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We develop the theory of braidors, an analogue of Drinfel’d’s theory of associators in which braids in an

annulus are considered rather than braids in a disk. After defining braidors and showing they exist, we

prove that a braidor is defined by a single equation, an analogue of a well-known theorem of Furusho

[Furusho (2010)] in the case of associators. Next some progress towards an analogue of another key

theorem, due to Drinfel’d [Drinfel’d (1991)] in the case of associators, is presented. The desired result in

the annular case is that braidors can be constructed degree be degree. Integral to these results are annular

versions GTa and GRTa of the Grothendieck-Teichmüller groups GT and GRT which act faithfully

and transitively on the space of braidors. We conclude by providing surprising computational evidence

that there is a bijection between the space of braidors and associators and that the annular versions of

the Grothendieck-Teichmüller groups are in fact isomorphic to the usual versions potentially providing a

new and in some ways simpler description of these important groups, although these computations rely

on the unproven result to be meaningful.
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Chapter 1

Introduction

1.1 Motivation

Among the more powerful invariants for knots is the invariant coming from Drinfeld’s theory of asso-

ciators, sometimes also referred to as the Kontsevich integral. While at first glance invariants of knots

may seem unrelated to Drinfel’d’s theory of associators, it is implicit in the original work [Drinfel’d

(1991)] and first explicitly explained in [Bar-Natan (1998)] and [Le & Murakami (1995)] that the data

of a Drinfel’d associator is in fact equivalent to a well-behaved invariant of parenthesized braids, braids

in which the distance between strands plays an important role rather than just the topology alone.

In this thesis ordinary braids, braids embedded in a disk cross an interval, are replaced by braids

in an annulus cross an interval and an analogue of the theory of associators, which we call braidors, is

developed in this topological setting.

One of the motivations for this work is the fact that the algebraic structure arising out of annular

braids, which we construct in Section 3.1.2, does not not require introducing parenthesizations at all

and furthermore all but one of the strand doubling operations (or partial composition operations in

the operadic language often used) can be omitted. As such it appears the algebraic structure related

to braidors is simpler in some respects than the algebraic structure in the case of associators. One of

the main hindrances in practical applications of Drinfel’d associators (or the closely related Kontsevich

integral) to knot theory is the extreme difficulty in evaluating this invariant for any nontrivial knot;

even evaluating its value on the unknot is a difficult computation [Bar-Natan et al. (2000)]. Since the

algebraic structure having to do with braidors is simpler, we hope in future work to be able to find

braidors which are simpler to construct and compute than associators, however some evidence is given
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Chapter 1. Introduction 2

which seems to indicate thiw will require moving beyond the algebra coming from braids in the annulus.

Since any invariant of annular braids yields an invariant of usual braids, the end goal here is to construct

an easier to compute universal finite type invariant of knots.

One of the major theorems in the theory of associators due to [Furusho (2010)] is that an associator

is essentially defined by a single equation, the pentagon equation and that the two hexagon equations

are implied by the pentagon equation1. The analogue of this theorem for the case of associators is the

major result of this work. To state it precisely let t1,n be the Drinfel’d-Kohno graded Lie algebra on

n+ 1 strands. This is the graded Lie algebra generated by tij for 0 ≤ i < j ≤ n2 subject to the relations

generated by [tij , tkl] = 0 for |{i, j, k, l}| = 4 and [tjk, tik + tjk] = 0 when |{i, j, k}| = 3. Each tij has

degree 1.

In order to define braidors some operations on the Drinfeld-Kohno algebras Û t1,n, the degree com-

pleted universal enveloping algebra of the Lie algebra t1,n, need to be defined first. Let f : {0, · · · , n} →

{0, · · · ,m} be any set map. There is an induced map Tf : Û t1,m → Û t1,n which is defined on generaters

by tij 7→
∑
p∈f−1(i),q∈f−1(j) tpq where tij 7→ 0 if either f−1(i) or f−1(j) are empty. Given A ∈ Û tm the

notation Af
−1(1),··· ,f−1(m) = Tf (A) will frequently be used.

A braidor is an invertible, grouplike3 element B ∈ Û t1,2 which satisfies the equations

B0,1,2B02,1,3B0,2,3 = B01,2,3B0,1,3B03,1,2 (Braid Equation)

R01,2 = BR0,2B0,2,1 (Mixed Equation)

where R = exp (t01) (see also Definition 3.3.1 below.)

Theorem 1.1.1. A braidor is an invertible, grouplike element B ∈ Û t1,2 such that the coefficient of the

term t12 is 1
2 and which satisfies the braid equation

B0,1,2B02,1,3B0,2,3 = B01,2,3B0,1,3B03,1,2.

In other words, the mixed equation is implied by the braid equation.

One of Drinfel’d’s key results in [Drinfel’d (1991)] is that associators can be constructed degree by

degree. We conjecture, with a sketch of a proof containing a major gap in Section 3.6, that the analogous

1See Section 2.5 for the detailed description of these equations.
2When dealing with braidors, it is more convenient to index the generators of the Drinfeld-Kohno algebra by integers

in the range 0 ≤ i < j ≤ n since the zeroth strand represents the core of an annulus rather than an actual strand. When
considering associators however, we use the usual convention of indexing by integers in the range 1 ≤ i < j ≤ n and notate
the resulting graded Lie algebra by tn. Thus t1,n is isomorphic to tn+1 via shifting indices up by one.

3The coproduct is the standard coproduct for universal enveloping algebras defined by setting ∆(tij) = 1⊗ tij + tij ⊗ 1
for the generators tij ∈ tn.
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result for braidors holds as well. Any braidor B ∈ Û t3 decomposes as a sum B =
∑∞
m=0Bm where Bm

is homogeneous of degree m and the conjecture is

Conjecture 1.1.1. Let B ∈ Û t3 be a braidor up to degree m. This means the braid and mixed equations

hold in degrees 0 to m but possibly fail to hold in higher degrees. Then there exists β ∈ Û t3 homogeneous

of degree m+ 1 such that B + β is a braidor up to degree m+ 1.

Despite the original motivation that there may be more braidors than associators and some of these

may be easier to construct and compute, surprising computational evidence presented in Section 4.1

suggests the

Conjecture 1.1.2. There is a bijection between the set of all braidors BRAID0 with degree one term

equal to 1
2 t12 and the set of Drinfel’d associators ASSOC. Furthermore there are isomorphisms of affine

group schemes GRTa,0
∼= GRT and GTa,0

∼= GT between the Grothendieck-Teichmüller groups GT

and GRT and their annular counterparts.

Precise definitions of associators as well as GT and GRT, symmetry groups of the set of associators

on which they act freely and transitively, are recalled in Section 2.5. Their annnular counterparts GTa

and GRTa are symmetry groups of the set of braidors which we define in Section 3.3 and which act

simply and transitively on BRAID.

The computations in Chapter 4 unfortunately rely on Conjection 1.1.2 to be meaningful. This is

because doing computations up to degree n is only meaningful if every braidor up to degree n actually

comes from a full braidor, or in other words that every braidor up to degree n can be extended to a full

braidor, so that information gained about braidors up to degree n yields information about full braidors.

Associators, the groups GT and GRT, and the corresponding Lie algebras gt and grt, show up in

many seemingly unrelated areas of mathematics besides knot theory. For example they are closely related

to the absolute Galois group [Grothendieck (1997); Drinfel’d (1991)] which is where the theory originates,

the motivic Lie algebra and multiple zeta values [Furusho (2011)], the Kashiwara-Vergne problem in Lie

theory [Alekseev & Torossian (2012)], formality of the little disks operad and to Kontsevich formality

[Fresse (2017b); Tamarkin (2003, 1998)], and to quantization of Lie bialgebras [Etingof & Kazhdan

(1996)] to give just a sampling. Having a new description of these important groups may lead to new

information about the open conjectures involving these subjects and the relations between them.

While Conjecture 1.1.2 may appear to make the original idea of finding simpler braidors than there are

associators impossible, the conjecture appears to only apply to braidors and associators in the Drinfel’d-

Kohno algebra specifically while the notion of both associators and braidors makes sense in more general
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spaces. In fact, there are spaces in which only the notion of braidors can be defined but associators can’t

and furthermore the computations in Section 4.1 show that there are some spaces in which both braidors

and associators exist but there are more braidors than associators. Thus there is still a possibility of

finding simpler, more computable knot invariants using braidors rather than associators however finding

these will require searching in algebras other than the Drinfel’d-Kohno algebra. An example of such an

algebra is given in Section 4.2



Chapter 2

Algebraic Structures and Expansions

2.1 Algebraic Structures and Completions

A construction which appears often in low dimensional topology, especially when constructing invariants

of some class of topological objects, is to begin with a set of topological objects together with some

operations, for example the set of knots with strand insertion and deletion operations, extend this set

into a filtered linear space, then construct the associated graded of this filtered linear space. Maps

from the filtered linear space of topological objects to its associated graded which preserve the desired

collection of operations yield powerful invariants of the topological objects in many cases.

The precise nature of the operations involved vary from example to example. The notion of algebraic

structures developed in this chapter is intended to formalize this construction in general. An algebraic

structure is a set of objects together with operations between them which are allowed to have both

multiple inputs and multiple outputs as schematically represented in Figure 2.1.1. This is not a unique

concept, being closely related to an algebra for a colored prop or functors between multicategories. A

brief summary of the notion can also be found in [Bar-Natan & Dancso (2017)], although many of the

details given here are not given in previous work, and some of the constructions required here are not

covered in these previous expositions at all.

Definition 2.1.1. An algebraic structure is a pair S = (DS ,OS) where DS = {Bα}α∈Θ is a collection

of sets indexed by a set Θ and OS is a collection of functions of the form f :
∏I
i=1Bαi →

∏J
j=1Bβj for

some Bαi and Bβj which are in DS1.

The elements of any of the sets in DS will be referred to as the objects in the algebraic structure.

1A function from the empty product is allowed, which amounts to choosing constants in the sets Bα ∈ DS .
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Bα Bβ

Bγ Bδ

`

hg

f

k

Figure 2.1.1: An example of an algebraic structure comprising four objects Bα, Bβ , Bγ , Bδ, four opera-
tions f : Bα → Bα, g : Bγ → Bα, h : Bα × Bγ → Bβ × Bδ and k : Bβ × Bδ → Bδ between the various
objects and a nullary operation ` : ?→ Bβ which is a choice of constant in Bβ .

The set Θ is called the set of types of the algebraic structure while objects in a set Bα will be referred

to as objects of type α. An operation f :
∏I
i=1Bαi →

∏J
j=1Bβj is called an I-ary operations with J

outputs. A nullary operation is a choice of constants.

An example of an algebraic structure is depicted in Figure 2.1.1. This is an algebraic structure with

four types of objects and five operations between the various types of objects of varying arity and with

varying number of outputs including a choice of constant.

An algebraic structure has an underlying multigraph of types of objects and types of operations. The

multigraph corresponding to the algebraic structure in Figure 2.1.1 is given in Figure 2.1.2. Given a

multigraph labelled as described in the figure, an algebraic structure with this multigraph is obtained by

choosing a set for each vertex labelled by a greek letter and choosing a set map with inputs and outputs

as indicated by the edges for each collection of edges labelled with the same Latin letter (including the

empty edge at a vertex which corresponds to a constant.) The underlying multigraph of an algebraic

structure keeps track of what type of objects and what sorts of operations between objects are being

encoded, while the algebraic structure itself is a choice of actual sets and set maps corresponding to the

multigraph.

It generally does not make much sense to consider morphisms between algebraic structures of different
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α β

γ δ

`

hg

f

k

Figure 2.1.2: The multigraph underlying the algebraic structure in Figure 2.1.1. Some of the vertices are
labelled in Greek letters by the types of the algebraic structure, although some vertices are unlabelled.
The oriented edges of the graph come from the operations in the algebraic structure and each edge is
labelled by the operation it comes from, indicated via colour coding. Constants are indicated by adding
an extra label in the Latin alphabet to a vertex.

types, for example a morphism from a nonabelian group to a vector space. Hence morphisms between

algebraic structures are only defined between algebraic structures with the same underlying multigraph.

While algebraic structures are defined for the specific purpose of invariants of topological objects,

they are so general that many of the structures studied in mathematics are special cases.

Example 2.1.1. [Groups] Let G be a group with unit e. This can be viewed as an algebraic structure G

by letting DG = {G} regarded just as a set. OG has three operations, a binary operation m : G×G→ G

given by group multiplication, a unary operation i : G → G given by inversion and a nullary operation

u : {?} → G defined by 1u(?) = e.

Conversely, any algebraic structure G with DG = {G} consisting of a single set and with three

operations OG = {m : G × G → G, i : G → G, u : {1} → G} which satisfy the associativity relation

m ◦ (idG ×m) = m ◦ (m× idG), the unit relation m ◦ (u× idG) = idG = m ◦ (idG × u) and the inverse

relation m ◦ (idG, i) = u ◦ ε = (idG, i) ◦m where ε : G→ {1} is the uniqe map, defines a group.

Example 2.1.2 (Categories). Let C be a category. To view it as an algebraic structure, let S be the

algebraic structure with DS = {MorC(A,B) : A,B ∈ ObjC} and OS = {◦A,B,C : MorC(A,B) ×

MorC C(B,C)→ MorC(A,C) : A,B,C ∈ ObjC} where ◦A,B,C is composition.
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Example 2.1.3 (Operads). Let O be a nonsymmetric operad in a symmetric monoidal category, that is a

sequence {O(n)}n∈N of objects in the category together with composition operations ◦n1,··· ,nk : O(k)⊗

O(n1)⊗· · ·⊗O(nk)→ O(n1 + · · ·+nk). This yields an algebraic structure S with DS = {O(n)}n∈N} and

OS = {◦n1,··· ,nk : n1, · · · , nk ∈ N}. A symmetric symmetric operad can be modelled by also including

the operations {ρσ : O(n) → O(n) : σ ∈ Sn, n ∈ N} in the algebraic structure where ρσ is given by the

action of the symmetric group on O(n).

The notion of operads will be used in describing the theory of Drinfel’d associators, however very

little of the general theory of operads will be used. In particular, thinking of an operad as comprising

a collection of n-ary operations O(n) for every n together with the composition operations ◦n1,··· ,nk

obtained by plugging the output of an ni-ary operation is the ith input of a k-ary operation. A detailed

exposition can however be found in [Fresse (2017a)].

The above list of examples could be extended to include many more of the common structures

in mathematics, for example group homomorphisms, group actions on sets, and so on, however not

everything is amenable to description as an algebraic structure. For the example of categories and

groups, the exact notion can be characterized using the language of algebraic structures as was done

for groups by enforcing certain relations to hold between the operations, but this is not possible for all

examples.

Example 2.1.4 (Fields). A field is not an algebraic structure because inversion is only a partially defined

operation.

Example 2.1.5 (Bialgebras). Let A be a bialgebra over the field K with product m : A ⊗ A → A,

coproduct ∆ : A→ A⊗A, unit ι : K→ A and counit ε : A→ K. A map m : A⊗A→ A is equivalent to

a map A×A→ A however a map ∆ : A→ A⊗A is not equivalent to a map A→ A×A so a bialgebra

is not an algebraic structure according to our definitions.

The definition of an algebraic structure could be extended to an algebraic structure in a monoidal

category rather than the monoidal category of sets and then a bialgebra would be an algebraic structure

in the monoidal category of vector spaces with tensor products as the monoidal structure.

Definition 2.1.2. An algebraic structure S is a substructure of an algebraic structure T , denoted

S ⊆ T , if both have the same underlying multigraph, each Bα ∈ DS is a subset of the corresponding set

Cα ∈ DT and each operation in OS is a restriction of the corresponding operation in OT .

Definition 2.1.3. Let S = (DS = {Bα}α∈Θ,OS) and T = (DT = {Cα}α∈Θ,OT ) be two algebraic

structures with the same underlying multigraph. A map Ξ : S → T is a pair
(
{ξα}α∈Θ , χ

)
where
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ξα : Bα → Cα and χ is a bijection from OS → OT subject to the following compatibility condition. For

any operation f :
∏I
i=1Bαi →

∏J
j=1Bβj , χ(f) :

∏I
i=1 Cαi →

∏J
j=1 Cβj .

Ξ is a morphism if it interwines the operations. This means for any operation f :
∏I
i=1Bαi →∏J

j=1Bβj ∈ OS , the following diagram commutes

Bα1
× · · · ×BαI Bβ1

× · · · ×BβJ

Cα1
× · · · × CαI Cβ1

× · · · × CβJ

f

ξα1
×···×ξαI ξβ1×···×ξβJ

χ(f)

.

Ξ is an isomorphism if it is a morphism and each map ξα is a bijection.

2.1.1 S-Algebras and the Unipotent Filtration

The following construction is a generalization of the group algebra construction to general algebraic

structures. The basic idea throughout is to apply the usual construction for groups to each set Bα in an

algebraic structure individually and extend operations via multilinearity.

Definition 2.1.4. Let A be a Q-algebra and let S be an algebraic structure. The S-algebra A[S] is the

algebraic structure with the same underlying multicategory as S and with

DA[S] = {A[Bα]}α∈Θ

where A[Bα] is the A-module of formal A-linear combinations of elements of Bα. Operations in A[S]

are multilinear extensions of the operations in OS to module homomorphisms.

Remark 1. For many of the later definitions, an algebraic structure S = ({Bα}α∈Θ,OS) will be given,

which leads to A[S] as defined in the previous definition and then further constructions will be applied

to the sets A[Bα]. Strictly speaking we should distinguish between the original set Bα and the A-module

of formal linear combinations A[Bα] however to avoid cluttered and unreadable notation we will use Bα

to refer to both sets and hope it is clear from context which of the two is meant.

Definition 2.1.5. The augmentation ideal of the S-algebra A[S] is the substructure IS ⊆ A[S] whose

objects are formal A-linear combinations
∑n
i=1 aiBi where ai ∈ A satisfy

∑n
i=1 ai = 0 and whose

operations are restrictions of operations in A[S] to objects in IS .
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Definition 2.1.6. The mth power of the augmentation ideal, denoted ImS , is the substructure of IS with

DImS = {Bmα }α∈Θ where

Bmα =
{
πBα ◦ f1 ◦ · · · ◦ fn(x1

1, · · · , x
p
1) : at least m inputs are objects in IS

}
,

f1, · · · fn are arbitrary operations in A[S] such that one of the outputs of f1 is Bα, and πBα is the

projection from the product of output sets of f1 to Bα. In other words, objects in ImS are outputs of

arbitrarily many compositions of operations in A[S] with at least m inputs being objects in IS . The

operations in ImS are restrictions of operations in IS .

Powers of the augmentation ideal form a decreasing sequence of substructures A[S] ⊃ IS ⊃ I2
S ⊃ · · ·

of A[S]. For notational convenience define I0
S = A[S].

Definition 2.1.7. The unipotent filtration F•A[S] for an algebraic structure S is the decreasing filtration

with FmA[S] = Im+1 for m ∈ N.

2.1.2 Coproducts

The algebraic structures appearing later will include a coproduct which requires the definition of a

tensor product S � S of algebraic structures. To avoid overloading notation later, the tensor product of

algebraic structures will be notated using � rather than ⊗.

Definition 2.1.8. Let S be an algebraic structure. The algebraic structure A[S] � A[S] has the same

underlying multigraph as S and has objects

DA[S]�A[S] = {A[Bα]⊗A A[Bα]}α∈Θ .

To define operations in the tensor product, let f : Bα1
×· · ·×Bαm → Bβ1

×· · ·×Bβn be an operation

in A[S] and define an operation f�f : (Bα1
⊗Bα1

)×· · ·×(Bαm⊗Bαm)→ (Bβ1
⊗Bβ1

)×· · ·×(Bβn⊗Bβn)

on simple tensors by

f � f(c1 ⊗ b1, · · · , cm ⊗ bm) =

(
f1(c1, · · · , cm)⊗ f1(b1, · · · , bm), · · · , fn(c1, · · · , cm)⊗ fn(b1, · · · , bm)

)

and extend by linearity. Then OA[S]�A[S] =
{
f � f : f ∈ OA[S]

}
.

A[S]�A[S] is again filtered with Fk(A[S]�A[S]) = (I�I)k where (I�I)k is the algebraic structure
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with types

D(I�I)k =

 ∑
i+j=k

Biα ⊗A Bjα


α∈Θ

.

The operations are restriction of operations in A[S] �A[S].

The coproduct is defined by making all objects in S grouplike.

Definition 2.1.9. The coproduct � = ({ξα}α∈Θ, χ) : A[S]→ A[S] �A[S] is the morphism of algebraic

structures with ξα(b) = b⊗ b for any object b ∈ Bα and extended via linearity to A[Bα]. The map χ is

defined by χ(f) = f � f .

2.1.3 The Associated Graded Construction

A filtered algebraic structure F•A[S] has been constructed, and given a filtered object it is often useful

to construct its associated graded as is the case with algebraic structures.

Definition 2.1.10. Let A[S] = I0 ⊃ I1 ⊃ I2 ⊃ · · · be the augmentation ideal of an algebraic structure

S together with the induced unipotent filtration2. The associated graded grS of S is the algebraic

structure with the same underlying multigraph as A[S] and with objects defined by

DgrS =

{⊕
m

Bmα /B
m+1
α

}
α∈Θ

.

Let f : Bα1
× · · · × Bαn → Bβ1

× · · · × Bβp be an operation in A[S]. This induces an operation

Bmα1
×· · ·×Bmαn → Bmβ1

×· · ·×Bmβp in the algebraic structure Im as has been described previously which

further descends to a quotient map fm : Bmα1
/Bm+1

α1
× · · · ×Bmαn/B

m+1
αn → Bmβ1

/Bm+1
β1
× · · · ×Bmβp/B

m+1
βp

The maps fm form the components of a graded map

gr f :

(⊕
m

Bmα1
/Bm+1

α1

)
× · · · ×

(⊕
m

Bmαn/B
m+1
αn

)
→

(⊕
m

Bmβ1
/Bm+1

β1

)
× · · · ×

(⊕
m

Bmβp/B
m+1
βp

)
.

Ogr Ŝ is defined to be the set of all maps of the form gr f for f ∈ A[S].

The functorial nature of the associated graded construction extends to algebraic structures as well

since the associated graded morphism can be constructed for any morphism of algebraic structures in

the following way.

Definition 2.1.11. Let Ξ = ({ξα}α∈Θ, χ) : A → B be a morphism between the algebraic structures

A = ({Bα}α∈Θ,OA) and B = ({Cα}α∈Θ,OB) which have the same underlying multigraph and have

2The associated graded could of course be defined for any filtered algebraic structure rather than just this particular
filtration.
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types Θ. The associated graded morphism gr Ξ = ({gr ξα}, grχ) : grA → grB can be constructed as

follows. Given Bα ∈ DA, the map ξα : Bα → Cα induces a map Bmα /B
m+1
α → Cmα /C

m+1
α for each m

and hence a map gr ξα :
⊕

mB
m
α /B

m+1
α →

⊕
m C

m
α /C

m+1
α .

χ maps an operation f ∈ OA to an operation χ(f) ∈ OB. The associated graded map grχ maps

gr f → grχ(f) where the associated graded of an operation was defined in Definition 2.1.14.

The coproduct defined on algebraic structures induces one on the associated graded algebraic struc-

ture as well. The morphism � : grS → grS � grS is defined for an object x̄ ∈ Bmα /Bm+1
α by letting

�(x̄) = �(x) where the overlines indicate equivalence classes in the relevant quotient.

2.1.4 Prounipotent Completions of Algebraic Structures

The construction in this section is an analogue of the prounipotent completion of a group generalized

to arbitrary algebraic structures. As before, the idea throughout is to apply the usual construction for

groups to each set Bα ∈ DS for some algebraic structure and extend operations via multilinearity.

In Section 2.1.1, a filtration F•A[S] was constructed for any algebraic structure S where FmA[S] =

Im+1. The algebraic structure can be completed with respect to this filtration to obtain the prounipotent

completion of S.

Definition 2.1.12. The mth unipotent quotient of A[S] is the algebraic structure S(m) = S/Im+1 with

the same underlying multigraph as A[S] and with objects defined by

DS(m) = {Bα/ ∼}α∈Θ

where ∼ is the equivalence relation x ∼ y if and only if x − y ∈ Bm+1
α

3. The operations in S(m) are

quotients of operations in A[S].

The collection of unipotent quotients A[S] = S(0) ← S(1) ← S(2) ← · · · form an inverse system,

and the completion of the algebraic structure A[S] is defined to be the inverse limit of this system.

More precisely, for every type α ∈ Θ we have an inverse system Bα ← Bα/B
1
α ← Bα/B

2
α ← · · · and

an algebraic structure can be constructed whose set of objects of type α is the inverse limit of the

corresponding system.

3That this actually is an equivalence relation can be shown from the definition of the augmentation ideal. Calling I an
ideal is justified by the fact that it induces such an equivalence relation and so an algebraic structure can be quotiented
by I.
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Definition 2.1.13. The prounipotent completion Ŝ of the algebraic structure S is the IS -adic completion

Ŝ = lim←−S
(m) of A[S]. Ŝ has the same multigraph as S and the objects of Ŝ are defined by

DŜ = {B̂α = lim←−Bα/B
m+1
α }α∈Θ

The operations in the algebraic structure Ŝ are defined using the universal properties of inverse limits

and products as follows. If f : Bα1
× · · · ×Bαm → Bβ1

× · · · ×Bβn is an operation in A[S], an operation

f̂ : B̂α1 ×· · · B̂αm → B̂β1 ×· · ·× B̂βn must be defined. Let πi : Bβ1 ×· · ·×Bβm → Bβi be the projections

associated to a product and let pki : B̂αi → Bαi/B
k+1
αi be the projections associated to inverse limit. For

each k and i define the map f ik : B̂α1
× · · · × B̂αm → Bβi/B

k+1
βi

as in the diagram

B̂α1
× · · · × B̂αm

Bα1
/Bk+1

α1
× · · · ×Bαm/Bk+1

αm

Bα1×···×Bαm
Bk+1
α1
×···×Bk+1

αm

Bβ1×···×Bβn
Bk+1
β1
×···×Bk+1

βn

Bβ1
/Bk+1

β1
× · · · ×Bβn/Bk+1

βn

Bβi/B
k+1
βi

pk1×···×p
k
m

fik f

πi

.

For each i, the maps f ik are compatible with the inverse system and so induce a map f̂ i : B̂α1
×· · ·×B̂αm →

B̂βi . Finally, the maps f̂ i are compatible with the projection maps for the product and so yield the

required map f̂ : B̂α1
× · · · B̂αm → B̂β1

× · · · × B̂βn . Using this construction, operations in Ŝ are defined

to be OŜ = {f̂ : f ∈ OA[S]}.

More concretely, an element of B̂αi is of the form (bki )k∈N where each bki as a representative of an

equivalence class in Bαi/B
k+1
αi and such that bki is congruent to bk−1

i modulo Bkαi . Then f̂ has the

explicit formula

f̂
(
(bk1)k, · · · , (bkm)k

)
=

((
f1(bk1 , · · · , bkm) mod Bk+1

β1

)
k
, · · · ,

(
fn(bk1 , · · · , bkm) mod Bk+1

βn

)
k

)
.

The inverse system A[S] = S(0) ← S(1) ← S(2) ← · · · induces a filtration Ŝ = Ŝ(0) ⊃ Ŝ(1) ⊃ Ŝ(2) ⊃
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· · · on Ŝ where each Ŝ(m) is the inverse image in Ŝ of S(m) via the canonical projection. In more detail, let

Bα ∈ DS . We’ve defined B̂α = lim←−Bα/B
m
α ∈ DŜ . Let B̂α

(m)
= π−1

m (Bα/B
m
α ) where πm : B̂α → Bα/B

m
α

is the canonical projection associated to the inverse limit. The algebraic structure Ŝ(m) has objects

defined by DŜ(m) = {B̂α
(m)
}α∈Θ and has operations which are restrictions of the operations in Ŝ.

Tensor products and the associated coproduct also extend to completions, although some care must

be taken when dealing with filtrations for completed tensor products. Let S be an algebraic structure

and let Ŝ be the prounipotent completion. Ŝ � Ŝ can be defined as in Definition 2.1.8. There is an

induced unipotent filtration (Ŝ � Ŝ)(m) defined to have objects

D(Ŝ�Ŝ)(m) =

 ∑
i+j=m

Bα/B
i+1
α ⊗Bα/Bj+1

α


α∈Θ

and with operations being the restriction of operations in Ŝ � Ŝ.

The construction in Definition 2.1.13 can now be applied to Ŝ � Ŝ with this filtration to obtain the

completed tensor product Ŝ�̂Ŝ. The coproduct in Definition 2.1.9 naturally extends to a coproduct

� : Ŝ → Ŝ�̂Ŝ.

Since Ŝ is a filtered algebraic structure, there is a corresponding associated graded, which in the

completed case amounts to using infinite sums rather than finite sums.

Definition 2.1.14. Let Ŝ = Ŝ(0) ← Ŝ(1) ← Ŝ(2) ← · · · be the prounipotent completion of an algebraic

structure S together with the induced unipotent filtration. The completed associated graded ĝrŜ of S is

the algebraic structure with the same underlying multigraph and with objects defined by

DĝrŜ =

{∏
m

B̂α
(m)

/B̂α
(m+1)

}
α∈Θ

.

Let f : Bα1
× · · · × Bαn → Bβ1

× · · · × Bβp be an operation in A[S]. This induces an operation

B̂α1

m
× · · · × B̂αn

m
→ B̂β1

m
× · · · × B̂βp

m
in the algebraic structure Ŝ(m) as has been described

previously which further descends to a quotient map f̂m : B̂α1

m
/B̂α1

m+1
× · · · × B̂αn

m
/B̂αn

m+1
→

B̂β1

m
/B̂β1

m+1
× · · · × B̂βp

m
/B̂βp

m+1
. These maps form the components of a graded map

ĝrf :

(∏
m

B̂α1

m
/B̂α1

m+1

)
×· · ·×

(∏
m

B̂αn
m
/B̂αn

m+1

)
→

(∏
m

B̂β1

m
/B̂β1

m+1

)
×· · ·×

(∏
m

B̂βp
m
/B̂βp

m+1

)

in OĝrŜ , which is defined to be the collection of all such induced maps.

The functorial nature of the associated graded construction extends to completed algebraic structures
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in the same way as in the non-completed case. The associated graded morphism is defined as in Definition

2.1.11 with finite sums replaced by infinite sums.

The tensor product and coproduct defined on Ŝ induce a tensor product and coproduct on the

associated graded. This structure is defined just as in Section 2.1.2, again with finite sums replaced by

infinite sums.

For the majority of what follows only prounipotent completions are used however the m-th unipotent

quotient will be required as well on occasion. S(m) is itself a filtered algebraic structure, with filtration

given by FkS(m) = Ik/Im+1. The construction of tensor products, coproducts and associated graded

can be repeated in this case as above. The only subtlety is in dealing with the filtration on the tensor

product S(m) � S(m). The tensor product used here is

S(m) �(m) S(m) = S(m) ⊗ S(m)/
∑

i+j>m

FiS(m) ⊗ FjS(m)

which is well-defined since Fm+1S(m) = 0. This definition must of course be interpreted as occuring for

each Bα individually as in other similar definitions throughout this section.

2.1.5 Expansions

Expansions, the fundamental objects studied in this work, are isomorphisms of the completion of an

algebraic structure to its completed associated graded structure.

Definition 2.1.15. An expansion of the algebraic structure S is an isomorphism of algebraic structures

Z : Ŝ → ĝrŜ which preserves the unipotent filtration and such that ĝrZ = idĝrŜ
4.

A useful fact which will make it easier to work with expansions later is that the notion of expansion

given above is equivalent to a filtration preserving map Z̃ : A[S] → ĝrŜ such that ĝrZ̃ is the identity.

When A[S] is not completed, Z̃ is no longer an isomorphism however.

In practice, it is often the case that a candidate algebraic structure ĝrŜ can be guessed, however

proving the guess is correct, which generally amounts to showing that a given list of relations is complete,

is much more difficult. The following notion of an A-expansion is one method for accomplishing this.

Definition 2.1.16. An A-expansion of the filtered algebraic structure S is a filtration preserving mor-

phism ZA : Ŝ → A to a complete5 graded algebraic structure A with the same underlying multigraph

and set of types, together with a surjective, grading preserving morphism π : A → ĝrŜ such that

4Note that ĝrZ : ĝr(Ŝ)→ ĝr(ĝr(Ŝ)) so in stating this condition ĝr(ĝr(Ŝ)) is implicitly identified with ĝr(Ŝ).
5Complete means Â is isomorphic to A.
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ĝrZA ◦ π = idA as in the diagram

A

Ŝ ĝrŜ

πZA

π◦ZA

ĝrẐa .

Lemma 2.1.1. If an A-expansion of S exists then A ' ĝrŜ and Z = π ◦ ZA is an expansion.

Proof. Let ZA = ({ξα}α∈Θ, χ) and let π = ({ζα}α∈Θ, ψ). Then for every set of objects Bα ∈ DŜ of type

α there is a commutative diagram

ξα(Bα)

Bα ĝrBα

ζξα(Bα)

ξα

ζξα(Bα)◦ξα

ĝrξ̂α
.

ζξα(Bα) is surjective by assumption. Since ĝrZA ◦ π is the identity, ĝrξ̂α ◦ ζξα(Bα) is the identity on ĝrBα

and hence ζξα(Bα) is bijective.

2.1.6 Torsors Associated to Algebraic Structures

Given any algebraic structure S, it is always possible to construct a (possibly empty) bitorsor, that is a

set with commuting left and right group actions, out of it as indicated in the diagram

Aut(Ŝ) Ŝ ĝrŜ Aut
(

ĝrŜ
)Iso(Ŝ,ĝrŜ)
.

If nonempty, the set of isomorphisms Iso
(
Ŝ, ĝrŜ

)
is an Aut(Ŝ) -Aut

(
ĝrŜ
)

bitorsor where the group

multiplication is given by composition of automorphisms and the action of these groups on the set of

isomorphisms is given by pre- and post-composition.

The existence of such an isomorphism is often related to a formality result in some context. The

relation between expansions of groups and formality results is studied in detail in [Suciu & Wang (2019)].

In more general contexts, formality of algebraic structures is related to other notions of formality, for ex-

ample to formality of the little disks operad [Tamarkin (2003),Fresse (2017b)] for the algebraic structure

discussed in Section 2.5.

It is a guiding principal of Bar-Natan [Bar-Natan & Dancso (2017)] that many interesting and highly
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nontrivial questions regarding graded spaces fit into this framework and have topological interpretations.

Two examples are included below. The example of associators will be discussed in detail later, however

the second example will not be discussed in any further detail than the very brief description below and

is included only to give another example of an algebraic problem that turns out to have a surprising

interpretation in terms of low-dimensional topology.

Example 2.1.6. The example of Drinfel’d associators is explained in greater detail in Section 2.5. Let

Ô = P̂aB be the completed operad of parenthesized braids and ĝrÔ = P̂aCD the completed operad

of parenthesized chord diagrams. Then Iso(P̂aB, P̂aCD) = ASSOC is the set of Drinfel’d associators

and Aut(P̂aB) = ĜT and Aut(P̂aCD) = ĜRT are the prounipotent versions of the Grothendieck-

Teichmüller groups as defined by Drinfel’d [Drinfel’d (1991); Bar-Natan (1998)]. Stated this way, it is

clear that the set of associators is a ĜT-ĜRT bitorsor.

Example 2.1.7. Let wTF be the algebraic structure arising from w-tangled foams, constructed in [Bar-

Natan & Dancso (2017)]. These are certain knotted embeddings of 2-dimensional objects in R4. Let

Asw be the associated graded structure. Then there is a bijection between isomorphisms wTF → Asw

and solutions of the Kashiwara-Vergne problem in Lie theory. The details of this example can be found

in [Bar-Natan & Dancso (2017)]. Thus we see that there are two groups which act freely and transitively

on solutions of the Kashiwara-Vergne problem, Aut(wTF ) and Aut(Asw).

Motivated by the example of Drinfel’d associators, the notation ĜTS = Aut(Ŝ) and the terminol-

ogy “prounipotent Grothendieck-Teichmüller group associated to S” as well as the notation ĜRTS =

Aut(ĝrŜ) and the terminology “graded prounipotent Grothendieck-Teichmüller group associated to S”

will be used.

By replacing prounipotent completions in the above diagram with the mth unipotent quotient, pro-

m versions of the Grothendieck Teichmüller group GT
(m)
S = Aut(S(m)) and the graded Grothendieck

Teichmüller group GRT
(m)
S = Aut(grS(m)) are obtained as well.

2.2 Free Abelian Groups

As a first, warmup example we consider finitely generated free abelian groups. The following is an

expanded version of material found in [Bar-Natan (n.d.)].

Let G = 〈x1, · · · , xn : xixj = xjxi〉 be the free abelian group on n generators. Regarding G as

an algebraic structure as in Example 2.1.1, let G be the algebraic structure with one type of object,

TG = {G} where G is regarded as a set equipped with a binary multiplication operation, a unary
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inversion operation and a nullary constant operation which is the unit 1 in G. For this example, the

procedure outlined in the previous section amounts to taking the prounipotent completion and taking

the associated graded algebra of the group G.

Taking formal linear combinations of elements of the same type, in this case formal linear combina-

tions of elements in G, results in A[G] = A[xi, x
−1
i ], the algebra of Laurent polynomials in the variables

{xi}i. The multiplication operation in G becomes the algebra product once extended multilinearly. The

algebraic structure A[G] also includes an inversion operation which sends a variable xi to x−1
i and vice

versa, as well as the constant 1.

The augmentation ideal has generators I = 〈x̃1, · · · , x̃n〉 where x̃i = xi − 1. Clearly every x̃i ∈ I by

definition. Note that no generators of the form x−1
i − 1 are required as shown by the computation

x−1
i − 1 = −(xi − 1)x−1

i .

Similar straightforward computations show any term of the form xp11 · · ·xpnn − 1 ∈ I where pj ∈ Z and

any g ∈ G is of the form g = xp11 · · ·xpnn implying I ⊂ 〈x̃1, · · · , x̃n〉.

Turning now to the unipotent completion, Im is generated by all m-fold products (xi1−1) · · · (xim−1).

To compute A[xi, x
−1
i ]/Im+1, note that

A[xi, x
−1
i ]/Im+1 ∼= A[x̃i]/Ĩ

m+1

via the map xi 7→ x̃i = xi − 1 where Ĩ is the ideal generated by x̃i. Inverses are not required as working

modulo Im+1,

x−1
i = (x̃i + 1)−1 = 1− xi + x2

i − · · · ± xmi

is already an element of A[x̃i]/Ĩ
m+1.

The quotient A[x̃i]/Ĩ
m+1 consists of multinomials whose terms have degree less than or equal to m,

so the unipotent completion is

lim←−
m

A[xi, x
−1
i ]/Im+1 = A[[x̃1, · · · , x̃n]],

the algebra of formal infinite series in the variables x̃i.

The next step is to compute the associated graded algebra

grG =
⊕
m

A[xi, x
−1
i ]/Im+1

A[xi, x
−1
i ]/Im

∼=
⊕
m

Im/Im+1
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As observed earlier, Im is generated by m-fold products of the x̃i, and hence Im/Im+1 is given by

polynomials in xi of total degree m where xi is the equivalence class of x̃i in I/I2. Thus

grG = A[x1, · · · , xn]

is the algebra of polynomials in the variables xi and

ĝrG = A[[x1 · · · , xn]]

is the algebra of formal power series in these variables.

To determine the coproduct in the associated graded structure, let us consider how � acts on a

generator xi ∈ I/I2. Working modulo I2,

�(xi) = �(xi − 1)

= xi ⊗ xi − 1⊗ 1

= (xi − 1)⊗ xi + xi ⊗ (xi − 1)

= xi ⊗ 1 + 1⊗ xi + xi ⊗ xi

= xi ⊗ 1 + 1⊗ xi

so the coproduct on the associated graded makes the generators xi primitive.

An expansion of G is a map

Z : A[[x̃1, · · · x̃n]]→ A[[x1, · · · , xn]]

which must be homomorphic with respect to all the operations in our algebraic structure. This example

is unusual in the sense that the unipotent completion and the completed associated graded are explicitly

the same whereas in general showing these are isomorphic is a difficult problem. Even in this example

it is not the case however that the obvious map x̃i 7→ xi is a homomorphic expansion.

To see that this map does not commute with coproducts, note that the coproduct in A[[x̃i]] = Ĝ is
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given by

�(x̃i) = �(xi − 1)

= xi ⊗ xi − 1⊗ 1

= (x̃i + 1)⊗ (x̃i + 1)− 1⊗ 1

= x̃i ⊗ x̃i + x̃i ⊗ 1 + 1⊗ x̃i

(the term x̃i⊗x̃i does not cancel here since there is no quotient by I2) while the coproduct in A[[xi]] = ĝrĜ

is simply �xi = xi ⊗ 1 + 1⊗ xi as shown above so the coproducts in these two algebras are different.

The fact that the initial algebraic structure G has a multiplication which must be preserved and the

fact that operations are extended by multilinearity imply Z is an algebra morphism, while the fact that

the algebraic structure includes an inversion implies that Z(f−1) = Z(f)−1. The last bit of structure,

the nullary operation choosing the group identity, implies that Z(1) = 1, and so Z(a) = a for any a ∈ A.

As a result, the expansion is determined by Z(x̃i), its value in the generators x̃i. The condition

ĝrZ = idĝrG holds if and only if

Z(x̃i) = 1 + xi +O(x2
i )

for each xi.

Using the fact that the coproduct is grouplike on generators in A[[x̃1, · · · , x̃n]] and primitive on

generators in A[[x1, · · · , xn]], requiring Z to preserve coproduct amounts to the condition Z(xi)(yi+zi) =

Z(xi)(yi)Z(xi)(zi) where

A[[x̃1 · · · , x̃n]]⊗A[[x̃1, · · · , x̃n]] = A[[ỹ1, z̃1, · · · , · · · , ỹn, z̃n]]

and similarly for the tensor product of the associated graded algebra. That is, if Z(x̃i) = fi, then

fi(yi + zi) = fi(yi)fi(zi). The unique solution to this equation subject to the initial condition fi =

1 + xi +O(x2
i ) is fi = exp(xi). Hence there is a unique expansion given by Z(x̃i) = exp(xi).

Since the expansion is unique the automorphism groups are trivial in this example, completing the

description of the bitorsor for any finitely generated free abelian group.

2.3 Braid Groups

Let Bn be the braid group on n strands. This group can be topologically described in terms of the

configuration space Confn(D) = Dn\∆, the configuration space of n points in a disk D = {(x, y) :
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x2 + y2 ≤ 1} where ∆ is the thick diagonal {(z1, · · · , zn) ∈ Dn : zi 6= zj for any i 6= j}. The braid

group is the fundamental group of the configuration space of n non-distinct points in a disk, that is

Bn = π1 Confn(D)/Sn where the symmetric group Sn acts on Dn by permuting coordinates.

More intuitively, an element of the braid group can be thought of in the following way. Pick any

starting position of n points in the disk and place two copies of the disk with these distinguished points

directly above each other. An element of the braid group is then a way of attaching the points on the

bottom copy of the disk to the top copy with strands of string which may not intersect, which must

always travel upwards and such that each point on the bottom is attached to one unique point on the

top.

The braid group has a presentation [Artin (1947)]

Bn = 〈σ1, · · · , σn−1 : σiσi+1σi = σi+1σiσi+1, σiσj = σjσi〉

where |i− j| ≥ 2.

To compute the associated graded of A[Bn], note that the augmentation ideal is generated by σi− 1.

Let ti = σi − 1 ∈ I/I2. The relation σiσi+1σi = σi+1σiσi+1 implies that

(σi − 1)σi+1σi + (σi+1 − 1)σi + σi − 1 = (σi+1 − 1)σiσi+1 + (σi − 1)σi+1 + σi+1 − 1

and working modulo I2, this means ti = ti+1 for each i. It follows that ĝrBn = Q[[t]].

An expansion is determined by its values on each σi, and a similar analysis to the previous example

shows that Z(σi) = exp(t) for each i. Note that for any braid B,

Z(B) = exp

(
t

∑
χ a crossing

sign(χ)

)

so this invariant computes a total linking number for the braid. While linking numbers are a useful

invariant, more powerful invariants will arise by considering braid groups with extra structure.

As in the previous example, the expansion is unique so the associated automorphism groups are

trivial in this case as well.

2.4 Pure Braid Groups

The first highly non-trivial example is the pure braid group. This group is the subgroup of the braid

group in which all strands must begin and end at the same point they began. It is defined to be
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Pn = π1 Confn(D) = π1(Dn\∆) where, as opposed to the case of the braid group, no quotient by Sn is

needed as the n-points are now distinct.

Pn has a presentation [Kassel & Turaev (2008)],

〈σij : 1 ≤ i < j ≤ n〉 /R

where R is the normal subgroup generated by the relations

σσklij =



σij l < i or i < k < l < j

σ
σ−1
kj

ij l = i

σ
σ−1
lj σ

−1
ij

ij i = k < l < j

σ
σljσkjσ

−1
lj σ

−1
kj

ij

. (2.1)

Here the exponential notation indicates conjugation: gh = h−1gh. Geometrically, the generator σij

with i < j is the braid in which the jth strand passes underneath all strands up to and including the

ith strand, then passes over the ith strand before passing underneath all the intermediate strands and

ending in the jth position again. The generators of PB3 for example are

σ01 = σ12 = and σ02 = .

The augmentation ideal is generated by the elements σij − 1, and the associated graded algebra is

generated by tij , the images of σij − 1 in in I/I2. The relations in Equation 2.1 lead to the following

relations betweeen the generators of the associated graded:

[tij , tkl] = 0 |{i, j, k, l}| = 4 (2.2)

[tij + tik, tjk] = 0 |{i, j, k}| = 3

.

This algebra is the universal enveloping algebra U tn (in this case over the algebra A) of the Drinfeld-

Kohno Lie algebra tn, the Lie algebra generated by tij for 1 ≤ i, j ≤ n subject to the relations in

2.2.

The proof that this is the correct associated graded will follow from the existence of a U tn-expansion
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via Lemma 2.1.1. Constructing an expansion for the pure braid group is highly nontrivial, and all known

constructions require transcendental methods rather than purely group theoretic methods. The standard

construction involves the Knizhnik-Zamolodchikov connection from conformal field theory.

Consider the U tn-valued connection on the configuration space Confn(D) given by

A =
1

2πi

∑
i<j

d log(zi − zj)tij

where zi is a coordinate for the ith copy of D, regarded as a subset of C, in Dn. The relations 2.2 imply

this is a flat connection. Given any n-strand pure braid, which is a closed loop in Confn(D), define

Z(B) = MonBA to be the monodromy of the connection A around B.

More explicitly, every braid can be represented by a smooth embedding of n line segments in D cross

an interval, so let γ : [0, 1]→ Dn\∆ be a smooth parameterization of B. Let zi(t) be the ith component

of γ. Then

Z(B) =

∫∑
n≥0

0<t1<...<tn<1
1≤i1<j1,i2<j2,...,in<jn≤m

n∏
α=1

tiαjα
2πi

d log(ziα(tα)− zjα(tα)).

It follows from properties of the monodromy of a flat connection together with the relations in U tn that

Z is a U tn-expansion, and hence that U tn is in fact the correct associated graded algebra for Pn.

While it is expected that the automorphism groups of this structure are nontrivial since there are

multiple Drinfel’d associators and each gives an invariant of pure braids (see the next section,) as far as

we are aware automorphism groups of the pure braid groups organized with operations in this particular

way have not been studied in detail.

2.5 Parenthesized Braids and Drinfel’d Associators

As seen in Section 2.3, considering braids as groups alone does lead to an invariant, although for many

knot-theoretic applications this invariant is too weak to be of much use. To obtain a more powerful

invariant extra structure needs to be given to these groups. One motivation for where this structure

comes from is as follows.

Due to the fundamental relationship between braid groups and braided monoidal categories6, it is

natural to attempt to rephrase the theory of Drinfel’d associators, first developed as a way of putting

not necessarily strict monoidal structures on categories of representations of algebras, purely in terms

6The operad formed out of all the braid groups is the operad in groups, regarded as categories with one element and
invertible morphisms, whose algebras are strict monoidal categories while the operad formed out of the parenthesized braid
groupoids is the operad in groupoids whose algebras are general monoidal categories.
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• • •

• • •

Figure 2.5.1: A parenthesized braid. This is a morphism in the groupoid PaB(3) from the object (••)•
to the object •(••).

of parenthesized braid groups. Strictly speaking braid groups are related to strict monoidal categories

and in order to extend to the case of a non-trivial associator, parenthesized (or non-associative) braids

must be introduced. The original description of Drinfel’d associators purely in the language of braids

and without reference to quasi-trangular quasi-Hopf algebras was developed in [Bar-Natan (1998)] (see

also [Le & Murakami (1995)] and [Bar-Natan (1997)] for earlier related work using tangles rather than

braids.) For a comprehensive treatment using the language of operads adopted here refer to the textbook

account [Fresse (2017a)]. The material in this section is primarily a reformulation of the fundamental

definitions and results in [Bar-Natan (1998)] which is where the proofs of results in this section not

explicitly referenced elsewhere can be found.

Elements of the parenthesized braid groupoid on n-strands PaB(n) are usual n-strand braid diagrams

but where distance between endpoints is nontrivial, as in Figure 2.5.1, and where composition is given

by stacking from bottom to top. More precisely, the objects of PaB(n) are nonassociative words on the

single letter alphabet {•}. Parenthesizations of a nonassociative word in • will generally be indicated by

horizontal distance rather than by including parentheses. For example the parenthesized word ((••)•)•)

can be written • • • •.

A morphism in PaB(n) from a word w1 to a word w2, where both w1 and w2 have exactly n letters,

is a braid diagram with n strands where each of the strands begins on a unique • in w1 and ends on a

unique • in w2. Morphisms are composed by stacking only when the parenthesization matches which is

why the PaB(n) form groupoids rather than groups.

The collection of all groupoids PaB(n) can be given the structure of an operad in groupoids by

defining the partial composition operations via the gluing of one parenthesized braid into one of the

strands of another parenthesized braid, an example of which is shown in Figure 2.5.2.
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• • •

• • •

◦2

• •

• •

=

• •• •

• •• •

Figure 2.5.2: Partial composition operations in PaB. For two parenthesized braids P1 and P2, P1 ◦i P2

is obtained by shrinking P2 down so that the strands in P2 are closer together than any two strands in
P1 and then replacing the ith strand of P1 with P2.

A key observation is that as an operad PaB is generated by only two parenthesized braids,

σ =

• •

• •

and a =

• • •

• • •

.

While there are several so-called “locality” relations expressing certain obvious commutativity results

between these generators, there are three key relations which contain the essence of the structure, the

Pentagon Relation:

• • • •

• • • •

=

• • • •

• • • •

and the two hexagon relations

Hexagon Relation A:

• • •

• • •

=

• • •

• • •

Hexagon Relation B:

• • •

• • •

=

• • •

• • •

.

Viewing the operad PaB as an algebraic structure as in Example 2.1.3 7, we can apply the procedure

7There is a technicality here, since when constructing A[PaB] we only want to take formal linear combinations of
parenthesized braids with the same underlying permutation. This can be remedied by replacing PaB(n) by PaB(σ)
where PaB(σ) is the collection of parenthesized braid diagrams with the same underlying permutation σ ∈ Sn. This new
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described in Chapter 2 to construct a pro-(`) version PaB(`), a unipotent completion P̂aB and an

assocated graded ĝrP̂aB of PaB.

The final result of this procedure is the operad ĝrP̂aB = P̂aCD of parenthesized chord diagrams,

an operad in complete Hopf algebras. This operad also has an easy to describe finite presentation. It is

generated by the formal symbols

a =

• • •

• • •

X =

• •

• •

and H =

• •

• •

where X is its own inverse and commutes with H, subject to the usual locality relations, omitted here,

and three important relations, the pentagon relation:

• • • •

• • • •

=

• • • •

• • • •

,

the classical hexagon relation8:

• • •

• • •

=

• • •

• • •

,

and the semiclassical hegaxon relation:

• •

• •

◦1

• •

• •

=

• • •

• • •

+

• • •

• • •

.

Applying the formalism in Section 2.1.6 we can construct a bitorsor of isomorphisms from P̂aB →

algebraic structure is technically no longer an operad however this example now falls exactly into the notion of an algebraic
structure.

8Note that these diagrams are now purely combinatorial, there are no over or under crossings in PaCD. As a result
there is only one hexagon in PaCD.
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P̂aCD.

Definition 2.5.1. A Drinfel’d associator is an operad morphism Z : P̂aB→ P̂aCD such that Z(σ) =

exp
(

1
2H
)

9. The collection of all associators is denoted by ASSOC.

Definition 2.5.2. The (prounipotent) Grothendieck-Teichmüller group GT is the group of operad

automorphisms P̂aB→ P̂aB which fix σ.

Definition 2.5.3. The (prounipotent) graded Grothendieck-Teichmüller group GRT is the group of

operad automorphisms P̂aCD→ P̂aCD which fix H.

To reproduce the more usual definitions appearing in much of the literature, in particular the original

definitions in [Drinfel’d (1991)], notice that an associator Z : P̂aB→ P̂aCD is determined by the image

of σ and a. R = Z(σ) will be an invertible element of the completed algebra of chord diagrams on

two strands, which is the Drinfel’d Kohno algebra Û t2. Furthermore since Z preserves coproducts, R

must be grouplike and it is easy to see that the only grouplike elements of Û t2 are elements of the form

exp(kH) for some k ∈ A×. We take k = 1
2 in order to satisfy the expansion condition which uniquely

defines R = exp
(

1
2H
)
.

Next, we need to consider Φ = Z(a). This will be an element of the algebra Û t3 of chord diagrams

on 3 strands which is grouplike and invertible. In order to get a well-defined map Z : P̂aB → P̂aCD,

the pentagon and hexagon relations in the presentation of PaB must be satisfied. The pentagon relation

leads to the equation

Φ1,2,3Φ1,23,4Φ2,3,4 = Φ12,3,4Φ1,2,34

and the two hexagon relations yield the equations

R±12,3 = ΦR±2,3Φ−1,3,2R±1,3Φ3,1,2.

Definition 2.5.4. A Drinfel’d associator is an element Φ ∈ Û t3
10, where Φ is grouplike, invertible, and

9This condition is required to ensure Z is an expansion. In many treatments of associators, it is not required that Z be
an expansion and the equations given only imply Z(σ) = exp (kH) for some k ∈ A× so an associator as defined in [Drinfel’d

(1991)] is an element of A× × Û t3.
10In [Drinfel’d (1991)], Φ is an element of the free Lie algebra on two generators rather than the Drinfel’d Kohno algebra.

This is equivalent to our definition since Û t3 ' F̂L[x, y]⊕ Z where Z is the one dimensional centre of U t3. In fact Û t3 is
the correct space in which associators exist since the defining equations must be expressed in it rather than the free Lie
algebra.



Chapter 2. Algebraic Structures and Expansions 28

which satisfies the equations

Φ1,2,3Φ1,23,4Φ2,3,4 = Φ12,3,4Φ1,2,34 (Pentagon Equation)

R±12,3 = ΦR±2,3Φ−1,3,2R±1,3Φ3,1,2 (Hexagon Equations)

for R = exp
(

1
2 t12

)
. The set of all Drinfel’d associators is denoted ASSOC.

A similar analysis of operad morphisms P̂aB→ P̂aB and P̂aCD→ P̂aCD in terms of the generators

and relations of these operads as well as the composition of such morphisms leads to the following explicit

descriptions of the groups GT and GRT [Bar-Natan (1998)].

Definition 2.5.5. The prounipotent group GT is the set of all grouplike, nondegenerate, invertible

elements Σ ∈ P̂B3 satisfying the equations

d4Σ · d2Σ · d0Σ = d1Σ · d3Σ

σ2σ1 = Σσ2Σ−1σ1Σ

with group law given by

Σ1 × Σ2 = Σ1 ·
(
Σ2|σ1→Σ−1σ1Σ,σ2→σ2

)
.

Here, σ1 and σ2 are the standard generators of the braid group B3. There is a right action of GT an

ASSOC via

Φ • Σ = Φ · Σ|σ1→Φ−1 exp(t12/2)X1·Φ,σ2→exp(t23/2)X2

where this formula is defined in Û t3 o S3, X1 = (12) and X2 = (23). This action is free and transitive.

Definition 2.5.6. The prounipotent group GRT is the set of all grouplike, invertible elements Γ ∈ Û t3

satisfying the equations

Γ1,2,3Γ1,23,4Γ2,3,4 = Γ12,3,4Γ1,2,34

1 = Γ · Γ−1,3,2Γ3,1,2

(t12)12,3 = Γ
(
t23(Γ−1)1,3,2 + (Γ−1)1,3,2t13

)
Γ3,1,2

with product defined by

Γ1 × Γ2 = Γ1 · Γ2

∣∣
t12→Γ−1

1 t12Γ1,t13→(Γ1)−1)1,3,2t13Γ1,3,2
1 ,t23→t23
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where t12, t23 and t13 are the generators for the Drinfel’d-Kohno algebra t3. There is a left action of

GRT on ASSOC given by

Γ • Φ = Γ · Φ
∣∣
t12→Γ−1

1 ·t12·Γ1,t13→(Γ−1
1 )1,3,2·t13·Γ1,3,2

1 ,t23→t23

which is free and transitive.

This completes the construction of the GT−GRT bitorsor ASSOC. There are two key theorems

in the theory of associators that are especially important for this thesis. The first theorem is due

to Drinfel’d [Drinfel’d (1991)], with a knot theoretic proof given in [Bar-Natan (1998)] and says that

associators can be constructed degree by degree. Since an associator Φ ∈ Û t3 is an element of a graded

algebra, it decomposes as Φ =
∑∞
i=0Bi where Bi is homogeneous of degree i.

Theorem 2.5.1. Let Φ ∈ Û t3 be grouplike and invertible and suppose that Φ satisfies the pentagon and

hexagon relations to degree m, meaning that the left and right hand side of the relevant equations are

equal in degrees zero through m but may differ in higher degrees. Then there is a ϕ ∈ Û t3 which is

homogenous of degree m+ 1 and such that Φ +ϕ satisfies the pentagon and hexagon equations to degree

m+ 1.

An important corollary of this theorem is that rational associators exist. The initial construction of a

Drinfel’d associator requires the use of transcendental techniques via the computation of the holonomy of

a connection and is a priori only valid over C, however it can be shown (see [Drinfel’d (1991); Bar-Natan

(1998)]) via a degree by degree construction justified by this theorem that a rational associator exists,

given the fact that it is known some associator exists11.

The second major theorem is due to Furusho [Furusho (2010)], also proved in a different way by

Bar-Natan and Dansco [Bar-Natan & Dancso (2012)], and simplifies the definition of an associator by

eliminating two of the equations.

Theorem 2.5.2. Let Φ ∈ Û t3 be grouplike and invertible and suppose that to degree two, Φ is given by

1
24 t13t23 plus higher order terms. If Φ satisfies the pentagon equations then Φ satisfies the two hexagon

equations.

11It is not however possible to prove rational associators exists without using transcendental techniques since the degree
by degree proof does not work if it is not known that some associator exists first.
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The Algebraic Structure of Annular

Braids

3.1 Annular Braid Groups

The primary topological objects we will study are braids in an annulus (for space) cross an interval (for

time.)

3.1.1 Annular Braid Groups

Let A =
{
x ∈ R2 : 1 ≤ ‖x‖ ≤ 2

}
be an annulus in R2 and let Confn(A) = An\∆ be the configuration

space of n distinct points in the annulus, where ∆ = {(x1, · · · , xn) ∈ An : xi = xj for some i 6= j} is

the large diagonal. The symmetric group Sn acts freely on Confn(A) by permuting coordinates. All

fundamental groups will use the basepoint in Confn(A) in which n-points (x1, · · · , xn) ∈ An are evenly

spaced along the portion of the x-axis to the right of the core of the annulus in numeric order from left

to right as depicted in Figure 3.1.1

Definition 3.1.1. The annular braid group on n strands is the fundamental group

B1,n = π1 (Confn(A)/Sn)

and the pure annular braid group on n strands is the fundamental group

PB1,n = π1 (Confn(A)) .

30
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A
x1 x2

Figure 3.1.1: The basepoint for Confn(A) is n evenly spaced points lying on the portion of the x-axis to
the right of the core of the annulus as indicated for Conf2(A).

0 1 2 3

Figure 3.1.2: An annular braid with 3 strands and underlying permutation (132) as well as its represen-
tation as a usual 4 strand braid with distinguished 0th strand remaining fixed.

Geometrically, an annular braid is an embedding of n strands into the solid torus A× [0, 1] in which

all strands begin at the basepoint in the lower annulus A×{0}, end at the basepoint in the upper annulus

A× {1}, and such that, viewing a strand as starting at the bottom and ending at the top, the vertical

component of motion is always upwards. As shown in Figure 3.1.1, annular braids can be represented

as usual braid diagrams in which the zeroth strand plays the role of the core of the annulus and so

remains fixed throughout. The group multiplication corresponds to stacking diagrams, where we choose

the convention in which B1B2 is the annular braid with B2 stacked on top of B1, so diagrams are read

from bottom to top.
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The group B1,n has a presentation [Lambropoulou (2000); Bellingeri (2003)]

B1,n =

〈
τ, σ1, · · · , σn−1

∣∣∣∣∣∣∣
σiσi+1σi=σi+1σiσi+1,
[σi,σj ]=1 |i−j|>0,

[τ,σ1τσ1]=1,
[τ,σi]=1 i>1

〉
(3.1)

where τ represents the braid in which the first strand wraps around the core of the annulus once and σi

represents the braid in which strand i crosses above strand i + 1. For example, the generators of B1,3

are

τ

,

σ1

and

σ2

.

Since Confn(A) is homotopy equivalent to Confn+1(D)1, PB1,n is the usual pure braid group on n+1

strands PBn+1. In particular there is a split short exact sequence

1 Fn PB1,n PB1,n−1 1,σ

where Fn−1 is the free group on n − 1 generators and the splitting embeds an n strand braid into an

n+ 1 strand braid by adding a constant strand on the right. Iterating this result implies that PB1,n is

the iterated semidirect product

PB1,n = ((F1 o F2) o · · · ) o Fn. (3.2)

Let S1,n be the subgroup of permutations of the set {0, · · · , n} which send 0 to itself. There is

another short exact sequence

1 PB1,n B1,n S1,n 1
ς

(3.3)

where the map ς, called the skeleton map, sends a braid to the permutation obtained by mapping the

integer i to the end position of the ith strand in the braid. For example, if B is the annular braid drawn

in Figure 3.1.1 then ς(B) = (132).

1This configuration space is defined in the same way as Confn(A) with A replaced by D
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3.1.2 The Strict Monoidal Category of Annular Braids

The motivation for our construction of braidors comes from the construction of a Drinfel’d associator

viewed from a braid-theoretic perspective as in [Bar-Natan (1998)], which was reviewed briefly in Section

2.5. Braidors are obtained by replacing braids in the disc by braids in an annulus, but importantly fewer

operations are included in the algebraic structure of annular braids. A key point is that while each

individual parenthesized braid groupoid PaB(n) is finitely presented, the entire structure of all braid

groups is no longer finitely generated if the only permissible operation is the usual group multiplication.

To remedy this, more operations are added to the structure in such a way that it is presented by

only two generators and a small number of relations. The required operations to achieve this are the

operadic composition operations and the resulting collection of all such groupoids together with these

extra operations can be organized into the somewhat complicated structure of an operad in groupoids.

In the annular case a similar problem arises however it is possible to generate the entire structure

with just a single operation, a tensor product which corresponds to doubling the core, in addition to

the group multiplication rather than requiring n-doubling operations, one for each strand in an n-strand

braid. This section is devoted to defining this structure in the annular case.

Definition 3.1.2. The category Ba of braids in the annulus has objects ObjBa
=
⊔
n S1,n comprising

all permutations which fix 0 and given permutations P and Q in S1,n has morphism set

MorBa(Q,QP ) = BP1,n

where BP1,n is the set of braids with underlying permutation P . Composition of morphisms is given by

stacking braid diagrams on top of one another 2.

The monoidal structure on Ba is obtained by gluing one annulus into the core of another one. More

precisely, (A1 × [0, 1])⊗(A2 × [0, 1]) is the annulus obtained by scaling the outer radius of A2 to be equal

to the inner radius of A1 and then gluing A2 into the core of A1 as shown in the figure

A1 ⊗ A2

=

A1 A2

.

This operation on annuli induces an operation on permutations and on braids in A ⊗ [0, 1] which

2In other words by group multiplication in the group of annular braids.
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defines the monoidal structure on Ba
3. An example of this operation using representatives of annular

braids as usual braid diagrams is

⊗
= .

Given permutations P and Q, the monoidal product P ⊗ Q can be determined by taking any braid

diagram with underlying permutations P and Q, computing their monoidal product and then P ⊗Q is

the underlying permutation ς(P ⊗ Q) of this braid. Explicitly, if P : σ : {0, · · ·m} → {0, · · · ,m} and

Q : σ : {0, · · ·n} → {0, · · · , n}, then P ⊗Q : {0, · · · ,m+ n} → {0, · · · ,m+ n} is defined by the formula

P ⊗Q(i) =


P (i− n) + n i > n

Q(i) i ≤ n
.

It will be useful to introduce notations for some auxilliary operations which, although special cases

of the monoidal product, will later be convenient. The zeroth doubling operation d0 doubles the core

and regards the second copy as a strand:

d0


 := =

⊗
.

The strand addition operation d∞ adds a new strand to the right of all other strands:

d∞


 := =

⊗
.

In general, if A is any annular braid diagram, then d0(A) = A⊗ and d∞(A) = ⊗A.

The category Ba together with this monoidal product forms a strict monoidal category, with unit

object being the empty permutation in S1,0. Braidors will be defined as monoidal functors out of Ba so

a succinct description of Ba, given in the next claim, allows simple descriptions of such functors which

will be needed later.

3Technically speaking the glued annulus must be shrunk down to the standard annulus A and the ends of the strands
will need to be moved without any crossings to the choice of basepoint after gluing.
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Lemma 3.1.1. Ba is generated 4 as a strict monoidal category by τ±1 and σ±1, where

τ = , τ−1 = , σ = and σ−1 = ,

subject to the relations generated by

• Braid relation: d∞(σ)d0(σ)d∞(σ) = d0(σ)d∞(σ)d0(σ) or pictorially

=

• Mixed relation: d0(τ) = σd∞(τ)σ or pictorially

d0



 =

where composition of generators corresponds to stacking the corresponding diagrams.

Proof. Let C be the category generated as in the claim. Let Φ : C → Ba be the monoidal functor which

is the identity on objects and sends the formal generators τ± and σ± to the braids indicated by the

diagrams in the statement of the lemma in Ba. To prove the claim requires showing that Φ is full and

faithful, ie. that it induces bijections when restricted to any morphism set in C, that it is essentially

surjective, ie. that every object in Ba is isomorphic in Ba to an object in the image of Φ, and that the

functor is (strong) monoidal, ie. that it preserves the tensor product structure.

Φ is well-defined since all the relations in the claim hold in the annular braid groups and it is full

since the generators of any annular braid group can be constructed out of τ and σ by applying the

tensor product iteratively. More precisely, the generator τ regarded as an element of the braid group

B1,n is Φ(dn∞(τ)) and the generator σi in B1,n is Φ(dn−i−1
∞ ◦ di0(σ)). Φ is essentially surjective since it is

the identity on objects. It is also monoidal as it is defined on generators with respect to the monoidal

structure and extended to tensor products in a monoidal way by construction.

4By the category generated in this context is meant the category with objects ObjBa
=

⊔
n S1,n and morphisms

obtained by starting with the generators given together with all identity morphisms and applying all possible compositions
and monoidal products iteratively
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In order for Φ to be a monoidal equivalence of categories, it remains to show that Φ is faithful, which

will follow from showing any relation in the presentation of B1,n given in Equation 3.1 is implied by the

relations in the claim.

The relation σ1σ2σ1 = σ2σ1σ2 in B1,3 is exactly the braid relation in C, and the general case

σiσi+1σi = σi+1σiσi+1 in B1,m follows by first applying di−1
0 and then dm−i−2

∞ to the braid relation.

There are two classes of relations in the annular braid groups, [σi, σj ] = 1 for |i−j| > 0 and [τ, σi] = 0

for i > 1 which are analogues of the so called “locality” relations appearing in [Bar-Natan (1998)] for

the case of parenthesized braids. These relations are automatically accounted for in the structure of a

monoidal category.

For example, since the tensor product must be a functor ⊗ : Ba ×Ba → Ba,

(B1 ◦B2)⊗ (C1 ◦ C2) = (B1 ⊗ C1) ◦ (B2 ⊗ C2).

In the diagrammatic representation,

=

 ⊗  ◦
 ⊗ 

=

 ◦

⊗ ◦


=

 ◦

⊗ ◦


=

 ⊗  ◦
 ⊗ 

=

which is the relation [σ1, σ3] = 0. All other locality relations can be demonstrated similarly.

Finally, the relation [τ, σ1τσ
−1
1 ] = 1 in B1,2, drawn diagramatically, is

=
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which, using the mixed relation, becomes [d∞τ, d0τ ] = 1. Using the definition of d0 and d∞ in terms of

the monoidal product and a similar argument as in the case of locality relations above, this relation is

obtained as a monoidal relation as well and so holds automatically. To generalize to a relation in any

B1,m, apply dm−2
∞ .

We have shown Φ is a monoidal equivalence of categories, and in fact it is the identity on objects

and is a set theoretic isomorphism on all morphism sets.

A monoidal category is an example of an algebraic structure. Example 2.1.2 in Chapter 2 shows how

to view a category as an algebraic structure and to extend this to monoidal categories merely requires

the addition of the monoidal products to the operations in the algebraic structure and the addition of

the associators and unitors as constants in the algebraic structure.

The next step in the construction of braidors is to apply the procedure in Chapter 2 to Ba, regarded

as an algebraic structure Ba, to obtain a prounipotent completion, and an associated graded. We will

not carefully distinguish between the monoidal category Ba and the algebraic structure Ba. The results

of this procedure are described in the next few sections.

3.1.3 Ba-algebras and Augmentation Ideals

The types of the algebraic structure Ba are morphism sets MorBa(Q,QP ) = BP1,n, so to form A[Ba]

formal linear combinations of annular braids with the same underlying permutation are taken.

Definition 3.1.3. A[Ba] is the category with ObjA[Ba] =
⊔
n S1,n and for permutations P and Q in

S1,n

MorA[Ba](Q,QP ) = A[BP1,n].

Definition 3.1.4. The augmentation ideal I is the subcategory of A[Ba] with morphisms given by

formal linear combinations
∑m
i=1 aiBi ∈ A[BP1,n], for some fixed P ∈ S1,n, which satisfy

∑m
i=1 ai = 0.

Denote by IP those morphisms in A[BP1,n] which are in I.

Definition 3.1.5. The unipotent filtration Ba ⊃ F1Ba ⊃ F2Ba ⊃ · · · of the category Ba is the

sequence of subcategories F`Ba of Ba with permutations fixing 0 as objects and with MorF`Ba(Q,QP ) =

I`P where I`P consists of all compositions with ` morphisms in IR for any permutation R and an arbitrary

number of other composable morphisms such that the total composition has underlying permutation P .
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3.1.4 Coproduct

The tensor product of the category Ba with itself is denoted by � to avoid confusion with the monoidal

structure ⊗.

Definition 3.1.6. A[Ba]�A[Ba] is the monoidal category with objects P�P for permutations P ∈ S1,n

and morphisms

MorBa�Ba
(Q�Q,QP �QP ) = A[BP1,n]⊗A A[BP1,n].

Definition 3.1.7. The coproduct � : Ba → Ba�Ba is the monoidal functor which sends a permutation

P to P � P and makes any braid B ∈ B1,n grouplike, that is �(B) = B ⊗B.

3.1.5 Unipotent Completion

Definition 3.1.8. The `th unipotent quotient Ba
(`) of the category Ba has permutations fixing 0 as

objects and has morphisms

MorBa
(`)(Q,QP ) = A

[
BP1,n

]
/I

(`+1)
P .

Definition 3.1.9. The prounipotent completion B̂a of the category Ba has permutations fixing 0 as

objects and has morphisms

Mor
B̂a

(Q,QP ) = lim←−
(
A
[
BP1,n

]
/I

(`+1)
P

)
.

All of the structure which was added to Ba is inherited by B̂a and Ba
(`) as shown in general in

Chapter 2 so these are both strict monoidal categories with a coproduct functor and unipotent filtrations

F•B̂a and F•Ba
(`).

3.2 The Category of Annular Chord Diagrams

Next the associated graded construction can be applied to the algebraic structure Ba to obtain the

second important category, the category of chord diagrams for annular braids.

Definition 3.2.1. grBa
(`) is the monoidal category with ObjgrBa

(`) =
⊔
n≥0 S1,n and with

MorgrBa
(`)(Q,QP ) =

∏̀
m=0

ImP /I
m+1
P .

Definition 3.2.2. The completed associated graded cateogry ĝrB̂a of B̂a has Obj
ĝrB̂a

=
⊔
n≥0 S1,n
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and has

Mor
ĝrB̂a

(Q,QP ) =

∞∏
m=0

ImP /I
m+1
P .

Following the procedure detailed in Section 2.1.5, to determine ĝrB̂a we will guess a candidate graded

category ĈDa and prove it correct by showing a ĈDa-expansion Z : B̂a → ĈDa exists.

Definition 3.2.3. ĈDa, the category of chord diagrams for annular braids, has Obj
ĈDa

=
⊔
n≥0 S1,n

and

Mor
ĈDa

(Q,QP ) = Û t1,n · P

where the notation Û t1,n ·P denotes all formal products D ·P with P ∈ S1,n and D ∈ Û t1,n an (infinite)

A-linear combination of elements of the Drinfel’d-Kohno algebra. The composition law in this category is

given by (X ·P )◦ (Y ·Q) = XY P ·PQ for composible permutations P and Q and elements X,Y ∈ Û tn+1

where the action of S1,n on Û t1,n is obtained by sending tij to tσ−1(i)σ−1(j).

The morphisms in ĈDa can be graphically represented using the identification of t1,n with horizontal

chord diagrams for which the diagrammatic representation of the generator tij has a chord connecting

strand i to j and by indicating permutations at the top of diagrams as a permutation of the strands.

For example, t12t23 · (12) is represented by the diagram

t23t12 · (12) = .

The composition law is diagramatically represented by stacking chord diagrams and sliding chords

downward along strands until all chords are beneath all permutations. For example, the composition(
t23t12 · (12)

)
◦
(
t23 · (12)(23)

)
= t23t12t13 · (23) is obtained by stacking and sliding as in the diagram

◦ = = .

We will often draw diagrams which are not in the standard form and have chords above permutations

of strands for convenience.

ĈDa has the structure of a strict monoidal category with a coproduct functor which will now be

described. The monoidal structure is defined by gluing into the core and summing all ways of connecting
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chords that were connected to the core to the new strands. For example,

⊗
= + +

As before we introduce the notation d0 and d∞ via d0(C) = C ⊗ | | and d∞(C) = | | ⊗ C. In the

diagrammatic notation we have for example

d0


 = +

and

d∞


 = .

The coproduct � : CDa → CDa � CDa is defined by making individual chords primitive 5, so for

example

�


 =

 �

 +

 �

 .

Finally, the graded component of degree m of CDa comprises linear combinations of diagrams each of

which has exactly m chords.

There is a structural result which will allow us to describe functors into and out of CDa as was the

case for the the category Ba.

Definition 3.2.4. Let C be the category with objects ObjC =
⊔
n S1,n and with morphisms generated

as a strict monoidal category enriched over graded A-algebras by generators

H = and IX = ,

where H has degree 1 and IX has degree 0, subject to the relations generated by

• Idempotency: (IX)2 = id3

5The reason chords, ie. the generators tij , are primitive is the same as in the Example of free Abelian groups in Section
2.2.
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• Braid : d∞(IX)d0(IX)d∞(IX) = d0(IX)d∞(IX)d0(IX)

=

• Chord slide:

[
d∞(IX), d0(IX) ·

(
d0H− IX · HI · IX

)
· d0(IX)

]
= 0

=

• Chord Flip : [d0H + HI, IX] = 0

+ + = + +

Lemma 3.2.1. C is isomorphic to CDa.

Proof. The proof will consist of defining a functor Φ : C → CDa and proving it is a monoidal isomor-

phism. On objects, Φ is simply the identity. On morphisms, Φ sends IX and H to the horizontal chords

as indicated in the diagrams in the statement of the Lemma. Φ can be homomorphically extended to

compositions and monoidal products of generators in order to get a monoidal functor.

The diagrams in the staement of the lemma illustrate the image under Φ of each relation in C as

a chord diagram. These equalities hold in the algebra of horizontal chord diagrams, so that defining a

functor on the generators as in the previous paragraph is well-defined.

It remains to show that the monoidal functor Φ is an isomorphism. Φ is the identity on objects in

the category C, and we show below that Φ induces an isomorphism on each morphism set. Beginning

with surjectivity, every transposition of neighbouring strands in any morphism set in CDa is of the

form σi,i+1 = Φ(dn∞d
m
0 IX), and since transpositions generate all permutations, any permutation is in the

image of Φ.
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To see that all chords are in the image of Φ, note first that

t01 = Φ(H)

t02 = Φ(IX · HI · IX)

t05 = Φ
(
d2

0IX · d0IX · IX · H · IX · d0IX · d2
0IX
)

= .

The pattern in the above examples leads to the general formula

t0m =

[
m−3∏
i=0

di∞d
m−i−3
0 (IX)

]
· dm−2
∞ (H) ·

[
m−3∏
i=0

dm−i−3
∞ di0(IX)

]
.

To shift a chord away from the zeroth strand, the fundamental relation needed is

t12 = d0(H)− IX · HI · IX = d10(H) − = IH ,

and the left end of the chord can be shifted further to the right by applying d0 to t12.

This can be combined with the above method of shifting the right end of the strand further to the

right as in the example

t36 = d20(IH)

to obtain the formula

tmn =

[
n−m−1∏
i=0

di∞d
n−i−2
0 (IX)

]
·
[
dn−m−1
∞ dn−1

0

(
d0(H)− IX · HI · IX

)]
·

[
n−m−1∏
i=0

dn−i−2
∞ di0(IX)

]

when m > 1. Finally, as many strands to the right of the chord as is required can be added using d∞ to

obtain tmn as an element of a morphism set given by chord diagrams of more than n strands.
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It remains to show Φ is injective on morphism sets. This will be achieved by showing all relations

which hold in the algebra of chord diagrams are images of relations which hold in C. In each of the

below cases, the description of allowable diagrams refers to the diagram on the left of the equality and

the drawn diagram is an example of one of the relations covered by the case.

Step 0: IX’s behave like permutations. The image of the idempotency relation and the

braid relation under Φ are the relations σ2
i = e and σiσi+1σi = σi+1σiσi+1 which generate all relations

in the symmetric group S1,p.

Step 1: Moving noninteracting IX’s past chords.

Case 1.a: =

The chord must start at the core but can span arbitrarily many strands. The crossing can be

between any two adjacent strands between the endpoints of the chord (not including the endpoints

themselves.)

Using the above expansions of chords in terms of elements of the category C,

= .

To get from the left hand diagram to the right hand one, slide the bottom-most crossing through

all other crossings preceeding the chord using the fact that the IX’s behave like permutations.

Interchanging the crossing with the chord is a monoidal relation since the crossing involves only

strands to the right of the chord. Finally, slide the crossing above all the remaining crossings to

obtain the right hand diagram.

Case 1.b: =

The chord must start at the core but can span arbitrarily many strands. The crossing can be

between any two adjacent strands to the right of the chord.

Using the above expansions of chords in terms of elements of the category C,
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=

The bottom-most crossing in the left hand diagram slides past all other crossings using the per-

mutation relations and slides past the chord using monoidal relations to result in the right hand

diagram.

Case 1.c: =

The chord can start on any strand other than the zeroth and can end on any strand at least 3

strands to the right of the starting strand. The crossing can be between any two adjacent strands

which lie between the start and end of the chord, but not involving the endpoints.

Using the above expansions of chords in terms of the elements of the category C,

d20(IH)

= d20(IH)

The bottom-most crossing in the left hand diagram slides past all other crossings using the per-

mutation relations. Since all nonidentity strands in d2
0(IH) are to the right of the strands which

cross in this crossing, it also slides past d2
0(IH) using monoidality to obtain the right diagram.

Case 1.d: =

The chord can start anywhere other than the zeroth strand. The crossing must involve adjacent

strands to the right of the chord.
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Using the above expansions of chords in terms of the elements of the category C,

d20(IH)

= d20(IH)

The bottom crossing in the left diagram slides past all other crossings using permutation relations

and slides past d2
0(IH) by using a monoidal relation.

Case 1.e: =

The crossing can involve any two adjacent strands to the left of the chord.

Using the above expansions of chords in terms of the elements of the category C,

d20(IH)

= d20(IH)

The bottom permutation in the right diagram can slide up just beneaath the chord using permuta-

tion relations. To commute the permutation with the chord we need to show [dm0 (IX), dn0 (IH)] = 0

where n ≥ m + 2. Using the definition IH = d0H − IX · HI · IX, this reduces to the condition that

[dm0 (IX), dn0 (H)] = 0 for n ≥ m+2 by setting each term of the commutator to zero individually and

sliding dm0 (IX) past dn0 (IX).

Step 2: Sliding chords along crossings:

Case 2.a: =

The chord must begin to the right of the crossing, and can end on either of the two strands making
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up a crossing. There are three other types of diagrams than the one given above,

=

=

= .

Using the above expansions of chords in terms of the elements of the category C, the first equality

becomes

=

The left diagram becomes the right diagram by simply removing the two bottommost crossings

using the relation IX2 = id3. All of the other cases reduce to cancelling a IX2 factor somewhere in

the diagram in a similar way.

Case 2.b: =

The chord can begin on any strand other than the zeroth. The crossing must be between the

strand the chord ends on and the next strand to the right, which can’t be the strand the chord

ends on.

Using the above expansions of chords in terms of the elements of the category C,

d20(IH)

= d30(IH)

Starting with the bottommost crossing in the left hand diagram, slide it past the next two

crossings. To continue sliding the chord up, we need to slide this crossing, say dm0 (IX) past

dm+1
0 (IX)dm0 (IH)dm+1

0 (IX). In other words, we need to show dm0 (IX)dm+1
0 (IX)dm0 (IH)dm+1

0 (IX) =

dm+1
0 (IH) · dm0 (IX) which can be obtained from the chord slide relation by applying d0 repeatedly.
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Case 2.c: =

The chord can begin on any strand other than the zeroth. The crossing must be between the

strand the chord ends on and the previous strand. which can’t be the zeroth strand.

Using the above expansions of chords in terms of the elements of the category C,

d20(IH)

= d10(IH)

These relations are a consequence of the previous case since they can be obtained by conjugating

relations in the previous case by dm∞d0(IX).

Case 2.d: =

The chord can be between any two adjacent strands not including the zeroth. The crossing must

be between these same two adjacent strands.

Using the above expansions of chords in terms of the elements of the category C,

d20(IH) = d20(IH)

Algebraically, this relation is [dm0 (IH), dm0 (IX)] which follows from the relation [IH, IX] by doubling.

Expanding using the definition IH = d0H+ IX ·HI · IX, [IH, IX] is equivalent to the chord flip relation.

So far, we have shown that we can slide chords along any crossings as is standard in the algebra

of chord diagrams. Given any further relation, we can always conjugate the relation by appropriate

permutations and slide the relation through the permutations to obtain a relation in which the left most

strand involved in the relation is either the zeroth or the first strand. We will use this throughout the

remainder of the proof so that only one relation needs to be checked in each case now.
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Step 3: Passing disjoint chords by each other

Case 3.a: =

Using the above expansions of chords in terms of the elements of the category C,

d10(IH) = d10(IH)

The relation [d∞HI, d0IH] is a monoidal relation.

Case 3.b: =

Using the above expansions of chords in terms of the elements of the category C,

IH

d20(IH)

=
d20(IH)

IH

The relation [d2
∞IH, d2

0IH] is a monoidal relation.

Step 4: 4T Relations

In order to reduce checking the 4T relations

[tij , tik + tjk] = 0

in the Drinfel’d Kohno algebra are in the image of the relations we will use our previous work to slide

any such relation to involve either the core and the first 3 strands or else the first 4 strands. For

example, consider the 4T relation [t45, t48 + t58]. Let P be the permutation (14)(25)(38) and let PX be

this permutation written in terms of the generators X and IX. Then assuming the 4T relation holds for
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the first three strands (and regarding tij as an element of C as described above,)

t45(t48 + t58) = t45(t48 + t58) · PXP
−1
X Slide the chords over the crossings

= PXt12(t13 + t23)P−1
X

= PX(t13 + t23t12)P−1
X

= (t48 + t58)t45 · PXP
−1
X

= (t48 + t58)t45.

Using this idea of sliding chords as far left as possible, any 4T relation can be reduced to one of the

following two cases.

Case 4.a: + = +

Using the above expansions of chords in terms of the elements of the category C,

+
IH

= +
IH

Recalling the definition, IH = d0H − IX · HI · IX, algebraically this relation is

0 = [HI, IX · HI · IX + d0H − IX · HI · IX] = [d∞H, d0H]

which is a monoidal relation.

Case 4.b: + = +

Using the above expansions of chords in terms of elements of the category C,

IH

IH

+
IH

d10(IH)

=
IH

IH

+
d10(IH)

IH
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Recalling the definition of IH,

IH

IH

=

d10(H)

d10(H)

−

d10(H)

−

d10(H)

+

IH

d10(IH)

=

d10(H)

d20(H)

−
d10(H)

d10(H)

−

d20(H)

+

d10(H)

IH

IH

=
d10(H)

d10(H)

−

d10(H)

−
d10(H)

+

d10(IH)

IH

=

d20(H)

d10(H)

−
d10(H)

d10(H)

−
d20(H)

+

d10(H)

After cancellation, the relation now involves only the four terms

−

d10(H)

+ = −

d10(H)

+

Algebraically, this relation is

0 = [d∞ (d0H− IX · HI · IX) , d0IX · d∞IX · d∞HI · d∞IX · d0IX]

The left entry in the commutator is the expansion in the category C for the chord t12 while the

second entry is t03. We have already shown disjoint chords commute in Step 3 above so the relation
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holds

3.3 Braidors and Grothendieck-Teichmüller Groups

3.3.1 The General Setup

We now have two algebraic structures, B̂a and ĈDa out of which, following Section 2.1.6, two groups

and a bitorsor (a set with compatible left and right free transitive group actions) can be constructed as

in the diagram

Aut(B̂a) B̂a ĈDa Aut(ĈDa)
Iso(B̂a,ĈDa)

.

Using the terminology taken from the case of Drinfel’d associators, we use the notation Aut(B̂a) = GTa,

called the annular Grothendieck-Teichmüller group and Aut(ĈDa) = GRTa, called the graded annular

Grothendieck-Teichmüller group. The set of ismorphisms Iso(B̂a, ĈDa) = BRAID is the set of braidors

and is a GTa −GRTa bitorsor.

Pro-` version of the space of braidors and the two annular Grothendieck-Teichmüller groups can be

obtained by replacing B̂a and ĈDa by the pro-` version as in the diagram

GT(`)
a = Aut

(
Ba

(`)
)

Ba
(`) CDa

(`) Aut
(
CDa

(`)
)

= GRT(`)
a

Iso(B̂a,CDa
(`))

and Iso(B̂a,CDa
(`)) = BRAID(`) is the pro-` version of the set of braidors, consisting of braidors up

to degree `.

3.3.2 Braidors

To provide an explicit description of a braidor we need to study isomorphisms Z : B̂a → ĈDa. Such

an isomorphism of algebraic structures will consist of a strict monoidal functor Z : B̂a → ĈDa which

preserves the coproduct.

Using Claim 3.1.1, to construct Z it suffices to specify the images Z(σ) = IX · B and Z(τ) = R

of the generators, where B ∈ Û t1,2 and R ∈ Û t1,1, and check that the relations in Claim 3.1.1 and

� are preserved. Since σ and τ are both invertible, B and R must be also. In order for � to be

preserved, B and R must be grouplike. Since a grouplike element in Û t1,1 is simply an exponential, set
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R = exp(t01)6. Using the notation Bf
−1(0),f−1(1),f−1(2) for a map f : {0, 1, 2} → {0, 1, 2, 3} as defined in

the introduction, the two relations in Claim 3.1.1 yield two equations that must be satisfied by B and

R, summarised in the

Definition 3.3.1. A braidor is an invertible, grouplike element B ∈ Û t3 which satisfies the equations

B0,1,2B02,1,3B0,2,3 = B01,2,3B0,1,3B03,1,2 (Braid Equation)

R01,2 = BR0,2B0,2,1 (Mixed Equation)

where R = exp (t01).

A similar argument for BRAID(`) leads to the notion of braidors up to degree ` in the pro-` case.

Definition 3.3.2. A braidor of degree ` is an invertible, grouplike element B ∈
⊕`

n=0(U t3)n, where

(U t3)n is the degree n component of Û t3, which, modulo degree (` + 1) and higher terms, satisfies

the braid and mixed relations in Definition 3.3.1. The set of all braidors of degree ` will be denoted

BRAID(`).

It follows immediately from the definitions that BRAID = lim←−` BRAID(`).

3.3.3 The Annular Grothendieck-Teichmüller Group GTa

While we make no use of GTa, for completeness a brief summary of its definition and properties is given.

There is a free, transitive action of the group of strict monoidal functors S : B̂a → B̂a which preserve

� and fix τ7 on BRAID. The action is given by precomposition and these functors form a group via

composition.

Such a functor is determined by the image S(σ) ∈ B̂1,2 of σ. Using the fact that S preserves the

coproduct and the fact that σ is invertible, we can write S(σ) = Σ · σ for some grouplike, invertible

Σ ∈ P̂B1,2
∼= P̂B3. In order to be well defined the two relations in Claim 3.1.1 must be preserved. The

two equations resulting from these relations are recorded in Definition 3.3.3.

To express the group law explicitly in terms of braid groups, let O : CDa → CDa be another such

functor with corresponding Ω ∈ P̂B3. Then

S ◦O(σ) = S(Ω · σ) = S(Ω) · S(σ) = S(Ω) · Σ · σ.

6In fact R = exp(k · t01) for any k ∈ A× is the most general solution however only in the case k = 1 will the resulting
invariant of annular braids be an expansion (ie. grZ = Z) so we enforce this condition in the definition of a braidor.

7This condition arises as expansions had to send τ to the fixed element R and hence GTa elements must preserve τ .
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In order to determine S(Ω) the following generators of PB3 will be used

σ01 = σ12 = and σ02 = .

Rewriting in terms of the generators of Ba, σ01 = d∞(τ), σ12 = σ2 and σ02 = σ · d∞(τ) · σ−1. Applying

S and rewriting the result using these generators as well as the generators σi of the braid groups where

σi is the braid in which strand i crosses over strand i+ 18,

S(σ01) = S(d∞τ) = d∞τ = σ01

S(σ12) = S(σ2) = (Σ · σ)2 = (Σσ1)2

S(σ02) = S(σ · d∞(τ)σ−1) = Σσ1σ01(σ1Σ)−1.

The action of S on Ω is thus obtained by replacing all occurences of σij by these expressions:

S(Ω) = Ω|σ01→σ01, σ12→(Σσ1)2, σ02→Σσ1σ01(σ1Σ)−1 .

Definition 3.3.3. ĜTa is the collection of all grouplike, invertible elements Σ ∈ P̂B1,2 which satisfy

the equations

d∞(Σ) · σ1 · d0(Σ) · σ2 · d∞(Σ) · σ1 = d0(Σ) · σ2 · d∞(Σ) · σ1 · d0(Σ) · σ2

d0(σ01) = Σσ1 · σ12 · Σ · σ1

in B̂1,2 where σ1 = d∞(σ) and σ2 = d0(σ). The group law in ĜTa is

Ω× Σ = Ω

∣∣∣∣
σ01→σ01, σ12→(Σσ1)2, σ02→Σσ1σ01(σ1Σ)−1

· Σ.

Proposition 3.3.1. There is a free, transitive right action of the group ĜTa on BRAID via

B • Σ = Σ

∣∣∣∣
σ01→exp(t01),σ12→BB0,2,1,σ02→B exp(t01)(B−1)0,2,1

·B

8While σi is not itself in the pure braid group, all three of the final expressions for S(σij) are pure braids
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for Σ ∈ ĜTa and B ∈ BRAID.

Proof. The action corresponds to the action of Aut(B̂a) on Iso(B̂a, ĈDa) by precomposition which is

free and transitive. The explicit formula for the action comes from a similar computation as for the

explicit formula for the group law. If Z is the functor corresponding to the braidor B and S is the

functor corresponding to Σ, then

Z(S(σ)) = Z(Σ · σ) = Z(Σ) ·B · σ.

Applying Z to the generators of the pure braid group yields

Z(σ01) = exp(t01)

Z(σ12) = BB0,2,1

Z(σ02) = B exp(t02)B0,2,1

so that

Z(Σ) = Σ

∣∣∣∣
σ01→exp(t01),σ12→BB0,2,1,σ02→B exp(t01)(B−1)0,2,1

3.3.4 The Graded Annular Grothendieck-Teichmüller Group GRTa

The group of strict monoidal functors γ : ĈDa → ĈDa which preserve the coproduct and which fix t01

also acts freely and transitively on BRAID, by post-composition now. Doing a similar analysis as was

done for GTa, γ(H) = H as any braidor sends τ to the same thing and we can write γ(IX) = Γ · IX for

some grouplike, invertible Γ ∈ Û t1,2 which must satisfy the two equations in Definition 3.3.4 in order to

be well-defined with respect to the relations in Claim 3.2.1. Although the explicit group law is not used

anywhere, it can be determined as follows. Let γ1 and γ2 be elements of GRTa with γ1(IX) = Γ1 · IX

and γ2(IX) = ·Γ2 · IX.

Writing γ1 ◦ γ2(IX) = γ1(Γ2 · IX) = γ1(Γ2)Γ1 · IX and using the generators t01 = H, t02 = IX · H · IX

and t12 = d0H− IX · H · IX of t3 we see that

γ1(t01) = t01

γ1(t02) = Γ1 · t02 · Γ0,2,1
1

γ1(t23) = t02 + t12 − Γ1 · t02 · Γ0,2,1
1
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and so

γ1(Γ2) = Γ2|t01→t01,t02→Γ1·t02·Γ0,2,1
1 ,t12→t02+t12−Γ1t01Γ0,2,1

1

leading to the

Definition 3.3.4. ĜRTa is the collection of all grouplike, invertible elements Γ ∈ Û t3 such that

Γ−1 = Γ0,2,1 and which satisfy the equations

Γ0,1,2Γ02,1,3Γ0,2,3 = Γ01,2,3Γ0,1,3Γ03,1,2 (Braid Equation)

t012,3
01 − Γ01,2,3t01,3

01 Γ01,3,2 = ΓΓ02,1,3
(
t02,3
02 − Γ0,2,3t03Γ0,3,2

)
Γ02,3,1Γ0,2,1 (Slide Equation)

The group law in ĜRTa is

Γ1 × Γ2 = Γ2|t01→t01,t02→Γ1·t02·Γ0,2,1
1 ,t12→t02+t12−Γ1t02Γ0,2,1

1
· Γ1.

There is also a pro-` version of GRTa obtained by replacing ĈDa by CDa
(`) in the above definition.

Definition 3.3.5. GRT(`)
a is the set of grouplike, invertible Γ ∈

⊕(`)
n=0(U t3)n which satisfy the braid

and slide equations modulo terms of degreee (`+ 1) and higher. The group law is as in Definition 3.3.4

again working modulo terms of degree (`+ 1) and higher.

An immediate consequence of the definitions is that GRTa = lim←−` GRT(`)
a .

Proposition 3.3.2. There is a free and transitive action of the group ĜRTa on BRAID via

Γ •B = B|t01→t01,t02→Γ·t01·Γ0,2,1,t12→t02+t12−Γt01Γ0,2,1 · Γ.

Working modulo degree `+ 1, the above formula also defines a free and transitive action of GRT(`)
a on

BRAID(`).

Proof. The action corresponds to the action of Aut(ĈDa) on Iso(B̂a, ĈDa) by post-composition which

is free and transitive.

To determine the explicit formula given for the action, Let Z be the functor corresponding to B and

let γ be the functor corresponding to Γ. Then γ(Z(σ)) = γ(B) · Γ · IX. Since



Chapter 3. The Algebraic Structure of Annular Braids 56

γ(t01) = t01

γ(t02) = Γ · t02Γ0,2,1

γ(t23) = t02 + t12 − Γ · t02Γ0,2,1

so

γ(B) = B|t01→t01,t02→Γ·t02·Γ0,2,1,t12→t02+t12−Γt01Γ0,2,1 .

Proposition 3.3.3. Each GRT(`)
a is a unipotent affine algebraic group scheme over Q. Hence it is

reduced and connected and GRTa is prounipotent.

Proof. We have constructed a group GRT(`)
a for any Q-algebra A in a functorial way. That is, we have

constructed a functor GRT(`)
a from the category of commutative Q-algebras to the category of groups

and so GRT(`)
a is an affine group scheme for every `.

The action of GRT(`)
a on CDa

(`) defines a faithful representation of GRT(`)
a on the vector space

of chord diagrams whose underlying permutation is the identity. Thus GRT(`)
a may be regarded as

an algebraic matrix group. Given any Γ ∈ GRTa, Γ(H) = H by definition and note that Γ(IX) =

IX+(higher order terms) since Γ must preserve the underlying permutation. Hence GRT(`)
a is a unipotent

affine group scheme over a field of characteristic zero. Standard results from the theory of algebraic groups

(see for example [Waterhouse (1979)]) imply that GRTa is reduced and connected. Since GRTa =

lim←−` GRT(`)
a is an inverse limit of unipotent affine group schemes, GRTa is prounipotent.

Proposition 3.3.4. The annular graded Grothendieck-Teichmüller Lie algebra grta = Lie(GRTa) is

the set of all primitive γ ∈ Û t3 which satisfy the equations

γ0,1,2 + γ02,1,3 + γ0,2,3 = γ01,2,3 + γ0,1,3 + γ03,1,2

t012,3
01 −

[
Γ01,2,3, t01,3

01

]
=

[
Γ,
[
Γ02,1,3,

[
t02,3
02 −

[
Γ0,2,3, t03

]]] ]
.

grt
(`)
a = Lie(GRT(`)

a ) is obtained by working modulo terms of degree (` + 1) and higher in the above

formulas.

Proof. From the results in Proposition 3.3.3 it follows (see [Waterhouse (1979)] for example) that the

Lie algebra is defined by the linearizations of the equations defining the group, as indicated.
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3.3.5 Existence of Braidors

The first question to ask about braidors is of course whether any exist. While existence is a very difficult

question for associators, it is easy to see that a braidor can be constructed out of any associator so the

existence of braidors reduces easily to the existence of associators.9

There is a map C : ASSOC→ BRAID which, given an associator Φ regarded as a functor B̂a →

ĈDa, is defined on the generator σ of B̂a by

C(Φ)


 = Φ


 .

Regarding Φ as an element of Û t1,2 rather than Û t3, which amounts to shifting the labelling of all

strands up by one, C is defined by C(Φ) = Φ exp
(

1
2 t12

)
Φ−0,2,1. That C(Φ) satisfies the required three

equations in the definition of a braidor follows from the fact that Φ satisfies the pentagon and the

hexagon equations.

Corollary 3.3.1. BRAID is nonempty for any Q-algebra A.

Proof. ASSOC is nonempty [Drinfel’d (1991)]. Furthermore rational braidors exist [Drinfel’d (1991);

Bar-Natan (1998)] and it is clear from the formula C(Φ) = Φ exp
(

1
2 t12

)
Φ−0,2,1 that if all the coefficients

of Φ are rational then so are the coefficients of the braidor C(Φ). Thus rational braidors, and a forteriori

braidors with coefficients in any Q-algebra A, exist.

Corollary 3.3.2. ĈDa = ĝrB̂a.

Proof. The existence of a braidor implies there is a ĈDa-expansion Z : B̂a → ĈDa so apply Lemma

2.1.1.

Lemma 3.3.1. The map C : ASSOC→ BRAID is injective.

Proof. Let Φ,Ψ be Drinfel’d associators and suppose C(Φ) = C(Ψ). Since Φ and Ψ both satisfy the

positive hexagon equation

R01,2 = ΦR1,2Φ−0,2,1R0,2Φ2,0,1 = C(Φ)R0,2Φ2,0,1

9Since our proof of the existence of braidors depends on the existence of associators, we are unfortunately still able to
construct a braidor only by using transcendental techniques.
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where R = exp
(

1
2 t12

)
, it follows that C(Φ) = R01,2Φ−2,0,1R−0,2 and C(Ψ) = R01,2Ψ−2,0,1R−0,2. Hence

R01,2Φ−2,0,1R−0,2 = R01,2Ψ−2,0,1R−0,2

which implies Φ = Ψ since R is invertible.

3.4 Braidors in Degree One

A direct computation using the equations in low degree shows that an associator is of the form

Φ = 1 +
1

24
t13t23 + · · ·

and hence, using the explicit formula for C, that

B = 1 +
1

2
t12 + · · · .

On the other hand, using the equations defining a braidor, we get

B = 1 +
1

2
t12 + k(t01 − t02) + · · · .

In both of these equations the ellipsis indicate terms of degree higher than 210.

The origin of this discrepency is the existence of degree one automorphisms Γk ∈ GTa of annular

braids for which there is no corresponding automorphism of braids in a disc.

To determine Γk explicitly, let β be an n strand annular braid. Let γn be the n strand annular braid

defined in the following way, using the interpretation of a braid is an element of the fundamental group of

the configuration of n points in an annulus. First let the outermost point circle the core counterclockwise

one time. After completing this, the outermost two points circle the core of the annulus one time.

Continue adding one more point until finally all n points circle the annulus one time counterclockwise.

The resulting annular braid is γn.

Γk is determined via conjugation by γkn. That is, on an n-strand annular braid, Γk is defined by

Γk(β) = γ−kn βγk.11 Using the action of GTa on BRAID, given an expansion Z ∈ BRAID, a new

expansion Zk ∈ BRAID is obtained where Zk(β) = Z ◦ Γ.

10A priori it is not clear that this equation extends to all degrees to give an actual braidor, however our argument below
shows how to appropriately modify a braidor coming from an associator to obtain braidors of this form for any k.

11Powers by real numbers are well-defined since we are working in a prounipotent completion.



Chapter 3. The Algebraic Structure of Annular Braids 59

To give an explicit formula using only the Drinfel’d-Kohno algebra, let

Cn =
∑

0≤i<j≤n

j tij

and let C ∈ Û tn be the element with graded components Cn. Then Zk(β) = e−kCZ(β)ekC . If Z is an

expansion with corresponding braidor of the form B = 1 + 1
2 t12 + · · · with k = 0, then Zk defines a

corresponding braidor Bk which is identical except that it now includes a k(t01 − t02) term in degree

one.

The net result is that there is a decomposition BRAID = BRAID0 × A where BRAID0 is the

collection of braidors with k = 0. So, while there are braidors not coming from associators, they are all

easily obtained from associators as described above. Note however that looking at just this new degree

one term in braidors not coming from associators does yield an invariant of braids which may not be

contained within an associator.

3.5 Reduction of Equations for Braidors

One of the classic results in the theory of associators due to Furusho [Furusho (2010)] is Theorem 2.5.2

stating that the pentagon equation implies the two hexagon equations. This theorem has an annular

counterpart which is proven in this section.

Theorem 3.5.1. If B ∈ Û t1,2 satisfies the braid equation and has degree one term equal to 1
2 t12 then it

satisfies the mixed relation.

Proof. Assume B satisfies the braid equation. Assume also that B satisfies the mixed relation up to

degree n and let E be the error in the mixed relation in degree n+1. E is the degree n+1 homogeneous

element of Û t1,2 which measures the difference R01,2−BR0,2B0,2,1 in degree n+ 1. In order to show the

mixed equation is in fact valid it suffices to show E must be zero and the strategy to do this is to find

equations which are satisfied by E in the hopes of showing no element of Û t1,2 satisfies these equations

except the zero element.

In order to find such an equation satisfied by E, we need to find a syzygy, that is a relation between

mixed relations which is accomplished in Figure 3.5.1.

Each move in the diagram in which the mixed relation is applied to move from one diagram to the

next will pick up an error E installed on the relevant strands. Comparing the errors along the two paths

in the diagram (see the caption for more detail) from the leftmost node to the rightmost node results in
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E02,1,3

E0,2,3

E01,2,3

E0,1,3

Braidor and locality relations

Figure 3.5.1: The derivation of an equation satisfied by the error E in the mixed relation in degree
n + 1. Start at the left-most chord diagram in the figure, then follow the two paths to the right-
most diagram. Each time the slide relation must be applied, to get from one diagram to the next,
the corresponding error term accrued is written above the error. Summing over the error terms along
each path and setting the result to be equal since we end on the same diagram yields the equation
E01,2,3 − E0,2,3 − E02,1,3 + E0,1,3 = 0

the equation

E01,2,3 − E0,2,3 − E02,1,3 + E0,1,3 = 0 (3.4)

which must be satisfied by E.

Both B and R are grouplike, and by definition E is the lowest degree term in the difference R01,2 −

BR0,2B0,2,1. The lowest degree term in the difference between two grouplike objects must be primitive. E

is thus a homogeneous primitive element of Û t1,2, and so must in fact be a Lie polynomial of homogeneous

degree n+ 1.

Consider the free Lie algebras FL[u, v] and FL[x, y, z] contained in t1,2 and t1,3 as indicated in the

diagrams

u

v

0 1 2

and t

x

y

0 1 2 3

.
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Modulo a term in the centre of Û t3
12, we may assume E ∈ FA[u, v] which implies that every term in

Equation 3.4 lies in FA[t, x, y]. In fact, by primitivity, E becomes a Lie polynomial F ∈ Lie[u, v].

To determine what Equation 3.4 becomes as an equation in FL[t, x, y], note that d0(u) = t + x and

d0(v) = y. Combining this operation with an appropriate permutation of strands,

E01,2,3 7→ F (t+ x, y)

E0,2,3 7→ F (t, y)

E02,1,3 7→ F (t+ y, x)

E0,1,3 7→ F (t, x)

and hence Equation 3.4 becomes

F (t+ x, y)− F (t, y)− F (t+ y, x) + F (t, x) = 0. (3.5)

in FL[t, x, y].

We will now view the Lie series as lying within the corresponding universal enveloping algebra and

work with the full algebra rather than only the primitive part of it. As a primitive part of the free

associative algebra, F can be written in the form

F (u, v) = F1(u, v)u+ F2(u, v)v.

Equation 3.5 can be encoded via the map d : FA[u, v] → FA[t, x, y] defined by dF = F (t + x, y) −

F (t, y)− F (t+ y, x) + F (t, x). To determine more information, we will consider compositions of d with

certain projections. First let us consider the composition evt=0 ◦ d where evt=0 : FA[t, x, y] → FA[x, y]

evaluates the noncommutative polynomial at t = 0. Using the decomposition F (u, v) = F1(u, v)u +

F2(u, v)v and then applying the mapping evt=0 yields

F (t+ x, y) = F1(t+ x, y)(t+ x) + F2(t+ x, y)y 7→ F1(x, y)x+ F2(x, y)y

F (t, y) = F1(t, y)t+ F2(t, y)y 7→ F2(0, y)y

F (t+ y, x) = F1(t+ y, x)(t+ y) + F2(t+ y, x)x 7→ F1(y, x)y + F2(y, x)x

F (t, x) = F1(t, x)t+ F2(t, x)x 7→ F2(0, x)x.

12Recall that FL[u, v] = t3/Z (t3)
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The equation evt=0 ◦ d(F ) = 0 implies

F1(x, y)x+ F2(x, y)y − F2(0, y)y − F1(y, x)y − F2(y, x)x+ F2(0, x)x = 0

=⇒
(
F1(x, y)− F2(y, x) + F2(0, x)

)
x+

(
F2(x, y)− F1(y, x)− F2(0, y)

)
y = 0

=⇒ F1(x, y)− F2(y, x) + F2(0, x) = 0.

Next consider the composition πy ◦ d where πy : FA[t, x, y] → FA[t, x] projects onto words having

only a single y in them which must appear at the right of the word and then discards this trailing y. In

other words, πy sends a noncommutative polynomial of the form h(t, x)y to h(t, x) and sends all other

polynomials to zero.

Using the decomposition F (u, v) = F1(u, v)u+ F2(u, v)v and then applying the mapping πy yields

F (t+ x, y) = F1(t+ x, y)(t+ x) + F2(t+ x, y)y 7→ F2(t+ x, 0)

F (t, y) = F1(t, y)t+ F2(t, y)y 7→ F2(t, 0)

F (t+ y, x) = F1(t+ y, x)(t+ y) + F2(t+ y, x)x 7→ F1(t, x)

F (t, x) = F1(t, x)t+ F2(t, x)x 7→ 0.

so πy ◦ d(F ) = 0 becomes

F2(t+ x, 0)− F2(t, 0)− F1(t, x) = 0.

Next do a similar thing with πx ◦ d : FA[u, v]→ FA[x, y], where πt projects onto words ending with

t and having no other occurences of t in them, then drops this trailing t. Using the decomposition

F (u, v) = F1(u, v)u+ F2(u, v)v and then applying the mapping πt yields

F (t+ x, y) = F1(t+ x, y)(t+ x) + F2(t+ x, y)y 7→ F1(x, y)

F (t, y) = F1(t, y)t+ F2(t, y)y 7→ F1(0, y)

F (t+ y, x) = F1(t+ y, x)(t+ y) + F2(t+ y, x)x 7→ F1(y, x)

F (t, x) = F1(t, x)t+ F2(t, x)x 7→ F1(0, x).

so πt ◦ d(F ) = 0 becomes

F1(x, y)− F1(0, y)− F1(y, x) + F1(0, x) = 0.
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If we standardize these three equations by changing variables back to u and v, we get the following

three equations

F1(u, v) = F2(u+ v, 0)− F2(u, 0) (3.6)

F1(u, v)− F2(v, u) = −F2(0, u) (3.7)

F1(u, v)− F1(v, u) = F1(0, v) + F1(0, u) = 0

Equation 3.6 implies that F1(u, v) = f(u + v) − f(u) where F2(t, 0) = f(t), and this together with

Equation 3.7 implies that F2(t, v) = f(u+ v)− f(v) + g(v) where F2(0, t) = g(t). Thus,

F (u, v) =

(
f(u+ v)− f(u)

)
u+

(
f(t+ v)− f(v) + g(v)

)
v. (3.8)

Finally, we claim that primitivity of F (u, v) implies it must be a multiple of v. To see why, consider

the left bracketing map L : FA[u, v]→ FA[u, v] which sends a word in the alphabet {u, v} to the iterated

commutator obtained by nesting commutators of the letters of the word so that innermost commutators

are furthest to the left (constants are sent to zero.) For example L(uvuu) = [[[u, v], u], u]. Consider

also the Euler operator D : FA[u, v] → FA[u, v], the map which sends a word w of length n in the

alphabet {u, v} to nw. It is a standard fact [Reutenauer (2003)] that on primitive elements, acting via

left bracketing is equivalent to acting via minus the Euler operator.

For a function of a single variable like f(u), left bracketing kills any monomial term aun other than the

degree one term, so that L(f(u)) = f ′(0)u and similarly L(g(u)) = g′(0)u. Applying the left bracketing

operation to the formula for F (u, v) in Equation 3.8, we get

L(F ) =

[
L
(
f(u+ v)− f(u)

)
, u

]
+

[
L
(
f(u+ v)− f(v) + g(v)

)
, v

]
+ g(0)v

= [f ′(0)v, u] + [f ′(0)u, v] + g(0)v

= g(0)v.

Enforcing primitivity, it must therefore be the case that D(F ) = −g(0)v but the only way this is

possible is if F = αv is a multiple of v, and so is homogeneous of degree one.

Since our assumption on the degree one part of the braidor automatically implies the mixed equation

holds in degree 1, F can have no degree one component and hence the error in the mixed equation

vanishes.

Corollary 3.5.1. BRAID is the collection of all grouplike, invertible elements B ∈ Û t3 such that the
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coefficient of t12 is 1
2 and which satisfy the single equation

B0,1,2B02,1,3B0,2,3 = B01,2,3B0,1,3B03,1,2

Proof. By Theorem 3.5.1, the mixed relation can only fail to hold in degree 1, however a direct com-

putation shows that when the degree one term is of the form given then the mixed equation holds in

degree one automatically.

3.6 Extension of Braidors

One of the fundamental results in the theory of associators is that they can be constructed degree by

degree, which in fact is an essential part of the proof that rational associators exist [Drinfel’d (1991);

Bar-Natan (1998)]. A sketch of a proof with a significant gap is presented in this section, together with

some partial progress in filling this gap. Some computational evidence that this conjecture holds is

presented in the next chapter.

The unproven conjecture is a reduction of the equations defining an element of GRTa to a single

equation.

Conjecture 3.6.1. Let Γ ∈ Û t1,2 be a grouplike, invertible element which satisfies the braid equation.

Then Γ satisfies the slide relation as well.

Before giving some results dealing with this conjecture, let us assume the conjecture is true and

show how it implies that braidors extend degree by degree. All results that are stated as theorems or

corollaries on this section must be understand as depending on the as yet unproven Conjecture 3.6.1.

Theorem 3.6.1. All braidors of degree n extend to braidors of degree n + 1. In other words, the map

BRAID(n+1) → BRAID(n) is surjective.

The proof of this theorem is inspired by and similar to Drinfel’d’s proof of the same result for

associators [Drinfel’d (1991)], especially as reformulated in [Bar-Natan (1998)]. The idea of the proof

is to use the fact that BRAID is a GRTa torsor to reduce to showing that the group morphism

GRT(n+1)
a → GRT(n)

a is surjective. Since these are unipotent affine algebraic group schemes, it suffices

to check this for the derivative maps grt
(n+1)
a → grt

(n)
a of Lie algebras. This becomes trivial after using

Conjecture 3.6.1, that one of the equations defining an element in GRTa is implied by the others, since

then we can simply extend by zero.

Corollary 3.6.1. The natural homomorphism GRT(n+1)
a → GRT(n)

a is surjective.
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Proof. By Propositions 3.3.3 and 3.3.4, GRT(n)
a is a unipotent affine algebraic group scheme so it is

enough to check this for the derivative map grt
(n+1)
a → grt

(n)
a . By Conjecture 3.6.1 the slide equation is

implied by the braid equation in degrees greater than 1 so it is not needed as part of the definition of

GRTa. Hence the Lie algebra is defined by the single equation

γ0,1,2 + γ02,1,3 + γ0,3,2 = γ01,2,3 + γ0,1,3 + γ03,1,2.

in degrees greater than 1.

A direct computation shows that elements of GRT(1)
a can be extended to degree 2, and if γ satisfies

this equation up to degree n, it can be extended to satisfy this equation up to degree n + 1 by simply

defining it to be 0 in degree n+ 113.

Corollary 3.6.2. The natural map BRAID(n+1) → BRAID(n) is surjective.

Proof. Let B be a braidor up to degree n. We’ve already observed braidors exist by constructing a

braidor out of an associator so there is at least one degree n braidor B0 which extends to a degree n+ 1

braidor. Since GRT(n)
a acts transitively on BRAID(n) there is some G ∈ GRT(n)

a with G • B = B0.

Since GRT(n+1)
a → GRT(n) is surjective, there is a Γ ∈ GRT(n+1)

a which agrees with G up to degree

n. Then Γ−1 •B0 is the required extension of B to a braidor of degree n+ 1.

A similar strategy as was used to show the braid equation implies the mixed equation for braidors

can be used to begin attempting to deal with Conjecture 3.6.1. Let Γ ∈ Û t1,2 be a grouplike element

which satisfies the braid equation. Assume in addition that Γ satisfies the slide equation up to degree n

and let E ∈ Û t1,3 be the error in the slide relation in degree n+ 1.

As in the proof of Theorem 3.5.1 syzygies, that is relations betwewen the relations defining GRTa,

are required in order to derive equations which must be satisfied by E, in the hopes of showing that no

error can satisfy these equations other than the zero element.

Three such relations can be obtained from the diagrams in Figure 3.6.1 and Figure 3.6.2. Recall

from the proof of Theorem 3.5.1 that indicated in this figure is a sequence of diagrams which should be

equivalent in the algebra of chord diagrams, however each time a slide relations is required to move from

one diagram to the next an instance of the error term installed on the correct strands is required as Γ

does not satisfy the braid equation in degree n + 1. Having gone all the way around the diagram, the

13It is here that the argument fails if the slide equation is required. In order for the linearization of the slide equation
to hold true in degree n+ 1 puts a new condition on γ in degree n due to the presence of the tij factors in the equation so
that it would not be possible to simply extend by zero anymore if this relation is part of the definition of the Lie algebra.
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Figure 3.6.1: The derivation of the syzygies S1 and S2. Start at any chord diagram in the figure, then
follow the entire loop indicated by the arrows back to the start. Each time the slide relation must be
applied, to get from one diagram to the next, the corresponding error term accrued is written above
the arrow. Summing over all these error terms and setting the result equal to zero in the left diagram
yields the equation E0,1,2,3 = E0,1,3,2 while doing this for the right diagram yields E0,2,3,4 +E02,1,3,4 =
E0,1,3,4 + E01,2,3,4.

sum of the accumulated errors must be equal to zero since we return to the original diagram and hence

an equation which must be satsified by E is obtained.

E0,1,2,3 = E0,1,3,2 (S1)

E0,2,3,4 + E02,1,3,4 = E0,1,3,4 + E01,2,3,4 (S2)

[t12, E
0,1,3,4 + E01,2,3,4] = [t34, E

0,3,1,4 + E03,4,1,2] (S3).

These three syzygies do appear to put significant restrictions on the error term E, however there are

nonzero solutions and so far we have been unable to either find other equations E must satisfy or else

to show using other properties an error in the slide relation must satisfy that only the zero element can

satisfy all three equations plus these other properties.

Direct computations in low degree appear to indicate that a Lie polynomial E ∈ Û t1,3 of degree

n is constrained by these equations to lie in “small” subspaces of Û t1,3. More precisely, there is an

isomorphism t1,3 ∼= FL1 oFL2 oFL3 (recall Equation 3.2) so the error in degree n is a priori an element

of an algebra which is the size of the degree n component of this iterated semidirect product.
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Figure 3.6.2: The derivation of the syzygy S3. Start at any chord diagram in the figure, then follow
the entire loop indicated by the arrows back to the start. Each time the slide relation must be applied,
to get from one diagram to the next, the corresponding error term accrued is written above the error.
Summing over all these error terms and setting the result equal to zero yields the equation [E0,1,3,4 +
E01,2,3,4, t12] + [E0,1,3,2 + E03,1,4,2, t34] = 0.
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Computations in low degrees indicate that syzygy S2 alone already constrains the degree n error E

to lie in a subspace whose dimension is twice that of the degree n component of a free Lie algebra on

two generators minus one, a significant reduction of the size of the full semidirect product. Furthermore,

although only computed to low degree, it appears that solutions to all three syzygy equations in degree

n are constrained to lie in subspaces which grow linearly with n. It may however be the case that growth

becomes superlinear in higher degrees.

While it therefore seems Conjecture 3.6.1 can be reduced to dealing with a relatively small and

manageable space, we have not been able to resolve the conjecture at this point.



Chapter 4

Computations, Conjectures and

Future Work

4.1 Computations Using FreeLie.m

Computations in free Lie algebras (and related algebras like the Drinfel’d-Kohno algebra appearing

in this paper) have been implemented by Bar-Natan in the Mathematica package FreeLie.m. Some

documentation as well as many examples of nontrivial computations using this and related packages

can be found in Bar-Natan (2015). For this paper some additional functionality not contained in

previous versions was required. The version of FreeLie.m used in this paper can be obtained from

www.math.toronto.edu/drorbn/People/Ens/thesis/FreeLie.m. The Mathematica notebook itself is avail-

able at www.math.toronto.edu/drorbn/People/Ens/thesis/FreeLie.nb.

In particular the package allows the computation of all solutions of equations like those defining

braidors and associators up to some fixed degree n. Unfortunately, in order for such computations to be

truly meaningful, in the sense that information about braidors (or elements of Grothendieck-Teichmüller

groups) is actually being obtained, it first must be shown that all braidors up to degree n actually extend

to full braidors. As a result, all the computations in this section depend on the unproven Conjecture

3.6.1 in order to have relevance for braidors.

Even assuming Conjecture 3.6.1, computations up to a given degree can not generally be used to

prove conjectures, however they do allow conjectures to be formulated and provide some evidence that

a conjecture is true by verfying it to a high degree. On the other hand, these computations can be used

to disprove conjectures by explicitly constructing counterexamples up to some degree n computation-

69

http://www.math.toronto.edu/drorbn/People/Ens/thesis/FreeLie.m
http://www.math.toronto.edu/drorbn/People/Ens/thesis/FreeLie.nb


Chapter 4. Computations, Conjectures and Future Work 70

ally and assuming the conjecture that all braidors extend concluding the existence of full braidors as

counterexamples.

Throughout this chapter, we will rewrite all equations involving braidors and GRTa as equations in

Û tn+1 rather than Û t1,n as this is the indexing used in FreeLie.m. This amounts to shifting the indices

i and j in tij up by 1.

4.1.1 Braidors and Associators in the Drinfel’d-Kohno Algebra

As explained in the introduction, it seems reasonable to expect that there are more braidors than

associators. In other words a priori it seems reasonable to expect the injective map C : ASSOC →

BRAID not to be surjective. To test this we can solve for both an associator and a braidor up to some

fixed degree and check how many arbitrary choices must be made in each degree to compute the dimension

of the solution space. This is done up to degree 10 in the Mathematica notebook BraidorsInDK10.nb

(www.math.toronto.edu/drorbn/People/Ens/thesis/BraidorsInDK10.nb), which we now summarise.

To begin, ensure the working directory contains the FreeLie.m package. This package is then loaded

and set to display infinite series to degree 3 and to pick random values between −100 and 100 when

making arbitrary choices in solving equations.SetDirectory"/home/travis/documents/notebook/mathematica/braidors";
<< FreeLie.m;

$SeriesShowDegree = 3;

Arb = Arbitrator → Replace#, _ → RandomInteger[{-100, 100}], 1 &;

Next, Φ is defined to be an infinite formal Lie series in Û t3
1 (a Drinfel’d-Kohno Series DKS in the

notation of the code) with coefficients labelled by Φs[i1, · · · , in]. Recall that in all the code samples in

this chapter, the indicies labelling the Drinfeld-Kohno generators tij are shifted up by one compared to

the notation used previously since in the Mathematica implementation the numbering begins at 1 rather

than 0.

Since associators are fixed in the first few degrees, these coefficients are set manually. The Se-

riesSolve function from FreeLie.m is then called which defines each coefficient Φs[i1, · · · , in] to be

a program which will solve the equation and store some information about the solution (but not the

solution itself) in the variable assocInfo. Note that the concept of lazy evaluation is used to deal with

infinite series here. Calling SeriesSolve merely defines Φ to be a program which takes as input an integer

n and outputs a solution to the equations in degree n rather than actually computing anything. These

programs are then run by Mathematica only to as high degree as is needed in any given computation so

that there is no need to explicitly truncate infinite series by hand.

1Note that FreeLie.m always implements these series on the level of Lie algebras and so the grouplike series in Û t3
described in earlier chapters is the exponential of this Lie series.

http://www.math.toronto.edu/drorbn/People/Ens/thesis/BraidorsInDK10.nb
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Φ = DKS[3, Φs];
Φs[2, 1] = Φs[3, 1] = Φs[3, 2] = 0; Φs[3, 1, 2] = 1 / 24;

assocInfo =

SeriesSolveΦ, Φσ[3,2,1] ≡ -Φ && Φ ** Φσ[1,23,4] ** Φσ[2,3,4] ≡ Φσ[12,3,4] ** Φσ[1,2,34];

We next ask Mathematica to evaluate Φ to degree 6 and time the result. The output displays a

rational Drinfel’d associator to this degree. The Lie bracket is denoted in this code by an overbracket.

Φ@{6} // Timing

1.20667, DKS0, 1

24
t13 t23, 0, -

7 t13 t23 t23 t23
5760

+
7 t13 t13 t23 t23

5760
-
t13 t13 t13 t23

1440
,

0,
31 t13 t23 t23 t23 t23 t23

967680
-
157 t13 t13 t23 t23 t13 t23

1935360
-
31 t13 t23 t13 t23 t23 t23

387072
-

31 t13 t13 t23 t23 t23 t23
483840

+
11 t13 t13 t13 t23 t13 t23

290304
+
31 t13 t13 t23 t13 t23 t23

725760
+

83 t13 t13 t13 t23 t23 t23
967680

-
13 t13 t13 t13 t13 t23 t23

241920
+
t13 t13 t13 t13 t13 t23

60480
, ...

Finally, the number of arbitrary choices SeriesSolve made in each degree to construct the associator

is computed from the information stored in assocInfo

ArbAssoc = Length[Last[#]] & /@ ReadassocInfo

{0, 0, 1, 0, 1, 0}

Next we repeat the same procedure replacing the pentagon equation with the braid equation. Recall

that by Corollary 3.5.1, the single braid equation defines braidors except in degree 1, and to ensure

compatibility with braidors coming from associators as explained in Section 3.4, we assume the braidor

is in BRAID0 and set the coefficient of t12 and t13 to zero.

B = DKS[3, Bs];

Bs[2, 1] = Bs[3, 1] = 0; Bs[3, 2] = 1 / 2;

braidInfo =

SeriesSolveB, Bσ[1,2,3] ** Bσ[13,2,4] ** Bσ[1,3,4] ≡ Bσ[12,3,4] ** Bσ[1,2,4] ** Bσ[14,2,3];

Finally we compute an arbitrary braidor up to degree 6 and display the number of arbitrary choices

made in each degree.
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B@{6} // Timing

SeriesSolve: In degree 3 arbitrarily setting {Bs[3, 1, 2, 2] → 0}.

SeriesSolve: In degree 5 arbitrarily setting {Bs[3, 1, 1, 1, 2, 2] → 0}.

2.50333, DKS t23

2

,
1

12
t13 t23, 0, -

t13 t23 t23 t23
5760

+
1

720
t13 t13 t23 t23 -

1

720
t13 t13 t13 t23,

-
t13 t23 t23 t23 t23

7680
+
t13 t23 t13 t23 t23

8640
+
t13 t13 t23 t23 t23

3840
,

t13 t23 t23 t23 t23 t23
645120

-
t13 t13 t23 t23 t13 t23

145152
-
71 t13 t23 t13 t23 t23 t23

2903040
-

23 t13 t13 t23 t23 t23 t23
483840

+
t13 t13 t13 t23 t13 t23

20160
+
t13 t13 t23 t13 t23 t23

22680
+

13 t13 t13 t13 t23 t23 t23
161280

-
t13 t13 t13 t13 t23 t23

15120
+
t13 t13 t13 t13 t13 t23

30240
, ...

ArbBraid = Length[Last[#]] & /@ ReadbraidInfo

{0, 0, 1, 0, 1, 0}

For complete output up to degree 10, see the Mathematica notebook BraidorsInDK10.nb linked

to above. The fact that the dimensions of the solution spaces turn out to be the same for both braidors

and associators up to degree 10 in these computations leads to the

Conjecture 4.1.1. The map C : ASSOC → BRAID0 defined in Section 3.3.5 is surjective. Since

BRAID and ASSOC are torsors for the Grothendieck-Teichmüller groups, we further conjecture that

GRT ∼= GRTa,0 and GT ∼= GTa,0 as prounipotent affine group schemes where GRTa,0 and GTa,0 are

the versions of these groups which are zero in degree 1.

There is a related, but not equivalent result in [Lochak & Schneps (1993)] which ought to be men-

tioned. In that paper the full braid groups plus a zeroth doubling operation are considerd rather than the

annular versions. The result from that paper could be translated, with some modifications to account for

the fact that profinite completions are used there rather then prounipotent completions, to show that a

subset of all braidors which preserve some extra structure not included in our algebraic structures come

from associators but the question of whether all braidors are of this special form remains open.

4.1.2 Braidors In the Kashiwara-Vergne Algebra

The computations up until this point have assumed braidors and associators are elements of the com-

pleted Drinfel’d-Kohno algebra. It is possible however to ask about the existence and properties of these

objects in any other space in which the equations make sense.
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As a first exploration of braidors in other algebras and to test whether the conjectured equality of

braidors and associators is a general feature of the equations or something unique to the Drinfel’d-Kohno

algebra, the Kashiwara-Vergne and related algebras provide a good testing ground.

For completeness we give a brief review of the relevant definitions found in [Alekseev & Torossian

(2012)] (see also [Bar-Natan & Dancso (2017)] for an interpretation of the following algebras and maps

in terms of the topology of knotted objects.) Let dern be the Lie algebra of derivations of the free Lie

algebra FLn = FL[x1, · · · , xn] on n generators. Let trn be the quotient of the positive degree part of

the free associative algebra FAn = FA[x1, · · · , xn] on n generators by commutators:

trn =

( ∞∏
k=1

FAn

)/
〈ab− ba : a, b ∈ FAn〉.

The quotient map tr : FAn → trn is called the trace map.

A derivation u ∈ dern is called tangential if there exist ai ∈ FLn such that u(xi) = [xi, ai] for

1 ≤ i ≤ n. A tangential derivation is called special if

u

(
n∑
i=1

xi

)
= 0.

The Lie algebra of tangential derivations is denoted by tdern and the Lie algebra of special derivations is

denoted by sdern. That these both form Lie subalgebras of dern can be verified by a direct computation.

There is a map div : tdern → trn which, given a tangential derivation u represented by (a1, · · · , an)

as in the previous paragraph, is defined by

div(u) =

n∑
k=1

tr(xk(∂kak)).

The Kashiwara-Vergne Lie algebras kvn are the special derivations with vanishing divergence and also

form a Lie subalgebra.

There is an action of Sn on tdern defined by sending u, represented by (a1, · · · , an), to the derivation

represented by (
aσ−1(1)(xσ(1), · · · , xσ(n)), · · · , aσ−1(n)(xσ(1), · · · , xσ(n))

)
for any σ ∈ Sn.

Using the action of Sn, the relevant operators appearing in the definitions of braidors and associ-

ators, usually called simplicial and coproduct maps in this context, can all be constructed out of the

following two basic ones. The simplicial map, which when applied to a derivation u ∈ tdern−1 is denoted
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u1,2,··· ,n−1 ∈ tdern, maps (a1, · · · , an−1) → (a1, · · · , an−1, 0). The coproduct, which when applied to a

derivation u ∈ tdern−1 is denoted by u12,3,··· ,n ∈ tdern, sends a representative (a1, · · · , an−1) to

(
a1(x1 + x2, x3, · · · , xn), a2(x1 + x2, x3, · · · , xn), · · · , an(x1 + x2, x3, · · · , xn)

)
.

These operations, together with all the variants obtained by applying the Sn action, are well-defined on

tdern, sdern and kvn and hence can be defined on the corresponding Lie groups TAutn,SAutn and KVn of

these Lie algebras. All the questions we have been asking about braidors in the Drinfel’d-Kohno algebra

can thus be asked in each of these spaces as well, now that the operators required in the pentagon and

braidor equations are defined.

To begin we solve for a braidor in each of the three new spaces in the Mathematica notebook

BraidorsInDer.nb (www.math.toronto.edu/drorbn/People/Ens/thesis/BraidorsInDer.nb). The ini-

tialization is as before.SetDirectory"/home/travis/documents/notebook/mathematica/braidors";

<< FreeLie.m;

$SeriesShowDegree = 3;

Arb = Arbitrator → Replace#, _ :> RandomInteger[{-100, 100}], 1 &;

The remaining computation is nearly identical to the one in the Drinfel’d-Kohno algebra, remember-

ing that a braidor B1 ∈ TAut will be represented in FreeLie.m by three Lie series in the variables 1, 2

and 3. µ1, ν1 and η1 are defined to be Lie Series in ̂FL[1, 2, 3] and B1 is the derivation which sends

1 7→ µ1, 2 7→ ν1 and 3 7→ η1. We then solve for B1 up to degree 6. Note that the proof that a braidor

is defined by just a single equation is only valid in the Drinfel’d-Kohno algebra so both equations are

required here.

μ1 = LS[{1, 2, 3}, μ1s]; ν1 = LS[{1, 2, 3}, ν1s]; η1 = LS[{1, 2, 3}, η1s];
B1 = 〈1 → μ1, 2 → ν1, 3 → η1〉;
BraidorTang = SeriesSolve{μ1, ν1, η1},

B1σ[1,2,3] ** B1σ[13,2,4] ** B1σ[1,3,4] ≡ B1
σ[12,3,4] ** B1

σ[1,2,4] ** B1
σ[14,2,3] ∧

RRσ[1,2] ** B1
σ[1,2,3] ** RRσ[1,3] ** B1

σ[1,3,2] ≡

B1σ[1,2,3] ** RRσ[1,3] ** B1
σ[1,3,2] ** RRσ[1,2] ∧

RRσ[12,3] ≡ B1
σ[1,2,3] ** RRσ[1,3] ** B1

σ[1,3,2], Arb;

B1@{6}; // Timing

SeriesSolve: No solution in degree 2.

Since there is no solution in degree 2, we see that the analogue of Conjecture 1.1.1 does not hold in

TAut, braidors need not be constructible degree by degree here. This is not surprising since the locality

relations do not hold in TAut and so the theory would be expected to exhibit pathologies.

http://www.math.toronto.edu/drorbn/People/Ens/thesis/BraidorsInDer.nb
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Doing the same computation for special derivations requires only adding the extra equation B(1 +

2 + 3) = 0 when solving for a braidor.

μ2 = LS[{1, 2, 3}, μ2s]; ν2 = LS[{1, 2, 3}, ν2s]; η2 = LS[{1, 2, 3}, η2s];
B2 = 〈1 → μ2, 2 → ν2, 3 → η2〉;
BraidorSpec = SeriesSolve{μ2, ν2, η2},

ℏ-1 b[LW@1, μ2] + b[LW@2, ν2] + b[LW@3, η2] ≡ LS[0]∧

B2σ[1,2,3] ** B2σ[13,2,4] ** B2σ[1,3,4] ≡ B2
σ[12,3,4] ** B2

σ[1,2,4] ** B2
σ[14,2,3] ∧

RRσ[1,2] ** B2
σ[1,2,3] ** RRσ[1,3] ** B2

σ[1,3,2] ≡

B2σ[1,2,3] ** RRσ[1,3] ** B2
σ[1,3,2] ** RRσ[1,2] ∧

RRσ[12,3] ≡ B2
σ[1,2,3] ** RRσ[1,3] ** B2

σ[1,3,2], Arb;

B2@{6}; // Timing

SeriesSolve: No solution in degree 6.

Once again, the computation fails to find a solution, in degree 6 this time. It is somewhat more

suprising that Conjecture 1.1.1 fails in SAut since the locality relations do hold here.

Finally, to do the computation in KV3 simply add the equation requiring the divergence to vanish.

μ3 = LS[{1, 2, 3}, μ3s]; ν3 = LS[{1, 2, 3}, ν3s]; η3 = LS[{1, 2, 3}, η3s];
B3 = 〈1 → μ3, 2 → ν3, 3 → η3〉;
BraidorKV = SeriesSolve{μ3, ν3, η3},

ℏ-1 b[LW@1, μ3] + b[LW@2, ν3] + b[LW@3, η3] ≡ LS[0]∧

B3
σ[1,2,3] ** B3

σ[13,2,4] ** B3
σ[1,3,4] ≡ B3

σ[12,3,4] ** B3
σ[1,2,4] ** B3

σ[14,2,3] ∧
div[B3] ≡ CWS[0]∧ RRσ[1,2] ** B3

σ[1,2,3] ** RRσ[1,3] ** B3
σ[1,3,2] ≡

B3σ[1,2,3] ** RRσ[1,3] ** B3
σ[1,3,2] ** RRσ[1,2] ∧

RRσ[12,3] ≡ B3
σ[1,2,3] ** RRσ[1,3] ** B3

σ[1,3,2], Arb;

B3@{6}; // Timing

55.0567, Null

This time the computation finishes. Looking at the number of free choices made in each degree,

ArbBraidor = Length[Last[#]] & /@ ReadBraidorKV

{1, 0, 1, 0, 1, 0}

we see that there is agreement with what happens for associators in the Drinfel’d-Kohno algebra. This

leads to the

Conjecture 4.1.2. Braidors in KV can be constructed degree by degree and the map C : ASSOC →

BRAID0 is surjective when interpreted inside KV. Furthermore any braidor in KV is the image of

a braidor in the Drinfel’d-Kohno algebra via the map Û t3 → KV3 described in [Alekseev & Torossian

(2012)].
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These conjectures are verified to degree 8 in the Mathematica notebook BraidorsInDer.nb linked

to above.

4.2 Future Work

The work carried out in this thesis is just the beginning of a study of the algebraic structure of annulur

braids and braidors. The next step is to fill in the gap in the proof of Conjecture 3.6.1, that braidors can

be constructed degree by degree, in order to make the computations of this chapter truly meaningful.

As observed in Section 3.6 we believe this can be reduced to a question about a relatively small and

controllable subspace of Û t1,3 and hence expect this to be an achievable goal, despite having failed thus

far.

Conjecture 4.1.1, that essentially all braidors come from associators or the corresponding isomorphism

of the Grothendieck-Teichmüller groups with their annular counterparts, would be the next goal however

this problem has the potential to be significantly more difficult. In fact there are a whole collection of

prounipotent affine group schemes, all related via inclusions as in the diagram

GRTa

π1

(
MT(Z)

)
GRT DMR0 KRV.

Here π1 (MT(Z)) is the motivic fundamental group, DMR0 is the regularised double shuffle group

and KRV is the group of degenerate solutions of the Kashiwara-Vergne problem. A brief discussion

of these group and the relations between can be found in [Furusho (2010)]. These five groups are

all speculated to be isomorphic and the indicated inclusions are already nontrivial results however no

isomorphisms have yet been shown to exist. The question of showing a group which is related to the

Grothendieck-Teichmüller group is actually isomorphic to it thus has a history of being very difficult.

On the other hand, if the conjectured equivalence of the annular and non-annular versions of the

Grothendieck-Teichmüller groups could be proven then the existence of a new group isomorphic to GRT,

together with its interpretation in terms of braids in the annulus, may lead to new ways of obtaining

information about the other groups in this diagram via the as yet unkown maps indicated by blue dashed

arrows so exploring the relationship between GRTa,0 and the other four groups could provide interesting

results .

Moving on to the knot-theoretic aspects of braidors, a universal finite-type invariant of braids in

the annulus is constructed in this thesis. More interesting would be a universal finite-type invariant
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of tangles in the annulus, since in particular this would yield a universal finite type invariant of usual

knots. In order to achieve this requires determining how to extend a functor Z : Ba → CDa so that it

acts on the cups and caps which appear in tangle diagrams in an invariant way, and study the resulting

invariant of knots in an annulus and usual knots. The extension to tangles in an annulus is expected to

be a straightforward short term goal.

Finally, while Conjectures 4.1.1 and 4.1.2 may appear to stymie the original goal of finding an easier

to construct and compute universal finite type invariant of knots using braidors, as every braidor comes

from an associator anyway, recall that these conjectures only apply to braidors and associators in the

Drinfeld-Kohno algebra or the Kashiwara-Vergne algebra. It may be possible to work around these

conjectures by replacing the Drinfel’d -Kohno algebra by other algebras. Since braidors require only

the monoidal product operation, it is possible to replace the Drinfeld-Kohno algebras, in which all the

operadic partial compositions are defined, by other algebras in which the monoidal product operation is

well-defined but the other operadic partial compositions are not. A braidor in such an algebra can then

be defined using the same formulas as in Definition 3.3.1, and such a braidor could not possible come

from an associator and so may be new and simpler.

As an example of such an algebra, let A0
n = 〈{σ}σ∈Sn , x, t1, · · · , tn〉 be the free associative algebra

with given generators where Sn is the symmetric group on {1, · · · , n}. Quotient A0
n by the following

relations

1. x is in the center of the algebra.

2. The relations in the symmetric group Sn are satisfied by permutations σ.

3. tiσ = σtσi

4. [ti, tj ] = xσij(ti − tj) where σij is the transposition interchanging i and j.

Let An be the degree completion of this quotient where deg x = 1,deg ti = 1 and deg σ = 0 for any

permutation σ.

The operation d∞ : An → An+1 is the obvious inclusion obtained by regarding {1, · · · , n} as a subset

of {1, · · · , n + 1}. The doubling operation d0 : An → An+1 is defined on generators by d0(x) = x,

d0(ti) = ti+1 +xσi,i+1 and d0 acts on the permutation σ by identifying {1, · · · , n} with {2, · · · , n+ 1} ⊂

{1, · · · , n+ 1}.

Having defined the operations d0 and d∞, the equations defining a braidor make sense in
∏∞
i=1An.

Developing the theory of braidors in this algebra, some preliminary results of which can be found at
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http://drorbn.net/index.php?title=The HOMFLY Braidor Algebra, or other algebras with the appro-

priate operations allowing the braidor equations to be defined may lead to interesting and simpler

invariants of braids and tangles, yet another direction to be pursued.

http://drorbn.net/index.php?title=The_HOMFLY_Braidor_Algebra


Bibliography

Alekseev, Anton, & Torossian, Charles. 2012. The Kashiwara-Vergne Conjecture and Drinfel’d’s Asso-

ciators. Annals of Mathematica, 2, 415–463.

Artin, Emil. 1947. Theory of Braids. Annals of Mathematics, 48(1), 101–126.

Bar-Natan, Dror. Expansions and quadraticity for groups. preprint.

http://drorbn.net/AcademicPensieve/Projects/ExQu/ExQu.pdf.

Bar-Natan, Dror. 1997. Non-Associative Tangles. Pages 139–183 of: Kazes, W. H. (ed), Proceedings of

the Georgia International Topology Conference. Amer. Math. Soc. and International Press.

Bar-Natan, Dror. 1998. On Associators and the Grothendieck-Teichmüller Group I. Selecta Mathematica,

New Series, 4, 183–201. arXiv:q-alg/9606021.

Bar-Natan, Dror. 2015. Finite Type Invariants of W-Knotted Objects IV: Some Computations. preprint.

arXiv:1511.05624.

Bar-Natan, Dror, & Dancso, Zsuzsanna. 2012. Pentagon and hexagon equations following Furusho.

Proceedings of the American Mathematical Society, 140(4), 1243–1250.

Bar-Natan, Dror, & Dancso, Zsuzsanna. 2017. Finite type invariants of w-knotted objects II: tangles,

foams and the Kashiwara-Vergne problem. Mathematische Annalen, 367(3), 1517–1586.

Bar-Natan, Dror, Garoufalidis, Stavros, Rozansky, Lev, & Thurston, Dylan P. 2000. Wheels, wheeling,

and the Kontsevich integral of the unknot. Israel Journal of Mathematics, 119, 217–237.

Bellingeri, Paolo. 2003. On Presentation of Surface Braid Groups. Journal of Algebra, 274, 543–563.

Drinfel’d, V. 1991. On Quasitriangular Quasi-Hopf Algebras and a Group Closely Connected With

Gal(Q̄/Q). Leningrad Math. J., 2, 829–860.

79

http://drorbn.net/AcademicPensieve/Projects/ExQu/ExQu.pdf
http://front.math.ucdavis.edu/q-alg/9606021
http://arxiv.org/abs/1511.05624


BIBLIOGRAPHY 80

Etingof, Pavel, & Kazhdan, David. 1996. Quantization of Lie bialgebras, I. Selecta Mathematica, 2(1),

1–41.

Fresse, Benoit. 2017a. Homotopy of operads and Grothendieck–Teichmüller groups Part 1. Math. Surveys

Monogr., vol. 217. Providence: American Mathematical Society.

Fresse, Benoit. 2017b. Homotopy of operads and Grothendieck–Teichmüller groups Part 2. Math. Surveys

Monogr., vol. 217. Providence: American Mathematical Society.

Furusho, Hidekazu. 2010. Pentagon and hexagon equations. Annals of Mathematics, 171(1), 545–556.

Furusho, Hidekazu. 2011. Four groups related to associators. preprint. arXiv:1108.3389.

Grothendieck, Alexandre. 1997. Esquisse d’un programme. London Mathematical Society Lecture Note

Series, 5–48.

Kassel, Christian, & Turaev, Vladimir. 2008. Braid Groups. Graduate Texts in Mathematics, vol. 247.

Springer.

Lambropoulou, Sofia. 2000. Braid Structure in Knot Complements, Handlebodies and 3-Manifolds.

Proceedings of the Conference “Knots in Hellas ’98”, Series of Knots and Everything, World Scientific,

24, 274–289.

Le, Thang Q. T., & Murakami, Jun. 1995. Kontsevish’s Integral for the HOMFLY Polynomial and

Relations Between Values of Multiple Zeta Functions. Topology and its Applications, 62, 192–206.

Lochak, Pierre, & Schneps, Leila. 1993. The Grothendieck-Teichmüller group and automorphisms of

braid groups. Comptes Rendus de l’Académie des Sciences. Série I, 200.

Reutenauer, Christophe. 2003. Free lie algebras. Handbook of Algebra, vol. 3. North-Holland.

Suciu, Alexander I., & Wang, He. 2019. Taylor expansions of groups and filtered-formality. European

Journal of Mathematics.

Tamarkin, Dimitri. 1998. Another proof of M. Kontsevich formality theorem. preprint.

arXiv:math/9803025.

Tamarkin, Dimitri. 2003. Formality of Chain Operad of Little Discs. Letters in Mathematical Physics,

66, 65–72.

Waterhouse, William C. 1979. Introduction to Affine Group Schemes. Vol. 66. Springer-Verlag GTM.

https://arxiv.org/abs/1108.3389
https://arxiv.org/abs/math/9803025

	Introduction
	Motivation

	Algebraic Structures and Expansions
	Algebraic Structures and Completions
	S-Algebras and the Unipotent Filtration
	Coproducts
	The Associated Graded Construction
	Prounipotent Completions of Algebraic Structures
	Expansions
	Torsors Associated to Algebraic Structures

	Free Abelian Groups
	Braid Groups
	Pure Braid Groups
	Parenthesized Braids and Drinfel'd Associators

	The Algebraic Structure of Annular Braids
	Annular Braid Groups
	Annular Braid Groups
	The Strict Monoidal Category of Annular Braids
	bold0mu mumu BaBaBaBaBaBa-algebras and Augmentation Ideals
	Coproduct
	Unipotent Completion

	The Category of Annular Chord Diagrams
	Braidors and Grothendieck-Teichmüller Groups
	The General Setup
	Braidors
	The Annular Grothendieck-Teichmüller Group GTa
	The Graded Annular Grothendieck-Teichmüller Group GRTa
	Existence of Braidors

	Braidors in Degree One
	Reduction of Equations for Braidors
	Extension of Braidors

	Computations, Conjectures and Future Work
	Computations Using greyFreeLie.m
	Braidors and Associators in the Drinfel'd-Kohno Algebra
	Braidors In the Kashiwara-Vergne Algebra

	Future Work

	Bibliography

