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Let L/K be a Galois extension of number fields. We consider the problem

of bounding the least prime ideal of K whose Frobenius lies in a fixed con-

jugacy class C. Under the assumption of Artin’s conjecture we work with

Artin L-functions directly to obtain an upper bound in terms of irreducible

characters which are nonvanishing at C. As a consequence we obtain

stronger upper bounds for the least prime in C when many irreducible

characters vanish at C. We also prove a Deuring-Heilbronn phenomenon

for Artin L-functions with nonnegative Dirichlet series coefficients as a

key step.

We apply our results to the case when Gal(L/K) is the symmetric group

Sn. Using classical results on the representation theory of Sn we give an

upper bound for the least prime whose Frobenius is an n-cycle which is

stronger than known bounds when the characters which are nonvanishing

at n-cycles are unramified, as well a similar result for (n− 1)-cycles. We

also give stronger bounds in the case of Sn-extensions over Q which are

unramified over a quadratic field. We also consider other groups and

conjugacy classes where unconditional improvements are obtained.
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1
I N T R O D U C T I O N A N D
O V E RV I E W

Let L/K be a Galois extension of number fields with Galois group G.
Given a prime p of K which is unramified in L there is a corresponding
Frobenius conjugacy class σp of G. The Chebotarev density theorem states
that given a conjugacy class C of G, the primes of K whose Frobenius σp is
C has density |C|/|G|. In particular there are infinitely many such primes.
An important problem therefore is to obtain effective bounds on primes
whose Frobenius appears in C. In this chapter we will discuss known
results including the effective bounds of Lagarias-Montgomery-Odlyzko.
For special choices of groups and conjugacy classes we are able to obtain
much improved bounds.

For notational convenience, if f (x), g(x) are functions with g(x) ≥ 0 we
will write

f (x)� g(x)

whenever there is a positive constant c such that

| f (x)| ≤ cg(x).

The constant c is to be effective and absolute unless stated otherwise. For
two functions f (x), g(x) ≥ 0 we will also write

f (x) � g(x)

to mean f (x)� g(x) and g(x)� f (x).

1.1 the least prime ideal in a conjugacy class

Let L/K be a Galois extension of number fields with Galois group G. For
each prime p of K unramified in L denote by σp its Frobenius class in G.
Let C be a subset of G which is stable under conjugation and define

πC(x, L/K) = #{p : σp ⊆ C, NK/Qp ≤ x}.

1



1.1 the least prime ideal in a conjugacy class 2

The Chebotarev density theorem [Tsc26] states that

πC(x, L/K) ∼ |C||G| Li(x).

In particular there are infinitely many p with σp ⊆ C so one may ask for
bounds on such primes p with least norm.

In [LO77], under the assumption of the generalized Riemann hypothesis
Lagarias and Odlyzko proved an effective version of the Chebotarev
density theorem which states that if ζL satisfies the GRH then for every
x > 2

|πC(x, L/K)− |C||G| Li(x)| � |C||G| x
1/2 log(dLxnL) + log dL

where the implicit constant is absolute and effective. As a corollary they
obtain that the least prime p with σp ⊆ C satisfies

NK/Qp� (log dL)
2.

Unconditionally one only has much weaker bounds. In [LMO79] La-
garias, Montgomery, and Odlyzko prove that unconditionally one has

NK/Qp� dA
L (1.1)

for an absolute and effective constant A. In [Zam17a] Zaman shows that
one may take A = 40, later improved in [Zam17b] to A = 35, for suffi-
ciently large dL with some improvements depending on the extension L/K.
This was improved to A = 16 by Kadiri-Ng-Wong in [KNW19]. Uncondi-
tionally, Ahn and Kwon showed in [AK19] that we may take A = 12577
for all dL.

We may contrast this with Linnik’s theorem [Lin44a, Lin44b] on the
least prime in arithmetic progressions which states the following. Let k be
a positive integer and a coprime to k. Then the least prime p lying in the
arithmetic progression a + nk satisfies

p� kL

for an absolute and effective constant L, commonly called Linnik’s constant.
Numerically, Heath-Brown showed in [HB92] that L = 5.5 is admissible
which was improved by Xylouris in [Xyl11] to L = 5.

In terms of the splitting of primes, if we let k = q be prime then a prime
p lying in the arithmetic progression a + nq means that the Frobenius of p
in the group Gal(Q(ζq)/Q) ∼= (Z/q)× corresponds to the residue class a
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(mod q). The discriminant of Q(ζq) has absolute value qq−2 so we see that
the unconditional Linnik’s theorem provides a bound which is as good
as the conditional bounds of Lagarias-Odlyzko and significantly better
than the unconditional bound of Lagarias-Montgomery-Odlyzko. One
may therefore ask for other cases when the LMO bound may be improved.

1.2 statement of results

In this thesis we prove an effective bound for the least prime in certain
conjugacy classes of particular Galois extensions L/K of number fields.
We do this by following technique of [LMO79] and assuming Artin’s
conjecture for the extension L/K. By assuming Artin’s conjecture we are
free to work with Artin L-functions instead of the usual reduction to Hecke
L-functions. This allows us to keep track of information coming from each
irreducible character χ and track our estimates in terms of the individual
Artin conductors Aχ instead of the discriminant dL which may be much
larger.

By working with the Artin L-functions directly we are also able to
pinpoint the characters which contribute nontrivially. This lets us improve
the known bounds for the least prime whose Frobenius lies in the class C
when C has the property that many characters of Gal(L/K) vanish at C.
In some cases where Artin’s conjecture is known we obtain unconditional
bounds which are sharper than previously known bounds. We will discuss
unconditional results in Section 1.2.3.

1.2.1 General results

We first state the result for a general Galois extension L/K of number
fields. Denote by nv(C) the set of irreducible characters of G which are
nonvanishing at C. As well, let P(L/K) be the set of all rational primes q
below primes q of K which ramify in L. We prove the following general
bound for the least prime in a conjugacy class C under the assumption of
Artin’s conjecture.

Theorem 1.1. Let L/K be a Galois extension of number fields with Gal(L/K) =
G. Let C be a conjugacy class in C and assume Artin’s conjecture for the L-
functions L(s, χ) for χ ∈ nv(C).
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1. If ∏χ∈nv(C) L(s, χ) has no exceptional zeros, then there is an absolute
effective constant C1 such that the least prime p of K whose Frobenius in G
is C satisfies

NK/Qp ≤
(

∏
χ∈nv(C)

Aχ(1)
χ

)C1(∑χ∈nv(C) |χ(C)|χ(1)5)
1/2

·

 |G|
|C| nK ∑

p∈P(L/K)
log p

C1

. (1.2)

2. Suppose that there is an exceptional zero β0 of ∏χ∈nv(C) L(s, χ). Suppose
that ∑χ∈nv(C) χ always takes nonnegative values. Then there is an absolute
effective constant C2 such that

NK/Qp ≤
(

∏
χ∈nv(C)

Aχ(1)
χ

)C2
 |G|
|C| nK ∑

p∈P(L/K)
log p

C2

. (1.3)

Remark 1.2. In Theorem 1.1, an additional hypothesis that ∑χ∈nv χ always
takes nonnegative values is required in the case of an exceptional zero.
However, in all of our applications this will hold.

Remark 1.3. For Theorem 1.1 we only need Artin’s conjecture to hold
for those χ ∈ Irr(Gal(L/K)) that are nonvanishing at C. In particular
since Artin’s conjecture is known for linear characters we will see in
Section 1.2.3 that we obtain unconditional bounds for classes C where only
linear characters are nonvanishing at C.

The proof of Theorem 1.1 relies on a zero-free region of Artin L-functions.
Unfortunately it is only truly free of zeros up to one possible exceptional
zero. The proof therefore divides into two cases: when there is no such
zero, and when the zero exists. For the case of an exceptional zero we
prove a version of the Deuring-Heilbronn phenomenon for L-functions
with nonnegative Dirichlet series coefficients.

Theorem 1.4. Let L/K be a Galois extension and ϕ a (not necessarily irreducible)
character of G = Gal(L/K) which decomposes into a sum of irreducible characters
as

ϕ =
m

∑
i=1

aiχi
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where ai are positive integers and 〈ϕ, 1G〉 > 0. Suppose that for each g ∈ G

ϕ(g) =
m

∑
i=1

aiχi(g) ≥ 0.

Assume the Artin conjecture for the L-functions L(s, χi) holds.
Then there are effective and absolute positive constants C3, C4 such that if β0 is

a real zero of L(s, ϕ) then there are no zeros in the region

1− C4

log
(

C3
〈ϕ,1G〉L(t)(1−β0)

)
L(t) < σ < 1

where

L(t) :=
m

∑
i=1

aiχi(1)(log Aχi + nKχi(1) log(|t|+ 2)).

1.2.2 Sn-extensions

As an application we prove upper bounds for the least prime p in C when
Gal(L/K) = Sn and C is the class of n-cycles or (n− 1)-cycles. It will be in
terms of hook characters which are characters corresponding to particular
Young diagrams called hooks. The representation theory of Sn will be
reviewed in Chapter 2 but briefly we recall here that there exist canonical
bijections between the following three objects:

• Irreducible characters of Sn

• Young diagrams of size n

• Partitions of n

Notation 1.5. We write partitions in nonincreasing order. That is, if a1 +

a2 + · · ·+ am = n with a1 ≥ a2 ≥ · · · ≥ am we write (a1, a2, . . . , am) for
the corresponding partition. Each partition (a1, a2, . . . , am) ` n defines a
Young diagram with row lengths a1, a2, . . . , am. A partition of the form
(n− r, 1r) and its corresponding Young diagram is called a hook. If λ ` n
is a partition of n then we write χλ for the corresponding irreducible
character of Sn. In particular if λ is a hook then χλ is a hook character.

In Chapter 2 we will also see that the hook characters are exactly the
characters which are nonvanishing at n-cycles and furthermore that they
take values ±1 at n-cycles. In the setting of Sn-extensions and C the class
of n-cycles we may phrase Theorem 1.1 as follows:
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Theorem 1.6. Let L/K be a Galois extension of number fields with Gal(L/K) =
Sn. Suppose the Artin conjecture holds for L-functions attached to hook characters
χλ. Then the least prime p of K which is unramified in L and whose Frobenius in
Gal(L/K) is an n-cycle satisfies the following:

1. If ∏λ=(n−r,1r) L(s, χλ) has no exceptional zeros, then there is an absolute
effective constant C5 such that

NK/Qp ≤
(

∏
λ=(n−r,1r)

Aχλ(1)
χλ

)C525n/2/n
nnK ∑

p∈P(L/K)
log p

C5

.

2. If ∏λ L(s, χλ) admits an exceptional zero β0 then there is an absolute
effective constant C6 such that

NK/Qp ≤
(

∏
λ=(n−r,1r)

Aχλ(1)
χλ

)C6
nnK ∑

p∈P(L/K)
log p

C6

. (1.4)

Remark 1.7. Whereas the LMO bound depends on the discriminant of the
extension field L, our result depends on the product of Artin conductors

Aχλ(1)
χλ attached to hook characters, as well as a small factor coming from

ramification in the extension L/K.

In terms of the extension L/K we may rewrite the bound as follows.

Corollary 1.8. Suppose L/K is a Galois extension of number fields such that
Gal(L/K) = Sn. Assume Artin’s conjecture holds for L-functions of hook char-
acters. Then there are effective absolute constants C7, C8, C9 such that the least
prime p of K whose Frobenius in Gal(L/K) is an n-cycle satisfies

NK/Qp ≤ dCn
7 /(n[L:K])

L

(
∏

λ=(n−r,1r)

NK/Qf
χλ(1)
χλ

)Cn
8

(log dL)
C9 .

In particular,

NK/Qp ≤ dCn
7 /(n[L:K])

L (NK/QdL/K)
Cn

8 (log dL)
C9 . (1.5)

If ∏λ=(n−r,1r) L(s, χλ) admits an exceptional zero then instead

NK/Qp ≤ dCn
7 /(n[L:K])

L (NK/QdL/K)
C10(log dL)

C9 .

where C10 is also an effective and absolute constant.
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Using similar techniques we also prove an upper bound for the least
prime whose Frobenius is an (n− 1)-cycle. Here in place of hook characters
we consider characters χµ corresponding to partitions µ ` n of the form
µ = (n− r, 2, 1r−2) for 2 ≤ r ≤ n− 2.

Theorem 1.9. Suppose L/K is a Galois extension of number fields such that
Gal(L/K) = Sn. Assume Artin’s conjecture holds for L-functions of characters
χµ corresponding to partitions µ ` n of the form µ = (n− r, 2, 1r−2). Then the
least prime p of K which is unramified in L and whose Frobenius in Gal(L/K) is
an (n− 1)-cycle satisfies the following:

1. If ζK(s)L(s, sgn)∏µ L(s, χµ) has no exceptional zeros, then there is an
effective constant C11 such that

NK/Qp ≤

dK Asgn ∏
µ=(n−r,2,1r−2)

Aχµ(1)
χµ

C11n1/225n

·

(n− 1)nK ∑
p∈P(L/K)

log p

C11

.

2. Assume furthermore that Artin’s conjecture holds for L-functions of hook
characters χλ. Then if ∏λ L(s, χλ)∏µ L(s, χµ) admits an exceptional zero
β0 then there is an effective constant C12 such that

NK/Qp ≤

 ∏
λ=(n−r,1r)

Aχλ(1)
χλ ∏

µ=(n−r,2,1r−2)

Aχµ(1)
χµ

C12

·

(n− 1)nK ∑
p∈P(L/K)

log p

C12

.

As before we may rewrite in terms of dL.

Corollary 1.10. Suppose L/K is a Galois extension of number fields such that
Gal(L/K) = Sn. Assume Artin’s conjecture holds for L-functions of hook charac-
ters and characters corresponding to partitions of the form (n− r, 2, 1r−2). Then
there are effective absolute constants C13, C14, C15 such that the least prime p of K
whose Frobenius in Gal(L/K) is an (n− 1)-cycle satisfies

NK/Q ≤ dnCn
13/[L:K]

L (NK/QdL/K)
Cn

14(log dL)
C15 . (1.6)
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If ∏λ L(s, χλ)∏µ L(s, χµ) admits an exceptional zero then instead we have

NK/Q ≤ dnCn
13/[L:K]

L (NK/QdL/K)
C16(log dL)

C15 .

where C16 is another effective absolute constant.

Remark 1.11. Since from Stirling’s approximation we know that

[L : K] = n! ∼
√

2πn
(n

e

)n

we see that the exponent of dL in Equation 1.5 and Equation 1.6 is much
smaller than in Equation 1.1.

In Corollary 1.8 unfortunately we have an exponential power of the
relative discriminant NK/QdL/K coming from the bound

∏
λ=(n−r,1r)

NK/Qf
χλ(1)
χλ ≤ NK/QdL/K.

The left-hand side is 1 if all fχλ is trivial for λ = (n− r, 1r), so in particular if
L/K is unramified this will be the case. By a result of Fröhlich [Frö62] there
exist infinitely many unramified extensions L/K with Gal(L/K) = Sn.

When L is an Sn-extension over Q which is unramified over a quadratic
field we still obtain an upper bound which is stronger than the LMO
bound. Such extensions have been studied by Uchida [Uch70], Yamamoto
[Yam70], Elstrodt-Grunewald-Mennicke [EGM85], Kondo [Kon95], and
Kedlaya [Ked12] and it is known that there are infinitely many such
extensions. For such a family we have the following upper bound:

Theorem 1.12. Let L/F/Q be a tower of number fields such that L/Q is an
Sn-extension and F is a quadratic field of discriminant ∆ such that L/F is an
unramified An-extension.

1. Suppose Artin’s conjecture holds for hook characters of Gal(L/Q) = Sn.
Then there exist constants C17, C18 such that the least prime p whose
Frobenius in L is an n-cycle satisfies

p ≤ ∆Cn
17/n3/2

(n log ∆)C18 . (1.7)

In particular, we have

p ≤ d2Cn
17/(n3/2[L:Q])

L

(
2

(n− 1)!
log dL

)C18

. (1.8)

2. Suppose furthermore that Artin’s conjecture holds for characters corre-
sponding to partitions of the form µ = (n− r, 2, 1r−2). Then there exist
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constants C19, C20 such that the least prime p whose Frobenius in L is an
(n− 1)-cycle satisfies

p ≤ ∆n2Cn
19((n− 1) log ∆)C20 . (1.9)

In particular, we have

p ≤ d2n2Cn
19/[L:Q]

L

(
2(n− 1)

n!
log dL

)C20

. (1.10)

Under some stronger assumptions we may ensure that the exponent of
NK/QdL/K in Corollary 1.8 is constant in all cases as follows.

Theorem 1.13. Let L/K be a Galois extension with Gal(L/K) = Sn. Suppose
the following holds for all hook characters χ:

1. Artin’s conjecture for L(s, χ)

2. For 1 < σ < 3 we have∣∣∣∣L′L (s, χ)

∣∣∣∣� 1
s− 1

+ log Aχ

3. There exists a constant c such that L(s, χ) has at most one zero in the
region

1− c
χ(1)(log Aχ + χ(1)nK log(|t|+ 2))

≤ σ ≤ 1.

Then there exists an absolute effective constant C21 such that the least prime
p of K whose Frobenius in G is an n-cycle satisfies

NK/Qp ≤

 ∏
λ`n

λ=(n−r,1r)

Aχλ(1)
χλ


C21 nnK ∑

p∈P(L/K)
log p

C21

.

In particular, we have

NK/Qp ≤ dC212n/[L:K]
L (NK/QdL/K)

C21(log dL)
C22

where C22 is another effective absolute constant.

As in the case of n-cycles, under stronger assumptions we obtain a
constant exponent of NK/QdL/K in the upper bound for the least prime
whose Frobenius is an (n− 1)-cycle.



1.2 statement of results 10

Theorem 1.14. Let L/K be a Galois extension with Gal(L/K) = Sn. Suppose
the following holds for characters χ corresponding to partitions λ, µ ` n where λ

is a hook and µ is of the form (n− r, 2, 1r−2):

1. Artin’s conjecture for L(s, χ)

2. For 1 < σ < 3 we have∣∣∣∣L′L (s, χ)

∣∣∣∣� 1
s− 1

+ log Aχ

3. There exists a constant c such that L(s, χ) has at most one zero in the
region

1− c
χ(1)(log Aχ + χ(1)nK log(|t|+ 2))

≤ σ ≤ 1.

Then there exists an absolute effective constant C23 such that the least prime
p of K whose Frobenius in G is an n-cycle satisfies

NK/Qp ≤

 ∏
λ=(n−r,1r)

Aχλ(1)
χλ ∏

µ=(n−r,2,1r−2)

Aχµ(1)
χµ

C23

·

nnK ∑
p∈P(L/K)

log p

C23

.

In particular, we have

NK/Qp ≤ dnCn
24/[L:K]

L (NK/QdL/K)
C25(log dL)

C26

for absolute effective constants C24, C25, C26.

1.2.3 Unconditional results for Dn and Camina elements

We can apply Theorem 1.1 to the case when the Galois group is either
dihedral, or when the conjugacy class C has the property that only linear
characters are nonvanishing at C. Elements of such a class are called
Camina elements and will be discussed in Section 2.4. For these cases all
relevant L-functions are known to satisfy Artin’s conjecture and so all
results in this subsection are unconditional.

For dihedral extensions we prove the following upper bound on the least
prime whose Frobenius is a reflection. Denote by Dn the dihedral group
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of order 2n. As well, for any group G we write G′ for the commutator
subgroup and Gab = G/G′ for the abelianization of G.

Theorem 1.15. Let L/K be a Galois extension of number fields with G =

Gal(L/K) = Dn. Let F = LG′ denote the maximal abelian subextension of L/K.
Then there are absolute effective constants C27, C28 such that the least prime p

whose Frobenius is a reflection in G satisfies

NK/Qp ≤ dC27
F

nK ∑
p∈P(L/K)

log p

C28

.

In terms of the discriminant of L we may rewrite as follows:

Corollary 1.16. Let L/K be a Galois extension of number fields with G =

Gal(L/K) = Dn. Then there are absolute effective constants C29, C30 such that
the least prime whose Frobenius in G is a reflection satisfies

NK/Qp ≤ dC29/[L:K]
L (log dL)

C30

Remark 1.17. Corollary 1.16 is consistent with a conjecture of V.K. Murty
[KM00, Conjecture 2.1] which states that there are absolute constants a, b
such that for any conjugacy class C the least prime p whose Frobenius is
C satisfies

NK/Qp� da/[L:K]
L (log dL)

b.

Remark 1.18. In [Wei83] Weiss proves an upper bound, later made explicit
by Thorner-Zaman in [TZ17], for the least prime in a conjugacy class C
when there is a large abelian subgroup A that has nontrivial intersection
with C. This upper bound is in terms of the largest conductor of the
abelian extension L/LA. However, in our case the class of reflections in
the dihedral group does not intersect a large abelian subgroup, and the
upper bound for the least prime is in terms of the abelian extension F/K
over the base field K.

Similarly we obtain the following bound for the least prime whose
Frobenius is a Camina element, that is an element g such that the only
irreducible characters that are nonvanishing at g are linear. A group G is
a Camina group if all elements g ∈ G− G′ are Camina elements. We will
review Camina elements and Camina groups in Section 2.4.

Theorem 1.19. Let L/K be a Galois extension of number fields with Galois group
G = Gal(L/K). Suppose that g ∈ G is a Camina element, and let C denote its
conjugacy class. Let F = LG′ be the maximal abelian subextension of L/K.
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1. If ζF(s) has no exceptional zeros then there is an absolute effective constant
C31 such that the least prime p of K whose Frobenius in G is C satisfies

NK/Qp ≤ dC31[L:F]1/2

F

 |G|
|C| nK ∑

p∈P(L/K)
log p

C31

.

2. If ζF(s) has an exceptional zero β0 then there is an absolute effective
constant C32 such that

NK/Qp ≤ dC32
F

 |G|
|C| nK ∑

p∈P(L/K)
log p

C32

.

In particular if G is a Camina group then the above holds for any C which is
the class of any element not in G′.

As before we can rephrase in terms of the discriminant dL of the exten-
sion field as follows.

Corollary 1.20. Let L/K be a Galois extension of number fields with Galois
group G = Gal(L/K). Suppose that g ∈ G is a Camina element and let C denote
its conjugacy class. Let F be the maximal abelian subextension of L/K.

1. If ζF(s) has no exceptional zeros then there are absolute effective constants
C33, C34 such that the least prime p whose Frobenius in G is C satisfies

NK/Qp ≤ dC33/[L:F]1/2

L (log dL)
C34 . (1.11)

2. If ζF(s) has an exceptional zero β0 then there are absolute effective constants
C35, C36 such that

NK/Qp ≤ dC35/[L:F]
L (log dL)

C36 .

In any case Equation 1.11 holds.

Remark 1.21. We observe that we obtain a power saving for the norm of
the least prime p over applying the Lagarias-Montgomery-Odlyzko bound
directly.



2
R E P R E S E N TAT I O N T H E O RY

In this chapter we recall the representation theory of finite groups. The
material in the first section is standard and may be found in any text on
representation theory, for example [Ser77] or [Isa76]. In the subsequent
sections we will recall some facts about the symmetric group Sn as well
as its representation theory following the exposition in [Sag01]. We then
review the representation theory of dihedral groups. Lastly we discuss
Camina elements and Camina groups.

2.1 basic representation theory of finite groups

Let G be a finite group. Denote by Irr(G) the set of characters of irreducible
complex representations of G. Recall that there is an inner product defined
on the set of all class functions of G by

〈χ, ψ〉 = 1
|G| ∑

g∈G
χ(g)ψ(g). (2.1)

By Maschke’s theorem every complex representation of G decomposes
as a direct sum of irreducible representations. If ψ is the character of a
representation and χ is an irreducible representation then 〈ψ, χ〉 gives the
multiplicity of χ in ψ. In particular if 1G is the trivial character then 〈ψ, 1G〉
gives the dimension of the fixed subspace of ψ.

With respect to this pairing the irreducible characters of G satisfy the
orthogonality relation

〈χ, ψ〉 =
{

1 χ = ψ

0 χ 6= ψ.

commonly called the first orthogonality relation. The irreducible characters
in fact form an orthonormal basis of the space of all class functions of G
and therefore there is a (non-canonical) bijection between the conjugacy
classes of G and the irreducible characters of G.

13
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The irreducible characters also satisfy a second orthogonality relation as
follows: if g, h ∈ G then

∑
χ∈Irr(G)

χ(g)χ(h) =

{
|G|/|C| if g, h are conjugate

0 otherwise
(2.2)

where C denotes the conjugacy class of g.
If H is a subgroup of G and χ is a character of G corresponding to a

representation ρ the restriction ResG
H χ of χ is defined to be the character of

the restriction ρ|W . If ψ is a character of H then we define the induction of
H to G as follows. Let r = [G : H] and g1, . . . , gr be a complete system of
coset representatives of H. Extend ψ to all of G by defining

ψ̃(g) =

{
ψ(g) g ∈ H

0 g 6∈ H
.

Then

(IndG
H ψ)(g) =

r

∑
i=1

ψ̃(g−1
i ggi) =

1
|H| ∑

s∈G
ψ̃(s−1gs).

If χ is a character of G and ψ is a character of H then Frobenius reciprocity
states that

〈ResG
H χ, ψ〉 = 〈χ, IndG

H ψ〉.

Example 2.1. The regular representation

regG = ∑
χ

χ(1)χ

may be written as
regG = IndG

{1} 1

This is the induction of the trivial character from the trivial subgroup.
From this one obtains the well-known formula

|G| = regG(1) = ∑
χ

χ(1)2.

Definition 2.2. A character χ is linear if it is of degree 1, that is if χ(1) = 1.
Denote by lc(G) the set of linear characters of G.

Every linear character is a homomorphism χ : G → C× so in par-
ticular it is irreducible and nonvanishing for every g ∈ G. Since it is a
homomorphism to an abelian group it factors through the abelianization
Gab = G/G′. Furthermore each irreducible character of Gab defines an
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irreducible character of G by inflation, so there is a bijection between the
linear characters of G and the irreducible characters of Gab.

We also note the following simple observation when summing over
linear characters.

Proposition 2.3. For any g ∈ G,

∑
χ∈lc(G)

χ(g) =

{
|Gab| g ∈ G′

0 g /∈ G′
.

In particular, ∑χ∈lc(G) χ(g) ≥ 0 for all g ∈ G.

Proof. Observe that ∑χ lc(G) χ is simply the regular character of G/G′

composed with the quotient map.

For each g ∈ G, it will be useful to give a name to the set of irreducible
characters of G which are nonvanishing at g.

Definition 2.4. Let G be a group and g ∈ G. Define the set of nonvanishing
characters of G at g to be

nv(g) = {χ ∈ Irr(G) : χ(g) 6= 0}.

It is clear that every linear character is nonvanishing for every g ∈ G and
that nv(g) depends only on the conjugacy class of g. We will be paying
special attention to classes C of G at which many characters vanish, that is
nv(C) is small.

2.2 the symmetric group Sn

In this section we review the representation theory of Sn. We first recall the
canonical correspondence between conjugacy classes of Sn, partitions of n,
and Young diagrams of size n, followed by a review of the correspondence
between conjugacy classes and irreducible characters of Sn given by Specht
modules. Next we review the Murnaghan-Nakayama rule for computing
character values and the branching rule for induction and restriction.
Lastly we apply to the class of n-cycles which is the case of most interest
to us. The material is standard and may be found for example in [Sag01].

2.2.1 Conjugacy classes of Sn

The symmetric group Sn is the group of permutations of the set {1, 2, . . . , n}.
There are n! possible permutations so |Sn| = n!. The group Sn is generated
by transpositions and the set of all permutations that can be written as a
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Figure 2.1: A Young diagram of shape (5, 3, 3, 1).

product of even number of transpositions forms the alternating group An

which is the unique index 2 subgroup of Sn. An is also the commutator
subgroup of Sn so it follows that Sn has two linear characters. They are
the trivial character and the sign character defined by sgn(τ) = −1 for a
transposition τ and extended to all of Sn multiplicatively.

Each permutation σ ∈ Sn can also be written uniquely as a product of
disjoint cycles and two permutations σ, τ are conjugate if and only if they
have the same cycle structure. In particular the set of permutations which
consist of a single cycle of length n forms a conjugacy class which we will
call the class of n-cycles. The conjugacy classes of Sn are also in bijection
with partitions of n.

Definition 2.5. A composition of n is an ordered sequence (α1, α2, . . . , αk)

of positive integers such that ∑i αi = n. A partition of n is a composition
which is nonincreasing. We write λ ` n to mean that λ is a partition of n.

The conjugacy classes of Sn are easily seen to be in bijection with
the partitions of n sending the class of permutations with cycle struc-
ture (λ1, λ2, . . . , λl), written in decreasing order, to the partition λ =

(λ1, λ2, . . . , λl) ` n. Partitions λ ` n are also in bijection with Young di-
agrams of size n by sending a partition λ = (λ1, λ2, . . . , λl) to a Young
diagram of shape (λ1, λ2, . . . , λl) which is an array of n boxes left-aligned
where the ith row counting from the top has length λi. We will adopt the
convention that the box in row i and column j has coordinates (i, j) and
that row lengths are nonincreasing.

In summary, the following four objects are in bijection with one another:

• Conjugacy classes of Sn

• Partitions of n

• Young diagrams of size n

• Irreducible characters of Sn
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1 3 5
2 4

1 3 5
2 4

Figure 2.2: A Young tableau, and tabloid of shape (3, 2).

2.2.2 Specht modules

The bijection between conjugacy classes and irreducible characters is in
general not canonical, but in the case of Sn it can be made canonical in the
following way.

A Young tableau of shape λ ` n is a Young diagram of shape λ with the
boxes filled with the numbers 1, 2, . . . , n bijectively. Two Young tableaux
t1, t2 of the same shape are row equivalent if corresponding rows have the
same elements. A row equivalence class of Young tableaux t of shape λ is
called a tabloid of shape λ and written {t}. Graphically a tabloid will be
denoted by an array of integers in shape λ with horizontal lines between
rows.

If t is a tableau with rows R1, R2, . . . , Rl and columns C1, C2, . . . , Ck then
the row stabilizer and column stabilizer of t are defined respectively by

Rt = SR1 × SR2 × · · · × SRl

and
Ct = SC1 × SC2 × · · · × SCk

where SRi and SCj are the groups of permutations of Ri and Cj respectively.
If t is a tableau then the associated polytabloid is defined to be

et =

(
∑

π∈Ct

sgn(π)π

)
{t}.

Finally if λ is any partition, the Specht module Sλ is the module spanned
by the polytabloids et where t ranges over tableau of shape λ. They
are in fact cyclic so are spanned by any one polytabloid et. Over C the
Specht modules are irreducible and form a complete list of irreducible
representations of Sn. Denote by χλ by the character of Sλ.

A basis for Sλ is given by the set of et where t range over standard Young
tableaux of shape λ, that is Young tableaux whose rows and columns
are increasing. Therefore the dimension of Sλ and therefore the character
degree χλ(1) is equal to the number f λ of standard Young tableaux of
shape λ.

The number f λ may be computed using the hook formula. Given a Young
diagram λ and a node (i, j), the hook Hi,j is the subdiagram contained in
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Figure 2.3: A Young diagram of shape (6, 4, 4, 2, 1) with the hook at (2,2).

λ consisting of the node (i, j) as well as all nodes to the right of (i, j) and
below (i, j). The hooklength hi,j of a hook Hi,j is the number of nodes in Hi,j.
Finally the hook formula states that if λ ` n then

f λ =
n!

∏(i,j)∈λ hi,j
.

2.2.3 Murnaghan-Nakayama rule

Let χ be an irreducible character of Sn. From the previous section we know
that χ = χλ for some partition λ. If ρ is another partition then we will
write χλ

ρ for χλ(ρ). The character values of Sn are completely described
by the Murnaghan-Nakayama rule. We will now recall some preliminary
notions before stating the rule.

A generalized tableau T of shape λ is obtained by filling a Young diagram
of shape λ by positive integers with possible repetition. The content of a
generalized tableau is the composition α = (α1, α2, . . . , αk) where αi is the
number of times the integer i appears in T.

A skew diagram is the difference of two Young diagrams. That is, given
µ ⊆ λ as two Young diagrams the skew diagram λ/µ is the difference

λ/µ = {c : c ∈ λ and c /∈ µ}.

A rim hook is a connected skew diagram containing no 2× 2 squares. Given
a rim hook ξ, its leg length ll(ξ) is defined to be the number of rows of ξ

minus 1.
Finally a rim hook tableau of shape λ and content α = (α1, α2, . . . , αk) is a

generalized tableau T of shape λ and content α satisfying the following:

• The rows and columns of T are nondecreasing.

• For each i, the boxes with entries αi form a single rim hook ξ(i).
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1 2 2 3
2 2 4
2 4 4
5

Figure 2.4: A rim hook tableau of shape (4, 3, 3, 1) and content (1, 5, 1, 3, 1).

The sign of a rim hook tableau with rim hooks ξ(i) is defined to be

(−1)T := ∏
ξ(i)∈T

(−1)ll(ξ(i)).

We may now state the Murnaghan-Nakayama rule. Let λ be a partition
of n and let α = (α1, α2, . . . , αk) be any composition of n. Then

χλ
α = ∑

T
(−1)T

where the sum is over all rim hook tableaux of shape λ and content α.
There is also a recursive formulation of the Murnaghan-Nakayama rule.

With λ and α as before, we have

χλ
α = ∑

ξ

(−1)ll(ξ)χ
λ\ξ
α\α1

where the sum is over all rim hooks ξ of λ with α1 cells such that its
removal from λ leaves a valid Young diagram. Here α \ α1 is the compo-
sition obtained by removing the first element α1 from α. The recursion
terminates at the base case χ

()
()
= 1.

2.2.4 Branching rule

Consider a chain of subgroups Sn−1 ⊆ Sn ⊆ Sn+1. The branching rule
describes the decomposition of a character of Sn induced to Sn+1, as well
as the decomposition of a character of Sn restricted to Sn−1.

We may describe the branching in terms of Young diagram as follows.
Let λ ` n with a corresponding Young diagram. Denote by λ+ any Young
diagram obtained by adding one box to λ in such a way so that the
resulting shape is a Young diagram. Similarly denote by λ− any Young
diagram obtained by removing a box from λ in such a way that results in
a Young diagram.

Theorem 2.6 (Branching rule). If λ ` n then
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1.
ResSn

Sn−1
Sλ ∼=

⊕
λ−

Sλ−

and

2.
IndSn+1

Sn
Sλ ∼=

⊕
λ+

Sλ+
.

Proof. See [Sag01, Theorem 2.8.3].

Example 2.7. Let n = 6 and λ = (3, 13) ` 6. Then the Young diagram
corresponding to λ is given by

.

The Young diagrams λ+ are obtained by adding one box in a way such
that the resulting shape is a Young diagram. Hence λ branches as follows

and therefore

IndS7
S6

χ(3,13) = χ(3,14) + χ(3,2,12) + χ(4,13).

Likewise the boxes that can be removed from λ to obtain a Young
diagram are given by

Hence by removing on of the boxes we see that λ− are given by

therefore
ResS6

S5
χ(3,13) = χ(3,12) + χ(2,13).
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2.2.5 Application to n-cycles

Consider the class of n-cycles which corresponds to the partition (n).
We will now apply the results from the previous sections to obtain the
character values χλ

(n) as well as the character degrees χλ(1).

Proposition 2.8. We have

χλ
(n) =

{
(−1)n−r λ = (r, 1n−r),

0 otherwise
.

Proof. The formula in fact may be proven independently of the Murnaghan-
Nakayama rule, for example [Sag01, Lemma 4.10.3]. We will give a proof
as an application of the Murnaghan-Nakayama rule.

By the Murnaghan-Nakayama rule we have

χλ
(n) = ∑

T
(−1)T

where the sum is over all rim hook tableaux T of shape λ and content given
by the composition (n). That is, the content of T consists of n occurrences
of 1. Since T is a rim hook tableaux, all occurrences of 1 inside T form a
rim hook so therefore T itself must be a rim hook. As well, since T is also
a Young diagram its shape and therefore λ must be of the form (r, 1n−r).

Therefore the sum is nonempty if and only if λ is of the form (r, 1n−r).
In this case there is a unique rim hook tableau of content (n), namely each
box filled with 1. The sign in this case is (−1)n−r.

Definition 2.9. A Young diagram is a hook if the corresponding partition
is of the form (n− r, 1r). A character χ ∈ Irr(Sn) is called a hook character
if it is of the form χλ where λ is a Young diagram which is a hook.

The hook characters are exactly the characters that do not vanish on
n-cycles. We will now compute the degrees of hook characters.

Proposition 2.10. If λ = (r, 1n−r) is a hook then

χλ(1) =
(

n− 1
r

)
.

Proof. The Young diagram corresponding to λ = (r, 1n−r) is given by
The hook number for the top left square is simply the number of all

boxes which is n. Any other box is either in the first row which has no
boxes below, or first column which has no boxes to the right. Therefore the
hook number of such a box in the first row is just the number of boxes to
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n− r

r− 1

.

the right and likewise the hook number of such a box in the first column
is the number of boxes below. That is

h(i, j) =


n i = j = 1

n− r− j i = 1, j > 1

r− i + 2 i > 1, j = 1

and therefore by the hook-length formula

χλ(1) =
n!

r!(n− r− 1)!n
=

(n− 1)!
r!(n− r− 1)!

=

(
n− 1

r

)
.

Remark 2.11. We could have avoided invoking the hook formula by noting
that a standard Young tableaux of shape (n− r, 1r) must have n in the top-
left corner and is determined by a choice of r integers from {1, . . . , n− 1}
used to fill the rest of the first column.

2.3 representation theory of the dihedral group Dn

The dihedral group is the group of symmetries of the regular n-gon. It
has order 2n and we will adopt the convention of writing it as Dn. It is
generated by an element r corresponding to a rotation by an angle of 2π/n
and an element s corresponding to a reflection subject to the following
presentation

Dn = 〈r, s : rn = s2 = 1, srs = r−1〉.

It has a cyclic normal subgroup generated by the rotations and may be
written as a semidirect product

Dn ∼= Cn o C2

where Ck is the cyclic group of order k.
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The group structure as well as its representation theory is well-known
and is readily found in the literature, for example [Ser77]. We will collect
them here. There are two cases depending on the parity of n.

If n is odd, then Dn has the following conjugacy classes:

• The class of the identity {1},

• (n− 1)/2 classes of rotations {r±1}, {r±2}, . . . , {r±(n−1)/2}, each of
size 2, and

• The class of reflections {rjs : 0 ≤ j ≤ n− 1} of size n.

In this case there are two linear characters giving by composing the
quotient map Dn → C2 with the two irreducible linear characters of C2.
There are also (n− 1)/2 irreducible two-dimensional characters induced
from the cyclic subgroup of rotations. Explicitly they may be realized as
2× 2 matrices as follows. Let w = e2πi/n and h an integer, and set

ρh(rk) =

(
whk 0

0 w−hk

)
, ρh(srk) =

(
0 w−hk

whk 0

)
. (2.3)

Taking 0 < h ≤ (n− 1)/2 gives pairwise nonisomorphic irreducible two-
dimensional representations. Counting all the representation we have
(n− 1)/2 + 2 irreducible representations which must be all of them since
this is equal to the number of conjugacy classes.

If n is even, then Dn has the following conjugacy classes:

• The class of the identity {1},

• The singleton class {rn/2},

• n/2− 1 classes of rotations {r±1}, {r±2}, . . . , {r±(n/2−1)}, and

• Two classes of reflections, each of size n/2: {r2is : 0 ≤ i ≤ n/2− 1}
and {r2i+1s : 0 ≤ i ≤ n/2− 1}.

Hence there must be (n + 6)/2 irreducible characters. There are four linear
characters, given by sending the generators r, s to ±1 in all possible ways.
For the other characters, taking the characters ρh as in Equation 2.3 for
0 < h < n/2 gives n/2 − 1 pairwise nonisomorphic two-dimensional
irreducible characters and we have found all of the irreducible characters
of D2n. Hence one easily observes the following

Proposition 2.12. Let Dn be a dihedral group and let χ ∈ Irr(Dn). Let s be a
reflection. Then χ(s) = 0 for all nonlinear χ and χ(s) = ±1 otherwise.

Proof. Clear from the character table of Dn and Equation 2.3.



2.4 camina elements and camina groups 24

We also note that the commutator subgroup of Dn is 〈r2〉. If n is odd
this is in fact just 〈r〉. It follows that the abelianization of Dn is

Dab
n = Dn/〈r2〉 =

{
C2 n odd

C2 × C2 n even
(2.4)

2.4 camina elements and camina groups

Let G be a finite group and N a normal subgroup. We say that (G, N)

is a Camina pair if for every g ∈ G − N is conjugate to all of gN. Such
objects were first studied by Camina in [Cam78]. A Camina group is a finite
nonabelian group G such that (G, G′) is a Camina pair. The following
proposition allows us to restate this in terms of vanishing of characters.

Proposition 2.13. Let G be a finite group and g ∈ G. Then the following are
equivalent:

1. The conjugacy class of g is gG′.

2. |CG(g)| = |G : G′|.

3. For all z ∈ G′ there exists y ∈ G such that [g, y] = z.

4. χ(g) = 0 for every nonlinear χ ∈ Irr(G).

Proof. See [Lad08, Proposition 1.1] and [Lew09a, Lemma 2.1].

Following [Lew09b] we will also call an element g ∈ G a Camina element
if it satisfies the equivalent conditions of Proposition 2.13. In the literature
Camina elements are also called anticentral elements. Hence Camina groups
are exactly the finite groups such that every nonlinear irreducible character
vanishes outside of its commutator subgroup, that is every element outside
of the commutator subgroup is a Camina element.

Example 2.14. The commutator subgroup of the Dihedral group Dn is 〈r2〉
where r is a rotation generating Dn. By direct computation one sees that
Dn is a Camina group if and only if n is odd.

In [Lad08] it is shown using the classification of finite simple groups
that any group admitting a Camina element is solvable. In there a list of
examples of groups admitting Camina elements is given, which we now
reproduce for convenience.

Example 2.15. Let K be a group admitting a fixedpoint-free automorphism
α. Then α is a Camina element in the semidirect product G = Ko 〈α〉. More
generally we can take an abelian group A with a surjective homomorphism
onto 〈α〉 and take the semidirect product G = K o A.
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Example 2.16. An extraspecial p-group is a p-group G such that Z(G) has
order p and G/Z(G) is an elementary abelian p-group. In this case the
centre coincides with the commutator subgroup. All elements outside the
commutator subgroup of an extraspecial p-group are Camina elements.
That is, every extraspecial p-group is a Camina group.

Example 2.17. If G is solvable and G′ is a minimal normal subgroup of G
then G admits Camina elements. There are two cases:

1. G′ ≤ Z(G), |G′| = p, G/Z(G) is an elementary abelian p-group, and
every noncentral element is a Camina element.

2. G′ ∩ Z(G) = 1, then G/Z(G) is a Frobenius group with kernel
(G′ × Z(G))/Z(G) and cyclic complement. In this case every g /∈
CG(G′) is a Camina element.

Example 2.18. If A is an abelian normal subgroup of G such that G/A is
cyclic, then every element a such that G/A = 〈aA〉 is a Camina element.

Example 2.19. Any group of order pn where p is a prime and n ≤ 4
contains Camina elements.

Example 2.20. Let G be the group of all upper-triangular n× n matrices
with entries from a finite field of order q and 1’s on the main diagonal. Let
a ∈ G be an element with with minimal polynomial (x− 1)n. Then a is a
Camina element.

Example 2.21. A p-group of order pn+1 for n > 1 is said to be of maximal
class if it has nilpotency class n. For such a group, the elements not in
CG(Ki(G)/Ki+2(G)) for i ≥ 2 are Camina elements, where Ki(G) denotes
the terms in the descending central series of G.

Camina groups admits the following characterization theorem as p-
groups or Frobenius groups with particular structure. We recall that a
Frobenius group is a finite group G which admits a nontrivial subgroup H
(called the Frobenius complement) such that H ∩ gHg−1 = {1} for all g /∈ H.
The set K consisting of all elements of G not conjugate to any element of H
along with the identity is called the Frobenius kernel. Frobenius’s theorem
states that K is a normal subgroup of G and G admits a decomposition
G = K o H. We refer to [Isa76] for more information.

The following characterization theorem was first given by Dark and
Scoppola in [DS96] with an alternate proof given by Lewis in [Lew14] and
by Isaacs and Lewis in [IL15].

Theorem 2.22 (Dark-Scoppola). A finite group G is a Camina group if and
only if one of the following holds:
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1. G is a Camina p-group with nilpotence class 2 or 3.

2. G is a Frobenius group with cyclic complement.

3. G is a Frobenius group with complement isomorphic to the quaternion
group.



3
A RT I N L - F U N C T I O N S

In this chapter we recall the required background on number theory. The
material in the first section may be found in any standard text on number
theory, for example [Neu99] or [Lan94]. The subsequent sections deal with
Artin L-functions with exposition following [Mar77] and [MM97].

3.1 frobenius of a prime

Let K be a number field and L/K a Galois extension. Throughout the
thesis we will be using the following notation:
OK the ring of integers in K
nK the degree of K over Q

dK the absolute discriminant of K
dL/K the relative discriminant of L/K
G the Galois group of L/K
NL/K the norm to K of an ideal in L
R(L/K) primes p of K which ramify in L
P(L/K) rational primes p below primes p in R(L/K)
S(L/K) primes p of K unramified in L and degree 1 over Q

We will frequently drop the reference to the field in the norm and simply
write N when no confusion is possible.

Let p be a prime ideal of K. Then p decomposes into a product of prime
ideals Pe1

1 P
e2
2 . . .Peg

g in L. In this case we say the Pi divide p or is above p

and write Pi | p. The nonnegative integers ei are the ramification indices.
If ei > 0 for any i we say p is ramified in L. If P | p then FP := OL/P
is a finite field which is an extension of Fp := OK/p. The degree of the
extension [FP : Fp] is called the residual degree, written fP/p.

For an extension of number fields L/K, not necessarily Galois, the
residual degrees and the ramification indices satisfy the equation

g

∑
i=1

ei fi = [L : K].

27
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In the case that L/K is Galois, each residual degree fi is equal and each
ramification indices ei are equal and therefore the equation simplifies to

e f g = [L : K].

Suppose henceforth that L/K is Galois. Let p be a prime of K and let P
be a prime above p. The decomposition group of P is defined as

DP/p = {σ ∈ G : σP = P}.

There is a natural short exact sequence

1 IP/p DP/p Gal(FP/Fp) 1

where the kernel IP/p is called the inertia group. If p is unramified in
L then the inertia group is trivial so there is a natural isomorphism
DP/p

∼= Gal(FP/F/p). The latter group is cyclic and has the Frobenius
automorphism as a canonical generator, and its inverse image in DP/p
under the natural map is called the Frobenius element of P.

If P,Q are two primes of L dividing p then the decomposition groups
DP/p and DQ/p are conjugate and conversely if σ ∈ G then the group
σDP/pσ−1 is the decomposition group of the prime σP. Hence the Frobe-
nius elements of the primes above p forms a conjugacy class called the
Frobenius class of P written σp. We will frequently refer to the Frobenius
class of p as simply the Frobenius of p.

3.2 definition of artin L-functions

In this section we will recall the basic facts about Artin L-functions. The
material may be found in [Mar77] and [MM97]. We will assume through-
out that L/K is a Galois extension of number fields with Galois group
G. Let ρ be a complex representation of G, χ its character, and V the
underlying complex vector space.

Let p be a prime of K. If p is unramified in L then there is a well-defined
Frobenius conjugacy class σp. Define the local Euler factor at p to be

Lp(s, χ, K) = det(I − ρ(σp)(Np)−s)−1

which is well-defined since conjugate elements have the same characteristic
polynomial.
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If p ramifies in L and P is a prime above p, let IP be the inertial group
at P. Define the Euler factor at p to be

Lp(s, χ, K) = det(I − ρ(σp)|V IP (Np)−s)−1

where V IP is the subspace of V invariant under the action of IP. The
definition of Lp(s, χ, K) is independent of the choice of p.

The Artin L-function is then defined to be the Euler product over finite
primes

L(s, χ, K) = ∏
p

Lp(s, χ, K).

The Artin L-functions satisfy a functional equation. We first define the
gamma factor Γ(s, χ, K) which incorporates the infinite places of K and
then define the Artin conductor fχ of χ which is defined in terms of inertia
groups.

If v is an infinite place of K define

Lv(s, χ, K) =

{
((2π)−sΓ(s))χ(1) if v is complex

((π−s/2Γ(s/2))a(π−(s+1)/2Γ((s + 1)/2))b if v is real
(3.1)

where a is the dimension of the +1 eigenspace of complex conjugation
and similarly b is the dimension of the −1 eigenspace. The numbers a, b
satisfy a + b = χ(1). Define

Γ(s, χ, K) = ∏
v infinite

Lv(s, χ, K).

Next let v be a place of K (finite or infinite) and let w be a place of L
dividing v and let G0 be the inertia group Iw at w. There is a descending
filtration of higher ramification groups

G0 ⊇ G1 ⊇ . . . .

If V is the underlying space of ρ define

n(χ, v) =
∞

∑
i=0

|Gi|
|G0|

codim(VGi).

The summands are zero except for finitely many i so n(χ, v) is well-defined.
It is also an integer and independent of the choice of w above v.

Define the Artin conductor of χ to be the ideal

fχ = ∏
v
p

n(χ,v)
v . (3.2)
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We also set
Aχ = dχ(1)

K NK/Qfχ (3.3)

and
Λ(s, χ, K) = As/2

χ Γ(s, χ, K)L(s, χ, K). (3.4)

The function Λ(s, χ, K) satisfies the functional equation

Λ(s, χ, K) = W(χ)Λ(1− s, χ̄, K) (3.5)

where W(χ) is a complex number of absolute value 1.

3.3 properties of artin L-functions and artin’s conjecture

The Artin L-functions satisfy the following properties.

• For any aχ ∈ Z such that ∑χ aχχ is a character of G,

L(s, ∑
χ

aχχ, K) = ∏
χ

L(s, χ, K)aχ .

• If H is a subgroup of G and LH is its fixed subfield then

L(s, IndG
H, K) = L(s, χ, LH).

In particular we see that

L(s, regG, K) = L(s, IndG
{1} 1, K) = L(s, 1, L) = ζL(s).

As well, since
regG = ∑

χ∈Irr(G)

χ(1)χ

we see that

ζL(s) = ∏
χ∈Irr(G)

L(s, χ, K)χ(1) = ζK(s) ∏
1 6=χ∈Irr(G)

L(s, χ, K)χ(1).

By Brauer induction, given an irreducible character χ of G one can find
subgroups Hi of G and linear characters ψi of Hi such that χ may be
written as a Z-linear combination of the induction of ψi, that is

χ = ∑
i

mi IndG
Hi

ψi
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for some integers mi. Therefore any Artin L-function can be written as

L(s, χ, K) = ∏
i

L(s, ψi, LHi)mi .

Each L-function on the right hand side comes from a linear character which
by Artin reciprocity can be identified with a Hecke L-function whose
analytic continuation is known. Therefore each Artin L-series admits a
meromorphic continuation to all of C. Artin’s conjecture states that in fact
each Artin L-function attached to characters which do not contain the
trivial character admits a holomorphic continuation to all of C.

Artin’s conjecture is known in some specific cases. In the case when G
is abelian each Artin L-function can be identified with a Hecke L-function
whose analytic continuation is known. Likewise if each character of G is
known to be induced from linear characters of subgroups then again each
Artin L-function is a Hecke L-function and so Artin’s conjecture holds.
Such groups are called monomial or M-groups. Examples of monomial
groups include supersolvable groups.

3.4 the artin conductor and discriminant

The Artin conductor fχ encodes information about the ramification of the
character χ. For us it will appear in error terms analogous to the role of
log dL in [LMO79]. One can estimate the Artin conductor by the following

Proposition 3.1 (M.R. Murty-V.K. Murty-Saradha). Let L/K be a Galois
extension with Galois group G and n = [L : K]. Let P(L/K) be the set of rational
primes p such that there exists a prime p of K with p | p which ramifies in L. Let
χ ∈ Irr(G) and fχ be its Artin conductor. Then

log NK/Qfχ ≤ 2χ(1)nK

 ∑
p∈P(L/K)

log p + log n

 .

Proof. This is [MMS88, Proposition 2.5].

Combining with the definition of Aχ (Equation 3.3) we see that

log Aχ = χ(1) log dK + log Nfχ � χ(1) log dK

 ∑
p∈P(L/K)

log p + log n

 .

The Artin conductors for irreducible characters of Gal(L/K) are related
to the discriminant as follows.
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Theorem 3.2 (Conductor-discriminant formula). If L/K is a Galois extension
then

dL/K = ∏
χ∈Irr(Gal(L/K))

f
χ(1)
χ .

Proof. See [Neu99, 11.9].

Lastly we recall the Minkowski bound.

Theorem 3.3 (Minkowski bound). Let K be a number field of degree nK and
let r2 be the number of pairs of complex embeddings of K. Then every ideal class
of K admits an integral ideal a satisfying

NK/Qa ≤ d1/2
K

(
4
π

)r2 nK!
nnK

K
.

Proof. See [Lan94, V, §4, Theorem 4].

In particular since NK/Qa ≥ 1 it follows that

d1/2
K ≥

(π

4

)r2 nnK
K

nK!

and therefore
log dK � nK. (3.6)

3.5 zeros of artin L-functions

In this section we collect some results on zero density of Artin L-functions
as well as a zero-free region of Artin L-functions assuming Artin’s conjec-
ture.

Let nχ(T) denote the number of zeros ρ = β + iγ of L(s, χ) inside the
rectangle 0 ≤ β ≤ 1, |γ− T| ≤ 1, so

nχ(T) = #{ρ = β + iγ : L(ρ, χ) = 0, 0 ≤ β ≤ 1, |γ− T| ≤ 1}.

Lemma 3.4. Assume Artin’s conjecture for L/K. Then

nχ(T)� log Aχ + χ(1)nK log(T + 2).

Proof. This is a straightforward generalization of [LMO79, Lemma 2.1].

There is also a second zero density estimate for Artin L-functions over a
different region. Set

nχ(r; s) = #{ρ : L(ρ, χ) = 0, |ρ− s| ≤ r}
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so nχ(r; s) counts the number of zeros of L(s, χ) with distance at most r
from s. We will mainly be interested in the case s = 1, that is, the density
of zeros with distance at most r from s = 1.

Lemma 3.5. We have for 0 < r < 2

nχ(r; 1)� χ(1) + r(log Aχ + χ(1)nK log(3))� χ(1) + r log Aχ. (3.7)

Proof. This is a straightforward generalization of [LMO79, Lemma 2.2].
See [Mah99, Lemma 2.1 (ii)]. For the second inequality, we note that from
the definition of Aχ Equation 3.3 we have

log Aχ = χ(1) log dK + log NK/Qfχ � χ(1)nK

since log dK � nK from the Minkowski bound (see Equation 3.6).

The zero-density estimate given in Lemma 3.5 unfortunately has a
dependence on the character degree χ(1) which is unaffected by the
distance r from s = 1. This comes from the estimate given in [Mah99,
Equation 2.23] which states that∣∣∣∣L′L (σ + it, χ)

∣∣∣∣� χ(1)
σ− 1

+ χ(1) log dK

for 1 < σ < 3 obtained by comparing L′/L against the Dedekind zeta
function ζK.

We will also require the following zero-free region of Artin L-functions
which rules out the possible exceptional zero for nonlinear characters.

Proposition 3.6 (V.K. Murty). Assume Artin’s conjecture. Let L/K be a Galois
extension of number fields χ be an irreducible character of Gal(L/K) such that
χ(1) 6= 1. Then L(σ + it, χ) is zero-free for

1− c
χ(1)3(log Aχ + nK log(|t|+ 2))

≤ σ ≤ 1

where c is an effective and absolute constant.
If χ(1) = 1, L(σ + it, χ) is zero-free in the above region with the possible

exception of a single zero.

Proof. This is [Mur97, Proposition 3.1].
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3.6 additional assumptions on zeros

The estimates given in the previous section is enough to prove Theo-
rem 1.1. In this section we discuss two further assumptions on the Artin
L-functions L(s, χ) which together with Artin’s conjecture will imply a
stronger estimate in Theorem 1.1. Specifically they are as follows:

Assumption 1. For 1 < σ < 3, the logarithmic derivative of L(σ + it, χ)

satisfies ∣∣∣∣L′L (σ + it, χ)

∣∣∣∣� 1
σ− 1

+ log Aχ.

Assumption 2. There exists a constant c such that if χ is irreducible and
L(σ + it, χ) satisfies Artin’s conjecture then it has at most one zero in the region

1− c
χ(1)(log Aχ + χ(1)nK log(|t|+ 2))

≤ σ ≤ 1.

The motivation for Assumption 1 comes from the following estimate
found in [Mah99, Equation 2.23]∣∣∣∣L′L (σ + it, χ)

∣∣∣∣ ≤ χ(1)
(

1
σ− 1

+
1
2

log dK + O(nK)

)
for 1 < σ < 3, which is used in the proof of Lemma 3.5. However, if χ is
nonprincipal then L′/L(s, χ) is holomorphic at s = 1 so one can hope for
an upper bound without the 1/(σ− 1) term which leaves χ(1) log dK �
log Aχ.

Assumption 2 is a strengthening of the following zero-free region.

Proposition 3.7 ([Mur97, Corollary 3.2]). There exists an absolute positive
constant c such that if χ is irreducible then L(σ + it, χ) has at most one zero in
the region

1− c
χ(1) log Aχ

≤ σ ≤ 1, |t| ≤ c
χ(1) log Aχ

.

For the rest of this thesis any dependence on the above assumptions
will be made explicit. Assumption 1 implies a zero-density estimate for
L(s, χ) which is stronger than Lemma 3.5 as follows.

Lemma 3.8. Suppose χ is a nonprincipal character. Assume Artin’s conjecture
for L(s, χ) and suppose that Assumption 1 holds. Then

nχ(r; 1 + it)� 1 + r(log Aχ + nKχ(1) log(|t|+ 2)). (3.8)

Remark 3.9. Comparing with Equation 3.7, the constant term in the right-
hand side of Equation 3.8 is 1 as opposed to χ(1). This will give us a
sharper bound than the one stated in Theorem 1.1.
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Proof. The proof is very similar to the one for Lemma 3.5, given in [Mah99,
Lemma 2.1 (ii)]. We record the details for completeness. Since χ is non-
principal, Λ is entire and has a Hadamard factorization

Λ(s, χ) = eα(χ)+β(χ)s ∏
ρ

(
1− s

ρ

)
es/ρ (3.9)

where α(χ), β(χ) are constants and ρ runs over all nontrivial zeros of
L(s, χ). Logarithmically differentiating Equation 3.9 we obtain

−Λ′

Λ
(s, χ) = −β(χ)−∑

ρ

(
1

s− ρ
+

1
ρ

)
and therefore using Equation 3.4 we obtain

−L′

L
(s, χ) = −β(χ)−∑

ρ

(
1

s− ρ
+

1
ρ

)
+

1
2

log Aχ +
Γ′

Γ
(s, χ).

Therefore evaluating at s = σ + it and at s = 3 + it and subtracting we
have

L′

L
(s, χ)− L′

L
(3 + it, χ) = −∑

ρ

(
1

s− ρ
− 1

(3 + it)− ρ

)
− Γ′

Γ
(s, χ) +

Γ′

Γ
(3 + it, χ)β(χ).

We know (see Lemma 4.9) that if Re s > −1/2 and |s| ≥ 1/8 we have∣∣∣∣Γ′Γ (s, χ)

∣∣∣∣� nKχ(1) log(|s|+ 2)

and therefore ∣∣∣∣Γ′Γ (3 + it, χ)

∣∣∣∣� nKχ(1) log(|t|+ 2).

Hence it follows that for 1/2 ≤ σ ≤ 3 we have∣∣∣∣∣∣∣
L′

L
(s, χ)− ∑

ρ
|γ−t|≤1

1
s− ρ

∣∣∣∣∣∣∣� nKχ(1) log(|t|+ 2)

+ ∑
ρ

|γ−t|>1

∣∣∣∣ 1
s− ρ

− 1
(3 + it)− ρ

∣∣∣∣+ ∑
ρ

|γ−t|≤1

∣∣∣∣ 1
(3 + it)− ρ

∣∣∣∣ .
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Since for ρ = β + iγ we have∣∣∣∣ 1
(3 + it)− ρ

∣∣∣∣ ≤ 1
3− β

� 1

using Lemma 3.4 we see that

∑
ρ

|γ−t|≤1

∣∣∣∣ 1
(3 + it)− ρ

∣∣∣∣� nχ(t)� log Aχ + χ(1)nK log(|t|+ 2).

Similarly

∑
ρ

|γ−t|>1

∣∣∣∣ 1
s− ρ

− 1
(3 + it)− ρ

∣∣∣∣ = ∑
ρ

|γ−t|>1

3− σ

|s− ρ||(3 + it)− ρ|

� ∑
ρ

|γ−t|>1

1
|γ− t|2

�
∞

∑
j=2

nχ(t + j) + nχ(t− j)
(j− 1)2

� log Aχ + nKχ(1) log(|t|+ 2).

Lastly using the bound for |L′/L(s, χ)| in Assumption 1 we obtain that for
1 < σ < 3∣∣∣∣∣∣∣ ∑

ρ
|γ−t|≤1

1
s− ρ

∣∣∣∣∣∣∣�
1

σ− 1
+ log Aχ + nKχ(1) log(|t|+ 2)

which we sum over t + j, −3 ≤ j ≤ 3 to obtain∣∣∣∣∣∣∣ ∑
ρ

|γ−t|≤4

1
s− ρ

∣∣∣∣∣∣∣�
1

σ− 1
+ log Aχ + nKχ(1) log(|t|+ 2). (3.10)

On the other hand,∣∣∣∣∣∣∣ ∑
ρ

|γ−t|≤4

1
s− ρ

∣∣∣∣∣∣∣ ≥ ∑
ρ

|γ−t|≤4

Re
1

s− ρ
= ∑

ρ
|γ−t|≤4

σ− β

|s− ρ|2 ≥ ∑
ρ

|γ−t|≤4

σ− 1
|s− ρ|2 .



3.6 additional assumptions on zeros 37

Let 0 < r < 2 and choose σ = 1 + r and let k = #{ρ : |s− ρ| ≤ 2r}. Then
nχ(r, t) ≤ k. Therefore∣∣∣∣∣∣∣ ∑

ρ
|γ−t|≤4

1
s− ρ

∣∣∣∣∣∣∣ ≥
kr
4r2 ≥

nχ(r; t)
4r

.

Combining with Equation 3.10 gives

nχ(r; t)� 1 + r(log Aχ + nKχ(1) log(|t|+ 2)).
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T H E L E A S T P R I M E I N A
C O N J U G A C Y C L A S S :
E S T I M AT E S

In this chapter we adapt the methods of [LMO79] to obtain estimates on the
least prime whose Frobenius is in a fixed conjugacy class C. Throughout
this section we will be assuming Artin’s conjecture and work with Artin
L-functions directly.

4.1 the kernel function

We will consider the kernel functions of [LMO79], defined by

k1(s) = k1(s; x) =

(
x2(s−1) − xs−1

s− 1

)2

and
k2(s) = k2(s; x) = xs2+s.

The kernel functions k1, k2 depend on a parameter x > 1 whose value will
be chosen later.

For any function f (s) and real number σ we write∫
(σ)

f (s) ds :=
∫ σ+i∞

σ−i∞
f (s) ds.

We consider the inverse Mellin transforms of the kernel functions k j, given
by

k̂ j(u) =
1

2πi

∫
(2)

k j(s)u−s ds

and compute them explicitly in the following lemmas.

Lemma 4.1. The function

k(s) = k(s; x, y) =
(

ys−1 − xs−1

s− 1

)2

38
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has inverse Mellin transform

k̂(u) =


1
u log y2

u xy ≤ u ≤ y2

1
u log u

x2 x2 ≤ u ≤ xy

0 otherwise

.

By Lemma 4.1 the function k1(s) has the inverse Mellin transform

k̂1(u) =
1

2πi

∫
(2)

k1(s)u−s ds =


1
u log x4

u x3 ≤ u ≤ x4

1
u log u

x2 x2 ≤ u ≤ x3

0 otherwise

.

For k2(s) we have the following.

Lemma 4.2. The function k2(s) has the inverse Mellin transform

k̂2(u) =
1√

4π log x
exp

[
− (log u/x)2

4 log x

]
.

Proof. Change of variables gives a Gaussian integral which can be evalu-
ated to give the result.

To prove Lemma 4.1 we will need the following

Lemma 4.3. For α ≥ 0,

∫
(1)

αs ds
s2 =

{
0 0 ≤ α ≤ 1

log α α > 1
.

Proof. Suppose 0 ≤ α ≤ 1. We claim that for any σ > 1, we have∫
(1)

αs ds
s2 =

∫
(σ)

αs ds
s2 .

Indeed, consider the rectangle with corners 1± iT and σ ± iT oriented
counterclockwise. Then since the integrand has no poles in the interior the
integral around the rectangle vanishes. Over the horizontal edges we have∣∣∣∣∫ σ±iT

1±iT
αs ds

s2

∣∣∣∣ ≤ σ− 1
1 + T2

T→∞−−−→ 0

which establishes the claim.
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Now let γ(t) = σ + it so that∣∣∣∣∫ σ+iT

σ−iT
αs ds

s2

∣∣∣∣ = ∣∣∣∣∫ T

−T
αγ(t) i dt

γ(t)2

∣∣∣∣
≤
∫ T

−T

dt
|γ(t)|2 =

∫ T

−T

dt
σ2 + t2 =

2
σ

arctan
T
σ

.

Therefore ∣∣∣∣∫
(1)

αs ds
s2

∣∣∣∣ = ∣∣∣∣∫
(σ)

αs ds
s2

∣∣∣∣ ≤ π

σ

σ→∞−−−→ 0.

Next suppose that α > 1. This time move the line of integration to the
left, and consider a rectangle with vertices 1± iT and σ ± iT for some
σ < 0. Now there is a pole at s = 0 with residue log α which then equals
the value of the integral around the rectangle. As before the integral along
the horizontal edges can be shown to vanish as T → ∞ so

1
2πi

∫
(1)

αs ds
s

= log α +
1

2πi

∫
(σ)

αs ds
s2

σ→−∞−−−−→ log α

where as before the integral along Re s = σ can be shown to vanish as
σ→ −∞.

Proof of Lemma 4.1. Perform a change of variables and expand the integral
to obtain

k̂(u) =
1

2πi

∫
(1)

(
ys − xs

s

)2

u−s−1 ds

=
1
u

(
1

2πi

∫
(1)

(
y2

u

)s ds
s2 −

2
2πi

∫
(1)

( xy
u

)s ds
s2 +

1
2πi

∫
(1)

(
x2

u

)s ds
s2

)
.

Using Lemma 4.3 to compute the integrals for each case proves the lemma.

4.2 preliminary estimates

Let L/K be a Galois extension of number fields with Galois group G =

Gal(L/K). For each irreducible character χ of G we have the Artin L-
function

L(s, χ) = L(s, χ, L/K)

which are known to admit a meromorphic extension to the complex plane.
The dependence on the field extension L/K will be suppressed for the
sake of notation. We will assume Artin’s conjecture which states that the
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Artin L-functions corresponding to nontrivial irreducible characters are
holomorphic.

Logarithmically differentiating the Euler product gives

L′

L
(s, χ) = −∑

p

log(Np)
∞

∑
m=1

χ(σm
p )

Npms

where σp is the Frobenius above p for p unramified in L, and if p is ramified
it is defined by

χ(σm
p ) =

1
e ∑

τ 7→σm
p

χ(τ)

where the sum is over all preimages of σm
p .

Let C be a conjugacy class in G and define

FC(s) = −
|C|
|G| ∑

χ∈Irr(G)

χ(C)
L′

L
(s, χ).

Using the character orthogonality relations Equation 2.2 this is

FC(s) = ∑
p

∞

∑
m=1

θ(pm)(log Np)(Np)−ms

where for p unramified and σp its Frobenius we have

θ(pm) =

{
1 if σm

p = C

0 otherwise

and for p ramified we have 0 ≤ θ(pm) ≤ 1.
Then

Ij :=
1

2πi

∫
(2)

FC(s)k j(s) ds = ∑
pm

θ(pm)(log Np)k̂ j(Npm). (4.1)

We will break this into three sums. The first will be over all p which are
unramified in L and of degree 1 over Q, the second over the ramified
primes, and the third over primes of higher degree.

Lemma 4.4. Let R(L/K) denote the set of primes of K which ramify in L and
P(L/K) the set of rational primes below primes of R(L/K). Then

∑
p∈R(L/K)

∞

∑
m=1

θ(pm)(log Np)k̂1(Npm)� nK
log x

x2 ∑
p∈P(L/K)

log p
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and

∑
p∈R(L/K)

∞

∑
m=1

θ(pm)(log Np)k̂2(Npm)� nK(log x)1/2 ∑
p∈P(L/K)

log p.

Proof. This is [LMO79, Lemma 3.1] without the final step of bounding the
contribution of the ramified primes by log dL and noting that

∑
p|p

log Np = ∑
p|p

fp/p log p ≤ nK log p.

Lemma 4.5. The sum over prime powers pm where Npm is not a rational prime
satisfies

∑
pm

Npm not a rational prime

θ(pm)(log Np)k̂1(Npm)� nK
(log x)2

x

and
∑
pm

Npm not a rational prime

θ(pm)(log Np)k̂2(Npm)� nKx7/4.

Proof. This is [LMO79, Lemma 3.2].

For the kernel function k2 we also require the following estimate over
prime powers pm with large norm.

Lemma 4.6. We have

∑
Npm≥x10

θ(pm)(log Np)k̂2(Npm)� nKx−10.

Proof. This is [LMO79, Lemma 3.3].

4.3 the contour integral

We will now evaluate the integral I in Equation 4.1 by moving the line of
integration to the left to get a sum over the zeros of the Artin L-functions
in the critical strip. We first collect a few lemmas.

Lemma 4.7. Let χ be a character of G and let χ̄ be the conjugate character. Then

Aχ = Aχ̄.
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Proof. From the definition of Aχ and fχ (Equation 3.2 and Equation 3.3)
it suffices to show that n(χ, v) = n(χ̄, v) for each place v. Let V be the
underlying space for χ. Since χ̄ is the character of the contragredient
representation with underlying space V∗ we have dim V = dim V∗. Thus
it suffices to show that dim VGi = dim (V∗)Gi for each i.

From the character inner product (Equation 2.1) we see that

dim VGi = 〈ResG
Gi

χ, 1Gi〉 =
1
|Gi| ∑

g∈Gi

χ(g)

where 1Gi denotes the trivial character on Gi. Taking the complex conjugate
gives

dim VGi = dim VGi =
1
|Gi| ∑

g∈Gi

χ̄(g) = 〈χ̄, 1Gi〉 = dim (V∗)Gi .

We now collect a few elementary estimates which are easy general-
izations to Artin L-functions of Lemmas in [LO77] for ζL(s) and Hecke
L-function estimates.

Lemma 4.8. If σ = Re s > 1 then∣∣∣∣L′L (s, χ)

∣∣∣∣� χ(1)nK

σ− 1
.

Proof. Comparing Dirichlet series gives∣∣∣∣L′L (s, χ)

∣∣∣∣ ≤ −χ(1)
ζ ′K
ζK

(σ) ≤ −χ(1)nK
ζ ′

ζ
(σ)� χ(1)nK

σ− 1
.

Lemma 4.9. If σ = Re s > −1/2 and |s| ≥ 1/8 then∣∣∣∣Γ′Γ (s, χ)

∣∣∣∣� χ(1)nK log(|s|+ 2).

Proof. From the definition of Lv(s, χ) for an infinite place v (Equation 3.1),
we see that since a + b = χ(1) we have

L′v
Lv

(s, χ)� χ(1)
Γ′

Γ
(s)� χ(1) log(|s|+ 2).

Taking the sum over all infinite places v gives the lemma.
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−1/2 + iT 2 + iT

2− iT−1/2− iT

Figure 4.1: B(T)

Lemma 4.10. If s = σ + it with σ ≤ −1/4 and |s + m| ≥ 1/4 for all nonnega-
tive integers m, then

L′

L
(s, χ)� log Aχ + χ(1)nK log(|s|+ 2).

Proof. Taking the logarithmic derivative of the functional equation (Equa-
tion 3.4 and Equation 3.5) and noting that Aχ̄ = Aχ (Lemma 4.7) and
γ(s, χ) = γ(s, χ̄) gives

L′

L
(s, χ) = −L′

L
(1− s, χ̄)− log Aχ −

Γ′

Γ
(1− s, χ)− Γ′

Γ
(s, χ).

Using the estimates from Lemma 4.8 and Lemma 4.9 gives the result.

Set

Ij(χ) :=
1

2πi

∫
(2)
−L′

L
(s, χ)k j(s) ds

and

Ij(χ, T) :=
1

2πi

∫
B(T)
−L′

L
(s, χ)k j(s) ds

where B(T) is the positively oriented rectangle with vertices 2± iT and
−1/2± iT, see Figure 4.1.

Lemma 4.11. The vertical integral satisfies∣∣∣∣ 1
2πi

∫ −1/2−iT

−1/2+iT

L′

L
(s, χ)k j(s) ds

∣∣∣∣� k j(−1/2)(log Aχ + χ(1)nK)

where the implicit constant is absolute and effective.
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Proof. From Lemma 4.10 we have∣∣∣∣L′L (s, χ)

∣∣∣∣� log Aχ + χ(1)nK log(|s|+ 2)

and from the definition of k1(s) we have

k1(−1/2) � x−3

where x is the parameter for k1(s) = k1(s; x). As well,

k1(−1/2 + it)� x−3

9/4 + t2 �
k1(−1/2)
9/4 + t2 .

Therefore∣∣∣∣∫ −1/2−iT

−1/2+iT

L′

L
(s, χ)k1(s) ds

∣∣∣∣
�
∫ −1/2+iT

−1/2−iT

x−3(log Aχ + χ(1)nK log(|s|+ 2))
9/4 + (Im s)2 ds

�
∫ T

−T

k1(−1/2)(log Aχ + χ(1)nK log(|t|+ 2))
9/4 + t2 dt

� k1(−1/2)(log Aχ + χ(1)nK).

Similarly, from the definition of k2(s) we have

k2(−1/2 + it) = x−1/4−t2
= k2(−1/2)x−t2

.

Therefore∣∣∣∣∫ −1/2−iT

−1/2+iT

L′

L
(s, χ)k2(s) ds

∣∣∣∣
�
∫ T

−T
k2(−1/2)x−t2

(log Aχ + χ(1)nK log(|t|+ 2)) dt

� k2(−1/2)(log Aχ + χ(1)nK).

Lemma 4.12. The horizontal integrals satisfy∣∣∣∣ 1
2πi

∫ 2±iT

−1/2±iT

L′

L
(s, χ)k1(s) ds

∣∣∣∣ � x4

1 + T2 (log Aχ + χ(1)nK log T)
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and∣∣∣∣ 1
2πi

∫ 2±iT

−1/2±iT

L′

L
(s, χ)k2(s) ds

∣∣∣∣ � x6−T2
(log Aχ + χ(1)nK log T)

where the implied constants are absolute and effective.

Proof. From Lemma 4.10 we have

L′

L
(σ + it, χ)� log Aχ + χ(1)nK log(|σ + it|+ 2)

� log Aχ + χ(1)nK(log(|σ|+ 2) + log(|t|)).

As well, for σ with −1/2 ≤ σ ≤ 2 we have

k1(σ + iT)� x4

1 + T2

and
k2(σ + iT)� x6−T2

.

Therefore∣∣∣∣ 1
2πi

∫ 2±iT

−1/2±iT

L′

L
(s, χ)k1(s) ds

∣∣∣∣
�
∫ 2

−1/2

x4

1 + T2 (log Aχ + χ(1)nK(log(|σ|+ 2) + log T)) dσ

� x4

1 + T2 (log Aχ + χ(1)nK log T)

and∣∣∣∣ 1
2πi

∫ 2±iT

−1/2±iT

L′

L
(s, χ)k2(s) ds

∣∣∣∣
�
∫ 2

−1/2
x6−T2

(log Aχ + χ(1)nK(log(|σ|+ 2) + log T)) dσ

� x6−T2
(log Aχ + χ(1)nK log T).

In particular we see that the horizontal integrals vanish as we take
T → ∞.
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Proposition 4.13. Let S(L/K) denote the set of primes p of K that do not ramify
in L and also have degree 1 over Q. There exist absolute and effective positive
constants c1, c2, c3 such that

∑
p∈S(L/K)

θ(p)(log Np)k̂1(Np) ≥ |C||G| k1(1)−
|C|
|G| ∑

χ∈Irr(G)

|χ(C)|∑
ρχ

|k1(ρχ)|

− c1
|C|
|G| ∑

χ∈Irr(G)

|χ(C)|(log Aχ + χ(1)nK)

− c2nK
log x

x2 ∑
p∈P(L/K)

log p− c3nK
(log x)2

x
(4.2)

and constants c4, c5, c6 such that

∑
p∈S(L/K)

Np<x10

θ(p)(log Np)k̂2(Np) ≥ |C||G| k2(1)−
|C|
|G| ∑

χ∈Irr(G)

|χ(C)|∑
ρχ

|k2(ρχ)|

− c4
|C|
|G| ∑

χ∈Irr(G)

|χ(C)|(log Aχ + χ(1)nK)

− c5nK(log x)1/2 ∑
p∈P(L/K)

log p− c6nKx7/4

(4.3)
where the inner sum in the second term of the right hand side in both equations is
over all zeros ρχ of L(s, χ) with −1/2 ≤ Re ρχ ≤ 1.

Proof. Let δ(χ) = 1 if χ is the trivial character and δ(χ) = 0 otherwise. By
Cauchy’s theorem we have

Ij(χ, T) =
1

2πi

∫
B(T)
−L′

L
(s, χ)k j(s) ds = δ(χ)k j(1)− ∑

−1/2≤Re ρ≤1
| Im ρ|≤T

k j(ρ)

where the sum is over zeros ρ of L(s, χ) lying inside B(T). Thus

Ij(χ) = lim
T→∞

Ij(χ, T)

= lim
T→∞

1
2πi

(∫ 2+iT

2−iT
−L′

L
(s, χ)k j(s) ds +

∫ −1/2+iT

2+iT
−L′

L
(s, χ)k j(s) ds

+
∫ −1/2−iT

−1/2+iT
−L′

L
(s, χ)k j(s) ds +

∫ 2+iT

−1/2−iT
−L′

L
(s, χ)k j(s) ds

)
=

1
2πi

∫
(2)
−L′

L
(s, χ)k j(s) ds + O(k j(−1/2)(log Aχ + χ(1)nK)).
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That is, there is an effective and absolute constant c7 with

1
2πi

∫
(2)
−L′

L
(s, χ)k j(s) dx ≥ δ(χ)k j(1)− ∑

−1/2≤Re ρχ≤1
|k j(ρχ)|

− c7k j(−1/2)(log Aχ + χ(1)nK).

Multiplying by (|C|/|G|)χ(C) and taking the sum over all χ we obtain

Ij =
1

2πi

∫
(2)

FC(s)k j(s) ds ≥ |C||G| k j(1)− ∑
χ∈Irr(G)

|χ(C)|∑
ρχ

|k j(ρχ)|

− c7k j(−1/2)
|C|
|G| ∑

χ∈Irr(G)

|χ(C)|(log Aχ + χ(1)nK). (4.4)

From Lemma 4.4 and Lemma 4.5 we have

I1 = ∑
p∈S(L/K)

θ(p)(log Np)k̂1(Np)

+ O

nK
log x

x2 ∑
p∈P(L/K)

log p

+ O
(

nK
(log x)2

x

)
.

From Lemma 4.6 we also have

∑
Npm≥x10

θ(pm)(log Np)k̂2(Npm)� nKx−10 � nKx7/4

so we obtain

I2 = ∑
p∈S(L/K)

Np<x10

θ(p)(log Np)k̂2(Np)

+ O

nK(log x)1/2 ∑
p∈P(L/K)

log p

+ O
(

nKx7/4
)

where the implicit constants are effective and absolute. Lastly, a direct com-
putation shows that since x > 1 we have k j(0), k j(−1/2)� 1. Combining
with Equation 4.4 and rearranging the terms gives Equation 4.2.
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4.4 contribution of zeros

We now use the results of Section 3.5 and Section 3.4 to estimate the
contribution in Equation 4.2 coming from zeros of L-functions. The first
step is to show that the contribution from zeros far from 1 is small.

Lemma 4.14. The sum over zeros ρχ with |ρχ − 1| ≥ 1 satisfies

∑
|ρχ−1|≥1

|k1(ρχ)| � log Aχ + χ(1)nK.

Proof. Since x > 1, we have

|k1(ρχ)| =
|x2(ρχ−1) − xρχ−1|2
|ρχ − 1|2 � 1

|ρχ − 1|2

and furthermore if ρχ = β + iγ then

1
|ρχ − 1|2 =

1
(β− 1)2 + γ2 ≤

1
γ2 .

Therefore using Lemma 3.4 and Lemma 3.5 we have

∑
|ρχ−1|≥1

|k1(ρχ)| ≤
∞

∑
T=1

∑
T≤|γ|≤T+1

|k1(ρχ)|+ nχ(3/2, 1)

�
∞

∑
T=1

∑
T≤|γ|≤T+1

1
γ2 + log Aχ

�
∞

∑
T=1

1
T2 nχ(T) + log Aχ

�
∞

∑
T=1

1
T2 (log Aχ + χ(1)nK log(T + 2)) + log Aχ

� log Aχ + χ(1)nK.

Lemma 4.15. The sum over zeros ρχ = β + iγ with |γ| ≥ 1 satisfies

∑
|γ|≥1
|k2(ρχ)| � x log Aχ.

Proof. For ρχ = β + iγ with |γ| ≥ 1 we have

|k2(ρχ)| ≤ x2−γ2
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so using Lemma 3.4 we have

∑
|γ|≥1
|k2(ρχ)| ≤ ∑

|γ|≥1
x2−γ2

= x2
∞

∑
T=1

∑
T−1≤|γ|≤T+1

x−γ2

≤ x2
∞

∑
T=1

x−(T−1)2
nχ(T)

= x log Aχ + x
∞

∑
T=2

x−(T−1)2
nχ(T)

� x log Aχ

+ x
∫ ∞

2
x−T2+2T(log Aχ + nKχ(1) log(|T|+ 2)) dT

� x log Aχ.

Let us now consider the contribution from zeros close to 1, that is

∑
χ∈Irr(G)

|χ(C)| ∑
|ρχ−1|≤1

|k j(ρχ)|.

Lemma 4.16. Let L/K be a Galois extension of number fields of degree n and χ

an irreducible character of Gal(L/K).
If χ(1) > 1 then

∑
|ρχ−1|<1

|k1(ρχ)| � χ(1)7(log Aχ)
2.

If χ(1) = 1 then the same conclusion holds with the left-hand sum replaced by
a sum over non-exceptional zeros:

∑
|ρχ−1|<1

ρχ 6=β0

|k1(ρχ)| � (log Aχ)
2.

Proof. We may assume x > 1. Write each ρχ as ρχ = σ+ it. Since |ρχ− 1| <
1 we can estimate each term as

|k1(ρχ)| =
|x2(ρχ−1) − xρχ−1|2
|ρχ − 1|2 � x−2(1−σ)

|ρχ − 1|2 .
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Bχ

σ = 1− Bχσ = 0 σ = 1

Figure 4.2: Region of integration

The number of such terms can be estimated using the zero-free region of
Proposition 3.6. Set

Bχ :=
c8

χ(1)3(log Aχ + nK)

where c8 is some fixed absolute constant so that whenever χ(1) > 1, any
zero ρχ in the critical strip with |ρχ − 1| ≤ 1 satisfies

σ < 1− Bχ

and if χ(1) = 1 then there is at most one exception β0. Therefore

x−2(1−σ)

|ρχ − 1|2 <
x−2Bχ

|ρχ − 1|2

and hence by partial summation

∑
|ρχ−1|<1

|k1(ρχ)| � x−2Bχ ∑
|ρχ−1|<1

1
|ρχ − 1|2 � x−2Bχ

∫ 1

Bχ

1
t2 dnχ(t; 1).
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We integrate over the region Bχ ≤ |ρχ − 1| ≤ 1 as shown in Figure 4.2
so in particular nχ(Bχ; 1) = 0 if L(s, χ) has no exceptional zeros. From
Lemma 3.5 we see that

nχ(t; 1)� χ(1) + t(log Aχ + χ(1)nK)

and therefore∫ 1

Bχ

1
t2 dnχ(t; 1) =

nχ(t; 1)
t2

∣∣∣∣1
Bχ

+
∫ 1

Bχ

nχ(t; 1)
t3 dt

� nχ(t; 1)
t2

∣∣∣∣1
Bχ

+
∫ 1

Bχ

χ(1) + t(log Aχ + χ(1)nK)

t3 dt

� nχ(1; 1) + χ(1)
∫ 1

Bχ

dt
t3 + (log Aχ + χ(1)nK)

∫ 1

Bχ

dt
t2

� χ(1)
B2

χ

+
log Aχ + χ(1)nK

Bχ

� χ(1)7(log Aχ + χ(1)nK)
2

� χ(1)7(log Aχ)
2.

Hence

∑
|ρχ−1|<1

|k1(ρχ)| � x−2Bχ

∫ 1

Bχ

1
t2 dnχ(t; 1)

� x−2Bχ χ(1)7(log Aχ)
2

� χ(1)7(log Aχ)
2

where we’ve used the fact that x > 1.

Combining the results of this section we arrive at the following refine-
ment of Equation 4.2.
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Proposition 4.17. There exist absolute and effective positive constants c9, c10,
c11, c12 such that

∑
p∈S(L/K)

θ(p)(log Np)k̂1(Np) ≥ |C||G| k1(1)−
|C|
|G| k1(β0)

− c9
|C|
|G| ∑

χ∈Irr(G)

|χ(C)|χ(1)7(log Aχ)
2

− c10
|C|
|G| ∑

χ∈Irr(G)

|χ(C)|(log Aχ + χ(1)nK)

− c11nK
log x

x2 ∑
p∈P(L/K)

log p− c12nK
(log x)2

x
.

(4.5)
where the k1(β0) term appears only if the exceptional zero β0 exists.

Proof. We break the term coming from the zeros ρχ into two parts: zeros
with |ρχ − 1| ≥ 1 and zeros with |ρχ − 1| < 1.

From Lemma 4.14 we have

∑
χ∈Irr(G)

|χ(C)| ∑
|ρχ−1|≥1

|k1(ρχ)| � ∑
χ∈Irr(G)

|χ(C)|(log Aχ + χ(1)nK).

Therefore we may take c1 sufficiently large in Equation 4.2 and combine
the contribution from zeros ρχ with |ρχ − 1| ≥ 1 into the third term
∑χ |χ(C)|(log Aχ + χ(1)nK).

For contribution from zeros ρχ close to 1, Lemma 4.16 gives the estimate

∑
χ∈Irr(G)

|χ(C)| ∑
|ρχ−1|<1

|k1(ρχ)|

= k1(β0) + O

(
∑

χ∈Irr(G)

|χ(C)|χ(1)7(log Aχ)
2

)

where the term corresponding to the exceptional zero β0 appears if and
only if β0 exists. Combining the estimates gives Equation 4.5.

4.5 deuring-heilbronn phenomenon

In general zero-free regions for L-functions are only guaranteed to be
free of zeros up to one possible exception. In particular Proposition 3.6
guarantees a true zero-free region for nonlinear characters.
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As can be seen in Equation 4.5, the existence of an exceptional zero
diminishes the contribution k j(1) from the pole at s = 1 in the main term.
However as a general phenomenon the existence of a zero close to 1 will
push the other zeros away, resulting in an enlarged zero-free region. This
is typically called the Deuring-Heilbronn phenomenon. A version for ζL is
given in [LMO79] whose statement we will recall here.

Theorem 4.18 (Lagarias-Montgomery-Odlyzko). There are effective positive
absolute constants c13, c14 such that if ζL has a real zero β0 > 0 then it is zero-free
with s = σ + it in the region

σ ≥ 1− c14

log
(

c13
(1−β0) log(dL(|t|+2)nL )

)
log(dL(|t|+ 2)nL)

with the single exception β0.

Proof. This is [LMO79, Theorem 5.1].

Using this one obtains an unconditional lower bound for the exceptional
zero as follows.

Corollary 4.19. There is an effective positive absolute constant c15 such that any
exceptional zero β0 of ζL(s) satisfies

1− β0 ≥ d−c15
L .

Proof. This is [LMO79, Corollary 5.2].

In this section we exhibit a Deuring-Heilbronn phenomenon for Artin
L-functions proven by Mahmoudian in [Mah99]. The proof follows that of
[LMO79, Theorem 5.1] using the function L(s, (1 + χ)⊗ (1 + χ̄)) instead
of ζL. We recall the version of Turán’s power sum theorem as stated in
[LMO79].

Theorem 4.20 (Turán, Lagarias-Montgomery-Odlyzko). Let

sm =
∞

∑
n=1

bnzm
n

with

1. |zn| ≤ |z1| for all n ≥ 1,

2. the bn are real, and

3. bn ≥ 0 for n with 1
3 |z1| ≤ |zn| ≤ |z1|.
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Set

L =
1

b1|z1|
∞

∑
n=1
|bnzn|.

Then there exists j0 with 1 ≤ j0 ≤ 24L such that

Re sj0 ≥
b1

8
|z1|j0 .

Proof. This is [LMO79, Theorem 4.2].

Theorem 4.21 (Mahmoudian). Let χ be a nontrivial irreducible character of G
and suppose β0 is a real zero of L(s, χ). Assume Artin’s conjecture for L(s, χ)

and L(s, χ⊗ χ̄). Then there exist effective and absolute constants c16, c17 such
that L(s, χ) has no other zeros in the region

1− c17

log
(

c16
Lχ(t)(1−β0)

)
Lχ(t)

< σ < 1

where
Lχ(t) = χ(1)(log Aχ + χ(1)nK log(|t|+ 2)).

Proof. This is [Mah99, Theorem 3.1].

As in Corollary 4.19 we obtain a lower bound for how close the excep-
tional zero can be to 1.

Corollary 4.22. There exists an absolute effective positive constant c18 such that
any exceptional zero β0 for L(s, χ) satisfies

1− β0 � A−c18
χ .

4.6 proofs of main results

We now use the estimates of the previous sections to prove the main
results. First we will prove Theorem 1.4 which will allow us to handle
the case of exceptional zeros when the nonvanishing characters satisfy a
nonnegativity condition. We then use Theorem 1.4 to conclude the proof
of Theorem 1.1.

4.6.1 Proof of Theorem 1.4

We see that the key step in the proof of Theorem 4.21 is to note that the
Dirichlet series of the function Fχ(s) has nonnegative coefficients. Hence
we may adapt the proof to prove Theorem 1.4.
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Proof of Theorem 1.4. Let ϕ be a (not necessarily irreducible) character of G
which decompose into a sum of irreducible characters as

ϕ =
m

∑
i=1

aiχi.

Set F(s) = L(s, ϕ) = L(s, ∑m
i=1 aiχi). By the functoriality of L-functions

F(s) =
m

∏
i=1

L(s, χi)
ai .

The order of the pole at s = 1 is given by 〈ϕ, 1G〉 where 1G denotes
the trivial character. Hence (s− 1)〈ϕ,1G〉F(s) is entire and has a Hadamard
product factorization

(s− 1)〈ϕ,1G〉F(s) = sreα1+α2s ∏
ω 6=0

Fχ(ω)=0

(
1− s

ω

)
es/ω (4.6)

where the ω run over the zeros of F(s), possibly with multiplicity and the
dependence of the quantities r, α1, α2 on ϕ will be suppressed for sake of
notation.

Logarithmically differentiating both sides of Equation 4.6 gives

〈ϕ, 1G〉
s− 1

+
F′

F
(s) =

r
s
+ α2 + ∑

ω 6=0

(
1

s−ω
+

1
ω

)
hence

−F′

F
(s) =

〈ϕ, 1G〉
s− 1

− r
s
− α2 − ∑

ω 6=0

(
1

s−ω
+

1
ω

)
.

On the other hand, we know from logarithmically differentiating the
Euler product that

−F′

F
(s) = ∑

pm

ϕ(pm)(log Np)

(Np)ms

so

∑
pm

ϕ(pm)(log Np)(Np)−ms =
r
s
+ α2 + ∑

ω

(
1

s−ω
+

1
ω

)
. (4.7)
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Differentiating both sides of Equation 4.7 2j− 1 times gives

1
(2j− 1)! ∑

pm
ϕ(pm)(log Np)(log Npm)2j−1(Npm)−s

=
〈ϕ, 1G〉
(s− 1)2j −∑

ω

1
(s−ω)2j (4.8)

which is valid for σ > 1 and j ≥ 1. Evaluating Equation 4.8 at s = σ and
s = σ + it and adding the result gives

1
(2j− 1)! ∑

pm
ϕ(pm)(log Np)(log Npm)2j−1(Npm)−σ(1 + (Npm)−it)

=
〈ϕ, 1G〉
(σ− 1)2j +

〈ϕ, 1G〉
(s− 1)2j −∑

ω

(
1

(σ−ω)2j +
1

(s−ω)2j

)
.

Let β0 be a real zero of F(s). Separating the contribution from β0 in
Equation 4.8 we have

1
(2j− 1)! ∑

pm
ϕ(pm)(log Np)(log Npm)2j−1(Npm)−σ(1 + (Npm)−it)

=
〈ϕ, 1G〉
(σ− 1)2j +

〈ϕ, 1G〉
(s− 1)2j −

1
(σ− β0)2j −

1
(s− β0)2j −∑

n
zj

n

where each zn is of the form (σ−ω)−2 or (s−ω)−2 with ω a zero of F.
Observe that the left-hand side has nonnegative real part since ϕ(pm) is

nonnegative for each pm by assumption. Setting σ = 2, we obtain

Re ∑ zj
n ≤ 〈ϕ, 1G〉 −

1
(2− β0)2j + Re

(
〈ϕ, 1G〉
(1 + it)2j −

2
(2− β0 + it)2

)
≤ c19 j〈ϕ, 1G〉(1− β0) (4.9)

where c19 is an absolute and effective constant and the second inequality
follows from [LMO79, Equation 5.5].

Suppose ρ = β + iγ 6= β0 is a zero of F. Evaluate Equation 4.9 at t = γ.
Suppose z1 has the largest absolute value of all the zn. Then

|z1| ≥
1

(2− β)2

since if s = 2 + iγ then (s− ρ)−2 = (2− β)−2.
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As well, if ρ′ = β′ + iγ′ is another zero then

|(s− ρ′)−2| = |(2− β + β− β′ + i(γ− γ′))−2|

=
1

(2− β + β− β′)2 + (γ− γ′)2

≤ 1
(2− β)2

=
1

|s− ρ|2

and similarly
|(σ− ρ′)−2| ≤ |s− ρ|−2.

Set

L =
1
|z1|

∞

∑
n=1
|zn|

and

sm =
∞

∑
n=1

zm
n .

Applying the Turán power sum theorem Theorem 4.20, there exists j0,
1 ≤ j0 ≤ 24L, with

Re sj0 ≥
1
8
|z1|j0

and therefore

L�∑
ω

(
1

|z−ω|2 +
1

|2 + iγ−ω|2

)
where the (2− β)2 has been absorbed in the implicit constant as it is at
most 4.

Applying partial summation and Lemma 3.4, we obtain

L�
∫ ∞

0

1
u2 + 1

dnF(u) +
∫ ∞

0

1
u2 + 1

dnF(u + γ)

�
m

∑
i=1

aiχi(1)(log Aχ + χi(1)nK log(|γ|+ 2)) = L(|γ|).

Hence for some j0 � L� L(|γ|) we have

Re
∞

∑
n=1

zj0
n ≥

1
8
(2− β)−2j0

=
1
8

exp (−2j0 log(1 + 1− β))

≥ 1
8

exp (−2j0(1− β)) .
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Putting the inequalities together we obtain

1
8

exp (−2j0(1− β)) ≤ Re
∞

∑
n=1

zj0
n

≤ c19 j0〈ϕ, 1G〉(1− β0)

� 〈ϕ, 1G〉L(|γ|)(1− β0)

from which we deduce that there are absolute positive constants c20, c21

with

β ≤ 1− c21

log
(

c20
〈ϕ,1G〉L(|γ|)(1−β0)

)
L(|γ|)

as required.

Remark 4.23. Notice that for the character of the regular representation of
any finite G one has

regG(g) = ∑
χ∈Irr(G)

χ(1)χ(g) =

{
|G| a = 1

0 a 6= 0

so taking ϕ = regG for G = Gal(L/K) satisfies the hypotheses of Theo-
rem 1.4. In fact applying Theorem 1.4 with ϕ = regG recovers Theorem 4.18

since

∑
χ∈Irr(G)

χ(1)(log Aχ + nKχ(1) log(|t|+ 2)) = log(dL log(|t|+ 2)nL).

As before we obtain a bound on the exceptional zero similar to Corol-
lary 4.19 and Corollary 4.22.

Corollary 4.24. Let L(s, ϕ) satisfy the hypothesis of Theorem 1.4. Then there is
a positive, absolute, effective constant c22 such that any real zero β0 of L(s, ϕ)

satisfies

1− β0 ≥
(

n

∏
i=1

Aaiχi(1)
χi

)−c22

(4.10)

Proof. Choose c22 large enough so that

c21 log

 c20

(
∏i Aaiχi(1)

χi

)c22

〈ϕ, 1G〉∑i aiχi(1) log Aχi

 > 3
n

∑
i=1

aiχi(1) log Aχi . (4.11)

Then if Equation 4.10 fails, substituting Equation 4.11 into Theorem 1.4
gives that L(s, ϕ) has no zeros for σ > −2 except at β0. But this is a
contradiction since there are trivial zeros at s = −1 or s = 0.
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4.6.2 Proof of Theorem 1.1

We now use the results of Section 4.5 to give a refinement of Proposi-
tion 4.13 which will be used in the next chapter to give application to
specific choices of G and C. The main strategy is to observe that in Propo-
sition 4.13 the only L-functions that has nonzero contribution comes from
characters which are nonvanishing at C, that is χ ∈ nv(C) (see Defini-
tion 2.4). Hence we obtain a saving when nv(C) is small compared to
Irr(G).

Proposition 4.25. Let L/K be a Galois extension of number fields with G =

Gal(L/K). Let C be a conjugacy class of G. Denote by nv(C) the set of characters
which are nonvanishing at C, as in Definition 2.4. Let k j, θ, and S(L/K) be
defined as before in Section 4.1 and Section 4.2.

Suppose Artin’s holomorphy conjecture holds for each L(s, χ) with χ ∈ nv(C).
Then

1. If ∏χ∈nv(C) L(s, χ) has no exceptional zero, then there are effective con-
stants c23, c24, c25, c26 such that

∑
p∈S(L/K)

θ(p)(log Np)k̂1(Np)

≥ |C||G| (log x)2 − c23
|C|
|G| ∑

χ∈nv(C)
|χ(C)|χ(1)7(log Aχ)

2

− c24
|C|
|G| ∑

χ∈nv(C)
|χ(C)| log Aχ

− c25nK
log x

x2 ∑
p∈P(L/K)

log p− c26nK
(log x)2

x
.

(4.12)

2. If ∏χ∈nv(C) L(s, χ) has an exceptional zero β0 assume furthermore that

∑
χ∈nv(C)

χ(g) ≥ 0 (4.13)

for each g ∈ G. Set

L := ∑
χ∈nv(C)

χ(1) log Aχ.
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Then there are effective absolute constants c27, c28, c29, c30, c31, c32 such that

∑
p∈S(L/K)

θ(p)(log Np)k̂1(Np)

≥ |C||G| (log x)2 min{1, (1− β0) log x}

− c27
|C|
|G|

(
∑

χ∈nv(C)
|χ(C)|χ(1)

)
· L2[(1/c28)(1− β0)L]2c29 log x/L

− c30
|C|
|G| ∑

χ∈nv(C)
|χ(C)| log Aχ

− c31nK
log x

x2 ∑
p∈P(L/K)

log p− c32nK
(log x)2

x
.

(4.14)

Furthermore we may take c28 > 1.

3. Suppose furthermore that the exceptional zero satisfies

1− β0 �
1
L2

for an effective and absolute implicit constant. Then there are effective
absolute constants c33, c34, c35, c36, c37 such that

∑
p∈S(L/K)

Np<x10

θ(p)(log Np)k̂2(Np)

≥ |C||G| x
2 log x(1− β0)− c38

|C|
|G| x

2(1− β0)
c34 log x/LL

− c39
|C|
|G| xL− c40nK(log x)1/2 ∑

p∈P(L/K)
log p

− c41nKx7/4

(4.15)

Proof. We first observe that k1(1) = (log x)2 and furthermore that

k1(1)− k1(β0) = (log x)2 −
(

x2(β0−1) − xβ0−1

β0 − 1

)2

� (log x)2 min{1, (1− β0) log x}
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and

k2(1)− k2(β0) = x2 − xβ0+β2
0 � x2 min{1, (1− β0) log x}.

Since log Aχ � χ(1)nK we see easily that

∑
χ∈Irr(G)

|χ(C)|(log Aχ + χ(1)nK)� ∑
χ∈nv(C)

|χ(C)| log Aχ. (4.16)

As well, from Lemma 4.16 we have

∑
χ∈Irr(G)

|χ(C)| ∑
|ρχ−1|<1

ρχ 6=β0

|k1(ρχ)| � ∑
χ∈nv(C)

|χ(C)|χ(1)7(log Aχ)
2.

Combining with Equation 4.2 yields Equation 4.12

Now suppose that there is an exceptional zero β0 of ∏χ∈nv(C) L(s, χ). By
Equation 4.13 in the hypothesis we may use Theorem 1.4 with

ϕ = ∑
χ∈nv(C)

χ.

We note that

L(t)� L(1)� L := ∑
χ∈nv(C)

χ(1) log Aχ

and so by Theorem 1.4 any nonexceptional zero ρ = β + it of

L(s, ϕ) = ∏
χ∈nv(C)

L(s, χ)

with |ρ− 1| < 1 satisfies

β ≤ 1− c29

log
(

c28
L(1−β0)

)
L .

By taking c29 smaller if necessary we may take c28 ≥ 1.
Set

B := c29

log
(

c28
L(1−β0)

)
L

so that any zero ρ = σ + iγ 6= β0 satisfies

σ ≤ 1−B.
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B

σ = 1−Bσ = 0 σ = 1

Figure 4.3: Region of integration

Thus

|k1(ρ)| =
∣∣∣∣∣ x2(ρ−1) − xρ−1

ρ− 1

∣∣∣∣∣
2

≤ x−2B 1
|ρ− 1|2 .

Furthermore such zeros with |ρ− 1| < 1 will lie in the shaded region of
Figure 4.3 to the right of the line σ = 1− B. Thus if t = |ρ− 1| then in
particular B ≤ t ≤ 1 and so

∑
χ∈nv(C)

|χ(C)| ∑
|ρχ−1|<1

ρχ 6=β0

|k1(ρχ)| ≤ x−2B ∑
χ∈nv(C)

|χ(C)|
∫ 1

B

1
t2 dnχ(t; 1).
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Then using Lemma 3.5 we have

∑
χ∈nv(C)

|χ(C)|
∫ 1

B

1
t2 dnχ(t; 1)

� ∑
χ∈nv(C)

|χ(C)|
(

nχ(t; 1)
t2

∣∣∣∣1
B
+
∫ 1

B

nχ(t; 1)
t3 dt

)

� ∑
χ∈nv(C)

|χ(C)|
(

χ(1)
B2 +

log Aχ

B

)

�
(

∑
χ∈nv(C)

|χ(C)|χ(1)
)(

1
B2 +

L
B

)

�
(

∑
χ∈nv(C)

|χ(C)|χ(1)
)
L
B .

Since B−1 � L we have

∑
χ∈nv(C)

|χ(C)| ∑
|ρχ−1|<1

ρχ 6=β0

|k1(ρχ)|

�
(

∑
χ∈nv(C)

|χ(C)|χ(1)
)

x−2BB−1L

�
(

∑
χ∈nv(C)

|χ(C)|χ(1)
)
L2 [(1/c28)(1− β0)L]2c29 log x/L .

Once again combining with Equation 4.2 gives Equation 4.14.
Now suppose that

1− β0 ≤
c42

2

L2 (4.17)

for an absolute effective c42 which we choose to satisfy

c2
42 < c28

so that we have
1
2

log(1− β0)
−1 ≤ log

c42

(1− β0)L
.

Therefore by Theorem 1.4 there is an absolute constant c34 such that if
ρ = β + iγ is any zero with |γ| ≤ 1 and ρ 6= β0 then

β ≤ 1− c34
log(1− β0)−1

L .



4.6 proofs of main results 65

Now
|k2(ρ)| ≤ xβ2+β ≤ x1+β = x2xβ−1

and so

|k2(β)| ≤ x2 exp
(
−c34

log x log(1− β0)−1

L

)
= x2(1− β0)

c34 log x/L.

Using Lemma 3.4 we obtain

∑
χ∈nv(C)

|χ(C)| ∑
|γ|≤1
|k2(ρχ)| � x2(1− β0)

c34 log x/L ∑
χ∈nv(C)

|χ(C)| log Aχ.

Combining the above with Equation 4.3, Equation 4.16, and Lemma 4.15

we obtain

∑
p∈S(L/K)

Np<x10

θ(p)(log Np)k̂2(Np)

≥ |C||G| x
2 log x(1− β0)

− c43
|C|
|G| x

2(1− β0)
c16 log x/L ∑

χ∈nv(C)
|χ(C)| log Aχ

− c44
|C|
|G| x ∑

χ∈nv(C)
|χ(C)| log Aχ

− c45
|C|
|G| ∑

χ∈nv(C)
|χ(C)| log Aχ

− c46nK(log x)1/2 ∑
p∈P(L/K)

log p− c47nKx7/4

≥ |C||G| x
2 log x(1− β0)− c43

|C|
|G| x

2(1− β0)
c16 log x/LL

− c48
|C|
|G| xL− c46nK(log x)1/2 ∑

p∈P(L/K)
log p− c47nKx7/4

Proof of Theorem 1.1. We see that trivially

∑
χ∈nv(C)

|χ(C)|χ(1)7(log Aχ)
2 ≤ ∑

χ∈nv(C)
|χ(C)|χ(1)5

(
∑

χ∈nv(C)
χ(1) log Aχ

)2
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so we see that the left-hand side of Equation 4.12 is positive if we set

log x �
(

∑
χ∈nv(C)

|χ(C)|χ(1)5

)1/2

∑
χ∈nv(C)

χ(1) log Aχ

+ log

 |G|
|C| nK ∑

p∈P(L/K)
log p

 .

Suppose there is an exceptional zero β0 which satisfies

1− β0 ≥
c2

42(
∑χ∈nv(C) χ(1) log Aχ

)2 .

with c42 as in Equation 4.17. Then noting that c2
42/c28 < 1 by choice of

c28, c42 we have(
∑

χ∈nv(C)
|χ(C)|χ(1)

)
L2[(1/c28)(1− β0)L]2c29 log x/L

≤
(

∑
χ∈nv(C)

|χ(C)|χ(1)
)
L2[(c2

42/c28)L−1]2c29 log x/L

≤
(

∑
χ∈nv(C)

χ(1)2

)
L2(1−c29 log x/L)

≤ L3

L2c29 log x/L .

Then any choice of x satisfying

c29 log x ≥ L

will make(
∑

χ∈nv(C)
|χ(C)|χ(1)

)
L2[(1/c28)(1− β0)L]2c29 log x/L ≤ L.

Then noting that
∑

χ∈nv(C)
|χ(C)| log Aχ ≤ L
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we have that for any such choice of x Equation 4.14 becomes

|G|
|C| ∑

p∈S(L/K)
θ(p)(log Np)k̂1(Np)

≥ c49(log x)3L−2 − c50L− c51
|G|
|C| nK

log x
x2 ∑

p∈P(L/K)
log p

− c52
|G|
|C| nK

(log x)2

x
.

Then from Equation 4.14 we see that we can take

log x � ∑
χ∈nv(C)

χ(1) log Aχ + log

 |G|
|C| nK ∑

p∈P(L/K)
log p

 .

Lastly, if

1− β0 ≤
c2

42(
∑χ∈nv(C) χ(1) log Aχ

)2

then we use Equation 4.15. From Corollary 4.24 we have that 1− β0 ≥
exp(−c22L). Hence if we take

x = exp

c53L+ c54 log

 |G|
|C| nK ∑

p∈P(L/K)
log p

 (4.18)

for a sufficiently large absolute constant c53, c54 then Equation 4.15 yields

|G|
|C| ∑

p∈S(L/K)
Np<x10

θ(p)(log Np)k̂2(Np)

≥ x2 log x(1− β0)− c55
|G|
|C| nK(log x)1/2 ∑

p∈P(L/K)
log p > 0.

Therefore in this case we see that the least prime p whose Frobenius in G
is C satisfies

NK/Qp ≤
(

∏
χ∈nv(C)

Aχ(1)
χ

)c53
 |G|
|C| nK ∑

p∈P(L/K)
log p

c54

.
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4.7 estimates under additional assumptions

In this section we will show stronger estimates for the least prime whose
Frobenius is C under Assumption 1 and Assumption 2 of Section 3.6. Write
s = σ + it. We recall the assumptions as follows.

1. For 1 < σ < 3 the logarithmic derivative of L(s, χ) satisfies∣∣∣∣L′L (s, χ)

∣∣∣∣� 1
σ− 1

+ log Aχ.

2. There exists a constant c such that if χ is irreducible and L(s, χ)

satisfies Artin’s conjecture then it has at most one zero in the region

1− c
χ(1)(log Aχ + χ(1)nK log(|t|+ 2))

≤ σ ≤ 1.

Under Assumption 1 by Lemma 3.8 one has the stronger zero-density
estimate

nχ(r; 1)� 1 + r(log Aχ + nKχ(1) log(3))� 1 + r log Aχ.

We now use this in addition to the expanded zero-free region of Assump-
tion 2 to obtain an estimate for the sum over zeros close to s = 1.

Lemma 4.26. Let L/K be a Galois extension of number fields of degree n and χ an
irreducible character of Gal(L/K). Assume that Assumption 1 and Assumption 2
hold. Then

∑
|ρχ−1|<1

ρ 6=β0

|k1(ρχ)| � (χ(1) log Aχ)
2.

Proof. The proof is similar to that of Lemma 4.16 while applying the
stronger zero-density estimates and zero-free regions. We may assume
x > 1. As in Lemma 4.16 we see that

|k1(ρχ)| �
x−2(σ−1)

|ρχ − 1|2 .

It follows from Assumption 2 that for all ρχ = σ + it with |ρχ − 1| < 1 and
ρχ 6= β0 we have for some effective absolute constant c20 that

σ < 1− c20

χ(1) log Aχ
.

Set
B′χ :=

c20

χ(1) log Aχ
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so that B′χ < 1− σ and therefore

x−2(σ−1)

|ρχ − 1|2 ≤
x−2B′χ

|ρχ − 1|2 .

Thus as in Lemma 4.16 we have by partial summation

∑
|ρχ−1|<1

|k1(ρχ)| � x−2B′χ
∫ 1

B′χ

1
t2 dnχ(t; 1)

where the region of integration is similar to the one given in Figure 4.2.
Now using Lemma 3.8 we have

∫ 1

B′χ

1
t2 dnχ(t; 1) =

nχ(t; 1)
t2

∣∣∣∣1
B′χ

+
∫ 1

B′χ

nχ(t; 1)
t3 dt

� nχ(1; 1) +
∫ 1

B′χ

1 + t(log Aχ + χ(1)nK)

t3 dt

� 1
B′2χ

+
log Aχ + χ(1)nK

B′χ
� (χ(1) log Aχ)

2.

Thus

∑
|ρχ−1|<1

|k1(ρχ)| � x−2B′χ
∫ 1

B′χ

1
t2 dnχ(t; 1)� (χ(1) log Aχ)

2.

where x−2B′χ < 1 since x > 1.

Proposition 4.27. Let L/K be a Galois extension of number fields with G =

Gal(L/K) and let P(L/K) be the set of rational primes below primes of K which
ramify in L. Let C be a conjugacy class of G. Suppose that for each L(s, χ) with
χ ∈ nv(C) Artin’s conjecture, Assumption 1, and Assumption 2 hold. If L(s, χ)

does not have an exceptional zero for each χ ∈ nv(C), then there exists an
absolute effective constant c56 such that the least prime p of K whose Frobenius in
G is C satisfies

NK/Qp ≤
(

∏
χ∈nv(C)

Aχ(1)|χ(C)|1/2

χ

)c56
 |G|
|C| nK ∑

p∈P(L/K)
log p

c56

.
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Proof. The estimate in Lemma 4.26 allows us to replace the second term in
Equation 4.12 to obtain

|G|
|C| ∑

p∈S(L/K)
θ(p)(log Np)k̂1(Np)

≥ (log x)2 − c57 ∑
χ∈nv(C)

|χ(C)|(χ(1) log Aχ)
2

− c58 ∑
χ∈nv(C)

|χ(C)| log Aχ − c59
|G|
|C| nK

log x
x2 ∑

p∈P(L/K)
log p

− c60
|G|
|C| nK

(log x)2

x
.

We see that

∑
χ∈nv(C)

|χ(C)|(χ(1) log Aχ)
2 ≤

(
∑

χ∈nv(C)
|χ(C)|1/2χ(1) log Aχ

)2

so we can take

log x � ∑
χ∈nv(C)

|χ(C)|1/2χ(1) log Aχ + log

 |G|
|C| nK ∑

p∈P(L/K)
log p

 .



5
T H E L E A S T P R I M E I N A
C O N J U G A C Y C L A S S :
A P P L I C AT I O N S

In this chapter we apply the results in Chapter 4 and in particular Theo-
rem 1.1 to obtain bounds for the least prime in Frobenius classes that are
vanishing for many characters. We first consider the case of Gal(L/K) = Sn

and the class of n-cycles and (n− 1)-cycles. Next we consider applications
to the class of reflections in Dn-extensions and to the general case of classes
of Camina elements.

5.1 application to Sn-extensions

We first apply Theorem 1.1 for a general Sn-extension to obtain upper
bounds for the least prime in whose Frobenius is an n-cycle or an (n− 1)-
cycle. Following that we consider the special case of an Sn-extension
of Q which is unramified over a quadratic extension where we prove
strengthened estimates for the least prime in an n-cycle or (n− 1)-cycle.

5.1.1 The least prime in an n-cycle

Throughout this section let L/K be a Galois extension of number fields
with Gal(L/K) = Sn and let C denote the conjugacy class of n-cycles. For
this class we have |C| = n and |G| = n!. From Section 2.2.5 we recall
Proposition 2.8 and Proposition 2.10:

• |χ(C)| = 1 if χ is a hook character, that is χ = χλ where λ is a hook;
otherwise χ(C) = 0. In particular nv(C) is the set of hook characters.

• If χλ is a hook character with corresponding hook λ = (r, 1n−r) then
it has character degree (n−1

r ).

We will use these in conjunction with Theorem 1.1 to obtain estimates for
the special case when C is the class of n-cycles. We will need an asymptotic
on power sums of binomial coefficients from [PS72, Pt. II, 40]. We collect
the details here for completeness.

71
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Lemma 5.1 ([PS72, Pt. II, 54]). Suppose f (x) is integrable over [a, b]. Set

δn =
b− a

n

and
fvn = f (a + vδn).

Then

lim
n→∞

(1 + f1nδn)(1 + f2nδn) . . . (1 + fnnδn) = exp
(∫ b

a
f (x) dx

)
.

Proof. Taking the logarithm of the left-hand side and using the power
series expansion of the logarithm we obtain

n

∑
v=1

log(1 + fvnδn) =
n

∑
v=1

∞

∑
m=1
− (− fvnδn)m

m
=

n

∑
v=1

fvnδn + O

(
δn

n

∑
v=1

f 2
vnδn

)
.

Finally we observe that

n

∑
v=1

fvnδn
n→∞−−−→

∫ b

a
f (x) dx

and similarly
n

∑
v=1

f 2
vnδn

n→∞−−−→
∫ b

a
f (x)2 dx

and δn → 0 as n→ ∞.

Lemma 5.2 ([PS72, Pt. II, 58]). Let n, v be integers with 0 < v < n and
furthermore suppose that n, v increase to infinity in such a way that

lim
n→∞

v− n/2√
n

= λ.

Then

lim
n→∞

√
n

2n

(
n
v

)
=

√
2
π

e−2λ2
.

Proof. Suppose first that n is even and set n = 2m. Then

v−m√
m
→ λ
√

2.
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We may further assume that λ ≥ 0 and v > m. As well, we recall for
example from Stirling’s formula that(

2m
m

)
∼ 22m
√

mπ
.

Therefore it suffices to show that

lim
m→∞

(2m
v )

(2m
m )

= e−2λ2
.

Now
(2m

v )

(2m
m )

=
m

m + 1
m− 1
m + 2

. . .
m− (v−m− 1)

m + (v−m)

=
1

1 + 1√
m

1√
m

1− 1√
m

1√
m

1 + 2√
m

1√
m

. . .
1− v−m−1√

m
1√
m

1 + v−m√
m

1√
m

By adapting the argument in Lemma 5.1 we see that(
1− 1√

m
1√
m

)(
1− 2√

m
1√
m

)
. . .
(

1− v−m− 1√
m

1√
m

)
m→∞−−−→ exp

(
−
∫ λ
√

2

0
x dx

)
= e−λ2

and similarly(
1 +

1√
m

1√
m

)(
1 +

2√
m

1√
m

)
. . .
(

1 +
v−m√

m
1√
m

)
m→∞−−−→ exp

(∫ λ
√

2

0
x dx

)
= eλ2

which proves the case when n is even.
Now if n is odd, set n = 2m + 1. We note that

(2m+1
v )

(2m+1
m+1 )

=
m + 1

v
( 2m

v−1)

(2m
m )

.

Since

lim
m→∞

v−m√
2m

= lim
m→∞

v− 2m+1
2√

2m + 1
= λ
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it suffices to show that (m + 1)/v→ 1. We note that

lim
m→∞

1−m/v√
m/v

= lim
m→∞

v−m√
m

= λ
√

2.

Since v > m we have 1 > m/v >
√

m/v > 0 so lim inf
√

m/v = 0 since
otherwise m/v =

√
m
√

m/v will be unbounded. By taking a subsequence
if necessary we see that

√
m/v→ 0 so 1−m/v→ 0.

Proposition 5.3 ([PS72, Pt. II, 40]). For k fixed, we have

n

∑
v=0

(
n
v

)k

∼ 2kn
√

k

(
2

πn

)(k−1)/2

.

Proof. From Lemma 5.2 we see that

n

∑
v=0

(
n
v

)k

∼ 2kn
(

2
π

)k/2

n−(k−1)/2
n

∑
v=0

exp

(
−2k

(
v− n/2√

n

)2
)

1√
n

Now

lim
n→∞

n

∑
v=0

exp

(
−2k

(
v− n/2√

n

)2
)

1√
n
=
∫ ∞

−∞
e−2kx2

dx =

√
π

2k

so
n

∑
v=0

(
n
v

)k

∼ 2kn
√

k

(
2

kn

)(k−1)/2

as required.

In the case that there is an exceptional zero β0 for ∏λ=(n−r,1r) L(s, χλ) we
use Theorem 1.4 to obtain a larger zero-free region for the nonexceptional
zeros. First we note the following proposition which allows us to use
Theorem 1.4.

Proposition 5.4 (Regev). Let µ ` n be a partition of length `. Then

n−1

∑
r=0

χ(n−r,1r)(µ) =

{
2`−1 if all parts of µ are odd

0 otherwise
.

Proof. This is [Reg13, Proposition 1.1].

Remark 5.5. Proposition 5.4 was proven in [Reg13] using representations of
Lie superalgebras. A proof using only Sn characters was given in [Tay17].

We are now ready to prove Theorem 1.6.
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Proof of Theorem 1.6. Let C be the class of n-cycles. Then

|C|
|G| =

n!/n
n!

=
1
n

.

We know from Proposition 2.8 that

nv(C) = {χλ : λ = (n− r, 1r)}.

As well, from Proposition 2.10 we have for λ = (n− r, 1r)

χλ(1) =
(

n− 1
r

)
and therefore

∑
λ=(n−r,1r)

χλ(1) = 2n−1 � 2n.

Therefore Theorem 1.1 gives the following upper bounds for the least
prime p whose Frobenius in G = Gal(L/K) is an n-cycle depending on
whether β0 exists.

If there is no β0 then from Equation 1.2

log NK/Qp�
(

n−1

∑
r=0

(
n− 1

r

)5
)1/2

∑
λ=(n−r,1r)

χλ(1) log Aχλ

+ log

nnK ∑
p∈P(L/K)

log p

 .

From Proposition 5.3 we obtain(
n−1

∑
r=0

(
n− 1

r

)5
)1/2

� 25n/2

n

and therefore

log NK/Qp

� 25n/2

n ∑
λ=(n−r,1r)

χλ(1) log Aχλ + log

nnK ∑
p∈P(L/K)

log p

 .

For the case of the exceptional zero β0 it remains to verify that ∑λ χλ is
always nonnegative where the sum is over all hooks λ = (n− r, 1r). This
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follows from Proposition 5.4. Hence Equation 1.4 follows directly from
Equation 1.3.

At the cost of worsening the bound, we may write the above in terms of
the discriminant of L. First we estimate the terms from ramified primes.

Lemma 5.6. Let L/K be a Galois extension of number fields with Galois group
G and C a conjugacy class in C. Then

|G|
|C| nK ∑

p∈P(L/K)
log p ≤ (log dL)

2.

Proof. We observe that since

dL = d[L:K]
K NK/QdL/K

we have
log dL = |G| log dK + log NK/QdL/K.

Therefore
(log dL)

2 ≥ |G| log dK log NK/QdL/K

from which it follows that

|G|
|C| nK ∑

p∈P(L/K)
log p ≤ |G| log dK log NK/QdL/K ≤ (log dL)

2.

Proof of Corollary 1.8. From Lemma 5.6 we obtain

nnK ∑
p∈P(L/K)

log p ≤ (log dL)
2.

As well, recall that
Aχ = dχ(1)

K NK/Qfχ.

Hence by Proposition 5.3

∏
λ=(n−r,1r)

dχλ(1)2

K = dc234n/n
K .

Furthermore by the conductor-discriminant formula Theorem 3.2 we see
that

∏
λ=(n−r,1r)

NK/Qf
χλ(1)
χλ ≤ NK/QdL/K.
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r

n− r− 1

r

n− r− 1

Figure 5.1: The possible shapes of λ

Therefore we see from the two cases in Theorem 1.6 that the bound for
the least prime in an n-cycle in the case of no exceptional zeros can be
written as

NK/Qp ≤ dcn
24/n

K NK/Qd
cn

25
L/K(log dL)

c26

and the for the case of exceptional zeros the bound becomes

NK/Qp ≤ dcn
24/n

K NK/Qd
c27
L/K(log dL)

c26

for effective absolute constants c24, c25, c26, c27.

Finally, observing that |χλ(C)| = 1 allows us to deduce Theorem 1.13

from Proposition 4.27.

5.1.2 The least prime in an (n− 1)-cycle

By using similar techniques as the n-cycle case we can also obtain an
upper bound for the least prime whose Frobenius is an (n− 1)-cycle. We
first establish the nonvanishing characters of (n− 1)-cycles as well as the
character values at (n− 1)-cycles.

Proposition 5.7. Let C be the class of (n− 1)-cycles and let χλ ∈ Irr(Sn) with
λ ` n the corresponding partition. Then

χλ(C) =


1 if λ = (n)

sgn(C) if λ = (1n)

(−1)r if λ = (n− r, 2, 1r−2)

0 otherwise

.

Proof. By the Murnaghan-Nakayama rule, we have

χλ
(n−1,1) = ∑

T
(−1)T
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where the sum is over all rim hook tableaux T of shape µ and content
(n− 1, 1). That is, T is a Young tableaux with weakly increasing rows and
columns with n− 1 entries of 1s arranged in a rim hook and a single entry
of 2.

Since the entries are weakly increasing the rim hook corresponding to 1
must be a Young diagram, so in particular a hook diagram of size n− 1,
say µ. Thus λ is obtained by adding a box to µ in such a way that the
resulting shape is a Young diagram. Then λ is either itself a hook or a
hook with a square added at position (2, 2), where (i, j) denotes the i-th
row and j-th column. See Figure 5.1 for the possible shapes, along with
(n) and (1n).

If λ = (n) then χλ = 1 and if λ = (1n) then χλ = sgn. Now suppose
λ is a hook of shape (n− r− 1, 1r+1). Then since the entries are weakly
increasing any hook with content (n− 1, 1) must have entry 2 at either the
bottommost box at (r + 1, 1) or at the rightmost box at (1, n− r). In any
case the singleton 2 has leg length 0 but the hook with entry 1 will have
leg length r− 1 and r. Thus

χ(n−r,1r)(C) = (−1)r−1 + (−1)r = 0.

Next suppose λ is obtained by taking a hook of shape (n− r − 1, 1r)

and adding a box at position (2, 2). Again since the entries are weakly
increasing and the boxes containing 1 must form a skew diagram the entry
at (2, 2) is forced to be 2 and the boxes containing 1 must be the hook of
shape (n− r− 1, 1r). Once again the single 2 has leg length 0 and the hook
has leg length r, so

χ(n−r,2,1r−2)(C) = (−1)r.

Next we determine the character degrees.

Proposition 5.8. Let µ = (n− r, 2, 1r−2) with 1 < r < n− 1. Then

χµ(1) =
n(r− 1)(n− r− 1)

(n− 1)(n− r)

(
n− 1

r

)
≤ n

(
n− 1

r

)
.

Proof. Applying the hook length formula we obtain

χµ(1) =
n!

r(n− r)(n− 1)(r− 2)!(n− r− 2)!

=
n(r− 1)(n− r− 1)

(n− r)(n− 1)
· (n− 1)!

r!(n− 1− r)!

=
n(r− 1)(n− r− 1)

(n− r)(n− 1)

(
n− 1

r

)
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and we observe that
(r− 1)(n− r− 1)
(n− 1)(n− r)

≤ 1.

Proposition 5.9. Let L/K be a Galois extension of number fields with G =

Gal(L/K) = Sn. Assume Artin’s conjecture for L-functions of characters χµ

corresponding to partitions of the form µ = (n− r, 2, 1r−2) for 1 < r < n− 1.
If ζK(s)L(s, sgn) has no exceptional zeros, then there exist absolute effective
constants c61, c62 such that the least prime p of K whose Frobenius in G is an
(n− 1)-cycle satisfies

NK/Qp ≤

dK Asgn ∏
µ=(n−r,2,1r−2)

Aχµ(1)
χµ

c61n1/225n

·

(n− 1)nK ∑
p∈P(L/K)

log p

c62

(5.1)

Proof. We will apply Theorem 1.1 First we note that |C| = n(n− 2)! so
|G|/|C| = n− 1. From Proposition 5.7 we see that

nv(C) = {χµ : µ = (n− r, 2, 1r−2), 1 < r < n− 1} ∪ {1, sgn}

so applying Proposition 5.8 and Proposition 5.3 we obtain

∑
χ∈nv(C)

χ(1)5 � ∑
µ=(n−r,2,1r−2)

n5
(

n− 1
r

)5

� n325n

which combined with Theorem 1.1 yields Equation 5.1.

In the case of the exceptional zero we will need to invoke Theorem 1.4.
However it is not true in general that ∑χ∈nv(C) χ is nonnegative as the
following proposition shows. The inclusion {1, . . . , n − 1} ⊆ {1, . . . , n}
induces an embedding Sn−1 ↪→ Sn. For any σ ∈ Sn, define ε(σ) = 1 if the
cycle decomposition of σ contains only odd cycles and ε(σ) = 0 otherwise.
Let Fix(σ) denote the set of fixed points of σ acting on {1, . . . , n}.

Proposition 5.10. Let σ ∈ Sn corresponding to a partition of length `. Then

∑
µ=(n−r,2,1r−2)

χµ(σ) = ε(σ)(# Fix(σ)2`−2 − 2`) + 1 + sgn(σ).
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Proof. By the branching rule (Theorem 2.6) we have

∑
ν`n−1
ν hook

IndSn
Sn−1

χν = 1G + sgn+2 ∑
λ=(n−r,1r)
1≤r≤n−2

χλ + ∑
µ=(n−r,2,1r−2)

χµ

= 2 ∑
λ`n

λ hook

χλ + ∑
µ=(n−r,2,1r−2)

χµ − 1G − sgn .

From Proposition 5.4 we have

2 ∑
λ`n

λ hook

χλ(σ) = ε(σ)2`.

Next we use the induced character formula given in Equation 2.1 and
Equation 2.1. A transversal for Sn−1 in S is given by the transpositions
(1, n), (2, n), . . . , (n, n) = 1. Hence

∑
ν`n−1
ν hook

IndSn
Sn−1

χν(σ) = ∑
ν`n−1
ν hook

n

∑
i=1

χ̃ν((i, n)σ(i, n))

Note that χ̃ν is nonvanishing only on Sn−1 = {σ ∈ Sn : σ(n) = n} and
that (i, n)σ(i, n) fixes n if and only if σ fixes i. As well, since conjugation
does not change the cycle structure so if σ has cycle length ` so will all
its conjugates. Hence changing the order of summation and invoking
Proposition 5.4 we obtain

∑
ν`n−1
ν hook

IndSn
Sn−1

χν(σ) =
n

∑
i=1

∑
ν`n−1
ν hook

χ̃ν((i, n)σ(i, n)) = # Fix(σ)ε(σ)2`−2

where the exponent is `− 2 since we truncate the 1-cycle (n) in σ when
considered as an element of Sn−1. We also note that if σ′ is obtained from
σ by truncating a 1-cycle then ε(σ′) = ε(σ).

Proposition 5.11. Let L/K be a Galois extension of number fields with G =

Gal(L/K) = Sn. Assume Artin’s conjecture for L-functions of characters χµ

corresponding to partitions of the form µ = (n− r, 2, 1r−2) for 1 < r < n− 1 as
well as L-functions of hook characters. Let

ϕ := ∑
λ`n−1
λ hook

IndSn
Sn−1

χλ = 1G + sgn+2 ∑
ν=(n−r,1r)
1≤r≤n−2

χν + ∑
µ=(n−r,2,1r−2)

χµ.
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Suppose L(s, ϕ) admits an exceptional zero β0. Then there is an effective
absolute constant c63 such that the least prime p whose Frobenius is an (n− 1)-
cycle in Sn satisfies

Np ≤

 ∏
λ=(n−r,1r)

Aχλ(1)
χλ ∏

µ=(n−r,2,1r−2)

Aχµ(1)
χµ

c63

·

(n− 1)nK ∑
p∈P(L/K)

log p

c63

. (5.2)

Proof. Observe that ϕ contains all the characters χµ ∈ nv(C) and is also
nonnegative by Proposition 5.1.2 so we may apply Theorem 1.4. We note
that if C is the class of (n− 1)-cycles then |C| = n(n− 2)! so |C|/|G| =
1/(n− 1).

By Equation 4.14 of Proposition 4.25 we have

(n− 1) ∑
p∈S(L/K)

θ(p)(log Np)k̂1(Np)

≥ (log x)3(1− β0)

− c64 ∑
µ=(n−r,2,1r−2)

χµ(1)L2[(1/c65)(1− β0)L]2c66 log x/L

− c67 ∑
µ=(n−r,2,1r−2)

log Aχµ

− c68(n− 1)nK
log x

x2 ∑
p∈P(L/K)

log p

− c69(n− 1)nK
(log x)2

x

where

L = log A1G + log Asgn

+ 2 ∑
ν=(n−r,1r)
1≤r≤n−2

χν(1) log Aχν + ∑
µ=(n−r,2,1r−2)

χµ(1) log Aχµ

and c65 > 1. Using an argument similar to Equation 4.17 in the proof of
Theorem 1.1 we see that if

1− β0 �
1
L2
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then we can take

log x � L+ log

(n− 1)nK ∑
p∈P(L/K)

log p

 .

If instead
1− β0 �

1
L2

then again as before we apply Equation 4.18 to obtain

x = exp

c70L+ c71 log

(n− 1)nK ∑
p∈P(L/K)

log p


so that in any case Equation 5.2 holds.

Combining Proposition 5.9 and Proposition 5.11 yields Theorem 1.9.

Proof of Corollary 1.10. As in the proof of Corollary 1.8, from Lemma 5.6
we have

(n− 1)nK ∑
p∈P(L/K)

log p ≤ (log dL)
2

and we know that

∏
λ=(n−r,1r)

Aχλ(1)
χλ = d∑λ χλ(1)2

K ∏
λ=(n−r,1r)

NK/Qf
χλ(1)
χλ ≤ dc724n/n

K NK/QdL/K.

As well, from Proposition 5.8 and Proposition 5.3 we see that

∑
µ=(n−r,2,1r−2)

χµ(1)2 ≤ n2
n−1

∑
r=0

(
n− 1

r

)2

� n4n.

Therefore

∏
µ=(n−r,2,1r−2)

Aχµ(1)
χµ = d∑µ χµ(1)2

K ∏
µ=(n−r,2,1r−2)

NK/Qf
χµ(1)
χµ

≤ dc73n4n

K NK/QdL/K

for some constant c73. Hence

∏
λ=(n−r,1r)

Aχλ(1)
χλ ∏

µ=(n−r,2,1r−2)

Aχµ(1)
χµ ≤ dc744n

K NK/Qd
2
L/K

for some constant c74.
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Q

F

L

Sn

2

An

Figure 5.2: Tower of extensions

As in the case of n-cycles, combining with Proposition 4.27 yields Theo-
rem 1.14.

5.1.3 Unramified An-extensions of quadratic fields

In this section consider a tower of number fields L/F/Q where L/Q

is an Sn-extension and L/F is an unramified An-extension. Unramified
An-extensions of quadratic fields have been studied by Uchida [Uch70], Ya-
mamoto [Yam70], Elstrodt-Grunewald-Mennicke [EGM85], Kondo [Kon95],
and Kedlaya [Ked12]. In particular it is known that there are infinitely
many such extensions. We can apply the results of the previous sections to
such an extensions to obtain an upper bound for the least prime in an n-
cycle. First we adapt the proof of the upper bound for the Artin conductor
Proposition 3.1 given by Murty-Murty-Saradha in [MMS88, Proposition
2.5] to obtain a stronger bound for the current case.

Proposition 5.12. Let L/F/Q be a tower of extensions where L/F is unramified
and F/Q is a quadratic extension with discriminant ∆. Let χ ∈ Irr(Gal(L/Q)).
Then

log Nfχ ≤ 4χ(1) log ∆.

Proof. Since the base field is Q we identify the Artin conductor f with the
integer

fχ = ∏
p

pn(χ,p).

Proceeding as in the proof of [MMS88, Proposition 2.5] we obtain that

n(χ, p) ≤ 2χ(1)w(DL/Q)

ew/p

where w is a place of L dividing p and DL/Q is the different of L/Q. By
an estimate of Hensel we have

w(DL/Q) = ew/p − 1 + sw/p
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for some sw/p satisfying 0 ≤ sw/p ≤ w(ew/p). Therefore

n(χ, p) ≤
2χ(1)(ew/p − 1 + sw/p)

ew/p
≤ 2χ(1)

(
1− 1

ew/p
+

w(ew/p)

ew/p

)
.

Since L/F is unramified, we have ew/v = 1 for all places v of F below w
and above p. Thus if p is ramified in L it must be ramified in F and we
have ev/p = 2 from which it follows that ew/p is 2 if p is ramified in L and
is 1 if p is unramified. Thus

w(ew/p) =

{
2 if p = 2

0 otherwise

so in any case we obtain

n(χ, p) ≤ 4χ(1)

for all primes p that ramify in L. Therefore

log Nfχ = ∑
p∈P(L/Q)

n(χ, p) log p ≤ 4χ(1) ∑
p∈P(L/Q)

log p ≤ 4χ(1) log ∆.

Proof of Theorem 1.12. Suppose the Frobenius of p in Gal(L/Q) is an n-
cycle. From Theorem 1.6 we see that p satisfies

p ≤
(

∏
λ=(n−r,1r)

Aχλ(1)
χλ

)c7525n/2/n
n ∑

p∈P(L/Q)

log p

c76

.

Since L/F is unramified, any prime p which ramifies in L must divide ∆.
Hence

∑
p∈P(L/Q)

log p ≤ log ∆.

As well, the base field is Q so we see that

Aχ = Nfχ = ∏
p

pn(χ,p).
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Using Proposition 5.12, Proposition 2.10, and Proposition 5.3 we obtain

∏
λ=(n−r,1r)

Aχλ(1)
χλ ≤ exp

(
4 log ∆ ∑

λ=(n−r,1r)

χλ(1)2

)

≤ exp

(
4 log ∆

n−1

∑
r=0

(
n− 1

r

)2
)

≤ ∆4n+1/
√

n. (5.3)

Combining with Theorem 1.6 yields Equation 1.7.
If the Frobenius of p in Gal(L/Q) is an (n− 1)-cycle, then from Theo-

rem 1.9 we have

p ≤

∆ ∏
µ=(n−r,2,1r−2)

Aχµ(1)
χµ

c77n1/225n (n− 1) ∑
p∈P(L/K)

log p

c78

(5.4)

if there are no exceptional zeros. Using Proposition 5.12 and Proposition 5.8
we have

log Aχµ = log fχµ ≤ 4χµ(1) log ∆ ≤ 4n
(

n− 1
r

)
log ∆

and so using Proposition 5.3 we have

∏
µ=(n−r,2,1r−2)

Aχµ(1)
χµ ≤ exp

4 log ∆ ∑
µ=(n−r,2,1r−2)

χµ(1)2


≤ exp

(
4 log ∆

n−1

∑
r=0

n2
(

n− 1
r

)2
)

≤ ∆n3/24n+1
.

Combining with Equation 5.4 we obtain

p ≤ ∆n2cn
79 ((n− 1) log ∆)c80 .

If there are exceptional zeros, then instead Theorem 1.9 gives

p ≤

 ∏
λ=(n−r,1r)

Aχλ(1)
χλ ∏

µ=(n−r,2,1r−2)

Aχµ(1)
χµ

c81
(n− 1) ∑

p∈P(L/K)
log p

c81

.
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Hence combining with Equation 5.3 we obtain

p ≤ ∆ncn
82((n− 1) log ∆)c83 .

In any case we see that Equation 1.9 holds.
To obtain Equation 1.8 and Equation 1.10, observe that since L/F is

unramified we have
dL = ∆[L:F] = ∆n!/2.

Remark 5.13. The assumptions of Section 3.6 can only improve the base of
the exponent in the exponent of the upper bound given in Theorem 1.12.
In particular, Equation 1.8 and Equation 1.10 essentially remain the same.

5.2 the least prime which is a reflection

Let L/K be a dihedral extension, so G = Gal(L/K) = Dn. In this case the
Artin conjecture is known since Dn is monomial. Let C denote a class of
reflections. As in Section 2.3 there is a unique such class if n is odd, and if
n is even there are two. We see that

|Dn|
|C| =

{
2 n odd

4 n even

so that in any case it is absolutely bounded.
As well, from Proposition 2.12 we find that for χ ∈ Irr(Dn),

|χ(C)| =
{

1 χ(1) = 1

0 χ(1) > 1
.

Therefore nv(C) is the set of linear characters of Dn. Hence just as in the
case when G = Sn and C is the class of n-cycles we are in a situation where
C is a conjugacy class at which most irreducible characters vanish.

Proof of Theorem 1.15. Since Dn is monomial we know Artin’s conjecture
holds for L/K. Applying Theorem 1.1 we obtain the following. If there
are no exceptional zeros, then the least prime p in K whose Frobenius is a
reflection in G satisfies

NK/Qp�
(

∏
χ∈lc(Dn)

Aχ

)c84
nK ∑

p∈P(L/K)
log p

c85

. (5.5)
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If there is an exceptional zero β0, then we note that since nv(C) is the set
of linear characters of Dn by Proposition 2.3 we have that for all g ∈ Dn,

∑
χ∈nv(C)

χ(g) ≥ 0

so we are in a position to apply Theorem 1.4 and therefore the exceptional
zero case of Theorem 1.1. Hence in any case Equation 5.5 holds by taking
c84, c85 to be larger if necessary.

Finally we note that there is a canonical correspondence between lc(G)

and Irr(Gab) and invoke the conductor-discriminant formula.

Proof of Corollary 1.16. Let F be the fixed field of the commutator subgroup
G′. Then from Equation 2.4 we have

dF ≤ d1/[L:F]
L ≤ d4/[L:K]

L

and therefore
dc86

F ≤ d4c86/[L:K]
L .

As well, from Lemma 5.6 we obtainnK ∑
p∈P(L/K)

log p

c87

≤ (log dL)
2c87 .

5.3 the least prime which is a camina element

Recall from Section 2.4 that a Camina element g of a finite group G
is an element at which every nonlinear irreducible character vanishes.
Hence applying Theorem 1.1 to the class of Camina elements will give the
strongest estimates. In particular the results of this section will apply to
the groups and elements listed in Section 2.4

Proof of Theorem 1.19. From Section 2.4 we know that the characters that
are nonvanishing at C are exactly the linear characters. Therefore Artin’s
conjecture holds and by Proposition 2.3 we have

∑
χ∈nv(C)

χ(C) ≥ 0.
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Furthermore

∑
χ∈nv(C)

χ(1)5 = # lc(G) = |Gab| = [L : F].

Likewise we recall the correspondence between lc(G) and Irr(Gab). Invok-
ing the conductor-discriminant formula we obtain

∏
χ∈lc(G)

Aχ(1)
χ = dF.

Proof of Corollary 1.20. Combine the estimate

dF ≤ d1/[L:F]
L

with Lemma 5.6.

For some of the examples listed in Section 2.4 we may rephrase the
estimate to make it more explicit.

Corollary 5.14. Let L/K be a Galois extension of number fields with Gal(L/K) =
G. Then there exist constants c88, c89 such that for the following choices of G and
conjugacy class C, the least prime p of K whose Frobenius in G is C uncondition-
ally satisfies the following:

1. Let G be an extraspecial p-group of order pn and C the class of any element
outside the centre. Then

NK/Qp ≤ dc88/p1/2

L (log dL)
c89 .

2. Let G be a group of order p4 and C the class of any Camina element. If
#G′ = p then

NK/Qp ≤ dc88/p1/2

L (log dL)
c89 .

If instead #G′ = p2 then

NK/Qp ≤ dc88/p
L (log dL)

c89 .

3. Let G be a p-group of maximal class of order pn and C the class of any
element not in CG(Ki(G)/Ki+2(G)) for i ≥ 2, where Ki(G) denotes the
terms in the descending central series of G. Then

NK/Qp ≤ dc88/p(n−2)/2

L (log dL)
c89 .
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4. Let G be the group of upper-triangular matrices over a finite field of order
q with diagonal entries 1, and C the class of any element with minimal
polynomial (x− 1)n. Then

NK/Qp ≤ dc88/q1/2

L (log dL)
c89 .

If there are exceptional zeros then the denominator of the exponent of dL may
be replaced by its square.

Proof. This follows from Corollary 1.20 by substituting the order of the
commutator subgroup in G. If G is an extraspecial p-group then its com-
mutator subgroup has size p. If G is a p-group of maximal class of order
pn, then its commutator subgroup has size pn−2. If G is the group of
upper-triangular matrices over a field of order q with diagonal entries 1
then the commutator subgroup has size q.
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