

Departmental PhD Thesis Exam

Friday, August 30, 2024 at 10:00 a.m. (sharp) via Zoom / BA6183

PhD Candidate :	Leonard Okyere Afeke
Supervisor :	Professor Dror Bar-Natan
Thesis title :	On the Gassner invariant of braids and string links

Abstract

In this thesis we delve into the computation of the Gassner invariant for string links, which are a more generalized form than braids, utilizing a (co)homological approach. We restrict this (co)homology invariant, denoted as \mathscr{G}_h , to pure braids, leading to the derivation of the Gassner representation.

We introduce the concept of "flying cars," which assigns an invariant $\mathscr{C}(L)$ to an (n + 1)-component string link *L*. This invariant, an $n \times n$ matrix, has entries in the field $\mathbb{Q}(t_0, t_1, \ldots, t_n)$. We establishes a connection between the invariant $\mathscr{C}(L)$ and the homology Gassner invariant $\mathscr{G}_h(L)$ of *L* through the formula $\mathscr{G}_h(L) = (D_n \cdot \mathscr{C}(L) \cdot D_n^{-1}) //\rho_{col} //m^t$. Here, D_n is a diagonal matrix, m^t denotes matrix transpose, and ρ_{col} represents column permutation. We prove that $\mathscr{C}(L)$ is indeed an invariant of string links under the Reidemeister moves, thereby directly verifying the invariance of the homology Gassner invariant.

Moreover, we provide formulas for the intersection product $\mu := \langle -, - \rangle : H_1(P; \mathscr{F}) \times H_1(P; \mathscr{F}) \to \mathscr{F}$, which is defined on the cycles of the homology group $H_1(P; \mathscr{F})$. In this context, *P* is an (n+1)-punctured disk viewed as a subspace of the complement *X* of an n+1 string link, and \mathscr{F} is a local coefficient system on *X* determined by the abelianization map $\varepsilon : \pi_1(X, x_0) \to \langle t_0, t_1, \dots, t_n \rangle$. This map takes values in the free abelian group $\langle t_0, t_1, \dots, t_n \rangle$. We conclude by verify that the homology Gassner invariant is unitary with respect to this intersection product.