integer d ⩾ 1, introduce
the normalized-`1 and normalized-`1,∗ norms, defined for every x,y ∈Rd by

∣∣∣x∣∣∣1 ∶=
1
d

d

∑
k=1
∣xk∣ and ∣∣∣y∣∣∣1,∗ ∶=max

k⩽d
d∣yk∣. (4.20)

The underlying dimension d ⩾ 1 will be kept implicit but will always be clear from the context. The
normalized-`1 norm is meant to measure elements of RDk with a scaling that is consistent with the identifica-
tion of this space with the space of measuresM(K)

+ . The normalized-`1,∗ norm serves to measure elements of
the dual space, and is defined so that the Hölder-type inequality x ⋅y ≤ ∣∣∣x∣∣∣1 ∣∣∣y∣∣∣1,∗ is valid.

The key continuity assumption on the projected initial condition ψ
(K) that will make it possible to establish

the well-posedness of the projected Hamilton-Jacobi equations will be Lipschitz continuity with respect to the
normalized-`1 norm. Another way to encode this property is to require the initial condition ψ ∶M+→R to be
Lipschitz continuous with respect to the total variation distance onM+ defined in (A.26). The normalized-`1,∗

norm will play its part when discussing the Lipschitz continuity of the projected non-linearity (4.17). To
determine the convergence of the projected solutions, it will be important to assume that the initial condition
ψ ∶M+→R is Lipschitz continuous with respect to the Wasserstein distance on the set of probability measures
Pr[−1,1] defined in (3.85). The final assumption on the initial condition will ensure that, in a sense to be made
precise, the solution to the projected Hamilton-Jacobi equation has a bounded gradient close to the projected
cone CK defined in (4.16). It would of course be more convenient to assume that the gradient really belongs to
CK , rather than only being close to it, but unlike in earlier works, as shown by (3.73), this stronger property
does not hold in the context of the sparse stochastic block model. To impose the boundedness of the gradient,
fix a > 0, and for each integer K ⩾ 1 introduce the closed convex set

Ka,K ∶= {G(K)x ∈RDK ∣ x ∈RDK
⩾0 and ∣∣∣x∣∣∣1 ⩽ a} ⊆ CK . (4.21)

Given a closed convex set K ⊆Rd , write

K′ ∶=K+Bd−1/2(0) (4.22)
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for the neighbourhood of radius d−1/2 around K in the normalized-`1,∗ norm. Here

Br(x) ∶= {x′ ∈Rd ∣ ∣∣∣x′−x∣∣∣1,∗ ⩽ r} (4.23)

denotes the closed ball of radius r > 0 centred around x ∈Rd relative to the normalized-`1,∗ norm. A Lipschitz
continuous function h ∶Rd

⩾0→R is said to have its gradient in K if

∇h ∈ L∞(Rd
⩾0;K). (4.24)

Recall that a Lipschitz continuous function is differentiable almost everywhere by Rademacher’s theorem
(Theorem 2.10 in [50]), so the spatial gradient ∇h is well-defined as an element of L∞, and the condition
(4.24) requires that this object take values in K almost everywhere. A non-differential criterion for the gradient
of a Lipschitz continuous function to lie in a closed convex set is given in Proposition A.2, and will be used
frequently throughout this chapter. As will be shown below, assuming that the initial condition has its gradient
in K′a,K suffices to ensure that the gradient of the solution remains in this set at all times. Notice that this
is insufficient to be able to evaluate the non-linearity CK at the gradient of the solution; however, under
suitable Lipschitz continuity properties of the extension HK , it ensures that the projected Hamilton-Jacobi
equation (4.19) should be an adequate replacement for the Hamilton-Jacobi equation (4.18). In particular, it
justifies defining the solution to the infinite-dimensional Hamilton-Jacobi (4.6) as the limit of the solutions
to the projected Hamilton-Jacobi equation (4.19). Besides some smoothness, the only constraint imposed on
the kernel g ∶ [−1,1]→R is that it be strictly positive. Among other things, this assumption ensures that a
non-negative measure µ ∈M+ cannot have a large total mass unless the function Gµ takes large values. In
summary, the assumptions on the kernel g ∶ [−1,1]→R and the initial condition ψ ∶M+→R required for the
Hamilton-Jacobi equation (4.6) to be well-posed are the following.

H1 The kernel g ∶ [−1,1]→R is continuously differentiable and bounded away from zero by some positive
constant m > 0,

g(x) ⩾m. (4.25)

H2 The initial condition ψ ∶M+ → R is Lipschitz continuous with respect to the total variation distance
(A.26),

∣ψ(µ)−ψ(ν)∣ ⩽ ∥ψ∥Lip,TVTV(µ,ν) (4.26)

for all measures ν ,µ ∈M+.

H3 There exists a > 0 such that the initial condition ψ ∶M+→R has the property that each of the projected
initial conditions (4.13) has its gradient in the set K′a,K ,

∇ψ
(K) ∈ L∞(Rd

⩾0;K′a,K). (4.27)

H4 The initial condition ψ ∶ Pr[−1,1]→R is Lipschitz continuous with respect to the Wasserstein distance
(3.85),

∣ψ(P)−ψ(Q)∣ ⩽ ∥ψ∥Lip,WW(P,Q) (4.28)

for all probability measures P,Q ∈ Pr[−1,1].

Observe that the hypothesis (H2) on the initial condition implies that the projected initial conditions (4.13) are
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Lipschitz continuous with respect to the normalized-`1 norm,

∣ψ(K)(x)−ψ
(K)(x′)∣ ⩽ ∥ψ∥Lip,TVTV(µ(K)x ,µ

(K)
x′ ) ⩽ ∥ψ∥Lip,TV∣∣∣x−x′∣∣∣1. (4.29)

With these assumptions at hand, it is natural to wonder why the main result in [33] cannot simply be
invoked to obtain the well-posedness of the projected Hamilton-Jacobi equation (4.19). The setting proposed
in [33] is that of a Hamilton-Jacobi equation posed on a cone C and with a non-linearity that is defined over the
cone C as well; the key assumption to establish well-posedness is that the non-linearity and the initial condition
have their gradients in the cone C. In the present context, the non-linearity is initially only well-defined on the
cone C∞, or CK for the projected equations, and it must be ensured that the gradient of the solution remains in
this space. This suggests that the results in [33] should be used with C = C∞, or CK for the projected equations.
However, the problem of interest, say for the projected equations, is naturally posed over RDK

⩾0 rather than CK ,
and moreover, the gradient of the non-linearity that appears in the present setting is not in CK , although it is in
RDK
⩾0 . To make matters more complicated, the gradient of the finite-dimensional initial condition, and therefore

also of the solution, does not quite belong to CK , although it is in the closed convex set K′a,K . Despite all this,
it will be shown that the somewhat richer geometry of the problem at hand can be dealt with using arguments
that are similar to those in [33].

The structure of these arguments is now described in more detail, and the main results they lead to are
stated. It will first be shown that for any R > 0, it is possible to define a non-linearity HK,R ∶RDK →R which
agrees with the projected non-linearity CK on a large enough ball CK ∩BR(0), and is uniformly Lipschitz
continuous. The well-posedness of the projected Hamilton-Jacobi equation

∂t f (K)(t,x) =HK,R(∇ f (K)(t,x)) on R>0×RDK
>0 (4.30)

subject to the initial condition f (K)(0, ⋅) =ψ
(K)(⋅) on RDK

⩾0 will then be obtained. Finally, it will be shown
that the solutions to these projected Hamilton-Jacobi equations admit a limit as K tends to infinity. This limit
will be verified to not depend on the choice of the extension HK,R, provided that R is chosen sufficiently large,
and it will be defined as the solution to the infinite-dimensional Hamilton-Jacobi equation (4.6).

To state the main well-posedness results precisely, it will be convenient to introduce additional notation
similar to that in (2.90)-(2.92). Given functions h ∶Rd

⩾0→R and u ∶R⩾0×Rd
⩾0→R, define the semi-norms

∣∣∣h∣∣∣Lip,1 ∶= sup
x≠x′∈Rd

⩾0

∣h(x)−h(x′)∣
∣∣∣x−x′∣∣∣1

and [u]0 ∶= sup
t>0

x∈Rd
⩾0

∣u(t,x)−u(0,x)∣
t

, (4.31)

and introduce the space of functions with Lipschitz initial condition that grow at most linearly in time,

L ∶= {u ∶R⩾0×Rd
⩾0→R ∣ u(0, ⋅) is Lipschitz continuous and [u]0 < +∞}, (4.32)

as well as its subset of uniformly Lipschitz continuous functions,

Lunif ∶= {u ∈L ∣ sup
t⩾0
∣∣∣u(t, ⋅)∣∣∣Lip,1 < +∞}. (4.33)

The main well-posedness results for the projected Hamilton-Jacobi equation (4.30) and the infinite-dimensional
Hamilton-Jacobi equation (4.6) now read as follows.
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Theorem 4.1. Suppose (H1)-(H3), and fix R > 0. The projected Hamilton-Jacobi equation (4.30) subject to

the initial condition ψ
(K) admits a unique viscosity solution f (K)R ∈Lunif which satisfies the Lipschitz bound

sup
t>0
∣∣∣ f (K)R (t, ⋅)∣∣∣Lip,1 = ∣∣∣ψ

(K)∣∣∣Lip,1 ⩽ ∥ψ∥Lip,TV, (4.34)

and has its gradient in the set K′a,K . Moreover, if u(K),v(K) ∈ Lunif are a continuous subsolution and a

continuous supersolution to the Hamilton-Jacobi equation (4.30), then

sup
R⩾0×R

DK
⩾0

(u(K)(t,x)−v(K)(t,x)) = sup
RDK
⩾0

(u(K)(0,x)−v(K)(0,x)). (4.35)

Theorem 4.2. Suppose (H1)-(H4), and given an integer K ⩾ 1 and a real number R > ∥ψ∥Lip,TV, denote by

f (K)R ∈Lunif the unique viscosity solution to the Hamilton-Jacobi equation (4.30) constructed in Theorem 4.1.

For every t ⩾ 0 and every measure µ ∈M+, the limit

f (t,µ) = lim
K→+∞

f (K)R (t,x(K)(µ)) (4.36)

exists, is finite, and is independent of R. The value of this limit is defined to be the solution to the infinite-

dimensional Hamilton-Jacobi equation (4.6).

Solutions to (4.6) satisfy a comparison principle since a comparison principle holds for solutions to the
projected Hamilton-Jacobi equation (4.30) by Theorem 4.1.

As is apparent, and similarly to [83, 86], the analysis of this chapter merely identifies the solution to (4.6)
as the limit of its finite-dimensional approximations. This will suffice to understand the limit of the mutual
information in the sparse stochastic block model. The question of providing a more intrinsic characterization
of the solution to (4.6), as was achieved in [32] in a related context, is left open.

In addition to these well-posedness results, a Hopf-Lax variational representation for the solution to the
infinite-dimensional Hamilton-Jacobi equation (4.6) in the case when the non-linearity C∞ is convex is also
obtained. Hopf-Lax formulas for related problems have been explored in [29, 30, 32, 33]. In Chapter 6, this
variational representation will make it possible to verify that, as stated in Theorem 1.7, in the disassortative
regime, the conjectured asymptotic mutual information for the sparse stochastic block model coincides with
the value of the asymptotic mutual information established in [38]. The convexity condition on C∞ boils down
to the requirement that the mapping (x,y)↦ g(xy) be non-negative definite, and can be phrased as follows.

H5 The kernel g ∶ [−1,1]→R satisfies the property

ˆ 1

−1

ˆ 1

−1
g(xy) dµ(x) dµ(y) ⩾ 0 (4.37)

for every signed measure µ ∈Ms.

Theorem 4.3. If (H1)-(H5) hold, then the unique solution f ∶R⩾0×M+→R to the infinite-dimensional

Hamilton-Jacobi equation (4.6) constructed in Theorem 4.2 admits the Hopf-Lax variational representation

f (t,µ) = sup
ν∈M+

(ψ(µ + tν)− t
2

ˆ 1

−1
Gν(y) dν(y)) (4.38)

for every t > 0 and µ ∈M+. Moreover, the supremum in (4.38) is achieved at some ν
∗ ∈M+, and whenever
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the initial condition ψ admits a Gateaux derivative at the measure µ + tν∗ with a density x↦Dµ ψ(µ + tν∗,x)
belonging to the cone C∞,

Gν∗ =Dµ ψ(µ + tν∗, ⋅). (4.39)

To study the sparse stochastic block model, it will also be important to identify solutions to equations
of the form (4.6) with a kernel g that does not satisfy the positivity assumption (H1). The idea will be to
introduce a new kernel that satisfies (H1) by translating g, and to deduce the well-posedness of the equation
with kernel g from the well-posedness of the equation with the translated kernel. For this strategy to work, the
assumption (H3) on the initial condition will be replaced by a stronger assumption now described.

For every a ∈R, introduce the set of measures with mass a,

Ma,+ ∶= {µ ∈M+ ∣ µ[−1,1] = a}, (4.40)

as well as the set of functions
Ca,∞ ∶= {Gµ ∣ µ ∈Ma,+}. (4.41)

The assumption (H3) on the initial condition will essentially be replaced by the assumption that its Gateaux
derivative lies in the set Ca,∞ for some a ∈R. As before, it will be convenient to state this as an assumption on
the projected initial conditions (4.13). For every integer K ⩾ 1, introduce the set of projected measures with
mass a,

M(K)
a,+ ∶= {µ ∈M

(K)
+ ∣ µ[1,1] = a}, (4.42)

and write
K=a,K ∶= {G(K)x ∈RDK ∣ x ∈RDK

⩾0 and ∣∣∣x∣∣∣1 = a} (4.43)

for its associated set of functions. The assumption (H3) is replaced by the following stronger assumption.

H3’ There exists a > 0 such that the initial condition ψ ∶M+→R has the property that each of the projected
initial conditions (4.13) has its gradient in the set K′=a,K ,

∇ψ
(K) ∈ L∞(Rd

⩾0;K′=a,K). (4.44)

Formal calculations now suggest a way to modify the solution to the infinite-dimensional Hamilton-Jacobi
equation (4.6) if the kernel g is not assumed to satisfy (H1) but is translated by a large enough constant so that
it becomes positive. Given a continuously differentiable kernel g ∶ [−1,1]→R, fix b ∈R such that the modified
kernel

g̃b(z) ∶= g(z)+b (4.45)

is strictly positive. For every µ ∈M+, define the modified function G̃b,µ ∶ [−1,1]→R,

G̃b,µ(x) ∶=
ˆ 1

−1
g̃b(xy) dµ(y), (4.46)

the modified cone of functions,
C̃b,∞ ∶= {G̃b,µ ∣ µ ∈M+}, (4.47)
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and the modified non-linearity C̃b,∞ ∶ C̃b,∞→R,

C̃b,∞(G̃b,µ) ∶=
1
2

ˆ 1

−1
G̃b,µ(x) dµ(x) = 1

2

ˆ 1

−1

ˆ 1

−1
g̃b(xy) dµ(y) dµ(x). (4.48)

Notice that the additional constant b in g̃b induces a shift in the expression above that depends only on
the total mass of the measure µ . This suggests that, under assumption (H3’), if f̃b is a solution to the
infinite-dimensional Hamilton-Jacobi equation

∂t f̃ (t,µ) = C̃b,∞(Dµ f̃ (t,µ)) on R>0×M+ (4.49)

subject to the initial condition ψ̃b ∶M+→R defined by

ψ̃b(µ) ∶=ψ(µ)+ab
ˆ 1

−1
dµ, (4.50)

then the function

fb(t,µ) ∶= f̃b(t,µ)−ab
ˆ 1

−1
dµ − a2bt

2
(4.51)

should be a solution to the infinite-dimensional Hamilton-Jacobi equation (4.6). The dependence of f̃b, fb

and ψ̃b on a is omitted since this constant is given and fixed by (H3’). The following result renders this
construction precise and ensures that it is independent of the choice of b.

Theorem 4.4. Fix a continuously differentiable kernel g ∶ [−1,1]→R, and assume that (H2), (H3’), and (H4)
hold. Let b ∈R be such that the function g̃b defined in (4.45) is positive on [−1,1], and let ψ̃b be defined by

(4.50). Then, the solution f̃b to the infinite-dimensional Hamilton-Jacobi equation (4.49) subject to the initial

condition ψ̃b constructed in Theorem 4.2 is well-defined, and the function fb given by (4.51) does not depend

on the choice of b ∈R. The function fb is defined to be the solution to the infinite-dimensional Hamilton-Jacobi

equation (4.6).

Combining this well-posedness result with the Hopf-Lax representation formula in Theorem 4.3 shows
that, under the additional assumption (H5), the function (4.51) admits a variational representation.

Theorem 4.5. Fix a continuously differentiable kernel g ∶ [−1,1] → R satisfying (H2), (H3’), and (H4).
Suppose that there exists b ∈ R such that the translated kernel g̃b in (4.45) is strictly positive on [−1,1]
and satisfies (H5). Suppose moreover that for every µ ∈M+, the initial condition ψ admits a Gateaux

derivative with density x↦Dµ ψ(µ,x) belonging to the set Ca,∞. Then, the unique solution f ∶R⩾0×M+→R
to the infinite-dimensional Hamilton-Jacobi equation (4.6) constructed in Theorem 4.4 admits the Hopf-Lax

variational representation

f (t,µ) = sup
ν∈Ma,+

(ψ(µ + tν)− t
2

ˆ 1

−1
Gν(y) dν(y)) (4.52)

for every t > 0 and µ ∈M+. Moreover, the supremum in (4.52) is achieved at some ν
∗ ∈Ma,+ with

Gν∗ =Dµ ψ(µ + tν∗, ⋅). (4.53)

As previously mentioned, the reader eager to return to the study of the sparse stochastic block model may
consider taking Theorems 4.1 - 4.5 for granted, and skipping the rest of this chapter on first reading.
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4.2 Establishing well-posedness of infinite-dimensional equations

To obtain the well-posedness of the Hamilton-Jacobi equation (4.6) and establish Theorem 4.2, the non-
linearity associated with each of the approximating Hamilton-Jacobi equations (4.18) will be extended from
the projected cone (4.16) where it is naturally defined to all of Euclidean space. Importantly, this extension
will preserve the non-decreasingness and Lipschitz continuity of the non-linearity. This extension is defined in
Section 4.2.1. In Section 4.2.2, a general well-posedness theory for Hamilton-Jacobi equations on positive
half-space analogous to that discussed in Section 2.4 will be developed in the setting where the non-linearity
is non-decreasing and locally Lipschitz continuous with respect to the normalized-`1,∗ norm, and where
the initial condition is Lipschitz continuous with respect to the normalized-`1 norm. In particular, this will
lead to a proof of Theorem 4.1. Finally, in Section 4.2.3, the sequence of solutions to the approximating
Hamilton-Jacobi equations will be shown to converge as the dimension parameter K tends to infinity, and
the limit thus obtained will be defined as the solution to the infinite-dimensional Hamilton-Jacobi equation
(4.6). This will prove Theorem 4.2, and thereby establish a well-posedness theory for the infinite-dimensional
Hamilton-Jacobi equation (4.6).

4.2.1 Extending the approximating Hamilton-Jacobi equations

To alleviate notation and strive for generality, instead of extending the projected non-linearity (4.17) from the
projected cone (4.16) to all of Euclidean space, an integer dimension d ⩾ 1 will be fixed, and a general version
of this non-linearity defined on a cone in Rd will be extended from said cone to all of Rd . More precisely, fix a
symmetric matrix G ∈Rd×d for which there exist positive constants m,M > 0 with

m
d2 ⩽Gkk′ ⩽

M
d2 (4.54)

for all 1 ⩽ k,k′ ⩽ d, and consider the cone

C ∶= {Gx ∈Rd ∣ x ∈Rd
⩾0}, (4.55)

and the non-linearity C ∶ C →R defined by

C(Gx) ∶= 1
2

Gx ⋅x. (4.56)

This mapping is well-defined by the Fubini-Tonelli theorem (see equations (3.71)-(3.72)). The projected
non-linearity (4.17) and the projected cone (4.16) are recovered by choosing d = ∣DK ∣ and G =G(K). Observe
that (4.54) is satisfied for these choices by the continuity of the kernel g and its lower bound in (H1). As
in Section 2.4, to establish the well-posedness of the approximating Hamilton-Jacobi equations (4.19), it
will be important that the extended non-linearity HR ∶Rd →R be Lipschitz continuous and non-decreasing.
The main result of this section is the definition of a uniformly Lipschitz continuous and non-decreasing
non-linearity HR ∶Rd →R which agrees with C on the intersection of the cone C and a large enough ball.
Recall the definition of a non-decreasing function in (2.69), and the notation ⩽ for the partial order defined in
(2.70). First, these properties are verified locally on the cone for the original non-linearity (4.56). It will be
convenient to note that for all x ∈Rd

⩾0,

∣∣∣x∣∣∣1 ⩽
1
m
∣∣∣Gx∣∣∣1,∗. (4.57)
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Lemma 4.6. The non-linearity (4.56) is locally Lipschitz continuous with respect to the normalized-`1,∗ norm,

∣C(y)−C(y′)∣ ⩽ 1
m
(∣∣∣y∣∣∣1,∗+ ∣∣∣y

′∣∣∣1,∗)∣∣∣y−y′∣∣∣1,∗ (4.58)

for all y,y′ ∈ C.

Proof. Fix y,y′ ∈ C with y =Gx and y′ =Gx′ for some x,x′ ∈Rd
⩾0. The symmetry of G and the Cauchy-Schwarz

inequality imply that

∣C(y)−C(y′)∣ ⩽ ∣G(x−x′) ⋅x∣+ ∣G(x−x′) ⋅x′∣ ⩽ (∣∣∣x∣∣∣1+ ∣∣∣x
′∣∣∣1)∣∣∣y−y′∣∣∣1,∗.

It follows by (4.57) that

∣C(y)−C(y′)∣ ⩽ 1
m
(∣∣∣y∣∣∣1,∗+ ∣∣∣y

′∣∣∣1,∗)∣∣∣y−y′∣∣∣1,∗.

This completes the proof. ∎

Lemma 4.7. The non-linearity (4.56) is non-decreasing.

Proof. Fix y,y′ ∈ C with y′−y ∈Rd
⩾0, and let x,x′ ∈Rd

⩾0 be such that y =Gx and y′ =Gx′. Observe that

2C(y) =Gx ⋅x = y ⋅x ⩽ y′ ⋅x =Gx′ ⋅x =Gx ⋅x′ = x′ ⋅y ⩽ x′ ⋅y′ =Gx′ ⋅x′ = 2C(y′).

This completes the proof. ∎

Extending the non-linearity (4.56) to Rd while preserving these two key properties requires some care.
For each R > 0, a non-decreasing function HR ∶Rd →R which is uniformly Lipschitz continuous with respect
to the normalized-`1,∗ norm and agrees with the non-linearity (4.56) on the intersection of the cone (4.55)
and the ball BR ∶= BR(0) defined in (4.23) will be introduced. The definition of this extension is inspired by
Proposition 6.8 in [83] and Lemma 2.5 in [33].

Proposition 4.8. For every R > 0, there exists a non-decreasing non-linearity HR ∶Rd →R which agrees with

C on C ∩BR and satisfies the Lipschitz continuity property

∣HR(y)−HR(y′)∣ ⩽
8RM
m2 ∣∣∣y−y′∣∣∣1,∗ (4.59)

for all y,y′ ∈Rd .

Proof. The proof proceeds in two steps. First, the non-linearity C is regularized by defining a non-decreasing
and uniformly Lipschitz continuous function which agrees with C on C ∩BR, and then this regularization is
extended to Rd .

Step 1: regularizing C. By Lemma 4.6, the non-linearity (4.56) satisfies the Lipschitz bound

∣C(y)−C(y′)∣ ⩽ 4R
m
∣∣∣y−y′∣∣∣1,∗

for all y,y′ ∈ C ∩B2R. With this in mind, let L ∶= 4R
m , and define the regularized non-linearity C̃R ∶ C →R by

C̃R(y) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

max(C(y),C(0)+2L(∣∣∣y∣∣∣1,∗−R)) if y ∈ C ∩B2R,

C(0)+2L(∣∣∣y∣∣∣1,∗−R) if y ∈ C ∖B2R.
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To see that C̃R agrees with C on C ∩BR, observe that for any y ∈ C ∩BR,

C(0)+2L(∣∣∣y∣∣∣1,∗−R) ⩽ C(0) = 0 ⩽ C(y),

where the last inequality uses the non-negativity of the components of G. It will also be convenient to note that
by Lipschitz continuity of C on C ∩B2R,

C(0)+2L(∣∣∣y∣∣∣1,∗−R) = C(0)+2LR = C(0)+L∣∣∣y∣∣∣1,∗ ⩾ C(y)

for any y ∈ C ∩∂B2R. This shows that C̃R is continuous. To establish the non-decreasingness of C̃R, fix
y,y′ ∈ C with y ⩽ y′. If y,y′ ∈ B2R, then the non-decreasingness of C in Lemma 4.7 implies that C(y) ⩽ C(y′).
Combining this with the fact that ∣∣∣y∣∣∣1,∗ ⩽ ∣∣∣y′∣∣∣1,∗ reveals that C̃R(y) ⩽ C̃R(y′). On the other hand, if y ∈ B2R

and y′ ∈ C ∖B2R, then

C(y) ⩽ C(0)+L∣∣∣y∣∣∣1,∗ ⩽ C(0)+L∣∣∣y′∣∣∣1,∗+L(∣∣∣y′∣∣∣1,∗−2R) = C̃R(y′),

and
C(0)+2L(∣∣∣y∣∣∣1,∗−R) ⩽ C(0)+2L(∣∣∣y′∣∣∣1,∗−R) = C̃R(y′).

Once again C̃R(y) ⩽ C̃R(y′). Finally, if y ∈ C ∖B2R, then 2R ⩽ ∣∣∣y∣∣∣1,∗ ⩽ ∣∣∣y′∣∣∣1,∗ so y′ ∈ C ∖B2R, and clearly
C̃R(y) ⩽ C̃R(y′). This establishes the non-decreasingness of the regularized non-linearity C̃R. It is now shown
that this non-linearity is uniformly Lipschitz continuous. The reverse triangle inequality implies that the
map y↦ C(0)+2L(∣∣∣y∣∣∣1,∗−R) is Lipschitz continuous with Lipschitz constant at most 2L. Recall that the
maximum of two Lipschitz continuous maps with Lipschitz constants at most L1 and L2, respectively, is
Lipschitz continuous with Lipschitz constant at most max(L1,L2). This means that C̃R is Lipschitz continuous
with Lipschitz constant at most 2L when it is restricted to C ∩B2R or C ∖B2R. For y,y′ ∈ C with y ∈ B2R and
y′ ∈ C ∖B2R, two cases are distinguished. On the one hand, if C̃R(y) = C(0)+2L(∣∣∣y∣∣∣1,∗−R), the reverse
triangle inequality shows that

∣C̃R(y)− C̃R(y′)∣ ⩽ 2L∣∣∣∣y∣∣∣1,∗− ∣∣∣y
′∣∣∣1,∗∣ ⩽ 2L∣∣∣y−y′∣∣∣1,∗.

On the other hand, if C̃R(y) = C(y), then the reverse triangle inequality reveals that

C̃R(y)− C̃R(y′) ⩽ C(0)+L∣∣∣y∣∣∣1,∗−C(0)−2L(∣∣∣y′∣∣∣1,∗−R) ⩽ L∣∣∣y−y′∣∣∣1,∗+L(2R− ∣∣∣y′∣∣∣1,∗) ⩽ L∣∣∣y−y′∣∣∣1,∗

while the lower bound C̃R(y) = C(y) ⩾ C(0)+2L(∣∣∣y∣∣∣1,∗−R) yields

C̃R(y′)− C̃R(y) = 2L(∣∣∣y′∣∣∣1,∗− ∣∣∣y∣∣∣1,∗) ⩽ 2L∣∣∣y−y′∣∣∣1,∗.

This shows that C̃R is a non-decreasing function which agrees with C on C ∩BR and satisfies the Lipschitz
continuity property

∣C̃R(y)− C̃R(y′)∣ ⩽
8R
m
∣∣∣y−y′∣∣∣1,∗ (4.60)

for all y,y′ ∈ C.

Step 2: extending to Rd . To extend the regularization of the non-linearity (4.56) to Rd , define the function
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HR ∶Rd →R by
HR(y) ∶= inf{C̃R(w) ∣w ∈ C with w ⩾ y}. (4.61)

Let ι ∶= (1, . . . ,1) ∈Rd , and observe that the vector v ∶= Gι

m belongs to the cone C and satisfies the bounds

1
d
⩽ vk ⩽

M
dm

(4.62)

for 1 ⩽ k ⩽ d. In particular, the infimum in (4.61) is never taken over the empty set. Moreover, the non-
decreasingness of C̃R and the fact that this function agrees with C on C ∩BR imply that HR also agrees
with C on C ∩BR. To see that HR is non-decreasing, fix y,y′ ∈Rd with y′ ⩾ y, and let w ∈ C be such that
w ⩾ y′. Since w ⩾ y, the definition of HR gives HR(y) ⩽ C̃R(w), and taking the infimum over all such w shows
that HR(y) ⩽HR(y′). To establish the Lipschitz continuity of HR, fix y,y′ ∈Rd and let z ∶= ∣∣∣y−y′∣∣∣1,∗v ∈ C.
Recalling (4.62) reveals that for any 1 ⩽ k ⩽ d,

yk −y′k ⩽ ∥y−y′∥∞ =
1
d
∣∣∣y−y′∣∣∣1,∗ ⩽ vk∣∣∣y−y′∣∣∣1,∗ = zk.

This means that z ⩾ y−y′. In particular, if w ∈ C is such that w ⩾ y′, then w+ z ∈ C with w+ z ⩾ y. It follows by
(4.60)-(4.62) that

HR(y)− C̃R(w) ⩽ C̃R(w+ z)− C̃R(w) ⩽
8R
m
∣∣∣z∣∣∣1,∗ ⩽

8RM
m2 ∣∣∣y−y′∣∣∣1,∗.

Taking the infimum over all such w and reversing the roles of y and y′ completes the proof. ∎

This result allows one to use solutions to the projected Hamilton-Jacobi equation (4.19) with non-linearity
defined on Euclidean space as opposed to the Hamilton-Jacobi equation (4.18) with non-linearity defined on
the projected cone (4.16) to establish a well-posedness theory for the infinite-dimensional Hamilton-Jacobi
equation (4.6). However, this first requires a well-posedness theory for Hamilton-Jacobi equations of the form
(4.19) on positive half-space. Notice that the well-posedness theory developed in Section 2.4 cannot be applied
directly as the non-linearity and the initial condition are not necessarily Lipschitz continuous with respect to
the Euclidean norm, but rather relative to the normalized-`1,∗ and normalized-`1 norms, respectively.

4.2.2 Revisiting Hamilton-Jacobi equations on positive half-space

To alleviate notation and strive for generality, instead of establishing the well-posedness of the extended
approximating Hamilton-Jacobi equation (4.30), a non-decreasing non-linearity H ∶ Rd → R that is locally
Lipschitz continuous with respect to the normalized-`1,∗ norm, and an initial condition ψ ∶ Rd

⩾0 → R that
is Lipschitz continuous with respect to the normalized-`1 norm are fixed, and the well-posedness of the
Hamilton-Jacobi equation

∂t f (t,x) =H(∇ f (t,x)) on R>0×Rd
>0 (4.63)

subject to the initial condition f (0, ⋅) = ψ(⋅) on Rd
⩾0 is established. Just like in Section 2.4, no boundary

condition has to be imposed for this equation since the non-linearity “points in the right direction” in the sense
that it is non-decreasing. The notion of solution adopted for the Hamilton-Jacobi equation (4.63) is that of
viscosity solution discussed in Definition 2.8. The well-posedness of the Hamilton-Jacobi equation (4.63)
will be established over the space Lunif of uniformly Lipschitz continuous functions defined in (4.33). In
analogy to Section 2.4, the main well-posedness result for the Hamilton-Jacobi equation (4.63) is established
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by analyzing the Hamilton-Jacobi equation

∂t f (t,x) =H(∇ f (t,x)) on R>0×Rd
⩾0 (4.64)

subject to the initial condition f (0, ⋅) =ψ(⋅) on Rd
⩾0, and showing that solutions to these two equations agree.

Proposition 4.9. If ψ ∶ Rd
⩾0 → R is an initial condition that is Lipschitz continuous with respect to the

normalized-`1 norm, and H ∶Rd →R is a non-decreasing non-linearity that is locally Lipschitz continuous

with respect to the normalized-`1,∗ norm, then the Hamilton-Jacobi equation (4.63) admits a unique viscosity

solution f ∈Lunif with

sup
t>0
∣∣∣ f (t, ⋅)∣∣∣Lip,1 = ∣∣∣ψ ∣∣∣Lip,1. (4.65)

Moreover, if u,v ∈Lunif are a continuous subsolution and a continuous supersolution to (4.63), then

sup
R⩾0×Rd

⩾0

(u(t,x)−v(t,x)) = sup
Rd
⩾0

(u(0,x)−v(0,x)). (4.66)

To be more specific, given δ0 > 0, introduce the Lipschitz constants

L ∶=max(sup
t>0
∣∣∣u(t, ⋅)∣∣∣Lip,1,sup

t>0
∣∣∣v(t, ⋅)∣∣∣Lip,1) and V ∶= sup{∣H(p

′)−H(p)∣
∣∣∣p′− p∣∣∣1,∗

∣ ∣∣∣p∣∣∣1,∗, ∣∣∣p
′∣∣∣1,∗ ⩽ L+δ0},

(4.67)
then for every R ∈R and M > 2L, the map

(t,x)↦ u(t,x)−v(t,x)−M(∣∣∣x∣∣∣1+Vt −R)+ (4.68)

achieves its supremum on {0}×Rd
⩾0.

Proof. The proof follows Section 2.4, and proceeds in four steps. First, a comparison principle is obtained for
the Hamilton-Jacobi equation (4.64). Then, the Lipschitz bound (4.65) is established for any of its viscosity
solutions, assuming these exist. Subsequently, the Perron method is used to prove the existence of a viscosity
solution to the Hamilton-Jacobi equation (4.64). Finally, the monotonicity of the non-linearity is leveraged to
prove that solutions to the Hamilton-Jacobi equations (4.63) and (4.64) coincide. The proof closely resembles
those in Section 2.4, so instead of providing full details, only the key differences are highlighted. The reader
interested in full details is referred to Appendix A in [48].

Step 1: comparison principle for (4.64). Let u,v ∈Lunif be a viscosity subsolution and a viscosity supersolution
to the Hamilton-Jacobi equation (4.64). The purpose of this step is to show that for every R ∈R and M > 2L,
the map

(t,x)↦ u(t,x)−v(t,x)−M(∣∣∣x∣∣∣1+Vt −R)+ (4.69)

achieves its supremum on {0}×Rd
⩾0. Suppose for the sake of contradiction that there exists T > 0 with

sup
[0,T]×Rd

⩾0

(u(t,x)−v(t,x)−ϕ(t,x)) > sup
Rd
⩾0

(u(0,x)−v(0,x)−ϕ(0,x)),

where ϕ(t,x) ∶=M(∣∣∣x∣∣∣1+Vt −R)+. The only additional difficulty in the present context relative to that in
Proposition 2.12 is that the normalized-`1 norm is not differentiable. To overcome this issue, given ε0 ∈ (0,1)
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to be determined, introduce the smoothed normalized-`1 norm,

∣∣∣x∣∣∣1,ε0
∶= 1

d

d

∑
k=1
(x2

k +ε0)
1
2 . (4.70)

Arguing as in Step 1 of Proposition 2.12 with the functions Φ, d, and χ2 redefined to have the Euclidean norm
replaced by the smoothed normalized-`1 norm,

Φ(t,x) ∶=Mθ(∣∣∣x∣∣∣1,ε0
+Vt −R), d(x) ∶= inf

∣∣∣y∣∣∣1,∗=1

y∈Rd
⩾0

y ⋅x, and χ2(t,x) ∶=
δ

d(x) +δ
′∣∣∣x∣∣∣1,ε0

,

it is possible to show that for ε0,ε,ε
′,δ ,δ ′ > 0 small enough,

sup
[0,T]×Rd

⩾0

(u−v−χ1−χ2) > sup
{0}×Rd

⩾0

(u−v−χ1−χ2). (4.71)

For each α ⩾ 1, define the function Ψα ∶ [0,T ]×Rd
⩾0× [0,T ]×Rd

⩾0×Rd
⩾0→R∪{−∞} by

Ψα(t,x,t′,x′,y) ∶= u(t,x)−v(t′,x′)− α

2
(∣t − t′∣2+ ∣∣∣x−x′∣∣∣1,ε0

+ ∣∣∣x−y∣∣∣1,ε0
)−χ1(t,x)−χ2(t,x)

Arguing as in Step 2 of Proposition 2.12, it is possible to find a sequence of quintuples (tα ,xα ,t′α x′α ,yα)α⩾1 with
the property that Ψα achieves its supremum at (tα ,xα ,t′α x′α ,yα), and that tα ,t′α ∈ (0,T) and xα ,x′α ,yα ∈Rd

>0

for α large enough. With this in mind, fix α ⩾ 1 large enough, and introduce the functions φ ,φ ′ ∈C∞((0,T)×
Rd
⩾0;R) defined by

φ(t,x) ∶= v(t′α ,x′α)+
α

2
(∣t − t′α ∣2+ ∣∣∣x−x′α ∣∣∣1,ε0

+ ∣∣∣x−yα ∣∣∣1,ε0
)+χ1(t,x)+χ2(t,yα),

φ
′(t′,x′) ∶= u(tα ,xα)−

α

2
(∣t′− tα ∣2+ ∣∣∣x′−xα ∣∣∣1,ε0

+ ∣∣∣xα −yα ∣∣∣1,ε0
)−χ1(tα ,xα)−χ2(tα ,yα).

Arguing as in Step 3 of Proposition 2.12, it is possible to contradict the inequalities

(∂tφ −H(∇φ))(tα ,xα) ⩽ 0 and (∂tφ
′−H(∇φ

′))(t′α ,x′α) ⩾ 0,

and conclude that the map (4.69) achieves its supremum on {0}×Rd
⩾0.

Step 2: Lipschitz bound for for solutions to (4.64). Let f ∈L be a viscosity solution to the Hamilton-Jacobi
equation (4.64). The purpose of this step is to show that

sup
t⩾0
∣∣∣ f (t, ⋅)∣∣∣Lip,1 = ∣∣∣ f (0, ⋅)∣∣∣Lip,1. (4.72)

Let L ∶= ∣∣∣ f (0, ⋅)∣∣∣Lip,1 denote the Lipschitz semi-norm of the initial condition, and suppose for the sake of
contradiction that there exists T > 0 with

sup
[0,T]×Rd

⩾0×R
d
⩾0

( f (t,x)− f (t,x′)−L∣∣∣x−x′∣∣∣1) > 0 ⩾ sup
Rd
⩾0×R

d
⩾0

( f (0,x)− f (0,x′)−L∣∣∣x−x′∣∣∣1). (4.73)
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Arguing as in Step 1 of Proposition 2.13 with the constant V and the function Φ redefined to be

V ∶= sup{∣H(p
′)−H(p)∣

∣∣∣p′− p∣∣∣1,∗
∣ ∣∣∣p∣∣∣1,∗, ∣∣∣p

′∣∣∣1,∗ ⩽ L+δ0} and Φ(t,x) ∶= δ0θ(∣∣∣x∣∣∣1,ε0
+Vt −R),

it is possible to show that for R > 0 large enough and ε0,ε,ε
′ > 0 small enough,

sup
[0,T]×Rd

⩾0×R
d
⩾0

( f (t,x)− f (t,x′)−L∣∣∣x−x′∣∣∣1,ε0
−χ1(t,x)−χ2(t,x′))

> 0 ⩾ sup
Rd
⩾0×R

d
⩾0

( f (0,x)− f (0,x′)−L∣∣∣x−x′∣∣∣1,ε0
−χ1(0,x)−χ2(0,x′)).

For each α ⩾ 1, define the function Ψα ∶R⩾0×Rd
⩾0×R⩾0×Rd

⩾0→R∪{−∞} by

Ψα(t,x,t′,x′) ∶= f (t,x)− f (t′,x′)L∣∣∣x−x′∣∣∣1,ε0
− α

2
∣t − t′∣2−χ1(t,x)−χ2(t′,x′).

Arguing as in Step 2 of Proposition 2.13, it is possible to find a sequence of quadruples (tα ,xα ,t′α x′α)α⩾1 with
the property that Ψα achieves its supremum at (tα ,xα ,t′α x′α), and that tα ,t′α ∈ (0,T) and xα ≠ x′α for α large
enough. With this in mind, fix α ⩾ 1 large enough, and introduce the functions φ ,φ ′ ∈C∞((0,T)×Rd

⩾0;R)
defined by

φ(t,x) ∶= f (t′α ,x′α)+L∣∣∣x−x′α ∣∣∣1,ε0
+ α

2
∣t − t′α ∣2+χ1(t,x)+χ2(t′α ,x′α),

φ
′(t′,x′) ∶= f (tα ,xα)−L∣∣∣x′−xα ∣∣∣1,ε0

− α

2
∣t′− tα ∣2−χ1(tα ,xα)−χ2(t′,x′).

Arguing as in Step 3 of Proposition 2.13, it is possible to contradict the inequalities

(∂tφ −H(∇φ))(tα ,xα) ⩽ 0 and (∂tφ
′−H(∇φ

′))(t′α ,x′α) ⩾ 0,

and establish the Lipschitz bound (4.72). The comparison principle in (4.66) now follows by arguing as
in Corollary 2.14, and the uniqueness of solutions to the Hamilton-Jacobi equation (4.64) is obtained as in
Corollary 2.15.

Step 3: existence of solutions to (4.64). The purpose of this step is to use the Perron method to prove the
existence of solutions to the Hamilton-Jacobi equation (4.64). Fix a positive constant

K > sup{∣H(y)∣ ∣ y ∈Rd with ∣∣∣y∣∣∣1,∗ ⩽ ∣∣∣ψ ∣∣∣Lip,1},

and define the continuous functions u± ∶R⩾0×Rd
⩾0→R by u±(t,x) ∶=ψ(x)±Kt. Arguing as in Section 2.4.2,

it is possible to show that the function f ∶R⩾0×Rd
⩾0→R defined by f (t,x) ∶= supu∈S u(t,x) for the set

S ∶= {u ∶R⩾0×Rd
⩾0→R ∣ u− ⩽ u ⩽ u+ and u is a subsolution to (4.64)}

is a viscosity solution to the Hamilton-Jacobi equation (4.64) which belongs to the solution space Lunif.

Step 4: equivalence of solutions to (4.63) and (4.64). The purpose of this step is to show continuous
subsolutions and supersolutions to the Hamilton-Jacobi equations (4.63) and (4.64) coincide. The argument
for viscosity subsolutions and viscosity supersolutions being almost identical, the focus is exclusively on the
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case of viscosity subsolutions. Arguing as in Proposition 2.21, it suffices to consider a continuous viscosity
subsolution to the Hamilton-Jacobi equation (4.63) and deduce the subsolution criterion for the Hamilton-
Jacobi equation (4.64) at a boundary point (t,x) ∈ R>0 ×∂Rd

⩾0. To be more precise, fix a smooth function
φ ∈C∞(R>0×Rd

⩾0;R) with the property that u−φ has a strict local maximum at (t∗,x∗) ∈R>0×∂Rd
⩾0, and

aim to show that (∂tφ −H(∇φ))(t∗,x∗) ⩽ 0. This is done as in the proof of Proposition 2.21 with the functions
d and ψε redefined to be

d(x) ∶= inf
∣∣∣y∣∣∣1,∗=1

y∈Rd
⩾0

y ⋅x and ψε(s,y) ∶= u(s,y)−φ(s,y)− ε

d(y) ,

and the function Ψε,δ ,θ ∶Or ×Or →R redefined to be

Ψε,δ ,θ (t,x,s,y) ∶= u(t,x)−φ(s,y)− ε

d(y) −
2Mu

θ 2 ∣t − s∣2− 2Mu

θ 2 ∣∣∣x−y∣∣∣1,ε0
+δζε(s,y)

for Mu ∶= sup(t,x)∈Or
∣u(t,x)∣. Together with the previous three steps, this completes the proof. ∎

To study the sparse stochastic block model, it will also be important to know that whenever the gradient
of the initial condition ψ lies in a closed convex set, then so too does the gradient of the solution to the
Hamilton-Jacobi equation (4.63) at all future points in time. This is first established for closed convex cones
and then extended to arbitrary closed convex sets. Given a set D ⊆ Rd , recall from Corollary A.3 that a
Lipschitz function h ∶D→R has its gradient in a closed convex cone K if and only if it is K∗-non-decreasing.
A function h ∶D→R is said to be K∗-non-decreasing if, for all x,x′ ∈D,

x′−x ∈K∗ Ô⇒ h(x) ⩽ h(x′). (4.74)

Here K∗ denotes the dual of the cone K,

K∗ ∶= {x ∈Rd ∣ x ⋅y ⩾ 0 for all y ∈K}. (4.75)

Notice that a function is non-decreasing in the sense defined in (2.69) if and only if it is (Rd
⩾0)∗-non-decreasing.

To show that the gradient of the initial condition stays in a closed convex cone it therefore suffices to prove
that the Hamilton-Jacobi equation (4.63) preserves the monotonicity of its initial condition. This will be done
through a doubling argument similar to those used in the proof of Proposition 4.9. It will be convenient to
adapt the distance-like function (2.106) to the normalized-`1 and normalized-`1,∗ norms by redefining it to be

d(x) ∶= inf
∣∣∣y∣∣∣1,∗=1

y∈Rd
⩾0

y ⋅x. (4.76)

The basic properties of this function stated in Lemma 2.11 still hold with the appropriate modifications. In
particular, property (iii) reads that d is Lipschitz continuous with respect to the normalized-`1 norm, and
property (v) states that the normalized-`1.∗ norm of any element in the superdifferential is at most one.

Lemma 4.10. Fix a closed convex cone K, an initial condition ψ ∶Rd
⩾0→R that is Lipschitz continuous with

respect to the normalized-`1 norm, and a non-decreasing non-linearity H ∶Rd →R that is locally Lipschitz

continuous with respect to the normalized-`1,∗ norm. Denote by f ∈Lunif the unique viscosity solution to the
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Hamilton-Jacobi equation (4.64) constructed in Proposition 4.9. If ψ is K∗-non-decreasing, then for all t ⩾ 0,

the function f (t, ⋅) is also K∗-non-decreasing.

Proof. Let L ∶= ∣∣∣ψ ∣∣∣Lip,1 be the Lipschitz semi-norm of the initial condition. Introduce the closed set

Ω ∶= {(x,x′) ∈Rd
⩾0×Rd

⩾0 ∣ x′−x ∈K∗},

and suppose for the sake of contradiction that there exists T > 0 with

sup
[0,T]×Ω

( f (t,x)− f (t,x′)) > 0 ⩾ sup
Ω

( f (0,x)− f (0,x′)). (4.77)

The proof proceeds in three steps. First (4.77) is perturbed, then a variable doubling argument is used to obtain
a system of inequalities, and finally, this system of inequalities is contradicted.

Step 1: perturbing. Let δ0 > 0, x∗ ∈Rd
>0 and y∗ ∈K∗ with x∗+y∗ ∈Rd

>0 be fixed, and let θ ∈C∞(R;R) be an
increasing function such that, for every r ∈R,

(r−1)+ ⩽ θ(r) ⩽ r+ and ∣θ ′(r)∣ ⩽ 1.

Recall the definition of the smoothed normalized-`1 norm in (4.70), and for a constant R > 0 to be chosen and
the local Lipschitz constant

V ∶= sup{∣H(p
′)−H(p)∣

∣∣∣p′− p∣∣∣1,∗
∣ ∣∣∣p∣∣∣1,∗, ∣∣∣p

′∣∣∣1,∗ ⩽ L+δ0},

introduce the function
Φ(t,x) ∶= δ0θ(∣∣∣x∣∣∣1,ε0

+Vt −R)

defined on R⩾0×Rd . For small parameters ε,δ ,δ ′ > 0 to be determined, introduce the functions

χ1(t,x) ∶=Φ(t,x)+ ε

T − t
+εt, χ2(x,x′) ∶= ε

′∣∣∣x−x′∣∣∣21,ε0
, and χ3(y) ∶=

δ

d(y) +δ
′∣∣∣y∣∣∣1,ε0

defined on R⩾0×Rd
⩾0, Rd

⩾0×Rd
⩾0, and Rd

⩾0, respectively. Choosing R > 0 large enough and ε,ε ′,δ ,δ ′ > 0 small
enough ensures that

sup
[0,T]×Ω

( f (t,x)− f (t,x′)−χ1(t,x)−χ2(x,x′)−χ3(x)−χ3(x′))

> 0 ⩾ sup
Ω

( f (0,x)− f (0,x′)−χ1(0,x)−χ2(x,x′)−χ3(x)−χ3(x′)). (4.78)

This is the perturbed version of the hypothesis (4.77) that will be used to reach a contradiction.

Step 2: system of inequalities. For each α ⩾ 1, define the function Ψα ∶ [0,T ]× [0,T ]×Ω×Rd
⩾0 ×Rd

⩾0 →
R∪{−∞} by

Ψα(t,t′,x,x′,y,y′) ∶= f (t,x)− f (t′,x′)−χ1(t,x)−χ2(x,x′)−χ3(y)−χ3(y′)
−α ∣t − t′∣2−α ∣∣∣x−y∣∣∣1,ε0

−α ∣∣∣x′−y′∣∣∣1,ε0
. (4.79)
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It is now argued that the function Ψα achieves its supremum at a point (tα ,t′α ,xα ,x′α ,yα ,y′α) which remains
bounded as α tends to infinity. To do so, write C < +∞ for a constant whose value might change throughout
the argument, and which may depend on δ0, L, R, T , V , and [ f ]0. For every x ∈Rd

⩾0 with ∣∣∣x∣∣∣1,ε0
> R+1 and

α ⩾ 1, the bound Φ(t,x) ⩾ δ0(∣∣∣x∣∣∣1,ε0
+Vt −R−1) reveals that

Ψα(t,t′,x,x′,y,y′) ⩽ [ f ]0(t + t′)+L∣∣∣x−x′∣∣∣1−Φ(t,x)−ε
′∣∣∣x−x′∣∣∣21,ε0

−δ
′∣∣∣y∣∣∣1,ε0

−δ
′∣∣∣y′∣∣∣1,ε0

⩽ L∣∣∣x−x′∣∣∣1,ε0
−ε
′∣∣∣x−x′∣∣∣21,ε0

−δ0∣∣∣x∣∣∣1,ε0
−δ
′∣∣∣y∣∣∣1,ε0

−δ
′∣∣∣y′∣∣∣1,ε0

+C.

Observe also that the supremum of (4.79) is bounded from below by Ψα(0,0,x∗,x∗+y∗,x∗,x∗), which does
not depend on α . This implies that xα , x′α , yα and y′α remain bounded both with respect to the normalized-`1

norm and its smoothed counterpart (4.70) as α tends to infinity, and that

α ∣tα − t′α ∣2+α ∣∣∣xα −yα ∣∣∣1,ε0
+α ∣∣∣x′α −y′α ∣∣∣1,ε0

+ ε

T − tα
+ δ

d(yα)
+ δ

d(y′α)
⩽C. (4.80)

It follows that, up to the extraction of a subsequence, there exist t0 ∈ [0,T ] and x0,x′0 ∈Rd
⩾0 such that tα → t0,

t′α → t0, xα → x0, x′α → x′0, yα → x0 and y′α → x′0 as α → +∞. By (4.80), property (ii) in Lemma 2.11, and the
fact that Ω is closed, it must be that t0 ∈ [0,T), x0,x′0 ∈Rd

>0 and x′0−x0 ∈K∗. On the other hand, the continuity
of f , χ1, χ2 and χ3 together with the bounds

sup
[0,T]×Ω

( f (t,x)− f (t,x′)−χ1(t,x)−χ2(x,x′)−χ3(x)−χ3(x′))

⩽Ψα(tα ,t′α ,xα ,x′α ,yα ,y′α) ⩽ f (tα ,xα)− f (t′α ,x′α)−χ1(tα ,xα)−χ2(xα ,x′α)−χ3(yα)−χ3(y′α)

imply that the supremum on the left side of (4.78) is achieved at (t0,x0,x′0). It must therefore be that
t0 ∈ (0,T). This means that (tα ,t′α ,xα ,x′α ,yα ,y′α)α⩾1 is a sequence such that Ψα achieves its supremum at
(tα ,t′α ,xα ,x′α ,yα ,y′α), and with tα ,t′α ∈ (0,T) and xα ,x′α ,yα ,y′α ∈Rd

>0 for α large enough. With this in mind,
fix α large enough, and introduce the functions φ ,φ ′ ∈C∞((0,T)×Rd

⩾0;R) defined by

φ(t,x) ∶= f (t′α ,x′α)+χ1(t,x)+χ2(x,x′α)+χ3(yα)+χ3(y′α)+α ∣t − t′α ∣2+α ∣∣∣x−yα ∣∣∣1,ε0
+α ∣∣∣x′α −y′α ∣∣∣1,ε0

,

φ
′(t′,x′) ∶= f (tα ,xα)−χ1(tα ,xα)−χ2(xα ,x′)−χ3(yα)−χ3(y′α)−α ∣t′− tα ∣2−α ∣∣∣xα −yα ∣∣∣1,ε0

−α ∣∣∣x′−y′α ∣∣∣1,ε0
.

Since (tα ,t′α ,xα ,x′α ,yα ,y′α)maximizes Ψα , the function f −φ achieves a local maximum at the point (tα ,xα) ∈
(0,T)×Rd

>0, while the function f −φ
′ achieves a local minimum at the point (t′α ,x′α) ∈ (0,T)×Rd

>0. It follows
by the definition of a viscosity subsolution and supersolution that

(∂tφ −H(∇φ))(tα ,xα) ⩽ 0 and (∂tφ
′−H(∇φ

′))(t′α ,x′α) ⩾ 0. (4.81)

This is the system of inequalities that will be contradicted.

Step 3: reaching a contradiction. Define the function n ∶Rd
⩾0→Rd

⩾0 by n(x) ∶=∇∣∣∣x∣∣∣1,ε0
. A direct computation

shows that

(∂tφ −H(∇φ))(tα ,xα) = ε +2α(tα − t′α)+∂tΦ(tα ,xα)+
ε

(T − tα)2
−H(∇φ(tα ,xα)) (4.82)
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and
(∂tφ

′−H(∇φ
′))(t′α ,x′α) = 2α(tα − t′α)−H(∇φ

′(t′α ,x′α)). (4.83)

To compare these two quantities, the non-decreasingness and local Lipschitz continuity of the non-linearity H

will be used to replace the gradient

∇φ(tα ,xα) =∇Φ(tα ,xα)+2ε
′n(xα −x′α)∣∣∣xα −x′α ∣∣∣1,ε0

+αn(xα −yα) (4.84)

by the gradient
∇φ
′(t′α ,x′α) = 2ε

′n(xα −x′α)∣∣∣xα −x′α ∣∣∣1,ε0
−αn(x′α −y′α). (4.85)

With the definition of V in mind, it is first shown that

∣∣∣∇φ(tα ,xα)∣∣∣1,∗ ⩽ L and ∣∣∣∇φ
′(t′α ,x′α)∣∣∣1,∗ ⩽ L. (4.86)

Fix z ∈ Rd and η > 0. Since f −φ achieves a local maximum at (tα ,xα) ∈ R>0 ×Rd
>0, and f is uniformly

Lipschitz continuous with Lipschitz constant L by Proposition 4.9,

φ(tα ,xα +ηz)−φ(tα ,xα) ⩾ f (tα ,xα +ηz)− f (tα ,xα) ⩾ −ηL∣∣∣z∣∣∣1.

Dividing by η and letting η tend to zero reveals that

∇φ(tα ,xα) ⋅ z ⩾ −L∣∣∣z∣∣∣1.

Choosing zk ∶= −d sgn(∂xk φ(tα ,xα)) gives the first inequality in (4.86); the second inequality is obtained
identically. These bounds would be sufficient if the terms αn(xα − yα) and αn(x′α − y′α) could be made
arbitrarily small. To overcome this issue, the non-decreasingness of H will be leveraged. Since the function
y↦Ψα(tα ,t′α ,xα ,x′α ,y,y

′
α) achieves its maximum at yα ∈Rd

>0, properties (v) and (vi) in Lemma 2.11 imply
that

1
δ

d(yα)2(αn(yα −xα)+δ
′n(yα)) ∈ ∂ d(yα) and d(yα)2∣∣∣αn(yα −xα)+δ

′n(yα)∣∣∣1,∗ ⩽ δ .

Decreasing δ if necessary and setting pα ∶= δ
′n(yα) gives a vector pα ∈Rd

⩾0 with ∣∣∣pα ∣∣∣1,∗ ⩽ δ
′ as well as

pα −αn(xα −yα) ∈Rd
⩾0 and ∣∣∣pα −αn(xα −yα)∣∣∣1,∗ ⩽

δ0

2
.

The symmetry n(x) = n(−x) of the function n has been used implicitly as well as the fact that (yα)α⩾1 is
uniformly bounded away from zero by property (ii) in Lemma 2.11 and its convergence to y0 ∈Rd

>0. A similar
argument gives a vector p′α ∈Rd

⩾0 with ∣∣∣p′α ∣∣∣1,∗ ⩽ δ
′ as well as

p′α −αn(x′α −y′α) ∈Rd
⩾0 and ∣∣∣p′α −αn(x′α −y′α)∣∣∣1,∗ ⩽

δ0

2
.

Remembering (4.84) and (4.85), and combining the non-decreasingness of the non-linearity H with the
previous two displays yields

H(∇φ(tα ,xα)) ⩽H(∇φ
′(t′α ,x′α)+ pα + p′α +∇Φ(tα ,xα)) ⩽H(∇φ

′(t′α ,x′α))+2V δ
′+V ∣∣∣∇Φ(tα ,xα)∣∣∣1,∗.
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The second inequality implicitly uses that by (4.84)-(4.86),

∣∣∣∇φ
′(t′α ,x′α)+ pα + p′α +∇Φ(tα ,xα)∣∣∣1,∗ ⩽ ∣∣∣∇φ(tα ,xα)∣∣∣1,∗+ ∣∣∣pα −αn(xα −yα)∣∣∣1,∗+ ∣∣∣p

′
α −αn(x′α −y′α)∣∣∣1,∗

⩽ L+δ0.

It follows by (4.82) that

(∂tφ −H(∇φ))(tα ,xα) > ε +2α(tα − t′α)+∂tΦ(tα ,xα)−H(∇φ
′(t′α ,x′α))−2V δ

′−V ∣∣∣∇Φ(tα ,xα)∣∣∣1,∗.

A direct computation shows that V ∣∣∣∇Φ(tα ,xα)∣∣∣1,∗ ⩽ ∂tΦ(tα ,xα), so in fact

(∂tφ −H(∇φ))(tα ,xα) > ε +2α(tα − t′α)−H(∇φ
′(t′α ,x′α))−2V δ

′

= (∂tφ
′−H(∇φ

′))(t′α ,x′α)+ε −V δ
′

⩾ ε −V δ
′,

where (4.83) and the second inequality in (4.81) have been used. Choosing δ
′ < ε

′/V contradicts the first
inequality in (4.81) and completes the proof. ∎

Proposition 4.11. Fix a closed convex set K, an initial condition ψ ∶Rd
⩾0→R that is Lipschitz continuous with

respect to the normalized-`1 norm, and a non-decreasing non-linearity H ∶Rd →R that is locally Lipschitz

continuous with respect to the normalized-`1,∗ norm. Denote by f ∈Lunif the unique viscosity solution to the

Hamilton-Jacobi equation (4.64) constructed in Proposition 4.9. If ψ has its gradient in K, then for all t ⩾ 0,

the function f (t, ⋅) also has its gradient in K.

Proof. Define the set A ∶= {(v,c) ∈ Rd+1 ∣ x ⋅ v ⩾ c for all x ∈K and ∣v∣ = 1}, and recall from Proposition A.4
that K = {x ∈Rd ∣ x ⋅v ⩾ c for all (v,c) ∈A}. For each (v,c) ∈A introduce the closed convex cone

Hv ∶= {x ∈Rd ∣ x ⋅v ⩾ 0}

and the function gv,c(t,x) ∶= f (t,x)−cx ⋅v on R⩾0×Rd
⩾0. Define the non-linearity H̃(p) ∶=H(p+cvι) on Rd ,

where ι ∶= (1, . . . ,1) ∈Rd , and observe that gv,c satisfies the Hamilton-Jacobi equation

∂tg(t,x) = H̃(∇g(t,x)) on R>0×Rd
⩾0

subject to the initial condition ψ̃(x) ∶= ψ(x)− cx ⋅ v. Moreover, this initial condition is H∗v -non-decreasing.
Indeed, the bi-duality result in Proposition A.1 implies thatH∗v =Rv, and for any x,x′ ∈Rd

⩾0 with x′−x = tv for
some t ∈R,

gv,c(x′)−gv,c(x) =ψ(x′)−ψ(x)−c(x′−x) ⋅v ⩾ tc− tcv ⋅v = 0.

The fact that (x′−x) ⋅ z ⩾ tc for all z ∈K and the characterization of ψ having its gradient in the set K given in
Proposition A.2 have been used. It follows by Lemma 4.10 that gv,c isH∗v -non-decreasing. At this point, fix
x,x′ ∈Rd

⩾0 with the property that for all z ∈K, one has (x′−x) ⋅ z ⩾ c. Define

v ∶= x′−x
∣x′−x∣ and c′ ∶= c

∣x′−x∣ ,
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and notice that (v,c′) ∈A. This means that gv,c′ isH∗v -non-decreasing, and therefore

f (t,x′)− f (t,x) = gv,c′(t,x+ ∣x′−x∣v)−gv,c′(t,x)+c′∣x′−x∣v ⋅v ⩾ c.

Invoking Proposition A.2 shows that f has its gradient in K and completes the proof. ∎

Combining Propositions 4.8, 4.9, and 4.11, it is now possible to prove Theorem 4.1.

Proof of Theorem 4.1. Denote by HK,R the extension of the non-linearity CK constructed in Proposition 4.8.
By Proposition 4.9, the Hamilton-Jacobi equation (4.30) satisfies the comparison principle and admits a
unique viscosity solution f (K)R ∈Lunif subject to the initial condition ψ

(K). Moreover, this solution satisfies the
Lipschitz bound

sup
t>0
∣∣∣ f (K)R (t, ⋅)∣∣∣Lip,1 = ∣∣∣ψ

(K)∣∣∣Lip,1 ⩽ ∥ψ∥Lip,TV, (4.87)

where the second inequality follows from (4.29). That the function f (K)R has its gradient in the set K′a,K is
immediate from assumption (H3) and Proposition 4.11. This completes the proof. ∎

4.2.3 Establishing convergence of the approximating solutions

With the well-posedness of the extended approximating Hamilton-Jacobi equation (4.30) at hand, it is now
possible to prove the convergence of its solutions as stated in Theorem 4.2. In the notation of Theorem
4.1, given an integer K ⩾ 1 and some R > 0, write f (K)R ∈Lunif for the unique solution to the Hamilton-Jacobi
equation (4.30) subject to the initial condition ψ

(K). Recall that f (K)R has its gradient in the set K′a,K , and
satisfies the Lipschitz bound

sup
t⩾0
∣∣∣ f (K)R (t, ⋅)∣∣∣Lip,1 = ∣∣∣ψ

(K)∣∣∣Lip,1 ⩽ ∥ψ∥Lip,TV. (4.88)

To prove the existence of the limit

fR(t,µ) = lim
K→+∞

f (K)R (t,x(K)(µ)), (4.89)

the arguments in Section 3.2 of [86] and Section 3.3 of [32] will be appropriately adapted. Given two integers
K′ >K, it will be convenient to introduce the projection map P(K,K′) ∶RDK′

⩾0 →RDK
⩾0 defined by

P(K,K′)x ∶= x(K)(µ(K
′)

x ) (4.90)

as well as the lifting map L(K,K′) ∶RDK →RDK′ given by

L(K,K′)x ∶= (x̃k)k∈DK
, (4.91)

where x̃k = (xk, . . . ,xk) ∈R2K′−K
. A key observation in proving the existence of the limit (4.89) is that

P(K,K′)L(K,K′)x = x. (4.92)
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It will also be helpful to remember that by Proposition A.4, any closed convex set K may be written as the
intersection of the closed hyper-spaces that contain it,

K = {x ∈Rd ∣ x ⋅v ⩾ c for all (v,c) ∈A} for A ∶= {(v,c) ∈Rd+1 ∣ v ⋅x ⩾ c for all x ∈K and ∣∣∣v∣∣∣1 = 1}. (4.93)

The following technical lemmas will also play their part. The first two translate non-differential properties of a
non-differentiable function into differential properties of a smooth function at any point where the difference
of these functions is locally maximal. The third analyzes the transformation of the pairs (v,c) ∈A by the
projection map (4.90), and the fourth shows that these pairs can be used to quantify the distance from a point
to the closed convex set they define.

Lemma 4.12. Let u ∈ Lunif be a uniformly Lipschitz function, and let L ∶= supt>0 ∣∣∣u(t, ⋅)∣∣∣Lip,1 < +∞. If

φ ∈C∞(R>0×Rd
>0;R) is a smooth function with the property that u−φ has a local maximum at the point

(t∗,x∗) ∈R>0×Rd
>0, then ∣∣∣∇φ(t∗,x∗)∣∣∣1,∗ ⩽ L. An identical statement holds at a local minimum.

Proof. Since u−φ has a local maximum at (t∗,x∗) ∈R>0×Rd
>0, for every ε > 0 small enough and x ∈Rd

⩾0,

φ(t∗,x∗+εx)−φ(t∗,x∗) ⩾ u(t∗,x∗+εx)−u(t∗,x∗) ⩾ −εL∣∣∣x∣∣∣1.

Dividing by ε and letting ε tend to zero reveals that

∇φ(t∗,x∗) ⋅x ⩾ −L∣∣∣x∣∣∣1.

Choosing xk ∶= −d sgn(∂xk φ(t∗,x∗))ek for each 1 ⩽ k ⩽ d completes the proof. ∎

Lemma 4.13. Let K be a closed convex set, and let u ∶R⩾0×Rd
⩾0→R be a Lipschitz function whose gradient

is in K. Any smooth function φ ∈C∞(R>0×Rd
>0;R) with the property that u−φ has a local maximum at

(t∗,x∗) ∈R>0×Rd
>0 is such that ∇φ(t∗,x∗) ∈K. An identical statement holds at a local minimum.

Proof. Recall the representation (4.93) of the closed convex set K as the intersection of the closed and affine
half-spaces which contain it, and fix (v,c) ∈A. Since u−φ has a local maximum at (t∗,x∗) ∈R>0×Rd

>0, for
every ε > 0 small enough,

φ(t∗,x∗+εv)−φ(t∗,x∗) ⩾ u(t∗,x∗+εv)−u(t∗,x∗) ⩾ εc.

The second inequality combines the characterization of u having its gradient in K given in Proposition A.2
with the fact that x ⋅εv ⩾ εc for all x ∈K. Dividing by ε and letting ε tend to zero reveals that

∇φ(t∗,x∗) ⋅v ⩾ c

for all (v,c) ∈A. It follows that ∇φ(t∗,x∗) ∈K. This completes the proof. ∎

Lemma 4.14. Let K′ > K be two large enough integers, and let A be the set associated with K′a,K′ in its

representation (4.93). For every (v,c) ∈A and y ∈K′a,K ,

P(K,K′)v ⋅y ⩾ c− 2
2K/2 . (4.94)
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Proof. Fix y ∈Ka,K′ , and find vectors u(K) ∈RDK
⩾0 and w(K) ∈RDK with

y =G(K)u(K)+w(K), ∣∣∣u(K)∣∣∣1 ⩽ a and ∣∣∣w(K)∣∣∣1,∗ ⩽
1

2K/2 .

Consider the vector
u(K

′)
k′ ∶= ∣DK′ ∣

∣DK ∣
u(K)k′ 1{k′ ∈DK}

in RDK′ , and for each k′ ∈DK′ , write k′ for the unique dyadic k′ ∈DK with k′ ∈ [k′,k′+2−K). Observe that

P(K,K′)v ⋅y = P(K,K′)v ⋅G(K)u(K)+P(K,K′)v ⋅w(K) = v ⋅(G(K
′)u(K

′)+α
(K′))+P(K,K′)v ⋅w(K)

for the vector α
(K′) ∈RDK′ defined by

α
(K′)
k′ ∶= 1

∣DK′ ∣2
∑

k′∈DK′

(g(kk′)−g(kk′))u(K
′)

k′ .

Since G(K
′)u(K

′) ∈K′a,K′ , the defining property of v, the fact that ∣∣∣v∣∣∣1 = 1, and Hölder’s inequality give the
lower bound

P(K,K′)v ⋅y ⩾ c− ∣∣∣α(K
′)∣∣∣1,∗− ∣∣∣w

(K)∣∣∣1,∗ ⩾ c− ∣∣∣α(K
′)∣∣∣1,∗−

1
2K/2 , (4.95)

where it has been used that ∣∣∣P(K,K′)v∣∣∣1 ⩽ ∣∣∣v∣∣∣1 and ∣∣∣w(K)∣∣∣1,∗ ⩽ 2−K/2. The mean value theorem reveals that

∣∣∣α(K
′)∣∣∣1,∗ ⩽

∥g′∥L∞
2K ∣∣∣u(K)∣∣∣1 ⩽

a∥g′∥L∞
2K .

Substituting this into (4.95) and taking K large enough completes the proof. ∎

Lemma 4.15. Let K be a closed convex set, and let A be the set associated with K in its representation (4.93).
If x ∈Rd and ε > 0 are such that x ⋅v ⩾ c−ε for all (v,c) ∈A, then there exist y ∈K and z ∈Rd with x = y+z and

∣∣∣z∣∣∣1,∗ ⩽ ε .

Proof. Let y ∈K denote a projection of x ∈Rd onto the set K with respect to the normalized-`1,∗ norm. More
precisely, let y ∈K be any minimizer of the map y′↦ ∣∣∣y′−x∣∣∣1,∗ over points y′ ∈K. The existence of such a
projection is guaranteed by the fact that K is closed. If y = x, then the desired conclusion is immediate, so from
now on assume that y ≠ x. Introduce the set

I ∶= {k ⩽ d ∣ d∣xk −yk∣ = ∣∣∣x−y∣∣∣1,∗}

of indices at which ∣∣∣x−y∣∣∣1,∗ is achieved, and define the vector v ∈Rd by

vk ∶=
d
∣I ∣ sgn(yk −xk)1{k ∈ I}.

It is now shown that (v,c) ∈A for c ∶= v ⋅y. By construction ∣∣∣v∣∣∣1 = 1, so suppose for the sake of contradiction
that there exists y′ ∈K with (y′−y) ⋅v = y′ ⋅v−c < 0. This means that

(y−y′) ⋅v = d
∣I ∣∑k∈I

(yk −y′k)sgn(yk −xk) > 0.
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In particular, a coordinate k∗ ∈ I at which the quantity (yk −y′k)sgn(yk −xk) is maximized over k ∈ I must
satisfy

(yk∗ −y′k∗)sgn(yk∗ −xk∗) > 0.

At this point, fix t ∈ (0,1) small enough so that sgn(yk−xk+ t(y′k−yk)) = sgn(yk−xk) for every k ∈ I . For such
a value of t > 0,

∣∣∣y−x+ t(y′−y)∣∣∣1,∗ = d(yk∗ −xk∗ + t(y′k∗ −yk∗))sgn(yk∗ −xk∗) < ∣∣∣x−y∣∣∣1,∗.

Since the point y′′ = y+ t(y′ − y) is a convex combination of y,y′ ∈K, it must lie in the convex set K. This
contradicts the fact that y minimizes the map y′′↦ ∣∣∣y′′−x∣∣∣1,∗ over points y′′ ∈K′, and shows that (v,c) ∈A.
It follows that

ε ⩾ c−x ⋅v = v ⋅(y−x) = ∣∣∣x−y∣∣∣1,∗.

Setting z = x−y completes the proof. ∎

Proof of Theorem 4.2. To alleviate notation, until otherwise stated, fix R > ∥ψ∥Lip,TV and keep all depen-
dencies on R implicit. The existence of the limit (4.89) will be established by showing that the sequence
( f (K)(t,x(K)(µ)))K⩾1 is Cauchy. With this in mind, fix K′ >K, and introduce the function

f (K,K′)(t,x) ∶= f (K)(t,P(K,K′)x) (4.96)

defined on R⩾0×R
DK′
⩾0 . Since x(K)(µ) = P(K,K′)x(K

′)(µ), the Cauchy condition may be expressed in terms of
this function as

∣ f (K
′)(t,x(K

′)(µ))− f (K)(t,x(K)(µ))∣ = ∣ f (K
′)(t,x(K

′)(µ))− f (K,K′)(t,x(K
′)(µ))∣. (4.97)

The right side of this expression is controlled in two steps. First f (K,K′) is shown to be an approximate
viscosity solution to the Hamilton-Jacobi equation (4.30) satisfied by f (K

′), and then the comparison principle
in Theorem 4.1 is leveraged. The final step of the proof is to show that the limit does not depend on the choice
of R > ∥ψ∥Lip,TV.

Step 1: showing f (K,K′) is an approximate viscosity solution. Consider a function φK′ ∈C∞(R>0×R
DK′
>0 ;R)

with the property that f (K,K′)−φK′ achieves a local maximum at (t∗,x∗) ∈R>0×R
DK′
>0 . To be more precise,

suppose that
sup

BK′(r)
( f (K,K′)−φK′) = ( f (K,K′)−φK′)(t∗,x∗),

where
BK′(r) ∶= {(t,x) ∈R>0×R

DK′
⩾0 ∣ ∣t − t∗∣+ ∣∣∣x−x∗∣∣∣1 ⩽ r}

is the ball of radius r > 0 centred at (t∗,x∗). Decreasing r > 0 if necessary, assume without loss of generality
that

BK′(r) ⊆R>0×R
DK′
>0 .

Assume also that φK′ ∈C∞(R>0×RDK′ ;R); this can be ensured by replacing φK′ with ηφK′ for some
η ∈C∞(RDK′ ;R) which is identically one on BK′(r) and vanishes outside RDK′

⩾0 . With these simplifica-
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tions at hand, introduce the smooth function

φK(t,y) ∶= φK′(t,x∗+L(K,K′)y−L(K,K′)P(K,K′)x∗)

defined on R>0×RDK
>0 . It will now be shown that the function φK admits a local maximum at (t∗,P(K,K′)x∗).

It will be convenient to notice that by (4.92), for any y ∈RDK
⩾0 ,

P(K,K′)(x∗+L(K,K′)y−L(K,K′)P(K,K′)x∗) = P(K,K′)x∗+y−P(K,K′)x∗ = y ∈RDK
>0 . (4.98)

To simplify notation, let y∗ ∶= P(K,K′)x∗ ∈RDK
⩾0 , and introduce the ball

BK(r) ∶= {(t,y) ∈R>0×RDK
>0 ∣ ∣t − t∗∣+ ∣∣∣y−y∗∣∣∣1 ⩽ r} ⊆R>0×RDK

>0

of radius r > 0 centred at (t∗,y∗). Given (t,y) ∈ BK(r), let zy ∶= x∗+L(K,K′)y−L(K,K′)P(K,K′)x∗ in such a way
that by (4.98),

f (K)(t,y)−φK(s,y) = f (K,K′)(t,zy)−φK′(t,zy).

Observe that

∣t − t∗∣+ ∣∣∣zy−x∗∣∣∣1 = ∣t − t∗∣+ ∣∣∣L(K,K′)y−L(K,K′)y∗∣∣∣1 = ∣t − t∗∣+ ∣∣∣y−y∗∣∣∣1 ⩽ r

so (t,zy) ∈ BK′(r). It follows that

sup
BK(r)

( f (K)−φK) ⩽ sup
BK′(r)

( f (K,K′)−φK′) = ( f (K,K′)−φK′)(t∗,x∗) = ( f (K)−φK)(t∗,y∗)

which means that φK admits a local maximum at (t∗,y∗) ∈R>0×RDK
>0 . Since f (K) is a viscosity subsolution

to the Hamilton-Jacobi equation (4.30) and its gradient belongs to the closed convex set K′a,K , Lemma 4.13
implies that

∇φK(t∗,y∗) ∈K′a,K and (∂tφK −HK(∇φK))(t∗,y∗) ⩽ 0.

To write this expression in terms of the original test function φK′ , notice that

∂tφK(t∗,y∗) = ∂tφK′(t∗,x∗) and ∇φK(t∗,y∗) =
∣DK′ ∣
∣DK ∣

P(K,K′)∇φK′(t∗,x∗).

This means that

∣DK′ ∣
∣DK ∣

P(K,K′)∇φK′(t∗,x∗) ∈K′a,K and ∂tφK′(t∗,x∗)−HK(
∣DK′ ∣
∣DK ∣

P(K,K′)∇φK′(t∗,x∗)) ⩽ 0.

The first of these conditions gives vectors u(K) ∈RDK
⩾0 and w(K) ∈RDK with

∣DK′ ∣
∣DK ∣

P(K,K′)∇φK′(t∗,x∗) =G(K)u(K)+w(K), ∣∣∣u(K)∣∣∣1 ⩽ a, and ∣∣∣w(K)∣∣∣1,∗ ⩽
1

2K/2 . (4.99)
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Observe that

∣∣∣G(K)u(K)∣∣∣1,∗ ⩽
∣DK′ ∣
∣DK ∣

∣∣∣P(K,K′)∇φK′(t∗,x∗)∣∣∣1,∗+
1

2K/2 ⩽ ∣∣∣∇φK′(t∗,x∗)∣∣∣1,∗+
1

2K/2 .

Since f (K,K′)−φK′ achieves a local maximum at (t∗,x∗), Lemma 4.12 and (4.88) imply that

∣∣∣∇φK′(t∗,x∗)∣∣∣1,∗ ⩽ ∥ψ∥Lip,TV.

Recalling that R > ∥ψ∥Lip,TV, and taking K large enough ensures that G(K)u(K) ∈ CK ∩BR. It follows by the
Lipschitz continuity of HK established in Proposition 4.8 that

∂tφK′(t∗,x∗)−CK(G(K)u(K)) ⩽ ∂tφK′(t∗,x∗)−HK(
∣DK′ ∣
∣DK ∣

P(K,K′)∇φK′(t∗,x∗))+
8RM

2K/2m2
⩽ 8RM

2K/2m2
.

At this point, introduce the vector u(K
′) ∈RDK′

⩾0 defined by

u(K
′)

k′ ∶= ∣DK′ ∣
∣DK ∣

u(K)k′ 1{k′ ∈DK}

in such a way that

CK′(G(K
′)u(K

′)) = 1
∣DK ∣2

∑
k,k′∈DK

g(kk′)u(K)k u(K)k′ = CK(G(K)u(K)),

and therefore,
∂tφK′(t∗,x∗)−CK′(G(K

′)u(K
′)) ⩽ 8RM

2K/2m2
. (4.100)

It is now shown that, up to an error vanishing with K, the term G(K
′)u(K

′) in this expression may be replaced
by ∇φK′(t∗,x∗). This is where Lemma 4.14 will play its part. Let A be the set associated with K′a,K′ in its
representation (4.93), and fix (v,c) ∈A. The characterization of f (K) having its gradient in K′a,K given in
Proposition A.2 and Lemma 4.14 imply that for every ε > 0 small enough,

φK′(t∗,x∗+εv)−φK′(t∗,x∗) ⩾ f (K)(t∗,P(K,K′)x∗+εP(K,K′)v)− f (K)(t∗,P(K,K′)x∗) ⩾ ε(c− 2
2K/2 )

Dividing by ε and letting ε tend to zero reveals that ∇φK′(t∗,x∗) ⋅v ⩾ c− 2
2K/2 . Invoking Lemma 4.15 gives

α
(K′) ∈RDK′

⩾0 and β
(K′) ∈RDK′ with

∇φK′(t∗,x∗) =G(K
′)

α
(K′)+β

(K′), ∣∣∣α(K
′)∣∣∣1 ⩽ a, and ∣∣∣β (K

′)∣∣∣1,∗ ⩽
2

2K/2 . (4.101)

At this point, fix k ∈DK and k′ ∈ [k,k+2−K). The mean value theorem implies that

∣DK′ ∣∣(G(K
′)u(K

′))
k′ −∂xk′φK′(t∗,x∗)∣ = ∣

1
∣DK ∣

∑
k′′∈DK

g(k′k′′)u(K)k′′ − ∣DK′ ∣∂xk′φK′(t∗,x∗)∣

≤ ∣∣DK ∣(G(K)u(K))k − ∣DK′ ∣∂xk′φK′(t∗,x∗)∣+
∥g′∥L∞ ∣∣∣u(K)∣∣∣1

2K .

Remembering (4.99) and (4.101), noticing that ∣DK ∣ = 2K+1, and using the mean value theorem once again
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shows that

∣DK ∣(G(K)u(K))k = ∣DK ∣
2K′−K−1

∑
`=0

∂x
k+ `

2K′
φK′(t∗,x∗)− ∣DK ∣w(K)k

= ∣DK ∣
∣DK′ ∣2

2K′−K−1

∑
`=0

∑
k′′∈DK′

g(k+ `

2K′ ⋅k
′′)α(K

′)
k′′ + ∣DK ∣

2K′−K−1

∑
`=0

β
(K′)
k+ `

2K′
− ∣DK ∣w(K)k

= ∣DK ∣
∣DK′ ∣2

2K′−K−1

∑
`=0

∑
k′′∈DK′

g(k′k′′)α(K
′)

k′′ +O1(
∥g′∥L∞ ∣∣∣α(K

′)∣∣∣1
2K + 3

2K/2 )

= ∣DK′ ∣(G(K
′)

α
(K′))

k′ +O(
4

2K/2 )

= ∣DK′ ∣∂xk′φK′(t∗,x∗)+O(
5

2K/2 ).

The third equality used that ∣∣∣β (K′)∣∣∣1,∗+ ∣∣∣w(K)∣∣∣1,∗ ⩽ 3 ⋅2−K/2, while the fourth equality used that ∣∣∣α(K′)∣∣∣1 ⩽ a

and increases K if necessary. Together with the fact that ∣∣∣u(K)∣∣∣1 ⩽ a, and increasing K if necessary, this
implies that

∣∣∣G(K
′)u(K

′)−∇φK′(t∗,x∗)∣∣∣1,∗ ⩽
5

2K/2 +
a∥g′∥L∞

2K ⩽ 6
2K/2 .

Combining this with the Lipschitz continuity of HK′ established in Proposition 4.8 and with (4.100) reveals
that

∂tφK′(t∗,x∗)−HK′(∇φK′(t∗,x∗)) ⩽ EK for the error term EK ∶=
56RM
2K/2m2

.

In particular, the function (t,x)↦ f (K,K′)(t,x)−EKt is a viscosity subsolution to the Hamilton-Jacobi equation
(4.30) satisfied by f (K

′). An identical argument shows that (t,x)↦ f (K,K′)(t,x)+EKt is a viscosity supersolu-
tion to the Hamilton-Jacobi equation (4.30) satisfied by f (K

′).

Step 2: leveraging the comparison principle. Using (4.88) and (4.29), it is readily verified that f (K,K′) and
f (K

′) are uniformly Lipschitz continuous in the spatial variable relative to the normalized-`1 norm with
Lipschitz constant at most L ∶= ∥ψ∥Lip,TV. Indeed, for any t > 0 and all x,x′ ∈RDK′

⩾0 ,

∣ f (K,K′)(t,x)− f (K,K′)(t,x′)∣ ⩽ ∥ψ∥Lip,TV∣∣∣P(K,K′)x−P(K,K′)x′∣∣∣1 ⩽ ∥ψ∥Lip,TV∣∣∣x−x′∣∣∣1.

If V ∶= ∣∣∣HK ∣∣∣Lip,1,∗, then the comparison principle in Theorem 4.1 implies that for any R′ ∈R, the map

(t′,x′)↦ f (K,K′)(t′,x′)− f (K
′)(t′,x′)−(2L+1)(∣∣∣x′∣∣∣1+Vt′−R′)+−EKt′ (4.102)

achieves its supremum on {0}×RDK′
⩾0 . Set R′ ∶= ∣∣∣x(K′)(µ)∣∣∣1+Vt and distinguish two cases. On the one hand,

if t′ = 0 and ∣∣∣x′∣∣∣1 ⩾ (2L+1)R′, then (4.102) is bounded by

2L∣∣∣x′∣∣∣1−(2L+1)(∣∣∣x′∣∣∣1−R′) = R′− ∣∣∣x′∣∣∣1 ⩽ 0, (4.103)

where it has been used that f (K,K′)(0,0) = f (K
′)(0,0). On the other hand, if t′ = 0 and ∣∣∣x′∣∣∣1 ⩽ (2L+1)R′,

then (H4) implies that (4.102) is bounded by

∣ψ(K
′)(x′)−ψ

(K)(P(K,K′)x′)∣ ⩽ ∥ψ∥Lip,W ∣∣∣x′∣∣∣1W(µ(K
′)

x′ ,µ
(K)
P(K,K′)x′

). (4.104)
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To estimate this Wasserstein distance, fix a Lipschitz function h ∶ [−1,1]→R with ∥h∥Lip ⩽ 1 and observe that

∣
ˆ 1

−1
h(y) d(µ(K

′)
x′ −µ

(K)
P(K,K′)x′

)(y)∣ ⩽ 1
∣DK′ ∣

∑
k∈DK

2K′−K−1

∑
`=0

x′
k+ `

2K′
∣h(k+ `

2K′ )−h(k)∣

⩽ 1
∣DK′ ∣

∑
k∈DK

2K′−K−1

∑
`=0

x′
k+ `

2K′

`

2K′ ⩽
∣∣∣x′∣∣∣1

2K .

Taking the supremum over all such h and recalling (4.104) shows that (4.102) is bounded by

∥ψ∥Lip,W (2L+1)R′

2K (4.105)

whenever t′ = 0 and ∣∣∣x′∣∣∣1 ⩽ (2L+1)R′. Combining this with (4.103) reveals that the map (4.102) is uniformly
bounded by (4.105). Choosing t′ = t and x′ = x(K

′)(µ), and recalling the choice of R′ yields

f (K,K′)(t,x(K
′)(µ))− f (K

′)(t,x(K
′)(µ)) ⩽

∥ψ∥Lip,W (2L+1)
2K (∣∣∣x(K

′)(µ)∣∣∣1+Vt)+EKt.

Together with (4.97) and an identical argument with the roles of f (K,K′) and f (K
′) reversed, this implies that

∣ f (K
′)(t,x(K

′)(µ))− f (K)(t,x(K)(µ))∣ ⩽
∥ψ∥Lip,W (2L+1)

2K (µ[−1,1]+Vt)+EKt.

Since V = ∣∣∣HK ∣∣∣Lip,1,∗ is independent of K by Proposition 4.8 and EK tends to zero as K tends to infinity, the
sequence ( f (K)(t,x(K)(µ)))K⩾1 is Cauchy. This establishes the existence of the limit (4.89) for each fixed
R > ∥ψ∥Lip,TV. All that remains is to show that this limit is independent of R.

Step 3: establishing independence on R. To show that the limit (4.89) is independent of R, fix R′ > R > ∥ψ∥Lip,TV

as well as K ⩾ 1 large enough. The idea will be to show that, up to an error vanishing with K, the function
f (K)R satisfies the Hamilton-Jacobi equation defining f (K)R′ . The equality of the limit (4.89) associated with
R and R′ will then follow from the comparison principle in Theorem 4.1. Consider φ ∈C∞(R>0×RDK

>0 ;R)
with the property that f (K)R −φ achieves a local maximum at the point (t∗,x∗) ∈R>0×RDK

>0 . Since f (K)R is a
viscosity subsolution to the Hamilton-Jacobi equation (4.30) associated with the non-linearity HK,R,

(∂tφ −HK,R(∇φ))(t∗,x∗) ⩽ 0.

The fact that f (K)R has its gradient in the set K′a,K together with (4.88), Lemma 4.12 and Lemma 4.13 implies
that

∇φ(t∗,x∗) ∈K′a,K and ∣∣∣∇φ(t∗,x∗)∣∣∣1,∗ ⩽ ∥ψ∥Lip,TV.

It is therefore possible to find u ∈RDK
⩾0 and w ∈RDK with

∇φ(t∗,x∗) =G(K)u+w, ∣∣∣u∣∣∣1 ⩽ a, and ∣∣∣w∣∣∣1,∗ ⩽
1

2K/2 .

Observe that
∣∣∣G(K)u∣∣∣1,∗ ⩽ ∣∣∣∇φ(t∗,x∗)∣∣∣1,∗+ ∣∣∣w∣∣∣1,∗ ⩽ ∥ψ∥Lip,TV+

1
2K/2 ,

so increasing K if necessary, it is possible to ensure that G(K)u ∈ CK ∩BR ⊆ CK ∩BR′ . It follows by the Lipschitz
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continuity of HK,R established in Proposition 4.8 that

(∂tφ −HK,R′(∇φ))(t∗,x∗) ⩽ ∂tφ(t∗,x∗)−CK(G(K)u)+
8R′M

2K/2m2

⩽ (∂tφ −HK,R(∇φ))(t∗,x∗)+ 8(R′+R)M
2K/2m2

⩽ EK

for the error term
EK ∶=

8(R′+R)M
2K/2m2

.

In particular, the function (t,x)↦ f K
R (t,x)−EKt is a viscosity subsolution to the Hamilton-Jacobi equation

(4.30) defining f K
R′ . An identical argument shows that (t,x)↦ f K

R (t,x)+EKt is a viscosity supersolution to the
Hamilton-Jacobi equation (4.30) defining f K

R′ . It follows by the comparison principle in Theorem 4.1 that for
every µ ∈M+ and t ⩾ 0,

∣ f (K)R (t,x(K)(µ))− f (K)R′ (t,x
(K)(µ))∣ ⩽ EKt.

Letting K tend to infinity completes the proof. ∎

In addition to this well-posedness result, to recover the variational formula for the limit mutual information
in the disassortative sparse stochastic block model stated in Theorem 1.7, a Hopf-Lax variational formula for
the unique solution to the infinite-dimensional Hamilton-Jacobi equation (4.6) with convex non-linearity will
be required.

4.3 Revisiting the Hopf-Lax formula

The Hopf-Lax variational formula for the infinite-dimensional Hamilton-Jacobi equation (4.6) stated in
Theorem 4.3 will be obtained by first establishing an approximate Hopf-Lax variational formula for each of
the extended approximating Hamilton-Jacobi equations (4.30), and then letting the dimension parameter K ⩾ 1
tend to infinity. The approximate Hopf-Lax formula for the Hamilton-Jacobi equation (4.30) will be obtained
in Section 4.3.1 by combining the arguments in Section 2.4.4 with the comparison principle in Proposition 4.9,
while the limiting argument leading to the infinite-dimensional Hopf-Lax formula will be presented in Section
4.3.2, and will rely on Theorem 4.2.

4.3.1 Approximate Hopf-Lax formula for approximating Hamilton-Jacobi equations

To alleviate notation and strive for generality, the approximate Hopf-Lax formula for the approximating
Hamilton-Jacobi equation (4.30) will be discussed in the context of Section 4.2.1. More precisely, fix a
symmetric matrix G ∈Rd×d whose components satisfy the bounds (4.54), and recall the definition of the cone
C in (4.55), and of the non-linearity C in (4.56). Given R > 0, denote by HR ∶ Rd → R the extension of the
non-linearity C constructed in Proposition 4.8. For each a > 0, in analogy to (4.21), define the set

Ka ∶= {Gx ∈Rd ∣ x ∈Rd and ∣∣∣x∣∣∣1 ⩽ a}. (4.106)

Assuming that the original non-linearity C is convex, an approximate Hopf-Lax formula will be established for
the extended Hamilton-Jacobi equation

∂t f (t,x) =HR(∇ f (t,x)) on R>0×Rd
>0 (4.107)
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subject to an initial condition ψ ∶Rd
⩾0→R that is Lipschitz continuous with respect to the normalized-`1 norm

and has its gradient in the set K′a. In this context, an approximate Hopf-Lax formula means a variational
formula whose difference with the solution to the Hamilton-Jacobi equation (4.6) constructed in Theorem 4.2
vanishes as the dimension d tends to infinity. The convexity of the non-linearity C will be encoded by the
additional assumption that the matrix G is non-negative definite. It will be convenient to introduce the bilinear
form

(x,y)G ∶=Gx ⋅y (4.108)

associated with the non-negative definite matrix G, as well as its induced semi-norm

∥x∥G ∶=
√
(x,x)G. (4.109)

In this notation, the non-linearity (4.56) may be written as

C(Gx) = 1
2

Gx ⋅x = 1
2
∥x∥2G. (4.110)

In particular, the non-linearity (4.56) is a convex function. Together with the fact that by Proposition 4.11 the
gradient of the solution to the Hamilton-Jacobi equation (4.107) stays in the set K′a, and therefore that this
solution should be close to that of the Hamilton-Jacobi equation (4.107) with the non-linearity HR replaced by
the non-linearity C, this suggests that an approximate Hopf-Lax formula should hold.

To motivate this Hopf-Lax formula, suppose temporarily that the matrix G is invertible. The non-linearity
C then admits a natural convex extension C̃ ∶Rd →R defined by

C̃(y) ∶= 1
2

G−1y ⋅y. (4.111)

A direct computation reveals that C̃∗(z) = 1
2∥z∥

2
G for all z ∈Rd

⩾0. The Hopf-Lax formula in Proposition 2.10
therefore suggests that the unique solution to the Hamilton-Jacobi equation (4.107) with the non-linearity HR

replaced by the non-linearity C̃ should be the function f̃ ∶R⩾0×Rd
⩾0→R defined by

f̃ (t,x) ∶= sup
y⩾0
(ψ(x+y)− tC̃∗(y

t
)) = sup

y⩾0
(ψ(x+y)− ∥y∥

2
G

2t
). (4.112)

Since the gradients of the solutions to the Hamilton-Jacobi equations (4.107) with non-linearities HR and C̃

are expected to remain in the set K′a by Proposition 4.11, and these non-linearities agree on the set Ka, the
solutions to these equations should be close. This suggests that the function f̃ should define an approximate
Hopf-Lax formula for the solution to the Hamilton-Jacobi equation (4.107). Of course, this argument is merely
formal since the assumptions of Proposition 2.10 are not satisfied by the initial condition ψ , and the matrix
G is not invertible. Nonetheless, it motivates the introduction of the Hopf-Lax function fHL ∶R⩾0×Rd

⩾0→R
defined by

fHL(t,x) ∶= sup
y∈Rd

⩾0

(ψ(x+y)− ∥y∥
2
G

2t
). (4.113)

This function will now be shown to give an approximate Hopf-Lax formula for the Hamilton-Jacobi equation
(4.107).

Proposition 4.16. Let ψ ∶Rd
⩾0→R be an initial condition that is Lipschitz continuous with respect to the
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normalized-`1 norm and has its gradient in the set K′a. Given R > ∣∣∣ψ ∣∣∣Lip,1, denote by f ∶R⩾0×Rd
⩾0→R the

unique solution to the Hamilton-Jacobi equation (4.107). If the matrix G ∈Rd×d is non-negative definite, then

for all (t,x) ∈R⩾0×Rd
⩾0,

∣ f (t,x)− fHL(t,x)∣ ⩽
t√
d
(R+a+ 8RM

m2 ). (4.114)

The proof of this result closely follows that of the Hopf-Lax formula in Proposition 2.10. First, it is
shown that the convex dual of the norm function y↦ 1

2∥y∥
2
G is the non-linearity C. Then, it is verified that

the Hopf-Lax function (4.113) satisfies the right initial condition and that the supremum in its definition is
attained. Subsequently, it is shown that the Hopf-Lax function satisfies a semigroup property from which it
is deduced that it belongs to the solution space Lunif. Finally, it is shown that, in a sense to be made precise,
the Hopf-Lax function is an approximate solution to the Hamilton-Jacobi equation (4.107). The comparison
principle in Proposition 4.9 is then leveraged to establish Proposition 4.16. It will be convenient to note that
for every z ∈Rd

⩾0,

∥z∥2G ⩾
m
d2

d

∑
k,k′=1

zkzk′ =m∣∣∣z∣∣∣21. (4.115)

Lemma 4.17. If G ∈Rd×d is non-negative definite, then for every z ∈ C,

C(z) = sup
y∈Rd

⩾0

(y ⋅ z− ∥y∥
2
G

2
). (4.116)

Moreover, the supremum is attained at any point x ∈Rd
⩾0 with z =Gx.

Proof. Given z ∈ C, let x ∈ Rd
⩾0 be such that z = Gx. Using that G is non-negative definite, appeal to the

Cauchy-Schwarz inequality to assert that

y ⋅Gx = (x,y)G ≤ ∥x∥G ∥y∥G ≤
1
2
∥x∥2G+

1
2
∥y∥2G.

It follows that

C(Gx) = 1
2
∥x∥2G ⩾ sup

y∈Rd
⩾0

(y ⋅Gx− ∥y∥
2
G

2
).

For the converse inequality, simply test the supremum with y = x. ∎

Lemma 4.18. Under the assumptions of Proposition 4.16, the Hopf-Lax function (4.113) satisfies the right

initial condition,

fHL(0, ⋅) =ψ(⋅). (4.117)

Proof. For t = 0, the definition of the Hopf-Lax function is interpreted as

fHL(0,x) = sup{ψ(x+y) ∣ y ∈Rd
⩾0 with ∥y∥G = 0}. (4.118)

Recalling (4.115), it becomes apparent that the only y ∈Rd
⩾0 with ∥y∥G = 0 is y = 0. Together with (4.118), this

completes the proof. ∎

Lemma 4.19. Under the assumptions of Proposition 4.16, for any (t,x) ∈R>0×Rd
⩾0, there exists y ∈Rd

⩾0 with

fHL(t,x) =ψ(x+y)− ∥y∥
2
G

2t
. (4.119)
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Proof. Combining (4.115) with the Lipschitz continuity of ψ reveals that

ψ(x+y)− ∥y∥
2
G

2t
≤ψ(x)+ ∣∣∣y∣∣∣1(∣∣∣ψ ∣∣∣Lip,1−

m
2t
∣∣∣y∣∣∣1).

The supremum in (4.113) can thus be restricted to the set of y’s in Rd
⩾0 that satisfy ∣∣∣y∣∣∣1 ⩽ 2t

m ∣∣∣ψ ∣∣∣Lip,1. Since a
continuous function is now being optimized over a compact set, it is clear that the supremum is achieved. ∎

Lemma 4.20 (Semigroup property). Under the assumptions of Proposition 4.16, for every pair t > s > 0 and

x ∈Rd
⩾0,

fHL(t,x) = sup
y∈Rd

⩾0

( fHL(s,x+y)− ∥y∥
2
G

2(t − s)). (4.120)

Proof. The proof is identical to that of Lemma 2.25. The reader interested in the details is referred to Lemma
4.5 in [48]. ∎

Lemma 4.21. Under the assumptions of Proposition 4.16, the Hopf-Lax function fHL belongs to the solution

space Lunif with

sup
t>0
∣∣∣ fHL(t, ⋅)∣∣∣Lip,1 ⩽ ∣∣∣ψ ∣∣∣Lip,1 and [ fHL]0 ⩽

∣∣∣ψ ∣∣∣2Lip,1

2m
. (4.121)

Proof. The spatial Lipschitz continuity of the Hopf-Lax function is established exactly as in Lemma 2.26. The
reader interested in the details is referred to Lemma 4.6 in [48]. To obtain Lipschitz continuity in time, fix
x ∈Rd

⩾0 as well as t > s ⩾ 0. The semigroup property in Lemma 4.20 with y = 0 implies that

fHL(t,x) ⩾ fHL(s,x). (4.122)

Using Lemma 4.20 in combination with (4.115) and the first inequality in (4.121) gives

fHL(t,x) ⩽ fHL(s,x)+ sup
y∈Rd

⩾0

(∣∣∣ψ ∣∣∣Lip,1∣∣∣y∣∣∣1−
m∣∣∣y∣∣∣21
2(t − s)) ≤ fHL(s,x)+

∣∣∣ψ ∣∣∣2Lip,1

2m
(t − s),

where it has been used that r ↦ r− 1
2 ar2 achieves its maximum at r = 1/a. Combining this with (4.122)

completes the proof. ∎

Proof of Proposition 4.16. Denote by Ed an error term that will be defined in the course of the argument. The
proof proceeds in three steps. First, it is shown that the function f+(t,x) ∶= fHL(t,x)+Edt is a viscosity super-
solution to the Hamilton-Jacobi equation (4.107), then it is verified that the function f−(t,x) ∶= fHL(t,x)−Edt

is a viscosity subsolution to the Hamilton-Jacobi equation (4.107), and finally the comparison principle in
Proposition 4.9 is leveraged to conclude.

Step 1: showing f+ is a viscosity supersolution. Consider a smooth function φ ∈C∞(R>0×Rd
>0;R) with the

property that f+−φ has a local minimum at (t∗,x∗) ∈R>0×Rd
>0. Using Proposition A.2, it is readily verified

that fHL has its gradient in K′a as ψ does. It follows by Lemma 4.13 that ∇φ(t∗,x∗) ∈K′a. It is therefore
possible to find u ∈Rd

⩾0 and w ∈Rd with

∇φ(t∗,x∗) =Gu+w, ∣∣∣u∣∣∣1 ⩽ a, and ∣∣∣w∣∣∣1,∗ ⩽
1√
d
.
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On the one hand, if s > 0 is sufficiently small that t∗− s > 0, then

f+(t∗− s,x∗+ su)−φ(t∗− s,x∗+ su) ⩾ f+(t∗,x∗)−φ(t∗,x∗).

On the other hand, taking su ∈Rd
⩾0 in Lemma 4.20 reveals that

fHL(t∗,x∗) ⩾ fHL(t∗− s,x∗+ su)− s
∥u∥2G

2
.

It follows that

φ(t∗,x∗)−φ(t∗− s,x∗+ su)+ s
∥u∥2G

2
−Eds ⩾ 0.

Dividing by 0 < s < t∗ and letting s→ 0 yields

∂tφ(t∗,x∗)−u ⋅∇φ(t∗,x∗)+ ∥u∥
2
G

2
−Ed ⩾ 0.

Recalling that ∇φ(t∗,x∗) =Gu+w and using Lemma 4.17,

∂tφ(t∗,x∗)−C(Gu)−u ⋅w−Ed ⩾ 0.

By Lemma 4.12 and Lemma 4.21,

∣∣∣Gu∣∣∣1,∗ ⩽ ∣∣∣∇φ(t∗,x∗)∣∣∣1,∗+
1√
d
⩽ ∣∣∣ψ ∣∣∣Lip,1+

1√
d
⩽ R,

so the Lipschitz continuity of the non-linearity HR established in Proposition 4.8 implies that

(∂tφ −HR(∇φ))(t∗,x∗) ⩾ Ed − ∣∣∣u∣∣∣1∣∣∣w∣∣∣1,∗−
8RM

m2
√

d
⩾ Ed −

a√
d
− 8RM

m2
√

d
.

This shows that f+ is a supersolution to the Hamilton-Jacobi equation (4.107) provided that

Ed ⩾
a√
d
+ 8RM

m2
√

d
.

Step 2: verifying f− is a viscosity subsolution. Consider a smooth function φ ∈C∞(R>0×Rd
>0;R) with the

property that f−−φ has a local maximum at (t∗,x∗) ∈R>0×Rd
>0. Recall that fHL has its gradient in K′a as ψ

does. It follows by Lemma 4.13 that ∇φ(t∗,x∗) ∈K′a. It is therefore possible to find u ∈Rd
⩾0 and w ∈Rd with

∇φ(t∗,x∗) =Gu+w, ∣∣∣u∣∣∣1 ⩽ a, and ∣∣∣w∣∣∣1,∗ ⩽
1√
d
.

Suppose for the sake of contradiction that there exists δ > 0 with

(∂tφ −HR(∇φ))(t∗,x∗) ⩾ δ > 0.
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Arguing as in the previous step, this implies that

∂tφ(t∗,x∗)−C(Gu) ⩾ δ − 8RM

m2
√

d
.

By Lemma 4.17, this may be recast as the assumption that for all y ∈Rd
⩾0,

∂tφ(t∗,x∗)−y ⋅Gu+ ∥y∥
2
G

2
⩾ δ − 8RM

m2
√

d
.

By continuity, of ∂tφ and ∇φ , up to redefining δ > 0, it is in fact possible to assume that for all y ∈Rd
⩾0 and

(t′,x′) sufficiently close to (t∗,x∗),

∂tφ(t′,x′)−y ⋅∇φ(t′,x′)+ ∥y∥
2
G

2
⩾ δ − 8RM

m2
√

d
− ∣∣∣y∣∣∣1∣∣∣w∣∣∣1,∗. (4.123)

Recalling Lemma 4.20, and arguing as in the proof of Lemma 4.19, it is possible to find R > 0 such that, for
every s > 0 sufficiently small, there exists ys ∈Rd

⩾0 with ∣∣∣ys∣∣∣1 ⩽ Rs and

fHL(t∗,x∗) = fHL(t∗− s,x∗+ys)−
∥ys∥2G

2s
.

If u(r) ∶= (t∗+(r−1)s,x∗+(1− r)ys), then it follows by the fundamental theorem of calculus and the absurd
assumption (4.123) with y ∶= ys

s ∈R
d
⩾0 that

φ(t∗,x∗)−φ(t∗− s,x∗+ys) =
ˆ 1

0

d
dr

φ(u(r)) dr

=
ˆ 1

0
(s∂tφ −ys ⋅∇φ)(u(r)) dr

⩾ sδ − ∥ys∥2G
2s
− s

8RM

m2
√

d
− ∣∣∣ys∣∣∣1∣∣∣w∣∣∣1,∗

⩾ fHL(t∗,x∗)− fHL(t∗− s,x∗+ys)+ s(δ − 8RM

m2
√

d
− R√

d
).

Rearranging shows that for s sufficiently small,

f−(t∗− s,x∗+ys)−φ(t∗− s,x∗+ys) ⩾ s(δ − 8RM

m2
√

d
− R√

d
+Ed)+ f−(t∗,x∗)−φ(t∗,x∗).

This contradicts the fact that f −φ admits a local maximum at (t∗,x∗) provided that

Ed ⩾
R√
d
+ 8RM

m2
√

d
.

Step 3: comparison principle. Define the error term Ed by

Ed ∶=
1√
d
(R+a+ 8RM

m2 ).
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Combining the previous two steps shows that f+ is a viscosity supersolution to the Hamilton-Jacobi equation
(4.107) while f− is a viscosity subsolution to this equation. Together with Lemmas 4.18 and 4.21, and the
comparison principle in Proposition 4.9, this implies that for (t,x) ∈R⩾0×Rd

⩾0, one has ∣ fHL(t,x)− f (t,x)∣⩽Edt

as required. ∎

This result is now applied to the projected Hamilton-Jacobi equation (4.30) in the setting when the matrix
G(K) in (4.14) is non-negative definite. Denote by f (K) ∈ Lunif the unique solution to the Hamilton-Jacobi
equation (4.30) provided by Theorem 4.1, and observe that the Hopf-Lax function (4.113) becomes

f (K)HL (t,x) = sup
y∈RDK

⩾0

(ψ(K)(µ(K)x +µ
(K)
y )−

C∞(G
µ
(K)
y
)

t
) = sup

ν∈M(K)
+

(ψ(µ(K)x +ν)− C∞(Gν)
t

), (4.124)

where the first equality uses the relationship (4.13) between the projected initial condition ψ
(K) and the initial

condition ψ as well as the relationship (4.17) between the projected non-linearity CK and the non-linearity
C∞, and where the second equality leverages (4.9) and (4.10) to parameterize the Hopf-Lax formula using the
space (4.8) of projected measures. The approximate Hopf-Lax variational formula in Proposition 4.16 implies
in particular that for any measure µ ∈M+,

f (K)(t,x(K)(µ)) = sup
ν∈M(K)

+

(ψ(µ +ν)− C∞(Gν)
t

)+O(t ∣DK ∣−1/2). (4.125)

Together with Theorem 4.2, this will give the Hopf-Lax variational formula stated in Theorem 4.3 for the
infinite-dimensional Hamilton-Jacobi equation (4.6).

4.3.2 Hopf-Lax formula for infinite-dimensional equations

A Hopf-Lax variational formula for the solution to the infinite-dimensional Hamilton-Jacobi equation (4.6)
constructed in Theorem 4.2 is now obtained by letting the dimension parameter K ⩾ 1 tend to infinity in the
approximate Hopf-Lax variational formula (4.125). A proof of the remaining parts of Theorem 4.3 is then
provided.

In the context of Theorem 4.3, in addition to the assumptions (H1)-(H4), the kernel g ∶ [−1,1]→ R is
assumed to be non-negative definite in the sense that it satisfies (H5). This assumption is equivalent to the
non-negative definiteness of each of the matrices (4.14), and therefore to the convexity of each of the projected
non-linearities (4.17). In particular, Proposition 4.16 implies that the unique solution f (K) ∶R⩾0×RDK →R to
the projected Hamilton-Jacobi equation (4.30) provided by Theorem 4.1 satisfies the approximate Hopf-Lax
variational formula (4.125). Using Theorem 4.2 and a simple continuity argument to let K tend to infinity in
this expression shows that for any measure µ ∈M+,

f (t,µ) = sup
ν∈M+

(ψ(µ +ν)− 1
2t

ˆ 1

−1
Gν(y) dν(y)) = sup

ν∈M+
(ψ(µ + tν)− t

2

ˆ 1

−1
Gν(y) dν(y)). (4.126)

The second of these expressions follows from the first by setting ν
′ = tν . To establish Theorem 4.3, it remains

to verify that the supremum in (4.126) is achieved at some ν
∗ ∈M+, and that Gν∗ =Dµ(µ + tν∗, ⋅) whenever

the initial condition admits a Gateaux derivative at the measure µ + tν∗ with density x↦Dµ ψ(µ + tν∗,x)
in C∞. Putting aside the constraint that the optimizers in (4.126) must be non-negative measures, this latter
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property is clear from the first-order conditions on a maximizer. The following two technical lemmas will be
used to rigorously complete the proof of Theorem 4.3. The first establishes the existence of a maximizer to the
variational problem (4.126), and the second is a Cauchy-Schwarz inequality for the kernel g̃(x,y) ∶= g(xy).

Lemma 4.22. For every t ⩾ 0 and µ ∈M+, there exists ν
∗ ∈M+ with

f (t,µ) =ψ(µ + tν∗)− t
2

ˆ 1

−1
Gν∗(y) dν

∗(y). (4.127)

Proof. Fix a probability measure ν ∈ Pr[−1,1] and a positive constant λ > 0. The Lipschitz continuity (H2) of
the initial condition implies that

ψ(µ +λ tν) ⩽ψ(µ)+∥ψ∥Lip,TVTV(0,λ tν) ⩽ψ(µ)+2λ t∥ψ∥Lip,TV.

On the other hand,

ˆ 1

−1
Gλν(y) d(λν)(y) = λ

2
ˆ 1

−1

ˆ 1

−1
g(xy) dν(x) dν(y) ⩾ λ

2m.

Combining these two bounds reveals that

ψ(µ + tν)− t
2

ˆ 1

−1
Gν(y) dν(y) ⩽ψ(µ)+2λ t∥ψ∥Lip,TV−

λ
2tm
2

.

The supremum in (4.126) can therefore be restricted to measures in M+ with bounded total mass. The
existence of a maximizer is now an immediate consequence of Prokhorov’s theorem (Theorem A.20 in
[50]). Indeed, if (νn)n⩾1 ⊆M+ denotes a maximizing sequence, one may assume that each measure in this
sequence has total mass bounded by the same constant. It follows by Prokhorov’s theorem that this sequence
is pre-compact, and therefore admits a subsequential limit with respect to the weak convergence of measures.
By continuity of the functional being maximized in (4.126), this weak limit must be a maximizer. ∎

Lemma 4.23. If g satisfies (H5) and µ,ν ∈Ms are signed measures, then

(
ˆ 1

−1
Gν(x) dµ(x))

2

⩽ (
ˆ 1

−1
Gµ(x) dµ(x))(

ˆ 1

−1
Gν(x) dν(x)). (4.128)

Proof. This is the Cauchy-Schwarz inequality for the non-negative definite kernel g̃(x,y) ∶= g(xy), and can be
proved in a standard way. Indeed, for every t ∈R, let

P(t) ∶=
ˆ 1

−1

ˆ 1

−1
g(xy) d(µ + tν)(x) d(µ + tν)(y)

=
ˆ 1

−1
Gµ(x) dµ(x)+2t

ˆ 1

−1
Gν(x) dµ(x)+ t2

ˆ 1

−1
Gν(x) dν(x).

This polynomial is non-negative by (H5). In particular, its discriminant cannot be positive. This means that

22(
ˆ 1

−1
Gν(x) dµ(x))

2

−4(
ˆ 1

−1
Gµ(x) dµ(x))(

ˆ 1

−1
Gν(x) dν(x)) ⩽ 0.

Rearranging completes the proof. ∎
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Proof of Theorem 4.3. Fix t > 0 and µ ∈M+. Combining Theorem 4.2 with (4.126) shows that the unique
solution to the infinite-dimensional Hamilton-Jacobi equation (4.6) admits the Hopf-Lax variational represen-
tation (4.38). Moreover, Lemma 4.22 ensures that the supremum in (4.126) is achieved at some ν

∗ ∈M+. To
establish the final statement in Theorem 4.3, suppose that the initial condition ψ admits a Gateaux derivative
at the measure µ + tν∗ with density x↦ Dµ ψ(µ + tν∗,x) in C∞. For any measure η ∈M+, the Gateaux
derivative of the functional

ν ↦ψ(µ + tν)− t
2

ˆ 1

−1
Gν(y) dν(y)

at the measure ν
∗ in the direction η −ν

∗ is

Dµ ψ(µ + tν∗;t(η −ν
∗))− t

ˆ 1

−1

ˆ 1

−1
g(xy) d(η −ν

∗)(x) dν
∗(y). (4.129)

For every ε ∈ [0,1], the measure ν
∗ + ε(η − ν

∗) belongs to M+, and is thus a valid candidate for the
optimization problem in (4.126). As a consequence, the quantity in (4.129) must be non-positive. Using also
the definition of the Gateaux derivative density in (4.5) reveals that for every η ∈M+,

t
ˆ 1

−1
(Dµ ψ(µ + tν∗,x)−

ˆ 1

−1
g(xy) dν

∗(y)) d(η −ν
∗)(x) ⩽ 0. (4.130)

The assumption that the density x↦Dµ ψ(µ + tν∗,x) belongs to the cone C∞ gives a measure η
∗ ∈M+ with

Gη∗(x) =Dµ ψ(µ + tν∗,x). Applying (4.130) to the measure η = η
∗ gives

ˆ 1

−1

ˆ 1

−1
g(xy) d(η∗−ν

∗)(y) d(η∗−ν
∗)(x) ⩽ 0.

Remembering the assumption (H5), this inequality is in fact an equality. Applying the Cauchy-Schwarz
inequality in Lemma 4.23 to the signed measures η

∗−ν
∗ and δx for some x ∈ [−1,1] shows that

ˆ 1

−1
g(xy) d(η∗−ν

∗)(y) =
ˆ 1

−1
g(yz) d(η∗−ν

∗)(y) dδx(z) = 0.

Rearranging gives Gν∗(x) = Gη∗(x) = Dµ(µ + tν∗,x). Since x ∈ [−1,1] is arbitrary, this completes the
proof. ∎

4.4 Extending to more general infinite-dimensional equations

To study the sparse stochastic block model, it will be important to extend Theorems 4.1 - 4.3 to the setting
where the kernel g does not satisfy the positivity assumption (H1). This assumption will be replaced by the
stronger constraint (H3’) on the gradient of the projected initial conditions, and it will lead to Theorems 4.4
and 4.5. Fix b ∈R large enough to that the modified kernel g̃b in (4.45) is strictly positive. Recall the definition
of the modified initial condition ψ̃b in (4.50), and of the modified Hamilton-Jacobi equation (4.49). In the
spirit of (4.14), (4.16), (4.17) and (4.21), introduce the symmetric matrix

G̃(K)b ∶= 1
∣DK ∣2

(g̃b(kk′))k,k′∈DK
∈RDK×DK , (4.131)
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the projected cone

C̃b,K ∶= {G̃(K)b x(K)(µ) ∈RDK ∣ µ ∈M(K)
+ } = {G̃

(K)
b x ∈RDK ∣ x ∈RDK

⩾0 }, (4.132)

the projected non-linearity C̃b,K ∶ C̃b,K →R defined by

C̃b,K(G̃(K)b x) ∶= 1
2

G̃(K)b x ⋅x = 1
2∣DK ∣2

∑
k,k′∈DK

g̃b(kk′)xkxk′ , (4.133)

and the closed convex set

K̃=a,b,K ∶= {G̃(K)b x ∈RDK ∣ x ∈RDK
⩾0 and ∣∣∣x∣∣∣1 = a}. (4.134)

To prove Theorem 4.4, it will first be verified that, under the assumptions of this result, the kernel g̃b and the
initial condition ψ̃b satisfy (H1)-(H4). Together with Theorems 4.1 and 4.2, this will ensure that the function
fb in (4.51) is well-defined. The comparison principle in Theorem 4.1 will then be used to show that this
function is independent of b. Invoking the Hopf-Lax formula in Theorem 4.3 will give the Hopf-Lax formula
in Theorem 4.5.

Lemma 4.24. Under the assumptions of Theorem 4.4, the kernel g̃b in (4.45) and the initial condition ψ̃b in

(4.50) satisfy (H1)-(H4). Moreover, each projected initial condition ψ̃
(K)
b has its gradient in the closed convex

set K̃=a,b,K .

Proof. The kernel g̃b satisfies (H1) by the choice of b, while the initial condition ψ̃b satisfies (H2) by the
triangle inequality and the bound

∣ab
ˆ 1

−1
dµ −ab

ˆ 1

−1
dν ∣ ⩽ a∣b∣∣µ[−1,1]−ν[−1,1]∣ ⩽ a∣b∣TV(µ,ν).

An identical argument shows that the initial condition ψ̃b satisfies (H4). To verify (H3), introduce the closed
convex set

K̃a,b,K ∶= {G̃(K)b x ∈RDK ∣ x ∈RDK
⩾0 and ∣∣∣x∣∣∣1 ⩽ a},

and fix c ∈ R as well as x,x′ ∈RDK with (x′ − x) ⋅ z ⩾ c for every z ∈ K̃′a,b,K . Given y ∈K′=a,K , represent it as
y =G(K)u+w for some u ∈Rd

⩾0 and w ∈Rd with ∣∣∣u∣∣∣1 = a and ∣∣∣w∣∣∣1,∗ ⩽ 2−K/2. Define z ∶= G̃(K)b u+w ∈ K̃′=a,b,K ,
and observe that

z =G(K)u+b∣∣∣u∣∣∣1ιK +w = y+abιK

for the vector ιK ∶= (∣DK ∣−1)k∈DK ∈R
DK
⩾0 . Since z ∈ K̃′=a,b,K ⊆ K̃′a,b,K ,

(x′−x) ⋅y = (x′−x) ⋅ z−(x′−x) ⋅abιK ⩾ c−(x′−x) ⋅abιK .

The assumption (H3’) and Proposition A.2 therefore imply that

ψ
(K)(x′)−ψ

(K)(x) ⩾ c−(x′−x) ⋅abιK .

Noticing that x ⋅ ιK = ∣∣∣x∣∣∣1 and rearranging reveals that

ψ̃
(K)
b (x′)− ψ̃

(K)
b (x) ⩾ c.
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Invoking Proposition A.2 establishes (H3). Observe that this argument only uses the assumption that (x′−x) ⋅z⩾
c for every z ∈ K̃=a,b,K , so it also shows that ψ̃

(K)
b has its gradient in K̃=a,b,K . This completes the proof. ∎

Together with Theorems 4.1 and 4.2, this result ensures that the function fb in (4.51) is well-defined.
Indeed, fix R > ∥ψ̃∥Lip,TV, and denote by H̃b,K,R ∶RDK →R the extension of the non-linearity C̃b,K given by
Proposition 4.8. Invoking Lemma 4.24, Theorem 4.1, and Proposition 4.11 ensures that the Hamilton-Jacobi
equation

∂t f̃ (K)(t,x) = H̃b,K,R(∇ f̃ (K)(t,x)) on R>0×RDK
>0 (4.135)

subject to the initial condition f̃ (K)(0, ⋅) = ψ̃b(⋅) admits a unique viscosity solution f̃ (K)b,R ∈Lunif which satisfies
the Lipschitz bound

sup
t⩾0
∣∣∣ f̃ (K)b,R (t, ⋅)∣∣∣Lip,1

= ∣∣∣ψ̃(K)b ∣∣∣Lip,1, (4.136)

and has its gradient in the the closed convex set K′=a,b,K . Appealing to Theorem 4.2 also guarantees that the
function

f̃b(t,µ) ∶= lim
K→+∞

f̃ (K)b,R (t,x
(K)(µ)), (4.137)

on R⩾0 ×M+ is well-defined and independent of R. In fact, it is the solution to the infinite-dimensional
Hamilton-Jacobi equation (4.49). Using the comparison principle in Theorem 4.1, it will now be shown that
the limit defining the function fb in (4.51),

fb(t,µ) = lim
K→+∞

( f̃ (K)b,R (t,x
(K)(µ))−ab∣∣∣x(K)(µ)∣∣∣1−

a2bt
2
), (4.138)

is independent of b, thus establishing Theorem 4.4. The Hopf-Lax formula in Theorem 4.5 will then be
obtained from the Hopf-Lax formula in Theorem 4.3.

Proof of Theorem 4.4. Let b,b′ ∈ R be such that the kernels g̃b and g̃b′ are positive on [−1,1], and fix
R >max(∥ψ̃b∥Lip,TV,∥ψ̃b′∥Lip,TV). The idea will be to show that the function

f (K)b,b′ (t,x) ∶= f̃ (K)b (t,x)−a(b−b′)∣∣∣x∣∣∣1−
a2(b−b′)t

2

satisfies the Hamilton-Jacobi equation defining f̃ (K)b′ up to an error that vanishes with K. The dependence on R

has been omitted and will be omitted throughout this proof, since R will remain fixed. The equality of fb and
fb′ will then follow from the comparison principle in Theorem 4.1. Consider φ ∈C∞(R>0×RDK

>0 ;R) with the
property that f (K)b,b′ −φ achieves a local maximum at the point (t∗,x∗) ∈R>0×RDK

>0 . Since f̃ (K)b is a viscosity
subsolution to the Hamilton-Jacobi equation (4.135),

a2(b−b′)
2

+∂tφ(t∗,x∗)− H̃b,K(a(b−b′)ιK +∇φ(t∗,x∗)) ⩽ 0

for the vector ιK ∶= (∣DK ∣−1)k∈DK ∈R
DK
⩾0 . The fact that f̃ (K)b has its gradient in K̃′=a,b,K together with (4.88),

and Lemmas 4.12 and 4.13 implies that

a(b−b′)ιK +∇φ(t∗,x∗) ∈ K̃′=a,b,K and ∣∣∣a(b−b′)ιK +∇φ(t∗,x∗)∣∣∣1,∗ ⩽ ∥ψ̃b∥Lip,TV.
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It is therefore possible to find u ∈RDK
⩾0 and w ∈RDK with

a(b−b′)ιK +∇φ(t∗,x∗) = G̃(K)b u+w, ∣∣∣u∣∣∣1 = a, and ∣∣∣w∣∣∣1,∗ ⩽
1

2K/2 .

Observe that

∣∣∣G̃(K)b u∣∣∣1,∗ ⩽ ∣∣∣a(b−b′)ιK +∇φ(t∗,x∗)∣∣∣1,∗+ ∣∣∣w∣∣∣1,∗ ⩽ ∥ψ̃b∥Lip,TV+
1

2K/2 ,

so increasing K if necessary, it is possible to ensure that G̃(K)b u ∈ C̃b,K ∩BR. It follows by the Lipschitz
continuity of H̃b,K established in Proposition 4.8 that

a2(b−b′)
2

+∂tφ(t∗,x∗)− C̃b,K(G̃(K)b u) ⩽ 8RM
2K/2m2

.

Notice that

C̃b,K(G̃(K)b u) = 1
2

G̃(K)b u ⋅u = 1
2

G(K)u ⋅u+ 1
2

b∣∣∣u∣∣∣21 =
1
2

G̃(K)b′ u ⋅u+ 1
2
(b−b′)a2 = C̃b′,K(G̃(K)b′ u)+ a2(b−b′)

2
,

so in fact
∂tφ(t∗,x∗)− C̃(K)b′ (G̃

(K)
b′ u) ⩽ 8RM

2K/2m
.

To replace G̃(K)b′ u by ∇φ(t∗,x∗) observe that

G̃(K)b′ u = G̃(K)b u+(b′−b)ιK ∣∣∣u∣∣∣1 = a(b−b′)ιK +∇φ(t∗,x∗)−w+a(b′−b)ιK =∇φ(t∗,x∗)−w,

and leverage the Lipschitz continuity of H̃b′,K established in Proposition 4.8 to deduce that

(∂tφ − H̃b′,K(∇φ))(t∗,x∗) ⩽ EK for the error term EK ∶=
16RM
2K/2m

.

In particular, the function (t,x)↦ f K
b,b′(t,x)−EKt is a viscosity subsolution to the Hamilton-Jacobi equation

defining f̃ K
b′ . A similar argument shows that (t,x)↦ f K

b,b′(t,x)+EKt is a viscosity supersolution to the Hamilton-
Jacobi equation defining f̃ K

b′ . It follows by the comparison principle in Theorem 4.1 that for every µ ∈M+,

∣ f (K)b (t,x(K)(µ))− f (K)b′ (t,x
(K)(µ))∣ = ∣ f (K)b,b′ (t,x

(K)(µ))− f̃ (K)b′ (t,x
(K)(µ))∣ ⩽ EKt.

Letting K tend to infinity completes the proof. ∎

Proof of Theorem 4.5. Recall the definition of the setMa,+ of measures with mass a, and of its image cone of
functions Ca,∞. Fix b > 0 large enough so the kernel g̃b is positive on [−1,1] and satisfies (H5). Lemma 4.24
and the Hopf-Lax representation formula in Theorem 4.3 imply that for any t > 0 and µ ∈M+,

f̃b(t,µ) = sup
ν∈M+

(ψ̃b(µ + tν)− t
2

ˆ 1

−1
G̃b,ν(y) dν(y)). (4.139)

Since the Gateaux derivative density x↦Dµ ψ(µ + tν) belongs to the set Ca,∞ by assumption, there exists a
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measure η ∈Ma,+ with Dµ ψ(µ + tν , ⋅) =Gη . This means that

Dµ ψ̃b(µ + tν ,x) =Dµ ψ(µ + tν ,x)+ab =
ˆ 1

−1
g(xy) dη(y)+ab =

ˆ 1

−1
g̃b(xy) dη(y),

so another application of Theorem 4.3 implies that the supremum in (4.139) is achieved at some ν
∗ ∈M+ with

G̃b,ν∗ =Dµ ψ̃b(µ + tν∗, ⋅) = G̃b,η .

Evaluating this equality at x = 0 reveals that

g̃b(0)
ˆ 1

−1
dν
∗(y) = g̃b(0)

ˆ 1

−1
dη(y) = g̃b(0)a.

Since g̃b(0) > 0 by the choice of b, this means that ν
∗ ∈Ma,+ and

f̃b(t,µ) = sup
ν∈Ma,+

(ψ̃b(µ + tν)− t
2

ˆ 1

−1
G̃b,ν(y) dν(y)).

It follows by (4.51) that

fb(t,µ) = sup
ν∈Ma,+

(ψ̃b(µ + tν)− t
2

ˆ 1

−1
G̃b,ν(y) dν(y)−ab

ˆ 1

−1
dµ − a2bt

2
)

= sup
ν∈Ma,+

(ψ(µ + tν)+abt
ˆ 1

−1
dν − t

2

ˆ 1

−1
Gν(y) dν(y)− bt

2

ˆ 1

−1

ˆ 1

−1
dν dν − a2bt

2
)

= sup
ν∈Ma,+

(ψ(µ + tν)− t
2

ˆ 1

−1
Gν(y) dν(y)).

This completes the proof. ∎

At the end of Chapter 3, two main obstacles stood in the way of asserting that the limit of the enriched
free energy (3.30) should satisfy the infinite-dimensional Hamilton-Jacobi equation (3.91) subject to the
initial condition (3.92). The first was that infinite-dimensional Hamilton-Jacobi equations of this form had
not been well-studied in the literature, so making rigorous sense of this equation was not possible, and the
second was that the concentration (3.75) of the multioverlaps (3.41) was not expected to hold for all choices
of parameters. The first of these issues has been resolved in this chapter, where a well-posedness theory for
infinite-dimensional Hamilton-Jacobi equations has been discussed. It will be shown in Lemma 6.1 that this
theory is general enough to handle the Hamilton-Jacobi (3.91). The second of these issues will be addressed in
the next chapter, where a finitary version of the multioverlap concentration result in [15] will be established.



Chapter 5

Multioverlap concentration

In this chapter, a finitary version of the main result in [15] regarding the concentration of the multioverlaps
(3.41) is established. To alleviate notation and strive for generality, instead of focusing on the concentration of
the multioverlaps associated with the Hamiltonian (3.29) in the stochastic block model, the general setting of
optimal Bayesian inference is considered. Extending to this level of generality presents no additional difficulty,
and the author suspects that the finitary restatement of the multioverlap concentration results in [15] provided
in this chapter will be useful for the analysis of other statistical inference models. The general setting of
optimal Bayesian inference is described in Section 5.1, where the main multioverlap concentration results
of this chapter are also stated. In Section 5.2, the Franz-de Sanctis identities are introduced, and it is shown
how these can be enforced through a small perturbation of the Hamiltonian that does not affect the limit of the
free energy. The Franz-de Sanctis identities may be thought of as the Ghirlanda-Guerra identities of optimal
Bayesian inference. A random probability measure that satisfies the Ghirlanda-Guerra identities must have an
ultrametric support; a deep insight that leads to the appearance of the Poisson-Dirichlet probability cascades
in many spin-glass models [50, 95]. The Franz-de Sanctis identities enforce a much simpler and more rigid
structure on a random probability measure: all its multioverlaps must concentrate. This is discussed in Section
5.3, where a finitary version of the multioverlap concentration result in [15] is established. The most notable
difference between this finitary multioverlap result and that in [15] is that it is uniform over an appropriate
class of probability measures, and that multioverlap concentration is shown for any perturbation parameter
satisfying a condition that may be verified in practice. The result in [15] holds for a given probability measure,
and establishes multioverlap concentration on average over the set of perturbation parameters. This uniformity
over random probability measures and additional control on the choice of perturbation parameters is essential
in the proof of Theorem 1.6. This chapter is taken from Appendix C in [49].

5.1 Bayesian inference, perturbations, and key concentration results

The general optimal Bayesian inference problem is described following [15]. Consider a ground-truth
signal σ

∗ ∈ ΣN ∶= {−1,+1}N with independent coordinates each generated from a distribution P∗i . The prior
distribution P∗ of the model is thus the product law

σ
∗ ∼ P∗ ∶=

N

∏
i=1

P∗i . (5.1)

134
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Data D ∶=D(σ∗) is sampled conditionally on the unknown signal σ
∗ from a probability distribution Pout,

D ∼ Pout{⋅∣σ∗}, (5.2)

and the inference task of the statistician consists of recovering the signal σ
∗ as accurately as possible given the

data D, the likelihood Pout, and the prior P∗. In this setting, the posterior of the model can be written explicitly
using Bayes’ formula as the Gibbs measure, or posterior distribution,

GN(dσ) ∶= P{σ∗ ∈ dσ ∣D} = expHN(σ)P∗(dσ)´
ΣN

expHN(τ)P∗(dτ) , (5.3)

associated with the Hamiltonian, or log-likelihood,

HN(σ) ∶= logPout{D∣σ∗ = σ}. (5.4)

Since the posterior distribution and all the hyperparameters of the model are known to the statistician, one
speaks of optimal Bayesian inference. In addition to working in the context of optimal Bayesian inference,
it will be assumed throughout this chapter that the Hamiltonian (5.4) satisfies symmetry between sites. This
means that for any permutation ρ of the spin indices,

P{σ∗ ∈ dσ ∣D} d= P{ρ(σ∗) ∈ dσ ∣D}, (5.5)

where d= denotes equality in distribution. Notice that both the sparse stochastic block model (3.13) and its
enriched version (3.29) fall into the setting just described. For instance, in the enriched stochastic block model,
one has P∗i ∶=Ber(p) and D ∶= D̃t,µ[−1,1],µ , where the data D̃t,s,µ was defined in (3.25).

The concentration of the multioverlaps associated with the Hamiltonian (5.4) will be enforced through a
small perturbation which will not affect the limit of its associated free energy,

FN ∶=
1
N
E log

ˆ
ΣN

expHN(σ) dP∗. (5.6)

Fix an integer K+ ⩾ 1 which will be kept implicit throughout this chapter, and write λ ∶= (λ0,λ1, . . . ,λK+) for a
perturbation parameter with λk ∈ [2−k−1,2−k] for 0 ⩽ k ⩽K+. Given a sequence (εN)N⩾1 with εN ∶=Nγ for some
−1/8 < γ < 0, and a standard Gaussian vector Z0 ∶= (Z0,1, . . . ,Z0,N) in RN , introduce the Gaussian perturbation
Hamiltonian

Hgauss
N (σ ,λ0) ∶=H0 ∶=∑

i⩽N
(λ0εNσ

∗
i σi+

√
λ0εNZ0,iσi) (5.7)

associated with the task of recovering the signal σ
∗ from the data

Y gauss ∶=
√

λ0εNσ
∗+Z0. (5.8)

Notice that
1 ⩾ εN → 0 and NεN → +∞. (5.9)

Similarly, consider a sequence (sN)N⩾1 with sN ∶=Nη for 4/5 < η < 1 in such a way that

sN

N
→ 0 and

sN√
N
→ +∞. (5.10)
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Fix a sequence of i.i.d. random variables (πk)k⩾1 with Poi(sN) distribution as well as a sequence e ∶= (e jk) j,k⩾1

of i.i.d. random variables with Exp(1) distribution. For every j ⩽ πk, sample i.i.d. random indices i jk uniformly
from the set {1, . . . ,N}, and define the exponential perturbation Hamiltonians by

Hk ∶= ∑
j⩽πk

( log(1+λkσi jk)−
λke jkσi jk

1+λkσ∗i jk

) and Hexp
N (σ ,λ) ∶= ∑

1⩽k⩽K+

Hk. (5.11)

Observe that Hexp
N is the Hamiltonian associated with the task of recovering the signal σ

∗ from the data

Y exp
jk ∶=

e jk

1+λkσ∗i jk

(5.12)

for j ⩽ πk and k ⩾ 1. Introduce the perturbed Hamiltonian

HN(σ ,λ) ∶=HN(σ)+Hgauss
N (σ ,λ0)+Hexp

N (σ ,λ), (5.13)

where the randomness of each Hamiltonian is independent of the randomness of the other Hamiltonians.
Denote by

F
pert
N (λ) ∶=

1
N
E log

ˆ
ΣN

expHN(σ ,λ) dP∗(σ). (5.14)

its associated free energy, and by ⟨⋅⟩ its associated Gibbs measure. This means that for any bounded measurable
function f = f (σ1, . . . ,σn) of finitely many replicas,

⟨ f (σ1, . . . ,σn)⟩ ∶=

´
Σn

N
f (σ1, . . . ,σn)∏`⩽n expHN(σ `,λ) dP∗(σ `)

(
´

ΣN
expHN(σ ,λ) dP∗(σ))n

. (5.15)

Just like in the settings of the symmetric rank-one matrix estimation problem and of the sparse stochastic
block model, this Gibbs measure is a conditional expectation in the sense of (3.32), and therefore satisfies
the Nishimori identity (Proposition 2.2). As previously stated, an essential property of the perturbation
Hamiltonians (5.7) and (5.11) is that they do not affect the asymptotic behaviour of the free energy (5.6).

Lemma 5.1. The free energy (5.6) and the perturbed free energy (5.14) are asymptotically equivalent,

lim
N→+∞

∣Fpert
N (λ)−FN ∣ = 0. (5.16)

Proof. A direct computation reveals that

∣Fpert
N (λ)−FN ∣ ⩽

1
N
Emax

σ∈ΣN
∣Hgauss

N (σ ,λ0)∣+
1
N
Emax

σ∈ΣN
∣Hexp

N (σ ,λ)∣.

For any spin configuration σ ∈ ΣN ,

∣Hgauss
N (σ ,λ0)∣ ⩽NεN +

√
εN∑

i⩽N
∣Z0,i∣ and ∣Hexp

N (σ ,λ)∣ ⩽ ∑
1⩽k⩽K′

∑
j⩽πk

( log(1+λk)+
λke jk

1−λk
).

Since these bounds are uniform in σ , it follows that

∣Fpert
N (λ)−FN ∣ ⩽ εN +

√
εNEZ0,1+

sN

N
∑
k⩾1
( log(1+λk)+

λk

1−λk
).
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The third term was obtained by taking the expectation with respect to the randomness of e, and then with
respect to the randomness of (πk)k⩾1. Leveraging (5.9) and (5.10) to let N tend to infinity completes the
proof. ∎

In the context of the sparse stochastic block model, this result will imply that studying the free energy
associated with the enriched Hamiltonian (3.29) or its perturbed version is equivalent for the purpose of
computing the asymptotic mutual information. The advantage of studying the model associated with the
perturbed Hamiltonian is that, for almost all perturbation parameters, the multioverlaps

R`1,...,`n ∶=
1
N
∑
i⩽N

σ
`1
i ⋯σ

`n
i (5.17)

can be shown to concentrate in the large-volume limit. Here, (σ `)`⩾1 denotes a sequence of i.i.d. replicas
sampled from the Gibbs measure (5.15).

To establish the concentration of the multioverlaps (5.17), the arguments in [15] will be followed closely. At
this point, the reader may wonder why the results in [15] are not simply used directly. In [15] the concentration
of the multioverlaps (5.17) is obtained for some perturbation parameter λ by showing that it holds on average
over the set of perturbation parameters. In the proof of Theorem 1.6 it will be important to obtain multioverlap
concentration for a specific perturbation parameter, so the existence of a perturbation parameter for which
concentration holds does not suffice. However, following the strategy in [15], the main result of this chapter
will propose a verifiable condition on a perturbation parameter λ which ensures the concentration of its
associated multioverlaps, and this condition will be readily verified for the perturbation parameter of interest
in the context of the sparse stochastic block model. The condition proposed is the asymptotic concentration of
the quantities

L0 =
H′0
NεN

, where H′0 = ∂λ0Hgauss
N (σ ,λ0) = εN(σ ⋅σ∗+

σ ⋅Z0

2
√

λ0,N
), (5.18)

Lk =
H′k
sN

, where H′k = ∂λk
Hexp

N (σ ,λ) = ∑
j⩽πk

σi jk(
1

1+λkσi jk

−
e jk

(1+λkσ∗i jk
)2 ) (5.19)

for 0 ⩽ k ⩽K+. More precisely, the concentration of the multioverlaps (5.17) will be established up to a small
error for any sequence of perturbation parameters (λ N)N⩾1 such that

lim
N→+∞

E⟨(Lk −E⟨Lk⟩)2⟩ = 0 (5.20)

for 0 ⩽ k ⩽K+. Through a slight abuse of notation, the Gibbs average (5.15) associated with the perturbation
parameters (λ N)N⩾1 has been denoted by ⟨⋅⟩. If necessary, this average will be written as ⟨⋅⟩N to emphasize its
dependence on N.

The concentration of the multioverlaps (5.17) associated with a sequence of perturbation parameters
satisfying (5.20) will be obtained in two stages. In Section 5.2, it will be shown that the condition (5.20)
implies the Franz-de Sanctis identities, and in Section 5.3 the concentration of the multioverlaps associated
with any probability measure that satisfies an approximate version of the Franz-de Sanctis identities will be
established.

To state the Franz-de Sanctis identities, it will be convenient to fix a uniform index i ∈ {1, . . . ,N} and an
exponential random variable e ∼ Exp(1) independent of all other sources of randomness, and to introduce the
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random variables

yik ∶=
e

1+λkσ∗i
, θ

`
ik ∶= log(1+λkσ

`
i )−λkyikσ

`
i , and d`

ik ∶=
yikσ

`
i

1+λkσ∗i
(5.21)

for 1 ⩽ k ⩽K+. The main result of Section 5.2 reads as follows.

Proposition 5.2 (Franz-de Sanctis identities in inference). For any 1 ⩽ k ⩽K+ and any function fn of finitely

many spins on n replicas and of the signal σ
∗ with ∥ fn∥L∞ ⩽ 1,

E⟨(R1−E⟨R1⟩)2⟩ ⩽
1
N
, E⟨(R1,2−E⟨R1,2⟩)2⟩ ⩽ 4E⟨(L0−E⟨L0⟩)2⟩, (5.22)

∣E
⟨ fnd1

ik exp(∑`⩽n θ
`
ik)⟩

⟨exp(θik)⟩n
−E⟨ fn⟩E

⟨dik exp(θik)⟩
⟨exp(θik)⟩

∣ ⩽ (2E⟨(Lk −E⟨Lk⟩)2⟩+
16
sN
)

1/2
. (5.23)

Applying this result along a sequence of perturbation parameters (λ N)N⩾1 satisfying (5.20) reveals that

lim
N→+∞

∣E
⟨ fnd1

ik exp(∑`⩽n θ
`
ik)⟩N

⟨exp(θik)⟩nN
−E⟨ fn⟩NE

⟨dik exp(θik)⟩N
⟨exp(θik)⟩N

∣ = 0 (5.24)

for any 1 ⩽ k ⩽K+ and any function fn of finitely many spins on n replicas and of the signal σ
∗ with ∥ fn∥L∞ ⩽ 1.

Observing that the denominators ⟨exp(θik)⟩N do not depend on the signal σ
∗, it is possible to use the Nishimori

identity to replace all occurrences of the signal σ
∗ in (5.24) by another replica. For convenience of notation,

this new replica will be denoted by σ
◇ to distinguish it from the signal σ

∗ and at the same time not occupy
any specific index. The equations in (5.24) now read

lim
N→+∞

∣EE◇
⟨ fnd1

ik exp(∑`⩽n θ
`
ik)⟩N

⟨exp(θik)⟩nN
−EE◇⟨ fn⟩NEE◇

⟨dik exp(θik)⟩N
⟨exp(θik)⟩N

∣ = 0, (5.25)

where E◇ denotes the Gibbs average with respect to the replica σ
◇ only, the bracket ⟨⋅⟩N denotes the Gibbs

average with respect to all other standard replicas, the function fn depends on finitely many spins on the n

standard replicas and σ
◇, and, with some abuse of notation, for 1 ⩽ k ⩽K+,

yik ∶=
e

1+λkσ◇i
, θ

`
ik ∶= log(1+λkσ

`
i )−λkyikσ

`
i , and d`

ik ∶=
yikσ

`
i

1+λkσ◇i
(5.26)

where λk ∶= λ
N
k . The expression (5.25) is now simplified for functions fn that do not depend on the spin

coordinate indexed by 1. Introduce the collection of functions

Fn ∶= {functions fn of finitely many spins σ
`
i ,σ

◇
i with 2 ⩽ i ⩽N

of the n standard replicas (σ `)`⩽n and the special replica σ
◇ with ∥ fn∥L∞ ⩽ 1}, (5.27)

and the quantities

yk ∶=
e

1+λkσ◇1
, θ

`
k ∶= log(1+λkσ

`
1)−λkykσ

`
1 , and d`

k ∶=
ykσ

`
1

1+λkσ◇1
. (5.28)

For functions fn ∈ Fn, the symmetry between sites (5.5) and the fact that i ∈ {2, . . . ,N} with overwhelming
probability in the limit, allow the replacement of the uniform random index i ∈ {1, . . . ,N} by the index 1. The
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Franz de-Sanctis identities together with assumption (5.20) therefore have the following important implication.

Corollary 5.3 (Asymptotic Franz-de Sanctis identities in inference). If (5.20) holds, then for every 1 ⩽ k ⩽K+
and all functions fn ∈ Fn,

lim
N→+∞

E⟨(R1−E⟨R1⟩N)2⟩N = 0, lim
N→+∞

E⟨(R1,2−E⟨R1,2⟩N)2⟩N = 0, (5.29)

lim
N→+∞

∣EE◇
⟨ fnd1

k exp(∑`⩽n θ
`
k )⟩N

⟨exp(θk)⟩nN
−EE◇⟨ fn⟩NEE◇

⟨dk exp(θk)⟩N
⟨exp(θk)⟩N

∣ = 0. (5.30)

To establish multioverlap concentration, this result will essentially be complemented by the observation
that the multioverlaps associated with any probability measure that satisfies the Franz-de Sanctis identities
must concentrate. As previously mentioned, to study the stochastic block model, it will be important that this
result be uniform over an appropriate class of random probability measures now described. For each integer
N ⩾ 1, consider the set of random probability measures on ΣN thought of as a subset of {−1,0,1}N,

GN ∶= {G ∣G is a random probability measure on ΣN ×{0}N}, (5.31)

and introduce its subset

Gs
N ∶= {G ∈ GN ∣G satisfies symmetry between sites }. (5.32)

A measure G ∈ GN is said to satisfy symmetry between sites if, for any sequence of i.i.d. replicas (σ `)`⩾1

sampled from G, any permutation ρ1 on the finite set {1, . . . ,N}, and any permutation ρ2 of finitely many
indices

(σ `
i )i,`⩾1

d= (σρ2(`)
ρ1(i)
)

i,`⩾1, (5.33)

where d= denotes equality in distribution. Notice that each Gibbs measure GN defined by (5.3) can be thought
of as an element of GN by setting σi = 0 when i >N for any replica σ ∈ ΣN sampled from GN . In this way, the
symmetry between sites in (5.33) and (5.5) coincide, so in fact GN ∈ Gs

N . This identification also suggests that
the appropriate notion of the multioverlap (5.17) for a random probability measure G ∈ GN should be

R`1,...,`n ∶=
1
N
∑
i⩽N

σ
`1
i ⋯σ

`n
i , (5.34)

where (σ `)`⩾1 denotes a sequence of i.i.d. replicas sampled from the Gibbs measure G. Denoting by ⟨⋅⟩G the
average with respect to the random probability measure G, the main result of Section 5.3 reads as follows.

Proposition 5.4. For every ε > 0 there exists δ > 0 such that the following holds. Let N ⩾ ⌊δ−1⌋ and G ∈ Gs
N be

such that for all 1 ⩽ k ⩽K+ ∶= ⌊δ−1⌋ and fn ∈ Fn,

E⟨(R1−E⟨R1⟩G)2⟩G ⩽ δ , E⟨(R1,2−E⟨R1,2⟩G)2⟩G ⩽ δ , (5.35)

∣EE◇
⟨ fnd1

k exp(∑`⩽n θ
`
k )⟩G

⟨exp(θk)⟩nG
−EE◇⟨ fn⟩GEE◇

⟨dk exp(θk)⟩G
⟨exp(θk)⟩G

∣ ⩽ δ . (5.36)

Then for any 1 ⩽m ⩽ ⌊ε−1⌋, one has E⟨(R1,...,m−E⟨R1,...,m⟩G)2⟩G ⩽ ε .

The reader eager to return to the study of the sparse stochastic block model may consider taking Corollary
5.3 and Proposition 5.4 for granted on first reading, and turning directly to Chapter 6 where they are applied.
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5.2 Deducing the Franz-de Sanctis identities

To show that the asymptotic concentration (5.20) of the quantities Lk defined in (5.18) and (5.19) implies
the Franz-de Sanctis identities as stated in Proposition 5.2, the concentration of the magnetization R1 and of
the overlap R1,2 will be established first. The concentration of the magnetization will be immediate from the
Nishimori identity (Proposition 2.2) while the concentration of the overlap will follow from the Gaussian
integration by parts formula (see Theorem 4.6 in [50]).

Lemma 5.5. For any integer N ⩾ 1,

E⟨(R1−E⟨R1⟩)2⟩ ⩽
1
N
. (5.37)

Proof. Applying the Nishimori identity reveals that

E⟨(R1−E⟨R1⟩)2⟩ =
1

N2 ∑
i⩽N

E(σ∗i −Eσ
∗
i )

2 ⩽ 1
N
.

This completes the proof. ∎

Lemma 5.6. For any integer N ⩾ 1,

E⟨(R1,2−E⟨R1,2⟩)2⟩ ⩽ 4E⟨(L0−E⟨L0⟩)2⟩. (5.38)

Proof. The proof is taken from the Appendix of [15], and it consists in testing the concentration of the overlap
R1,∗ ∶= σ ⋅σ∗

N against the Hamiltonian L0 using the Gaussian integration by parts formula. Recalling (5.18)
reveals that

E⟨(R1,∗−E⟨R1,∗⟩)(L0−E⟨L0⟩)⟩ =E⟨R1,∗(R1,∗−E⟨R1,∗⟩)⟩+
1

2N
√

λ0,N
E⟨R1,∗(σ ⋅Z0−E⟨σ ⋅Z0⟩)⟩. (5.39)

The Gaussian integration by parts formula and the Nishimori identity imply that

E⟨σ ⋅Z⟩ =N
√

λ0,N(1−E⟨R1,∗⟩) and E⟨R1,∗σ ⋅Z⟩ =N
√

λ0,N(E⟨R1,∗⟩−E⟨R1,∗⟩2).

Substituting these two equalities into (5.39) gives

E⟨(R1,∗−E⟨R1,∗⟩)(L0−E⟨L0⟩)⟩ =
1
2
E⟨(R1,∗− ⟨R1,∗⟩)2⟩+

1
2
E⟨(R1,∗−E⟨R1,∗⟩)2⟩.

(There seems to be a sign error in equation (5.2) of [15].) It follows by the Nishimori identity that

E⟨(R1,∗−E⟨R1,∗⟩)(L0−E⟨L0⟩)⟩ ⩾
1
2
E⟨(R1,2−E⟨R1,2⟩)2⟩.

Invoking the Cauchy-Schwarz inequality and the Nishimori identity completes the proof. ∎

The main hurdle in establishing Proposition 5.2 is proving the Franz-de Sanctis identity (5.23). This is
done similarly to the Ghirlanda-Guerra identities, by testing the concentration of the quantities

L̃k ∶=
1
sN
∑
j⩽πk

σi jk e jk

(1+λkσ∗i jk
)2 (5.40)
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defined for 1 ⩽ k ⩽K+ against an arbitrary function of finitely many spins and the signal σ
∗. Notice that L̃k is

the second term in the sum defining each Lk in (5.19). The reason for focusing only on this second term is that
the first term concentrates automatically by the Nishimori identity. This is the content of Proposition 3.4 in
[15] which is reproduced here for completeness. A slightly simpler proof than that in [15] is presented. This
proof was kindly shared with the author by Dmitry Panchenko.

Lemma 5.7. For any 1 ⩽ k ⩽K+ and every large enough N ⩾ 1,

E⟨(L̃k −E⟨L̃k⟩)
2⟩ ⩽ 2E(⟨Lk −E⟨Lk⟩)2⟩+

16
sN

. (5.41)

Proof. Introduce the quantity

g(σ ,πk) ∶= ∑
j⩽πk

σi jk

1+λkσi jk

in such a way that L̃k = s−1
N g(σ ,πk)−Lk. Write Var for the variance with respect to the measure E⟨⋅⟩. Since

the variance of a sum of two random variables is bounded by twice the sum of the variance of each of the
random variables,

Var(L̃k) ⩽ 2(Var(Lk)+
1
s2

N
Var(g)). (5.42)

By the Nishimori identity and a direct computation,

Var(g(σ ,πk)) =E( ∑
j⩽πk

σ
∗
i jk

1+λkσ∗i jk

)
2

−(E ∑
j⩽πk

σ
∗
i jk

1+λkσ∗i jk

)
2

. (5.43)

Recalling that the coordinates of the signal σ
∗ are i.i.d., and averaging with respect to the randomness of the

indices (i jk) j,k⩾1 reveals that

E( ∑
j⩽πk

σ
∗
i jk

1+λkσ∗i jk

)
2

= 1
N
E ∑

j, j′⩽πk

1
(1+λkσ∗1 )2

+ N2−N
N

E ∑
j, j′⩽πk

σ
∗
1 σ
∗
2

(1+λkσ∗1 )(1+λkσ∗2 )

⩽
4Eπ

2
k

N
+Eπ

2
k (E

σ
∗
1

1+λkσ∗1
)

2
,

where it has been used that σ
2
1 = 1 and λk ⩽ 1/2. Similarly,

(E ∑
j⩽πk

σ
∗
i jk

1+λkσ∗i jk

)
2

= (Eπk)
2(E σ

∗
1

1+λkσ∗1
)

2
.

Substituting these two bounds into (5.43), recalling (5.10), and choosing N large enough yields

Var(g(σ ,πk)) ⩽
4Eπ

2
k

N
+Var(πk)(E

σ
∗
1

1+λkσ∗1
)

2
⩽ 8sN .

Together with (5.42), this completes the proof. ∎

Proof of Proposition 5.2. The proof follows that of Theorem 3.3 in [15]; full details are not provided, and
instead, the interested reader is encouraged to consult [15]. The Cauchy-Schwarz inequality and the fact that
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∥ fn∥L∞ ⩽ 1 imply that

∣E⟨ fnL̃k(σ1)⟩−E⟨ fn⟩E⟨L̃k(σ)⟩∣ ⩽E⟨( fn− ⟨ fn⟩)2⟩
1/2E⟨(L̃k −E⟨L̃k⟩)

2⟩
1/2
⩽E⟨(L̃k −E⟨L̃k⟩)

2⟩
1/2

.

By Lemma 5.7 it therefore suffices to prove that

E⟨ fnL̃k(σ1)⟩ =E
⟨ fnd1

ik exp(∑`⩽n θ
`
ik)⟩

⟨exp(θik)⟩n
and E⟨L̃k(σ)⟩ =E

⟨dik exp(θik)⟩
⟨exp(θik)⟩

. (5.44)

Since πk is independent of all other sources of randomness, taking the expectation with respect to this random
variable first shows that

E⟨ fnL̃k(σ1)⟩ =∑
r⩾1

sr−1
N

(r−1)! exp(−sN)E⟨ fnD1
1k⟩πk=r, (5.45)

where D1
1k ∶= σ

1
i1k

e1k/(1+λkσ
∗
i1k
)2. To simplify this expression, the first replica σ

1 appearing in each of the
averages will be isolated. It will be convenient to introduce the quantities

Θ
`
jk ∶= log(1+λkσ

`
i jk
)−

λke jkσ
`
i jk

1+λkσ∗i jk

and Hr−1
k (σ `) ∶= ∑

2⩽ j⩽r
Θ

`
jk

as well as the partially perturbed Hamiltonian

H′N(σ) ∶=HN(σ)+Hgauss
N (σ)+ ∑

1⩽k′⩽K+
k′≠k

Hk′ , (5.46)

where Hk is defined in (5.11). Denoting by ⟨⋅⟩′πk=r the Gibbs measure corresponding to the Hamiltonian
H′N(σ)+Hr−1

k (σ `) shows that for each r ⩾ 1,

E⟨ fnD1
1k⟩πk=r =EEi1kEe1k

⟨ fnD1
1k exp(∑`⩽n Θ

`
1k)⟩′πk=r

(⟨exp(Θ1k)⟩′πk=r)n
. (5.47)

Since the uniform random variable i1k and the exponential random variable e1k no longer appear in the Gibbs
average ⟨⋅⟩′πk=r, they may be replaced by a uniform random variable i ∈ {1, . . . ,N} and an exponential random
variable e ∼ Exp(1) independent of all other sources of randomness as in the statement of the result. To
emphasize this change, the random variables D1

1k and Θ
`
1k are also replaced by d1

ik ∶= σ
1
i e/(1+λkσ

∗
i )2 and

θ
`
ik ∶= log(1+λkσ

`
i )−λkσ

`
i e/(1+λkσ

∗
i ), respectively. Notice that this matches the definitions in (5.21). In

this new notation (5.47) reads

E⟨ fnD1
1k⟩πk=r =E

⟨ fnd1
ik exp(∑`⩽n θ

`
ik)⟩′πk=r

(⟨exp(θik)⟩′πk=r)n
.

Substituting this into (5.45) and making the change of variables m = r−1 reveals that

E⟨ fnL̃k(σ1)⟩ = ∑
m⩾0

sm
N

m!
exp(−sN)E

⟨ fnd1
ik exp(∑`⩽n θ

`
ik)⟩′πk=m+1

(⟨exp(θik)⟩′πk=m+1)n
.

Notice that whenever πk =m+1, the Hamiltonian defining the Gibbs average ⟨⋅⟩′
πk=m+1 is given by H′N(σ)+Hm

k (σ).
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This Hamiltonian has the same distribution as the Hamiltonian (5.13) defining the original Gibbs average
⟨⋅⟩πk=m. It follows that

E⟨ fnL̃k(σ1)⟩ = ∑
m⩾0

sm
N

m!
exp(−sN)E

⟨ fnd1
ik exp(∑`⩽n θ

`
ik)⟩πk=m

(⟨exp(θik)⟩πk=m)n
=E
⟨ fnd1

ik exp(∑`⩽n θ
`
ik)⟩

⟨exp(θik)⟩n
.

This is the first equality in (5.44). The second equality in (5.44) is obtained by taking n = 1 and f1 = 1 in the
first equality. ∎

Arguing in the same way as after the statement of this result, the asymptotic Franz-de Sanctis identities
stated in Corollary 5.3 are established. It is now shown that these identities imply the concentration of the
multioverlaps (5.17).

5.3 Establishing finitary multioverlap concentration

The finitary version of the multioverlap concentration result stated in Proposition 5.4 is uniform over the class
Gs

N of random probability measures defined in (5.32). Its proof proceeds by contradiction and closely follows
Sections 3.5 and 3.7 of [15]. Suppose for the sake of contradiction that there exists some ε > 0 such that no
matter the choice of δ > 0, it is always possible to find some integer N = N(δ) ⩾ ⌊δ−1⌋ and some random
probability measure G =G(δ) ∈ Gs

N such that for all 1 ⩽ k ⩽K+ = ⌊δ−1⌋ and fn ∈ Fn,

E⟨(R1−E⟨R1⟩G)2⟩G ⩽ δ , E⟨(R1,2−E⟨R1,2⟩G)2⟩G ⩽ δ , (5.48)

∣EE◇
⟨ fnd1

k exp(∑`⩽n θ
`
k )⟩G

⟨exp(θk)⟩nG
−EE◇⟨ fn⟩GEE◇

⟨dk exp(θk)⟩G
⟨exp(θk)⟩G

∣ ⩽ δ , (5.49)

and for which there exists some 1 ⩽m =m(δ) ⩽ ⌊ε−1⌋ with

E⟨(R1,...,m−E⟨R1,...,m⟩G)2⟩G > ε. (5.50)

Applying the Prokhorov theorem (Theorem A.20 in [50]) on the compact metric space {−1,0,+1}N2
, and

noticing that there are only finitely many choices for m =m(δ), it is possible to find a subsequence with δ → 0
along which the distribution of the array (σ `

i )i,`⩾1 under the averaged Gibbs measure E⟨⋅⟩G(δ) converges in
the sense of finite-dimensional distributions, and along which (5.48) - (5.50) hold for every k ⩾ 1 and a fixed
1 ⩽ m ⩽ ⌊ε−1⌋. Since N(δ)→ +∞ and G(δ) ∈ Gs

N , in the limit, the distribution of spins will be a measure
on {−1,+1}N2

which will inherit the symmetry between sites (5.33). By the Aldous-Hoover representation
(Theorem 1.4 in [95]), this symmetry implies the existence of some function σ ∶ [0,1]4→ {−1,+1} with

(σ `
i )i,`⩾1

d= (σ(w,u`,vi,xi,`))i,`⩾1, (5.51)

where w, (u`)`⩾1, (vi)i⩾1 and (xi,`)i,`⩾1 are i.i.d. uniform random variables on [0,1], and where d= denotes
equality in distribution. Since σ takes values in {−1,+1}, the distribution of the array (σ `

i )i,`⩾1 is encoded by
the function

σ(w,u,v) ∶=Exi,`σ(w,u,v,xi,`) =
ˆ 1

0
σ(w,u,v,x) dx. (5.52)
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Indeed, the last coordinate xi,` is a dummy variable that corresponds to flipping a biased coin to generate
a Bernoulli random variable with expected value σ(w,u,v). To clarify this further, let du and dv denote
Lebesgue measure on [0,1], and define the random probability measure

G ∶=Gw ∶= du○(u↦ σ(w,u, ⋅))−1
(5.53)

on the space of functions of v ∈ [0,1],

H ∶= L2([0,1], dv)∩{∥σ∥L∞ ⩽ 1}, (5.54)

equipped with the topology of L2([0,1], dv). As described in Section 2 of [94], the whole process of generating
spins can be broken into the following steps:

(i) generate the asymptotic Gibbs measure G =Gw using the uniform random variable w;

(ii) consider an i.i.d. sequence σ
` = σ(w,u`, ⋅) of replicas from G, which are functions in H;

(iii) plug in i.i.d. uniform random variables (vi)i⩾1 to obtain the array σ
`(vi) = σ(w,u`,vi);

(iv) use the random variables (xi,`)i,`⩾1 to generate (σ `
i )i,`⩾1 by flipping a coin with expected value σ

`(vi),

σ
`
i ∶= 21{xi,` ⩽

1+σ
`(vi)

2
}−1. (5.55)

This suggests that the asymptotic Gibbs average ⟨⋅⟩ should be the average with respect to the random variables
(u`)`⩾1 and (xi,`)i,`⩾1 that depend on the replica indices,

⟨⋅⟩ ∶=E(u`),(xi,`). (5.56)

It also suggests that the asymptotic multioverlap should be

R∞`1,...,`n
(w,(u` j) j⩽n) ∶=Ev∏

j⩽n
σ(w,u` j ,v) =

ˆ 1

0
∏
j⩽n

σ(w,u` j ,v) dv. (5.57)

This intuition is confirmed by the two following results adapted from Section 3.5 and the Appendix in [15].

Lemma 5.8. For any finite set of n replicas and every collection {C`}`⩽n of finite indices,

lim
δ→0

E∏
`⩽n
⟨∏

i∈C`
σ
`
i ⟩

G(δ)
=Ew,(vi)∏

`⩽n
⟨∏

i∈C`
σ
`
i ⟩. (5.58)

Proof. Let C ∶= {(i,`) ∣ ` ⩽ n and i ∈ C`}. By the weak convergence of finite-dimensional marginal distributions,

lim
δ→0

E∏
`⩽n
⟨∏

i∈C`
σ
`
i ⟩

G(δ)
= lim

δ→0
E⟨ ∏
(i,`)∈C

σ
`
i ⟩

G(δ)
=E ∏

(i,`)∈C
σ(w,u`,vi,xi,`) =Ew,(vi)∏

`⩽n
⟨∏

i∈C`
σ
`
i ⟩,

where the notation (5.56) has been used. ∎

Lemma 5.9. For any collection of sets {Li}i⩾1 only finitely many of which are not empty,

lim
δ→0

E⟨∏
i⩾1

RLi⟩G(δ) =Ew⟨∏
i⩾1

R∞Li
⟩. (5.59)
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Proof. Write N ⩾ ⌊δ−1⌋ for the unique integer with G(δ) ∈ Gs
N , and suppose without loss of generality that the

sets Li for i ⩽ j are not empty while the sets Li for i > j are empty. From (5.34),

E⟨∏
i⩾1

RLi⟩G(δ) =
1

N j ∑
i1,...,i j

E⟨ ∏
`1∈L1

⋯ ∏
` j∈L j

σ
`1
i1
⋯σ

` j
i j
⟩

G(δ)
.

The number of terms in this sum for which at least two of the indices i1, . . . , i j are equal is of order N j−1, and is
therefore negligible in the limit. Moreover, the symmetry between sites (5.33) implies that whenever i1, . . . , i j

are all distinct,

E⟨ ∏
`1∈L1

⋯ ∏
` j∈L j

σ
`1
i1
⋯σ

` j
i j
⟩

G(δ)
=E⟨ ∏

`1∈L1

⋯ ∏
` j∈L j

σ
`1
1 ⋯σ

` j
j ⟩G(δ) =E⟨∏i⩾1

∏
`∈Li

σ
`
i ⟩

G(δ)
.

(This seems to fix a small typo in the second-to-last display of the Appendix in [15]). Combining these two
observations shows that

lim
δ→0

E⟨∏
i⩾1

RLi⟩G(δ) =Ew,(u`)∏
i⩾1

Evi ∏
`∈Li

Exi,`σ(w,u`,vi,xi,`) =Ew,(u`)∏
i⩾1

R∞Li
.

This completes the proof. ∎

In the notation of (5.56) and (5.57), the asymptotic version of (5.48) and (5.49) therefore reads that for
any k ⩾ 1 and fn ∈ Fn,

E⟨(R∞1 )2⟩ = (E⟨R∞1 ⟩)
2
, E⟨(R∞1,2)2⟩ = (E⟨R∞1,2⟩)

2
, (5.60)

EE◇
⟨ fnd1

k exp(∑`⩽n θ
`
k )⟩

⟨exp(θk)⟩n
=EE◇⟨ fn⟩EE◇

⟨dk exp(θk)⟩
⟨exp(θk)⟩

, (5.61)

while the asymptotic version of (5.50) becomes that for some 1 ⩽m ⩽ ⌊ε−1⌋,

E⟨(R∞1,...,m−E⟨R∞1,...,m⟩)2⟩ > ε. (5.62)

The two most important consequences of the identities (5.60) and (5.61) that will lead to multioverlap
concentration are now derived. On the one hand, the concentration of the overlap implies that the system lies in
a “thermal pure state”, and that the function σ(w,u,v) is therefore almost surely independent of u. The proof
of this fact is taken from Theorem 3.1 in [91]. On the other hand, the asymptotic Franz-de Sanctis identities in
(5.61) imply a decoupling property of the asymptotic Gibbs measure. This is lemma 3.5 in [15].

Lemma 5.10. If E⟨(R∞1,2)2⟩ = (E⟨R∞1,2⟩)2, then for almost all u,v,w ∈ [0,1],

σ(w,u,v) =Euσ(w,u,v). (5.63)

Proof. Denote by ⋅ the inner product on the Hilbert space (5.54),

σ
1 ⋅σ2 =Evσ

1(w,u1,v)σ2(w,u2,v) = R∞1,2,
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and observe that

0 =Ew,(u`)(R
∞
1,2)

2−Ew,(u`)R
∞
1,2R∞3,4 =EwVar(u`)σ

1 ⋅σ2.

It follows that for almost all w ∈ [0,1], the inner product σ
1 ⋅σ2 of any two replicas sampled from the Gibbs

measure Gw is constant almost surely. In other words, the measure Gw is concentrated on a single function
which may depend on w. This completes the proof. ∎

Lemma 5.11 (A decoupling lemma). Fix λ ∈ {λk ∣ k ⩾ 1}. If e1,e2 are independent Exp(1) random variables

and, for j = 1,2,

y j ∶=
e j

1+λσ◇j
, θ j ∶= log(1+λσ j)−λy jσ j, and d j ∶=

y jσ j

1+λσ◇j
, (5.64)

then

EE◇
⟨d1 exp(θ1)d2 exp(θ2)⟩
⟨exp(θ1)exp(θ2)⟩

=EE◇
⟨d1 exp(θ1)⟩
⟨exp(θ1)⟩

EE◇
⟨d2 exp(θ2)⟩
⟨exp(θ2)⟩

. (5.65)

Proof. The proof follows Lemma 3.5 in [15]. Fix M > 1 large, and consider the set A ∶= {e2 ∣ 0 ⩽ e2 ⩽M} on
which the random variable e2 is bounded by M. On this set, one has ∣θ j ∣ ⩽Mλ for some constant Mλ < +∞, so
the denominator on the right side of the expression

⟨d1 exp(θ1)d2 exp(θ2)⟩
⟨exp(θ1)exp(θ2)⟩

= ⟨d1 exp(θ1)d2 exp(θ2)⟩/⟨exp(θ1)⟩
⟨exp(θ1)exp(θ2)⟩/⟨exp(θ1)⟩

(5.66)

lies in the interval I ∶= [exp(−3Mλ ),exp(3Mλ )]. At this point fix ε > 0, and use the Weierstrass approximation
theorem (Exercise A.6 in [50]) to find a polynomial P(x) ∶=∑r

n=0 cnxn that uniformly approximates the function
x↦ 1/x on the compact interval I, within error ε . Observing that d1, d2, θ1, and θ2 are bounded on A by some
constant that depends on M reveals that

⟨d1 exp(θ1)d2 exp(θ2)⟩
⟨exp(θ1)exp(θ2)⟩

1{e2 ∈ A} = ⟨d1 exp(θ1)d2 exp(θ2)⟩
⟨exp(θ1)⟩

P(⟨exp(θ1)exp(θ2)⟩
⟨exp(θ1)⟩

)1{e2 ∈ A}+O(ε)

=
r

∑
n=0

cn
⟨d1 exp(θ1)d2 exp(θ2)⟩

⟨exp(θ1)⟩
(⟨exp(θ1)exp(θ2)⟩

⟨exp(θ1)⟩
)

n

1{e2 ∈ A}+O(ε)

=
r

∑
n=0

cn
⟨d1

1 exp(∑`⩽n+1 θ
`
1)d1

2 exp(∑`⩽n+1 θ
`
2)⟩

⟨exp(θ1)⟩n+1 1{e2 ∈ A}+O(ε).

Applying (5.61) for each 0 ⩽ n ⩽ r to the function fn+1 ∶= d1
2 exp(∑`⩽n+1 θ

`
2) for a fixed e2, and then averaging

over the randomness of e2 gives

EE◇
⟨d1 exp(θ1)d2 exp(θ2)⟩
⟨exp(θ1)exp(θ2)⟩

1{e2 ∈ A} =EE◇
⟨d1 exp(θ1)⟩
⟨exp(θ1)⟩

EE◇⟨d2 exp(θ2)⟩P(⟨exp(θ2)⟩)1{e2 ∈ A}+O(ε)

=EE◇
⟨d1 exp(θ1)⟩
⟨exp(θ1)⟩

EE◇
⟨d2 exp(θ2)⟩
⟨exp(θ2)⟩

1{e2 ∈ A}+O(ε),

where the second equality uses that P uniformly approximates x↦ 1/x on the compact interval I, within error
ε , and that d1,d2,θ1,θ2 are bounded on A by some constant that depends on M. Letting ε tend to zero, and
then letting M tend to infinity completes the proof. ∎

The second identity in (5.60) therefore implies that, instead of the equality in distribution (5.51), it is
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actually the case that
(σ `

i )i,`⩾1
d= (σ(w,vi,xi,`))i,`⩾1 (5.67)

for any function σ ∶ [0,1]3 → {−1,+1} such that
´ 1

0 σ(w,v,x) dx = σ(w,v). In particular, the Gibbs average
(5.56) simplifies to

⟨⋅⟩ =E(xi,`) (5.68)

while the multioverlap (5.57) becomes

R∞`1,...,`n
(w) =Ev∏

j⩽n
σ(w,v) =Ev(σ(w,v)n) =

ˆ 1

0
σ(w,v)n dv. (5.69)

The absurd hypothesis (5.50) may now be contradicted, thus establishing Proposition 5.4. The calculations are
very similar in spirit to those in [93, 94], and are taken from Theorem 2.2 in [15].

Proof of Proposition 5.4. The proof follows that of Theorem 2.2 in [15]; full details are not provided, and
instead, the reader is encouraged to consult [15]. Recall from (5.67) that σ j = σ(w,v j,x j) and σ

◇
j = σ(w,v j,x◇j ).

Since all random variables indexed by j = 1,2 are independent, denoting by E∣w =E(e j),(v j),x j ,x◇j
the conditional

expectation given w, and introducing the random variable

Y(w) ∶=E∣w
⟨d1 exp(θ1)⟩
⟨exp(θ1)⟩

=E∣w
y1

1+λσ◇1

⟨σ1 exp(θ1)⟩
⟨exp(θ1)⟩

,

which depends implicitly on λ through y1 and θ1, transforms (5.65) into

E(E∣w
⟨d1 exp(θ1)⟩
⟨exp(θ1)⟩

)(E∣w
⟨d2 exp(θ2)⟩
⟨exp(θ2)⟩

)−(E ⟨d1 exp(θ1)⟩
⟨exp(θ1)⟩

)(E ⟨d2 exp(θ2)⟩
⟨exp(θ2)⟩

) =EVar∣wY(w) = 0.

This means that Y =EY almost surely. To exploit this fact, through a slight abuse of notation, write σ for σ1

and observe that conditionally on σ
◇
1 ,

Y(w) =E∣w
ˆ +∞

0
⟨exp(−λσy)⟩⟨σ(1+λσ)exp(−λyσ)⟩

⟨(1+λσ)exp(−λyσ)⟩ yexp(−y) dy.

Using the analyticity of both

gw ∶ γ ↦ gw(γ) ∶=E∣w
ˆ +∞

0
⟨exp(−γσy)⟩⟨σ(1+ γσ)exp(−γyσ)⟩

⟨(1+ γσ)exp(−γyσ)⟩ yexp(−y) dy

for a fixed w as well as its w-expectation Egw(γ), it is possible to deduce that Y(w) =EY for all λ in a small
neighbourhood of the origin. With this in mind, introduce the random variable

Z(w) ∶=E∣w
ˆ +∞

0
⟨σ(1+λσ)exp(−λσ)⟩yexp(−y) dy

which is deterministic by the first identity in (5.60). This implies that the random variable

X(w) ∶= Z(w)−Y(w)
λ

=E∣w
ˆ +∞

0
⟨σ exp(−λyσ)⟩⟨σ(1+λσ)exp(−λyσ)⟩

⟨(1+λσ)exp(−λyσ)⟩ yexp(−y) dy

is deterministic for all λ in a small neighbourhood of the origin. In particular, all its λ -derivatives are also
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independent of w. It will now be deduced from this observation that all multioverlaps concentrate. Given n ⩾ 1,
applying ∂

n

∂λ n to the denominator in the expression inside the integral defining X and evaluating at λ = 0 yields
the term

n!R1,...,n+2Ee(e−1)n,

where e is an Exp(1) random variable. Since Ee(e−1)n = E(e−1)n+1+E(e−1)n > 0 for all n ⩾ 1, the term
obtained by applying all derivatives to the denominator in the expression inside the integral defining X produces
the multioverlap R∞1,...,n+2. If along the way a derivative of λ is applied to any factor other than the denominator,
this will not create a new replica, so all those terms will produce a linear combination of multioverlaps on
strictly less than n+2 replicas which by induction is assumed to be independent of w. This establishes the
concentration of all multioverlaps and contradicts (5.50), thus completing the proof. ∎

At the end of Chapter 3, two main obstacles stood in the way of asserting that the limit of the enriched free
energy (3.30) should satisfy the infinite-dimensional Hamilton-Jacobi equation (3.91) subject to the initial
condition (3.92). The first was that infinite-dimensional Hamilton-Jacobi equations of this form had not been
well-studied in the literature. This was resolved in Chapter 4. The second was that the concentration (3.75) of
the multioverlaps (3.41) was not expected to hold for all choices of parameters. This has been addressed in
this chapter. The Hamilton-Jacobi approach can now be applied to the sparse stochastic block model to prove
Theorems 1.6 and 1.7.



Chapter 6

A Hamilton-Jacobi approach to the
sparse stochastic block model

In this chapter, the Hamilton-Jacobi approach is finally used to analyze the sparse stochastic block model
and establish Theorems 1.6 and 1.7. In Section 6.1, the well-posedness result in Theorem 4.4 for infinite-
dimensional Hamilton-Jacobi equations of the form (4.6) is leveraged to make sense of the Hamilton-Jacobi
equation (3.91) derived in Chapter 3 for the sparse stochastic block model. The solution to this infinite-
dimensional Hamilton-Jacobi equation is therefore defined as the limit of the solutions to a family of projected
Hamilton-Jacobi equations each posed on a positive half-space as the dimension parameter tends to infinity.
The key step in proving Theorem 1.6 is to show that an adequately projected version of the finite-volume
free energy in the sparse stochastic block model is an approximate solution to each of these projected
Hamilton-Jacobi equations in a sense similar to that in Proposition 2.27. The error term in this approximate
Hamilton-Jacobi equation is controlled using similar arguments to those in Lemma 2.29, and, in particular,
requires a result on the concentration of the free energy in the sparse stochastic block model. This concentration
result is established in Section 6.2. In Section 6.3, this concentration result is combined with the multioverlap
concentration results in Chapter 5 to show that an adequately projected and perturbed version of the enriched
free energy in the sparse stochastic block model is an approximate solution to each of the projected Hamilton-
Jacobi equations. Together with the comparison principle in Theorem 4.1, this leads to an upper bound on
the limit of the free energy, and therefore a proof of Theorem 1.6. In Section 6.4, this upper bound on the
limit of the free energy is combined with the infinite-dimensional Hopf-Lax formula in Theorem 4.5 and
a simple interpolation argument to determine a variational formula for the limit of the free energy in the
disassortative sparse stochastic block model, thereby proving Theorem 1.7. Finally, in Section 6.5, a brief
discussion on the relation between the results of this thesis and other works in the literature is provided. Some
of the author’s perspectives on the hurdles that still need to be overcome before tackling the matching upper
bound in Theorem 1.6 and closing Conjecture 1.4 are also given. This chapter parallels Section 2.5 of Chapter
2, and its contents rely heavily on Sections 4 and 5 of [49].

6.1 Revisiting the stochastic block model Hamilton-Jacobi equation

In Chapter 3, it was argued that the limit of the enriched free energy (3.30) in the sparse stochastic block
model should be the unique solution to the infinite-dimensional Hamilton-Jacobi equation (3.91). At that

149
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point, this statement made little rigorous sense since it was still very unclear what it means to be a solution
to the infinite-dimensional Hamilton-Jacobi equation (3.91). Using the results of Chapter 4, and specifically
Theorem 4.4, this can now be clarified by verifying that the initial condition (3.92) in the sparse stochastic
block model satisfies assumptions (H2), (H3’), and (H4). It will be convenient to recall the definition of the
kernel g in (3.68), of the closed convex set K=a,K in (4.21), and of its neighbourhood K′=a,K in (4.22).

Lemma 6.1. The initial condition ψ defined in (3.92) satisfies (H2), (H3’), and (H4) with a = 1.

Proof. Recall that Lemma 3.9 implies the existence of a constant C < +∞ which depends only on c and ∆ such
that for every integer N ⩾ 1, µ ∈M+ and t ⩾ 0,

∣Dµ FN(t,µ,x)∣ ⩽C and ∣∂xDµ FN(t,µ,x)∣ ⩽C. (6.1)

To establish (H2), notice that for every integer N ⩾ 1 and µ,ν ∈M+,

ψN(µ)−ψN(ν) =
ˆ 1

0
Dµ ψN(ν + t(µ −ν);µ −ν) dt =

ˆ 1

0

ˆ 1

−1
ft(x) d(µ −ν)(x) dt

for the continuously differentiable function ft(x) ∶=Dµ ψN(ν + t(µ −ν),x). To bound this integral by the total
variation distance, let η ∶= µ −ν ∈Ms, and use the Hahn-Jordan decomposition (Theorem 3.4 in [57]) to
write η = η

+−η
− for measures η

+,η− ∈M+ with the property that for some measurable set D ⊆ [−1,1] and
all measurable sets E ⊆ [−1,1], one has η

+(E) = η(E ∩D) ⩾ 0 and η
−(E) = −η(E ∩Dc) ⩾ 0. The triangle

inequality and the first bound in (6.1) imply that

∣ψN(µ)−ψN(ν)∣ ⩽ ∣
ˆ 1

0

ˆ 1

−1
ft(x) dη

+(x)∣+ ∣
ˆ 1

0

ˆ 1

−1
ft(x) dη

−(x)∣ ⩽C(η+[−1,1]+η
−[−1,1])

⩽ 2CTV(µ,ν).

Using Proposition 3.12 to let N tend to infinity establishes (H2). To prove (H3’) with a = 1, notice that by
(4.12) and (3.65), for every y ∈RDK

⩾0 , there exists some probability measure µ
∗ ∈ Pr[−1,1] with

∂xk ψ
(K)
N (y) = 1

∣DK ∣
Dµ ψN(µ(K)y ,k) = 1

∣DK ∣
Gµ∗(k)+O(N−1).

If µ
∗
K ∶= µ

(K)
x(K)(µ∗) ∈M

(K)
+ denotes the projection of µ

∗ ontoM(K)
+ , then the mean value theorem implies that

∣Gµ∗(k)−Gµ∗K
(k)∣ ⩽ ∑

k′∈DK

ˆ k′+2−K

k′
∣g(ky)−g(kk′)∣ dµ

∗(y) ⩽ ∥g
′∥L∞
2K ,

where it has been used that µ
∗
K(k′) = µ

∗[k′,k′+2−K) for every dyadic k′ ∈DK . This means that

∂xk ψ
(K)
N (y) = 1

∣DK ∣
Gµ∗K
(k)+O(2−2K)+O(N−1) =G(K)x(K)(µ∗K)k +O(2−2K)+O(N−1)

so, for K large enough, one has ∇ψ
(K)
N (y) =w+O(N−1) for some w ∈K′=1,K . At this point fix c ∈ R

and x,x′ ∈Rd with (x′ − x) ⋅ z ⩾ c for every z ∈K′=1,K . The fundamental theorem of calculus reveals that
ψ
(K)
N (x′)−ψ

(K)
N (x) ⩾ c+O(N−1). Using Proposition 3.12 to let N tend to infinity and invoking Proposition

A.2 gives (H3’) with a = 1. Finally, (H4) is a consequence of Lemma 3.10 and Proposition 3.12. ∎
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Together with Theorem 4.4, this result establishes the well-posedness of the infinite-dimensional Hamilton-
Jacobi equation (3.91) stated in Theorem 1.5. To establish the lower bound on the mutual information in
Theorem 1.6, it will be important to unwrap this well-posedness result and express the unique solution f to the
Hamilton-Jacobi equation (3.91) as a limit of solutions to projected equations as in Theorem 4.2. Fix b > 0
large enough so that the modified kernel

g̃b(z) ∶= g(z)+b (6.2)

is strictly positive, and introduce the shifted initial condition ψ̃b ∶M+→R defined by

ψ̃b(µ) ∶=ψ(µ)+b
ˆ 1

−1
dµ (6.3)

as in (4.50) with a = 1. In the spirit of (4.131) - (4.134), introduce the symmetric matrix

G̃(K)b ∶= 1
∣DK ∣2

(g̃b(kk′))k,k′∈DK
∈RDK×DK , (6.4)

the projected cone
C̃b,K ∶= {G̃(K)b x ∈RDK ∣ x ∈RDK

⩾0 }, (6.5)

the projected non-linearity C̃b,K ∶ C̃b,K →R defined by

C̃b,K(G̃(K)b x) ∶= 1
2

G̃(K)b x ⋅x = 1
2∣DK ∣2

∑
k,k′∈DK

g̃b(kk′)xkxk′ , (6.6)

and the closed convex set

K̃=1,b,K ∶= {G̃(K)b x ∈RDK ∣ x ∈RDK
⩾0 and ∣∣∣x∣∣∣1 = 1}. (6.7)

Recall the notation BK,R in (4.23) for the ball of radius R centred at the origin in DK with respect to the
normalized-`1,∗ norm. Invoking Proposition 4.8 gives a uniformly Lipschitz continuous and non-decreasing
non-linearity H̃b,K,R which agrees with C̃b,K on C̃b,K ∩BK,R. Theorem 4.4 ensures that the Hamilton-Jacobi
equation

∂t f̃ (K)(t,x) = H̃b,K,R(∇ f̃ (K)(t,x)) on R>0×RDK
>0 (6.8)

subject to the initial condition f̃ (K)(0, ⋅) = ψ̃
(K)
b (⋅) defined according to (4.13), admits a unique solution

f̃ (K)b,R ∈Lunif which satisfies the Lipschitz bound

sup
t>0
∣∣∣ f̃ (K)b,R (t, ⋅)∣∣∣Lip,1

= ∣∣∣ψ̃(K)b ∣∣∣Lip,1 ⩽ ∥ψ̃b∥Lip,TV, (6.9)

and has its gradient in the closed convex set K̃=1,b,K . It also guarantees that, provided R > ∥ψ̃b∥Lip,TV, the
solution to the infinite-dimensional Hamilton-Jacobi equation (3.91) is given by

f (t,µ) ∶= lim
K→+∞

( f̃ (K)b,R (t,x
(K)(µ))−b∣∣∣x(K)(µ)∣∣∣1−

bt
2
), (6.10)

and that this limit does not depend on b or R.
To establish Theorem 1.6, the idea will be to show that an adequately projected, perturbed, and shifted



CHAPTER 6. A HAMILTON-JACOBI APPROACH TO THE SPARSE STOCHASTIC BLOCK MODEL 152

version of the enriched free energy (3.30) is an approximate viscosity subsolution to the Hamilton-Jacobi
equation (6.8). This will be achieved by deriving an approximate Hamilton-Jacobi equation for this quantity
similar to that in Proposition 2.27. Controlling the error term in this approximate equation will require a
concentration result for the perturbed free energy in the sparse stochastic block model.

6.2 Establishing the concentration of the free energy

The concentration of the free energy will be combined with the finitary multioverlap result in Chapter 5 to
establish Theorem 1.6. This will mean that the concentration result required is for the perturbed enriched
free energy (3.30). Fix an integer K+ ⩾ 1 that will be chosen large enough in the course of this chapter, and
write λ ∶= (λ0,λ1, . . . ,λK+) for a perturbation parameter with λk ∈ [2−k−1,2−k] for 0 ⩽ k ⩽K+. Fix a sequence
(εN)N⩾1 with εN ∶=Nγ for some −1/8 < γ < 0 as well as a sequence (sN)N⩾1 with sN ∶=Nη for some 4/5 <η < 1,
and observe that these sequences satisfy (5.9) and (5.10). Recall the definition of the Gaussian perturbation
Hamiltonian Hgauss

N (σ ,λ0) =H0 in (5.7) and of the exponential perturbation HamiltoniansHk and Hexp
N (σ ,λ)

in (5.11), and introduce the perturbed Hamiltonian

HN(σ ,λ) ∶=Ht,µ
N (σ)+Hgauss

N (σ ,λ0)+Hexp
N (σ ,λ), (6.11)

where the randomness of each of the Hamiltonians in the sum is independent of the randomness of the other
Hamiltonians. Just like in the settings of the symmetric rank-one matrix estimation problem and of the sparse
stochastic block model, the Gibbs measure (5.15) associated with this perturbed Hamiltonian is a conditional
expectation in the sense of (3.32), and therefore satisfies the Nishimori identity (Proposition 2.2). Arguing as
in Lemma 5.1 shows that the perturbed free energy associated with the Hamiltonian (6.11) is asymptotically
equivalent to the enriched free energy (3.30) in the sparse stochastic block model. Through a slight abuse of
notation, it will therefore be convenient to write

FN(t,µ,λ) ∶=
1
N

log
ˆ

ΣN

expHN(σ ,λ) dP∗N (σ) and FN(t,µ,λ) ∶=EFN(t,µ,λ) (6.12)

for this perturbed free energy and its average. The main result of this section is that for each even p ⩾ 2, the
concentration function

vN,p ∶= sup{E∣FN(t,µ,λ)−FN(t,µ,λ)∣
p ∣ λk ∈ [2−k−1,2−k] for all k ⩾ 0} (6.13)

is of order N−p/2. For simplicity of notation, the spatial component (3.20) of the enriched Hamiltonian
(3.29) will be dropped, and the concentration of the free energy will instead be established for the perturbed
Hamiltonian

H′N(σ ,λ) ∶=Ht
N(σ)+Hgauss

N (σ ,λ0)+Hexp
N (σ ,λ). (6.14)

This means that the free energy

F ′N ∶=
1
N

log
ˆ

ΣN

expH′N(σ ,λ) dP∗N (σ) (6.15)
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will be shown to concentrate about its average

F
′
N =

1
N
E log

ˆ
ΣN

expH′N(σ ,λ) dP∗N (σ). (6.16)

More precisely, for each even p ⩾ 2, the concentration function

v′N,p ∶= sup{E∣F ′N −F
′
N ∣

p ∣ λk ∈ [2−k−1,2−k] for all k ⩾ 0} (6.17)

will be shown to be of order N−p/2. A bound on the more general concentration function vN,p can be obtained
identically, but the notation becomes too cumbersome for comfort. The main tool to establish the concentration
of the perturbed free energy will be the generalized Efron-Stein inequality (Theorem 15.5 in [20]) stated here
for convenience.

Lemma 6.2 (Generalized Efron-Stein inequality). Let X ∶= (X1, . . . ,Xn) and X ′ ∶= (X ′1, . . . ,X ′n) be two inde-

pendent copies of a vector of independent random variables, and let f ∶Rn →R be a measurable function.

Introduce the random variable Z ∶= f (X), and for each 1 ⩽ i ⩽ n let Z′i ∶= f (X1, . . . ,Xi−1,X ′i ,Xi+1, . . . ,Xn). If

q ⩾ 2, then there exists a constant C < +∞ that depends only on q such that

E∣Z−EZ∣q ⩽CE∣∑
i⩽n

EX ′(Z−Z′i )2∣
q
2
. (6.18)

It will often be useful to make the dependence of the perturbed Hamiltonian (6.14) on one of its sources of ran-
domness σ

∗, Πt , I1 ∶= (ik, jk)k⩽Πt , G ∶= (Gk
ik, jk
)k⩽Πt , e ∶= (e jk), Π

′ ∶= (πk)k⩾0, I2 ∶= (i jk) j⩽Π′ , and Z ∶= (Z0,i)i⩽N

explicit. Through a slight abuse of notation, it will be convenient to write H′N(X) when the dependence on the
source of randomness X wants to be studied. A key observation that will be used repeatedly without further
explanation is the following: given two sources of randomness X and X ′, a configuration-independent bound
on the difference of the Hamiltonians H′N(X) and H′N(X ′),

max
σ∈ΣN
∣H′N(X)−H′N(X ′)∣ ⩽Y, (6.19)

gives a control by the possibly random Y on the difference of the free energy functionals F ′N(X) and F ′N(X ′)
associated with these Hamiltonians,

∣F ′N(X)−F ′N(X ′)∣ ⩽
Y
N
. (6.20)

The key concentration result on the perturbed free energy is the following.

Proposition 6.3. For every even p ⩾ 2, there exists a constant C < +∞ that depends only on p, c and ∆ such

that

v′N,p ⩽
C(1+ t p)

N p/2 . (6.21)

Proof. To alleviate notation, write C < +∞ for a constant that depends only on p, c, and ∆ whose value might
change during the argument. Given a source of randomness X , write EX for the average with respect to the
randomness of X . The proof will rely upon the generalized Efron-Stein inequality in Lemma 6.2 and the fact
that

E =Eσ∗EZEΠ′EI2EeEΠtEI1EG∣σ∗ .
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To break down the proof into steps, introduce the averaged free energy functionals

F̂ ′N =EΠtEI1EG∣σ∗F ′N and F̃ ′N =EZEΠ′EI2EeF̂ ′N

in such a way that

E(F ′N −F
′
N)

p ⩽C(E(F ′N − F̂ ′N)
p+E(F̂ ′N − F̃ ′N)

p+E(F̃ ′N −F
′
N)

p). (6.22)

The proof now proceeds in three steps, each showing that one of the terms in this sum is of order N−p/2.

Step 1: proving E(F ′N − F̂ ′N)
p =O((t/N)p/2). The first term in (6.22) is bounded from above by

C(E(F ′N −EG∣σ∗F ′N)
p+E(EG∣σ∗F ′N −EI1EG∣σ∗F ′N)

p+E(EI1EG∣σ∗F ′N − F̂ ′N)
p) =∶C(I+ II+ III), (6.23)

and each of the terms I, II and III is now bounded individually. By the generalized Efron-Stein inequality

I ⩽CE∣ ∑
`⩽Πt

EG(`)∣σ∗(F
′
N(G)−F ′N(G(`)))

2
∣
p/2

,

where (G̃(`)i, j )i, j⩾1 is an independent copy of (G(`)i, j )i, j⩾1. Since ∣∆∣ < c and all spin configuration coordinates
are bounded by one,

∣H′N(G)−H′N(G(`))∣ ⩽ ∣log(c+∆σi`σ j`)∣∣G
`
i`, j` − G̃`

i`, j` ∣+ ∣ log(1− c+∆σi`σ j`

N
)∣∣G`

i`, j` − G̃`
i`, j` ∣

⩽C∣G`
i`, j` − G̃`

i`, j` ∣.

It follows that

I ⩽ C
N pE∣ ∑

`⩽Πt

EG(`)∣σ∗ ∣G
`
i`, j` − G̃`

i`, j` ∣
2∣

p/2
⩽ C

N pE∣ ∑
`⩽Πt

((1− 2
N
)G`

i`, j` +
1
N
)∣

p/2

⩽ C
N p (E∣ ∑

`⩽Πt

G`
i`, j` ∣

p/2
+ 1

N p/2EΠ
p/2
t ).

By the Poisson colouring theorem (Proposition A.16), conditionally on σ
∗ and I1, the random variable

∑`⩽Πt G`
i`, j` is Poisson with mean EΠt

c+∆σ
∗
i`

σ
∗
j`

N . Invoking the Poisson moment bound in Lemma A.14 yields

I ⩽ C

N p+ p
2
EΠ

p/2
t ⩽ Ct p/2

N p/2 . (6.24)

Another application of the generalized Efron-Stein inequality gives

II ⩽E∣ ∑
`⩽Πt

EI(`)1
(EG∣σ∗F ′N(I1)−EG∣σ∗F ′N(I

(`)
1 ))

2
∣
p/2

,

where I(`)1 has an independent copy (i′`, j′`) of (i`, j`) at the `’th coordinate but otherwise coincides with I1.
Taylor expanding the logarithm and remembering that G`

i`, j` ∈ {0,1}, it is readily verified that

∣H′N(I1)∣ ⩽ ∣G`
i`, j` ∣∣log(c+∆σi`σ jl)∣+ ∣1−G`

i`, j` ∣∣ log(1− c+∆σi`σ j`

N
)∣ ⩽C(∣G`

i`, j` ∣+
1
N
).
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This means that ∣H′N(I1)−H′N(I
(`)
1 )∣ ⩽C(∣G`

i`, j` ∣+ ∣G
`
i′
`
, j′
`
∣+ 1

N ), and therefore

(EG∣σ∗F ′N(I1)−EG∣σ∗F ′N(I
(`)
1 ))

2
⩽ C

N2 (EG∣σ∗ ∣G
`
i`, j` ∣+EG∣σ∗ ∣G

`
i′
`
, j′
`
∣+ 1

N
)

2
⩽ C

N4 .

It follows that

II ⩽ C
N2pEΠ

p/2
t ⩽ Ct p/2

N p ⩽
Ct p/2

N p/2 . (6.25)

A final application of the generalized Efron-Stein inequality reveals that

III ⩽E∣EΠ′t
(EI1EG∣σ∗F ′N(Πt)−EI1EG∣σ∗F ′N(Π′t))

2∣
p/2

,

where Π
′
t is an independent copy of Πt . Slightly abusing notation and redefining Π

′
t to be the maximum

between Πt and Π
′
t , it is readily verified that

∣H′N(Π′t)−H′N(Πt)∣ ⩽ ∑
Πt⩽k⩽Π′t

(∣Gk
ik, jk ∣∣log(c+∆σik σ jk)∣+ ∣1−Gk

ik, jk ∣∣ log(1−
c+∆σik σ jk

N
)∣)

⩽C ∑
Πt⩽k⩽Π′t

(∣Gk
ik, jk ∣+

1
N
).

It follows that

∣EI1EG∣σ∗F ′N(Πt)−EI1EG∣σ∗F ′N(Π′t)∣ ⩽
C
N
EI1EG∣σ∗ ∑

Πt⩽k⩽Π′t

(∣Gk
ik, jk ∣+

1
N
) ⩽ C

N2 ∣Π
′
t −Πt ∣,

and by Jensen’s inequality and the Poisson moment bound in Lemma A.14,

III ⩽ C
N2pE∣EΠ′t

∣Π′t −Πt ∣2∣
p/2 ⩽ C

N2pE∣Πt −EΠt ∣p ⩽
Ct p/2

N p ⩽
Ct p/2

N p/2 . (6.26)

Combining (6.23)-(6.26) reveals that E(F ′N − F̂ ′N)
p =O((t/N)p/2).

Step 2: proving E(F̂ ′N − F̃ ′N)
p =O(N−p/2). The second term in (6.22) is bounded from above by

C(E(F̂ ′NEeF̂ ′N)
p+E(EeF̂ ′N −EI2EeF̂ ′N)

p+E(EI2EeF̂ ′N −EΠ′EI2EeF̂ ′N)
p+E(EΠ′EI2EeF̂ ′N − F̃ ′N)

p)

=∶C(I+ II+ III+ IV), (6.27)

and each of the terms I, II, III, and IV is now bounded individually. By the generalized Efron-Stein inequality

I ⩽E∣∑
k⩾0
∑
j⩽πk

Ee( jk)(F̂ ′N(e)− F̂ ′N(e( jk)))
2
∣
p/2

,

where e( jk) has an independent copy e′jk of e jk at the jk’th coordinate but otherwise coincides with e. Since

∣H′N(e)−H′N(e( jk))∣ ⩽
∣λkσi jk ∣
∣1+λkσ∗i jk

∣
∣e jk −e′jk∣ ⩽

λk

1−λk
∣e jk −e′jk∣,
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and λk ∈ [2−k−1,2−k],
I ⩽ C

N pE∣∑
k⩾0

1
2k ⋅

1
2k ∑

j⩽πk

Ee′jk
∣e jk −e′jk∣

2∣
p/2

.

It follows by two applications of Hölder’s inequality and Jensen’s inequality that

I ⩽ C
N pE∑

k⩾0
( 1

2k ∑
j⩽πk

Ee′jk
∣e jk −e′jk∣

2)
p/2
⩽ C

N pE∑
k⩾0

1

2
kp
2

π

p
2−1

k ∑
j⩽πk

Ee′jk
∣e jk −e′jk∣

p
.

Recalling that e jk ∼ Exp(1) while π jk ∼ Poi(sN), and invoking the Poisson moment bound in Lemma A.14
gives

I ⩽ C
N p ∑

k⩾0

1

2
kp
2

Eπ

p
2

k ⩽C( sN

N2 )
p/2
⩽ C

N p/2 . (6.28)

Similarly, by the generalized Efron-Stein inequality,

II ⩽CE∣∑
k⩾0
∑
j⩽πk

EI( jk)
2
(EeF̂ ′N(I2)−EeF̂ ′N(I

( jk)
2 ))

2
∣
p/2

,

where I( jk)
2 has an independent copy i′jk of i jk at the jk’th coordinate but otherwise coincides with I2. By the

mean value theorem,

∣H′N(I2)−H′N(I
( jk)
2 )∣ ⩽ ∣log(1+λkσi jk)− log(1+λkσi′jk

)∣+λke jk∣
σi jk

1+λkσ∗i jk

−
σi′jk

1+λkσ∗i′jk

∣

⩽Cλk(1+e jk).

It follows once again by two applications of Hölder’s inequality and the Poisson moment bound in Lemma
A.14 that

II ⩽ C
N pE∑

k⩾0

1

2
kp
2

π

p
2−1

k ∑
j⩽πk

(1+e jk)p ⩽C( sN

N2 )
p/2
⩽ C

N p/2 . (6.29)

Another application of the generalized Efron-Stein inequality yields

III ⩽CE∣∑
k⩾0

E
Π′(k)(EI2EeF̂ ′N(Π′)−EI2EeF̂ ′N(Π′(k)))

2
∣
p/2

,

where Π
′(k) has an independent copy π

′
k of πk at the k’th coordinate but otherwise coincides with Π

′. Slightly
abusing notation and redefining Π

′(k) to be the process with the larger k’th coordinate, it is readily verified that

∣H′N(Π′)−H′N(Π′(k))∣ ⩽ ∑
πk⩽ j⩽π′k

∣ log(1+λkσi jk)−
λke jkσi jk

1+λkσ∗i jk

∣

⩽ ∑
πk⩽ j⩽π′k

(∣λkσi jk −
λke jkσi jk

1+λkσ∗i jk

∣+Cλ
2
k )

⩽ ∑
πk⩽ j⩽π′k

(λk∣1−
e jk

1+λkσ∗i jk

∣+Cλ
2
k )

⩽ λk ∑
πk⩽ j⩽π′k

(
∣1−e jk∣+λk

1−λk
+Cλk).
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It follows by two applications of the Cauchy-Schwarz inequality that

III ⩽ C
N pE∑

k⩾0

1

2
kp
2

( ∑
πk⩽ j⩽π′k

(
∣1−e jk∣+λk

1−λk
+Cλk))

p

⩽ C
N pE∑

k⩾0

1

2
kp
2

∣πk −π
′
k∣p−1 ∑

πk⩽ j⩽π′k

(
∣1−e jk∣+λk

1−λk
+Cλk)

p

⩽ C
N p ∑

k⩾0

1

2
kp
2

E∣πk −π
′
k∣p.

Since E∣πk −π
′
k∣p ⩽CE∣πk −Eπk∣p ⩽ sp/2

N by the Poisson moment bound in Lemma A.14, this implies that

III ⩽C( sN

N2 )
p/2
⩽ C

N p/2 . (6.30)

A final application of the generalized Efron-Stein inequality gives

IV ⩽CE∣∑
i⩽N

EZ(i)(EΠ′EI2EeF̂ ′N(Z)−EΠ′EI2EeF̂ ′N(Z(i)))
2
∣
p/2

,

where Z(i) has an independent copy Z′i,0 of Zi,0 at the i’th coordinate but otherwise coincides with Z. Combining
Hölder’s inequality with the bound

∣H′N(Z)−H′N(Z(i))∣ ⩽
√

λ0εN ∣Zi,0−Z′i,0∣

reveals that

IV ⩽C(λ0εN

N
)

p
E∣∑

i⩽N
EZ(i) ∣Zi,0−Z′i,0∣

2∣
p/2
⩽ C

N p N
p
2−1∑

i⩽N
E∣Zi,0−Z′i,0∣

p ⩽ C
N p/2 . (6.31)

Together with (6.27)-(6.30), this shows that E(F̂ ′N − F̃ ′N)
p =O(N−p/2).

Step 3: proving E(F̃ ′N −F
′
N)

p =O((t2/N)p/2). Controlling the final term in (6.22) requires more care since
F̃ ′N depends on σ

∗ both through F ′N and through the conditional expectation EG∣σ∗ . To simplify notation, write
E′ =EZEΠ′EI2EeEΠtEI1 in such a way that by the generalized Efron-Stein inequality

E(F̃ ′N −F
′
N)

p ⩽CE∣∑
`⩽N

E
σ∗,(`)(E

′EG∣σ∗F ′N(σ∗)−E′EG∣σ∗,(`)F
′
N(σ∗,(`)))

2
∣
p/2

⩽CE∣∑
`⩽N

E
σ∗,(`)(E

′EG∣σ∗F ′N(σ∗)−E′EG∣σ∗F ′N(σ∗,(`)))
2
∣
p/2

+CE∣∑
`⩽N

E
σ∗,(`)(E

′EG∣σ∗F ′N(σ∗,(`))−E′EG∣σ∗,(`)F
′
N(σ∗,(`)))

2
∣
p/2

=∶C(I+ II), (6.32)
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where σ
∗,(`) has an independent copy σ̃

∗
` of σ

∗
` at the `’th coordinate but otherwise coincides with σ

∗. Since

∣H′N(σ∗)−H′N(σ∗,(l))∣ ⩽ λ0εN ∣σi∣∣σ∗` − σ̃
∗
` ∣+∑

k⩾1
∑

j∶i jk=`
∣

λke jkσ`

1+λkσ∗`
−

λke jkσ`

1+λkσ̃∗`
∣ ⩽ 2εN +∑

k⩾1
∑

j∶i jk=`

2λ
2
k e jk

(1−λk)2
,

and Ee jk = 1, the Fubini-Tonelli theorem and the basic properties of the multinomial distribution imply that

∣E′EG∣σ∗F ′N(σ∗)−E′EG∣σ∗F ′N(σ∗,(`))∣ ⩽
2εN

N
+ 1

N
EΠ′∑

k⩾1

2λ
2
k

(1−λk)2
EI2 ∣{ j ∶ ik = `}∣

⩽ 2
N
+ 1

N2EΠ′∑
k⩾1

2λ
2
k

(1−λk)2
πk ⩽

2
N
+ sN

N2 ⩽
3
N
.

It follows that
I ⩽C( N

N2 )
p/2
= C

N p/2 . (6.33)

To bound II an interpolation argument will be used. Fix 1 ⩽ ` ⩽N, and condition on all sources of randomness
other than G. For each u ∈ [0,1], G ∈ {0,1}Πt , and k ⩽Πt , let

P1,k
u (G) ∶=Gk(

c+∆σ
∗,u
` σ

∗
jk

N
)+(1−Gk)(1−

c+∆σ
∗,u
` σ

∗
jk

N
),

P2,k
u (G) ∶=Gk(

c+∆σ
∗,u
` σ

∗
ik

N
)+(1−Gk)(1−

c+∆σ
∗,u
` σ

∗
ik

N
),

P3
u (G) ∶=Gk(

c+∆(σ∗,u` )
2

N
)+(1−Gk)(1−

c+∆(σ∗,u` )
2

N
),

where σ
∗,u
` ∶= (1−u)σ∗` +uσ̃

∗
` . Write σ

∗,u for the configuration with `’th coordinate σ
∗,u
` which otherwise

coincides with σ
∗, and introduce the sets

I1
1 ∶= {k ∣ ik = l and jk ≠ l}, I3

1 ∶= {k ∣ ik = jk = l},
I2

1 ∶= {k ∣ ik ≠ l and jk = l}, I4
1 ∶= {k ∣ ik ≠ l ≠ jk}.

Let G̃ ∶= (Gk)k∈I4
1
, G(k) ∶= G ∖Gk, G̃ ∶= (Gk)k∈I4

1
and G(k) ∶=G∖Gk, and define the interpolating free energy

ϕ(u) ∶= ∑
G∈{0,1}Πt

F ′N(σ∗,(`),G)P{G̃ = G̃∣σ∗} ⋅∏
k∈I1

1

P1,k
u (G)∏

k∈I2
1

P2,k
u (G)∏

k∈I3
1

P3,k
u (G)

in such a way that ϕ(1) =EG∣σ∗F ′N(σ∗,(`)) and ϕ(0) =EG∣σ∗,(`)F ′N(σ∗,(`)). By the product rule,

ϕ
′(u) = ∑

k∈∪i⩽3Ii
1

∑
G∈{0,1}Πt

F ′N(σ∗,(`),G)P{G(k) =G(k)∣σ∗,u}(2Gk −1)

⎛
⎝

∆(σ̃∗` −σ
∗
` )(σ∗jk 1{k ∈ I1

1}+σ
∗
ik 1{k ∈ I2

1}+2σ
∗,u
` 1{k ∈ I3

1})
N

⎞
⎠

= ∑
k∈I1

1

Dk
∆(σ̃∗` −σ

∗
` )σ∗jk

N
+ ∑

k∈I2
1

Dk
∆(σ̃∗` −σ

∗
` )σ∗ik

N
+ ∑

k∈I3
1

Dk
2∆((1−u)σ∗` +uσ̃

∗
` )(σ̃∗` −σ

∗
` )

N
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for Dk ∶=EG(k)∣σ∗,uF ′N(σ∗,(`),G(k),Gk = 1)−EG(k)∣σ∗,uF ′N(σ∗,(`),G(k),Gk = 0). Since

∣H′N(G(k),Gk = 1)−H′N(G(k),Gk = 0)∣ ⩽ ∣ log(c+∆σik σ jk)− log(1−
c+∆σik σ jk

N
)∣ ⩽C,

one has ∣Dk∣ ⩽ C
N , so the fundamental theorem of calculus yields

∣EG∣σ∗F ′N(σ∗,(`))−EG∣σ∗,(`)F
′
N(σ∗,(l))∣ ⩽ sup

u∈(0,1)
∣ϕ ′(u)∣ ⩽ C

N2 (∣I
1
1 ∣+ ∣I2

1 ∣+ ∣I3
1 ∣).

It follows by the basic properties of the binomial distribution that

(E′EG∣σ∗F ′N(σ∗,(`))−E′EG∣σ∗,(`)F
′
N(σ∗,(`)))

2
⩽ C

N4 ∑
1⩽i⩽3
(EΠt ∣I i

1∣)
2 = C

N4 ∑
1⩽i⩽3
(EΠt

Πt

N
)

2
⩽ Ct2

N2 ,

and thus

II ⩽C(Nt2

N2 )
p/2
= Ct p

N p/2 . (6.34)

Combining (6.32)-(6.34) reveals that E(F̃ ′N −F
′
N)

p =O((t2/N)p/2). Together with (6.22) and the previous
two steps, this completes the proof. ∎

This concentration result for the perturbed free energy, or more precisely its extension establishing that
the concentration function vN,p in (6.13) is of order N−p/2, may finally be combined with the multioverlap
concentration results in Chapter 5 and the derivative computations in Chapter 3 to prove the lower bound on
the mutual information in Theorem 1.6.

6.3 Proving the free energy upper bound

In this section, the limit of the perturbed and enriched free energy (6.12) in the sparse stochastic block model is
shown to be bounded from above by the unique solution to the infinite-dimensional Hamilton-Jacobi equation
(3.91). Remembering that the perturbation does not affect the limit of the free energy, and recalling the
relationship (3.17) between the free energy and the mutual information, this will give the lower bound on the
mutual information stated in Theorem 1.6.

The upper bound on the free energy will be established by showing that a suitably projected and shifted
version of the perturbed and enriched free energy (6.12) is an approximate subsolution to the Hamilton-Jacobi
equation (6.8). For every integer K ⩾ 1, t ⩾ 0, x ∈ RDK

⩾0 , and perturbation parameter λ , define the projected
version of the perturbed and enriched free energy (6.12) by

F(K)N (t,x,λ) ∶= FN(t,µ(K)x ,λ) and F
(K)
N (t,x,λ) ∶=EF(K)N (t,x,λ). (6.35)

In the same spirit as (6.10), given b ∈R such that the kernel g̃b defined in (6.2) is positive on [−1,1], introduce
shifted versions of the perturbed and enriched free energy functionals (6.12),

F ′N(t,µ,λ) ∶= FN(t,µ,λ)+b
ˆ 1

−1
dµ + bt

2
and F

′
N(t,µ,λ) ∶=EF ′N(t,µ,λ), (6.36)
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and for every integer K ⩾ 1, t ⩾ 0, x ∈RDK
⩾0 , and perturbation parameter λ , denote by

F ′(K)N (t,x,λ) ∶= F ′N(t,µ
(K)
x ,λ) and F

′(K)
N (t,x,λ) ∶=EF ′(K)N (t,x,λ) (6.37)

their finite-dimensional projections. Similarly, write

F
(K)
N (t,x) = FN(t,µ(K)x ) and F

′(K)
N (t,x) = F

(K)
N (t,x)+b∣∣∣x∣∣∣1+

bt
2

(6.38)

for the finite-dimensional projections of the enriched free energy (6.36) and its translation according to (6.10).
Combining Lemmas 3.2, 3.5, and 3.7 with the Arzelà-Ascoli theorem, it is possible to extract a subsequential
limit F̃(K) from the sequence defined by the second term in (6.38) for varying N. Passing to a further
subsequence, and using a diagonalization argument, it is also possible to ensure that for all (t,x) ∈R>0×RDK

⩾0 ,

F̃(K)(t,x) = limsup
N→+∞

F
′(K)
N (t,x). (6.39)

The key to establishing Theorem 1.6 will be to show that, in some sense, the subsequential limit F̃(K) is an
approximate subsolution to the Hamilton-Jacobi equation (6.8) for some R > ∥ψ̃b∥Lip,TV+∥g̃b∥L∞ +∥g̃′b∥L∞ +1
which will remain fixed throughout this section.

Consider a smooth function φ ∈C∞(R>0×RDK
>0 ;R) with the property that F̃(K)−φ achieves a local

maximum at some point (t∞,x∞) ∈R>0×RDK
>0 . Recalling that the index K+ controls the number of terms in

the exponential perturbation Hamiltonian (5.11), introduce the parameter

λ∞ ∶=
(1,2−1,2−2, . . . ,2−K+)+(2−1,2−2,2−3, . . . ,2−K+−1)

2
(6.40)

as well as the smooth function

φ̃(t,x,λ) ∶= φ(t,x)+(t − t∞)2+ ∣x−x∞∣2+ ∣λ −λ∞∣2. (6.41)

It is clear that (t,x,λ)↦ F̃(K)(t,x)− φ̃(t,x,λ) has a strict local maximum at (t∞,x∞,λ∞). Arguing as
in the proof of Lemma 5.1 shows that (t,x,λ)↦ F

′(K)
N (t,x,λ) converges to (t,x,λ)↦ F̃(K)(t,x) locally

uniformly. Using Lemma 2.7, it is therefore possible to find a sequence (tN ,xN ,λN)N⩾1 which converges to
the point (t∞,x∞,λ∞) and has the property that (t,x,λ)↦ F

′(K)
N (t,x,λ)− φ̃(t,x,λ) attains a local maximum

at (tN ,xN ,λN). More precisely, it is possible to find a constant C < +∞ which is allowed to depend on K, K+,
t∞, x∞, and the function φ such that

(F ′(K)N − φ̃)(tN ,xN ,λN) = sup{(F ′(K)N − φ̃)(t,x,λ) ∣ ∣t − tN ∣+ ∣x−xN ∣+ ∣λ −λN ∣ ⩽C−1}. (6.42)

The constant C < +∞ will be used at various places in this section, and it is understood that its value may need
to be increased as the argument proceeds; the important point is that it does not depend on N. The choices
of λ∞ in (6.40) and x∞ ∈RDK

>0 ensure that when N is large enough (λN)k ∈ (2−k−1,2−k) for 0 ⩽ k ⩽ K+, and
xN ∈RDK

>0 . Increasing C < +∞ if necessary, it is therefore possible to guarantee that for N large enough, the
supremum on the right side of (6.42) is taken over triples (t,x,λ) with t > 0, x ∈RDK

>0 , and λk ∈ [2−k−1,2−k] for
1 ⩽ k ⩽K+. It follows that

∂t(F
′(K)
N − φ̃)(tN ,xN ,λN) = 0, ∇x(F

′(K)
N − φ̃)(tN ,xN ,λN) = 0, (6.43)
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and
∇λ(F

(K)
N − φ̃)(tN ,xN ,λN) =∇λ(F

′(K)
N − φ̃)(tN ,xN ,λN) = 0. (6.44)

The majority of this section will be devoted to leveraging the second equality in (6.44) and the multioverlap
concentration results in Chapter 5 to establish the concentration of a finite but very large number of the multi-
overlaps (3.41). This finitary multioverlap concentration result will then be combined with the computations
in Chapter 3 to deduce the following approximate Hamilton-Jacobi equation for the projected free energy.

Lemma 6.4. Fix R > ∥ψ̃b∥Lip,TV+∥g̃b∥L∞ +∥g̃′b∥L∞ +1. For every ε > 0, there exists a choice of integer K+ ⩾ 1
in the perturbed Hamiltonian (6.11) with the property that for any integer K ⩾ 1, it is possible to find a constant

Eε,K with

limsup
N→+∞

∣(∂tF
′(K)
N − H̃b,K,R(∇xF

′(K)
N ))(tN ,xN ,λN)∣ ⩽ Eε,K (6.45)

and limε→0 limK→+∞Eε,K = 0.

For the time being, Theorem 1.6 is proved assuming Lemma 6.4.

Proof of Theorem 1.6 assuming Lemma 6.4. Given ε > 0, invoke Lemma 6.4 to find an integer K+ ⩾ 1 in the
perturbed Hamiltonian (6.11) with the property that for any integer K ⩾ 1, it is possible to find a constant Eε,K

with
limsup
N→+∞

∣(∂tF
′(K)
N − H̃b,K,R(∇xF

′(K)
N ))(tN ,xN ,λN)∣ ⩽ Eε,K (6.46)

and limε→0 limK→+∞Eε,K = 0. Given an integer K ⩾ 1, the idea will be to show that the test function
φ ∈C∞(R>0×RDK

>0 ;R) introduced above satisfies the subsolution condition for the non-linearity H̃b,K,R at the
contact point (t∞,x∞) up to the small error Eε,K . This will mean that the subsequential limit F̃(K) of the
modified free energy (6.38) is a viscosity subsolution to the Hamilton-Jacobi equation (6.8) up to a small error.
The proof proceeds in two steps. First it is shown that the function

F̃(K)ε ∶= F̃(K)− tEε,K (6.47)

is a viscosity subsolution to the Hamilton-Jacobi equation (6.8), and then the comparison principle in Theorem
4.1 is leveraged to obtain an upper bound on the limit superior of the enriched free energy (3.30) by the
solution f to the infinite-dimensional Hamilton-Jacobi equation (3.91) constructed in Section 6.1. The lower
bound on the limit inferior of the mutual information then follows from the relationship (3.17) between the
free energy and the mutual information.

Step 1: proving F̃(K)ε is a viscosity subsolution. Since xN → x∞ assume without loss of generality that
(xN)N⩾1 ⊆RDK

>0 . It follows by (6.43) that

(∂t φ̃ − H̃b,K,R(∇xφ̃))(tN ,xN ,λN) = (∂tF
′(K)
N − H̃b,K,R(∇xF

′(K)
N ))(tN ,xN ,λN),

so letting N tend to infinity and combining the definition of φ̃ with (6.46) yields

(∂t φ̃ − H̃b,K,R(∇xφ̃))(t∞,x∞) ⩽ Eε,K .

This shows that the function (6.47) is a viscosity subsolution to the Hamilton-Jacobi equation (6.8).
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Step 2: comparison principle. The comparison principle in Theorem 4.1 gives the upper bound

F̃(K)(t,x) ⩽ f̃ (K)b,R (t,x)+ tEε,K . (6.48)

It has implicitly been used that F̃(K) and f̃ (K)b,R are continuous and have the same initial condition by Proposition
3.12. It has also been used that they both belong to the solution space Lunif by the discussion in Section 6.1,
the derivative computations (3.39) and (3.60), and a simple application of the mean value theorem. With (6.48)
in mind, fix a finite measure µ ∈M+, and introduce the discrete measure

µ
(K) ∶= µ

(K)
x(K)(µ)

defined in (4.9). It is readily verified that µ
(K)→ µ with respect to the Wasserstein distance (3.85). Moreover,

an identical argument to that in Lemma 3.10 leveraging the second bound in (3.87) gives a constant C′ < +∞
that depends only on c such that

FN(t,µ) ⩽C′µ[−1,1]W(µ,µ(K))+F
(K)
N (t,x(K)(µ)).

The letter C′ is used instead of C to emphasize that the constant C′ does not depend on K. Letting N tend to
infinity, recalling (6.38) and (6.39), and leveraging (6.48) yields

limsup
N→+∞

FN(t,µ) ⩽C′µ[−1,1]W(µ,µ(K))+ f̃ (K)b,R (t,x
(K)(µ))−b∣∣∣x(K)(µ)∣∣∣1−

bt
2
+ tEε,K .

Invoking Lemma 6.4 and remembering the definition of the solution f to the infinite-dimensional Hamilton-
Jacobi equation (3.91) given in (6.10) to let K tend to infinity and then ε tend to zero establishes the upper
bound

limsup
N→+∞

FN(t,µ) ⩽ f (t,µ). (6.49)

Recalling that the free energy (3.14) in the sparse stochastic block model is given by FN = FN(1,0), where
0 denotes the zero measure, and leveraging the relationship (3.17) between the free energy and the mutual
information completes the proof. ∎

The rest of this section is devoted to the proof of Lemma 6.4 which will be established by combining the
computations in Chapter 3 with the multioverlap concentration results in Chapter 5. For any perturbation
parameter λ , let

λ0,N ∶= εNλ0, (6.50)

and recall the definition of the quantities L0 in (5.18) and Lk in (5.19). The importance of these quantities in
the present context stems from the fact that for 1 ⩽ k ⩽K+,

∂λ0F(K)N (t,x,λ) = 1
N
⟨H′0⟩, ∂

2
λ0

F(K)N (t,x,λ) = 1
N
(⟨(H′0− ⟨H′0⟩)2⟩−

ε
2
N

4λ
3/2
0,N

⟨σ⟩ ⋅Z0), (6.51)

∂λk
F(K)N (t,x,λ) = 1

N
⟨H′k⟩, ∂

2
λk

F(K)N (t,x,λ) = 1
N
(⟨(H′k − ⟨H′k⟩)2⟩+ ⟨H′′k ⟩), (6.52)

while for 0 ⩽ j ≠ k ⩽K+,

∂λkλ j F
(K)
N (t,x,λ) = 1

N
(⟨H′jH′k⟩− ⟨H′j⟩⟨H′k⟩). (6.53)
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Here, and for the remainder of this section, the Gibbs average ⟨⋅⟩ will always be associated with the perturbed
Hamiltonian (6.11) evaluated at a triple (t,x,λ) which will be clear from the context. It will also be convenient
to record that for 1 ⩽ k ⩽K+,

H′′k ∶= ∂
2
λk

Hexp
N (σ ,λ) = ∑

j⩽πk

(− 1
(1+λkσi jk)2

+2
σi jk σ

∗
i jk

e jk

(1+λkσ∗i jk
)3 ) and ∣E⟨H′′k ⟩∣ ⩽CsN . (6.54)

The key step in the proof of Lemma 6.4 is to obtain the concentration of the multioverlaps (3.41) from
Propositions 5.2 and 5.4 by establishing the concentration (5.20) of the quantities Lk for the Gibbs measure
with parameters given by the contact point (tN ,xN ,λN). This concentration will be deduced from the fact
that the averaged free energy is being touched from above by a smooth function at the contact point, thereby
constraining its Hessian at this point. The concentration of the free energy F(K)N about its average F

(K)
N

established in Proposition 6.3 will also play its part. Due to the constraint on the Hessian at the contact point,
it will be possible to extend the concentration result on the free energy into an estimate on the concentration
of its gradient. The argument is decomposed into a series of four lemmas. The first two essentially bound
the Hessian of the perturbed free energy (6.35) from above and from below as in Steps 1 and 2 of the proof
of Lemma 2.29. The third leverages the free energy concentration result in Proposition 6.3 to estimate the
uniform Lp-distance between the quenched and averaged free energies (6.35) as in Lemma 2.28. Finally, the
fourth extends this to a control on the gradient of the free energy as in Step 3 of the proof of Lemma 2.29.

Lemma 6.5. For any perturbation parameter λ with ∣λ ∣ ⩽C−1,

F
(K)
N (tN ,xN ,λN +λ)−F

(K)
N (tN ,xN ,λN)−λ ⋅∇λ F

(K)
N (tN ,xN ,λN) ⩽C∣λ ∣2. (6.55)

Proof. Fix a perturbation parameter λ with ∣λ ∣ ⩽C−1, and notice that (6.42) gives

F
′(K)
N (tN ,xN ,λN +λ)−F

′(K)
N (tN ,xN ,λN) ⩽ φ̃(tN ,xN ,λN +λ)− φ̃(tN ,xN ,λN).

On the other hand, Taylor’s formula with integral remainder implies that

F
′(K)
N (tN ,xN ,λN +λ)−F

′(K)
N (tN ,xN ,λN)

= λ ⋅∇λ F
′(K)
N (tN ,xN ,λN)+

ˆ 1

0
(1− s)λ ⋅∇2

λ
F
′(K)
N (tN ,xN ,λN + sλ)λ ds, (6.56)

and similarly,

φ̃(tN ,xN ,λN +λ)− φ̃(tN ,xN ,λN)

= λ ⋅∇λ φ̃(tN ,xN ,λN)+
ˆ 1

0
(1− s)λ ⋅∇2

λ
φ̃(tN ,xN ,λN + sλ)λ ds.

Combining (6.43) with the chain rule shows that λ ⋅∇λ φ̃(tN ,xN ,λN) = λ ⋅∇λ F
′(K)
N (tN ,xN ,λN), and therefore

ˆ 1

0
(1− s)λ ⋅∇2

λ
F
′(K)
N (tN ,xN ,λN + sλ)λ ds ⩽

ˆ 1

0
(1− s)λ ⋅∇2

λ
φ̃(tN ,xN ,λN + sλ)λ ds ⩽C∣λ ∣2.
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Substituting this into (6.56) gives

F
(K)
N (tN ,xN ,λN +λ)−F

(K)
N (tN ,xN ,λN) = F

′(K)
N (tN ,xN ,λN +λ)−F

′(K)
N (tN ,xN ,λN)

⩽ λ ⋅∇λ F
′(K)
N (tN ,xN ,λN)+C∣λ ∣2

= λ ⋅∇λ F
(K)
N (tN ,xN ,λN)+C∣λ ∣2,

and completes the proof. ∎

Lemma 6.6. There exists a random variable X with EX2 ⩽C such that, for all perturbation parameters λ

with ∣λ ∣ ⩽C−1,

F(K)N (tN ,xN ,λN +λ)−F(K)N (tN ,xN ,λN)−λ ⋅∇λ F(K)N (tN ,xN ,λN) ⩾ −X ∣λ ∣2. (6.57)

Proof. Since tN and xN remain fixed throughout, write F(K)N (λ) for F(K)N (tN ,xN ,λ). Introduce the function

h(λ) ∶= F(K)N (λ)−
√

λ0,N

N
∑
i⩽N
∣Z0,i∣+

1
N
∑

1⩽k⩽K+
∑
j⩽πk

(8λ
2
k e jk − log(1−λk)). (6.58)

Leveraging (6.51) and Hölder’s inequality, one can see that

∂
2
λ0

h(λ) = 1
N
⟨(H′0− ⟨H′0⟩)2⟩−

ε
2
N

4Nλ
3/2
0,N

⟨σ⟩ ⋅Z0+
ε

2
N

4Nλ
3/2
0,N

∑
i⩽N
∣Z0,i∣ ⩾

1
N
⟨(H′0− ⟨H′0⟩)2⟩.

Using (6.52) and (6.54) reveals that for 1 ⩽ k ⩽K+,

∂
2
λk

h(λ) = 1
N
⟨(H′k − ⟨H′k⟩)2⟩+

1
N
⟨ ∑

j⩽πk

(− 1
(1+λkσi jk)2

+2
σi jk σ

∗
i jk

e jk

(1+λkσ∗i jk
)3 +16e jk +

1
(1−λk)2

)⟩.

Since λk ⩽ 1/2 and all spin configuration coordinates are bounded by one, it is actually the case that

∂
2
λk

h(λ) ⩾ 1
N
⟨(H′k − ⟨H′k⟩)2⟩.

Together with (6.53), this shows that ∇2
λ

h is positive definite and therefore h is convex. It follows that for any
perturbation parameter λ with ∣λ ∣ ⩽C−1,

h(λN +λ) ⩾ h(λN)+λ ⋅∇λ h(λN).

Remembering the definition of h in (6.58), this shows that the left side of (6.57) is bounded from below by

1
N
(
√
(λN)0,N +λ0,N −

√
(λN)0,N −

λ0,N

2
√
(λN)0,N

)∑
i⩽N
∣Z0,i∣

+ 1
N
∑

1⩽k⩽K+
∑
j⩽πk

8e jk((λN)2k +2λk(λN)k −((λN)k +λk)
2)

+ 1
N
∑

1⩽k⩽K+
∑
j⩽πk

( log(1−(λN)k −λk

1−(λN)k
)+ λk

1−(λN)k
).
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Increasing C if necessary, Taylor’s theorem with differential remainder gives a perturbation parameter λ̃ with
λ̃k ∈ [2−k−1,2−k] for 0 ⩽ k ⩽K+ whose value might not be the same at each occurrence such that

√
(λN)0,N +λ0,N −

√
(λN)0,N −

λ0,N

2
√
(λN)0,N

= −(λ0,N)2

8λ̃
3/2
0,N

⩾ −√εNλ
2
0 ⩾ −λ

2
0

(λN)2k +2λk(λN)k −((λN)k +λk)
2 = −λ

2
k

log(1−(λN)k −λk

1−(λN)k
)+ λk

1−(λN)k
= −

λ
2
k

2(1− λ̃k)2
⩾ −2λ

2
k .

It follows that the left side of (6.57) is bounded from below by

−λ
2
0

N
∑
i⩽N
∣Z0,i∣−

1
N
∑

1⩽k⩽K+

λ
2
k ∑

j⩽πk

(8e jk +2) ⩾ −X ∣λ ∣2

for the random variable
X ∶= 1

N
∑
i⩽N
∣Z0,i∣+

1
N
∑

1⩽k⩽K+
∑
j⩽πk

(8e jk +2).

Using the Cauchy-Schwarz inequality, taking the average with respect to the randomness of (e jk) j,k⩾1 before
the average with respect to the randomness of (πk)k⩾1, and remembering (5.10) shows that

EX2 ⩽ C
N2 (E(∑

i⩽N
∣Z0,i∣)

2
+ ∑

1⩽k⩽K+

E( ∑
j⩽πk

(8e jk +2))
2
)

⩽ C
N2 (NE∣Z0,1∣+(N2−N)E∣Z0,1Z0,2∣+ ∑

1⩽k⩽K+

Eπk ∑
j⩽πk

(8e jk +2)2)

⩽ C
N2 (N

2+ s2
N + sN) ⩽C.

This completes the proof. ∎

Lemma 6.7. For every M > 0 small enough, p ∈ [1,+∞), and ε > 0, there exists a constant C < +∞ not

depending on N such that

(E sup
∥λ∥∞⩽M

∣(F(K)N −F
(K)
N )(tN ,xN ,λN +λ)∣

p
)

1
p

⩽CN−
1
2+ε . (6.59)

Proof. Let 0 <M < 1/2 be small enough so that (λN +λ)k ∈ [2−k−1,2−k] for 0 ⩽ k ⩽K+ whenever ∥λ∥∞ ⩽M,
and for each perturbation parameter λ introduce the random variable

Y(λ) ∶= 1
N
∑

0⩽k⩽K+

∣⟨H′k⟩∣,

where the Gibbs average is associated with the perturbed Hamiltonian (6.11) evaluated at (tN ,xN ,λN +λ). The
relevance of these random variables stems from the fact that by the mean value theorem, (6.51), and (6.52), for
every λ ,λ ′ in the `∞-ball of radius M,

∣F(K)N (tN ,xN ,λN +λ)−F(K)N (tN ,xN ,λN +λ
′)∣ ⩽C sup

∥η∥∞⩽M
Y(η)∥λ −λ

′∥1.
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Averaging this inequality also shows that for every λ ,λ ′ in the `∞-ball of radius M,

∣F(K)N (tN ,xN ,λN +λ)−F
(K)
N (tN ,xN ,λN +λ

′)∣ ⩽E sup
∥η∥∞⩽M

Y(η)∥λ −λ
′∥1

These two bounds imply that for any even integer q ⩾ 2,

E sup
∥λ∥∞⩽M

∣(F(K)N −F
(K)
N )(tN ,xN ,λN +λ)∣

q
⩽E sup

λ∈Aε

∣(F(K)N −F
(K)
N )(tN ,xN ,λN +λ)∣

q

+Cε
qE sup
∥λ∥∞⩽M

Y(λ)q,

for the set Aε ∶= εZ1+K+ ∩{∥λ∥∞ ⩽M}. Indeed, every λ is at most at distance ε(K++1) from an element in
Aε with respect to the `1-norm. Bounding the supremum over Aε by the sum over Aε and invoking the free
energy concentration result in Proposition 6.3 shows that

E sup
∥λ∥∞⩽M

∣(F(K)N −F
(K)
N )(tN ,xN ,λN +λ)∣

q
⩽C∣Aε ∣N−

q
2 +Cε

qE sup
∥λ∥∞⩽M

∣Y(λ)∣q. (6.60)

To bound the moments of sup∥λ∥∞⩽M ∣Y(λ)∣, fix 1 ⩽ k ⩽ K+, and observe that Hölder’s inequality and (5.19)
reveal that

E sup
∥λ∥∞⩽M

∣⟨H′k⟩∣q ⩽E sup
∥λ∥∞⩽M

∣ ∑
j⩽πk

1
1−(λN +λ)k

+
e jk

(1−(λN +λ)k)2
∣
q

⩽E∣ ∑
j⩽πk

4(1+e jk)
(1−2M)2 ∣

q

⩽Eπ
q−1
k ∑

j⩽πk

∑
j⩽πk

∣
4(1+e jk)
(1−2M)2 ∣

q

⩽CEπ
q
k ,

where the last inequality is found by averaging over the randomness of (e jk) j,k⩾1. Similarly (5.18) and Hölder’s
inequality give

E sup
∥λ∥∞⩽M

∣⟨H′0⟩∣q ⩽ ε
q
NE sup
∥λ∥∞⩽M

∣∣σ ⋅σ∗∣+ ∣σ ⋅Z0∣
2ε

q/2
N ((λN)0+λ0)q/2

∣
q

⩽Cε
q
N(N

q+ 2qE∣σ ⋅Z0∣q

2ε
q/2
N (1−2M)q

)

⩽Cε

q
2

N Nq.

Combining these two inequalities with the Poisson moment bound in Lemma A.14, and recalling the properties
(5.9) and (5.10) of the sequences (εN)N⩾1 and (sN)N⩾1 shows that

E sup
∥λ∥∞⩽M

∣Y(λ)∣q ⩽C. (6.61)

Substituting this into (6.60) and noticing that ∣Aε ∣ is of order ε
−(K++1) yields

E sup
∥λ∥∞⩽M

∣(F(K)N −F
(K)
N )(tN ,xN ,λN +λ)∣

q
⩽C(ε−(K++1)N−

q
2 +ε

q).
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Taking 1/q’th powers and choosing ε ∶=N−
q

2(q+K++1) gives

(E sup
∥λ∥∞⩽M

∣(F(K)N −F
(K)
N )(tN ,xN ,λN +λ)∣

q
)

1
q

⩽CN−
q

2(q+K++1) .

Notice that the power on the right side can be made arbitrarily close to − 1
2 by taking q large enough. Invoking

Jensen’s inequality completes the proof. ∎

Lemma 6.8. For every ε > 0, there exists a constant C < +∞ not depending on N such that

E∣∇λ(F
(K)
N −F

(K)
N )(tN ,xN ,λN)∣

2
⩽CN−

1
2+ε . (6.62)

Proof. Given µ ∈ [0,C−1], consider the random perturbation parameter

λ ∶= µ ⋅
∇λ(F

(K)
N −F

(K)
N )(tN ,xN ,λN)

∣∇λ(F
(K)
N −F

(K)
N )(tN ,xN ,λN)∣

.

Combining Lemma 6.5 and 6.6 shows that

(F(K)N −F
(K)
N )(tN ,xN ,λN +λ)−(F(K)N −F

(K)
N )(tN ,xN ,λN)

⩾ µ ∣∇λ(F
(K)
N −F

(K)
N )(tN ,xN ,λN)∣−(C+X)∣λ ∣2.

Rearranging, squaring, and taking expectations yields

µ
2E∣∇λ(F

(K)
N −F

(K)
N )(tN ,xN ,λN)∣

2
⩽C(E sup

∥λ∥∞⩽C−1
∣(F(K)N −F

(K)
N )(tN ,xN ,λN +λ)∣

2
+µ

4),

where it has been used that EX2 ⩽C and ∣λ ∣ = µ . Invoking Lemma 6.7 gives

E∣∇λ(F
(K)
N −F

(K)
N )(tN ,xN ,λN)∣

2
⩽C( 1

N1−2ε µ2 +µ
2).

Optimizing over µ leads to the choice µ ∶=N−
1
4+

ε

2 , and completes the proof. ∎

Lemma 6.9. For any 1 ⩽ k ⩽K+, there exists a constant C < +∞ not depending on N such that

E⟨(L0−E⟨L0⟩)2⟩ ⩽CN−
1
4 and E⟨(Lk −E⟨Lk⟩)2⟩ ⩽CN−

1
20 . (6.63)

Here, the Gibbs average ⟨⋅⟩ is associated with the perturbed Hamiltonian (6.11) evaluated at the contact point

(tN ,xN ,λN).

Proof. A direct computation using (6.51) shows that

N2
ε

2
NE⟨(L0−E⟨L0⟩)2⟩ =E⟨(H′0− ⟨H′0⟩)2⟩+E(⟨H′0⟩−E⟨H′0⟩)

2

=N∂
2
λ0

F
(K)
N (tN ,xN ,λN)+

ε
2
N

4λ
3/2
0,N

E⟨σ⟩ ⋅Z0+N2E(∂λ0(F
(K)
N −F

(K)
N )(tN ,xN ,λN))

2
.



CHAPTER 6. A HAMILTON-JACOBI APPROACH TO THE SPARSE STOCHASTIC BLOCK MODEL 168

It follows by Lemmas 6.5 and 6.8 that for any ε > 0,

E⟨(L0−E⟨L0⟩)2⟩ ⩽
C

N2ε2
N
(N +Nε

2− 3
2

N +N2− 1
2+ε) =C(N2∣γ ∣−1+N

3
2 ∣γ ∣−1+N2∣γ ∣+ε− 1

2 ).

Remembering that −1/8 < γ < 0 gives the first bound in (6.63). To establish the second bound, fix 1 ⩽ k ⩽K+.
A direct computation using (6.52) yields

s2
NE⟨(Lk −E⟨Lk⟩)2⟩ =E⟨(H′k − ⟨H′k⟩)2⟩+E(⟨H′k⟩−E⟨H′k⟩)

2

=N∂
2
λk

F
(K)
N (tN ,xN ,λN)−E⟨H′′k ⟩+N2E(∂λk

(F(K)N −F
(K)
N )(tN ,xN ,λN))

2
.

Invoking (6.54), and Lemmas 6.5 and 6.8 reveals that for any ε > 0,

E⟨(Lk −E⟨Lk⟩)2⟩ ⩽
C
s2

N
(N + sN +N

3
2+ε) =C(N1−2η +N−η +N

3
2+ε−2η).

Choosing ε ∶= 1/20, and recalling that −1/8 < γ < 0 and 4/5 < η < 1 completes the proof. ∎

This result implies the fundamental assumption (5.20) in Chapter 5. Combining this with Proposition 5.2
and Corollary 5.3, and fixing ε > 0, it is possible to find δ > 0 so the statement of Proposition 5.4 holds. In
particular, setting K+ ∶= ⌊δ−1⌋ in the perturbed Hamiltonian (6.11) ensures that for 1 ⩽m ⩽ ⌊ε−1⌋,

E⟨(R[m]−E⟨R[m]⟩)2⟩ ⩽ ε. (6.64)

This multioverlap concentration can be combined with the computations in Chapter 3 to finally give a proof of
Lemma 6.4.

Proof of Lemma 6.4. To alleviate notation, it will always be implicitly assumed that F
(K)
N and its derivatives

are evaluated at the contact point (tN ,xN ,λN). The definition of the modified free energy in (6.36), and
Corollary 3.3 reveal that

∂tF
′(K)
N = 1

2
(c+∆m2) log(c)+ c

2
∑
n⩾2

(−∆/c)n
n(n−1)E

⟨R2
[n]⟩−

c
2
+ b

2
+O(N−1). (6.65)

On the other hand, the duality relation (4.12), the definition of the modified free energy in (6.36), and Corollary
3.6 imply that for any k ∈DK ,

∂xk F
′(K)
N = 1

∣DK ∣
((c+∆mk) log(c)+c∑

n⩾2

(−∆/c)n
n(n−1)E⟨R[n]⟩k

n−c+b)+O(N−1).

Denoting by µ
∗ ∶=L(⟨σi⟩) the law of the Gibbs average of a uniformly sampled spin coordinate, the Nishimori

identity (Proposition 2.2) and the definition of g̃b in (6.2) imply that this may be rewritten as

∂xk F
′(K)
N = 1

∣DK ∣

ˆ 1

−1
g̃b(ky) dµ

∗(y)+O(N−1).
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The mean value theorem shows that

∣DK ∣∣
1
∣DK ∣

ˆ 1

−1
g̃b(ky) dµ

∗(y)− G̃(K)b x(K)(µ∗)k∣ ⩽ ∑
k′∈DK

ˆ k′+2−K

k′
∣g̃b(ky)− g̃b(kk′)∣ dµ

∗(y) ⩽
∥g̃′b∥L∞

2K ,

which means that

∣∣∣∇xF
′(K)
N − G̃(K)b x(K)(µ∗)∣∣∣1,∗ ⩽

∥g̃′b∥L∞
2K +O(N−1).

In particular, for N large enough,

∣∣∣G̃(K)b x(K)(µ∗)∣∣∣1,∗ ⩽ ∣∣∣∇xF
′(K)
N ∣∣∣1,∗+

∥g̃′b∥L∞
2K +O(N−1) ⩽ ∥g̃b∥L∞ +∥g̃′b∥L∞ +O(N−1) ⩽ R

Remembering that H̃b,K,R coincides with C̃b,K on C̃b,K ∩BK,R, and leveraging the Lipschitz continuity of H̃b,K,R

in Proposition 4.8 gives

∣H̃b,K,R(∇xF
′(K)
N )− C̃b,K(G̃(K)b x(K)(µ∗))∣ ⩽

8RMb∥g̃′b∥L∞
2Km2

b
+O(N−1),

where Mb ∶=max[−1,1] g̃b and mb ∶=min[−1,1] g̃b > 0. Another application of the mean value theorem shows that

∣C̃b,K(G̃(K)b x(K)(µ∗))− 1
2

ˆ 1

−1

ˆ 1

−1
g̃b(xy) dµ

∗(y) dµ
∗(x)∣ ⩽

∥g̃′b∥L∞
2K ,

while a direct computation using the Nishimori identity reveals that

1
2

ˆ 1

−1
g̃b(xy) dµ

∗(y) dµ
∗(x) = 1

2
(c+∆m2) log(c)+ c

2
∑
n⩾2

(−∆/c)n
n(n−1)

(E⟨R[n]⟩)
2− c

2
+ b

2
.

It follows by (6.65) that, up to an error vanishing with N,

∣∂tF
′(K)
N − H̃K,R(∇xF

′(K)
N )∣ ⩽ ∣ c

2
∑
n⩾2

(−∆/c)n
n(n−1)E

⟨(R[n]−E⟨R[n]⟩)2⟩∣+
8RMb∥g̃′b∥L∞

2Km2
b

+ ∥g̃
′∥L∞
2K .

Invoking the multioverlap concentration (6.64), noticing that the multioverlaps are bounded by one, and using
the formula for the sum of a geometric series implies that, up to an error vanishing with N,

∣∂tF
′(K)
N − H̃K,R(∇xF

′(K)
N )∣ ⩽ εc2

2(c− ∣∆∣) +
c
2
∑

n⩾⌊ε−1⌋
(∣∆∣/c)n+

8RMb∥g̃′b∥L∞
2Km2

b
+ ∥g̃

′∥L∞
2K .

Defining Eε,K to be the right side of this expression completes the proof. ∎

In the disassortative sparse stochastic block model, it turns out that the non-linearity in the Hamilton-Jacobi
equation (3.91) is convex, so the upper bound (6.49) on the limit of the free energy established in the proof of
Theorem 1.6 may be combined with the infinite-dimensional Hopf-Lax formula in Theorem 4.5 to obtain the
variational formula for the limit mutual information stated in Theorem 1.2.
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6.4 Deducing the disassortative free energy variational formula

The limit of the mutual information in the disassortative sparse stochastic block model, ∆ ⩽ 0, is well-
understood [14, 38], and admits the variational formula stated in Theorem 1.2. The key difference between
the disassortative and assortative sparse stochastic block models that makes the former much simpler to
study than the latter is essentially the presence of convexity. Indeed, in the disassortative sparse stochastic
block model, the non-linearity in the infinite-dimensional Hamilton-Jacobi equation (3.91) is convex. More
precisely, for b large enough, the kernel g̃b in (6.2) is convex in the sense of (H5). This allows one to invoke
the infinite-dimensional Hopf-Lax formula in Theorem 4.5 to transform the upper bound (6.49) on the limit of
the free energy into a variational upper bound that matches the one in Theorem 1.2. A simple interpolation
argument taken from [14] can then be used to obtain the matching lower bound. Remembering the relationship
(3.17) between the free energy and the mutual information leads to a proof of Theorem 1.7.

Lemma 6.10. If ∆ ⩽ 0 and b is large enough, then the function g̃b ∶ [−1,1]→R defined in (6.2) satisfies (H5).

Proof. By a simple approximation argument, it suffices to establish (4.37) for a discrete signed measure of the
form

µ ∶= 1
∣DK ∣

∑
k∈DK

xkδk

for some x ∈RDK . For such a measure,

ˆ 1

−1

ˆ 1

−1
g̃b(xy) dµ(x) dµ(y) = 1

∣DK ∣2
∑

k,k′∈DK

g̃b(kk′)xkxk′ = xT G̃(K)b x,

so (4.37) is equivalent to the non-negative definiteness of each of the matrices G̃(K)b . Observe that for any
k,k′ ∈DK ,

(G̃(K)b )
kk′ =

1
∣DK ∣2

g̃b(kk′) = 1
∣DK ∣2

(b+c log(c)−c+∆kk′ log(c)+c∑
n⩾2

(−∆/c)n
n(n−1) (kk′)n).

With this in mind, introduce the vectors k ∶= (k)k∈DK and ι ∶= (1)k∈DK as well as the matrix

G̃(K)b,M ∶=
1
∣DK ∣2

((b+c log(c)−c)ιι
T +∆ log(c)kkT + ∑

2⩽n⩽M

(−∆/c)n
n(n−1)

(kkT )⊙n),

where ⊙n denotes the n-fold Hadamard product on the space of DK ×DK matrices. In this notation,

G̃(K)b = 1
∣DK ∣2

((b+c log(c)−c)ιι
T +∆ log(c)kkT +∑

n⩾2

(−∆/c)n
n(n−1)

(kkT )⊙n) = lim
M→+∞

G̃(K)b,M .

Choosing b > 2c∣log(c)∣+ c ensures that the first two matrices in the sum defining G̃(K)b,M are non-negative
definite. Using that ∆ ⩽ 0 and leveraging the Schur product theorem (Theorem 5.2.1 in [64]) reveals that the
matrix G̃(K)b,M is a positive linear combination of non-negative definite matrices, and is therefore non-negative
definite. Noticing that the limit of non-negative definite matrices is again non-negative definite completes the
proof. ∎
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Proof of Theorem 1.7. Introduce the functional P ∶R>0×M+×M+→R defined by

P(t,µ,ν) ∶=ψ(µ + tν)− t
2

ˆ 1

−1
Gν(y) dν(y). (6.66)

Combining Lemma 6.10 with the infinite-dimensional Hopf-Lax formula in Theorem 4.5 reveals that the unique
solution to the infinite-dimensional Hamilton-Jacobi equation (3.91) evaluated at the pair (t,µ) ∈R⩾0×M+
admits the variational representation

f (t,µ) = sup
ν∈Pr[−1,1]

P(t,µ,ν). (6.67)

Together with the upper bound (6.49) on the limit of the free energy obtained in the proof of Theorem 1.6, this
implies that

limsup
N→+∞

FN ⩽ f (1,0) = sup
ν∈Pr[−1,1]

P(1,0,ν). (6.68)

It has been used that the free energy (3.14) in the sparse stochastic block model is given by FN = FN(1,0),
where 0 denotes the zero measure. The proof now proceeds in three steps. First, the supremum on the right
side of (6.68) is restricted to probability measures ν ∈Mp with mean m, then the functional (6.66) is replaced
by the functional P ∶Mp→R defined in (1.18), and finally the matching lower bound is established.

Step 1: restricting to measures ν ∈Mp. Fix b > 1 large enough so the kernel g̃b defined in (6.2) is strictly
positive on [−1,1]. In the same spirit as (4.46) and (4.50), for each integer N ⩾ 1, define the function
G̃b,ν ∶ [−1,1]→R and the initial condition ψ̃b,N ∶M+→R by

G̃b,ν(x) ∶=
ˆ 1

−1
g̃b(xy) dν(y) and ψ̃b,N(µ) ∶=ψN(µ)+b

ˆ 1

−1
dµ,

and introduce the functional P̃b,N ∶R⩾0×M+×M+→R defined by

P̃b,N(t,µ,ν) ∶= ψ̃b,N(µ + tν)− t
2

ˆ 1

−1
G̃b,ν(y) dν(y).

Invoking Theorem 4.5 gives a probability measure ν̃ ∈ Pr[−1,1] which maximizes the right side of (6.68). It
follows by Proposition 3.12 that

sup
ν∈Pr[−1,1]

P(1,0,ν) = lim
N→+∞

P̃b,N(1,0, ν̃)−
b
2
⩽ limsup

N→+∞
sup

ν∈M+
P̃b,N(1,0,ν)−

b
2
. (6.69)

An identical argument to that in Lemma 4.22 gives a sequence of maximizing measures (νN)n⩾1 ⊆M+ with

sup
ν∈M+

P̃b,N(1,0,ν) = P̃b,N(1,0,νN). (6.70)

By Corollary 3.6 and the approximate equality (3.73), the Gateaux derivative density of the initial condition
ψ̃b,N at the measure νN is given by Dµ ψ̃b,N(νN , ⋅) = G̃b,ν∗N

+O(N−1) for some measure ν
∗
N ∈Mp. Up to adding

errors of O(N−1) throughout, the proof of Theorem 4.3 applies and reveals that each maximizer νN ∈M+
satisfies the approximate first-order condition

Dµ ψ̃b,N(νN , ⋅) = G̃b,νN (⋅)+O(N
−1).
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This means that
G̃b,ν∗N

(⋅) =Dµ ψ̃b,N(νN , ⋅)+O(N−1) = G̃b,νN (⋅)+O(N
−1).

Together with the definition of g̃b in (6.2), this implies that

(b+c log(c)−c)
ˆ 1

−1
dνN(y)+∆ log(c)

ˆ 1

−1
y dνN(y)x+c∑

n⩾2

(−∆/c)n
n(n−1)

ˆ 1

−1
yn dνN(y)xn

= (b+c log(c)−c)+∆ log(c)mx+c∑
n⩾2

(−∆/c)n
n(n−1)

ˆ 1

−1
yn dν

∗
N(y)xn+O(N−1).

Since b > 1 and c log(c)−c ⩾ −1, it must be that for all n ⩾ 2,

ˆ 1

−1
dνN(y) = 1+O(N−1) and

ˆ 1

−1
yn dνN(y) =

ˆ 1

−1
yn dν

∗
N(y)+O(N−1).

It has been used that without loss of generality ∆ ≠ 0, since this case is trivial as it corresponds to the situation
where the graph GN and the assignment vector σ

∗ are independent. The possibility that c could be equal
to one has been accounted for. Applying the Prokhorov theorem (Theorem A.20 in [50]), and passing to a
subsequence if necessary, it is therefore possible to ensure that the sequences (νN)n⩾1 and (ν∗N)n⩾1 converge
weakly to probability measures ν ∈ Pr[−1,1] and ν

∗ ∈Mp such that for all n ≠ 1,

ˆ 1

−1
yn dν(y) =

ˆ 1

−1
yn dν

∗(y).

Since the set of polynomials with degree one coefficient equal to zero form of a sub-algebra of the space
of continuous functions on the compact set [−1,1], the Stone-Weierstrass theorem (Theorem A.10 in [50])
implies that ν = ν

∗ ∈Mp. Arguing as in the proof of Lemma 6.1, it is readily verified that there exists a
constant C < +∞ that depends only on c with

∣ψ̃b,N(νN)− ψ̃b(ν∗)∣ ⩽ ∣ψ̃b,N(νN)− ψ̃b,N(νN)∣+ ∣ψ̃b,N(νN)− ψ̃b,N(ν∗)∣+ ∣ψ̃b,N(ν∗)− ψ̃b(ν∗)∣
⩽CTV(νN ,νN)+CW(νN ,ν

∗)+ ∣ψ̃b,N(ν∗)− ψ̃b(ν∗)∣.

Recalling that the Wasserstein distance (3.85) metrizes the weak convergence of probability measures on
[−1,1], observing that TV(νN ,νN) = ∣1−νN[−1,1]∣, and using Proposition 3.12 as well as the equality (6.70)
to let N tend to infinity in (6.69) shows that

sup
ν∈Pr[−1,1]

P(1,0,ν) ⩽ limsup
N→+∞

P̃b,N(1,0,νN)−
b
2
= ψ̃b(ν∗)−

1
2

ˆ 1

−1
G̃b,ν∗(y) dν

∗(y)− b
2
⩽ sup

ν∈Mp

P(1,0,ν).

Substituting this upper bound into (6.68) gives the upper bound (6.68) with the set of probability measures
Pr[−1,1] replaced by the set of probability measuresMp with mean m.

Step 2: replacing the functional (6.66) by the functional (1.18). Fix ν ∈Mp, and denote by x1 and x2 two
independent samples from the probability measure ν . The definition of g in (3.68) implies that

P(1,0,ν) =ψ(ν)+ c
2
− 1

2
(c+∆m2) log(c)− c

2
∑
n⩾2

(−∆/c)n
n(n−1)

(Exn
1)

2
.
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A Taylor expansion of the logarithm shows that

c∑
n⩾2

(−∆/c)n
n(n−1)

(Exn)2 =E(c+∆x1x2) log(c+∆x1x2)−(c+∆m2) log(c)−∆m2. (6.71)

It follows that

P(1,0,ν) =ψ(ν)+ c
2
− 1

2
E(c+∆x1x2) log(c+∆x1x2)+

∆m2

2
=P(ν),

where the functional P on the right side is defined in (1.18). Together with the previous step, this gives the
upper bound

limsup
N→+∞

FN ⩽ f (1,0) ⩽ sup
ν∈Mp

P(ν).

Step 3: establishing the matching lower bound. Given a measure ν ∈Mp, introduce the interpolating free
energy ϕ(t) ∶= F̃N(t,1− t,ν) for the free energy F̃N defined in (3.24). The derivative computations in Corollary
3.3 and Lemma 3.4 together with a computation identical to that in Corollary 3.6 imply that

ϕ
′(t) = ∂t F̃N(t,1− t,ν)−∂sF̃N(t,1− t,ν)

= c
2
− 1

2
(c+∆m2) log(c)+ c

2
∑
n⩾2

(−∆/c)n
n(n−1)E

⟨R2
[n]⟩−c∑

n⩾2

(−∆/c)n
n(n−1)E⟨R[n]⟩Exn

1.

= c
2
− 1

2
(c+∆m2) log(c)− c

2
∑
n⩾2

(−∆/c)n
n(n−1)

(Exn
1)

2+ c
2
∑
n⩾2

(−∆/c)n
n(n−1)E

⟨(R[n]−Exn
1)2⟩.

It follows by (6.71) that

ϕ
′(t) = c

2
+ ∆m2

2
− 1

2
E(c+∆x1x2) log(c+∆x1x2)+

c
2
∑
n⩾2

(−∆/c)n
n(n−1)E

⟨(R[n]−Exn
1)2⟩.

Since the final term in this equality is non-negative, the fundamental theorem of calculus reveals that

FN ⩾ψN(ν)+
c
2
+ ∆m2

2
− 1

2
E(c+∆x1x2) log(c+∆x1x2),

where it has been used that ϕ(1) = FN and ϕ(0) = ψN(ν). Using Proposition 3.12 to let N tend to infinity
gives the lower bound

liminf
N→+∞

FN ⩾ψ(ν)+ c
2
+ ∆m2

2
− 1

2
E(c+∆x1x2) log(c+∆x1x2) =P(ν).

Taking the supremum over all measures ν ∈Mp, and remembering the relationship (3.17) between the free
energy and the mutual information completes the proof. ∎
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6.5 Relation to other works and future perspectives

This thesis closes with a brief discussion on the relation between the Hamilton-Jacobi approach and other
recent approaches to determining the limit mutual information in the sparse stochastic block model. Future
perspectives on Conjecture 1.4, and possible alternatives to this conjecture, are also touched upon. It will
facilitate the discussion to point out that the proof of Theorem 1.7 also yields that when ∆ ≤ 0, the limit of the
free energy FN(t,µ) can be identified, for every t ≥ 0 and µ ∈M+, as

lim
N→+∞

FN(t,µ) = f (t,µ) = sup
ν∈Pr[−1,1]

(ψ(µ + tν)− t
2

ˆ 1

−1
Gν(y) dν(y)), (6.72)

and that this identity also remains valid if the supremum is taken over all ν ∈M+. This alternative representation
is at times convenient to operate with variables that can vary freely inside a cone.

The series of recent works [4, 61, 66, 79, 82, 107] described in Section 1.2.2 share strong connections with
the Hamilton-Jacobi approach discussed in this thesis. Recall from Remark 3.8 that it is possible to identify a
mapping Γ ∶M+→ Pr[−1,1] such that for every µ ∈M+, one has Dµ ψ(µ, ⋅) =GΓ(µ). This mapping is closely
related to the BP operator described in Section 1.2.2. Let σ

∗ be sampled according to P∗, and conditionally on
σ
∗, let Π(µ) denote a Poisson point process with intensity measure (c+∆σ

∗x) dµ(x). Then the probability
measure Γ(µ) is defined to be the law of the random variable

´
Σ1

σ exp(−∆σ
´ 1
−1 x dµ)∏x∈Π(µ)(c+∆σx) dP∗(σ)´

Σ1
exp(−∆σ

´ 1
−1 x dµ)∏x∈Π(µ)(c+∆σx) dP∗(σ)

. (6.73)

Notice that the condition for the measure ν to be a critical point in the variational problem on the right side of
(6.72) can be written as

Gν =Dµ ψ(µ + tν , ⋅). (6.74)

At least when ∆ < 0, the mapping ν ↦Gν is injective, so the relation (6.74) can be equivalently written as

ν = Γ(µ + tν). (6.75)

Restricting to the case of (t,µ) = (1,0), this boils down to finding fixed points of the mapping Γ. That there is
a connection between the variational formula in Theorem 1.7 and some BP fixed point equation has already
been observed in [38, 44] and elsewhere. The less classical question is to relate this to the Hamilton-Jacobi
equation (3.91) for arbitrary ∆. In finite dimensions, Hamilton-Jacobi equations can be solved for short times
using the method of characteristics — see Section 3.5 in [50] for a detailed discussion of this. Moreover, the
slope of the characteristic line is computed by evaluating the gradient of the non-linearity at the gradient of
the initial condition. In the present context, the characteristic line emanating from a measure ν ∈M+ is the
trajectory

t′↦ (t′,ν − t′Γ(ν)), (6.76)

for t′ varying in R⩾0. As long as characteristic lines emanating from different choices of ν do not intersect
each other, the value of the solution along each characteristic line can be calculated using the equation and the
fact that the gradient of the solution remains constant along each line. The condition (6.75) turns out to be
equivalent to asking that the characteristic line emanating from µ + tν passes through the point (t,µ), since
the latter condition can be written as µ = µ + tν − tΓ(µ + tν). In other words, for each fixed (t,µ), there is
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a simple one-to-one correspondence between the fixed points to (6.75) and the characteristic lines that pass
through (t,µ). The formula for prescribing the value of the solution along a characteristic line starting from
µ + tν is the supremum (6.72). As long as t is sufficiently small that the equation (6.75) has a unique solution
for each µ , this gives a clear procedure for computing the solution to (3.91). Once characteristic lines start to
intersect, the viscosity solution to (3.91) aggregates these conflicting trajectories in a physically reasonable
way, and Conjecture 1.4 corresponds to the idea that the free energy FN is tracking this aggregation in the
limit of large N. As such, the Hamilton-Jacobi approach may be a way to circumvent the difficulties that arise
in [4, 61, 66, 79, 82, 107] when the BP operator admits multiple fixed points by, in a certain way, selecting the
right fixed point.

It is of course not clear that the right fixed point in the BP operator is selected, since only one bound
in Conjecture 1.4 has been established. Although the author believes this to be the right conjecture, some
alternatives were considered before landing upon it. In particular, the author’s original hope was that a
variational formula could be found to describe the limit mutual information in the sparse stochastic block
model. More precisely, the author hoped that the variational formula (6.72) would remain valid in the case of
general ∆. It seems difficult to identify the exact range of validity of this formula; however, the author would
be surprised if it holds for arbitrary measures P∗. The author is also fairly convinced that this formula will not
generalize to settings with more than two communities.

To see this, return momentarily to the problem of identifying the limit of the free energy in the dense
stochastic block model studied in Chapter 2. In this setting, central-limit-theorem effects take place, and
one can equivalently study the symmetric rank-one matrix estimation problem, a fully-connected model with
Gaussian noise. Such models have been studied extensively [12, 13, 16, 28, 31, 35, 36, 65, 68, 70, 72, 73,
75, 77, 84, 85, 98, 99], and it is known that the limit of their free energy admits a formula analogous to
(6.72) provided that their associated non-linearity is convex; however, in general, this formula needs to be
modified into a “sup-inf” formulation. Possibly the simplest example in which this happens is for the problem
in which a rank-one matrix of the form XYT plus noise is observed, where X and Y are two vectors with i.i.d.
coordinates. In this setting, the non-linearity C∞ in the Hamilton-Jacobi equation (3.91) is replaced by the
non-convex mapping (x,y)↦ xy, and the functional to be optimized over as in (6.72) is ψ(x0+tx,y0+ty)− t

2 xy.
Finding counter-examples to the formula with only a supremum over y is made relatively easy by considering
candidates with, say, x = 0; in this case, the counter-term xy vanishes, so the parameter y can be chosen as large
as desired to maximize the ψ functional and obtain a contradiction. A similar phenomenon also occurs in the
context of spin glasses, and a more precise discussion of this point can be found in Section 6.2 of [86].

Coming back to the sparse stochastic block model, this observation can be leveraged to demonstrate that the
formula (6.72) would also be invalid in general. To give a concrete example, consider the following scenario,
which can be thought of as a problem with four communities, or as a bipartite version of the two-community
problem. First colour the N nodes in red or blue, say with groups of sizes about N/2, and think of this
colouring as fixed, e.g. the red nodes are the first ⌊N/2⌋ indices in {1, . . . ,N}, and this is perfectly known to
the statistician. Next, attribute ±1 labels to each node independently, possibly with different biases according
to the colour of the node. Finally, draw links between nodes i and j according to the formula (1.14), with the
additional constraint that only links between nodes of different colours are allowed. The task is to study the
asymptotic behaviour of the mutual information between the ±1 labels and the observed graph. This problem is
constructed in such a way that, in the limit of diverging average degree, it reduces to the problem of observing
a noisy version of XYT, as discussed in the previous paragraph — the vectors X and Y contain the ±1 labels of
the red and blue nodes respectively. Using the results of [45, 68] to justify the large-degree approximation, or
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possibly even directly, the author is confident that counter-examples to the formula (6.72) can be produced.
For fully-connected models with possibly non-convex non-linearities such as the XYT example, the limit

of the free energy was identified in the form of a “sup-inf” formula; see [36] for the most general results.
Translating this result into the present context would suggest that the limit free energy might be given by

sup
ρ∈M+

inf
ν∈M+

(ψ(ν)+
ˆ 1

−1
Gρ(y) d(µ −ν)(y)+ t

2

ˆ 1

−1
Gρ(y) dρ(y)). (6.77)

The key ingredient for showing the validity of the corresponding formula in the dense stochastic block model
is the convex selection principle discussed in Section 2.6. In particular, this relies on the observation that
the enriched free energy is a convex function of its parameters. In the context of the sparse stochastic block
model, the question would translate into whether the mapping (t,µ)↦ FN(t,µ) is convex. However, it was
shown in [67] that this mapping is in fact not convex in the sparse regime, even in the limit of large N. This
non-convexity property not only breaks down the proof strategy in Section 2.7, which the author had originally
hoped to carry through to the sparse regime; in fact, it can be leveraged to assert that the quantity (6.77) can
not be the limit of the free energy in this case. Indeed, the expression in (6.77) is a supremum over ρ of affine
functions of (t,µ), so the whole expression is convex in (t,µ). By [67], it is therefore not possible that the
expression in (6.77) be the limit of the free energy.

To sum up, if the aim is for a formula that is robust to model changes, then both (6.72) and (6.77) can be
ruled out. The author is not aware of alternative candidate variational formulas for the limit of the free energy.
This situation seems analogous to that encountered in the context of spin glasses with possibly non-convex
interactions, as discussed in Section 6 of [86].

Another non-variational alternative to Conjecture 1.4 would be that the limit of the free energy is the
maximal value one gets by plugging every possible solution of the fixed-point equation (6.75) into the
functional inside the supremum in (6.72). However, in view of the discussion in the previous paragraph,
counter-examples to the variational formula in (6.72) seem to produce counter-examples to this possibility as
well.

This apparent lack of a variational formula for the limit of the free energy in the sparse stochastic block
model makes the Hamilton-Jacobi approach so appealing. Indeed, at the very least, this approach allows one
to phrase a conjecture for the limit of the free energy. Unfortunately, without access to the convex selection
principle, the lower bound in Conjecture 1.4 remains open, and little progress has been made on this lower
bound since the publication of [49, 67].



Appendix A

Basic results in analysis and probability

In this appendix, five elementary topics in analysis and probability are discussed. In Section A.1, various
representations of convex sets are established. The first is the classical result that a closed convex cone
coincides with its bi-dual, the second is a non-differential characterization of a Lipschitz function having its
gradient in a closed convex set, and the third is a representation of a convex set as the intersection of all the
closed and affine half-spaces that contain it. These results are essential in the study of the sparse stochastic
block model. In Section A.2, the classical Fenchel-Moreau theorem is extended to the setting of positive half-
space. This result plays an important role in establishing the Hopf-Lax variational formula for Hamilton-Jacobi
equations on positive half-space in Section 2.4.4. In Section A.3, the subdifferential of a convex function is
discussed. More precisely, it is shown that a convex function is differentiable if and only if its subdifferential
consists of a single point, and that, unlike the derivative of a general function, the subdifferential of a convex
function is amenable to taking limits. These results are fundamental when establishing the convex selection
principle in Section 2.6. In Section A.4, the basic properties of semi-continuous envelopes are discussed.
These are leveraged in the Perron argument for proving the existence of solutions to Hamilton-Jacobi equations
on positive half-space in Section 2.4.2. Finally, in Section A.5, some basic properties of Binomial and Poisson
random variables are discussed. More specifically, moment bounds for the Poisson distribution are established,
the Binomial-Poisson approximation theorem is proved, and the Poisson colouring theorem is shown. The
moment bounds for the Poisson distribution are used in Section 6.2 to obtain the concentration of the free
energy, the Binomial-Poisson approximation theorem is used in Section 3.2 to show that the free energy
in the sparse stochastic block model can be modified without changing its limiting value, and the Poisson
colouring theorem is used in Section 3.4 to compute the limit of the enriched free energy at the initial time.
For completeness, a proof of any result used directly in the main body of the thesis is provided.

A.1 Representations of convex sets

A convex set K ⊆Rd is said to be a cone if, for all x ∈K and λ > 0, one has λx ∈K. The dual of convex set K
is the closed convex cone

K∗ = {x ∈Rd ∣ x ⋅y ⩾ 0 for all y ∈K}. (A.1)

It is clear that any convex set K is always a subset of its bi-dual K∗∗. Since K∗∗ is a closed cone, a necessary
condition for this containment to be equality is that K be a closed cone; it turns out that this is also a sufficient
condition.

177
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Proposition A.1. If K ⊆Rd is a non-empty closed convex cone, then K =K∗∗.

Proof. This is essentially Exercise 2.14 in [50]. It is clear that K ⊆K∗∗. Suppose for the sake of contradiction
that there exists x ∈K∗∗ ∖K. The supporting hyperplane theorem (Theorem 2.2 in [50]) gives a non-zero
vector v ∈Rd with

v ⋅x > sup{v ⋅y ∣ y ∈K}. (A.2)

Given x0 ∈K, which exists as K is not empty, the assumption that K is closed implies that 0 = limλ↘0 λx0 ∈K.
Together with (A.2), this implies that v ⋅x > 0. If there were y0 ∈K with v ⋅y0 > 0, the fact that K is a cone would
imply that v ⋅x ⩾ λv ⋅y0 for all λ > 0, and letting λ tend to infinity would give a contradiction. It follows from
(A.2) that v ⋅x > 0 = sup{v ⋅y ∣ y ∈K}, where the fact that 0 ∈K has been used. The lower bound implies that
−v ∈K∗ while the upper bound gives x ⋅(−v) < 0. This contradicts the assumption that v ∈K∗∗ and completes
the proof. ∎

This result implies that one can verify whether a point x ∈ Rd belongs to the convex cone K ⊆ Rd by
inspecting the sign of x ⋅ v for every v ∈K∗. In the context of the sparse stochastic block model, it will be
important to have a similar criterion to determine whether the gradient of a Lipschitz function that is not
necessarily differentiable everywhere belongs to a closed convex set.

Proposition A.2. If K ⊆ Rd is a closed convex set and ψ ∶ Rd → R is a Lipschitz function, then ∇ψ ∈K if

and only if the following holds. For every c ∈R and x,x′ ∈Rd with the property that for every z ∈K, one has

(x′−x) ⋅ z ⩾ c, then ψ(x′)−ψ(x) ⩾ c.

Proof. This is Proposition B.2 in [48]. To begin with, suppose that ∇ψ ∈K, and fix c ∈R and x,x′ ∈Rd with
the property that for every z ∈K, one has (x′ −x) ⋅ z ⩾ c. If ψ were differentiable almost everywhere on the
line joining x and x′, the fundamental theorem of calculus could be applied to the one-dimensional Lipschitz
function t ↦ψ(x+ t(x′−x)) to conclude that

ψ(x′)−ψ(x) =
ˆ 1

0
∇ψ(x+ t(x′−x)) ⋅(x′−x) dt ⩾ c.

Although ψ could fail to be differentiable almost everywhere on the line joining x and x′, it will now be shown
that, given ε > 0, it must be differentiable almost everywhere on some line joining some point xε ∈ Bε(x) and
some point x′ε ∈ Bε(x′). Denote by

H ∶= {y ∈Rd ∣ y ⋅(x′−x) = 0} ≅Rd−1

the hyperplane perpendicular to the line segment joining x and x′, and write Aε,x ∶= Bε(x)∩(x+H) for the
cross-section of Bε(x) through x and perpendicular to the line segment joining x and x′. Denote by L the set
of line segments between points in Aε,x and points in Aε,x′ which are parallel to the line segment joining x

and x′. For each y ∈Aε,x, write `y ∈L for the unique line segment in Aε,x through y, and introduce the set

Dy ∶= {z ∈ `y ∣ψ is not differentiable at z}

of points on `y at which ψ is not differentiable. If, for every y ∈ Aε,x, the set Dy were of positive one-
dimensional Lebesgue measure m1(Dy) > 0 , then the d-dimensional Lebesgue measure of the set of points in
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∪y∈Aε,x`y at which ψ is not differentiable would have positive measure,

ˆ
Aε,x

m1(Dy) dy > 0.

This would contradict Rademacher’s theorem (Theorem 2.10 in [50]) on the almost everywhere differentiability
of Lipschitz functions. It is therefore possible to find xε ∈Aε,x with m1(Dxε

) = 0. Writing x′ε ∈Aε,x′ for the
right endpoint of `xε

, the fundamental theorem of calculus implies that

ψ(x′ε)−ψ(xε) =
ˆ 1

0
∇ψ(xε + t(x′ε −xε)) ⋅(x′−x) dt ⩾ c.

Letting ε tend to zero shows that ψ(x′)−ψ(x) ⩾ c as required. Conversely, suppose that for every c ∈R and
x,x′ ∈Rd with the property that (x′−x) ⋅ z ⩾ c for every z ∈K, one has ψ(x′)−ψ(x) ⩾ c. Assume for the sake
of contradiction that there exists y ∈Rd with ∇ψ(y) ∉K. The supporting hyperplane theorem (Theorem 2.2 in
[50]) gives a non-zero vector v ∈Rd and δ > 0 with

v ⋅∇ψ(y)+δ < inf{v ⋅ z ∣ z ∈K}.

It follows that
ψ(y+εv)−ψ(y) ⩾ ε(v ⋅∇ψ(y)+δ).

Dividing by ε and letting ε tend to zero reveals that ∇ψ(y) ⋅v ⩾ v ⋅∇ψ(y)+δ . This contradiction completes
the proof. ∎

In the special case when the convex set K is a cone, this result implies that the gradient of a Lipschitz
function ψ ∶ Rd → R belongs to the closed convex cone K if and only if ψ is K∗-non-decreasing. Recall
from (4.74) that the function ψ is said to be K∗-non-decreasing if, for all x,x′ ∈Rd with x′−x ∈K∗, one has
ψ(x′)−ψ(x) ⩾ 0.

Corollary A.3. If K is a non-empty closed convex cone, and ψ ∶Rd →R is a Lipschitz function, then ∇ψ ∈K
if and only if ψ is K∗-non-decreasing.

Proof. On the one hand, if∇ψ ∈K, then Proposition A.2 applied with c = 0 shows that ψ isK∗-non-decreasing.
On the other hand, if ψ is K∗-non-decreasing but there exists y ∈Rd with ∇ψ(y) ∉K, then the supporting
hyperplane theorem (Theorem 2.2 in [50]) gives a non-zero vector v ∈Rd with

v ⋅∇ψ(y) < inf{v ⋅ z ∣ z ∈K}.

Observe that v ∈K∗. Indeed, if this were not the case, there would exist z ∈K with v ⋅ z < 0. Since K is a
cone, this would mean that v ⋅∇ψ(y) ⩽ λv ⋅ z for all λ > 0, which would lead to a contradiction upon letting
λ tend to infinity. Notice also that 0 = limλ↘0 λx0 ∈ K, where x0 denotes any point in K. It follows that
inf{v ⋅ z ∣ z ∈K} = 0, and therefore that v ⋅∇ψ(y) < 0. Since v ∈K∗, the K∗-non-decreasingness of ψ implies
that

ψ(y+εv)−ψ(y) ⩾ 0.

Dividing by ε and letting ε tend to zero leads to a contradiction that completes the proof. ∎
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Proposition A.4. If K is a closed convex set, then

K = {x ∈Rd ∣ x ⋅v ⩾ c for all (v,c) ∈A}, (A.3)

whereA ∶= {(v,c) ∈Rd+1 ∣ x ⋅v ⩾ c for all x ∈K and ∣v∣ = 1} is a representative of the set of closed hyper-spaces

containing K.

Proof. This is Corollary 4.2.4 of [62]. To alleviate notation, let C ∶= {x ∈Rd ∣ x ⋅v ⩾ c for all (v,c) ∈A}. By
definition of A, it is clear that K ⊆C. Suppose for the sake of contradiction that there exists x ∈C∖K. The
hyperplane separation theorem (Theorem 2.2 in [50]) gives δ > 0 and v ∈Rd with ∣v∣ = 1 such that

v ⋅x+δ < inf{v ⋅y ∣ y ∈K}.

This means that (v,v ⋅x+δ) ∈A. Since x ∈C, it follows that x ⋅v ⩾ x ⋅v+δ . This contradiction completes the
proof. ∎

A.2 The Fenchel-Moreau theorem on positive half-space

The convex dual of a proper function f ∶Rd →R∪{+∞} is the function f∗ ∶Rd →R∪{+∞} defined by

f∗(λ) ∶= sup
x∈Rd
(λ ⋅x− f (x)). (A.4)

If f∗ is proper, then this operation can be iterated to obtain the convex bi-dual of f , which is the function
f∗∗ ∶Rd →R∪{+∞} defined by

f∗∗(x) ∶= ( f∗)∗(x) = sup
λ∈Rd
(x ⋅λ − f∗(λ)). (A.5)

A classical result in convex analysis is that a function f ∶Rd →R∪{+∞} is convex and lower semi-continuous
if and only if it is the supremum of its affine minorants (Proposition 2.4 in [50]). The Fenchel-Moreau theorem
refines this result by identifying an explicit set of affine minorants of f whose supremum is f .

Proposition A.5 (Fenchel-Moreau on Euclidean space). If f ∶Rd →R is convex and lower semi-continuous,

then it is equal to its convex bi-dual,

f = f∗∗. (A.6)

Proof. See Theorem 2.5 in [50]. ∎

In Section 2.4.4, when establishing the Hopf-Lax variational formula for Hamilton-Jacobi equations
on positive half-space, it will be desirable to have a version of this result for functions defined on positive
half-space. With the appropriate interpretation of the convex dual, and under the additional assumption of
non-decreasingness, the Fenchel-Moreau theorem extends to the setting of positive half-space. The convex

dual of a proper function f ∶Rd
⩾0→R∪{+∞} is the function f ∗ ∶Rd

⩾0→R∪{+∞} defined by

f ∗(λ) ∶= sup
x∈Rd

⩾0

(λ ⋅x− f (x)). (A.7)
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If f ∗ is proper, the convex bi-dual of f is the function f ∗∗ ∶Rd
⩾0→R∪{+∞} defined by

f ∗∗(x) ∶= ( f ∗)∗(x) = sup
λ∈Rd

⩾0

(x ⋅λ − f ∗(λ)). (A.8)

Recall from (2.69) that a function f ∶Rd
⩾0→R is said to be non-decreasing if, for all x′,x ∈Rd

⩾0 with x′−x ∈Rd
⩾0,

one has f (x) ⩽ f (x′).

Proposition A.6 (Fenchel-Moreau on positive half-space). If f ∶Rd
⩾0→R is convex, lower semi-continuous,

and non-decreasing, then it is equal to its convex bi-dual,

f = f ∗∗. (A.9)

Proof. For each x ∈Rd , denote by x̃ ∈Rd
⩾0 its symmetrization, x̃ ∶= (x̃1, . . . , x̃d) ∶= (∣x∣1, . . . , ∣x∣d), and define the

symmetrization f̃ ∶Rd →R of the function f by f̃ (x) ∶= f (x̃). The proof proceeds in two steps. First, it is
shown that f̃ = f̃∗∗ on Rd , and then that f̃∗∗ = f ∗∗ on Rd

⩾0.

Step 1: f̃ = f̃∗∗ on Rd . By the Fenchel-Moreau theorem on Euclidean space, it suffices to show that the
symmetrization f̃ of f is lower semi-continuous and convex. The lower semi-continuity of f̃ is immediate
from that of f . To establish convexity, fix α ∈ [0,1], t,t′ ≥ 0 and x,x′ ∈Rd . By non-decreasingness of f ,

f̃ (αt +(1−α)t′,αx+(1−α)x′) ⩽ f (αt +(1−α)t′,α x̃+(1−α)x̃′),

and by convexity of f ,

f̃ (αt +(1−α)t′,αx+(1−α)x′) ⩽ α f (t, x̃)+(1−α) f (t′, x̃′) = α f̃ (t,x)+(1−α) f̃ (t′,x′).

It follows by the Fenchel-Moreau theorem on Euclidean space that the symmetrization f̃ is equal to its convex
bi-dual, f̃ = f̃∗∗.

Step 2: f̃∗∗ = f ∗∗ on Rd
⩾0. Fix λ ∈Rd , and for every x ∈Rd , let xλ ∶= (x1 sgnλ1, . . . ,xd sgnλd). By symmetry

of f̃ ,
f̃∗(λ) = sup

x∈Rd
(x ⋅λ − f̃ (x)) = sup

x∈Rd
(xλ ⋅λ − f̃ (xλ )) = sup

x∈Rd
(x ⋅ λ̃ − f̃ (x)) = f̃∗(λ̃).

It follows that for every x ∈Rd
⩾0,

f̃∗∗(x) = sup
λ∈Rd
(x ⋅λ − f̃∗(λ)) = sup

λ∈Rd
(x ⋅λ − f̃∗(λ̃)) = sup

λ∈Rd
⩾0

(x ⋅λ − f̃∗(λ)), (A.10)

where the final equality uses that x ⋅λ ⩽ x ⋅ λ̃ for every λ ∈Rd . To simplify this further, observe that for λ ∈Rd
⩾0,

f̃∗(λ) = sup
y∈Rd
(y ⋅λ − f̃ (y)) = sup

y∈Rd
(y ⋅λ − f (ỹ)) = sup

y∈Rd
⩾0

(y ⋅λ − f (y)) = f ∗(λ),

where the penultimate equality uses that y ⋅λ ⩽ ỹ ⋅λ for all y ∈Rd . Substituting this into (A.10), and invoking
the previous step completes the proof. ∎
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A.3 The subdifferential of a convex function

The differentiability of a convex function f ∶Rd →R∪{+∞} at points of its effective domain,

dom f ∶= {x ∈Rd ∣ f (x) < +∞}, (A.11)

is best studied through the notion of subdifferential. The subdifferential of a convex function f ∶Rd→R∪{+∞}
at a point x ∈ dom f is the set

∂ f (x) ∶= {p ∈Rd ∣ f (y) ⩾ f (x)+ p ⋅(y−x) for all y ∈Rd}. (A.12)

It turns out that a convex function is differentiable at a point x in the interior of its effective domain if and only
if its subdifferential at x consists of a singleton. To prove this, it will be convenient to observe that a convex
function is differentiable at a point in the interior of its effective domain if and only if its directional derivative
is a linear function of the direction. The directional derivative of a convex function f ∶Rd →R∪{+∞} at a
point x ∈ int(dom f ) in the direction ν ∈Rd is the function

Dν f (x) ∶= lim
t↘0

f (x+ tν)− f (x)
t

. (A.13)

The convexity of f implies that the difference quotient defining the directional derivative is a decreasing
function of t, so the directional derivative is well-defined as a monotone limit. In general, the linearity of the
directional derivative does not suffice to characterize the differentiability of a function; however, it does suffice
for locally Lipschitz continuous functions, and therefore for points in the interior of the effective domain of
a convex function. Indeed, a convex function is locally Lipschitz continuous on the interior of its effective
domain (Proposition 2.9 in [50]).

Lemma A.7. A convex function f ∶Rd →R∪{+∞} is differentiable at x ∈ int(dom f ) if and only if the map

ν ↦Dν f (x) is linear. In this case, one has Dν f (x) =∇ f (x) ⋅ν .

Proof. This is Lemma 2.12 in [50]. On the one hand, if f is differentiable, then for any direction vector ν ∈Rd ,
one has Dν f (x) =∇ f (x) ⋅ν . Conversely, suppose that ν ↦Dν f (x) is linear, that is, there exists a ∈Rd such
that Dν f (x) = a ⋅ν for every ν ∈Rd . Assume for the sake of contradiction that f is not differentiable at x. Let
(νn)n⩾1 with ∣νn∣ = 1 for all n ≥ 1 and (tn)n⩾1 ⊆R>0 be a sequence converging to 0 such that the error term

R(x,νn,tn) ∶= ∣
f (x+ tnνn)− f (x)

tn
−a ⋅νn∣

does not converge to zero. Up to passing to a subsequence, assume that (νn)n⩾1 converges to some ν0 in the
unit sphere. Remembering that a convex function is locally Lipschitz continuous on the interior of its effective
domain (Proposition 2.9 in [50]), denote by L > 0 the Lipschitz constant of f around x. The triangle inequality
implies that

R(x,νn,tn) ⩽ R(x,ν0,tn)+(L+ ∣a∣)∣νn−ν0∣.

Leveraging the assumption that Dν0 f (x) = a ⋅ν0 to let n tend to infinity contradicts the absurd hypothesis that
the sequence (R(x,νn,tn))n⩾1 does not converge to zero. This completes the proof. ∎

Proposition A.8. Let f ∶Rd →R∪{+∞} be a convex function. For every point x ∈ int(dom f ), the subdiffer-

ential ∂ f (x) is not empty.
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Proof. This is Proposition 2.11 in [50]. Consider the convex set C ∶= {(y,µ) ∈ Rd ×R ∣ f (y) > µ}, and fix
x ∈ dom f . Since (x, f (x)) ∉C the supporting hyperplane theorem (Theorem 2.2 in [50]) gives a non-zero
vector (v,b) ∈Rd ×R with

0 ⩽ v ⋅(y−x)+b(µ − f (x)).

for every (y,µ) ∈C. Since µ can be arbitrarily large, it must be the case that b ⩾ 0. If it were the case that b = 0,
then 0 ⩽ v ⋅(y−x) for all y in a neighbourhood of x ∈ int(dom f ), which is not possible since (v,b) is non-zero.
This means that b > 0 so the vector p ∶= −v/b is well-defined and satisfies

µ ⩾ f (x)+ p ⋅(y−x)

for all (y,µ) ∈C. Letting µ tend to f (y) reveals that p ∈ ∂ f (x), which means that the subdifferential ∂ f (x) is
not empty. This completes the proof. ∎

Proposition A.9. A convex function f ∶Rd →R∪{+∞} is differentiable at a point x ∈ int(dom f ) if and only

if ∂ f (x) consists of a singleton. In this case, one has ∂ f (x) = {∇ f (x)}.

Proof. This is Theorem 2.13 in [50]. The forward direction is established first. Recall from Proposition A.8
that the subdifferential ∂ f (x) is not empty. Fix p ∈ ∂ f (x). By definition of the subdifferential, for every v ∈Rd

and λ > 0,
f (x+λv)− f (x) ⩾ λv ⋅ p.

Dividing by λ and letting λ tend to zero shows that (∇ f (x)− p) ⋅v ⩾ 0. Choosing v ∶= p−∇ f (x) reveals that
p =∇ f (x), so ∂ f (x) = {∇ f (x)}. Conversely, suppose that the subdifferential is a singleton ∂ f (x) = {p}, and
fix a direction vector ν ∈Rd . The convexity of f and the definition of the directional derivative imply that for
all λ ∈R,

f (x)+λDν f (x) ⩽ f (x+λν).

This means that the convex sets

C ∶= {(x+λν , f (x)+λDν f (x)) ∣ λ ∈R}

and int(epi f ) are disjoint. Recall that the epigraph of f is the convex set

epi f ∶= {(x,λ) ∈Rd ×R ∣ f (x) ⩽ λ}.

It follows by the Hahn-Banach separation theorem (Theorem 2.3 in [50]) that there exists a non-zero vector
(a,b) ∈R×Rd with

a( f (x)+λDν f (x))+b ⋅(x+λν) ⩽ aµ +b ⋅y (A.14)

for all (y,µ) ∈ int(epi f ) and λ ∈R. Taking λ = 0 shows that

a f (x)+b ⋅x ⩽ aµ +b ⋅y (A.15)

for all (y,µ) ∈ int(epi f ). Since µ can be arbitrarily large, it must be the case that a ⩾ 0. If it were the case that
a = 0, then 0 ⩽ b ⋅(y−x) for all y ∈Rd , which is not possible since (a,b) is non-zero. Dividing through by a

and letting µ tend to f (y) in (A.15) shows that −b/a ∈ ∂ f (x), and therefore b/a = −p. Combining this with
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(A.14) and letting µ tend to f (y) in the resulting bound gives

f (x)+λDν f (x)− p ⋅(x+λν) ⩽ f (y)− p ⋅y

for all y ∈ Rd and λ ∈ R. Taking y = x reveals that λ(Dν f (x)− p ⋅ν) ⩽ 0 for all λ ∈ R, which implies that
Dν f (x) = p ⋅ν . In particular, the map ν ↦Dν f (x) is linear. Invoking Lemma A.7 completes the proof. ∎

In the context of the Hamilton-Jacobi approach, one has a sequence (FN)N⩾1 of differentiable and convex
free energy functionals defined on R⩾0×Rd

⩾0, and one is interested in the differential properties of the possibly
non-differentiable convex limit f ∶R⩾0×Rd

⩾0→R. This requires understanding how the subdifferential interacts
with limits.

Proposition A.10. Let f ∶Rd →R∪{+∞} be a convex function, and let (xn, pn)n⩾1 be a sequence of points

in dom f ×Rd with pn ∈ ∂ f (xn) for each n ⩾ 1 that converges to some point (x, p) ∈ dom f ×Rd . If f is lower

semi-continuous at x ∈ dom f , then p ∈ ∂ f (x).

Proof. This is Proposition 2.14 in [50]. Fix y ∈Rd as well as n ⩾ 1. Since pn ∈ ∂ f (xn),

f (y) ⩾ f (xn)+ pn ⋅(y−xn)

Letting n tend to infinity and using the lower semi-continuity of f at x completes the proof. ∎

Remark A.11. If the point x in Proposition A.10 belongs to int(dom f ), the continuity of f at x is automatically
satisfied since a convex function is locally Lipschitz continuous on the interior of its effective domain
(Proposition 2.9 in [50]).

Proposition A.12. For each integer n ⩾ 1, let fn ∶ Rd → R∪{+∞} be a differentiable convex function. If

( fn)n⩾1 converges pointwise to some function f ∶Rd →R∪{+∞} and x ∈ int(dom f ) is such that the sequence

of derivatives (∇ fn(x))n⩾1 converges to some vector p ∈Rd , then p ∈ ∂ f (x).

Proof. This is Proposition 2.15 in [50]. Fix y ∈Rd as well as n ⩾ 1. Since fn is differentiable at the interior point
x ∈ int(dom f ), one has ∇ fn(x) ∈ ∂ fn(x) by Proposition A.8. It follows by definition of the subdifferential that

fn(y) ⩾ fn(y)+∇ fn(x)(y−x).

Letting n tend to infinity and using the pointwise convergence of fn to f completes the proof. ∎

A.4 semi-continuous envelopes

Fix a set X ⊆Rd endowed with a norm ∥⋅∥. A function u ∶ X →R is said to be upper semi-continuous at a point
x ∈ X if

u(x) ⩾ limsup
y→x

u(y) ∶= lim
r↘0

sup{u(y) ∣ y ∈ X with ∥y−x∥ ⩽ r}, (A.16)

and it is said to be lower semi-continuous at a point x ∈ X if

u(x) ⩽ liminf
y→x

u(y) ∶= lim
r↘0

inf{u(y) ∣ y ∈ X with ∥y−x∥ ⩽ r}. (A.17)
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Moreover, the upper semi-continuous envelope of u is the function u ∶ X →R defined by

u(x) ∶= limsup
y→x

u(y) = lim
r↘0

sup{u(y) ∣ y ∈ X with ∥y−x∥ ⩽ r}, (A.18)

while its lower semi-continuous envelope is the function u ∶ X →R defined by

u(x) ∶= liminf
y→x

u(y) = lim
r↘0

inf{u(y) ∣ y ∈ X with ∥y−x∥ ⩽ r}. (A.19)

The following proposition collects the basic properties of semi-continuous envelopes. This result is used in
Section 2.4.2 with X ∶=R⩾0×Rd

⩾0 and ∥(t,x)∥ ∶= ∣t ∣+ ∣x∣.

Proposition A.13. The semi-continuous envelopes of a locally bounded function u ∶X →R satisfy the following

basic properties.

(i) u(x) ⩽ u(x) ⩽ u(x) for all x ∈ X.

(ii) u(x) = min{v(x) ∣ u ⩽ v and v is upper semi-continuous} for all x ∈ X. In particular, u is upper semi-

continuous.

(iii) u(x) = max{v(x) ∣ v ⩽ u and v is lower semi-continuous} for all x ∈ X. In particular, u is lower semi-

continuous.

(iv) u is upper semi-continuous at x ∈ X if and only if u(x) = u(x).

(v) u is lower semi-continuous at x ∈ X if and only if u(x) = u(x).

Proof. This is Proposition B.3 in [48]. To deduce the properties of the lower semi-continuous envelope from
the corresponding properties of the upper semi-continuous envelope the observation that

u(x) = liminf
y→x

u(y) = − limsup
y→x

(−u(y)) = −(−u)(x) (A.20)

will be leveraged.

(i) This is immediate from the definition of the semi-continuous envelopes in (A.18) and (A.19).

(ii) If v is an upper semi-continuous function with u ⩽ v, taking the limsup as y tends to x on both sides of the
inequality u(y) ⩽ v(y), and leveraging the upper semi-continuity of v reveals that

u(x) = limsup
y→x

u(y) ⩽ limsup
y→x

v(y) ⩽ v(x).

This implies that
u(x) ⩽ inf{v(x) ∣ u ⩽ v and v is upper semi-continuous}.

To show that this infimum is achieved and that this inequality is, in fact, an equality, it suffices to prove
that u is itself upper semi-continuous. Fix x ∈ X as well as ε > 0, and find r > 0 with

u(x)+ε > sup{u(y) ∣ y ∈ X with ∥y−x∥ ⩽ r}.

The triangle inequality reveals that for any z ∈ X with ∥z−x∥ < r,

u(x)+ε ⩾ sup{u(y) ∣ y ∈ X with ∥y− z∥ ⩽ r−∥x− z∥} ⩾ u(z).
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It follows that limsupz→x u(z) ⩽ u(x), so u is upper semi-continuous at x. Since x is arbitrary, this
establishes the claim.

(iii) Combining the previous part with (A.20) shows that

u(x) = −(−u)(x) =max{−v(x) ∣ −u ⩽ v and v is upper semi-continuous}.

Observing that v is upper semi-continuous if and only −v is lower semi-continuous establishes the claim.

(iv) If u is upper semi-continuous at x, then

u(x) = limsup
y→x

u(y) ⩽ u(x).

Together with the inequality u(x) ⩽ u(x), this shows that u(x) = u(x). On the other hand, if u(x) = u(x),
then

limsup
y→x

u(y) = u(x) = u(x) ⩽ u(x)

so u is upper semi-continuous at x.

(v) Observe that u is lower semi-continuous at x ∈ X if and only if −u is upper semi-continuous at x ∈ X . The
previous part implies that this is the case if and only if −u(x) = (−u)(x). Invoking (A.20) completes the
proof. ∎

A.5 Binomial and Poisson random variables

A random variable X is Bernoulli with probability of success p ∈ (0,1), denoted by X ∼ Ber(p), if it takes
values in {0,1} and is equal to one with probability p,

P{X = 1} = p. (A.21)

A random variable Y is Binomial with probability of success p ∈ (0,1) and number of trials n ∈N, denoted by
Y ∼Bin(n, p), if it is the sum of n independent and identically distributed Bernoulli random variables (Xi)i⩽n

with probability of success p, that is, Y =∑i⩽n Xi. This means that Y takes values in {0,1, . . . ,n}, and for any
k ∈ {0,1, . . . ,n},

P{Y = k} = (n
k
)pk(1− p)n−k. (A.22)

A random variable Π is Poisson with mean λ > 0, denoted by Π ∼ Poi(λ), if it takes values in the natural
numbers including zero, and for any k ∈ {0,1,2, . . .},

P{Π = k} = λ
k

k!
exp(−λ). (A.23)

Jensen’s inequality ensures that for any integer k ⩾ 1, one has the lower moment bound λ
k = (EΠ)k ⩽EΠ

k. It
turns out that the converse bound holds up to a multiplicative constant provided that EΠ ⩾ 1.

Proposition A.14. If Π ∼ Poi(λ) is a Poisson random variable with a mean larger than one, λ ⩾ 1, and k ⩾ 2



APPENDIX A. BASIC RESULTS IN ANALYSIS AND PROBABILITY 187

is an integer, then there exists a constant Ck < +∞ such that

λ
k ⩽EΠ

k ⩽Cλ
k and E(Π−EΠ)k ⩽Cλ

⌊k/2⌋. (A.24)

Proof. This is Lemma B.2 in [49]. Denote by { k
j} the number of ways to partition a k element set into j

non-empty subsets. In combinatorics, such numbers are known as Stirling numbers of the second kind, and
they have the property that for any integer m ⩾ 0,

mk =
k

∑
j=0
{k

j
}(m) j, (A.25)

where (m) j =m(m−1)⋯(m− j+1) is the falling factorial. Combining (A.25) with the basic properties of the
Poisson distribution reveals that

EΠ
k = ∑

m⩾0
∑
j⩽k
{k

j
}(m) j

λ
m

m!
exp(−λ) =∑

j⩽k
{k

j
}λ

j∑
m⩾ j

λ
m− j

(m− j)! exp(−λ) =∑
j⩽k
{k

j
}λ

j ⩽max(1,λ k)Bk,

where Bk ∶=∑k
j=0{ k

j} denotes the k’th Bell number. This establishes the first bound in (A.24). It is now shown
by induction that for each k ⩾ 2, the function Mk(λ) ∶=E(Π−EΠ)k is a polynomial of degree ⌊k/2⌋. The base
case holds since M2(λ) =Var(Π) = λ , so assume the result holds for all 2 ⩽ i ⩽ k. By the product rule

M′k(λ) = −∑
m⩾0

k(m−λ)k−1 λ
m

m!
exp(−λ)+∑

m⩾0
(m−λ)km

λ
m−1

m!
exp(−λ)−Mk(λ)

= −kMk−1(λ)+∑
m⩾0
(m−λ)k(m−λ +λ)λ

m−1

m!
exp(−λ)−Mk(λ)

= −kMk−1(λ)+
1
λ
(Mk+1(λ)+λMk(λ))−Mk(λ)

= −kMk−1(λ)+
1
λ

Mk+1(λ).

Invoking the induction hypothesis shows that Mk+1(λ) has degree max(⌊k/2⌋,1+⌊(k−1)/2⌋). This completes
the proof. ∎

The Binomial and Poisson distributions are intimately related. Indeed, a classical approximation theorem
in probability theory is that, in the appropriate regime, the Poisson distribution can be approximated by the
Binomial distribution. This result is known as the Binomial-Poisson approximation, and it can be obtained
by controlling the total variation distance between a Poisson distribution and an approximating Binomial
distribution. Given a separable metric space S, the total variation distance between two probability measures
P,Q ∈ Pr(S) is defined by

TV(P,Q) ∶= sup{∣P(A)−Q(A)∣ ∣ A is a measurable subset of S}. (A.26)

Approximating any measurable function with values in S by a sequence of simple functions, one can verify
that the total variation distance admits the dual representation

TV(P,Q) = sup{∣
ˆ 1

−1
f (x) dP(x)−

ˆ 1

−1
f (x) dQ(x)∣ ∣ f ∶ S→ [0,1] measurable}. (A.27)
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Using the Hahn-Jordan decomposition (Theorem 3.4 in [57]), it is also possible to show that

TV(P,Q) = inf{P{X ≠Y} ∣ X ∼ P and Y ∼Q}. (A.28)

This is the representation of the total variation distance that will be used to establish the Binomial-Poisson
approximation theorem. More precisely, it will be applied to discrete probability measures supported on the
set of natural numbers. In this case, it can be established using the Kantorovich-Rubinstein theorem (Theorem
4.15 in [90]).

Proposition A.15 (Bernoulli-Poisson approximation). Consider independent Bernoulli random variables

Xi ∼Ber(pi) for i ⩽ n, and let λn ∶=∑n
i=1 pi. If Yn ∶=∑i⩽n Xi and Πn ∼ Poi(λn), then

TV(Yn,Πn) ⩽∑
i⩽n

p2
i . (A.29)

Proof. This is Theorem 2.4 in [90]. Temporarily fix i ⩽ n, and for each k ⩾ 0, introduce the constant

ck ∶=
k

∑
`=0

p`i
`!

e−pi .

Define the random variables Xi and X∗i on [0,1] endowed with the Borel σ -algebra and the Lebesgue measure
P by

Xi ∶= 1(1−pi,1] and X∗i ∶=
+∞
∑
k=1

k1(ck−1,ck]

in such a way that Xi ∼Ber(pi) and X∗i ∼ Poi(pi). Since 1− pi ⩽ e−pi = c0, the random variables Xi and X∗i can
only fail to be equal on the intervals (1− pi,c0] and (c1,1]. This means that

P{Xi ≠ X∗i } ⩽ c0−(1− pi)+1−c1 = pi(1−e−pi) ⩽ p2
i .

At this point, construct pairs (Xi,X∗i )i⩽n on separate coordinates of the product space [0,1]n endowed with the
product Borel σ -algebra and the product Lebesgue measure, thus making them independent. Since the sum of
independent Poisson random variables is again Poisson with parameter given by the sum of the individual
parameters, the random variable S∗n ∶=∑i⩽n X∗i is equal in distribution to Πn. It follows by the union bound that

TV(Yn,Πn) ⩽ P{Yn ≠ S∗n} ⩽
n

∑
i=1

P{Xi ≠ X∗i } ⩽
n

∑
i=1

p2
i .

This completes the proof. ∎

Another result that highlights the strong connections between the Binomial and Poisson distributions is
the Poisson colouring theorem. To motivate this result, consider N balls each of which is painted red with
probability p ∈ (0,1) and blue with probability 1− p. The number of red balls Nr is Binomial with probability
of success p and number of trials n, while the number of blue balls Nb is Binomial with probability of success
1− p and number of trials n. The Poisson colouring theorem considers this same problem when, instead of
having a deterministic number of balls N, the number of balls N is Poisson with mean λ . In this case it turns
out that Nr is again Poisson with mean λ p while Nb is Poisson with mean λ(1− p).

Proposition A.16 (Poisson colouring). Let N ∼ Poi(λ) be a Poisson random variable with mean λ > 0, and
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let (Xi)i⩾1 be independent and identically distributed random variables independent of N taking values in

{1, . . . ,k} with P{X1 = j} = p j for 1 ⩽ j ⩽ k. If N j denotes the number of random variables among (Xi)i⩽N

taking value j ∈ {1, . . . ,k}, then (N j) j⩽k are independent Poisson random variables with N j ∼ Poi(λ p j) for

1 ⩽ j ⩽ k.

Proof. This is Exercise 1.2.9 in [90]. Fix non-negative integers n1, . . . ,nk ⩾ 0, and let n ∶= n1, . . . ,nk be their
sum. Bayes’ formula implies that

P{N1 = n1, . . . ,Nk = nk} = P{N1 = n1, . . . ,Nk = nk ∣N = n}P{N = n}

Since the random variables (Xi)i⩾1 are independent of N, conditionally on the event {N = n}, the random
vector (N1, . . . ,Nk) is multinomial with probabilities of success p1, . . . , pk and number of trials n. It follows
that

P{N1 = n1, . . . ,Nk = nk} =
n!

n1! . . .nk!
pn1

1 ⋯pnk
k

λ
ne−λ

n!
=

k

∏
j=1

λ
n j e−λ p j

n j!
p

n j
j .

This shows that N1, . . . ,Nk are independent Poisson random variables with means λ p1, . . . ,λ pk, and completes
the proof. ∎
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